]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Update the text of an assertion to reflect changes made in revision 1.148.
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/mman.h>
72 #include <sys/mount.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>           /* for curproc, pageproc */
77 #include <sys/socket.h>
78 #include <sys/vnode.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sx.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/uma.h>
94
95 #define EASY_SCAN_FACTOR       8
96
97 #define MSYNC_FLUSH_HARDSEQ     0x01
98 #define MSYNC_FLUSH_SOFTSEQ     0x02
99
100 /*
101  * msync / VM object flushing optimizations
102  */
103 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
104 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
105         CTLFLAG_RW, &msync_flush_flags, 0, "");
106
107 static int old_msync;
108 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
109     "Use old (insecure) msync behavior");
110
111 static void     vm_object_qcollapse(vm_object_t object);
112 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113
114 /*
115  *      Virtual memory objects maintain the actual data
116  *      associated with allocated virtual memory.  A given
117  *      page of memory exists within exactly one object.
118  *
119  *      An object is only deallocated when all "references"
120  *      are given up.  Only one "reference" to a given
121  *      region of an object should be writeable.
122  *
123  *      Associated with each object is a list of all resident
124  *      memory pages belonging to that object; this list is
125  *      maintained by the "vm_page" module, and locked by the object's
126  *      lock.
127  *
128  *      Each object also records a "pager" routine which is
129  *      used to retrieve (and store) pages to the proper backing
130  *      storage.  In addition, objects may be backed by other
131  *      objects from which they were virtual-copied.
132  *
133  *      The only items within the object structure which are
134  *      modified after time of creation are:
135  *              reference count         locked by object's lock
136  *              pager routine           locked by object's lock
137  *
138  */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;  /* lock for object list and count */
142
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145
146 static long object_collapses;
147 static long object_bypasses;
148
149 /*
150  * next_index determines the page color that is assigned to the next
151  * allocated object.  Accesses to next_index are not synchronized
152  * because the effects of two or more object allocations using
153  * next_index simultaneously are inconsequential.  At any given time,
154  * numerous objects have the same page color.
155  */
156 static int next_index;
157
158 static uma_zone_t obj_zone;
159 #define VM_OBJECTS_INIT 256
160
161 static int vm_object_zinit(void *mem, int size, int flags);
162
163 #ifdef INVARIANTS
164 static void vm_object_zdtor(void *mem, int size, void *arg);
165
166 static void
167 vm_object_zdtor(void *mem, int size, void *arg)
168 {
169         vm_object_t object;
170
171         object = (vm_object_t)mem;
172         KASSERT(TAILQ_EMPTY(&object->memq),
173             ("object %p has resident pages",
174             object));
175         KASSERT(object->paging_in_progress == 0,
176             ("object %p paging_in_progress = %d",
177             object, object->paging_in_progress));
178         KASSERT(object->resident_page_count == 0,
179             ("object %p resident_page_count = %d",
180             object, object->resident_page_count));
181         KASSERT(object->shadow_count == 0,
182             ("object %p shadow_count = %d",
183             object, object->shadow_count));
184 }
185 #endif
186
187 static int
188 vm_object_zinit(void *mem, int size, int flags)
189 {
190         vm_object_t object;
191
192         object = (vm_object_t)mem;
193         bzero(&object->mtx, sizeof(object->mtx));
194         VM_OBJECT_LOCK_INIT(object, "standard object");
195
196         /* These are true for any object that has been freed */
197         object->paging_in_progress = 0;
198         object->resident_page_count = 0;
199         object->shadow_count = 0;
200         return (0);
201 }
202
203 void
204 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
205 {
206         int incr;
207
208         TAILQ_INIT(&object->memq);
209         LIST_INIT(&object->shadow_head);
210
211         object->root = NULL;
212         object->type = type;
213         object->size = size;
214         object->generation = 1;
215         object->ref_count = 1;
216         object->flags = 0;
217         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
218                 object->flags = OBJ_ONEMAPPING;
219         if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
220                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
221         else
222                 incr = size;
223         object->pg_color = next_index;
224         next_index = (object->pg_color + incr) & PQ_L2_MASK;
225         object->handle = NULL;
226         object->backing_object = NULL;
227         object->backing_object_offset = (vm_ooffset_t) 0;
228
229         mtx_lock(&vm_object_list_mtx);
230         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231         mtx_unlock(&vm_object_list_mtx);
232 }
233
234 /*
235  *      vm_object_init:
236  *
237  *      Initialize the VM objects module.
238  */
239 void
240 vm_object_init(void)
241 {
242         TAILQ_INIT(&vm_object_list);
243         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
244         
245         VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
246         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
247             kernel_object);
248
249         VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
250         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
251             kmem_object);
252
253         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
254 #ifdef INVARIANTS
255             vm_object_zdtor,
256 #else
257             NULL,
258 #endif
259             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
260         uma_prealloc(obj_zone, VM_OBJECTS_INIT);
261 }
262
263 void
264 vm_object_clear_flag(vm_object_t object, u_short bits)
265 {
266
267         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
268         object->flags &= ~bits;
269 }
270
271 void
272 vm_object_pip_add(vm_object_t object, short i)
273 {
274
275         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
276         object->paging_in_progress += i;
277 }
278
279 void
280 vm_object_pip_subtract(vm_object_t object, short i)
281 {
282
283         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
284         object->paging_in_progress -= i;
285 }
286
287 void
288 vm_object_pip_wakeup(vm_object_t object)
289 {
290
291         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
292         object->paging_in_progress--;
293         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
294                 vm_object_clear_flag(object, OBJ_PIPWNT);
295                 wakeup(object);
296         }
297 }
298
299 void
300 vm_object_pip_wakeupn(vm_object_t object, short i)
301 {
302
303         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
304         if (i)
305                 object->paging_in_progress -= i;
306         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
307                 vm_object_clear_flag(object, OBJ_PIPWNT);
308                 wakeup(object);
309         }
310 }
311
312 void
313 vm_object_pip_wait(vm_object_t object, char *waitid)
314 {
315
316         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
317         while (object->paging_in_progress) {
318                 object->flags |= OBJ_PIPWNT;
319                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
320         }
321 }
322
323 /*
324  *      vm_object_allocate:
325  *
326  *      Returns a new object with the given size.
327  */
328 vm_object_t
329 vm_object_allocate(objtype_t type, vm_pindex_t size)
330 {
331         vm_object_t object;
332
333         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
334         _vm_object_allocate(type, size, object);
335         return (object);
336 }
337
338
339 /*
340  *      vm_object_reference:
341  *
342  *      Gets another reference to the given object.  Note: OBJ_DEAD
343  *      objects can be referenced during final cleaning.
344  */
345 void
346 vm_object_reference(vm_object_t object)
347 {
348         struct vnode *vp;
349         int flags;
350
351         if (object == NULL)
352                 return;
353         VM_OBJECT_LOCK(object);
354         object->ref_count++;
355         if (object->type == OBJT_VNODE) {
356                 vp = object->handle;
357                 VI_LOCK(vp);
358                 VM_OBJECT_UNLOCK(object);
359                 for (flags = LK_INTERLOCK; vget(vp, flags, curthread);
360                      flags = 0)
361                         printf("vm_object_reference: delay in vget\n");
362         } else
363                 VM_OBJECT_UNLOCK(object);
364 }
365
366 /*
367  *      vm_object_reference_locked:
368  *
369  *      Gets another reference to the given object.
370  *
371  *      The object must be locked.
372  */
373 void
374 vm_object_reference_locked(vm_object_t object)
375 {
376         struct vnode *vp;
377
378         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
379         KASSERT((object->flags & OBJ_DEAD) == 0,
380             ("vm_object_reference_locked: dead object referenced"));
381         object->ref_count++;
382         if (object->type == OBJT_VNODE) {
383                 vp = object->handle;
384                 vref(vp);
385         }
386 }
387
388 /*
389  * Handle deallocating an object of type OBJT_VNODE.
390  */
391 void
392 vm_object_vndeallocate(vm_object_t object)
393 {
394         struct vnode *vp = (struct vnode *) object->handle;
395
396         VFS_ASSERT_GIANT(vp->v_mount);
397         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
398         KASSERT(object->type == OBJT_VNODE,
399             ("vm_object_vndeallocate: not a vnode object"));
400         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
401 #ifdef INVARIANTS
402         if (object->ref_count == 0) {
403                 vprint("vm_object_vndeallocate", vp);
404                 panic("vm_object_vndeallocate: bad object reference count");
405         }
406 #endif
407
408         object->ref_count--;
409         if (object->ref_count == 0) {
410                 mp_fixme("Unlocked vflag access.");
411                 vp->v_vflag &= ~VV_TEXT;
412         }
413         VM_OBJECT_UNLOCK(object);
414         /*
415          * vrele may need a vop lock
416          */
417         vrele(vp);
418 }
419
420 /*
421  *      vm_object_deallocate:
422  *
423  *      Release a reference to the specified object,
424  *      gained either through a vm_object_allocate
425  *      or a vm_object_reference call.  When all references
426  *      are gone, storage associated with this object
427  *      may be relinquished.
428  *
429  *      No object may be locked.
430  */
431 void
432 vm_object_deallocate(vm_object_t object)
433 {
434         vm_object_t temp;
435
436         while (object != NULL) {
437                 int vfslocked;
438                 /*
439                  * In general, the object should be locked when working with
440                  * its type.  In this case, in order to maintain proper lock
441                  * ordering, an exception is possible because a vnode-backed
442                  * object never changes its type.
443                  */
444                 vfslocked = 0;
445                 if (object->type == OBJT_VNODE) {
446                         struct vnode *vp = (struct vnode *) object->handle;
447                         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
448                 }
449                 VM_OBJECT_LOCK(object);
450                 if (object->type == OBJT_VNODE) {
451                         vm_object_vndeallocate(object);
452                         VFS_UNLOCK_GIANT(vfslocked);
453                         return;
454                 }
455
456                 KASSERT(object->ref_count != 0,
457                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
458
459                 /*
460                  * If the reference count goes to 0 we start calling
461                  * vm_object_terminate() on the object chain.
462                  * A ref count of 1 may be a special case depending on the
463                  * shadow count being 0 or 1.
464                  */
465                 object->ref_count--;
466                 if (object->ref_count > 1) {
467                         VM_OBJECT_UNLOCK(object);
468                         return;
469                 } else if (object->ref_count == 1) {
470                         if (object->shadow_count == 0) {
471                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
472                         } else if ((object->shadow_count == 1) &&
473                             (object->handle == NULL) &&
474                             (object->type == OBJT_DEFAULT ||
475                              object->type == OBJT_SWAP)) {
476                                 vm_object_t robject;
477
478                                 robject = LIST_FIRST(&object->shadow_head);
479                                 KASSERT(robject != NULL,
480                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
481                                          object->ref_count,
482                                          object->shadow_count));
483                                 if (!VM_OBJECT_TRYLOCK(robject)) {
484                                         /*
485                                          * Avoid a potential deadlock.
486                                          */
487                                         object->ref_count++;
488                                         VM_OBJECT_UNLOCK(object);
489                                         /*
490                                          * More likely than not the thread
491                                          * holding robject's lock has lower
492                                          * priority than the current thread.
493                                          * Let the lower priority thread run.
494                                          */
495                                         tsleep(&proc0, PVM, "vmo_de", 1);
496                                         continue;
497                                 }
498                                 /*
499                                  * Collapse object into its shadow unless its
500                                  * shadow is dead.  In that case, object will
501                                  * be deallocated by the thread that is
502                                  * deallocating its shadow.
503                                  */
504                                 if ((robject->flags & OBJ_DEAD) == 0 &&
505                                     (robject->handle == NULL) &&
506                                     (robject->type == OBJT_DEFAULT ||
507                                      robject->type == OBJT_SWAP)) {
508
509                                         robject->ref_count++;
510 retry:
511                                         if (robject->paging_in_progress) {
512                                                 VM_OBJECT_UNLOCK(object);
513                                                 vm_object_pip_wait(robject,
514                                                     "objde1");
515                                                 VM_OBJECT_LOCK(object);
516                                                 goto retry;
517                                         } else if (object->paging_in_progress) {
518                                                 VM_OBJECT_UNLOCK(robject);
519                                                 object->flags |= OBJ_PIPWNT;
520                                                 msleep(object,
521                                                     VM_OBJECT_MTX(object),
522                                                     PDROP | PVM, "objde2", 0);
523                                                 VM_OBJECT_LOCK(robject);
524                                                 VM_OBJECT_LOCK(object);
525                                                 goto retry;
526                                         }
527                                         VM_OBJECT_UNLOCK(object);
528                                         if (robject->ref_count == 1) {
529                                                 robject->ref_count--;
530                                                 object = robject;
531                                                 goto doterm;
532                                         }
533                                         object = robject;
534                                         vm_object_collapse(object);
535                                         VM_OBJECT_UNLOCK(object);
536                                         continue;
537                                 }
538                                 VM_OBJECT_UNLOCK(robject);
539                         }
540                         VM_OBJECT_UNLOCK(object);
541                         return;
542                 }
543 doterm:
544                 temp = object->backing_object;
545                 if (temp != NULL) {
546                         VM_OBJECT_LOCK(temp);
547                         LIST_REMOVE(object, shadow_list);
548                         temp->shadow_count--;
549                         temp->generation++;
550                         VM_OBJECT_UNLOCK(temp);
551                         object->backing_object = NULL;
552                 }
553                 /*
554                  * Don't double-terminate, we could be in a termination
555                  * recursion due to the terminate having to sync data
556                  * to disk.
557                  */
558                 if ((object->flags & OBJ_DEAD) == 0)
559                         vm_object_terminate(object);
560                 else
561                         VM_OBJECT_UNLOCK(object);
562                 object = temp;
563         }
564 }
565
566 /*
567  *      vm_object_terminate actually destroys the specified object, freeing
568  *      up all previously used resources.
569  *
570  *      The object must be locked.
571  *      This routine may block.
572  */
573 void
574 vm_object_terminate(vm_object_t object)
575 {
576         vm_page_t p;
577
578         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
579
580         /*
581          * Make sure no one uses us.
582          */
583         vm_object_set_flag(object, OBJ_DEAD);
584
585         /*
586          * wait for the pageout daemon to be done with the object
587          */
588         vm_object_pip_wait(object, "objtrm");
589
590         KASSERT(!object->paging_in_progress,
591                 ("vm_object_terminate: pageout in progress"));
592
593         /*
594          * Clean and free the pages, as appropriate. All references to the
595          * object are gone, so we don't need to lock it.
596          */
597         if (object->type == OBJT_VNODE) {
598                 struct vnode *vp = (struct vnode *)object->handle;
599
600                 /*
601                  * Clean pages and flush buffers.
602                  */
603                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
604                 VM_OBJECT_UNLOCK(object);
605
606                 vinvalbuf(vp, V_SAVE, NULL, 0, 0);
607
608                 VM_OBJECT_LOCK(object);
609         }
610
611         KASSERT(object->ref_count == 0, 
612                 ("vm_object_terminate: object with references, ref_count=%d",
613                 object->ref_count));
614
615         /*
616          * Now free any remaining pages. For internal objects, this also
617          * removes them from paging queues. Don't free wired pages, just
618          * remove them from the object. 
619          */
620         vm_page_lock_queues();
621         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
622                 KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
623                         ("vm_object_terminate: freeing busy page %p "
624                         "p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
625                 if (p->wire_count == 0) {
626                         vm_page_free(p);
627                         cnt.v_pfree++;
628                 } else {
629                         vm_page_remove(p);
630                 }
631         }
632         vm_page_unlock_queues();
633
634         /*
635          * Let the pager know object is dead.
636          */
637         vm_pager_deallocate(object);
638         VM_OBJECT_UNLOCK(object);
639
640         /*
641          * Remove the object from the global object list.
642          */
643         mtx_lock(&vm_object_list_mtx);
644         TAILQ_REMOVE(&vm_object_list, object, object_list);
645         mtx_unlock(&vm_object_list_mtx);
646
647         /*
648          * Free the space for the object.
649          */
650         uma_zfree(obj_zone, object);
651 }
652
653 /*
654  *      vm_object_page_clean
655  *
656  *      Clean all dirty pages in the specified range of object.  Leaves page 
657  *      on whatever queue it is currently on.   If NOSYNC is set then do not
658  *      write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
659  *      leaving the object dirty.
660  *
661  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
662  *      synchronous clustering mode implementation.
663  *
664  *      Odd semantics: if start == end, we clean everything.
665  *
666  *      The object must be locked.
667  */
668 void
669 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
670 {
671         vm_page_t p, np;
672         vm_pindex_t tstart, tend;
673         vm_pindex_t pi;
674         int clearobjflags;
675         int pagerflags;
676         int curgeneration;
677
678         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
679         if (object->type != OBJT_VNODE ||
680                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
681                 return;
682
683         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
684         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
685
686         vm_object_set_flag(object, OBJ_CLEANING);
687
688         tstart = start;
689         if (end == 0) {
690                 tend = object->size;
691         } else {
692                 tend = end;
693         }
694
695         vm_page_lock_queues();
696         /*
697          * If the caller is smart and only msync()s a range he knows is
698          * dirty, we may be able to avoid an object scan.  This results in
699          * a phenominal improvement in performance.  We cannot do this
700          * as a matter of course because the object may be huge - e.g.
701          * the size might be in the gigabytes or terrabytes.
702          */
703         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
704                 vm_pindex_t tscan;
705                 int scanlimit;
706                 int scanreset;
707
708                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
709                 if (scanreset < 16)
710                         scanreset = 16;
711                 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
712
713                 scanlimit = scanreset;
714                 tscan = tstart;
715                 while (tscan < tend) {
716                         curgeneration = object->generation;
717                         p = vm_page_lookup(object, tscan);
718                         if (p == NULL || p->valid == 0 ||
719                             (p->queue - p->pc) == PQ_CACHE) {
720                                 if (--scanlimit == 0)
721                                         break;
722                                 ++tscan;
723                                 continue;
724                         }
725                         vm_page_test_dirty(p);
726                         if ((p->dirty & p->valid) == 0) {
727                                 if (--scanlimit == 0)
728                                         break;
729                                 ++tscan;
730                                 continue;
731                         }
732                         /*
733                          * If we have been asked to skip nosync pages and 
734                          * this is a nosync page, we can't continue.
735                          */
736                         if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
737                                 if (--scanlimit == 0)
738                                         break;
739                                 ++tscan;
740                                 continue;
741                         }
742                         scanlimit = scanreset;
743
744                         /*
745                          * This returns 0 if it was unable to busy the first
746                          * page (i.e. had to sleep).
747                          */
748                         tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
749                 }
750
751                 /*
752                  * If everything was dirty and we flushed it successfully,
753                  * and the requested range is not the entire object, we
754                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
755                  * return immediately.
756                  */
757                 if (tscan >= tend && (tstart || tend < object->size)) {
758                         vm_page_unlock_queues();
759                         vm_object_clear_flag(object, OBJ_CLEANING);
760                         return;
761                 }
762                 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
763         }
764
765         /*
766          * Generally set CLEANCHK interlock and make the page read-only so
767          * we can then clear the object flags.
768          *
769          * However, if this is a nosync mmap then the object is likely to 
770          * stay dirty so do not mess with the page and do not clear the
771          * object flags.
772          */
773         clearobjflags = 1;
774         TAILQ_FOREACH(p, &object->memq, listq) {
775                 vm_page_flag_set(p, PG_CLEANCHK);
776                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
777                         clearobjflags = 0;
778                 else
779                         pmap_page_protect(p, VM_PROT_READ);
780         }
781
782         if (clearobjflags && (tstart == 0) && (tend == object->size)) {
783                 struct vnode *vp;
784
785                 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
786                 if (object->type == OBJT_VNODE &&
787                     (vp = (struct vnode *)object->handle) != NULL) {
788                         VI_LOCK(vp);
789                         if (vp->v_iflag & VI_OBJDIRTY)
790                                 vp->v_iflag &= ~VI_OBJDIRTY;
791                         VI_UNLOCK(vp);
792                 }
793         }
794
795 rescan:
796         curgeneration = object->generation;
797
798         for (p = TAILQ_FIRST(&object->memq); p; p = np) {
799                 int n;
800
801                 np = TAILQ_NEXT(p, listq);
802
803 again:
804                 pi = p->pindex;
805                 if (((p->flags & PG_CLEANCHK) == 0) ||
806                         (pi < tstart) || (pi >= tend) ||
807                         (p->valid == 0) ||
808                         ((p->queue - p->pc) == PQ_CACHE)) {
809                         vm_page_flag_clear(p, PG_CLEANCHK);
810                         continue;
811                 }
812
813                 vm_page_test_dirty(p);
814                 if ((p->dirty & p->valid) == 0) {
815                         vm_page_flag_clear(p, PG_CLEANCHK);
816                         continue;
817                 }
818
819                 /*
820                  * If we have been asked to skip nosync pages and this is a
821                  * nosync page, skip it.  Note that the object flags were
822                  * not cleared in this case so we do not have to set them.
823                  */
824                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
825                         vm_page_flag_clear(p, PG_CLEANCHK);
826                         continue;
827                 }
828
829                 n = vm_object_page_collect_flush(object, p,
830                         curgeneration, pagerflags);
831                 if (n == 0)
832                         goto rescan;
833
834                 if (object->generation != curgeneration)
835                         goto rescan;
836
837                 /*
838                  * Try to optimize the next page.  If we can't we pick up
839                  * our (random) scan where we left off.
840                  */
841                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
842                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
843                                 goto again;
844                 }
845         }
846         vm_page_unlock_queues();
847 #if 0
848         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
849 #endif
850
851         vm_object_clear_flag(object, OBJ_CLEANING);
852         return;
853 }
854
855 static int
856 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
857 {
858         int runlen;
859         int maxf;
860         int chkb;
861         int maxb;
862         int i;
863         vm_pindex_t pi;
864         vm_page_t maf[vm_pageout_page_count];
865         vm_page_t mab[vm_pageout_page_count];
866         vm_page_t ma[vm_pageout_page_count];
867
868         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
869         pi = p->pindex;
870         while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
871                 vm_page_lock_queues();
872                 if (object->generation != curgeneration) {
873                         return(0);
874                 }
875         }
876         maxf = 0;
877         for(i = 1; i < vm_pageout_page_count; i++) {
878                 vm_page_t tp;
879
880                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
881                         if ((tp->flags & PG_BUSY) ||
882                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
883                                  (tp->flags & PG_CLEANCHK) == 0) ||
884                                 (tp->busy != 0))
885                                 break;
886                         if((tp->queue - tp->pc) == PQ_CACHE) {
887                                 vm_page_flag_clear(tp, PG_CLEANCHK);
888                                 break;
889                         }
890                         vm_page_test_dirty(tp);
891                         if ((tp->dirty & tp->valid) == 0) {
892                                 vm_page_flag_clear(tp, PG_CLEANCHK);
893                                 break;
894                         }
895                         maf[ i - 1 ] = tp;
896                         maxf++;
897                         continue;
898                 }
899                 break;
900         }
901
902         maxb = 0;
903         chkb = vm_pageout_page_count -  maxf;
904         if (chkb) {
905                 for(i = 1; i < chkb;i++) {
906                         vm_page_t tp;
907
908                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
909                                 if ((tp->flags & PG_BUSY) ||
910                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
911                                          (tp->flags & PG_CLEANCHK) == 0) ||
912                                         (tp->busy != 0))
913                                         break;
914                                 if ((tp->queue - tp->pc) == PQ_CACHE) {
915                                         vm_page_flag_clear(tp, PG_CLEANCHK);
916                                         break;
917                                 }
918                                 vm_page_test_dirty(tp);
919                                 if ((tp->dirty & tp->valid) == 0) {
920                                         vm_page_flag_clear(tp, PG_CLEANCHK);
921                                         break;
922                                 }
923                                 mab[ i - 1 ] = tp;
924                                 maxb++;
925                                 continue;
926                         }
927                         break;
928                 }
929         }
930
931         for(i = 0; i < maxb; i++) {
932                 int index = (maxb - i) - 1;
933                 ma[index] = mab[i];
934                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
935         }
936         vm_page_flag_clear(p, PG_CLEANCHK);
937         ma[maxb] = p;
938         for(i = 0; i < maxf; i++) {
939                 int index = (maxb + i) + 1;
940                 ma[index] = maf[i];
941                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
942         }
943         runlen = maxb + maxf + 1;
944
945         vm_pageout_flush(ma, runlen, pagerflags);
946         for (i = 0; i < runlen; i++) {
947                 if (ma[i]->valid & ma[i]->dirty) {
948                         pmap_page_protect(ma[i], VM_PROT_READ);
949                         vm_page_flag_set(ma[i], PG_CLEANCHK);
950
951                         /*
952                          * maxf will end up being the actual number of pages
953                          * we wrote out contiguously, non-inclusive of the
954                          * first page.  We do not count look-behind pages.
955                          */
956                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
957                                 maxf = i - maxb - 1;
958                 }
959         }
960         return(maxf + 1);
961 }
962
963 /*
964  * Note that there is absolutely no sense in writing out
965  * anonymous objects, so we track down the vnode object
966  * to write out.
967  * We invalidate (remove) all pages from the address space
968  * for semantic correctness.
969  *
970  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
971  * may start out with a NULL object.
972  */
973 void
974 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
975     boolean_t syncio, boolean_t invalidate)
976 {
977         vm_object_t backing_object;
978         struct vnode *vp;
979         int flags;
980
981         if (object == NULL)
982                 return;
983         VM_OBJECT_LOCK(object);
984         while ((backing_object = object->backing_object) != NULL) {
985                 VM_OBJECT_LOCK(backing_object);
986                 offset += object->backing_object_offset;
987                 VM_OBJECT_UNLOCK(object);
988                 object = backing_object;
989                 if (object->size < OFF_TO_IDX(offset + size))
990                         size = IDX_TO_OFF(object->size) - offset;
991         }
992         /*
993          * Flush pages if writing is allowed, invalidate them
994          * if invalidation requested.  Pages undergoing I/O
995          * will be ignored by vm_object_page_remove().
996          *
997          * We cannot lock the vnode and then wait for paging
998          * to complete without deadlocking against vm_fault.
999          * Instead we simply call vm_object_page_remove() and
1000          * allow it to block internally on a page-by-page
1001          * basis when it encounters pages undergoing async
1002          * I/O.
1003          */
1004         if (object->type == OBJT_VNODE &&
1005             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1006                 int vfslocked;
1007                 vp = object->handle;
1008                 VM_OBJECT_UNLOCK(object);
1009                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1010                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
1011                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1012                 flags |= invalidate ? OBJPC_INVAL : 0;
1013                 VM_OBJECT_LOCK(object);
1014                 vm_object_page_clean(object,
1015                     OFF_TO_IDX(offset),
1016                     OFF_TO_IDX(offset + size + PAGE_MASK),
1017                     flags);
1018                 VM_OBJECT_UNLOCK(object);
1019                 VOP_UNLOCK(vp, 0, curthread);
1020                 VFS_UNLOCK_GIANT(vfslocked);
1021                 VM_OBJECT_LOCK(object);
1022         }
1023         if ((object->type == OBJT_VNODE ||
1024              object->type == OBJT_DEVICE) && invalidate) {
1025                 boolean_t purge;
1026                 purge = old_msync || (object->type == OBJT_DEVICE);
1027                 vm_object_page_remove(object,
1028                     OFF_TO_IDX(offset),
1029                     OFF_TO_IDX(offset + size + PAGE_MASK),
1030                     purge ? FALSE : TRUE);
1031         }
1032         VM_OBJECT_UNLOCK(object);
1033 }
1034
1035 /*
1036  *      vm_object_madvise:
1037  *
1038  *      Implements the madvise function at the object/page level.
1039  *
1040  *      MADV_WILLNEED   (any object)
1041  *
1042  *          Activate the specified pages if they are resident.
1043  *
1044  *      MADV_DONTNEED   (any object)
1045  *
1046  *          Deactivate the specified pages if they are resident.
1047  *
1048  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1049  *                       OBJ_ONEMAPPING only)
1050  *
1051  *          Deactivate and clean the specified pages if they are
1052  *          resident.  This permits the process to reuse the pages
1053  *          without faulting or the kernel to reclaim the pages
1054  *          without I/O.
1055  */
1056 void
1057 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1058 {
1059         vm_pindex_t end, tpindex;
1060         vm_object_t backing_object, tobject;
1061         vm_page_t m;
1062
1063         if (object == NULL)
1064                 return;
1065         VM_OBJECT_LOCK(object);
1066         end = pindex + count;
1067         /*
1068          * Locate and adjust resident pages
1069          */
1070         for (; pindex < end; pindex += 1) {
1071 relookup:
1072                 tobject = object;
1073                 tpindex = pindex;
1074 shadowlookup:
1075                 /*
1076                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1077                  * and those pages must be OBJ_ONEMAPPING.
1078                  */
1079                 if (advise == MADV_FREE) {
1080                         if ((tobject->type != OBJT_DEFAULT &&
1081                              tobject->type != OBJT_SWAP) ||
1082                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1083                                 goto unlock_tobject;
1084                         }
1085                 }
1086                 m = vm_page_lookup(tobject, tpindex);
1087                 if (m == NULL) {
1088                         /*
1089                          * There may be swap even if there is no backing page
1090                          */
1091                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1092                                 swap_pager_freespace(tobject, tpindex, 1);
1093                         /*
1094                          * next object
1095                          */
1096                         backing_object = tobject->backing_object;
1097                         if (backing_object == NULL)
1098                                 goto unlock_tobject;
1099                         VM_OBJECT_LOCK(backing_object);
1100                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1101                         if (tobject != object)
1102                                 VM_OBJECT_UNLOCK(tobject);
1103                         tobject = backing_object;
1104                         goto shadowlookup;
1105                 }
1106                 /*
1107                  * If the page is busy or not in a normal active state,
1108                  * we skip it.  If the page is not managed there are no
1109                  * page queues to mess with.  Things can break if we mess
1110                  * with pages in any of the below states.
1111                  */
1112                 vm_page_lock_queues();
1113                 if (m->hold_count ||
1114                     m->wire_count ||
1115                     (m->flags & PG_UNMANAGED) ||
1116                     m->valid != VM_PAGE_BITS_ALL) {
1117                         vm_page_unlock_queues();
1118                         goto unlock_tobject;
1119                 }
1120                 if ((m->flags & PG_BUSY) || m->busy) {
1121                         vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1122                         if (object != tobject)
1123                                 VM_OBJECT_UNLOCK(object);
1124                         VM_OBJECT_UNLOCK(tobject);
1125                         msleep(m, &vm_page_queue_mtx, PDROP | PVM, "madvpo", 0);
1126                         VM_OBJECT_LOCK(object);
1127                         goto relookup;
1128                 }
1129                 if (advise == MADV_WILLNEED) {
1130                         vm_page_activate(m);
1131                 } else if (advise == MADV_DONTNEED) {
1132                         vm_page_dontneed(m);
1133                 } else if (advise == MADV_FREE) {
1134                         /*
1135                          * Mark the page clean.  This will allow the page
1136                          * to be freed up by the system.  However, such pages
1137                          * are often reused quickly by malloc()/free()
1138                          * so we do not do anything that would cause
1139                          * a page fault if we can help it.
1140                          *
1141                          * Specifically, we do not try to actually free
1142                          * the page now nor do we try to put it in the
1143                          * cache (which would cause a page fault on reuse).
1144                          *
1145                          * But we do make the page is freeable as we
1146                          * can without actually taking the step of unmapping
1147                          * it.
1148                          */
1149                         pmap_clear_modify(m);
1150                         m->dirty = 0;
1151                         m->act_count = 0;
1152                         vm_page_dontneed(m);
1153                 }
1154                 vm_page_unlock_queues();
1155                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1156                         swap_pager_freespace(tobject, tpindex, 1);
1157 unlock_tobject:
1158                 if (tobject != object)
1159                         VM_OBJECT_UNLOCK(tobject);
1160         }       
1161         VM_OBJECT_UNLOCK(object);
1162 }
1163
1164 /*
1165  *      vm_object_shadow:
1166  *
1167  *      Create a new object which is backed by the
1168  *      specified existing object range.  The source
1169  *      object reference is deallocated.
1170  *
1171  *      The new object and offset into that object
1172  *      are returned in the source parameters.
1173  */
1174 void
1175 vm_object_shadow(
1176         vm_object_t *object,    /* IN/OUT */
1177         vm_ooffset_t *offset,   /* IN/OUT */
1178         vm_size_t length)
1179 {
1180         vm_object_t source;
1181         vm_object_t result;
1182
1183         source = *object;
1184
1185         /*
1186          * Don't create the new object if the old object isn't shared.
1187          */
1188         if (source != NULL) {
1189                 VM_OBJECT_LOCK(source);
1190                 if (source->ref_count == 1 &&
1191                     source->handle == NULL &&
1192                     (source->type == OBJT_DEFAULT ||
1193                      source->type == OBJT_SWAP)) {
1194                         VM_OBJECT_UNLOCK(source);
1195                         return;
1196                 }
1197                 VM_OBJECT_UNLOCK(source);
1198         }
1199
1200         /*
1201          * Allocate a new object with the given length.
1202          */
1203         result = vm_object_allocate(OBJT_DEFAULT, length);
1204
1205         /*
1206          * The new object shadows the source object, adding a reference to it.
1207          * Our caller changes his reference to point to the new object,
1208          * removing a reference to the source object.  Net result: no change
1209          * of reference count.
1210          *
1211          * Try to optimize the result object's page color when shadowing
1212          * in order to maintain page coloring consistency in the combined 
1213          * shadowed object.
1214          */
1215         result->backing_object = source;
1216         /*
1217          * Store the offset into the source object, and fix up the offset into
1218          * the new object.
1219          */
1220         result->backing_object_offset = *offset;
1221         if (source != NULL) {
1222                 VM_OBJECT_LOCK(source);
1223                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1224                 source->shadow_count++;
1225                 source->generation++;
1226                 if (length < source->size)
1227                         length = source->size;
1228                 if (length > PQ_L2_SIZE / 3 + PQ_PRIME1 ||
1229                     source->generation > 1)
1230                         length = PQ_L2_SIZE / 3 + PQ_PRIME1;
1231                 result->pg_color = (source->pg_color +
1232                     length * source->generation) & PQ_L2_MASK;
1233                 VM_OBJECT_UNLOCK(source);
1234                 next_index = (result->pg_color + PQ_L2_SIZE / 3 + PQ_PRIME1) &
1235                     PQ_L2_MASK;
1236         }
1237
1238
1239         /*
1240          * Return the new things
1241          */
1242         *offset = 0;
1243         *object = result;
1244 }
1245
1246 /*
1247  *      vm_object_split:
1248  *
1249  * Split the pages in a map entry into a new object.  This affords
1250  * easier removal of unused pages, and keeps object inheritance from
1251  * being a negative impact on memory usage.
1252  */
1253 void
1254 vm_object_split(vm_map_entry_t entry)
1255 {
1256         vm_page_t m;
1257         vm_object_t orig_object, new_object, source;
1258         vm_pindex_t offidxstart, offidxend;
1259         vm_size_t idx, size;
1260
1261         orig_object = entry->object.vm_object;
1262         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1263                 return;
1264         if (orig_object->ref_count <= 1)
1265                 return;
1266         VM_OBJECT_UNLOCK(orig_object);
1267
1268         offidxstart = OFF_TO_IDX(entry->offset);
1269         offidxend = offidxstart + OFF_TO_IDX(entry->end - entry->start);
1270         size = offidxend - offidxstart;
1271
1272         /*
1273          * If swap_pager_copy() is later called, it will convert new_object
1274          * into a swap object.
1275          */
1276         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1277
1278         VM_OBJECT_LOCK(new_object);
1279         VM_OBJECT_LOCK(orig_object);
1280         source = orig_object->backing_object;
1281         if (source != NULL) {
1282                 VM_OBJECT_LOCK(source);
1283                 LIST_INSERT_HEAD(&source->shadow_head,
1284                                   new_object, shadow_list);
1285                 source->shadow_count++;
1286                 source->generation++;
1287                 vm_object_reference_locked(source);     /* for new_object */
1288                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1289                 VM_OBJECT_UNLOCK(source);
1290                 new_object->backing_object_offset = 
1291                         orig_object->backing_object_offset + entry->offset;
1292                 new_object->backing_object = source;
1293         }
1294         vm_page_lock_queues();
1295         for (idx = 0; idx < size; idx++) {
1296         retry:
1297                 m = vm_page_lookup(orig_object, offidxstart + idx);
1298                 if (m == NULL)
1299                         continue;
1300
1301                 /*
1302                  * We must wait for pending I/O to complete before we can
1303                  * rename the page.
1304                  *
1305                  * We do not have to VM_PROT_NONE the page as mappings should
1306                  * not be changed by this operation.
1307                  */
1308                 if ((m->flags & PG_BUSY) || m->busy) {
1309                         vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1310                         VM_OBJECT_UNLOCK(orig_object);
1311                         VM_OBJECT_UNLOCK(new_object);
1312                         msleep(m, &vm_page_queue_mtx, PDROP | PVM, "spltwt", 0);
1313                         VM_OBJECT_LOCK(new_object);
1314                         VM_OBJECT_LOCK(orig_object);
1315                         vm_page_lock_queues();
1316                         goto retry;
1317                 }
1318                 vm_page_rename(m, new_object, idx);
1319                 /* page automatically made dirty by rename and cache handled */
1320                 vm_page_busy(m);
1321         }
1322         vm_page_unlock_queues();
1323         if (orig_object->type == OBJT_SWAP) {
1324                 /*
1325                  * swap_pager_copy() can sleep, in which case the orig_object's
1326                  * and new_object's locks are released and reacquired. 
1327                  */
1328                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1329         }
1330         VM_OBJECT_UNLOCK(orig_object);
1331         vm_page_lock_queues();
1332         TAILQ_FOREACH(m, &new_object->memq, listq)
1333                 vm_page_wakeup(m);
1334         vm_page_unlock_queues();
1335         VM_OBJECT_UNLOCK(new_object);
1336         entry->object.vm_object = new_object;
1337         entry->offset = 0LL;
1338         vm_object_deallocate(orig_object);
1339         VM_OBJECT_LOCK(new_object);
1340 }
1341
1342 #define OBSC_TEST_ALL_SHADOWED  0x0001
1343 #define OBSC_COLLAPSE_NOWAIT    0x0002
1344 #define OBSC_COLLAPSE_WAIT      0x0004
1345
1346 static int
1347 vm_object_backing_scan(vm_object_t object, int op)
1348 {
1349         int r = 1;
1350         vm_page_t p;
1351         vm_object_t backing_object;
1352         vm_pindex_t backing_offset_index;
1353
1354         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1355         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1356
1357         backing_object = object->backing_object;
1358         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1359
1360         /*
1361          * Initial conditions
1362          */
1363         if (op & OBSC_TEST_ALL_SHADOWED) {
1364                 /*
1365                  * We do not want to have to test for the existence of
1366                  * swap pages in the backing object.  XXX but with the
1367                  * new swapper this would be pretty easy to do.
1368                  *
1369                  * XXX what about anonymous MAP_SHARED memory that hasn't
1370                  * been ZFOD faulted yet?  If we do not test for this, the
1371                  * shadow test may succeed! XXX
1372                  */
1373                 if (backing_object->type != OBJT_DEFAULT) {
1374                         return (0);
1375                 }
1376         }
1377         if (op & OBSC_COLLAPSE_WAIT) {
1378                 vm_object_set_flag(backing_object, OBJ_DEAD);
1379         }
1380
1381         /*
1382          * Our scan
1383          */
1384         p = TAILQ_FIRST(&backing_object->memq);
1385         while (p) {
1386                 vm_page_t next = TAILQ_NEXT(p, listq);
1387                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1388
1389                 if (op & OBSC_TEST_ALL_SHADOWED) {
1390                         vm_page_t pp;
1391
1392                         /*
1393                          * Ignore pages outside the parent object's range
1394                          * and outside the parent object's mapping of the 
1395                          * backing object.
1396                          *
1397                          * note that we do not busy the backing object's
1398                          * page.
1399                          */
1400                         if (
1401                             p->pindex < backing_offset_index ||
1402                             new_pindex >= object->size
1403                         ) {
1404                                 p = next;
1405                                 continue;
1406                         }
1407
1408                         /*
1409                          * See if the parent has the page or if the parent's
1410                          * object pager has the page.  If the parent has the
1411                          * page but the page is not valid, the parent's
1412                          * object pager must have the page.
1413                          *
1414                          * If this fails, the parent does not completely shadow
1415                          * the object and we might as well give up now.
1416                          */
1417
1418                         pp = vm_page_lookup(object, new_pindex);
1419                         if (
1420                             (pp == NULL || pp->valid == 0) &&
1421                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1422                         ) {
1423                                 r = 0;
1424                                 break;
1425                         }
1426                 }
1427
1428                 /*
1429                  * Check for busy page
1430                  */
1431                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1432                         vm_page_t pp;
1433
1434                         vm_page_lock_queues();
1435                         if (op & OBSC_COLLAPSE_NOWAIT) {
1436                                 if ((p->flags & PG_BUSY) ||
1437                                     !p->valid || 
1438                                     p->hold_count || 
1439                                     p->wire_count ||
1440                                     p->busy) {
1441                                         vm_page_unlock_queues();
1442                                         p = next;
1443                                         continue;
1444                                 }
1445                         } else if (op & OBSC_COLLAPSE_WAIT) {
1446                                 if ((p->flags & PG_BUSY) || p->busy) {
1447                                         vm_page_flag_set(p,
1448                                             PG_WANTED | PG_REFERENCED);
1449                                         VM_OBJECT_UNLOCK(backing_object);
1450                                         VM_OBJECT_UNLOCK(object);
1451                                         msleep(p, &vm_page_queue_mtx,
1452                                             PDROP | PVM, "vmocol", 0);
1453                                         VM_OBJECT_LOCK(object);
1454                                         VM_OBJECT_LOCK(backing_object);
1455                                         /*
1456                                          * If we slept, anything could have
1457                                          * happened.  Since the object is
1458                                          * marked dead, the backing offset
1459                                          * should not have changed so we
1460                                          * just restart our scan.
1461                                          */
1462                                         p = TAILQ_FIRST(&backing_object->memq);
1463                                         continue;
1464                                 }
1465                         }
1466                         vm_page_unlock_queues();
1467
1468                         KASSERT(
1469                             p->object == backing_object,
1470                             ("vm_object_backing_scan: object mismatch")
1471                         );
1472
1473                         /*
1474                          * Destroy any associated swap
1475                          */
1476                         if (backing_object->type == OBJT_SWAP) {
1477                                 swap_pager_freespace(
1478                                     backing_object, 
1479                                     p->pindex,
1480                                     1
1481                                 );
1482                         }
1483
1484                         if (
1485                             p->pindex < backing_offset_index ||
1486                             new_pindex >= object->size
1487                         ) {
1488                                 /*
1489                                  * Page is out of the parent object's range, we 
1490                                  * can simply destroy it. 
1491                                  */
1492                                 vm_page_lock_queues();
1493                                 pmap_remove_all(p);
1494                                 vm_page_free(p);
1495                                 vm_page_unlock_queues();
1496                                 p = next;
1497                                 continue;
1498                         }
1499
1500                         pp = vm_page_lookup(object, new_pindex);
1501                         if (
1502                             pp != NULL ||
1503                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1504                         ) {
1505                                 /*
1506                                  * page already exists in parent OR swap exists
1507                                  * for this location in the parent.  Destroy 
1508                                  * the original page from the backing object.
1509                                  *
1510                                  * Leave the parent's page alone
1511                                  */
1512                                 vm_page_lock_queues();
1513                                 pmap_remove_all(p);
1514                                 vm_page_free(p);
1515                                 vm_page_unlock_queues();
1516                                 p = next;
1517                                 continue;
1518                         }
1519
1520                         /*
1521                          * Page does not exist in parent, rename the
1522                          * page from the backing object to the main object. 
1523                          *
1524                          * If the page was mapped to a process, it can remain 
1525                          * mapped through the rename.
1526                          */
1527                         vm_page_lock_queues();
1528                         vm_page_rename(p, object, new_pindex);
1529                         vm_page_unlock_queues();
1530                         /* page automatically made dirty by rename */
1531                 }
1532                 p = next;
1533         }
1534         return (r);
1535 }
1536
1537
1538 /*
1539  * this version of collapse allows the operation to occur earlier and
1540  * when paging_in_progress is true for an object...  This is not a complete
1541  * operation, but should plug 99.9% of the rest of the leaks.
1542  */
1543 static void
1544 vm_object_qcollapse(vm_object_t object)
1545 {
1546         vm_object_t backing_object = object->backing_object;
1547
1548         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1549         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1550
1551         if (backing_object->ref_count != 1)
1552                 return;
1553
1554         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1555 }
1556
1557 /*
1558  *      vm_object_collapse:
1559  *
1560  *      Collapse an object with the object backing it.
1561  *      Pages in the backing object are moved into the
1562  *      parent, and the backing object is deallocated.
1563  */
1564 void
1565 vm_object_collapse(vm_object_t object)
1566 {
1567         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1568         
1569         while (TRUE) {
1570                 vm_object_t backing_object;
1571
1572                 /*
1573                  * Verify that the conditions are right for collapse:
1574                  *
1575                  * The object exists and the backing object exists.
1576                  */
1577                 if ((backing_object = object->backing_object) == NULL)
1578                         break;
1579
1580                 /*
1581                  * we check the backing object first, because it is most likely
1582                  * not collapsable.
1583                  */
1584                 VM_OBJECT_LOCK(backing_object);
1585                 if (backing_object->handle != NULL ||
1586                     (backing_object->type != OBJT_DEFAULT &&
1587                      backing_object->type != OBJT_SWAP) ||
1588                     (backing_object->flags & OBJ_DEAD) ||
1589                     object->handle != NULL ||
1590                     (object->type != OBJT_DEFAULT &&
1591                      object->type != OBJT_SWAP) ||
1592                     (object->flags & OBJ_DEAD)) {
1593                         VM_OBJECT_UNLOCK(backing_object);
1594                         break;
1595                 }
1596
1597                 if (
1598                     object->paging_in_progress != 0 ||
1599                     backing_object->paging_in_progress != 0
1600                 ) {
1601                         vm_object_qcollapse(object);
1602                         VM_OBJECT_UNLOCK(backing_object);
1603                         break;
1604                 }
1605                 /*
1606                  * We know that we can either collapse the backing object (if
1607                  * the parent is the only reference to it) or (perhaps) have
1608                  * the parent bypass the object if the parent happens to shadow
1609                  * all the resident pages in the entire backing object.
1610                  *
1611                  * This is ignoring pager-backed pages such as swap pages.
1612                  * vm_object_backing_scan fails the shadowing test in this
1613                  * case.
1614                  */
1615                 if (backing_object->ref_count == 1) {
1616                         /*
1617                          * If there is exactly one reference to the backing
1618                          * object, we can collapse it into the parent.  
1619                          */
1620                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1621
1622                         /*
1623                          * Move the pager from backing_object to object.
1624                          */
1625                         if (backing_object->type == OBJT_SWAP) {
1626                                 /*
1627                                  * swap_pager_copy() can sleep, in which case
1628                                  * the backing_object's and object's locks are
1629                                  * released and reacquired.
1630                                  */
1631                                 swap_pager_copy(
1632                                     backing_object,
1633                                     object,
1634                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1635                         }
1636                         /*
1637                          * Object now shadows whatever backing_object did.
1638                          * Note that the reference to 
1639                          * backing_object->backing_object moves from within 
1640                          * backing_object to within object.
1641                          */
1642                         LIST_REMOVE(object, shadow_list);
1643                         backing_object->shadow_count--;
1644                         backing_object->generation++;
1645                         if (backing_object->backing_object) {
1646                                 VM_OBJECT_LOCK(backing_object->backing_object);
1647                                 LIST_REMOVE(backing_object, shadow_list);
1648                                 LIST_INSERT_HEAD(
1649                                     &backing_object->backing_object->shadow_head,
1650                                     object, shadow_list);
1651                                 /*
1652                                  * The shadow_count has not changed.
1653                                  */
1654                                 backing_object->backing_object->generation++;
1655                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1656                         }
1657                         object->backing_object = backing_object->backing_object;
1658                         object->backing_object_offset +=
1659                             backing_object->backing_object_offset;
1660
1661                         /*
1662                          * Discard backing_object.
1663                          *
1664                          * Since the backing object has no pages, no pager left,
1665                          * and no object references within it, all that is
1666                          * necessary is to dispose of it.
1667                          */
1668                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1669                         VM_OBJECT_UNLOCK(backing_object);
1670
1671                         mtx_lock(&vm_object_list_mtx);
1672                         TAILQ_REMOVE(
1673                             &vm_object_list, 
1674                             backing_object,
1675                             object_list
1676                         );
1677                         mtx_unlock(&vm_object_list_mtx);
1678
1679                         uma_zfree(obj_zone, backing_object);
1680
1681                         object_collapses++;
1682                 } else {
1683                         vm_object_t new_backing_object;
1684
1685                         /*
1686                          * If we do not entirely shadow the backing object,
1687                          * there is nothing we can do so we give up.
1688                          */
1689                         if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1690                                 VM_OBJECT_UNLOCK(backing_object);
1691                                 break;
1692                         }
1693
1694                         /*
1695                          * Make the parent shadow the next object in the
1696                          * chain.  Deallocating backing_object will not remove
1697                          * it, since its reference count is at least 2.
1698                          */
1699                         LIST_REMOVE(object, shadow_list);
1700                         backing_object->shadow_count--;
1701                         backing_object->generation++;
1702
1703                         new_backing_object = backing_object->backing_object;
1704                         if ((object->backing_object = new_backing_object) != NULL) {
1705                                 VM_OBJECT_LOCK(new_backing_object);
1706                                 LIST_INSERT_HEAD(
1707                                     &new_backing_object->shadow_head,
1708                                     object,
1709                                     shadow_list
1710                                 );
1711                                 new_backing_object->shadow_count++;
1712                                 new_backing_object->generation++;
1713                                 vm_object_reference_locked(new_backing_object);
1714                                 VM_OBJECT_UNLOCK(new_backing_object);
1715                                 object->backing_object_offset +=
1716                                         backing_object->backing_object_offset;
1717                         }
1718
1719                         /*
1720                          * Drop the reference count on backing_object. Since
1721                          * its ref_count was at least 2, it will not vanish.
1722                          */
1723                         backing_object->ref_count--;
1724                         VM_OBJECT_UNLOCK(backing_object);
1725                         object_bypasses++;
1726                 }
1727
1728                 /*
1729                  * Try again with this object's new backing object.
1730                  */
1731         }
1732 }
1733
1734 /*
1735  *      vm_object_page_remove:
1736  *
1737  *      Removes all physical pages in the given range from the
1738  *      object's list of pages.  If the range's end is zero, all
1739  *      physical pages from the range's start to the end of the object
1740  *      are deleted.
1741  *
1742  *      The object must be locked.
1743  */
1744 void
1745 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1746     boolean_t clean_only)
1747 {
1748         vm_page_t p, next;
1749
1750         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1751         if (object->resident_page_count == 0)
1752                 return;
1753
1754         /*
1755          * Since physically-backed objects do not use managed pages, we can't
1756          * remove pages from the object (we must instead remove the page
1757          * references, and then destroy the object).
1758          */
1759         KASSERT(object->type != OBJT_PHYS,
1760             ("attempt to remove pages from a physical object"));
1761
1762         vm_object_pip_add(object, 1);
1763 again:
1764         vm_page_lock_queues();
1765         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1766                 if (p->pindex < start) {
1767                         p = vm_page_splay(start, object->root);
1768                         if ((object->root = p)->pindex < start)
1769                                 p = TAILQ_NEXT(p, listq);
1770                 }
1771         }
1772         /*
1773          * Assert: the variable p is either (1) the page with the
1774          * least pindex greater than or equal to the parameter pindex
1775          * or (2) NULL.
1776          */
1777         for (;
1778              p != NULL && (p->pindex < end || end == 0);
1779              p = next) {
1780                 next = TAILQ_NEXT(p, listq);
1781
1782                 if (p->wire_count != 0) {
1783                         pmap_remove_all(p);
1784                         if (!clean_only)
1785                                 p->valid = 0;
1786                         continue;
1787                 }
1788                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1789                         goto again;
1790                 if (clean_only && p->valid) {
1791                         pmap_page_protect(p, VM_PROT_READ | VM_PROT_EXECUTE);
1792                         if (p->valid & p->dirty)
1793                                 continue;
1794                 }
1795                 pmap_remove_all(p);
1796                 vm_page_free(p);
1797         }
1798         vm_page_unlock_queues();
1799         vm_object_pip_wakeup(object);
1800 }
1801
1802 /*
1803  *      Routine:        vm_object_coalesce
1804  *      Function:       Coalesces two objects backing up adjoining
1805  *                      regions of memory into a single object.
1806  *
1807  *      returns TRUE if objects were combined.
1808  *
1809  *      NOTE:   Only works at the moment if the second object is NULL -
1810  *              if it's not, which object do we lock first?
1811  *
1812  *      Parameters:
1813  *              prev_object     First object to coalesce
1814  *              prev_offset     Offset into prev_object
1815  *              prev_size       Size of reference to prev_object
1816  *              next_size       Size of reference to the second object
1817  *
1818  *      Conditions:
1819  *      The object must *not* be locked.
1820  */
1821 boolean_t
1822 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1823         vm_size_t prev_size, vm_size_t next_size)
1824 {
1825         vm_pindex_t next_pindex;
1826
1827         if (prev_object == NULL)
1828                 return (TRUE);
1829         VM_OBJECT_LOCK(prev_object);
1830         if (prev_object->type != OBJT_DEFAULT &&
1831             prev_object->type != OBJT_SWAP) {
1832                 VM_OBJECT_UNLOCK(prev_object);
1833                 return (FALSE);
1834         }
1835
1836         /*
1837          * Try to collapse the object first
1838          */
1839         vm_object_collapse(prev_object);
1840
1841         /*
1842          * Can't coalesce if: . more than one reference . paged out . shadows
1843          * another object . has a copy elsewhere (any of which mean that the
1844          * pages not mapped to prev_entry may be in use anyway)
1845          */
1846         if (prev_object->backing_object != NULL) {
1847                 VM_OBJECT_UNLOCK(prev_object);
1848                 return (FALSE);
1849         }
1850
1851         prev_size >>= PAGE_SHIFT;
1852         next_size >>= PAGE_SHIFT;
1853         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1854
1855         if ((prev_object->ref_count > 1) &&
1856             (prev_object->size != next_pindex)) {
1857                 VM_OBJECT_UNLOCK(prev_object);
1858                 return (FALSE);
1859         }
1860
1861         /*
1862          * Remove any pages that may still be in the object from a previous
1863          * deallocation.
1864          */
1865         if (next_pindex < prev_object->size) {
1866                 vm_object_page_remove(prev_object,
1867                                       next_pindex,
1868                                       next_pindex + next_size, FALSE);
1869                 if (prev_object->type == OBJT_SWAP)
1870                         swap_pager_freespace(prev_object,
1871                                              next_pindex, next_size);
1872         }
1873
1874         /*
1875          * Extend the object if necessary.
1876          */
1877         if (next_pindex + next_size > prev_object->size)
1878                 prev_object->size = next_pindex + next_size;
1879
1880         VM_OBJECT_UNLOCK(prev_object);
1881         return (TRUE);
1882 }
1883
1884 void
1885 vm_object_set_writeable_dirty(vm_object_t object)
1886 {
1887         struct vnode *vp;
1888
1889         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1890         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1891         if (object->type == OBJT_VNODE &&
1892             (vp = (struct vnode *)object->handle) != NULL) {
1893                 VI_LOCK(vp);
1894                 if ((vp->v_iflag & VI_OBJDIRTY) == 0)
1895                         vp->v_iflag |= VI_OBJDIRTY;
1896                 VI_UNLOCK(vp);
1897         }
1898 }
1899
1900 #include "opt_ddb.h"
1901 #ifdef DDB
1902 #include <sys/kernel.h>
1903
1904 #include <sys/cons.h>
1905
1906 #include <ddb/ddb.h>
1907
1908 static int
1909 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1910 {
1911         vm_map_t tmpm;
1912         vm_map_entry_t tmpe;
1913         vm_object_t obj;
1914         int entcount;
1915
1916         if (map == 0)
1917                 return 0;
1918
1919         if (entry == 0) {
1920                 tmpe = map->header.next;
1921                 entcount = map->nentries;
1922                 while (entcount-- && (tmpe != &map->header)) {
1923                         if (_vm_object_in_map(map, object, tmpe)) {
1924                                 return 1;
1925                         }
1926                         tmpe = tmpe->next;
1927                 }
1928         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1929                 tmpm = entry->object.sub_map;
1930                 tmpe = tmpm->header.next;
1931                 entcount = tmpm->nentries;
1932                 while (entcount-- && tmpe != &tmpm->header) {
1933                         if (_vm_object_in_map(tmpm, object, tmpe)) {
1934                                 return 1;
1935                         }
1936                         tmpe = tmpe->next;
1937                 }
1938         } else if ((obj = entry->object.vm_object) != NULL) {
1939                 for (; obj; obj = obj->backing_object)
1940                         if (obj == object) {
1941                                 return 1;
1942                         }
1943         }
1944         return 0;
1945 }
1946
1947 static int
1948 vm_object_in_map(vm_object_t object)
1949 {
1950         struct proc *p;
1951
1952         /* sx_slock(&allproc_lock); */
1953         LIST_FOREACH(p, &allproc, p_list) {
1954                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1955                         continue;
1956                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1957                         /* sx_sunlock(&allproc_lock); */
1958                         return 1;
1959                 }
1960         }
1961         /* sx_sunlock(&allproc_lock); */
1962         if (_vm_object_in_map(kernel_map, object, 0))
1963                 return 1;
1964         if (_vm_object_in_map(kmem_map, object, 0))
1965                 return 1;
1966         if (_vm_object_in_map(pager_map, object, 0))
1967                 return 1;
1968         if (_vm_object_in_map(buffer_map, object, 0))
1969                 return 1;
1970         return 0;
1971 }
1972
1973 DB_SHOW_COMMAND(vmochk, vm_object_check)
1974 {
1975         vm_object_t object;
1976
1977         /*
1978          * make sure that internal objs are in a map somewhere
1979          * and none have zero ref counts.
1980          */
1981         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1982                 if (object->handle == NULL &&
1983                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1984                         if (object->ref_count == 0) {
1985                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1986                                         (long)object->size);
1987                         }
1988                         if (!vm_object_in_map(object)) {
1989                                 db_printf(
1990                         "vmochk: internal obj is not in a map: "
1991                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1992                                     object->ref_count, (u_long)object->size, 
1993                                     (u_long)object->size,
1994                                     (void *)object->backing_object);
1995                         }
1996                 }
1997         }
1998 }
1999
2000 /*
2001  *      vm_object_print:        [ debug ]
2002  */
2003 DB_SHOW_COMMAND(object, vm_object_print_static)
2004 {
2005         /* XXX convert args. */
2006         vm_object_t object = (vm_object_t)addr;
2007         boolean_t full = have_addr;
2008
2009         vm_page_t p;
2010
2011         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2012 #define count   was_count
2013
2014         int count;
2015
2016         if (object == NULL)
2017                 return;
2018
2019         db_iprintf(
2020             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2021             object, (int)object->type, (uintmax_t)object->size,
2022             object->resident_page_count, object->ref_count, object->flags);
2023         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2024             object->shadow_count, 
2025             object->backing_object ? object->backing_object->ref_count : 0,
2026             object->backing_object, (uintmax_t)object->backing_object_offset);
2027
2028         if (!full)
2029                 return;
2030
2031         db_indent += 2;
2032         count = 0;
2033         TAILQ_FOREACH(p, &object->memq, listq) {
2034                 if (count == 0)
2035                         db_iprintf("memory:=");
2036                 else if (count == 6) {
2037                         db_printf("\n");
2038                         db_iprintf(" ...");
2039                         count = 0;
2040                 } else
2041                         db_printf(",");
2042                 count++;
2043
2044                 db_printf("(off=0x%jx,page=0x%jx)",
2045                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2046         }
2047         if (count != 0)
2048                 db_printf("\n");
2049         db_indent -= 2;
2050 }
2051
2052 /* XXX. */
2053 #undef count
2054
2055 /* XXX need this non-static entry for calling from vm_map_print. */
2056 void
2057 vm_object_print(
2058         /* db_expr_t */ long addr,
2059         boolean_t have_addr,
2060         /* db_expr_t */ long count,
2061         char *modif)
2062 {
2063         vm_object_print_static(addr, have_addr, count, modif);
2064 }
2065
2066 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2067 {
2068         vm_object_t object;
2069         int nl = 0;
2070         int c;
2071
2072         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2073                 vm_pindex_t idx, fidx;
2074                 vm_pindex_t osize;
2075                 vm_paddr_t pa = -1, padiff;
2076                 int rcount;
2077                 vm_page_t m;
2078
2079                 db_printf("new object: %p\n", (void *)object);
2080                 if (nl > 18) {
2081                         c = cngetc();
2082                         if (c != ' ')
2083                                 return;
2084                         nl = 0;
2085                 }
2086                 nl++;
2087                 rcount = 0;
2088                 fidx = 0;
2089                 osize = object->size;
2090                 if (osize > 128)
2091                         osize = 128;
2092                 for (idx = 0; idx < osize; idx++) {
2093                         m = vm_page_lookup(object, idx);
2094                         if (m == NULL) {
2095                                 if (rcount) {
2096                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2097                                                 (long)fidx, rcount, (long)pa);
2098                                         if (nl > 18) {
2099                                                 c = cngetc();
2100                                                 if (c != ' ')
2101                                                         return;
2102                                                 nl = 0;
2103                                         }
2104                                         nl++;
2105                                         rcount = 0;
2106                                 }
2107                                 continue;
2108                         }
2109
2110                                 
2111                         if (rcount &&
2112                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2113                                 ++rcount;
2114                                 continue;
2115                         }
2116                         if (rcount) {
2117                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2118                                 padiff >>= PAGE_SHIFT;
2119                                 padiff &= PQ_L2_MASK;
2120                                 if (padiff == 0) {
2121                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2122                                         ++rcount;
2123                                         continue;
2124                                 }
2125                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2126                                         (long)fidx, rcount, (long)pa);
2127                                 db_printf("pd(%ld)\n", (long)padiff);
2128                                 if (nl > 18) {
2129                                         c = cngetc();
2130                                         if (c != ' ')
2131                                                 return;
2132                                         nl = 0;
2133                                 }
2134                                 nl++;
2135                         }
2136                         fidx = idx;
2137                         pa = VM_PAGE_TO_PHYS(m);
2138                         rcount = 1;
2139                 }
2140                 if (rcount) {
2141                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2142                                 (long)fidx, rcount, (long)pa);
2143                         if (nl > 18) {
2144                                 c = cngetc();
2145                                 if (c != ' ')
2146                                         return;
2147                                 nl = 0;
2148                         }
2149                         nl++;
2150                 }
2151         }
2152 }
2153 #endif /* DDB */