]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
MFV: xz 5.4.4.
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/limits.h>
77 #include <sys/lock.h>
78 #include <sys/mman.h>
79 #include <sys/mount.h>
80 #include <sys/kernel.h>
81 #include <sys/pctrie.h>
82 #include <sys/sysctl.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>           /* for curproc, pageproc */
85 #include <sys/refcount.h>
86 #include <sys/socket.h>
87 #include <sys/resourcevar.h>
88 #include <sys/refcount.h>
89 #include <sys/rwlock.h>
90 #include <sys/user.h>
91 #include <sys/vnode.h>
92 #include <sys/vmmeter.h>
93 #include <sys/sx.h>
94
95 #include <vm/vm.h>
96 #include <vm/vm_param.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_phys.h>
104 #include <vm/vm_pagequeue.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/uma.h>
111
112 static int old_msync;
113 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
114     "Use old (insecure) msync behavior");
115
116 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
117                     int pagerflags, int flags, boolean_t *allclean,
118                     boolean_t *eio);
119 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
120                     boolean_t *allclean);
121 static void     vm_object_backing_remove(vm_object_t object);
122
123 /*
124  *      Virtual memory objects maintain the actual data
125  *      associated with allocated virtual memory.  A given
126  *      page of memory exists within exactly one object.
127  *
128  *      An object is only deallocated when all "references"
129  *      are given up.  Only one "reference" to a given
130  *      region of an object should be writeable.
131  *
132  *      Associated with each object is a list of all resident
133  *      memory pages belonging to that object; this list is
134  *      maintained by the "vm_page" module, and locked by the object's
135  *      lock.
136  *
137  *      Each object also records a "pager" routine which is
138  *      used to retrieve (and store) pages to the proper backing
139  *      storage.  In addition, objects may be backed by other
140  *      objects from which they were virtual-copied.
141  *
142  *      The only items within the object structure which are
143  *      modified after time of creation are:
144  *              reference count         locked by object's lock
145  *              pager routine           locked by object's lock
146  *
147  */
148
149 struct object_q vm_object_list;
150 struct mtx vm_object_list_mtx;  /* lock for object list and count */
151
152 struct vm_object kernel_object_store;
153
154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
155     "VM object stats");
156
157 static COUNTER_U64_DEFINE_EARLY(object_collapses);
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
159     &object_collapses,
160     "VM object collapses");
161
162 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
164     &object_bypasses,
165     "VM object bypasses");
166
167 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
168 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
169     &object_collapse_waits,
170     "Number of sleeps for collapse");
171
172 static uma_zone_t obj_zone;
173
174 static int vm_object_zinit(void *mem, int size, int flags);
175
176 #ifdef INVARIANTS
177 static void vm_object_zdtor(void *mem, int size, void *arg);
178
179 static void
180 vm_object_zdtor(void *mem, int size, void *arg)
181 {
182         vm_object_t object;
183
184         object = (vm_object_t)mem;
185         KASSERT(object->ref_count == 0,
186             ("object %p ref_count = %d", object, object->ref_count));
187         KASSERT(TAILQ_EMPTY(&object->memq),
188             ("object %p has resident pages in its memq", object));
189         KASSERT(vm_radix_is_empty(&object->rtree),
190             ("object %p has resident pages in its trie", object));
191 #if VM_NRESERVLEVEL > 0
192         KASSERT(LIST_EMPTY(&object->rvq),
193             ("object %p has reservations",
194             object));
195 #endif
196         KASSERT(!vm_object_busied(object),
197             ("object %p busy = %d", object, blockcount_read(&object->busy)));
198         KASSERT(object->resident_page_count == 0,
199             ("object %p resident_page_count = %d",
200             object, object->resident_page_count));
201         KASSERT(atomic_load_int(&object->shadow_count) == 0,
202             ("object %p shadow_count = %d",
203             object, atomic_load_int(&object->shadow_count)));
204         KASSERT(object->type == OBJT_DEAD,
205             ("object %p has non-dead type %d",
206             object, object->type));
207         KASSERT(object->charge == 0 && object->cred == NULL,
208             ("object %p has non-zero charge %ju (%p)",
209             object, (uintmax_t)object->charge, object->cred));
210 }
211 #endif
212
213 static int
214 vm_object_zinit(void *mem, int size, int flags)
215 {
216         vm_object_t object;
217
218         object = (vm_object_t)mem;
219         rw_init_flags(&object->lock, "vmobject", RW_DUPOK | RW_NEW);
220
221         /* These are true for any object that has been freed */
222         object->type = OBJT_DEAD;
223         vm_radix_init(&object->rtree);
224         refcount_init(&object->ref_count, 0);
225         blockcount_init(&object->paging_in_progress);
226         blockcount_init(&object->busy);
227         object->resident_page_count = 0;
228         atomic_store_int(&object->shadow_count, 0);
229         object->flags = OBJ_DEAD;
230
231         mtx_lock(&vm_object_list_mtx);
232         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
233         mtx_unlock(&vm_object_list_mtx);
234         return (0);
235 }
236
237 static void
238 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
239     vm_object_t object, void *handle)
240 {
241
242         TAILQ_INIT(&object->memq);
243         LIST_INIT(&object->shadow_head);
244
245         object->type = type;
246         object->flags = flags;
247         if ((flags & OBJ_SWAP) != 0) {
248                 pctrie_init(&object->un_pager.swp.swp_blks);
249                 object->un_pager.swp.writemappings = 0;
250         }
251
252         /*
253          * Ensure that swap_pager_swapoff() iteration over object_list
254          * sees up to date type and pctrie head if it observed
255          * non-dead object.
256          */
257         atomic_thread_fence_rel();
258
259         object->pg_color = 0;
260         object->size = size;
261         object->domain.dr_policy = NULL;
262         object->generation = 1;
263         object->cleangeneration = 1;
264         refcount_init(&object->ref_count, 1);
265         object->memattr = VM_MEMATTR_DEFAULT;
266         object->cred = NULL;
267         object->charge = 0;
268         object->handle = handle;
269         object->backing_object = NULL;
270         object->backing_object_offset = (vm_ooffset_t) 0;
271 #if VM_NRESERVLEVEL > 0
272         LIST_INIT(&object->rvq);
273 #endif
274         umtx_shm_object_init(object);
275 }
276
277 /*
278  *      vm_object_init:
279  *
280  *      Initialize the VM objects module.
281  */
282 void
283 vm_object_init(void)
284 {
285         TAILQ_INIT(&vm_object_list);
286         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
287
288         rw_init(&kernel_object->lock, "kernel vm object");
289         vm_radix_init(&kernel_object->rtree);
290         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
291             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
292 #if VM_NRESERVLEVEL > 0
293         kernel_object->flags |= OBJ_COLORED;
294         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
295 #endif
296         kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
297
298         /*
299          * The lock portion of struct vm_object must be type stable due
300          * to vm_pageout_fallback_object_lock locking a vm object
301          * without holding any references to it.
302          *
303          * paging_in_progress is valid always.  Lockless references to
304          * the objects may acquire pip and then check OBJ_DEAD.
305          */
306         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
307 #ifdef INVARIANTS
308             vm_object_zdtor,
309 #else
310             NULL,
311 #endif
312             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
313
314         vm_radix_zinit();
315 }
316
317 void
318 vm_object_clear_flag(vm_object_t object, u_short bits)
319 {
320
321         VM_OBJECT_ASSERT_WLOCKED(object);
322         object->flags &= ~bits;
323 }
324
325 /*
326  *      Sets the default memory attribute for the specified object.  Pages
327  *      that are allocated to this object are by default assigned this memory
328  *      attribute.
329  *
330  *      Presently, this function must be called before any pages are allocated
331  *      to the object.  In the future, this requirement may be relaxed for
332  *      "default" and "swap" objects.
333  */
334 int
335 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
336 {
337
338         VM_OBJECT_ASSERT_WLOCKED(object);
339
340         if (object->type == OBJT_DEAD)
341                 return (KERN_INVALID_ARGUMENT);
342         if (!TAILQ_EMPTY(&object->memq))
343                 return (KERN_FAILURE);
344
345         object->memattr = memattr;
346         return (KERN_SUCCESS);
347 }
348
349 void
350 vm_object_pip_add(vm_object_t object, short i)
351 {
352
353         if (i > 0)
354                 blockcount_acquire(&object->paging_in_progress, i);
355 }
356
357 void
358 vm_object_pip_wakeup(vm_object_t object)
359 {
360
361         vm_object_pip_wakeupn(object, 1);
362 }
363
364 void
365 vm_object_pip_wakeupn(vm_object_t object, short i)
366 {
367
368         if (i > 0)
369                 blockcount_release(&object->paging_in_progress, i);
370 }
371
372 /*
373  * Atomically drop the object lock and wait for pip to drain.  This protects
374  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
375  * on return.
376  */
377 static void
378 vm_object_pip_sleep(vm_object_t object, const char *waitid)
379 {
380
381         (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
382             waitid, PVM | PDROP);
383 }
384
385 void
386 vm_object_pip_wait(vm_object_t object, const char *waitid)
387 {
388
389         VM_OBJECT_ASSERT_WLOCKED(object);
390
391         blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
392             PVM);
393 }
394
395 void
396 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
397 {
398
399         VM_OBJECT_ASSERT_UNLOCKED(object);
400
401         blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
402 }
403
404 /*
405  *      vm_object_allocate:
406  *
407  *      Returns a new object with the given size.
408  */
409 vm_object_t
410 vm_object_allocate(objtype_t type, vm_pindex_t size)
411 {
412         vm_object_t object;
413         u_short flags;
414
415         switch (type) {
416         case OBJT_DEAD:
417                 panic("vm_object_allocate: can't create OBJT_DEAD");
418         case OBJT_SWAP:
419                 flags = OBJ_COLORED | OBJ_SWAP;
420                 break;
421         case OBJT_DEVICE:
422         case OBJT_SG:
423                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
424                 break;
425         case OBJT_MGTDEVICE:
426                 flags = OBJ_FICTITIOUS;
427                 break;
428         case OBJT_PHYS:
429                 flags = OBJ_UNMANAGED;
430                 break;
431         case OBJT_VNODE:
432                 flags = 0;
433                 break;
434         default:
435                 panic("vm_object_allocate: type %d is undefined or dynamic",
436                     type);
437         }
438         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
439         _vm_object_allocate(type, size, flags, object, NULL);
440
441         return (object);
442 }
443
444 vm_object_t
445 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
446 {
447         vm_object_t object;
448
449         MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
450         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
451         _vm_object_allocate(dyntype, size, flags, object, NULL);
452
453         return (object);
454 }
455
456 /*
457  *      vm_object_allocate_anon:
458  *
459  *      Returns a new default object of the given size and marked as
460  *      anonymous memory for special split/collapse handling.  Color
461  *      to be initialized by the caller.
462  */
463 vm_object_t
464 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
465     struct ucred *cred, vm_size_t charge)
466 {
467         vm_object_t handle, object;
468
469         if (backing_object == NULL)
470                 handle = NULL;
471         else if ((backing_object->flags & OBJ_ANON) != 0)
472                 handle = backing_object->handle;
473         else
474                 handle = backing_object;
475         object = uma_zalloc(obj_zone, M_WAITOK);
476         _vm_object_allocate(OBJT_SWAP, size,
477             OBJ_ANON | OBJ_ONEMAPPING | OBJ_SWAP, object, handle);
478         object->cred = cred;
479         object->charge = cred != NULL ? charge : 0;
480         return (object);
481 }
482
483 static void
484 vm_object_reference_vnode(vm_object_t object)
485 {
486         u_int old;
487
488         /*
489          * vnode objects need the lock for the first reference
490          * to serialize with vnode_object_deallocate().
491          */
492         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
493                 VM_OBJECT_RLOCK(object);
494                 old = refcount_acquire(&object->ref_count);
495                 if (object->type == OBJT_VNODE && old == 0)
496                         vref(object->handle);
497                 VM_OBJECT_RUNLOCK(object);
498         }
499 }
500
501 /*
502  *      vm_object_reference:
503  *
504  *      Acquires a reference to the given object.
505  */
506 void
507 vm_object_reference(vm_object_t object)
508 {
509
510         if (object == NULL)
511                 return;
512
513         if (object->type == OBJT_VNODE)
514                 vm_object_reference_vnode(object);
515         else
516                 refcount_acquire(&object->ref_count);
517         KASSERT((object->flags & OBJ_DEAD) == 0,
518             ("vm_object_reference: Referenced dead object."));
519 }
520
521 /*
522  *      vm_object_reference_locked:
523  *
524  *      Gets another reference to the given object.
525  *
526  *      The object must be locked.
527  */
528 void
529 vm_object_reference_locked(vm_object_t object)
530 {
531         u_int old;
532
533         VM_OBJECT_ASSERT_LOCKED(object);
534         old = refcount_acquire(&object->ref_count);
535         if (object->type == OBJT_VNODE && old == 0)
536                 vref(object->handle);
537         KASSERT((object->flags & OBJ_DEAD) == 0,
538             ("vm_object_reference: Referenced dead object."));
539 }
540
541 /*
542  * Handle deallocating an object of type OBJT_VNODE.
543  */
544 static void
545 vm_object_deallocate_vnode(vm_object_t object)
546 {
547         struct vnode *vp = (struct vnode *) object->handle;
548         bool last;
549
550         KASSERT(object->type == OBJT_VNODE,
551             ("vm_object_deallocate_vnode: not a vnode object"));
552         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
553
554         /* Object lock to protect handle lookup. */
555         last = refcount_release(&object->ref_count);
556         VM_OBJECT_RUNLOCK(object);
557
558         if (!last)
559                 return;
560
561         if (!umtx_shm_vnobj_persistent)
562                 umtx_shm_object_terminated(object);
563
564         /* vrele may need the vnode lock. */
565         vrele(vp);
566 }
567
568 /*
569  * We dropped a reference on an object and discovered that it had a
570  * single remaining shadow.  This is a sibling of the reference we
571  * dropped.  Attempt to collapse the sibling and backing object.
572  */
573 static vm_object_t
574 vm_object_deallocate_anon(vm_object_t backing_object)
575 {
576         vm_object_t object;
577
578         /* Fetch the final shadow.  */
579         object = LIST_FIRST(&backing_object->shadow_head);
580         KASSERT(object != NULL &&
581             atomic_load_int(&backing_object->shadow_count) == 1,
582             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
583             backing_object->ref_count,
584             atomic_load_int(&backing_object->shadow_count)));
585         KASSERT((object->flags & OBJ_ANON) != 0,
586             ("invalid shadow object %p", object));
587
588         if (!VM_OBJECT_TRYWLOCK(object)) {
589                 /*
590                  * Prevent object from disappearing since we do not have a
591                  * reference.
592                  */
593                 vm_object_pip_add(object, 1);
594                 VM_OBJECT_WUNLOCK(backing_object);
595                 VM_OBJECT_WLOCK(object);
596                 vm_object_pip_wakeup(object);
597         } else
598                 VM_OBJECT_WUNLOCK(backing_object);
599
600         /*
601          * Check for a collapse/terminate race with the last reference holder.
602          */
603         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
604             !refcount_acquire_if_not_zero(&object->ref_count)) {
605                 VM_OBJECT_WUNLOCK(object);
606                 return (NULL);
607         }
608         backing_object = object->backing_object;
609         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
610                 vm_object_collapse(object);
611         VM_OBJECT_WUNLOCK(object);
612
613         return (object);
614 }
615
616 /*
617  *      vm_object_deallocate:
618  *
619  *      Release a reference to the specified object,
620  *      gained either through a vm_object_allocate
621  *      or a vm_object_reference call.  When all references
622  *      are gone, storage associated with this object
623  *      may be relinquished.
624  *
625  *      No object may be locked.
626  */
627 void
628 vm_object_deallocate(vm_object_t object)
629 {
630         vm_object_t temp;
631         bool released;
632
633         while (object != NULL) {
634                 /*
635                  * If the reference count goes to 0 we start calling
636                  * vm_object_terminate() on the object chain.  A ref count
637                  * of 1 may be a special case depending on the shadow count
638                  * being 0 or 1.  These cases require a write lock on the
639                  * object.
640                  */
641                 if ((object->flags & OBJ_ANON) == 0)
642                         released = refcount_release_if_gt(&object->ref_count, 1);
643                 else
644                         released = refcount_release_if_gt(&object->ref_count, 2);
645                 if (released)
646                         return;
647
648                 if (object->type == OBJT_VNODE) {
649                         VM_OBJECT_RLOCK(object);
650                         if (object->type == OBJT_VNODE) {
651                                 vm_object_deallocate_vnode(object);
652                                 return;
653                         }
654                         VM_OBJECT_RUNLOCK(object);
655                 }
656
657                 VM_OBJECT_WLOCK(object);
658                 KASSERT(object->ref_count > 0,
659                     ("vm_object_deallocate: object deallocated too many times: %d",
660                     object->type));
661
662                 /*
663                  * If this is not the final reference to an anonymous
664                  * object we may need to collapse the shadow chain.
665                  */
666                 if (!refcount_release(&object->ref_count)) {
667                         if (object->ref_count > 1 ||
668                             atomic_load_int(&object->shadow_count) == 0) {
669                                 if ((object->flags & OBJ_ANON) != 0 &&
670                                     object->ref_count == 1)
671                                         vm_object_set_flag(object,
672                                             OBJ_ONEMAPPING);
673                                 VM_OBJECT_WUNLOCK(object);
674                                 return;
675                         }
676
677                         /* Handle collapsing last ref on anonymous objects. */
678                         object = vm_object_deallocate_anon(object);
679                         continue;
680                 }
681
682                 /*
683                  * Handle the final reference to an object.  We restart
684                  * the loop with the backing object to avoid recursion.
685                  */
686                 umtx_shm_object_terminated(object);
687                 temp = object->backing_object;
688                 if (temp != NULL) {
689                         KASSERT(object->type == OBJT_SWAP,
690                             ("shadowed tmpfs v_object 2 %p", object));
691                         vm_object_backing_remove(object);
692                 }
693
694                 KASSERT((object->flags & OBJ_DEAD) == 0,
695                     ("vm_object_deallocate: Terminating dead object."));
696                 vm_object_set_flag(object, OBJ_DEAD);
697                 vm_object_terminate(object);
698                 object = temp;
699         }
700 }
701
702 void
703 vm_object_destroy(vm_object_t object)
704 {
705         uma_zfree(obj_zone, object);
706 }
707
708 static void
709 vm_object_sub_shadow(vm_object_t object)
710 {
711         KASSERT(object->shadow_count >= 1,
712             ("object %p sub_shadow count zero", object));
713         atomic_subtract_int(&object->shadow_count, 1);
714 }
715
716 static void
717 vm_object_backing_remove_locked(vm_object_t object)
718 {
719         vm_object_t backing_object;
720
721         backing_object = object->backing_object;
722         VM_OBJECT_ASSERT_WLOCKED(object);
723         VM_OBJECT_ASSERT_WLOCKED(backing_object);
724
725         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
726             ("vm_object_backing_remove: Removing collapsing object."));
727
728         vm_object_sub_shadow(backing_object);
729         if ((object->flags & OBJ_SHADOWLIST) != 0) {
730                 LIST_REMOVE(object, shadow_list);
731                 vm_object_clear_flag(object, OBJ_SHADOWLIST);
732         }
733         object->backing_object = NULL;
734 }
735
736 static void
737 vm_object_backing_remove(vm_object_t object)
738 {
739         vm_object_t backing_object;
740
741         VM_OBJECT_ASSERT_WLOCKED(object);
742
743         backing_object = object->backing_object;
744         if ((object->flags & OBJ_SHADOWLIST) != 0) {
745                 VM_OBJECT_WLOCK(backing_object);
746                 vm_object_backing_remove_locked(object);
747                 VM_OBJECT_WUNLOCK(backing_object);
748         } else {
749                 object->backing_object = NULL;
750                 vm_object_sub_shadow(backing_object);
751         }
752 }
753
754 static void
755 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
756 {
757
758         VM_OBJECT_ASSERT_WLOCKED(object);
759
760         atomic_add_int(&backing_object->shadow_count, 1);
761         if ((backing_object->flags & OBJ_ANON) != 0) {
762                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
763                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
764                     shadow_list);
765                 vm_object_set_flag(object, OBJ_SHADOWLIST);
766         }
767         object->backing_object = backing_object;
768 }
769
770 static void
771 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
772 {
773
774         VM_OBJECT_ASSERT_WLOCKED(object);
775
776         if ((backing_object->flags & OBJ_ANON) != 0) {
777                 VM_OBJECT_WLOCK(backing_object);
778                 vm_object_backing_insert_locked(object, backing_object);
779                 VM_OBJECT_WUNLOCK(backing_object);
780         } else {
781                 object->backing_object = backing_object;
782                 atomic_add_int(&backing_object->shadow_count, 1);
783         }
784 }
785
786 /*
787  * Insert an object into a backing_object's shadow list with an additional
788  * reference to the backing_object added.
789  */
790 static void
791 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
792 {
793
794         VM_OBJECT_ASSERT_WLOCKED(object);
795
796         if ((backing_object->flags & OBJ_ANON) != 0) {
797                 VM_OBJECT_WLOCK(backing_object);
798                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
799                     ("shadowing dead anonymous object"));
800                 vm_object_reference_locked(backing_object);
801                 vm_object_backing_insert_locked(object, backing_object);
802                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
803                 VM_OBJECT_WUNLOCK(backing_object);
804         } else {
805                 vm_object_reference(backing_object);
806                 atomic_add_int(&backing_object->shadow_count, 1);
807                 object->backing_object = backing_object;
808         }
809 }
810
811 /*
812  * Transfer a backing reference from backing_object to object.
813  */
814 static void
815 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
816 {
817         vm_object_t new_backing_object;
818
819         /*
820          * Note that the reference to backing_object->backing_object
821          * moves from within backing_object to within object.
822          */
823         vm_object_backing_remove_locked(object);
824         new_backing_object = backing_object->backing_object;
825         if (new_backing_object == NULL)
826                 return;
827         if ((new_backing_object->flags & OBJ_ANON) != 0) {
828                 VM_OBJECT_WLOCK(new_backing_object);
829                 vm_object_backing_remove_locked(backing_object);
830                 vm_object_backing_insert_locked(object, new_backing_object);
831                 VM_OBJECT_WUNLOCK(new_backing_object);
832         } else {
833                 /*
834                  * shadow_count for new_backing_object is left
835                  * unchanged, its reference provided by backing_object
836                  * is replaced by object.
837                  */
838                 object->backing_object = new_backing_object;
839                 backing_object->backing_object = NULL;
840         }
841 }
842
843 /*
844  * Wait for a concurrent collapse to settle.
845  */
846 static void
847 vm_object_collapse_wait(vm_object_t object)
848 {
849
850         VM_OBJECT_ASSERT_WLOCKED(object);
851
852         while ((object->flags & OBJ_COLLAPSING) != 0) {
853                 vm_object_pip_wait(object, "vmcolwait");
854                 counter_u64_add(object_collapse_waits, 1);
855         }
856 }
857
858 /*
859  * Waits for a backing object to clear a pending collapse and returns
860  * it locked if it is an ANON object.
861  */
862 static vm_object_t
863 vm_object_backing_collapse_wait(vm_object_t object)
864 {
865         vm_object_t backing_object;
866
867         VM_OBJECT_ASSERT_WLOCKED(object);
868
869         for (;;) {
870                 backing_object = object->backing_object;
871                 if (backing_object == NULL ||
872                     (backing_object->flags & OBJ_ANON) == 0)
873                         return (NULL);
874                 VM_OBJECT_WLOCK(backing_object);
875                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
876                         break;
877                 VM_OBJECT_WUNLOCK(object);
878                 vm_object_pip_sleep(backing_object, "vmbckwait");
879                 counter_u64_add(object_collapse_waits, 1);
880                 VM_OBJECT_WLOCK(object);
881         }
882         return (backing_object);
883 }
884
885 /*
886  *      vm_object_terminate_pages removes any remaining pageable pages
887  *      from the object and resets the object to an empty state.
888  */
889 static void
890 vm_object_terminate_pages(vm_object_t object)
891 {
892         vm_page_t p, p_next;
893
894         VM_OBJECT_ASSERT_WLOCKED(object);
895
896         /*
897          * Free any remaining pageable pages.  This also removes them from the
898          * paging queues.  However, don't free wired pages, just remove them
899          * from the object.  Rather than incrementally removing each page from
900          * the object, the page and object are reset to any empty state. 
901          */
902         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
903                 vm_page_assert_unbusied(p);
904                 KASSERT(p->object == object &&
905                     (p->ref_count & VPRC_OBJREF) != 0,
906                     ("vm_object_terminate_pages: page %p is inconsistent", p));
907
908                 p->object = NULL;
909                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
910                         VM_CNT_INC(v_pfree);
911                         vm_page_free(p);
912                 }
913         }
914
915         /*
916          * If the object contained any pages, then reset it to an empty state.
917          * None of the object's fields, including "resident_page_count", were
918          * modified by the preceding loop.
919          */
920         if (object->resident_page_count != 0) {
921                 vm_radix_reclaim_allnodes(&object->rtree);
922                 TAILQ_INIT(&object->memq);
923                 object->resident_page_count = 0;
924                 if (object->type == OBJT_VNODE)
925                         vdrop(object->handle);
926         }
927 }
928
929 /*
930  *      vm_object_terminate actually destroys the specified object, freeing
931  *      up all previously used resources.
932  *
933  *      The object must be locked.
934  *      This routine may block.
935  */
936 void
937 vm_object_terminate(vm_object_t object)
938 {
939
940         VM_OBJECT_ASSERT_WLOCKED(object);
941         KASSERT((object->flags & OBJ_DEAD) != 0,
942             ("terminating non-dead obj %p", object));
943         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
944             ("terminating collapsing obj %p", object));
945         KASSERT(object->backing_object == NULL,
946             ("terminating shadow obj %p", object));
947
948         /*
949          * Wait for the pageout daemon and other current users to be
950          * done with the object.  Note that new paging_in_progress
951          * users can come after this wait, but they must check
952          * OBJ_DEAD flag set (without unlocking the object), and avoid
953          * the object being terminated.
954          */
955         vm_object_pip_wait(object, "objtrm");
956
957         KASSERT(object->ref_count == 0,
958             ("vm_object_terminate: object with references, ref_count=%d",
959             object->ref_count));
960
961         if ((object->flags & OBJ_PG_DTOR) == 0)
962                 vm_object_terminate_pages(object);
963
964 #if VM_NRESERVLEVEL > 0
965         if (__predict_false(!LIST_EMPTY(&object->rvq)))
966                 vm_reserv_break_all(object);
967 #endif
968
969         KASSERT(object->cred == NULL || (object->flags & OBJ_SWAP) != 0,
970             ("%s: non-swap obj %p has cred", __func__, object));
971
972         /*
973          * Let the pager know object is dead.
974          */
975         vm_pager_deallocate(object);
976         VM_OBJECT_WUNLOCK(object);
977
978         vm_object_destroy(object);
979 }
980
981 /*
982  * Make the page read-only so that we can clear the object flags.  However, if
983  * this is a nosync mmap then the object is likely to stay dirty so do not
984  * mess with the page and do not clear the object flags.  Returns TRUE if the
985  * page should be flushed, and FALSE otherwise.
986  */
987 static boolean_t
988 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
989 {
990
991         vm_page_assert_busied(p);
992
993         /*
994          * If we have been asked to skip nosync pages and this is a
995          * nosync page, skip it.  Note that the object flags were not
996          * cleared in this case so we do not have to set them.
997          */
998         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
999                 *allclean = FALSE;
1000                 return (FALSE);
1001         } else {
1002                 pmap_remove_write(p);
1003                 return (p->dirty != 0);
1004         }
1005 }
1006
1007 /*
1008  *      vm_object_page_clean
1009  *
1010  *      Clean all dirty pages in the specified range of object.  Leaves page 
1011  *      on whatever queue it is currently on.   If NOSYNC is set then do not
1012  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1013  *      leaving the object dirty.
1014  *
1015  *      For swap objects backing tmpfs regular files, do not flush anything,
1016  *      but remove write protection on the mapped pages to update mtime through
1017  *      mmaped writes.
1018  *
1019  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
1020  *      synchronous clustering mode implementation.
1021  *
1022  *      Odd semantics: if start == end, we clean everything.
1023  *
1024  *      The object must be locked.
1025  *
1026  *      Returns FALSE if some page from the range was not written, as
1027  *      reported by the pager, and TRUE otherwise.
1028  */
1029 boolean_t
1030 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1031     int flags)
1032 {
1033         vm_page_t np, p;
1034         vm_pindex_t pi, tend, tstart;
1035         int curgeneration, n, pagerflags;
1036         boolean_t eio, res, allclean;
1037
1038         VM_OBJECT_ASSERT_WLOCKED(object);
1039
1040         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1041                 return (TRUE);
1042
1043         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1044             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1045         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1046
1047         tstart = OFF_TO_IDX(start);
1048         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1049         allclean = tstart == 0 && tend >= object->size;
1050         res = TRUE;
1051
1052 rescan:
1053         curgeneration = object->generation;
1054
1055         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1056                 pi = p->pindex;
1057                 if (pi >= tend)
1058                         break;
1059                 np = TAILQ_NEXT(p, listq);
1060                 if (vm_page_none_valid(p))
1061                         continue;
1062                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1063                         if (object->generation != curgeneration &&
1064                             (flags & OBJPC_SYNC) != 0)
1065                                 goto rescan;
1066                         np = vm_page_find_least(object, pi);
1067                         continue;
1068                 }
1069                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1070                         vm_page_xunbusy(p);
1071                         continue;
1072                 }
1073                 if (object->type == OBJT_VNODE) {
1074                         n = vm_object_page_collect_flush(object, p, pagerflags,
1075                             flags, &allclean, &eio);
1076                         if (eio) {
1077                                 res = FALSE;
1078                                 allclean = FALSE;
1079                         }
1080                         if (object->generation != curgeneration &&
1081                             (flags & OBJPC_SYNC) != 0)
1082                                 goto rescan;
1083
1084                         /*
1085                          * If the VOP_PUTPAGES() did a truncated write, so
1086                          * that even the first page of the run is not fully
1087                          * written, vm_pageout_flush() returns 0 as the run
1088                          * length.  Since the condition that caused truncated
1089                          * write may be permanent, e.g. exhausted free space,
1090                          * accepting n == 0 would cause an infinite loop.
1091                          *
1092                          * Forwarding the iterator leaves the unwritten page
1093                          * behind, but there is not much we can do there if
1094                          * filesystem refuses to write it.
1095                          */
1096                         if (n == 0) {
1097                                 n = 1;
1098                                 allclean = FALSE;
1099                         }
1100                 } else {
1101                         n = 1;
1102                         vm_page_xunbusy(p);
1103                 }
1104                 np = vm_page_find_least(object, pi + n);
1105         }
1106 #if 0
1107         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1108 #endif
1109
1110         /*
1111          * Leave updating cleangeneration for tmpfs objects to tmpfs
1112          * scan.  It needs to update mtime, which happens for other
1113          * filesystems during page writeouts.
1114          */
1115         if (allclean && object->type == OBJT_VNODE)
1116                 object->cleangeneration = curgeneration;
1117         return (res);
1118 }
1119
1120 static int
1121 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1122     int flags, boolean_t *allclean, boolean_t *eio)
1123 {
1124         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1125         int count, i, mreq, runlen;
1126
1127         vm_page_lock_assert(p, MA_NOTOWNED);
1128         vm_page_assert_xbusied(p);
1129         VM_OBJECT_ASSERT_WLOCKED(object);
1130
1131         count = 1;
1132         mreq = 0;
1133
1134         for (tp = p; count < vm_pageout_page_count; count++) {
1135                 tp = vm_page_next(tp);
1136                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1137                         break;
1138                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1139                         vm_page_xunbusy(tp);
1140                         break;
1141                 }
1142         }
1143
1144         for (p_first = p; count < vm_pageout_page_count; count++) {
1145                 tp = vm_page_prev(p_first);
1146                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1147                         break;
1148                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1149                         vm_page_xunbusy(tp);
1150                         break;
1151                 }
1152                 p_first = tp;
1153                 mreq++;
1154         }
1155
1156         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1157                 ma[i] = tp;
1158
1159         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1160         return (runlen);
1161 }
1162
1163 /*
1164  * Note that there is absolutely no sense in writing out
1165  * anonymous objects, so we track down the vnode object
1166  * to write out.
1167  * We invalidate (remove) all pages from the address space
1168  * for semantic correctness.
1169  *
1170  * If the backing object is a device object with unmanaged pages, then any
1171  * mappings to the specified range of pages must be removed before this
1172  * function is called.
1173  *
1174  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1175  * may start out with a NULL object.
1176  */
1177 boolean_t
1178 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1179     boolean_t syncio, boolean_t invalidate)
1180 {
1181         vm_object_t backing_object;
1182         struct vnode *vp;
1183         struct mount *mp;
1184         int error, flags, fsync_after;
1185         boolean_t res;
1186
1187         if (object == NULL)
1188                 return (TRUE);
1189         res = TRUE;
1190         error = 0;
1191         VM_OBJECT_WLOCK(object);
1192         while ((backing_object = object->backing_object) != NULL) {
1193                 VM_OBJECT_WLOCK(backing_object);
1194                 offset += object->backing_object_offset;
1195                 VM_OBJECT_WUNLOCK(object);
1196                 object = backing_object;
1197                 if (object->size < OFF_TO_IDX(offset + size))
1198                         size = IDX_TO_OFF(object->size) - offset;
1199         }
1200         /*
1201          * Flush pages if writing is allowed, invalidate them
1202          * if invalidation requested.  Pages undergoing I/O
1203          * will be ignored by vm_object_page_remove().
1204          *
1205          * We cannot lock the vnode and then wait for paging
1206          * to complete without deadlocking against vm_fault.
1207          * Instead we simply call vm_object_page_remove() and
1208          * allow it to block internally on a page-by-page
1209          * basis when it encounters pages undergoing async
1210          * I/O.
1211          */
1212         if (object->type == OBJT_VNODE &&
1213             vm_object_mightbedirty(object) != 0 &&
1214             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1215                 VM_OBJECT_WUNLOCK(object);
1216                 (void)vn_start_write(vp, &mp, V_WAIT);
1217                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1218                 if (syncio && !invalidate && offset == 0 &&
1219                     atop(size) == object->size) {
1220                         /*
1221                          * If syncing the whole mapping of the file,
1222                          * it is faster to schedule all the writes in
1223                          * async mode, also allowing the clustering,
1224                          * and then wait for i/o to complete.
1225                          */
1226                         flags = 0;
1227                         fsync_after = TRUE;
1228                 } else {
1229                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1230                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1231                         fsync_after = FALSE;
1232                 }
1233                 VM_OBJECT_WLOCK(object);
1234                 res = vm_object_page_clean(object, offset, offset + size,
1235                     flags);
1236                 VM_OBJECT_WUNLOCK(object);
1237                 if (fsync_after) {
1238                         for (;;) {
1239                                 error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1240                                 if (error != ERELOOKUP)
1241                                         break;
1242
1243                                 /*
1244                                  * Allow SU/bufdaemon to handle more
1245                                  * dependencies in the meantime.
1246                                  */
1247                                 VOP_UNLOCK(vp);
1248                                 vn_finished_write(mp);
1249
1250                                 (void)vn_start_write(vp, &mp, V_WAIT);
1251                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1252                         }
1253                 }
1254                 VOP_UNLOCK(vp);
1255                 vn_finished_write(mp);
1256                 if (error != 0)
1257                         res = FALSE;
1258                 VM_OBJECT_WLOCK(object);
1259         }
1260         if ((object->type == OBJT_VNODE ||
1261              object->type == OBJT_DEVICE) && invalidate) {
1262                 if (object->type == OBJT_DEVICE)
1263                         /*
1264                          * The option OBJPR_NOTMAPPED must be passed here
1265                          * because vm_object_page_remove() cannot remove
1266                          * unmanaged mappings.
1267                          */
1268                         flags = OBJPR_NOTMAPPED;
1269                 else if (old_msync)
1270                         flags = 0;
1271                 else
1272                         flags = OBJPR_CLEANONLY;
1273                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1274                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1275         }
1276         VM_OBJECT_WUNLOCK(object);
1277         return (res);
1278 }
1279
1280 /*
1281  * Determine whether the given advice can be applied to the object.  Advice is
1282  * not applied to unmanaged pages since they never belong to page queues, and
1283  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1284  * have been mapped at most once.
1285  */
1286 static bool
1287 vm_object_advice_applies(vm_object_t object, int advice)
1288 {
1289
1290         if ((object->flags & OBJ_UNMANAGED) != 0)
1291                 return (false);
1292         if (advice != MADV_FREE)
1293                 return (true);
1294         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1295             (OBJ_ONEMAPPING | OBJ_ANON));
1296 }
1297
1298 static void
1299 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1300     vm_size_t size)
1301 {
1302
1303         if (advice == MADV_FREE)
1304                 vm_pager_freespace(object, pindex, size);
1305 }
1306
1307 /*
1308  *      vm_object_madvise:
1309  *
1310  *      Implements the madvise function at the object/page level.
1311  *
1312  *      MADV_WILLNEED   (any object)
1313  *
1314  *          Activate the specified pages if they are resident.
1315  *
1316  *      MADV_DONTNEED   (any object)
1317  *
1318  *          Deactivate the specified pages if they are resident.
1319  *
1320  *      MADV_FREE       (OBJT_SWAP objects, OBJ_ONEMAPPING only)
1321  *
1322  *          Deactivate and clean the specified pages if they are
1323  *          resident.  This permits the process to reuse the pages
1324  *          without faulting or the kernel to reclaim the pages
1325  *          without I/O.
1326  */
1327 void
1328 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1329     int advice)
1330 {
1331         vm_pindex_t tpindex;
1332         vm_object_t backing_object, tobject;
1333         vm_page_t m, tm;
1334
1335         if (object == NULL)
1336                 return;
1337
1338 relookup:
1339         VM_OBJECT_WLOCK(object);
1340         if (!vm_object_advice_applies(object, advice)) {
1341                 VM_OBJECT_WUNLOCK(object);
1342                 return;
1343         }
1344         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1345                 tobject = object;
1346
1347                 /*
1348                  * If the next page isn't resident in the top-level object, we
1349                  * need to search the shadow chain.  When applying MADV_FREE, we
1350                  * take care to release any swap space used to store
1351                  * non-resident pages.
1352                  */
1353                 if (m == NULL || pindex < m->pindex) {
1354                         /*
1355                          * Optimize a common case: if the top-level object has
1356                          * no backing object, we can skip over the non-resident
1357                          * range in constant time.
1358                          */
1359                         if (object->backing_object == NULL) {
1360                                 tpindex = (m != NULL && m->pindex < end) ?
1361                                     m->pindex : end;
1362                                 vm_object_madvise_freespace(object, advice,
1363                                     pindex, tpindex - pindex);
1364                                 if ((pindex = tpindex) == end)
1365                                         break;
1366                                 goto next_page;
1367                         }
1368
1369                         tpindex = pindex;
1370                         do {
1371                                 vm_object_madvise_freespace(tobject, advice,
1372                                     tpindex, 1);
1373                                 /*
1374                                  * Prepare to search the next object in the
1375                                  * chain.
1376                                  */
1377                                 backing_object = tobject->backing_object;
1378                                 if (backing_object == NULL)
1379                                         goto next_pindex;
1380                                 VM_OBJECT_WLOCK(backing_object);
1381                                 tpindex +=
1382                                     OFF_TO_IDX(tobject->backing_object_offset);
1383                                 if (tobject != object)
1384                                         VM_OBJECT_WUNLOCK(tobject);
1385                                 tobject = backing_object;
1386                                 if (!vm_object_advice_applies(tobject, advice))
1387                                         goto next_pindex;
1388                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1389                             NULL);
1390                 } else {
1391 next_page:
1392                         tm = m;
1393                         m = TAILQ_NEXT(m, listq);
1394                 }
1395
1396                 /*
1397                  * If the page is not in a normal state, skip it.  The page
1398                  * can not be invalidated while the object lock is held.
1399                  */
1400                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1401                         goto next_pindex;
1402                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1403                     ("vm_object_madvise: page %p is fictitious", tm));
1404                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1405                     ("vm_object_madvise: page %p is not managed", tm));
1406                 if (vm_page_tryxbusy(tm) == 0) {
1407                         if (object != tobject)
1408                                 VM_OBJECT_WUNLOCK(object);
1409                         if (advice == MADV_WILLNEED) {
1410                                 /*
1411                                  * Reference the page before unlocking and
1412                                  * sleeping so that the page daemon is less
1413                                  * likely to reclaim it.
1414                                  */
1415                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1416                         }
1417                         if (!vm_page_busy_sleep(tm, "madvpo", 0))
1418                                 VM_OBJECT_WUNLOCK(tobject);
1419                         goto relookup;
1420                 }
1421                 vm_page_advise(tm, advice);
1422                 vm_page_xunbusy(tm);
1423                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1424 next_pindex:
1425                 if (tobject != object)
1426                         VM_OBJECT_WUNLOCK(tobject);
1427         }
1428         VM_OBJECT_WUNLOCK(object);
1429 }
1430
1431 /*
1432  *      vm_object_shadow:
1433  *
1434  *      Create a new object which is backed by the
1435  *      specified existing object range.  The source
1436  *      object reference is deallocated.
1437  *
1438  *      The new object and offset into that object
1439  *      are returned in the source parameters.
1440  */
1441 void
1442 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1443     struct ucred *cred, bool shared)
1444 {
1445         vm_object_t source;
1446         vm_object_t result;
1447
1448         source = *object;
1449
1450         /*
1451          * Don't create the new object if the old object isn't shared.
1452          *
1453          * If we hold the only reference we can guarantee that it won't
1454          * increase while we have the map locked.  Otherwise the race is
1455          * harmless and we will end up with an extra shadow object that
1456          * will be collapsed later.
1457          */
1458         if (source != NULL && source->ref_count == 1 &&
1459             (source->flags & OBJ_ANON) != 0)
1460                 return;
1461
1462         /*
1463          * Allocate a new object with the given length.
1464          */
1465         result = vm_object_allocate_anon(atop(length), source, cred, length);
1466
1467         /*
1468          * Store the offset into the source object, and fix up the offset into
1469          * the new object.
1470          */
1471         result->backing_object_offset = *offset;
1472
1473         if (shared || source != NULL) {
1474                 VM_OBJECT_WLOCK(result);
1475
1476                 /*
1477                  * The new object shadows the source object, adding a
1478                  * reference to it.  Our caller changes his reference
1479                  * to point to the new object, removing a reference to
1480                  * the source object.  Net result: no change of
1481                  * reference count, unless the caller needs to add one
1482                  * more reference due to forking a shared map entry.
1483                  */
1484                 if (shared) {
1485                         vm_object_reference_locked(result);
1486                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1487                 }
1488
1489                 /*
1490                  * Try to optimize the result object's page color when
1491                  * shadowing in order to maintain page coloring
1492                  * consistency in the combined shadowed object.
1493                  */
1494                 if (source != NULL) {
1495                         vm_object_backing_insert(result, source);
1496                         result->domain = source->domain;
1497 #if VM_NRESERVLEVEL > 0
1498                         vm_object_set_flag(result,
1499                             (source->flags & OBJ_COLORED));
1500                         result->pg_color = (source->pg_color +
1501                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1502                             1)) - 1);
1503 #endif
1504                 }
1505                 VM_OBJECT_WUNLOCK(result);
1506         }
1507
1508         /*
1509          * Return the new things
1510          */
1511         *offset = 0;
1512         *object = result;
1513 }
1514
1515 /*
1516  *      vm_object_split:
1517  *
1518  * Split the pages in a map entry into a new object.  This affords
1519  * easier removal of unused pages, and keeps object inheritance from
1520  * being a negative impact on memory usage.
1521  */
1522 void
1523 vm_object_split(vm_map_entry_t entry)
1524 {
1525         vm_page_t m, m_next;
1526         vm_object_t orig_object, new_object, backing_object;
1527         vm_pindex_t idx, offidxstart;
1528         vm_size_t size;
1529
1530         orig_object = entry->object.vm_object;
1531         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1532             ("vm_object_split:  Splitting object with multiple mappings."));
1533         if ((orig_object->flags & OBJ_ANON) == 0)
1534                 return;
1535         if (orig_object->ref_count <= 1)
1536                 return;
1537         VM_OBJECT_WUNLOCK(orig_object);
1538
1539         offidxstart = OFF_TO_IDX(entry->offset);
1540         size = atop(entry->end - entry->start);
1541
1542         new_object = vm_object_allocate_anon(size, orig_object,
1543             orig_object->cred, ptoa(size));
1544
1545         /*
1546          * We must wait for the orig_object to complete any in-progress
1547          * collapse so that the swap blocks are stable below.  The
1548          * additional reference on backing_object by new object will
1549          * prevent further collapse operations until split completes.
1550          */
1551         VM_OBJECT_WLOCK(orig_object);
1552         vm_object_collapse_wait(orig_object);
1553
1554         /*
1555          * At this point, the new object is still private, so the order in
1556          * which the original and new objects are locked does not matter.
1557          */
1558         VM_OBJECT_WLOCK(new_object);
1559         new_object->domain = orig_object->domain;
1560         backing_object = orig_object->backing_object;
1561         if (backing_object != NULL) {
1562                 vm_object_backing_insert_ref(new_object, backing_object);
1563                 new_object->backing_object_offset = 
1564                     orig_object->backing_object_offset + entry->offset;
1565         }
1566         if (orig_object->cred != NULL) {
1567                 crhold(orig_object->cred);
1568                 KASSERT(orig_object->charge >= ptoa(size),
1569                     ("orig_object->charge < 0"));
1570                 orig_object->charge -= ptoa(size);
1571         }
1572
1573         /*
1574          * Mark the split operation so that swap_pager_getpages() knows
1575          * that the object is in transition.
1576          */
1577         vm_object_set_flag(orig_object, OBJ_SPLIT);
1578 #ifdef INVARIANTS
1579         idx = 0;
1580 #endif
1581 retry:
1582         m = vm_page_find_least(orig_object, offidxstart);
1583         KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1584             ("%s: object %p was repopulated", __func__, orig_object));
1585         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1586             m = m_next) {
1587                 m_next = TAILQ_NEXT(m, listq);
1588
1589                 /*
1590                  * We must wait for pending I/O to complete before we can
1591                  * rename the page.
1592                  *
1593                  * We do not have to VM_PROT_NONE the page as mappings should
1594                  * not be changed by this operation.
1595                  */
1596                 if (vm_page_tryxbusy(m) == 0) {
1597                         VM_OBJECT_WUNLOCK(new_object);
1598                         if (vm_page_busy_sleep(m, "spltwt", 0))
1599                                 VM_OBJECT_WLOCK(orig_object);
1600                         VM_OBJECT_WLOCK(new_object);
1601                         goto retry;
1602                 }
1603
1604                 /*
1605                  * The page was left invalid.  Likely placed there by
1606                  * an incomplete fault.  Just remove and ignore.
1607                  */
1608                 if (vm_page_none_valid(m)) {
1609                         if (vm_page_remove(m))
1610                                 vm_page_free(m);
1611                         continue;
1612                 }
1613
1614                 /* vm_page_rename() will dirty the page. */
1615                 if (vm_page_rename(m, new_object, idx)) {
1616                         vm_page_xunbusy(m);
1617                         VM_OBJECT_WUNLOCK(new_object);
1618                         VM_OBJECT_WUNLOCK(orig_object);
1619                         vm_radix_wait();
1620                         VM_OBJECT_WLOCK(orig_object);
1621                         VM_OBJECT_WLOCK(new_object);
1622                         goto retry;
1623                 }
1624
1625 #if VM_NRESERVLEVEL > 0
1626                 /*
1627                  * If some of the reservation's allocated pages remain with
1628                  * the original object, then transferring the reservation to
1629                  * the new object is neither particularly beneficial nor
1630                  * particularly harmful as compared to leaving the reservation
1631                  * with the original object.  If, however, all of the
1632                  * reservation's allocated pages are transferred to the new
1633                  * object, then transferring the reservation is typically
1634                  * beneficial.  Determining which of these two cases applies
1635                  * would be more costly than unconditionally renaming the
1636                  * reservation.
1637                  */
1638                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1639 #endif
1640         }
1641
1642         /*
1643          * swap_pager_copy() can sleep, in which case the orig_object's
1644          * and new_object's locks are released and reacquired.
1645          */
1646         swap_pager_copy(orig_object, new_object, offidxstart, 0);
1647
1648         TAILQ_FOREACH(m, &new_object->memq, listq)
1649                 vm_page_xunbusy(m);
1650
1651         vm_object_clear_flag(orig_object, OBJ_SPLIT);
1652         VM_OBJECT_WUNLOCK(orig_object);
1653         VM_OBJECT_WUNLOCK(new_object);
1654         entry->object.vm_object = new_object;
1655         entry->offset = 0LL;
1656         vm_object_deallocate(orig_object);
1657         VM_OBJECT_WLOCK(new_object);
1658 }
1659
1660 static vm_page_t
1661 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1662 {
1663         vm_object_t backing_object;
1664
1665         VM_OBJECT_ASSERT_WLOCKED(object);
1666         backing_object = object->backing_object;
1667         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1668
1669         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1670             ("invalid ownership %p %p %p", p, object, backing_object));
1671         /* The page is only NULL when rename fails. */
1672         if (p == NULL) {
1673                 VM_OBJECT_WUNLOCK(object);
1674                 VM_OBJECT_WUNLOCK(backing_object);
1675                 vm_radix_wait();
1676                 VM_OBJECT_WLOCK(object);
1677         } else if (p->object == object) {
1678                 VM_OBJECT_WUNLOCK(backing_object);
1679                 if (vm_page_busy_sleep(p, "vmocol", 0))
1680                         VM_OBJECT_WLOCK(object);
1681         } else {
1682                 VM_OBJECT_WUNLOCK(object);
1683                 if (!vm_page_busy_sleep(p, "vmocol", 0))
1684                         VM_OBJECT_WUNLOCK(backing_object);
1685                 VM_OBJECT_WLOCK(object);
1686         }
1687         VM_OBJECT_WLOCK(backing_object);
1688         return (TAILQ_FIRST(&backing_object->memq));
1689 }
1690
1691 static bool
1692 vm_object_scan_all_shadowed(vm_object_t object)
1693 {
1694         vm_object_t backing_object;
1695         vm_page_t p, pp;
1696         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1697
1698         VM_OBJECT_ASSERT_WLOCKED(object);
1699         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1700
1701         backing_object = object->backing_object;
1702
1703         if ((backing_object->flags & OBJ_ANON) == 0)
1704                 return (false);
1705
1706         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1707         p = vm_page_find_least(backing_object, pi);
1708         ps = swap_pager_find_least(backing_object, pi);
1709
1710         /*
1711          * Only check pages inside the parent object's range and
1712          * inside the parent object's mapping of the backing object.
1713          */
1714         for (;; pi++) {
1715                 if (p != NULL && p->pindex < pi)
1716                         p = TAILQ_NEXT(p, listq);
1717                 if (ps < pi)
1718                         ps = swap_pager_find_least(backing_object, pi);
1719                 if (p == NULL && ps >= backing_object->size)
1720                         break;
1721                 else if (p == NULL)
1722                         pi = ps;
1723                 else
1724                         pi = MIN(p->pindex, ps);
1725
1726                 new_pindex = pi - backing_offset_index;
1727                 if (new_pindex >= object->size)
1728                         break;
1729
1730                 if (p != NULL) {
1731                         /*
1732                          * If the backing object page is busy a
1733                          * grandparent or older page may still be
1734                          * undergoing CoW.  It is not safe to collapse
1735                          * the backing object until it is quiesced.
1736                          */
1737                         if (vm_page_tryxbusy(p) == 0)
1738                                 return (false);
1739
1740                         /*
1741                          * We raced with the fault handler that left
1742                          * newly allocated invalid page on the object
1743                          * queue and retried.
1744                          */
1745                         if (!vm_page_all_valid(p))
1746                                 goto unbusy_ret;
1747                 }
1748
1749                 /*
1750                  * See if the parent has the page or if the parent's object
1751                  * pager has the page.  If the parent has the page but the page
1752                  * is not valid, the parent's object pager must have the page.
1753                  *
1754                  * If this fails, the parent does not completely shadow the
1755                  * object and we might as well give up now.
1756                  */
1757                 pp = vm_page_lookup(object, new_pindex);
1758
1759                 /*
1760                  * The valid check here is stable due to object lock
1761                  * being required to clear valid and initiate paging.
1762                  * Busy of p disallows fault handler to validate pp.
1763                  */
1764                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1765                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1766                         goto unbusy_ret;
1767                 if (p != NULL)
1768                         vm_page_xunbusy(p);
1769         }
1770         return (true);
1771
1772 unbusy_ret:
1773         if (p != NULL)
1774                 vm_page_xunbusy(p);
1775         return (false);
1776 }
1777
1778 static void
1779 vm_object_collapse_scan(vm_object_t object)
1780 {
1781         vm_object_t backing_object;
1782         vm_page_t next, p, pp;
1783         vm_pindex_t backing_offset_index, new_pindex;
1784
1785         VM_OBJECT_ASSERT_WLOCKED(object);
1786         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1787
1788         backing_object = object->backing_object;
1789         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1790
1791         /*
1792          * Our scan
1793          */
1794         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1795                 next = TAILQ_NEXT(p, listq);
1796                 new_pindex = p->pindex - backing_offset_index;
1797
1798                 /*
1799                  * Check for busy page
1800                  */
1801                 if (vm_page_tryxbusy(p) == 0) {
1802                         next = vm_object_collapse_scan_wait(object, p);
1803                         continue;
1804                 }
1805
1806                 KASSERT(object->backing_object == backing_object,
1807                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
1808                     object->backing_object, backing_object));
1809                 KASSERT(p->object == backing_object,
1810                     ("vm_object_collapse_scan: object mismatch %p != %p",
1811                     p->object, backing_object));
1812
1813                 if (p->pindex < backing_offset_index ||
1814                     new_pindex >= object->size) {
1815                         vm_pager_freespace(backing_object, p->pindex, 1);
1816
1817                         KASSERT(!pmap_page_is_mapped(p),
1818                             ("freeing mapped page %p", p));
1819                         if (vm_page_remove(p))
1820                                 vm_page_free(p);
1821                         continue;
1822                 }
1823
1824                 if (!vm_page_all_valid(p)) {
1825                         KASSERT(!pmap_page_is_mapped(p),
1826                             ("freeing mapped page %p", p));
1827                         if (vm_page_remove(p))
1828                                 vm_page_free(p);
1829                         continue;
1830                 }
1831
1832                 pp = vm_page_lookup(object, new_pindex);
1833                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1834                         vm_page_xunbusy(p);
1835                         /*
1836                          * The page in the parent is busy and possibly not
1837                          * (yet) valid.  Until its state is finalized by the
1838                          * busy bit owner, we can't tell whether it shadows the
1839                          * original page.
1840                          */
1841                         next = vm_object_collapse_scan_wait(object, pp);
1842                         continue;
1843                 }
1844
1845                 if (pp != NULL && vm_page_none_valid(pp)) {
1846                         /*
1847                          * The page was invalid in the parent.  Likely placed
1848                          * there by an incomplete fault.  Just remove and
1849                          * ignore.  p can replace it.
1850                          */
1851                         if (vm_page_remove(pp))
1852                                 vm_page_free(pp);
1853                         pp = NULL;
1854                 }
1855
1856                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1857                         NULL)) {
1858                         /*
1859                          * The page already exists in the parent OR swap exists
1860                          * for this location in the parent.  Leave the parent's
1861                          * page alone.  Destroy the original page from the
1862                          * backing object.
1863                          */
1864                         vm_pager_freespace(backing_object, p->pindex, 1);
1865                         KASSERT(!pmap_page_is_mapped(p),
1866                             ("freeing mapped page %p", p));
1867                         if (vm_page_remove(p))
1868                                 vm_page_free(p);
1869                         if (pp != NULL)
1870                                 vm_page_xunbusy(pp);
1871                         continue;
1872                 }
1873
1874                 /*
1875                  * Page does not exist in parent, rename the page from the
1876                  * backing object to the main object.
1877                  *
1878                  * If the page was mapped to a process, it can remain mapped
1879                  * through the rename.  vm_page_rename() will dirty the page.
1880                  */
1881                 if (vm_page_rename(p, object, new_pindex)) {
1882                         vm_page_xunbusy(p);
1883                         next = vm_object_collapse_scan_wait(object, NULL);
1884                         continue;
1885                 }
1886
1887                 /* Use the old pindex to free the right page. */
1888                 vm_pager_freespace(backing_object, new_pindex +
1889                     backing_offset_index, 1);
1890
1891 #if VM_NRESERVLEVEL > 0
1892                 /*
1893                  * Rename the reservation.
1894                  */
1895                 vm_reserv_rename(p, object, backing_object,
1896                     backing_offset_index);
1897 #endif
1898                 vm_page_xunbusy(p);
1899         }
1900         return;
1901 }
1902
1903 /*
1904  *      vm_object_collapse:
1905  *
1906  *      Collapse an object with the object backing it.
1907  *      Pages in the backing object are moved into the
1908  *      parent, and the backing object is deallocated.
1909  */
1910 void
1911 vm_object_collapse(vm_object_t object)
1912 {
1913         vm_object_t backing_object, new_backing_object;
1914
1915         VM_OBJECT_ASSERT_WLOCKED(object);
1916
1917         while (TRUE) {
1918                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1919                     ("collapsing invalid object"));
1920
1921                 /*
1922                  * Wait for the backing_object to finish any pending
1923                  * collapse so that the caller sees the shortest possible
1924                  * shadow chain.
1925                  */
1926                 backing_object = vm_object_backing_collapse_wait(object);
1927                 if (backing_object == NULL)
1928                         return;
1929
1930                 KASSERT(object->ref_count > 0 &&
1931                     object->ref_count > atomic_load_int(&object->shadow_count),
1932                     ("collapse with invalid ref %d or shadow %d count.",
1933                     object->ref_count, atomic_load_int(&object->shadow_count)));
1934                 KASSERT((backing_object->flags &
1935                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1936                     ("vm_object_collapse: Backing object already collapsing."));
1937                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1938                     ("vm_object_collapse: object is already collapsing."));
1939
1940                 /*
1941                  * We know that we can either collapse the backing object if
1942                  * the parent is the only reference to it, or (perhaps) have
1943                  * the parent bypass the object if the parent happens to shadow
1944                  * all the resident pages in the entire backing object.
1945                  */
1946                 if (backing_object->ref_count == 1) {
1947                         KASSERT(atomic_load_int(&backing_object->shadow_count)
1948                             == 1,
1949                             ("vm_object_collapse: shadow_count: %d",
1950                             atomic_load_int(&backing_object->shadow_count)));
1951                         vm_object_pip_add(object, 1);
1952                         vm_object_set_flag(object, OBJ_COLLAPSING);
1953                         vm_object_pip_add(backing_object, 1);
1954                         vm_object_set_flag(backing_object, OBJ_DEAD);
1955
1956                         /*
1957                          * If there is exactly one reference to the backing
1958                          * object, we can collapse it into the parent.
1959                          */
1960                         vm_object_collapse_scan(object);
1961
1962 #if VM_NRESERVLEVEL > 0
1963                         /*
1964                          * Break any reservations from backing_object.
1965                          */
1966                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1967                                 vm_reserv_break_all(backing_object);
1968 #endif
1969
1970                         /*
1971                          * Move the pager from backing_object to object.
1972                          *
1973                          * swap_pager_copy() can sleep, in which case the
1974                          * backing_object's and object's locks are released and
1975                          * reacquired.
1976                          */
1977                         swap_pager_copy(backing_object, object,
1978                             OFF_TO_IDX(object->backing_object_offset), TRUE);
1979
1980                         /*
1981                          * Object now shadows whatever backing_object did.
1982                          */
1983                         vm_object_clear_flag(object, OBJ_COLLAPSING);
1984                         vm_object_backing_transfer(object, backing_object);
1985                         object->backing_object_offset +=
1986                             backing_object->backing_object_offset;
1987                         VM_OBJECT_WUNLOCK(object);
1988                         vm_object_pip_wakeup(object);
1989
1990                         /*
1991                          * Discard backing_object.
1992                          *
1993                          * Since the backing object has no pages, no pager left,
1994                          * and no object references within it, all that is
1995                          * necessary is to dispose of it.
1996                          */
1997                         KASSERT(backing_object->ref_count == 1, (
1998 "backing_object %p was somehow re-referenced during collapse!",
1999                             backing_object));
2000                         vm_object_pip_wakeup(backing_object);
2001                         (void)refcount_release(&backing_object->ref_count);
2002                         vm_object_terminate(backing_object);
2003                         counter_u64_add(object_collapses, 1);
2004                         VM_OBJECT_WLOCK(object);
2005                 } else {
2006                         /*
2007                          * If we do not entirely shadow the backing object,
2008                          * there is nothing we can do so we give up.
2009                          *
2010                          * The object lock and backing_object lock must not
2011                          * be dropped during this sequence.
2012                          */
2013                         if (!vm_object_scan_all_shadowed(object)) {
2014                                 VM_OBJECT_WUNLOCK(backing_object);
2015                                 break;
2016                         }
2017
2018                         /*
2019                          * Make the parent shadow the next object in the
2020                          * chain.  Deallocating backing_object will not remove
2021                          * it, since its reference count is at least 2.
2022                          */
2023                         vm_object_backing_remove_locked(object);
2024                         new_backing_object = backing_object->backing_object;
2025                         if (new_backing_object != NULL) {
2026                                 vm_object_backing_insert_ref(object,
2027                                     new_backing_object);
2028                                 object->backing_object_offset +=
2029                                     backing_object->backing_object_offset;
2030                         }
2031
2032                         /*
2033                          * Drop the reference count on backing_object. Since
2034                          * its ref_count was at least 2, it will not vanish.
2035                          */
2036                         (void)refcount_release(&backing_object->ref_count);
2037                         KASSERT(backing_object->ref_count >= 1, (
2038 "backing_object %p was somehow dereferenced during collapse!",
2039                             backing_object));
2040                         VM_OBJECT_WUNLOCK(backing_object);
2041                         counter_u64_add(object_bypasses, 1);
2042                 }
2043
2044                 /*
2045                  * Try again with this object's new backing object.
2046                  */
2047         }
2048 }
2049
2050 /*
2051  *      vm_object_page_remove:
2052  *
2053  *      For the given object, either frees or invalidates each of the
2054  *      specified pages.  In general, a page is freed.  However, if a page is
2055  *      wired for any reason other than the existence of a managed, wired
2056  *      mapping, then it may be invalidated but not removed from the object.
2057  *      Pages are specified by the given range ["start", "end") and the option
2058  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2059  *      extends from "start" to the end of the object.  If the option
2060  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2061  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
2062  *      specified, then the pages within the specified range must have no
2063  *      mappings.  Otherwise, if this option is not specified, any mappings to
2064  *      the specified pages are removed before the pages are freed or
2065  *      invalidated.
2066  *
2067  *      In general, this operation should only be performed on objects that
2068  *      contain managed pages.  There are, however, two exceptions.  First, it
2069  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
2070  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2071  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2072  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
2073  *
2074  *      The object must be locked.
2075  */
2076 void
2077 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2078     int options)
2079 {
2080         vm_page_t p, next;
2081
2082         VM_OBJECT_ASSERT_WLOCKED(object);
2083         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2084             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2085             ("vm_object_page_remove: illegal options for object %p", object));
2086         if (object->resident_page_count == 0)
2087                 return;
2088         vm_object_pip_add(object, 1);
2089 again:
2090         p = vm_page_find_least(object, start);
2091
2092         /*
2093          * Here, the variable "p" is either (1) the page with the least pindex
2094          * greater than or equal to the parameter "start" or (2) NULL. 
2095          */
2096         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2097                 next = TAILQ_NEXT(p, listq);
2098
2099                 /*
2100                  * Skip invalid pages if asked to do so.  Try to avoid acquiring
2101                  * the busy lock, as some consumers rely on this to avoid
2102                  * deadlocks.
2103                  *
2104                  * A thread may concurrently transition the page from invalid to
2105                  * valid using only the busy lock, so the result of this check
2106                  * is immediately stale.  It is up to consumers to handle this,
2107                  * for instance by ensuring that all invalid->valid transitions
2108                  * happen with a mutex held, as may be possible for a
2109                  * filesystem.
2110                  */
2111                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p))
2112                         continue;
2113
2114                 /*
2115                  * If the page is wired for any reason besides the existence
2116                  * of managed, wired mappings, then it cannot be freed.  For
2117                  * example, fictitious pages, which represent device memory,
2118                  * are inherently wired and cannot be freed.  They can,
2119                  * however, be invalidated if the option OBJPR_CLEANONLY is
2120                  * not specified.
2121                  */
2122                 if (vm_page_tryxbusy(p) == 0) {
2123                         if (vm_page_busy_sleep(p, "vmopar", 0))
2124                                 VM_OBJECT_WLOCK(object);
2125                         goto again;
2126                 }
2127                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) {
2128                         vm_page_xunbusy(p);
2129                         continue;
2130                 }
2131                 if (vm_page_wired(p)) {
2132 wired:
2133                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2134                             object->ref_count != 0)
2135                                 pmap_remove_all(p);
2136                         if ((options & OBJPR_CLEANONLY) == 0) {
2137                                 vm_page_invalid(p);
2138                                 vm_page_undirty(p);
2139                         }
2140                         vm_page_xunbusy(p);
2141                         continue;
2142                 }
2143                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2144                     ("vm_object_page_remove: page %p is fictitious", p));
2145                 if ((options & OBJPR_CLEANONLY) != 0 &&
2146                     !vm_page_none_valid(p)) {
2147                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2148                             object->ref_count != 0 &&
2149                             !vm_page_try_remove_write(p))
2150                                 goto wired;
2151                         if (p->dirty != 0) {
2152                                 vm_page_xunbusy(p);
2153                                 continue;
2154                         }
2155                 }
2156                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2157                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2158                         goto wired;
2159                 vm_page_free(p);
2160         }
2161         vm_object_pip_wakeup(object);
2162
2163         vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2164             start);
2165 }
2166
2167 /*
2168  *      vm_object_page_noreuse:
2169  *
2170  *      For the given object, attempt to move the specified pages to
2171  *      the head of the inactive queue.  This bypasses regular LRU
2172  *      operation and allows the pages to be reused quickly under memory
2173  *      pressure.  If a page is wired for any reason, then it will not
2174  *      be queued.  Pages are specified by the range ["start", "end").
2175  *      As a special case, if "end" is zero, then the range extends from
2176  *      "start" to the end of the object.
2177  *
2178  *      This operation should only be performed on objects that
2179  *      contain non-fictitious, managed pages.
2180  *
2181  *      The object must be locked.
2182  */
2183 void
2184 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2185 {
2186         vm_page_t p, next;
2187
2188         VM_OBJECT_ASSERT_LOCKED(object);
2189         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2190             ("vm_object_page_noreuse: illegal object %p", object));
2191         if (object->resident_page_count == 0)
2192                 return;
2193         p = vm_page_find_least(object, start);
2194
2195         /*
2196          * Here, the variable "p" is either (1) the page with the least pindex
2197          * greater than or equal to the parameter "start" or (2) NULL. 
2198          */
2199         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2200                 next = TAILQ_NEXT(p, listq);
2201                 vm_page_deactivate_noreuse(p);
2202         }
2203 }
2204
2205 /*
2206  *      Populate the specified range of the object with valid pages.  Returns
2207  *      TRUE if the range is successfully populated and FALSE otherwise.
2208  *
2209  *      Note: This function should be optimized to pass a larger array of
2210  *      pages to vm_pager_get_pages() before it is applied to a non-
2211  *      OBJT_DEVICE object.
2212  *
2213  *      The object must be locked.
2214  */
2215 boolean_t
2216 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2217 {
2218         vm_page_t m;
2219         vm_pindex_t pindex;
2220         int rv;
2221
2222         VM_OBJECT_ASSERT_WLOCKED(object);
2223         for (pindex = start; pindex < end; pindex++) {
2224                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2225                 if (rv != VM_PAGER_OK)
2226                         break;
2227
2228                 /*
2229                  * Keep "m" busy because a subsequent iteration may unlock
2230                  * the object.
2231                  */
2232         }
2233         if (pindex > start) {
2234                 m = vm_page_lookup(object, start);
2235                 while (m != NULL && m->pindex < pindex) {
2236                         vm_page_xunbusy(m);
2237                         m = TAILQ_NEXT(m, listq);
2238                 }
2239         }
2240         return (pindex == end);
2241 }
2242
2243 /*
2244  *      Routine:        vm_object_coalesce
2245  *      Function:       Coalesces two objects backing up adjoining
2246  *                      regions of memory into a single object.
2247  *
2248  *      returns TRUE if objects were combined.
2249  *
2250  *      NOTE:   Only works at the moment if the second object is NULL -
2251  *              if it's not, which object do we lock first?
2252  *
2253  *      Parameters:
2254  *              prev_object     First object to coalesce
2255  *              prev_offset     Offset into prev_object
2256  *              prev_size       Size of reference to prev_object
2257  *              next_size       Size of reference to the second object
2258  *              reserved        Indicator that extension region has
2259  *                              swap accounted for
2260  *
2261  *      Conditions:
2262  *      The object must *not* be locked.
2263  */
2264 boolean_t
2265 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2266     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2267 {
2268         vm_pindex_t next_pindex;
2269
2270         if (prev_object == NULL)
2271                 return (TRUE);
2272         if ((prev_object->flags & OBJ_ANON) == 0)
2273                 return (FALSE);
2274
2275         VM_OBJECT_WLOCK(prev_object);
2276         /*
2277          * Try to collapse the object first.
2278          */
2279         vm_object_collapse(prev_object);
2280
2281         /*
2282          * Can't coalesce if: . more than one reference . paged out . shadows
2283          * another object . has a copy elsewhere (any of which mean that the
2284          * pages not mapped to prev_entry may be in use anyway)
2285          */
2286         if (prev_object->backing_object != NULL) {
2287                 VM_OBJECT_WUNLOCK(prev_object);
2288                 return (FALSE);
2289         }
2290
2291         prev_size >>= PAGE_SHIFT;
2292         next_size >>= PAGE_SHIFT;
2293         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2294
2295         if (prev_object->ref_count > 1 &&
2296             prev_object->size != next_pindex &&
2297             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2298                 VM_OBJECT_WUNLOCK(prev_object);
2299                 return (FALSE);
2300         }
2301
2302         /*
2303          * Account for the charge.
2304          */
2305         if (prev_object->cred != NULL) {
2306                 /*
2307                  * If prev_object was charged, then this mapping,
2308                  * although not charged now, may become writable
2309                  * later. Non-NULL cred in the object would prevent
2310                  * swap reservation during enabling of the write
2311                  * access, so reserve swap now. Failed reservation
2312                  * cause allocation of the separate object for the map
2313                  * entry, and swap reservation for this entry is
2314                  * managed in appropriate time.
2315                  */
2316                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2317                     prev_object->cred)) {
2318                         VM_OBJECT_WUNLOCK(prev_object);
2319                         return (FALSE);
2320                 }
2321                 prev_object->charge += ptoa(next_size);
2322         }
2323
2324         /*
2325          * Remove any pages that may still be in the object from a previous
2326          * deallocation.
2327          */
2328         if (next_pindex < prev_object->size) {
2329                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2330                     next_size, 0);
2331 #if 0
2332                 if (prev_object->cred != NULL) {
2333                         KASSERT(prev_object->charge >=
2334                             ptoa(prev_object->size - next_pindex),
2335                             ("object %p overcharged 1 %jx %jx", prev_object,
2336                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2337                         prev_object->charge -= ptoa(prev_object->size -
2338                             next_pindex);
2339                 }
2340 #endif
2341         }
2342
2343         /*
2344          * Extend the object if necessary.
2345          */
2346         if (next_pindex + next_size > prev_object->size)
2347                 prev_object->size = next_pindex + next_size;
2348
2349         VM_OBJECT_WUNLOCK(prev_object);
2350         return (TRUE);
2351 }
2352
2353 void
2354 vm_object_set_writeable_dirty_(vm_object_t object)
2355 {
2356         atomic_add_int(&object->generation, 1);
2357 }
2358
2359 bool
2360 vm_object_mightbedirty_(vm_object_t object)
2361 {
2362         return (object->generation != object->cleangeneration);
2363 }
2364
2365 /*
2366  *      vm_object_unwire:
2367  *
2368  *      For each page offset within the specified range of the given object,
2369  *      find the highest-level page in the shadow chain and unwire it.  A page
2370  *      must exist at every page offset, and the highest-level page must be
2371  *      wired.
2372  */
2373 void
2374 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2375     uint8_t queue)
2376 {
2377         vm_object_t tobject, t1object;
2378         vm_page_t m, tm;
2379         vm_pindex_t end_pindex, pindex, tpindex;
2380         int depth, locked_depth;
2381
2382         KASSERT((offset & PAGE_MASK) == 0,
2383             ("vm_object_unwire: offset is not page aligned"));
2384         KASSERT((length & PAGE_MASK) == 0,
2385             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2386         /* The wired count of a fictitious page never changes. */
2387         if ((object->flags & OBJ_FICTITIOUS) != 0)
2388                 return;
2389         pindex = OFF_TO_IDX(offset);
2390         end_pindex = pindex + atop(length);
2391 again:
2392         locked_depth = 1;
2393         VM_OBJECT_RLOCK(object);
2394         m = vm_page_find_least(object, pindex);
2395         while (pindex < end_pindex) {
2396                 if (m == NULL || pindex < m->pindex) {
2397                         /*
2398                          * The first object in the shadow chain doesn't
2399                          * contain a page at the current index.  Therefore,
2400                          * the page must exist in a backing object.
2401                          */
2402                         tobject = object;
2403                         tpindex = pindex;
2404                         depth = 0;
2405                         do {
2406                                 tpindex +=
2407                                     OFF_TO_IDX(tobject->backing_object_offset);
2408                                 tobject = tobject->backing_object;
2409                                 KASSERT(tobject != NULL,
2410                                     ("vm_object_unwire: missing page"));
2411                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2412                                         goto next_page;
2413                                 depth++;
2414                                 if (depth == locked_depth) {
2415                                         locked_depth++;
2416                                         VM_OBJECT_RLOCK(tobject);
2417                                 }
2418                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2419                             NULL);
2420                 } else {
2421                         tm = m;
2422                         m = TAILQ_NEXT(m, listq);
2423                 }
2424                 if (vm_page_trysbusy(tm) == 0) {
2425                         for (tobject = object; locked_depth >= 1;
2426                             locked_depth--) {
2427                                 t1object = tobject->backing_object;
2428                                 if (tm->object != tobject)
2429                                         VM_OBJECT_RUNLOCK(tobject);
2430                                 tobject = t1object;
2431                         }
2432                         tobject = tm->object;
2433                         if (!vm_page_busy_sleep(tm, "unwbo",
2434                             VM_ALLOC_IGN_SBUSY))
2435                                 VM_OBJECT_RUNLOCK(tobject);
2436                         goto again;
2437                 }
2438                 vm_page_unwire(tm, queue);
2439                 vm_page_sunbusy(tm);
2440 next_page:
2441                 pindex++;
2442         }
2443         /* Release the accumulated object locks. */
2444         for (tobject = object; locked_depth >= 1; locked_depth--) {
2445                 t1object = tobject->backing_object;
2446                 VM_OBJECT_RUNLOCK(tobject);
2447                 tobject = t1object;
2448         }
2449 }
2450
2451 /*
2452  * Return the vnode for the given object, or NULL if none exists.
2453  * For tmpfs objects, the function may return NULL if there is
2454  * no vnode allocated at the time of the call.
2455  */
2456 struct vnode *
2457 vm_object_vnode(vm_object_t object)
2458 {
2459         struct vnode *vp;
2460
2461         VM_OBJECT_ASSERT_LOCKED(object);
2462         vm_pager_getvp(object, &vp, NULL);
2463         return (vp);
2464 }
2465
2466 /*
2467  * Busy the vm object.  This prevents new pages belonging to the object from
2468  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2469  * for checking page state before proceeding.
2470  */
2471 void
2472 vm_object_busy(vm_object_t obj)
2473 {
2474
2475         VM_OBJECT_ASSERT_LOCKED(obj);
2476
2477         blockcount_acquire(&obj->busy, 1);
2478         /* The fence is required to order loads of page busy. */
2479         atomic_thread_fence_acq_rel();
2480 }
2481
2482 void
2483 vm_object_unbusy(vm_object_t obj)
2484 {
2485
2486         blockcount_release(&obj->busy, 1);
2487 }
2488
2489 void
2490 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2491 {
2492
2493         VM_OBJECT_ASSERT_UNLOCKED(obj);
2494
2495         (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2496 }
2497
2498 /*
2499  * This function aims to determine if the object is mapped,
2500  * specifically, if it is referenced by a vm_map_entry.  Because
2501  * objects occasionally acquire transient references that do not
2502  * represent a mapping, the method used here is inexact.  However, it
2503  * has very low overhead and is good enough for the advisory
2504  * vm.vmtotal sysctl.
2505  */
2506 bool
2507 vm_object_is_active(vm_object_t obj)
2508 {
2509
2510         return (obj->ref_count > atomic_load_int(&obj->shadow_count));
2511 }
2512
2513 static int
2514 vm_object_list_handler(struct sysctl_req *req, bool swap_only)
2515 {
2516         struct kinfo_vmobject *kvo;
2517         char *fullpath, *freepath;
2518         struct vnode *vp;
2519         struct vattr va;
2520         vm_object_t obj;
2521         vm_page_t m;
2522         u_long sp;
2523         int count, error;
2524
2525         if (req->oldptr == NULL) {
2526                 /*
2527                  * If an old buffer has not been provided, generate an
2528                  * estimate of the space needed for a subsequent call.
2529                  */
2530                 mtx_lock(&vm_object_list_mtx);
2531                 count = 0;
2532                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2533                         if (obj->type == OBJT_DEAD)
2534                                 continue;
2535                         count++;
2536                 }
2537                 mtx_unlock(&vm_object_list_mtx);
2538                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2539                     count * 11 / 10));
2540         }
2541
2542         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO);
2543         error = 0;
2544
2545         /*
2546          * VM objects are type stable and are never removed from the
2547          * list once added.  This allows us to safely read obj->object_list
2548          * after reacquiring the VM object lock.
2549          */
2550         mtx_lock(&vm_object_list_mtx);
2551         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2552                 if (obj->type == OBJT_DEAD ||
2553                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0))
2554                         continue;
2555                 VM_OBJECT_RLOCK(obj);
2556                 if (obj->type == OBJT_DEAD ||
2557                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) {
2558                         VM_OBJECT_RUNLOCK(obj);
2559                         continue;
2560                 }
2561                 mtx_unlock(&vm_object_list_mtx);
2562                 kvo->kvo_size = ptoa(obj->size);
2563                 kvo->kvo_resident = obj->resident_page_count;
2564                 kvo->kvo_ref_count = obj->ref_count;
2565                 kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count);
2566                 kvo->kvo_memattr = obj->memattr;
2567                 kvo->kvo_active = 0;
2568                 kvo->kvo_inactive = 0;
2569                 if (!swap_only) {
2570                         TAILQ_FOREACH(m, &obj->memq, listq) {
2571                                 /*
2572                                  * A page may belong to the object but be
2573                                  * dequeued and set to PQ_NONE while the
2574                                  * object lock is not held.  This makes the
2575                                  * reads of m->queue below racy, and we do not
2576                                  * count pages set to PQ_NONE.  However, this
2577                                  * sysctl is only meant to give an
2578                                  * approximation of the system anyway.
2579                                  */
2580                                 if (m->a.queue == PQ_ACTIVE)
2581                                         kvo->kvo_active++;
2582                                 else if (m->a.queue == PQ_INACTIVE)
2583                                         kvo->kvo_inactive++;
2584                         }
2585                 }
2586
2587                 kvo->kvo_vn_fileid = 0;
2588                 kvo->kvo_vn_fsid = 0;
2589                 kvo->kvo_vn_fsid_freebsd11 = 0;
2590                 freepath = NULL;
2591                 fullpath = "";
2592                 vp = NULL;
2593                 kvo->kvo_type = vm_object_kvme_type(obj, swap_only ? NULL : &vp);
2594                 if (vp != NULL) {
2595                         vref(vp);
2596                 } else if ((obj->flags & OBJ_ANON) != 0) {
2597                         MPASS(kvo->kvo_type == KVME_TYPE_SWAP);
2598                         kvo->kvo_me = (uintptr_t)obj;
2599                         /* tmpfs objs are reported as vnodes */
2600                         kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2601                         sp = swap_pager_swapped_pages(obj);
2602                         kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2603                 }
2604                 VM_OBJECT_RUNLOCK(obj);
2605                 if (vp != NULL) {
2606                         vn_fullpath(vp, &fullpath, &freepath);
2607                         vn_lock(vp, LK_SHARED | LK_RETRY);
2608                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2609                                 kvo->kvo_vn_fileid = va.va_fileid;
2610                                 kvo->kvo_vn_fsid = va.va_fsid;
2611                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2612                                                                 /* truncate */
2613                         }
2614                         vput(vp);
2615                 }
2616
2617                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2618                 if (freepath != NULL)
2619                         free(freepath, M_TEMP);
2620
2621                 /* Pack record size down */
2622                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2623                     + strlen(kvo->kvo_path) + 1;
2624                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2625                     sizeof(uint64_t));
2626                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2627                 maybe_yield();
2628                 mtx_lock(&vm_object_list_mtx);
2629                 if (error)
2630                         break;
2631         }
2632         mtx_unlock(&vm_object_list_mtx);
2633         free(kvo, M_TEMP);
2634         return (error);
2635 }
2636
2637 static int
2638 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2639 {
2640         return (vm_object_list_handler(req, false));
2641 }
2642
2643 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2644     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2645     "List of VM objects");
2646
2647 static int
2648 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)
2649 {
2650         return (vm_object_list_handler(req, true));
2651 }
2652
2653 /*
2654  * This sysctl returns list of the anonymous or swap objects. Intent
2655  * is to provide stripped optimized list useful to analyze swap use.
2656  * Since technically non-swap (default) objects participate in the
2657  * shadow chains, and are converted to swap type as needed by swap
2658  * pager, we must report them.
2659  */
2660 SYSCTL_PROC(_vm, OID_AUTO, swap_objects,
2661     CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0,
2662     sysctl_vm_object_list_swap, "S,kinfo_vmobject",
2663     "List of swap VM objects");
2664
2665 #include "opt_ddb.h"
2666 #ifdef DDB
2667 #include <sys/kernel.h>
2668
2669 #include <sys/cons.h>
2670
2671 #include <ddb/ddb.h>
2672
2673 static int
2674 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2675 {
2676         vm_map_t tmpm;
2677         vm_map_entry_t tmpe;
2678         vm_object_t obj;
2679
2680         if (map == 0)
2681                 return 0;
2682
2683         if (entry == 0) {
2684                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2685                         if (_vm_object_in_map(map, object, tmpe)) {
2686                                 return 1;
2687                         }
2688                 }
2689         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2690                 tmpm = entry->object.sub_map;
2691                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2692                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2693                                 return 1;
2694                         }
2695                 }
2696         } else if ((obj = entry->object.vm_object) != NULL) {
2697                 for (; obj; obj = obj->backing_object)
2698                         if (obj == object) {
2699                                 return 1;
2700                         }
2701         }
2702         return 0;
2703 }
2704
2705 static int
2706 vm_object_in_map(vm_object_t object)
2707 {
2708         struct proc *p;
2709
2710         /* sx_slock(&allproc_lock); */
2711         FOREACH_PROC_IN_SYSTEM(p) {
2712                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2713                         continue;
2714                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2715                         /* sx_sunlock(&allproc_lock); */
2716                         return 1;
2717                 }
2718         }
2719         /* sx_sunlock(&allproc_lock); */
2720         if (_vm_object_in_map(kernel_map, object, 0))
2721                 return 1;
2722         return 0;
2723 }
2724
2725 DB_SHOW_COMMAND_FLAGS(vmochk, vm_object_check, DB_CMD_MEMSAFE)
2726 {
2727         vm_object_t object;
2728
2729         /*
2730          * make sure that internal objs are in a map somewhere
2731          * and none have zero ref counts.
2732          */
2733         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2734                 if ((object->flags & OBJ_ANON) != 0) {
2735                         if (object->ref_count == 0) {
2736                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2737                                         (long)object->size);
2738                         }
2739                         if (!vm_object_in_map(object)) {
2740                                 db_printf(
2741                         "vmochk: internal obj is not in a map: "
2742                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2743                                     object->ref_count, (u_long)object->size, 
2744                                     (u_long)object->size,
2745                                     (void *)object->backing_object);
2746                         }
2747                 }
2748                 if (db_pager_quit)
2749                         return;
2750         }
2751 }
2752
2753 /*
2754  *      vm_object_print:        [ debug ]
2755  */
2756 DB_SHOW_COMMAND(object, vm_object_print_static)
2757 {
2758         /* XXX convert args. */
2759         vm_object_t object = (vm_object_t)addr;
2760         boolean_t full = have_addr;
2761
2762         vm_page_t p;
2763
2764         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2765 #define count   was_count
2766
2767         int count;
2768
2769         if (object == NULL)
2770                 return;
2771
2772         db_iprintf(
2773             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2774             object, (int)object->type, (uintmax_t)object->size,
2775             object->resident_page_count, object->ref_count, object->flags,
2776             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2777         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2778             atomic_load_int(&object->shadow_count),
2779             object->backing_object ? object->backing_object->ref_count : 0,
2780             object->backing_object, (uintmax_t)object->backing_object_offset);
2781
2782         if (!full)
2783                 return;
2784
2785         db_indent += 2;
2786         count = 0;
2787         TAILQ_FOREACH(p, &object->memq, listq) {
2788                 if (count == 0)
2789                         db_iprintf("memory:=");
2790                 else if (count == 6) {
2791                         db_printf("\n");
2792                         db_iprintf(" ...");
2793                         count = 0;
2794                 } else
2795                         db_printf(",");
2796                 count++;
2797
2798                 db_printf("(off=0x%jx,page=0x%jx)",
2799                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2800
2801                 if (db_pager_quit)
2802                         break;
2803         }
2804         if (count != 0)
2805                 db_printf("\n");
2806         db_indent -= 2;
2807 }
2808
2809 /* XXX. */
2810 #undef count
2811
2812 /* XXX need this non-static entry for calling from vm_map_print. */
2813 void
2814 vm_object_print(
2815         /* db_expr_t */ long addr,
2816         boolean_t have_addr,
2817         /* db_expr_t */ long count,
2818         char *modif)
2819 {
2820         vm_object_print_static(addr, have_addr, count, modif);
2821 }
2822
2823 DB_SHOW_COMMAND_FLAGS(vmopag, vm_object_print_pages, DB_CMD_MEMSAFE)
2824 {
2825         vm_object_t object;
2826         vm_pindex_t fidx;
2827         vm_paddr_t pa;
2828         vm_page_t m, prev_m;
2829         int rcount;
2830
2831         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2832                 db_printf("new object: %p\n", (void *)object);
2833                 if (db_pager_quit)
2834                         return;
2835
2836                 rcount = 0;
2837                 fidx = 0;
2838                 pa = -1;
2839                 TAILQ_FOREACH(m, &object->memq, listq) {
2840                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2841                             prev_m->pindex + 1 != m->pindex) {
2842                                 if (rcount) {
2843                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2844                                                 (long)fidx, rcount, (long)pa);
2845                                         if (db_pager_quit)
2846                                                 return;
2847                                         rcount = 0;
2848                                 }
2849                         }                               
2850                         if (rcount &&
2851                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2852                                 ++rcount;
2853                                 continue;
2854                         }
2855                         if (rcount) {
2856                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2857                                         (long)fidx, rcount, (long)pa);
2858                                 if (db_pager_quit)
2859                                         return;
2860                         }
2861                         fidx = m->pindex;
2862                         pa = VM_PAGE_TO_PHYS(m);
2863                         rcount = 1;
2864                 }
2865                 if (rcount) {
2866                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2867                                 (long)fidx, rcount, (long)pa);
2868                         if (db_pager_quit)
2869                                 return;
2870                 }
2871         }
2872 }
2873 #endif /* DDB */