]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Long, long ago in r27464 special case code for mapping device-backed
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/vnode.h>
81 #include <sys/vmmeter.h>
82 #include <sys/sx.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_reserv.h>
96 #include <vm/uma.h>
97
98 #define EASY_SCAN_FACTOR       8
99
100 #define MSYNC_FLUSH_HARDSEQ     0x01
101 #define MSYNC_FLUSH_SOFTSEQ     0x02
102
103 /*
104  * msync / VM object flushing optimizations
105  */
106 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
108     "Enable sequential iteration optimization");
109
110 static int old_msync;
111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112     "Use old (insecure) msync behavior");
113
114 static void     vm_object_qcollapse(vm_object_t object);
115 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
116 static void     vm_object_vndeallocate(vm_object_t object);
117
118 /*
119  *      Virtual memory objects maintain the actual data
120  *      associated with allocated virtual memory.  A given
121  *      page of memory exists within exactly one object.
122  *
123  *      An object is only deallocated when all "references"
124  *      are given up.  Only one "reference" to a given
125  *      region of an object should be writeable.
126  *
127  *      Associated with each object is a list of all resident
128  *      memory pages belonging to that object; this list is
129  *      maintained by the "vm_page" module, and locked by the object's
130  *      lock.
131  *
132  *      Each object also records a "pager" routine which is
133  *      used to retrieve (and store) pages to the proper backing
134  *      storage.  In addition, objects may be backed by other
135  *      objects from which they were virtual-copied.
136  *
137  *      The only items within the object structure which are
138  *      modified after time of creation are:
139  *              reference count         locked by object's lock
140  *              pager routine           locked by object's lock
141  *
142  */
143
144 struct object_q vm_object_list;
145 struct mtx vm_object_list_mtx;  /* lock for object list and count */
146
147 struct vm_object kernel_object_store;
148 struct vm_object kmem_object_store;
149
150 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
151
152 static long object_collapses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
154     &object_collapses, 0, "VM object collapses");
155
156 static long object_bypasses;
157 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
158     &object_bypasses, 0, "VM object bypasses");
159
160 static uma_zone_t obj_zone;
161
162 static int vm_object_zinit(void *mem, int size, int flags);
163
164 #ifdef INVARIANTS
165 static void vm_object_zdtor(void *mem, int size, void *arg);
166
167 static void
168 vm_object_zdtor(void *mem, int size, void *arg)
169 {
170         vm_object_t object;
171
172         object = (vm_object_t)mem;
173         KASSERT(TAILQ_EMPTY(&object->memq),
174             ("object %p has resident pages",
175             object));
176 #if VM_NRESERVLEVEL > 0
177         KASSERT(LIST_EMPTY(&object->rvq),
178             ("object %p has reservations",
179             object));
180 #endif
181         KASSERT(object->cache == NULL,
182             ("object %p has cached pages",
183             object));
184         KASSERT(object->paging_in_progress == 0,
185             ("object %p paging_in_progress = %d",
186             object, object->paging_in_progress));
187         KASSERT(object->resident_page_count == 0,
188             ("object %p resident_page_count = %d",
189             object, object->resident_page_count));
190         KASSERT(object->shadow_count == 0,
191             ("object %p shadow_count = %d",
192             object, object->shadow_count));
193 }
194 #endif
195
196 static int
197 vm_object_zinit(void *mem, int size, int flags)
198 {
199         vm_object_t object;
200
201         object = (vm_object_t)mem;
202         bzero(&object->mtx, sizeof(object->mtx));
203         VM_OBJECT_LOCK_INIT(object, "standard object");
204
205         /* These are true for any object that has been freed */
206         object->paging_in_progress = 0;
207         object->resident_page_count = 0;
208         object->shadow_count = 0;
209         return (0);
210 }
211
212 void
213 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
214 {
215
216         TAILQ_INIT(&object->memq);
217         LIST_INIT(&object->shadow_head);
218
219         object->root = NULL;
220         object->type = type;
221         object->size = size;
222         object->generation = 1;
223         object->ref_count = 1;
224         object->flags = 0;
225         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
226                 object->flags = OBJ_ONEMAPPING;
227         object->pg_color = 0;
228         object->handle = NULL;
229         object->backing_object = NULL;
230         object->backing_object_offset = (vm_ooffset_t) 0;
231 #if VM_NRESERVLEVEL > 0
232         LIST_INIT(&object->rvq);
233 #endif
234         object->cache = NULL;
235
236         mtx_lock(&vm_object_list_mtx);
237         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
238         mtx_unlock(&vm_object_list_mtx);
239 }
240
241 /*
242  *      vm_object_init:
243  *
244  *      Initialize the VM objects module.
245  */
246 void
247 vm_object_init(void)
248 {
249         TAILQ_INIT(&vm_object_list);
250         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
251         
252         VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
253         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
254             kernel_object);
255 #if VM_NRESERVLEVEL > 0
256         kernel_object->flags |= OBJ_COLORED;
257         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
258 #endif
259
260         VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
261         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
262             kmem_object);
263 #if VM_NRESERVLEVEL > 0
264         kmem_object->flags |= OBJ_COLORED;
265         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
266 #endif
267
268         /*
269          * The lock portion of struct vm_object must be type stable due
270          * to vm_pageout_fallback_object_lock locking a vm object
271          * without holding any references to it.
272          */
273         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
274 #ifdef INVARIANTS
275             vm_object_zdtor,
276 #else
277             NULL,
278 #endif
279             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
280 }
281
282 void
283 vm_object_clear_flag(vm_object_t object, u_short bits)
284 {
285
286         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
287         object->flags &= ~bits;
288 }
289
290 void
291 vm_object_pip_add(vm_object_t object, short i)
292 {
293
294         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
295         object->paging_in_progress += i;
296 }
297
298 void
299 vm_object_pip_subtract(vm_object_t object, short i)
300 {
301
302         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
303         object->paging_in_progress -= i;
304 }
305
306 void
307 vm_object_pip_wakeup(vm_object_t object)
308 {
309
310         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
311         object->paging_in_progress--;
312         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
313                 vm_object_clear_flag(object, OBJ_PIPWNT);
314                 wakeup(object);
315         }
316 }
317
318 void
319 vm_object_pip_wakeupn(vm_object_t object, short i)
320 {
321
322         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
323         if (i)
324                 object->paging_in_progress -= i;
325         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
326                 vm_object_clear_flag(object, OBJ_PIPWNT);
327                 wakeup(object);
328         }
329 }
330
331 void
332 vm_object_pip_wait(vm_object_t object, char *waitid)
333 {
334
335         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
336         while (object->paging_in_progress) {
337                 object->flags |= OBJ_PIPWNT;
338                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
339         }
340 }
341
342 /*
343  *      vm_object_allocate:
344  *
345  *      Returns a new object with the given size.
346  */
347 vm_object_t
348 vm_object_allocate(objtype_t type, vm_pindex_t size)
349 {
350         vm_object_t object;
351
352         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
353         _vm_object_allocate(type, size, object);
354         return (object);
355 }
356
357
358 /*
359  *      vm_object_reference:
360  *
361  *      Gets another reference to the given object.  Note: OBJ_DEAD
362  *      objects can be referenced during final cleaning.
363  */
364 void
365 vm_object_reference(vm_object_t object)
366 {
367         if (object == NULL)
368                 return;
369         VM_OBJECT_LOCK(object);
370         vm_object_reference_locked(object);
371         VM_OBJECT_UNLOCK(object);
372 }
373
374 /*
375  *      vm_object_reference_locked:
376  *
377  *      Gets another reference to the given object.
378  *
379  *      The object must be locked.
380  */
381 void
382 vm_object_reference_locked(vm_object_t object)
383 {
384         struct vnode *vp;
385
386         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
387         object->ref_count++;
388         if (object->type == OBJT_VNODE) {
389                 vp = object->handle;
390                 vref(vp);
391         }
392 }
393
394 /*
395  * Handle deallocating an object of type OBJT_VNODE.
396  */
397 static void
398 vm_object_vndeallocate(vm_object_t object)
399 {
400         struct vnode *vp = (struct vnode *) object->handle;
401
402         VFS_ASSERT_GIANT(vp->v_mount);
403         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
404         KASSERT(object->type == OBJT_VNODE,
405             ("vm_object_vndeallocate: not a vnode object"));
406         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
407 #ifdef INVARIANTS
408         if (object->ref_count == 0) {
409                 vprint("vm_object_vndeallocate", vp);
410                 panic("vm_object_vndeallocate: bad object reference count");
411         }
412 #endif
413
414         object->ref_count--;
415         if (object->ref_count == 0) {
416                 mp_fixme("Unlocked vflag access.");
417                 vp->v_vflag &= ~VV_TEXT;
418         }
419         VM_OBJECT_UNLOCK(object);
420         /*
421          * vrele may need a vop lock
422          */
423         vrele(vp);
424 }
425
426 /*
427  *      vm_object_deallocate:
428  *
429  *      Release a reference to the specified object,
430  *      gained either through a vm_object_allocate
431  *      or a vm_object_reference call.  When all references
432  *      are gone, storage associated with this object
433  *      may be relinquished.
434  *
435  *      No object may be locked.
436  */
437 void
438 vm_object_deallocate(vm_object_t object)
439 {
440         vm_object_t temp;
441
442         while (object != NULL) {
443                 int vfslocked;
444
445                 vfslocked = 0;
446         restart:
447                 VM_OBJECT_LOCK(object);
448                 if (object->type == OBJT_VNODE) {
449                         struct vnode *vp = (struct vnode *) object->handle;
450
451                         /*
452                          * Conditionally acquire Giant for a vnode-backed
453                          * object.  We have to be careful since the type of
454                          * a vnode object can change while the object is
455                          * unlocked.
456                          */
457                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
458                                 vfslocked = 1;
459                                 if (!mtx_trylock(&Giant)) {
460                                         VM_OBJECT_UNLOCK(object);
461                                         mtx_lock(&Giant);
462                                         goto restart;
463                                 }
464                         }
465                         vm_object_vndeallocate(object);
466                         VFS_UNLOCK_GIANT(vfslocked);
467                         return;
468                 } else
469                         /*
470                          * This is to handle the case that the object
471                          * changed type while we dropped its lock to
472                          * obtain Giant.
473                          */
474                         VFS_UNLOCK_GIANT(vfslocked);
475
476                 KASSERT(object->ref_count != 0,
477                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
478
479                 /*
480                  * If the reference count goes to 0 we start calling
481                  * vm_object_terminate() on the object chain.
482                  * A ref count of 1 may be a special case depending on the
483                  * shadow count being 0 or 1.
484                  */
485                 object->ref_count--;
486                 if (object->ref_count > 1) {
487                         VM_OBJECT_UNLOCK(object);
488                         return;
489                 } else if (object->ref_count == 1) {
490                         if (object->shadow_count == 0 &&
491                             object->handle == NULL &&
492                             (object->type == OBJT_DEFAULT ||
493                              object->type == OBJT_SWAP)) {
494                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
495                         } else if ((object->shadow_count == 1) &&
496                             (object->handle == NULL) &&
497                             (object->type == OBJT_DEFAULT ||
498                              object->type == OBJT_SWAP)) {
499                                 vm_object_t robject;
500
501                                 robject = LIST_FIRST(&object->shadow_head);
502                                 KASSERT(robject != NULL,
503                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
504                                          object->ref_count,
505                                          object->shadow_count));
506                                 if (!VM_OBJECT_TRYLOCK(robject)) {
507                                         /*
508                                          * Avoid a potential deadlock.
509                                          */
510                                         object->ref_count++;
511                                         VM_OBJECT_UNLOCK(object);
512                                         /*
513                                          * More likely than not the thread
514                                          * holding robject's lock has lower
515                                          * priority than the current thread.
516                                          * Let the lower priority thread run.
517                                          */
518                                         pause("vmo_de", 1);
519                                         continue;
520                                 }
521                                 /*
522                                  * Collapse object into its shadow unless its
523                                  * shadow is dead.  In that case, object will
524                                  * be deallocated by the thread that is
525                                  * deallocating its shadow.
526                                  */
527                                 if ((robject->flags & OBJ_DEAD) == 0 &&
528                                     (robject->handle == NULL) &&
529                                     (robject->type == OBJT_DEFAULT ||
530                                      robject->type == OBJT_SWAP)) {
531
532                                         robject->ref_count++;
533 retry:
534                                         if (robject->paging_in_progress) {
535                                                 VM_OBJECT_UNLOCK(object);
536                                                 vm_object_pip_wait(robject,
537                                                     "objde1");
538                                                 temp = robject->backing_object;
539                                                 if (object == temp) {
540                                                         VM_OBJECT_LOCK(object);
541                                                         goto retry;
542                                                 }
543                                         } else if (object->paging_in_progress) {
544                                                 VM_OBJECT_UNLOCK(robject);
545                                                 object->flags |= OBJ_PIPWNT;
546                                                 msleep(object,
547                                                     VM_OBJECT_MTX(object),
548                                                     PDROP | PVM, "objde2", 0);
549                                                 VM_OBJECT_LOCK(robject);
550                                                 temp = robject->backing_object;
551                                                 if (object == temp) {
552                                                         VM_OBJECT_LOCK(object);
553                                                         goto retry;
554                                                 }
555                                         } else
556                                                 VM_OBJECT_UNLOCK(object);
557
558                                         if (robject->ref_count == 1) {
559                                                 robject->ref_count--;
560                                                 object = robject;
561                                                 goto doterm;
562                                         }
563                                         object = robject;
564                                         vm_object_collapse(object);
565                                         VM_OBJECT_UNLOCK(object);
566                                         continue;
567                                 }
568                                 VM_OBJECT_UNLOCK(robject);
569                         }
570                         VM_OBJECT_UNLOCK(object);
571                         return;
572                 }
573 doterm:
574                 temp = object->backing_object;
575                 if (temp != NULL) {
576                         VM_OBJECT_LOCK(temp);
577                         LIST_REMOVE(object, shadow_list);
578                         temp->shadow_count--;
579                         temp->generation++;
580                         VM_OBJECT_UNLOCK(temp);
581                         object->backing_object = NULL;
582                 }
583                 /*
584                  * Don't double-terminate, we could be in a termination
585                  * recursion due to the terminate having to sync data
586                  * to disk.
587                  */
588                 if ((object->flags & OBJ_DEAD) == 0)
589                         vm_object_terminate(object);
590                 else
591                         VM_OBJECT_UNLOCK(object);
592                 object = temp;
593         }
594 }
595
596 /*
597  *      vm_object_destroy removes the object from the global object list
598  *      and frees the space for the object.
599  */
600 void
601 vm_object_destroy(vm_object_t object)
602 {
603
604         /*
605          * Remove the object from the global object list.
606          */
607         mtx_lock(&vm_object_list_mtx);
608         TAILQ_REMOVE(&vm_object_list, object, object_list);
609         mtx_unlock(&vm_object_list_mtx);
610
611         /*
612          * Free the space for the object.
613          */
614         uma_zfree(obj_zone, object);
615 }
616
617 /*
618  *      vm_object_terminate actually destroys the specified object, freeing
619  *      up all previously used resources.
620  *
621  *      The object must be locked.
622  *      This routine may block.
623  */
624 void
625 vm_object_terminate(vm_object_t object)
626 {
627         vm_page_t p;
628
629         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
630
631         /*
632          * Make sure no one uses us.
633          */
634         vm_object_set_flag(object, OBJ_DEAD);
635
636         /*
637          * wait for the pageout daemon to be done with the object
638          */
639         vm_object_pip_wait(object, "objtrm");
640
641         KASSERT(!object->paging_in_progress,
642                 ("vm_object_terminate: pageout in progress"));
643
644         /*
645          * Clean and free the pages, as appropriate. All references to the
646          * object are gone, so we don't need to lock it.
647          */
648         if (object->type == OBJT_VNODE) {
649                 struct vnode *vp = (struct vnode *)object->handle;
650
651                 /*
652                  * Clean pages and flush buffers.
653                  */
654                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
655                 VM_OBJECT_UNLOCK(object);
656
657                 vinvalbuf(vp, V_SAVE, 0, 0);
658
659                 VM_OBJECT_LOCK(object);
660         }
661
662         KASSERT(object->ref_count == 0, 
663                 ("vm_object_terminate: object with references, ref_count=%d",
664                 object->ref_count));
665
666         /*
667          * Now free any remaining pages. For internal objects, this also
668          * removes them from paging queues. Don't free wired pages, just
669          * remove them from the object. 
670          */
671         vm_page_lock_queues();
672         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
673                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
674                         ("vm_object_terminate: freeing busy page %p "
675                         "p->busy = %d, p->oflags %x\n", p, p->busy, p->oflags));
676                 if (p->wire_count == 0) {
677                         vm_page_free(p);
678                         cnt.v_pfree++;
679                 } else {
680                         vm_page_remove(p);
681                 }
682         }
683         vm_page_unlock_queues();
684
685 #if VM_NRESERVLEVEL > 0
686         if (__predict_false(!LIST_EMPTY(&object->rvq)))
687                 vm_reserv_break_all(object);
688 #endif
689         if (__predict_false(object->cache != NULL))
690                 vm_page_cache_free(object, 0, 0);
691
692         /*
693          * Let the pager know object is dead.
694          */
695         vm_pager_deallocate(object);
696         VM_OBJECT_UNLOCK(object);
697
698         vm_object_destroy(object);
699 }
700
701 /*
702  *      vm_object_page_clean
703  *
704  *      Clean all dirty pages in the specified range of object.  Leaves page 
705  *      on whatever queue it is currently on.   If NOSYNC is set then do not
706  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
707  *      leaving the object dirty.
708  *
709  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
710  *      synchronous clustering mode implementation.
711  *
712  *      Odd semantics: if start == end, we clean everything.
713  *
714  *      The object must be locked.
715  */
716 void
717 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
718 {
719         vm_page_t p, np;
720         vm_pindex_t tstart, tend;
721         vm_pindex_t pi;
722         int clearobjflags;
723         int pagerflags;
724         int curgeneration;
725
726         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
727         if (object->type != OBJT_VNODE ||
728                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
729                 return;
730
731         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
732         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
733
734         vm_object_set_flag(object, OBJ_CLEANING);
735
736         tstart = start;
737         if (end == 0) {
738                 tend = object->size;
739         } else {
740                 tend = end;
741         }
742
743         vm_page_lock_queues();
744         /*
745          * If the caller is smart and only msync()s a range he knows is
746          * dirty, we may be able to avoid an object scan.  This results in
747          * a phenominal improvement in performance.  We cannot do this
748          * as a matter of course because the object may be huge - e.g.
749          * the size might be in the gigabytes or terrabytes.
750          */
751         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
752                 vm_pindex_t tscan;
753                 int scanlimit;
754                 int scanreset;
755
756                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
757                 if (scanreset < 16)
758                         scanreset = 16;
759                 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
760
761                 scanlimit = scanreset;
762                 tscan = tstart;
763                 while (tscan < tend) {
764                         curgeneration = object->generation;
765                         p = vm_page_lookup(object, tscan);
766                         if (p == NULL || p->valid == 0) {
767                                 if (--scanlimit == 0)
768                                         break;
769                                 ++tscan;
770                                 continue;
771                         }
772                         vm_page_test_dirty(p);
773                         if ((p->dirty & p->valid) == 0) {
774                                 if (--scanlimit == 0)
775                                         break;
776                                 ++tscan;
777                                 continue;
778                         }
779                         /*
780                          * If we have been asked to skip nosync pages and 
781                          * this is a nosync page, we can't continue.
782                          */
783                         if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
784                                 if (--scanlimit == 0)
785                                         break;
786                                 ++tscan;
787                                 continue;
788                         }
789                         scanlimit = scanreset;
790
791                         /*
792                          * This returns 0 if it was unable to busy the first
793                          * page (i.e. had to sleep).
794                          */
795                         tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
796                 }
797
798                 /*
799                  * If everything was dirty and we flushed it successfully,
800                  * and the requested range is not the entire object, we
801                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
802                  * return immediately.
803                  */
804                 if (tscan >= tend && (tstart || tend < object->size)) {
805                         vm_page_unlock_queues();
806                         vm_object_clear_flag(object, OBJ_CLEANING);
807                         return;
808                 }
809                 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
810         }
811
812         /*
813          * Generally set CLEANCHK interlock and make the page read-only so
814          * we can then clear the object flags.
815          *
816          * However, if this is a nosync mmap then the object is likely to 
817          * stay dirty so do not mess with the page and do not clear the
818          * object flags.
819          */
820         clearobjflags = 1;
821         TAILQ_FOREACH(p, &object->memq, listq) {
822                 p->oflags |= VPO_CLEANCHK;
823                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
824                         clearobjflags = 0;
825                 else
826                         pmap_remove_write(p);
827         }
828
829         if (clearobjflags && (tstart == 0) && (tend == object->size)) {
830                 struct vnode *vp;
831
832                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
833                 if (object->type == OBJT_VNODE &&
834                     (vp = (struct vnode *)object->handle) != NULL) {
835                         VI_LOCK(vp);
836                         if (vp->v_iflag & VI_OBJDIRTY)
837                                 vp->v_iflag &= ~VI_OBJDIRTY;
838                         VI_UNLOCK(vp);
839                 }
840         }
841
842 rescan:
843         curgeneration = object->generation;
844
845         for (p = TAILQ_FIRST(&object->memq); p; p = np) {
846                 int n;
847
848                 np = TAILQ_NEXT(p, listq);
849
850 again:
851                 pi = p->pindex;
852                 if ((p->oflags & VPO_CLEANCHK) == 0 ||
853                         (pi < tstart) || (pi >= tend) ||
854                     p->valid == 0) {
855                         p->oflags &= ~VPO_CLEANCHK;
856                         continue;
857                 }
858
859                 vm_page_test_dirty(p);
860                 if ((p->dirty & p->valid) == 0) {
861                         p->oflags &= ~VPO_CLEANCHK;
862                         continue;
863                 }
864
865                 /*
866                  * If we have been asked to skip nosync pages and this is a
867                  * nosync page, skip it.  Note that the object flags were
868                  * not cleared in this case so we do not have to set them.
869                  */
870                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
871                         p->oflags &= ~VPO_CLEANCHK;
872                         continue;
873                 }
874
875                 n = vm_object_page_collect_flush(object, p,
876                         curgeneration, pagerflags);
877                 if (n == 0)
878                         goto rescan;
879
880                 if (object->generation != curgeneration)
881                         goto rescan;
882
883                 /*
884                  * Try to optimize the next page.  If we can't we pick up
885                  * our (random) scan where we left off.
886                  */
887                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
888                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
889                                 goto again;
890                 }
891         }
892         vm_page_unlock_queues();
893 #if 0
894         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
895 #endif
896
897         vm_object_clear_flag(object, OBJ_CLEANING);
898         return;
899 }
900
901 static int
902 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
903 {
904         int runlen;
905         int maxf;
906         int chkb;
907         int maxb;
908         int i;
909         vm_pindex_t pi;
910         vm_page_t maf[vm_pageout_page_count];
911         vm_page_t mab[vm_pageout_page_count];
912         vm_page_t ma[vm_pageout_page_count];
913
914         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
915         pi = p->pindex;
916         while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
917                 vm_page_lock_queues();
918                 if (object->generation != curgeneration) {
919                         return(0);
920                 }
921         }
922         maxf = 0;
923         for(i = 1; i < vm_pageout_page_count; i++) {
924                 vm_page_t tp;
925
926                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
927                         if ((tp->oflags & VPO_BUSY) ||
928                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
929                                  (tp->oflags & VPO_CLEANCHK) == 0) ||
930                                 (tp->busy != 0))
931                                 break;
932                         vm_page_test_dirty(tp);
933                         if ((tp->dirty & tp->valid) == 0) {
934                                 tp->oflags &= ~VPO_CLEANCHK;
935                                 break;
936                         }
937                         maf[ i - 1 ] = tp;
938                         maxf++;
939                         continue;
940                 }
941                 break;
942         }
943
944         maxb = 0;
945         chkb = vm_pageout_page_count -  maxf;
946         if (chkb) {
947                 for(i = 1; i < chkb;i++) {
948                         vm_page_t tp;
949
950                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
951                                 if ((tp->oflags & VPO_BUSY) ||
952                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
953                                          (tp->oflags & VPO_CLEANCHK) == 0) ||
954                                         (tp->busy != 0))
955                                         break;
956                                 vm_page_test_dirty(tp);
957                                 if ((tp->dirty & tp->valid) == 0) {
958                                         tp->oflags &= ~VPO_CLEANCHK;
959                                         break;
960                                 }
961                                 mab[ i - 1 ] = tp;
962                                 maxb++;
963                                 continue;
964                         }
965                         break;
966                 }
967         }
968
969         for(i = 0; i < maxb; i++) {
970                 int index = (maxb - i) - 1;
971                 ma[index] = mab[i];
972                 ma[index]->oflags &= ~VPO_CLEANCHK;
973         }
974         p->oflags &= ~VPO_CLEANCHK;
975         ma[maxb] = p;
976         for(i = 0; i < maxf; i++) {
977                 int index = (maxb + i) + 1;
978                 ma[index] = maf[i];
979                 ma[index]->oflags &= ~VPO_CLEANCHK;
980         }
981         runlen = maxb + maxf + 1;
982
983         vm_pageout_flush(ma, runlen, pagerflags);
984         for (i = 0; i < runlen; i++) {
985                 if (ma[i]->valid & ma[i]->dirty) {
986                         pmap_remove_write(ma[i]);
987                         ma[i]->oflags |= VPO_CLEANCHK;
988
989                         /*
990                          * maxf will end up being the actual number of pages
991                          * we wrote out contiguously, non-inclusive of the
992                          * first page.  We do not count look-behind pages.
993                          */
994                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
995                                 maxf = i - maxb - 1;
996                 }
997         }
998         return(maxf + 1);
999 }
1000
1001 /*
1002  * Note that there is absolutely no sense in writing out
1003  * anonymous objects, so we track down the vnode object
1004  * to write out.
1005  * We invalidate (remove) all pages from the address space
1006  * for semantic correctness.
1007  *
1008  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1009  * may start out with a NULL object.
1010  */
1011 void
1012 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1013     boolean_t syncio, boolean_t invalidate)
1014 {
1015         vm_object_t backing_object;
1016         struct vnode *vp;
1017         struct mount *mp;
1018         int flags;
1019
1020         if (object == NULL)
1021                 return;
1022         VM_OBJECT_LOCK(object);
1023         while ((backing_object = object->backing_object) != NULL) {
1024                 VM_OBJECT_LOCK(backing_object);
1025                 offset += object->backing_object_offset;
1026                 VM_OBJECT_UNLOCK(object);
1027                 object = backing_object;
1028                 if (object->size < OFF_TO_IDX(offset + size))
1029                         size = IDX_TO_OFF(object->size) - offset;
1030         }
1031         /*
1032          * Flush pages if writing is allowed, invalidate them
1033          * if invalidation requested.  Pages undergoing I/O
1034          * will be ignored by vm_object_page_remove().
1035          *
1036          * We cannot lock the vnode and then wait for paging
1037          * to complete without deadlocking against vm_fault.
1038          * Instead we simply call vm_object_page_remove() and
1039          * allow it to block internally on a page-by-page
1040          * basis when it encounters pages undergoing async
1041          * I/O.
1042          */
1043         if (object->type == OBJT_VNODE &&
1044             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1045                 int vfslocked;
1046                 vp = object->handle;
1047                 VM_OBJECT_UNLOCK(object);
1048                 (void) vn_start_write(vp, &mp, V_WAIT);
1049                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1050                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1051                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1052                 flags |= invalidate ? OBJPC_INVAL : 0;
1053                 VM_OBJECT_LOCK(object);
1054                 vm_object_page_clean(object,
1055                     OFF_TO_IDX(offset),
1056                     OFF_TO_IDX(offset + size + PAGE_MASK),
1057                     flags);
1058                 VM_OBJECT_UNLOCK(object);
1059                 VOP_UNLOCK(vp, 0);
1060                 VFS_UNLOCK_GIANT(vfslocked);
1061                 vn_finished_write(mp);
1062                 VM_OBJECT_LOCK(object);
1063         }
1064         if ((object->type == OBJT_VNODE ||
1065              object->type == OBJT_DEVICE) && invalidate) {
1066                 boolean_t purge;
1067                 purge = old_msync || (object->type == OBJT_DEVICE);
1068                 vm_object_page_remove(object,
1069                     OFF_TO_IDX(offset),
1070                     OFF_TO_IDX(offset + size + PAGE_MASK),
1071                     purge ? FALSE : TRUE);
1072         }
1073         VM_OBJECT_UNLOCK(object);
1074 }
1075
1076 /*
1077  *      vm_object_madvise:
1078  *
1079  *      Implements the madvise function at the object/page level.
1080  *
1081  *      MADV_WILLNEED   (any object)
1082  *
1083  *          Activate the specified pages if they are resident.
1084  *
1085  *      MADV_DONTNEED   (any object)
1086  *
1087  *          Deactivate the specified pages if they are resident.
1088  *
1089  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1090  *                       OBJ_ONEMAPPING only)
1091  *
1092  *          Deactivate and clean the specified pages if they are
1093  *          resident.  This permits the process to reuse the pages
1094  *          without faulting or the kernel to reclaim the pages
1095  *          without I/O.
1096  */
1097 void
1098 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1099 {
1100         vm_pindex_t end, tpindex;
1101         vm_object_t backing_object, tobject;
1102         vm_page_t m;
1103
1104         if (object == NULL)
1105                 return;
1106         VM_OBJECT_LOCK(object);
1107         end = pindex + count;
1108         /*
1109          * Locate and adjust resident pages
1110          */
1111         for (; pindex < end; pindex += 1) {
1112 relookup:
1113                 tobject = object;
1114                 tpindex = pindex;
1115 shadowlookup:
1116                 /*
1117                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1118                  * and those pages must be OBJ_ONEMAPPING.
1119                  */
1120                 if (advise == MADV_FREE) {
1121                         if ((tobject->type != OBJT_DEFAULT &&
1122                              tobject->type != OBJT_SWAP) ||
1123                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1124                                 goto unlock_tobject;
1125                         }
1126                 }
1127                 m = vm_page_lookup(tobject, tpindex);
1128                 if (m == NULL && advise == MADV_WILLNEED) {
1129                         /*
1130                          * If the page is cached, reactivate it.
1131                          */
1132                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1133                             VM_ALLOC_NOBUSY);
1134                 }
1135                 if (m == NULL) {
1136                         /*
1137                          * There may be swap even if there is no backing page
1138                          */
1139                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1140                                 swap_pager_freespace(tobject, tpindex, 1);
1141                         /*
1142                          * next object
1143                          */
1144                         backing_object = tobject->backing_object;
1145                         if (backing_object == NULL)
1146                                 goto unlock_tobject;
1147                         VM_OBJECT_LOCK(backing_object);
1148                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1149                         if (tobject != object)
1150                                 VM_OBJECT_UNLOCK(tobject);
1151                         tobject = backing_object;
1152                         goto shadowlookup;
1153                 }
1154                 /*
1155                  * If the page is busy or not in a normal active state,
1156                  * we skip it.  If the page is not managed there are no
1157                  * page queues to mess with.  Things can break if we mess
1158                  * with pages in any of the below states.
1159                  */
1160                 vm_page_lock_queues();
1161                 if (m->hold_count ||
1162                     m->wire_count ||
1163                     (m->flags & PG_UNMANAGED) ||
1164                     m->valid != VM_PAGE_BITS_ALL) {
1165                         vm_page_unlock_queues();
1166                         goto unlock_tobject;
1167                 }
1168                 if ((m->oflags & VPO_BUSY) || m->busy) {
1169                         vm_page_flag_set(m, PG_REFERENCED);
1170                         vm_page_unlock_queues();
1171                         if (object != tobject)
1172                                 VM_OBJECT_UNLOCK(object);
1173                         m->oflags |= VPO_WANTED;
1174                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0);
1175                         VM_OBJECT_LOCK(object);
1176                         goto relookup;
1177                 }
1178                 if (advise == MADV_WILLNEED) {
1179                         vm_page_activate(m);
1180                 } else if (advise == MADV_DONTNEED) {
1181                         vm_page_dontneed(m);
1182                 } else if (advise == MADV_FREE) {
1183                         /*
1184                          * Mark the page clean.  This will allow the page
1185                          * to be freed up by the system.  However, such pages
1186                          * are often reused quickly by malloc()/free()
1187                          * so we do not do anything that would cause
1188                          * a page fault if we can help it.
1189                          *
1190                          * Specifically, we do not try to actually free
1191                          * the page now nor do we try to put it in the
1192                          * cache (which would cause a page fault on reuse).
1193                          *
1194                          * But we do make the page is freeable as we
1195                          * can without actually taking the step of unmapping
1196                          * it.
1197                          */
1198                         pmap_clear_modify(m);
1199                         m->dirty = 0;
1200                         m->act_count = 0;
1201                         vm_page_dontneed(m);
1202                 }
1203                 vm_page_unlock_queues();
1204                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1205                         swap_pager_freespace(tobject, tpindex, 1);
1206 unlock_tobject:
1207                 if (tobject != object)
1208                         VM_OBJECT_UNLOCK(tobject);
1209         }       
1210         VM_OBJECT_UNLOCK(object);
1211 }
1212
1213 /*
1214  *      vm_object_shadow:
1215  *
1216  *      Create a new object which is backed by the
1217  *      specified existing object range.  The source
1218  *      object reference is deallocated.
1219  *
1220  *      The new object and offset into that object
1221  *      are returned in the source parameters.
1222  */
1223 void
1224 vm_object_shadow(
1225         vm_object_t *object,    /* IN/OUT */
1226         vm_ooffset_t *offset,   /* IN/OUT */
1227         vm_size_t length)
1228 {
1229         vm_object_t source;
1230         vm_object_t result;
1231
1232         source = *object;
1233
1234         /*
1235          * Don't create the new object if the old object isn't shared.
1236          */
1237         if (source != NULL) {
1238                 VM_OBJECT_LOCK(source);
1239                 if (source->ref_count == 1 &&
1240                     source->handle == NULL &&
1241                     (source->type == OBJT_DEFAULT ||
1242                      source->type == OBJT_SWAP)) {
1243                         VM_OBJECT_UNLOCK(source);
1244                         return;
1245                 }
1246                 VM_OBJECT_UNLOCK(source);
1247         }
1248
1249         /*
1250          * Allocate a new object with the given length.
1251          */
1252         result = vm_object_allocate(OBJT_DEFAULT, length);
1253
1254         /*
1255          * The new object shadows the source object, adding a reference to it.
1256          * Our caller changes his reference to point to the new object,
1257          * removing a reference to the source object.  Net result: no change
1258          * of reference count.
1259          *
1260          * Try to optimize the result object's page color when shadowing
1261          * in order to maintain page coloring consistency in the combined 
1262          * shadowed object.
1263          */
1264         result->backing_object = source;
1265         /*
1266          * Store the offset into the source object, and fix up the offset into
1267          * the new object.
1268          */
1269         result->backing_object_offset = *offset;
1270         if (source != NULL) {
1271                 VM_OBJECT_LOCK(source);
1272                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1273                 source->shadow_count++;
1274                 source->generation++;
1275 #if VM_NRESERVLEVEL > 0
1276                 result->flags |= source->flags & OBJ_COLORED;
1277                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1278                     ((1 << (VM_NFREEORDER - 1)) - 1);
1279 #endif
1280                 VM_OBJECT_UNLOCK(source);
1281         }
1282
1283
1284         /*
1285          * Return the new things
1286          */
1287         *offset = 0;
1288         *object = result;
1289 }
1290
1291 /*
1292  *      vm_object_split:
1293  *
1294  * Split the pages in a map entry into a new object.  This affords
1295  * easier removal of unused pages, and keeps object inheritance from
1296  * being a negative impact on memory usage.
1297  */
1298 void
1299 vm_object_split(vm_map_entry_t entry)
1300 {
1301         vm_page_t m, m_next;
1302         vm_object_t orig_object, new_object, source;
1303         vm_pindex_t idx, offidxstart;
1304         vm_size_t size;
1305
1306         orig_object = entry->object.vm_object;
1307         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1308                 return;
1309         if (orig_object->ref_count <= 1)
1310                 return;
1311         VM_OBJECT_UNLOCK(orig_object);
1312
1313         offidxstart = OFF_TO_IDX(entry->offset);
1314         size = atop(entry->end - entry->start);
1315
1316         /*
1317          * If swap_pager_copy() is later called, it will convert new_object
1318          * into a swap object.
1319          */
1320         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1321
1322         /*
1323          * At this point, the new object is still private, so the order in
1324          * which the original and new objects are locked does not matter.
1325          */
1326         VM_OBJECT_LOCK(new_object);
1327         VM_OBJECT_LOCK(orig_object);
1328         source = orig_object->backing_object;
1329         if (source != NULL) {
1330                 VM_OBJECT_LOCK(source);
1331                 if ((source->flags & OBJ_DEAD) != 0) {
1332                         VM_OBJECT_UNLOCK(source);
1333                         VM_OBJECT_UNLOCK(orig_object);
1334                         VM_OBJECT_UNLOCK(new_object);
1335                         vm_object_deallocate(new_object);
1336                         VM_OBJECT_LOCK(orig_object);
1337                         return;
1338                 }
1339                 LIST_INSERT_HEAD(&source->shadow_head,
1340                                   new_object, shadow_list);
1341                 source->shadow_count++;
1342                 source->generation++;
1343                 vm_object_reference_locked(source);     /* for new_object */
1344                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1345                 VM_OBJECT_UNLOCK(source);
1346                 new_object->backing_object_offset = 
1347                         orig_object->backing_object_offset + entry->offset;
1348                 new_object->backing_object = source;
1349         }
1350 retry:
1351         if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
1352                 if (m->pindex < offidxstart) {
1353                         m = vm_page_splay(offidxstart, orig_object->root);
1354                         if ((orig_object->root = m)->pindex < offidxstart)
1355                                 m = TAILQ_NEXT(m, listq);
1356                 }
1357         }
1358         vm_page_lock_queues();
1359         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1360             m = m_next) {
1361                 m_next = TAILQ_NEXT(m, listq);
1362
1363                 /*
1364                  * We must wait for pending I/O to complete before we can
1365                  * rename the page.
1366                  *
1367                  * We do not have to VM_PROT_NONE the page as mappings should
1368                  * not be changed by this operation.
1369                  */
1370                 if ((m->oflags & VPO_BUSY) || m->busy) {
1371                         vm_page_flag_set(m, PG_REFERENCED);
1372                         vm_page_unlock_queues();
1373                         VM_OBJECT_UNLOCK(new_object);
1374                         m->oflags |= VPO_WANTED;
1375                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1376                         VM_OBJECT_LOCK(new_object);
1377                         goto retry;
1378                 }
1379                 vm_page_rename(m, new_object, idx);
1380                 /* page automatically made dirty by rename and cache handled */
1381                 vm_page_busy(m);
1382         }
1383         vm_page_unlock_queues();
1384         if (orig_object->type == OBJT_SWAP) {
1385                 /*
1386                  * swap_pager_copy() can sleep, in which case the orig_object's
1387                  * and new_object's locks are released and reacquired. 
1388                  */
1389                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1390
1391                 /*
1392                  * Transfer any cached pages from orig_object to new_object.
1393                  */
1394                 if (__predict_false(orig_object->cache != NULL))
1395                         vm_page_cache_transfer(orig_object, offidxstart,
1396                             new_object);
1397         }
1398         VM_OBJECT_UNLOCK(orig_object);
1399         TAILQ_FOREACH(m, &new_object->memq, listq)
1400                 vm_page_wakeup(m);
1401         VM_OBJECT_UNLOCK(new_object);
1402         entry->object.vm_object = new_object;
1403         entry->offset = 0LL;
1404         vm_object_deallocate(orig_object);
1405         VM_OBJECT_LOCK(new_object);
1406 }
1407
1408 #define OBSC_TEST_ALL_SHADOWED  0x0001
1409 #define OBSC_COLLAPSE_NOWAIT    0x0002
1410 #define OBSC_COLLAPSE_WAIT      0x0004
1411
1412 static int
1413 vm_object_backing_scan(vm_object_t object, int op)
1414 {
1415         int r = 1;
1416         vm_page_t p;
1417         vm_object_t backing_object;
1418         vm_pindex_t backing_offset_index;
1419
1420         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1421         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1422
1423         backing_object = object->backing_object;
1424         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1425
1426         /*
1427          * Initial conditions
1428          */
1429         if (op & OBSC_TEST_ALL_SHADOWED) {
1430                 /*
1431                  * We do not want to have to test for the existence of cache
1432                  * or swap pages in the backing object.  XXX but with the
1433                  * new swapper this would be pretty easy to do.
1434                  *
1435                  * XXX what about anonymous MAP_SHARED memory that hasn't
1436                  * been ZFOD faulted yet?  If we do not test for this, the
1437                  * shadow test may succeed! XXX
1438                  */
1439                 if (backing_object->type != OBJT_DEFAULT) {
1440                         return (0);
1441                 }
1442         }
1443         if (op & OBSC_COLLAPSE_WAIT) {
1444                 vm_object_set_flag(backing_object, OBJ_DEAD);
1445         }
1446
1447         /*
1448          * Our scan
1449          */
1450         p = TAILQ_FIRST(&backing_object->memq);
1451         while (p) {
1452                 vm_page_t next = TAILQ_NEXT(p, listq);
1453                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1454
1455                 if (op & OBSC_TEST_ALL_SHADOWED) {
1456                         vm_page_t pp;
1457
1458                         /*
1459                          * Ignore pages outside the parent object's range
1460                          * and outside the parent object's mapping of the 
1461                          * backing object.
1462                          *
1463                          * note that we do not busy the backing object's
1464                          * page.
1465                          */
1466                         if (
1467                             p->pindex < backing_offset_index ||
1468                             new_pindex >= object->size
1469                         ) {
1470                                 p = next;
1471                                 continue;
1472                         }
1473
1474                         /*
1475                          * See if the parent has the page or if the parent's
1476                          * object pager has the page.  If the parent has the
1477                          * page but the page is not valid, the parent's
1478                          * object pager must have the page.
1479                          *
1480                          * If this fails, the parent does not completely shadow
1481                          * the object and we might as well give up now.
1482                          */
1483
1484                         pp = vm_page_lookup(object, new_pindex);
1485                         if (
1486                             (pp == NULL || pp->valid == 0) &&
1487                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1488                         ) {
1489                                 r = 0;
1490                                 break;
1491                         }
1492                 }
1493
1494                 /*
1495                  * Check for busy page
1496                  */
1497                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1498                         vm_page_t pp;
1499
1500                         if (op & OBSC_COLLAPSE_NOWAIT) {
1501                                 if ((p->oflags & VPO_BUSY) ||
1502                                     !p->valid || 
1503                                     p->busy) {
1504                                         p = next;
1505                                         continue;
1506                                 }
1507                         } else if (op & OBSC_COLLAPSE_WAIT) {
1508                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1509                                         vm_page_lock_queues();
1510                                         vm_page_flag_set(p, PG_REFERENCED);
1511                                         vm_page_unlock_queues();
1512                                         VM_OBJECT_UNLOCK(object);
1513                                         p->oflags |= VPO_WANTED;
1514                                         msleep(p, VM_OBJECT_MTX(backing_object),
1515                                             PDROP | PVM, "vmocol", 0);
1516                                         VM_OBJECT_LOCK(object);
1517                                         VM_OBJECT_LOCK(backing_object);
1518                                         /*
1519                                          * If we slept, anything could have
1520                                          * happened.  Since the object is
1521                                          * marked dead, the backing offset
1522                                          * should not have changed so we
1523                                          * just restart our scan.
1524                                          */
1525                                         p = TAILQ_FIRST(&backing_object->memq);
1526                                         continue;
1527                                 }
1528                         }
1529
1530                         KASSERT(
1531                             p->object == backing_object,
1532                             ("vm_object_backing_scan: object mismatch")
1533                         );
1534
1535                         /*
1536                          * Destroy any associated swap
1537                          */
1538                         if (backing_object->type == OBJT_SWAP) {
1539                                 swap_pager_freespace(
1540                                     backing_object, 
1541                                     p->pindex,
1542                                     1
1543                                 );
1544                         }
1545
1546                         if (
1547                             p->pindex < backing_offset_index ||
1548                             new_pindex >= object->size
1549                         ) {
1550                                 /*
1551                                  * Page is out of the parent object's range, we 
1552                                  * can simply destroy it. 
1553                                  */
1554                                 vm_page_lock_queues();
1555                                 KASSERT(!pmap_page_is_mapped(p),
1556                                     ("freeing mapped page %p", p));
1557                                 if (p->wire_count == 0)
1558                                         vm_page_free(p);
1559                                 else
1560                                         vm_page_remove(p);
1561                                 vm_page_unlock_queues();
1562                                 p = next;
1563                                 continue;
1564                         }
1565
1566                         pp = vm_page_lookup(object, new_pindex);
1567                         if (
1568                             pp != NULL ||
1569                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1570                         ) {
1571                                 /*
1572                                  * page already exists in parent OR swap exists
1573                                  * for this location in the parent.  Destroy 
1574                                  * the original page from the backing object.
1575                                  *
1576                                  * Leave the parent's page alone
1577                                  */
1578                                 vm_page_lock_queues();
1579                                 KASSERT(!pmap_page_is_mapped(p),
1580                                     ("freeing mapped page %p", p));
1581                                 if (p->wire_count == 0)
1582                                         vm_page_free(p);
1583                                 else
1584                                         vm_page_remove(p);
1585                                 vm_page_unlock_queues();
1586                                 p = next;
1587                                 continue;
1588                         }
1589
1590 #if VM_NRESERVLEVEL > 0
1591                         /*
1592                          * Rename the reservation.
1593                          */
1594                         vm_reserv_rename(p, object, backing_object,
1595                             backing_offset_index);
1596 #endif
1597
1598                         /*
1599                          * Page does not exist in parent, rename the
1600                          * page from the backing object to the main object. 
1601                          *
1602                          * If the page was mapped to a process, it can remain 
1603                          * mapped through the rename.
1604                          */
1605                         vm_page_lock_queues();
1606                         vm_page_rename(p, object, new_pindex);
1607                         vm_page_unlock_queues();
1608                         /* page automatically made dirty by rename */
1609                 }
1610                 p = next;
1611         }
1612         return (r);
1613 }
1614
1615
1616 /*
1617  * this version of collapse allows the operation to occur earlier and
1618  * when paging_in_progress is true for an object...  This is not a complete
1619  * operation, but should plug 99.9% of the rest of the leaks.
1620  */
1621 static void
1622 vm_object_qcollapse(vm_object_t object)
1623 {
1624         vm_object_t backing_object = object->backing_object;
1625
1626         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1627         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1628
1629         if (backing_object->ref_count != 1)
1630                 return;
1631
1632         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1633 }
1634
1635 /*
1636  *      vm_object_collapse:
1637  *
1638  *      Collapse an object with the object backing it.
1639  *      Pages in the backing object are moved into the
1640  *      parent, and the backing object is deallocated.
1641  */
1642 void
1643 vm_object_collapse(vm_object_t object)
1644 {
1645         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1646         
1647         while (TRUE) {
1648                 vm_object_t backing_object;
1649
1650                 /*
1651                  * Verify that the conditions are right for collapse:
1652                  *
1653                  * The object exists and the backing object exists.
1654                  */
1655                 if ((backing_object = object->backing_object) == NULL)
1656                         break;
1657
1658                 /*
1659                  * we check the backing object first, because it is most likely
1660                  * not collapsable.
1661                  */
1662                 VM_OBJECT_LOCK(backing_object);
1663                 if (backing_object->handle != NULL ||
1664                     (backing_object->type != OBJT_DEFAULT &&
1665                      backing_object->type != OBJT_SWAP) ||
1666                     (backing_object->flags & OBJ_DEAD) ||
1667                     object->handle != NULL ||
1668                     (object->type != OBJT_DEFAULT &&
1669                      object->type != OBJT_SWAP) ||
1670                     (object->flags & OBJ_DEAD)) {
1671                         VM_OBJECT_UNLOCK(backing_object);
1672                         break;
1673                 }
1674
1675                 if (
1676                     object->paging_in_progress != 0 ||
1677                     backing_object->paging_in_progress != 0
1678                 ) {
1679                         vm_object_qcollapse(object);
1680                         VM_OBJECT_UNLOCK(backing_object);
1681                         break;
1682                 }
1683                 /*
1684                  * We know that we can either collapse the backing object (if
1685                  * the parent is the only reference to it) or (perhaps) have
1686                  * the parent bypass the object if the parent happens to shadow
1687                  * all the resident pages in the entire backing object.
1688                  *
1689                  * This is ignoring pager-backed pages such as swap pages.
1690                  * vm_object_backing_scan fails the shadowing test in this
1691                  * case.
1692                  */
1693                 if (backing_object->ref_count == 1) {
1694                         /*
1695                          * If there is exactly one reference to the backing
1696                          * object, we can collapse it into the parent.  
1697                          */
1698                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1699
1700 #if VM_NRESERVLEVEL > 0
1701                         /*
1702                          * Break any reservations from backing_object.
1703                          */
1704                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1705                                 vm_reserv_break_all(backing_object);
1706 #endif
1707
1708                         /*
1709                          * Move the pager from backing_object to object.
1710                          */
1711                         if (backing_object->type == OBJT_SWAP) {
1712                                 /*
1713                                  * swap_pager_copy() can sleep, in which case
1714                                  * the backing_object's and object's locks are
1715                                  * released and reacquired.
1716                                  */
1717                                 swap_pager_copy(
1718                                     backing_object,
1719                                     object,
1720                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1721
1722                                 /*
1723                                  * Free any cached pages from backing_object.
1724                                  */
1725                                 if (__predict_false(backing_object->cache != NULL))
1726                                         vm_page_cache_free(backing_object, 0, 0);
1727                         }
1728                         /*
1729                          * Object now shadows whatever backing_object did.
1730                          * Note that the reference to 
1731                          * backing_object->backing_object moves from within 
1732                          * backing_object to within object.
1733                          */
1734                         LIST_REMOVE(object, shadow_list);
1735                         backing_object->shadow_count--;
1736                         backing_object->generation++;
1737                         if (backing_object->backing_object) {
1738                                 VM_OBJECT_LOCK(backing_object->backing_object);
1739                                 LIST_REMOVE(backing_object, shadow_list);
1740                                 LIST_INSERT_HEAD(
1741                                     &backing_object->backing_object->shadow_head,
1742                                     object, shadow_list);
1743                                 /*
1744                                  * The shadow_count has not changed.
1745                                  */
1746                                 backing_object->backing_object->generation++;
1747                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1748                         }
1749                         object->backing_object = backing_object->backing_object;
1750                         object->backing_object_offset +=
1751                             backing_object->backing_object_offset;
1752
1753                         /*
1754                          * Discard backing_object.
1755                          *
1756                          * Since the backing object has no pages, no pager left,
1757                          * and no object references within it, all that is
1758                          * necessary is to dispose of it.
1759                          */
1760                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1761                         VM_OBJECT_UNLOCK(backing_object);
1762
1763                         mtx_lock(&vm_object_list_mtx);
1764                         TAILQ_REMOVE(
1765                             &vm_object_list, 
1766                             backing_object,
1767                             object_list
1768                         );
1769                         mtx_unlock(&vm_object_list_mtx);
1770
1771                         uma_zfree(obj_zone, backing_object);
1772
1773                         object_collapses++;
1774                 } else {
1775                         vm_object_t new_backing_object;
1776
1777                         /*
1778                          * If we do not entirely shadow the backing object,
1779                          * there is nothing we can do so we give up.
1780                          */
1781                         if (object->resident_page_count != object->size &&
1782                             vm_object_backing_scan(object,
1783                             OBSC_TEST_ALL_SHADOWED) == 0) {
1784                                 VM_OBJECT_UNLOCK(backing_object);
1785                                 break;
1786                         }
1787
1788                         /*
1789                          * Make the parent shadow the next object in the
1790                          * chain.  Deallocating backing_object will not remove
1791                          * it, since its reference count is at least 2.
1792                          */
1793                         LIST_REMOVE(object, shadow_list);
1794                         backing_object->shadow_count--;
1795                         backing_object->generation++;
1796
1797                         new_backing_object = backing_object->backing_object;
1798                         if ((object->backing_object = new_backing_object) != NULL) {
1799                                 VM_OBJECT_LOCK(new_backing_object);
1800                                 LIST_INSERT_HEAD(
1801                                     &new_backing_object->shadow_head,
1802                                     object,
1803                                     shadow_list
1804                                 );
1805                                 new_backing_object->shadow_count++;
1806                                 new_backing_object->generation++;
1807                                 vm_object_reference_locked(new_backing_object);
1808                                 VM_OBJECT_UNLOCK(new_backing_object);
1809                                 object->backing_object_offset +=
1810                                         backing_object->backing_object_offset;
1811                         }
1812
1813                         /*
1814                          * Drop the reference count on backing_object. Since
1815                          * its ref_count was at least 2, it will not vanish.
1816                          */
1817                         backing_object->ref_count--;
1818                         VM_OBJECT_UNLOCK(backing_object);
1819                         object_bypasses++;
1820                 }
1821
1822                 /*
1823                  * Try again with this object's new backing object.
1824                  */
1825         }
1826 }
1827
1828 /*
1829  *      vm_object_page_remove:
1830  *
1831  *      For the given object, either frees or invalidates each of the
1832  *      specified pages.  In general, a page is freed.  However, if a
1833  *      page is wired for any reason other than the existence of a
1834  *      managed, wired mapping, then it may be invalidated but not
1835  *      removed from the object.  Pages are specified by the given
1836  *      range ["start", "end") and Boolean "clean_only".  As a
1837  *      special case, if "end" is zero, then the range extends from
1838  *      "start" to the end of the object.  If "clean_only" is TRUE,
1839  *      then only the non-dirty pages within the specified range are
1840  *      affected.
1841  *
1842  *      In general, this operation should only be performed on objects
1843  *      that contain managed pages.  There are two exceptions.  First,
1844  *      it may be performed on the kernel and kmem objects.  Second,
1845  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
1846  *      device-backed pages.
1847  *
1848  *      The object must be locked.
1849  */
1850 void
1851 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1852     boolean_t clean_only)
1853 {
1854         vm_page_t p, next;
1855         int wirings;
1856
1857         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1858         if (object->resident_page_count == 0)
1859                 goto skipmemq;
1860
1861         /*
1862          * Since physically-backed objects do not use managed pages, we can't
1863          * remove pages from the object (we must instead remove the page
1864          * references, and then destroy the object).
1865          */
1866         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1867             object == kmem_object,
1868             ("attempt to remove pages from a physical object"));
1869
1870         vm_object_pip_add(object, 1);
1871 again:
1872         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1873                 if (p->pindex < start) {
1874                         p = vm_page_splay(start, object->root);
1875                         if ((object->root = p)->pindex < start)
1876                                 p = TAILQ_NEXT(p, listq);
1877                 }
1878         }
1879         vm_page_lock_queues();
1880         /*
1881          * Assert: the variable p is either (1) the page with the
1882          * least pindex greater than or equal to the parameter pindex
1883          * or (2) NULL.
1884          */
1885         for (;
1886              p != NULL && (p->pindex < end || end == 0);
1887              p = next) {
1888                 next = TAILQ_NEXT(p, listq);
1889
1890                 /*
1891                  * If the page is wired for any reason besides the
1892                  * existence of managed, wired mappings, then it cannot
1893                  * be freed.  For example, fictitious pages, which
1894                  * represent device memory, are inherently wired and
1895                  * cannot be freed.  They can, however, be invalidated
1896                  * if "clean_only" is FALSE.
1897                  */
1898                 if ((wirings = p->wire_count) != 0 &&
1899                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1900                         /* Fictitious pages do not have managed mappings. */
1901                         if ((p->flags & PG_FICTITIOUS) == 0)
1902                                 pmap_remove_all(p);
1903                         /* Account for removal of managed, wired mappings. */
1904                         p->wire_count -= wirings;
1905                         if (!clean_only) {
1906                                 p->valid = 0;
1907                                 vm_page_undirty(p);
1908                         }
1909                         continue;
1910                 }
1911                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1912                         goto again;
1913                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1914                     ("vm_object_page_remove: page %p is fictitious", p));
1915                 if (clean_only && p->valid) {
1916                         pmap_remove_write(p);
1917                         if (p->valid & p->dirty)
1918                                 continue;
1919                 }
1920                 pmap_remove_all(p);
1921                 /* Account for removal of managed, wired mappings. */
1922                 if (wirings != 0)
1923                         p->wire_count -= wirings;
1924                 vm_page_free(p);
1925         }
1926         vm_page_unlock_queues();
1927         vm_object_pip_wakeup(object);
1928 skipmemq:
1929         if (__predict_false(object->cache != NULL))
1930                 vm_page_cache_free(object, start, end);
1931 }
1932
1933 /*
1934  *      Populate the specified range of the object with valid pages.  Returns
1935  *      TRUE if the range is successfully populated and FALSE otherwise.
1936  *
1937  *      Note: This function should be optimized to pass a larger array of
1938  *      pages to vm_pager_get_pages() before it is applied to a non-
1939  *      OBJT_DEVICE object.
1940  *
1941  *      The object must be locked.
1942  */
1943 boolean_t
1944 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1945 {
1946         vm_page_t m, ma[1];
1947         vm_pindex_t pindex;
1948         int rv;
1949
1950         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1951         for (pindex = start; pindex < end; pindex++) {
1952                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1953                     VM_ALLOC_RETRY);
1954                 if (m->valid != VM_PAGE_BITS_ALL) {
1955                         ma[0] = m;
1956                         rv = vm_pager_get_pages(object, ma, 1, 0);
1957                         m = vm_page_lookup(object, pindex);
1958                         if (m == NULL)
1959                                 break;
1960                         if (rv != VM_PAGER_OK) {
1961                                 vm_page_lock_queues();
1962                                 vm_page_free(m);
1963                                 vm_page_unlock_queues();
1964                                 break;
1965                         }
1966                 }
1967                 /*
1968                  * Keep "m" busy because a subsequent iteration may unlock
1969                  * the object.
1970                  */
1971         }
1972         if (pindex > start) {
1973                 m = vm_page_lookup(object, start);
1974                 while (m != NULL && m->pindex < pindex) {
1975                         vm_page_wakeup(m);
1976                         m = TAILQ_NEXT(m, listq);
1977                 }
1978         }
1979         return (pindex == end);
1980 }
1981
1982 /*
1983  *      Routine:        vm_object_coalesce
1984  *      Function:       Coalesces two objects backing up adjoining
1985  *                      regions of memory into a single object.
1986  *
1987  *      returns TRUE if objects were combined.
1988  *
1989  *      NOTE:   Only works at the moment if the second object is NULL -
1990  *              if it's not, which object do we lock first?
1991  *
1992  *      Parameters:
1993  *              prev_object     First object to coalesce
1994  *              prev_offset     Offset into prev_object
1995  *              prev_size       Size of reference to prev_object
1996  *              next_size       Size of reference to the second object
1997  *
1998  *      Conditions:
1999  *      The object must *not* be locked.
2000  */
2001 boolean_t
2002 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2003         vm_size_t prev_size, vm_size_t next_size)
2004 {
2005         vm_pindex_t next_pindex;
2006
2007         if (prev_object == NULL)
2008                 return (TRUE);
2009         VM_OBJECT_LOCK(prev_object);
2010         if (prev_object->type != OBJT_DEFAULT &&
2011             prev_object->type != OBJT_SWAP) {
2012                 VM_OBJECT_UNLOCK(prev_object);
2013                 return (FALSE);
2014         }
2015
2016         /*
2017          * Try to collapse the object first
2018          */
2019         vm_object_collapse(prev_object);
2020
2021         /*
2022          * Can't coalesce if: . more than one reference . paged out . shadows
2023          * another object . has a copy elsewhere (any of which mean that the
2024          * pages not mapped to prev_entry may be in use anyway)
2025          */
2026         if (prev_object->backing_object != NULL) {
2027                 VM_OBJECT_UNLOCK(prev_object);
2028                 return (FALSE);
2029         }
2030
2031         prev_size >>= PAGE_SHIFT;
2032         next_size >>= PAGE_SHIFT;
2033         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2034
2035         if ((prev_object->ref_count > 1) &&
2036             (prev_object->size != next_pindex)) {
2037                 VM_OBJECT_UNLOCK(prev_object);
2038                 return (FALSE);
2039         }
2040
2041         /*
2042          * Remove any pages that may still be in the object from a previous
2043          * deallocation.
2044          */
2045         if (next_pindex < prev_object->size) {
2046                 vm_object_page_remove(prev_object,
2047                                       next_pindex,
2048                                       next_pindex + next_size, FALSE);
2049                 if (prev_object->type == OBJT_SWAP)
2050                         swap_pager_freespace(prev_object,
2051                                              next_pindex, next_size);
2052         }
2053
2054         /*
2055          * Extend the object if necessary.
2056          */
2057         if (next_pindex + next_size > prev_object->size)
2058                 prev_object->size = next_pindex + next_size;
2059
2060         VM_OBJECT_UNLOCK(prev_object);
2061         return (TRUE);
2062 }
2063
2064 void
2065 vm_object_set_writeable_dirty(vm_object_t object)
2066 {
2067         struct vnode *vp;
2068
2069         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2070         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2071                 return;
2072         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2073         if (object->type == OBJT_VNODE &&
2074             (vp = (struct vnode *)object->handle) != NULL) {
2075                 VI_LOCK(vp);
2076                 vp->v_iflag |= VI_OBJDIRTY;
2077                 VI_UNLOCK(vp);
2078         }
2079 }
2080
2081 #include "opt_ddb.h"
2082 #ifdef DDB
2083 #include <sys/kernel.h>
2084
2085 #include <sys/cons.h>
2086
2087 #include <ddb/ddb.h>
2088
2089 static int
2090 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2091 {
2092         vm_map_t tmpm;
2093         vm_map_entry_t tmpe;
2094         vm_object_t obj;
2095         int entcount;
2096
2097         if (map == 0)
2098                 return 0;
2099
2100         if (entry == 0) {
2101                 tmpe = map->header.next;
2102                 entcount = map->nentries;
2103                 while (entcount-- && (tmpe != &map->header)) {
2104                         if (_vm_object_in_map(map, object, tmpe)) {
2105                                 return 1;
2106                         }
2107                         tmpe = tmpe->next;
2108                 }
2109         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2110                 tmpm = entry->object.sub_map;
2111                 tmpe = tmpm->header.next;
2112                 entcount = tmpm->nentries;
2113                 while (entcount-- && tmpe != &tmpm->header) {
2114                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2115                                 return 1;
2116                         }
2117                         tmpe = tmpe->next;
2118                 }
2119         } else if ((obj = entry->object.vm_object) != NULL) {
2120                 for (; obj; obj = obj->backing_object)
2121                         if (obj == object) {
2122                                 return 1;
2123                         }
2124         }
2125         return 0;
2126 }
2127
2128 static int
2129 vm_object_in_map(vm_object_t object)
2130 {
2131         struct proc *p;
2132
2133         /* sx_slock(&allproc_lock); */
2134         FOREACH_PROC_IN_SYSTEM(p) {
2135                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2136                         continue;
2137                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2138                         /* sx_sunlock(&allproc_lock); */
2139                         return 1;
2140                 }
2141         }
2142         /* sx_sunlock(&allproc_lock); */
2143         if (_vm_object_in_map(kernel_map, object, 0))
2144                 return 1;
2145         if (_vm_object_in_map(kmem_map, object, 0))
2146                 return 1;
2147         if (_vm_object_in_map(pager_map, object, 0))
2148                 return 1;
2149         if (_vm_object_in_map(buffer_map, object, 0))
2150                 return 1;
2151         return 0;
2152 }
2153
2154 DB_SHOW_COMMAND(vmochk, vm_object_check)
2155 {
2156         vm_object_t object;
2157
2158         /*
2159          * make sure that internal objs are in a map somewhere
2160          * and none have zero ref counts.
2161          */
2162         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2163                 if (object->handle == NULL &&
2164                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2165                         if (object->ref_count == 0) {
2166                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2167                                         (long)object->size);
2168                         }
2169                         if (!vm_object_in_map(object)) {
2170                                 db_printf(
2171                         "vmochk: internal obj is not in a map: "
2172                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2173                                     object->ref_count, (u_long)object->size, 
2174                                     (u_long)object->size,
2175                                     (void *)object->backing_object);
2176                         }
2177                 }
2178         }
2179 }
2180
2181 /*
2182  *      vm_object_print:        [ debug ]
2183  */
2184 DB_SHOW_COMMAND(object, vm_object_print_static)
2185 {
2186         /* XXX convert args. */
2187         vm_object_t object = (vm_object_t)addr;
2188         boolean_t full = have_addr;
2189
2190         vm_page_t p;
2191
2192         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2193 #define count   was_count
2194
2195         int count;
2196
2197         if (object == NULL)
2198                 return;
2199
2200         db_iprintf(
2201             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2202             object, (int)object->type, (uintmax_t)object->size,
2203             object->resident_page_count, object->ref_count, object->flags);
2204         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2205             object->shadow_count, 
2206             object->backing_object ? object->backing_object->ref_count : 0,
2207             object->backing_object, (uintmax_t)object->backing_object_offset);
2208
2209         if (!full)
2210                 return;
2211
2212         db_indent += 2;
2213         count = 0;
2214         TAILQ_FOREACH(p, &object->memq, listq) {
2215                 if (count == 0)
2216                         db_iprintf("memory:=");
2217                 else if (count == 6) {
2218                         db_printf("\n");
2219                         db_iprintf(" ...");
2220                         count = 0;
2221                 } else
2222                         db_printf(",");
2223                 count++;
2224
2225                 db_printf("(off=0x%jx,page=0x%jx)",
2226                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2227         }
2228         if (count != 0)
2229                 db_printf("\n");
2230         db_indent -= 2;
2231 }
2232
2233 /* XXX. */
2234 #undef count
2235
2236 /* XXX need this non-static entry for calling from vm_map_print. */
2237 void
2238 vm_object_print(
2239         /* db_expr_t */ long addr,
2240         boolean_t have_addr,
2241         /* db_expr_t */ long count,
2242         char *modif)
2243 {
2244         vm_object_print_static(addr, have_addr, count, modif);
2245 }
2246
2247 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2248 {
2249         vm_object_t object;
2250         vm_pindex_t fidx;
2251         vm_paddr_t pa;
2252         vm_page_t m, prev_m;
2253         int rcount, nl, c;
2254
2255         nl = 0;
2256         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2257                 db_printf("new object: %p\n", (void *)object);
2258                 if (nl > 18) {
2259                         c = cngetc();
2260                         if (c != ' ')
2261                                 return;
2262                         nl = 0;
2263                 }
2264                 nl++;
2265                 rcount = 0;
2266                 fidx = 0;
2267                 pa = -1;
2268                 TAILQ_FOREACH(m, &object->memq, listq) {
2269                         if (m->pindex > 128)
2270                                 break;
2271                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2272                             prev_m->pindex + 1 != m->pindex) {
2273                                 if (rcount) {
2274                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2275                                                 (long)fidx, rcount, (long)pa);
2276                                         if (nl > 18) {
2277                                                 c = cngetc();
2278                                                 if (c != ' ')
2279                                                         return;
2280                                                 nl = 0;
2281                                         }
2282                                         nl++;
2283                                         rcount = 0;
2284                                 }
2285                         }                               
2286                         if (rcount &&
2287                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2288                                 ++rcount;
2289                                 continue;
2290                         }
2291                         if (rcount) {
2292                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2293                                         (long)fidx, rcount, (long)pa);
2294                                 if (nl > 18) {
2295                                         c = cngetc();
2296                                         if (c != ' ')
2297                                                 return;
2298                                         nl = 0;
2299                                 }
2300                                 nl++;
2301                         }
2302                         fidx = m->pindex;
2303                         pa = VM_PAGE_TO_PHYS(m);
2304                         rcount = 1;
2305                 }
2306                 if (rcount) {
2307                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2308                                 (long)fidx, rcount, (long)pa);
2309                         if (nl > 18) {
2310                                 c = cngetc();
2311                                 if (c != ' ')
2312                                         return;
2313                                 nl = 0;
2314                         }
2315                         nl++;
2316                 }
2317         }
2318 }
2319 #endif /* DDB */