]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
MFC r321247:
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104     "Use old (insecure) msync behavior");
105
106 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107                     int pagerflags, int flags, boolean_t *clearobjflags,
108                     boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110                     boolean_t *clearobjflags);
111 static void     vm_object_qcollapse(vm_object_t object);
112 static void     vm_object_vndeallocate(vm_object_t object);
113
114 /*
115  *      Virtual memory objects maintain the actual data
116  *      associated with allocated virtual memory.  A given
117  *      page of memory exists within exactly one object.
118  *
119  *      An object is only deallocated when all "references"
120  *      are given up.  Only one "reference" to a given
121  *      region of an object should be writeable.
122  *
123  *      Associated with each object is a list of all resident
124  *      memory pages belonging to that object; this list is
125  *      maintained by the "vm_page" module, and locked by the object's
126  *      lock.
127  *
128  *      Each object also records a "pager" routine which is
129  *      used to retrieve (and store) pages to the proper backing
130  *      storage.  In addition, objects may be backed by other
131  *      objects from which they were virtual-copied.
132  *
133  *      The only items within the object structure which are
134  *      modified after time of creation are:
135  *              reference count         locked by object's lock
136  *              pager routine           locked by object's lock
137  *
138  */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;  /* lock for object list and count */
142
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147     "VM object stats");
148
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156
157 static uma_zone_t obj_zone;
158
159 static int vm_object_zinit(void *mem, int size, int flags);
160
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167         vm_object_t object;
168
169         object = (vm_object_t)mem;
170         KASSERT(object->ref_count == 0,
171             ("object %p ref_count = %d", object, object->ref_count));
172         KASSERT(TAILQ_EMPTY(&object->memq),
173             ("object %p has resident pages in its memq", object));
174         KASSERT(vm_radix_is_empty(&object->rtree),
175             ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177         KASSERT(LIST_EMPTY(&object->rvq),
178             ("object %p has reservations",
179             object));
180 #endif
181         KASSERT(object->paging_in_progress == 0,
182             ("object %p paging_in_progress = %d",
183             object, object->paging_in_progress));
184         KASSERT(object->resident_page_count == 0,
185             ("object %p resident_page_count = %d",
186             object, object->resident_page_count));
187         KASSERT(object->shadow_count == 0,
188             ("object %p shadow_count = %d",
189             object, object->shadow_count));
190         KASSERT(object->type == OBJT_DEAD,
191             ("object %p has non-dead type %d",
192             object, object->type));
193 }
194 #endif
195
196 static int
197 vm_object_zinit(void *mem, int size, int flags)
198 {
199         vm_object_t object;
200
201         object = (vm_object_t)mem;
202         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
203
204         /* These are true for any object that has been freed */
205         object->type = OBJT_DEAD;
206         object->ref_count = 0;
207         vm_radix_init(&object->rtree);
208         object->paging_in_progress = 0;
209         object->resident_page_count = 0;
210         object->shadow_count = 0;
211
212         mtx_lock(&vm_object_list_mtx);
213         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
214         mtx_unlock(&vm_object_list_mtx);
215         return (0);
216 }
217
218 static void
219 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
220 {
221
222         TAILQ_INIT(&object->memq);
223         LIST_INIT(&object->shadow_head);
224
225         object->type = type;
226         switch (type) {
227         case OBJT_DEAD:
228                 panic("_vm_object_allocate: can't create OBJT_DEAD");
229         case OBJT_DEFAULT:
230         case OBJT_SWAP:
231                 object->flags = OBJ_ONEMAPPING;
232                 break;
233         case OBJT_DEVICE:
234         case OBJT_SG:
235                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
236                 break;
237         case OBJT_MGTDEVICE:
238                 object->flags = OBJ_FICTITIOUS;
239                 break;
240         case OBJT_PHYS:
241                 object->flags = OBJ_UNMANAGED;
242                 break;
243         case OBJT_VNODE:
244                 object->flags = 0;
245                 break;
246         default:
247                 panic("_vm_object_allocate: type %d is undefined", type);
248         }
249         object->size = size;
250         object->generation = 1;
251         object->ref_count = 1;
252         object->memattr = VM_MEMATTR_DEFAULT;
253         object->cred = NULL;
254         object->charge = 0;
255         object->handle = NULL;
256         object->backing_object = NULL;
257         object->backing_object_offset = (vm_ooffset_t) 0;
258 #if VM_NRESERVLEVEL > 0
259         LIST_INIT(&object->rvq);
260 #endif
261         umtx_shm_object_init(object);
262 }
263
264 /*
265  *      vm_object_init:
266  *
267  *      Initialize the VM objects module.
268  */
269 void
270 vm_object_init(void)
271 {
272         TAILQ_INIT(&vm_object_list);
273         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
274         
275         rw_init(&kernel_object->lock, "kernel vm object");
276         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
277             VM_MIN_KERNEL_ADDRESS), kernel_object);
278 #if VM_NRESERVLEVEL > 0
279         kernel_object->flags |= OBJ_COLORED;
280         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
281 #endif
282
283         rw_init(&kmem_object->lock, "kmem vm object");
284         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
285             VM_MIN_KERNEL_ADDRESS), kmem_object);
286 #if VM_NRESERVLEVEL > 0
287         kmem_object->flags |= OBJ_COLORED;
288         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
289 #endif
290
291         /*
292          * The lock portion of struct vm_object must be type stable due
293          * to vm_pageout_fallback_object_lock locking a vm object
294          * without holding any references to it.
295          */
296         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
297 #ifdef INVARIANTS
298             vm_object_zdtor,
299 #else
300             NULL,
301 #endif
302             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
303
304         vm_radix_zinit();
305 }
306
307 void
308 vm_object_clear_flag(vm_object_t object, u_short bits)
309 {
310
311         VM_OBJECT_ASSERT_WLOCKED(object);
312         object->flags &= ~bits;
313 }
314
315 /*
316  *      Sets the default memory attribute for the specified object.  Pages
317  *      that are allocated to this object are by default assigned this memory
318  *      attribute.
319  *
320  *      Presently, this function must be called before any pages are allocated
321  *      to the object.  In the future, this requirement may be relaxed for
322  *      "default" and "swap" objects.
323  */
324 int
325 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
326 {
327
328         VM_OBJECT_ASSERT_WLOCKED(object);
329         switch (object->type) {
330         case OBJT_DEFAULT:
331         case OBJT_DEVICE:
332         case OBJT_MGTDEVICE:
333         case OBJT_PHYS:
334         case OBJT_SG:
335         case OBJT_SWAP:
336         case OBJT_VNODE:
337                 if (!TAILQ_EMPTY(&object->memq))
338                         return (KERN_FAILURE);
339                 break;
340         case OBJT_DEAD:
341                 return (KERN_INVALID_ARGUMENT);
342         default:
343                 panic("vm_object_set_memattr: object %p is of undefined type",
344                     object);
345         }
346         object->memattr = memattr;
347         return (KERN_SUCCESS);
348 }
349
350 void
351 vm_object_pip_add(vm_object_t object, short i)
352 {
353
354         VM_OBJECT_ASSERT_WLOCKED(object);
355         object->paging_in_progress += i;
356 }
357
358 void
359 vm_object_pip_subtract(vm_object_t object, short i)
360 {
361
362         VM_OBJECT_ASSERT_WLOCKED(object);
363         object->paging_in_progress -= i;
364 }
365
366 void
367 vm_object_pip_wakeup(vm_object_t object)
368 {
369
370         VM_OBJECT_ASSERT_WLOCKED(object);
371         object->paging_in_progress--;
372         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
373                 vm_object_clear_flag(object, OBJ_PIPWNT);
374                 wakeup(object);
375         }
376 }
377
378 void
379 vm_object_pip_wakeupn(vm_object_t object, short i)
380 {
381
382         VM_OBJECT_ASSERT_WLOCKED(object);
383         if (i)
384                 object->paging_in_progress -= i;
385         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
386                 vm_object_clear_flag(object, OBJ_PIPWNT);
387                 wakeup(object);
388         }
389 }
390
391 void
392 vm_object_pip_wait(vm_object_t object, char *waitid)
393 {
394
395         VM_OBJECT_ASSERT_WLOCKED(object);
396         while (object->paging_in_progress) {
397                 object->flags |= OBJ_PIPWNT;
398                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
399         }
400 }
401
402 /*
403  *      vm_object_allocate:
404  *
405  *      Returns a new object with the given size.
406  */
407 vm_object_t
408 vm_object_allocate(objtype_t type, vm_pindex_t size)
409 {
410         vm_object_t object;
411
412         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
413         _vm_object_allocate(type, size, object);
414         return (object);
415 }
416
417
418 /*
419  *      vm_object_reference:
420  *
421  *      Gets another reference to the given object.  Note: OBJ_DEAD
422  *      objects can be referenced during final cleaning.
423  */
424 void
425 vm_object_reference(vm_object_t object)
426 {
427         if (object == NULL)
428                 return;
429         VM_OBJECT_WLOCK(object);
430         vm_object_reference_locked(object);
431         VM_OBJECT_WUNLOCK(object);
432 }
433
434 /*
435  *      vm_object_reference_locked:
436  *
437  *      Gets another reference to the given object.
438  *
439  *      The object must be locked.
440  */
441 void
442 vm_object_reference_locked(vm_object_t object)
443 {
444         struct vnode *vp;
445
446         VM_OBJECT_ASSERT_WLOCKED(object);
447         object->ref_count++;
448         if (object->type == OBJT_VNODE) {
449                 vp = object->handle;
450                 vref(vp);
451         }
452 }
453
454 /*
455  * Handle deallocating an object of type OBJT_VNODE.
456  */
457 static void
458 vm_object_vndeallocate(vm_object_t object)
459 {
460         struct vnode *vp = (struct vnode *) object->handle;
461
462         VM_OBJECT_ASSERT_WLOCKED(object);
463         KASSERT(object->type == OBJT_VNODE,
464             ("vm_object_vndeallocate: not a vnode object"));
465         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
466 #ifdef INVARIANTS
467         if (object->ref_count == 0) {
468                 vn_printf(vp, "vm_object_vndeallocate ");
469                 panic("vm_object_vndeallocate: bad object reference count");
470         }
471 #endif
472
473         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
474                 umtx_shm_object_terminated(object);
475
476         /*
477          * The test for text of vp vnode does not need a bypass to
478          * reach right VV_TEXT there, since it is obtained from
479          * object->handle.
480          */
481         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
482                 object->ref_count--;
483                 VM_OBJECT_WUNLOCK(object);
484                 /* vrele may need the vnode lock. */
485                 vrele(vp);
486         } else {
487                 vhold(vp);
488                 VM_OBJECT_WUNLOCK(object);
489                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
490                 vdrop(vp);
491                 VM_OBJECT_WLOCK(object);
492                 object->ref_count--;
493                 if (object->type == OBJT_DEAD) {
494                         VM_OBJECT_WUNLOCK(object);
495                         VOP_UNLOCK(vp, 0);
496                 } else {
497                         if (object->ref_count == 0)
498                                 VOP_UNSET_TEXT(vp);
499                         VM_OBJECT_WUNLOCK(object);
500                         vput(vp);
501                 }
502         }
503 }
504
505 /*
506  *      vm_object_deallocate:
507  *
508  *      Release a reference to the specified object,
509  *      gained either through a vm_object_allocate
510  *      or a vm_object_reference call.  When all references
511  *      are gone, storage associated with this object
512  *      may be relinquished.
513  *
514  *      No object may be locked.
515  */
516 void
517 vm_object_deallocate(vm_object_t object)
518 {
519         vm_object_t temp;
520         struct vnode *vp;
521
522         while (object != NULL) {
523                 VM_OBJECT_WLOCK(object);
524                 if (object->type == OBJT_VNODE) {
525                         vm_object_vndeallocate(object);
526                         return;
527                 }
528
529                 KASSERT(object->ref_count != 0,
530                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
531
532                 /*
533                  * If the reference count goes to 0 we start calling
534                  * vm_object_terminate() on the object chain.
535                  * A ref count of 1 may be a special case depending on the
536                  * shadow count being 0 or 1.
537                  */
538                 object->ref_count--;
539                 if (object->ref_count > 1) {
540                         VM_OBJECT_WUNLOCK(object);
541                         return;
542                 } else if (object->ref_count == 1) {
543                         if (object->type == OBJT_SWAP &&
544                             (object->flags & OBJ_TMPFS) != 0) {
545                                 vp = object->un_pager.swp.swp_tmpfs;
546                                 vhold(vp);
547                                 VM_OBJECT_WUNLOCK(object);
548                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
549                                 VM_OBJECT_WLOCK(object);
550                                 if (object->type == OBJT_DEAD ||
551                                     object->ref_count != 1) {
552                                         VM_OBJECT_WUNLOCK(object);
553                                         VOP_UNLOCK(vp, 0);
554                                         vdrop(vp);
555                                         return;
556                                 }
557                                 if ((object->flags & OBJ_TMPFS) != 0)
558                                         VOP_UNSET_TEXT(vp);
559                                 VOP_UNLOCK(vp, 0);
560                                 vdrop(vp);
561                         }
562                         if (object->shadow_count == 0 &&
563                             object->handle == NULL &&
564                             (object->type == OBJT_DEFAULT ||
565                             (object->type == OBJT_SWAP &&
566                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
567                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
568                         } else if ((object->shadow_count == 1) &&
569                             (object->handle == NULL) &&
570                             (object->type == OBJT_DEFAULT ||
571                              object->type == OBJT_SWAP)) {
572                                 vm_object_t robject;
573
574                                 robject = LIST_FIRST(&object->shadow_head);
575                                 KASSERT(robject != NULL,
576                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
577                                          object->ref_count,
578                                          object->shadow_count));
579                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
580                                     ("shadowed tmpfs v_object %p", object));
581                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
582                                         /*
583                                          * Avoid a potential deadlock.
584                                          */
585                                         object->ref_count++;
586                                         VM_OBJECT_WUNLOCK(object);
587                                         /*
588                                          * More likely than not the thread
589                                          * holding robject's lock has lower
590                                          * priority than the current thread.
591                                          * Let the lower priority thread run.
592                                          */
593                                         pause("vmo_de", 1);
594                                         continue;
595                                 }
596                                 /*
597                                  * Collapse object into its shadow unless its
598                                  * shadow is dead.  In that case, object will
599                                  * be deallocated by the thread that is
600                                  * deallocating its shadow.
601                                  */
602                                 if ((robject->flags & OBJ_DEAD) == 0 &&
603                                     (robject->handle == NULL) &&
604                                     (robject->type == OBJT_DEFAULT ||
605                                      robject->type == OBJT_SWAP)) {
606
607                                         robject->ref_count++;
608 retry:
609                                         if (robject->paging_in_progress) {
610                                                 VM_OBJECT_WUNLOCK(object);
611                                                 vm_object_pip_wait(robject,
612                                                     "objde1");
613                                                 temp = robject->backing_object;
614                                                 if (object == temp) {
615                                                         VM_OBJECT_WLOCK(object);
616                                                         goto retry;
617                                                 }
618                                         } else if (object->paging_in_progress) {
619                                                 VM_OBJECT_WUNLOCK(robject);
620                                                 object->flags |= OBJ_PIPWNT;
621                                                 VM_OBJECT_SLEEP(object, object,
622                                                     PDROP | PVM, "objde2", 0);
623                                                 VM_OBJECT_WLOCK(robject);
624                                                 temp = robject->backing_object;
625                                                 if (object == temp) {
626                                                         VM_OBJECT_WLOCK(object);
627                                                         goto retry;
628                                                 }
629                                         } else
630                                                 VM_OBJECT_WUNLOCK(object);
631
632                                         if (robject->ref_count == 1) {
633                                                 robject->ref_count--;
634                                                 object = robject;
635                                                 goto doterm;
636                                         }
637                                         object = robject;
638                                         vm_object_collapse(object);
639                                         VM_OBJECT_WUNLOCK(object);
640                                         continue;
641                                 }
642                                 VM_OBJECT_WUNLOCK(robject);
643                         }
644                         VM_OBJECT_WUNLOCK(object);
645                         return;
646                 }
647 doterm:
648                 umtx_shm_object_terminated(object);
649                 temp = object->backing_object;
650                 if (temp != NULL) {
651                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
652                             ("shadowed tmpfs v_object 2 %p", object));
653                         VM_OBJECT_WLOCK(temp);
654                         LIST_REMOVE(object, shadow_list);
655                         temp->shadow_count--;
656                         VM_OBJECT_WUNLOCK(temp);
657                         object->backing_object = NULL;
658                 }
659                 /*
660                  * Don't double-terminate, we could be in a termination
661                  * recursion due to the terminate having to sync data
662                  * to disk.
663                  */
664                 if ((object->flags & OBJ_DEAD) == 0)
665                         vm_object_terminate(object);
666                 else
667                         VM_OBJECT_WUNLOCK(object);
668                 object = temp;
669         }
670 }
671
672 /*
673  *      vm_object_destroy removes the object from the global object list
674  *      and frees the space for the object.
675  */
676 void
677 vm_object_destroy(vm_object_t object)
678 {
679
680         /*
681          * Release the allocation charge.
682          */
683         if (object->cred != NULL) {
684                 swap_release_by_cred(object->charge, object->cred);
685                 object->charge = 0;
686                 crfree(object->cred);
687                 object->cred = NULL;
688         }
689
690         /*
691          * Free the space for the object.
692          */
693         uma_zfree(obj_zone, object);
694 }
695
696 /*
697  *      vm_object_terminate actually destroys the specified object, freeing
698  *      up all previously used resources.
699  *
700  *      The object must be locked.
701  *      This routine may block.
702  */
703 void
704 vm_object_terminate(vm_object_t object)
705 {
706         vm_page_t p, p_next;
707
708         VM_OBJECT_ASSERT_WLOCKED(object);
709
710         /*
711          * Make sure no one uses us.
712          */
713         vm_object_set_flag(object, OBJ_DEAD);
714
715         /*
716          * wait for the pageout daemon to be done with the object
717          */
718         vm_object_pip_wait(object, "objtrm");
719
720         KASSERT(!object->paging_in_progress,
721                 ("vm_object_terminate: pageout in progress"));
722
723         /*
724          * Clean and free the pages, as appropriate. All references to the
725          * object are gone, so we don't need to lock it.
726          */
727         if (object->type == OBJT_VNODE) {
728                 struct vnode *vp = (struct vnode *)object->handle;
729
730                 /*
731                  * Clean pages and flush buffers.
732                  */
733                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
734                 VM_OBJECT_WUNLOCK(object);
735
736                 vinvalbuf(vp, V_SAVE, 0, 0);
737
738                 BO_LOCK(&vp->v_bufobj);
739                 vp->v_bufobj.bo_flag |= BO_DEAD;
740                 BO_UNLOCK(&vp->v_bufobj);
741
742                 VM_OBJECT_WLOCK(object);
743         }
744
745         KASSERT(object->ref_count == 0, 
746                 ("vm_object_terminate: object with references, ref_count=%d",
747                 object->ref_count));
748
749         /*
750          * Free any remaining pageable pages.  This also removes them from the
751          * paging queues.  However, don't free wired pages, just remove them
752          * from the object.  Rather than incrementally removing each page from
753          * the object, the page and object are reset to any empty state. 
754          */
755         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
756                 vm_page_assert_unbusied(p);
757                 vm_page_lock(p);
758                 /*
759                  * Optimize the page's removal from the object by resetting
760                  * its "object" field.  Specifically, if the page is not
761                  * wired, then the effect of this assignment is that
762                  * vm_page_free()'s call to vm_page_remove() will return
763                  * immediately without modifying the page or the object.
764                  */ 
765                 p->object = NULL;
766                 if (p->wire_count == 0) {
767                         vm_page_free(p);
768                         PCPU_INC(cnt.v_pfree);
769                 }
770                 vm_page_unlock(p);
771         }
772         /*
773          * If the object contained any pages, then reset it to an empty state.
774          * None of the object's fields, including "resident_page_count", were
775          * modified by the preceding loop.
776          */
777         if (object->resident_page_count != 0) {
778                 vm_radix_reclaim_allnodes(&object->rtree);
779                 TAILQ_INIT(&object->memq);
780                 object->resident_page_count = 0;
781                 if (object->type == OBJT_VNODE)
782                         vdrop(object->handle);
783         }
784
785 #if VM_NRESERVLEVEL > 0
786         if (__predict_false(!LIST_EMPTY(&object->rvq)))
787                 vm_reserv_break_all(object);
788 #endif
789
790         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
791             object->type == OBJT_SWAP,
792             ("%s: non-swap obj %p has cred", __func__, object));
793
794         /*
795          * Let the pager know object is dead.
796          */
797         vm_pager_deallocate(object);
798         VM_OBJECT_WUNLOCK(object);
799
800         vm_object_destroy(object);
801 }
802
803 /*
804  * Make the page read-only so that we can clear the object flags.  However, if
805  * this is a nosync mmap then the object is likely to stay dirty so do not
806  * mess with the page and do not clear the object flags.  Returns TRUE if the
807  * page should be flushed, and FALSE otherwise.
808  */
809 static boolean_t
810 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
811 {
812
813         /*
814          * If we have been asked to skip nosync pages and this is a
815          * nosync page, skip it.  Note that the object flags were not
816          * cleared in this case so we do not have to set them.
817          */
818         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
819                 *clearobjflags = FALSE;
820                 return (FALSE);
821         } else {
822                 pmap_remove_write(p);
823                 return (p->dirty != 0);
824         }
825 }
826
827 /*
828  *      vm_object_page_clean
829  *
830  *      Clean all dirty pages in the specified range of object.  Leaves page 
831  *      on whatever queue it is currently on.   If NOSYNC is set then do not
832  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
833  *      leaving the object dirty.
834  *
835  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
836  *      synchronous clustering mode implementation.
837  *
838  *      Odd semantics: if start == end, we clean everything.
839  *
840  *      The object must be locked.
841  *
842  *      Returns FALSE if some page from the range was not written, as
843  *      reported by the pager, and TRUE otherwise.
844  */
845 boolean_t
846 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
847     int flags)
848 {
849         vm_page_t np, p;
850         vm_pindex_t pi, tend, tstart;
851         int curgeneration, n, pagerflags;
852         boolean_t clearobjflags, eio, res;
853
854         VM_OBJECT_ASSERT_WLOCKED(object);
855
856         /*
857          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
858          * objects.  The check below prevents the function from
859          * operating on non-vnode objects.
860          */
861         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
862             object->resident_page_count == 0)
863                 return (TRUE);
864
865         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
866             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
867         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
868
869         tstart = OFF_TO_IDX(start);
870         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
871         clearobjflags = tstart == 0 && tend >= object->size;
872         res = TRUE;
873
874 rescan:
875         curgeneration = object->generation;
876
877         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
878                 pi = p->pindex;
879                 if (pi >= tend)
880                         break;
881                 np = TAILQ_NEXT(p, listq);
882                 if (p->valid == 0)
883                         continue;
884                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
885                         if (object->generation != curgeneration) {
886                                 if ((flags & OBJPC_SYNC) != 0)
887                                         goto rescan;
888                                 else
889                                         clearobjflags = FALSE;
890                         }
891                         np = vm_page_find_least(object, pi);
892                         continue;
893                 }
894                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
895                         continue;
896
897                 n = vm_object_page_collect_flush(object, p, pagerflags,
898                     flags, &clearobjflags, &eio);
899                 if (eio) {
900                         res = FALSE;
901                         clearobjflags = FALSE;
902                 }
903                 if (object->generation != curgeneration) {
904                         if ((flags & OBJPC_SYNC) != 0)
905                                 goto rescan;
906                         else
907                                 clearobjflags = FALSE;
908                 }
909
910                 /*
911                  * If the VOP_PUTPAGES() did a truncated write, so
912                  * that even the first page of the run is not fully
913                  * written, vm_pageout_flush() returns 0 as the run
914                  * length.  Since the condition that caused truncated
915                  * write may be permanent, e.g. exhausted free space,
916                  * accepting n == 0 would cause an infinite loop.
917                  *
918                  * Forwarding the iterator leaves the unwritten page
919                  * behind, but there is not much we can do there if
920                  * filesystem refuses to write it.
921                  */
922                 if (n == 0) {
923                         n = 1;
924                         clearobjflags = FALSE;
925                 }
926                 np = vm_page_find_least(object, pi + n);
927         }
928 #if 0
929         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
930 #endif
931
932         if (clearobjflags)
933                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
934         return (res);
935 }
936
937 static int
938 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
939     int flags, boolean_t *clearobjflags, boolean_t *eio)
940 {
941         vm_page_t ma[vm_pageout_page_count], p_first, tp;
942         int count, i, mreq, runlen;
943
944         vm_page_lock_assert(p, MA_NOTOWNED);
945         VM_OBJECT_ASSERT_WLOCKED(object);
946
947         count = 1;
948         mreq = 0;
949
950         for (tp = p; count < vm_pageout_page_count; count++) {
951                 tp = vm_page_next(tp);
952                 if (tp == NULL || vm_page_busied(tp))
953                         break;
954                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
955                         break;
956         }
957
958         for (p_first = p; count < vm_pageout_page_count; count++) {
959                 tp = vm_page_prev(p_first);
960                 if (tp == NULL || vm_page_busied(tp))
961                         break;
962                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
963                         break;
964                 p_first = tp;
965                 mreq++;
966         }
967
968         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
969                 ma[i] = tp;
970
971         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
972         return (runlen);
973 }
974
975 /*
976  * Note that there is absolutely no sense in writing out
977  * anonymous objects, so we track down the vnode object
978  * to write out.
979  * We invalidate (remove) all pages from the address space
980  * for semantic correctness.
981  *
982  * If the backing object is a device object with unmanaged pages, then any
983  * mappings to the specified range of pages must be removed before this
984  * function is called.
985  *
986  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
987  * may start out with a NULL object.
988  */
989 boolean_t
990 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
991     boolean_t syncio, boolean_t invalidate)
992 {
993         vm_object_t backing_object;
994         struct vnode *vp;
995         struct mount *mp;
996         int error, flags, fsync_after;
997         boolean_t res;
998
999         if (object == NULL)
1000                 return (TRUE);
1001         res = TRUE;
1002         error = 0;
1003         VM_OBJECT_WLOCK(object);
1004         while ((backing_object = object->backing_object) != NULL) {
1005                 VM_OBJECT_WLOCK(backing_object);
1006                 offset += object->backing_object_offset;
1007                 VM_OBJECT_WUNLOCK(object);
1008                 object = backing_object;
1009                 if (object->size < OFF_TO_IDX(offset + size))
1010                         size = IDX_TO_OFF(object->size) - offset;
1011         }
1012         /*
1013          * Flush pages if writing is allowed, invalidate them
1014          * if invalidation requested.  Pages undergoing I/O
1015          * will be ignored by vm_object_page_remove().
1016          *
1017          * We cannot lock the vnode and then wait for paging
1018          * to complete without deadlocking against vm_fault.
1019          * Instead we simply call vm_object_page_remove() and
1020          * allow it to block internally on a page-by-page
1021          * basis when it encounters pages undergoing async
1022          * I/O.
1023          */
1024         if (object->type == OBJT_VNODE &&
1025             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1026                 vp = object->handle;
1027                 VM_OBJECT_WUNLOCK(object);
1028                 (void) vn_start_write(vp, &mp, V_WAIT);
1029                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1030                 if (syncio && !invalidate && offset == 0 &&
1031                     atop(size) == object->size) {
1032                         /*
1033                          * If syncing the whole mapping of the file,
1034                          * it is faster to schedule all the writes in
1035                          * async mode, also allowing the clustering,
1036                          * and then wait for i/o to complete.
1037                          */
1038                         flags = 0;
1039                         fsync_after = TRUE;
1040                 } else {
1041                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1042                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1043                         fsync_after = FALSE;
1044                 }
1045                 VM_OBJECT_WLOCK(object);
1046                 res = vm_object_page_clean(object, offset, offset + size,
1047                     flags);
1048                 VM_OBJECT_WUNLOCK(object);
1049                 if (fsync_after)
1050                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1051                 VOP_UNLOCK(vp, 0);
1052                 vn_finished_write(mp);
1053                 if (error != 0)
1054                         res = FALSE;
1055                 VM_OBJECT_WLOCK(object);
1056         }
1057         if ((object->type == OBJT_VNODE ||
1058              object->type == OBJT_DEVICE) && invalidate) {
1059                 if (object->type == OBJT_DEVICE)
1060                         /*
1061                          * The option OBJPR_NOTMAPPED must be passed here
1062                          * because vm_object_page_remove() cannot remove
1063                          * unmanaged mappings.
1064                          */
1065                         flags = OBJPR_NOTMAPPED;
1066                 else if (old_msync)
1067                         flags = 0;
1068                 else
1069                         flags = OBJPR_CLEANONLY;
1070                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1071                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1072         }
1073         VM_OBJECT_WUNLOCK(object);
1074         return (res);
1075 }
1076
1077 /*
1078  * Determine whether the given advice can be applied to the object.  Advice is
1079  * not applied to unmanaged pages since they never belong to page queues, and
1080  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1081  * have been mapped at most once.
1082  */
1083 static bool
1084 vm_object_advice_applies(vm_object_t object, int advice)
1085 {
1086
1087         if ((object->flags & OBJ_UNMANAGED) != 0)
1088                 return (false);
1089         if (advice != MADV_FREE)
1090                 return (true);
1091         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1092             (object->flags & OBJ_ONEMAPPING) != 0);
1093 }
1094
1095 static void
1096 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1097     vm_size_t size)
1098 {
1099
1100         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1101                 swap_pager_freespace(object, pindex, size);
1102 }
1103
1104 /*
1105  *      vm_object_madvise:
1106  *
1107  *      Implements the madvise function at the object/page level.
1108  *
1109  *      MADV_WILLNEED   (any object)
1110  *
1111  *          Activate the specified pages if they are resident.
1112  *
1113  *      MADV_DONTNEED   (any object)
1114  *
1115  *          Deactivate the specified pages if they are resident.
1116  *
1117  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1118  *                       OBJ_ONEMAPPING only)
1119  *
1120  *          Deactivate and clean the specified pages if they are
1121  *          resident.  This permits the process to reuse the pages
1122  *          without faulting or the kernel to reclaim the pages
1123  *          without I/O.
1124  */
1125 void
1126 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1127     int advice)
1128 {
1129         vm_pindex_t tpindex;
1130         vm_object_t backing_object, tobject;
1131         vm_page_t m, tm;
1132
1133         if (object == NULL)
1134                 return;
1135
1136 relookup:
1137         VM_OBJECT_WLOCK(object);
1138         if (!vm_object_advice_applies(object, advice)) {
1139                 VM_OBJECT_WUNLOCK(object);
1140                 return;
1141         }
1142         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1143                 tobject = object;
1144
1145                 /*
1146                  * If the next page isn't resident in the top-level object, we
1147                  * need to search the shadow chain.  When applying MADV_FREE, we
1148                  * take care to release any swap space used to store
1149                  * non-resident pages.
1150                  */
1151                 if (m == NULL || pindex < m->pindex) {
1152                         /*
1153                          * Optimize a common case: if the top-level object has
1154                          * no backing object, we can skip over the non-resident
1155                          * range in constant time.
1156                          */
1157                         if (object->backing_object == NULL) {
1158                                 tpindex = (m != NULL && m->pindex < end) ?
1159                                     m->pindex : end;
1160                                 vm_object_madvise_freespace(object, advice,
1161                                     pindex, tpindex - pindex);
1162                                 if ((pindex = tpindex) == end)
1163                                         break;
1164                                 goto next_page;
1165                         }
1166
1167                         tpindex = pindex;
1168                         do {
1169                                 vm_object_madvise_freespace(tobject, advice,
1170                                     tpindex, 1);
1171                                 /*
1172                                  * Prepare to search the next object in the
1173                                  * chain.
1174                                  */
1175                                 backing_object = tobject->backing_object;
1176                                 if (backing_object == NULL)
1177                                         goto next_pindex;
1178                                 VM_OBJECT_WLOCK(backing_object);
1179                                 tpindex +=
1180                                     OFF_TO_IDX(tobject->backing_object_offset);
1181                                 if (tobject != object)
1182                                         VM_OBJECT_WUNLOCK(tobject);
1183                                 tobject = backing_object;
1184                                 if (!vm_object_advice_applies(tobject, advice))
1185                                         goto next_pindex;
1186                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1187                             NULL);
1188                 } else {
1189 next_page:
1190                         tm = m;
1191                         m = TAILQ_NEXT(m, listq);
1192                 }
1193
1194                 /*
1195                  * If the page is not in a normal state, skip it.
1196                  */
1197                 if (tm->valid != VM_PAGE_BITS_ALL)
1198                         goto next_pindex;
1199                 vm_page_lock(tm);
1200                 if (tm->hold_count != 0 || tm->wire_count != 0) {
1201                         vm_page_unlock(tm);
1202                         goto next_pindex;
1203                 }
1204                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1205                     ("vm_object_madvise: page %p is fictitious", tm));
1206                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1207                     ("vm_object_madvise: page %p is not managed", tm));
1208                 if (vm_page_busied(tm)) {
1209                         if (object != tobject)
1210                                 VM_OBJECT_WUNLOCK(tobject);
1211                         VM_OBJECT_WUNLOCK(object);
1212                         if (advice == MADV_WILLNEED) {
1213                                 /*
1214                                  * Reference the page before unlocking and
1215                                  * sleeping so that the page daemon is less
1216                                  * likely to reclaim it.
1217                                  */
1218                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1219                         }
1220                         vm_page_busy_sleep(tm, "madvpo", false);
1221                         goto relookup;
1222                 }
1223                 vm_page_advise(tm, advice);
1224                 vm_page_unlock(tm);
1225                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1226 next_pindex:
1227                 if (tobject != object)
1228                         VM_OBJECT_WUNLOCK(tobject);
1229         }
1230         VM_OBJECT_WUNLOCK(object);
1231 }
1232
1233 /*
1234  *      vm_object_shadow:
1235  *
1236  *      Create a new object which is backed by the
1237  *      specified existing object range.  The source
1238  *      object reference is deallocated.
1239  *
1240  *      The new object and offset into that object
1241  *      are returned in the source parameters.
1242  */
1243 void
1244 vm_object_shadow(
1245         vm_object_t *object,    /* IN/OUT */
1246         vm_ooffset_t *offset,   /* IN/OUT */
1247         vm_size_t length)
1248 {
1249         vm_object_t source;
1250         vm_object_t result;
1251
1252         source = *object;
1253
1254         /*
1255          * Don't create the new object if the old object isn't shared.
1256          */
1257         if (source != NULL) {
1258                 VM_OBJECT_WLOCK(source);
1259                 if (source->ref_count == 1 &&
1260                     source->handle == NULL &&
1261                     (source->type == OBJT_DEFAULT ||
1262                      source->type == OBJT_SWAP)) {
1263                         VM_OBJECT_WUNLOCK(source);
1264                         return;
1265                 }
1266                 VM_OBJECT_WUNLOCK(source);
1267         }
1268
1269         /*
1270          * Allocate a new object with the given length.
1271          */
1272         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1273
1274         /*
1275          * The new object shadows the source object, adding a reference to it.
1276          * Our caller changes his reference to point to the new object,
1277          * removing a reference to the source object.  Net result: no change
1278          * of reference count.
1279          *
1280          * Try to optimize the result object's page color when shadowing
1281          * in order to maintain page coloring consistency in the combined 
1282          * shadowed object.
1283          */
1284         result->backing_object = source;
1285         /*
1286          * Store the offset into the source object, and fix up the offset into
1287          * the new object.
1288          */
1289         result->backing_object_offset = *offset;
1290         if (source != NULL) {
1291                 VM_OBJECT_WLOCK(source);
1292                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1293                 source->shadow_count++;
1294 #if VM_NRESERVLEVEL > 0
1295                 result->flags |= source->flags & OBJ_COLORED;
1296                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1297                     ((1 << (VM_NFREEORDER - 1)) - 1);
1298 #endif
1299                 VM_OBJECT_WUNLOCK(source);
1300         }
1301
1302
1303         /*
1304          * Return the new things
1305          */
1306         *offset = 0;
1307         *object = result;
1308 }
1309
1310 /*
1311  *      vm_object_split:
1312  *
1313  * Split the pages in a map entry into a new object.  This affords
1314  * easier removal of unused pages, and keeps object inheritance from
1315  * being a negative impact on memory usage.
1316  */
1317 void
1318 vm_object_split(vm_map_entry_t entry)
1319 {
1320         vm_page_t m, m_next;
1321         vm_object_t orig_object, new_object, source;
1322         vm_pindex_t idx, offidxstart;
1323         vm_size_t size;
1324
1325         orig_object = entry->object.vm_object;
1326         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1327                 return;
1328         if (orig_object->ref_count <= 1)
1329                 return;
1330         VM_OBJECT_WUNLOCK(orig_object);
1331
1332         offidxstart = OFF_TO_IDX(entry->offset);
1333         size = atop(entry->end - entry->start);
1334
1335         /*
1336          * If swap_pager_copy() is later called, it will convert new_object
1337          * into a swap object.
1338          */
1339         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1340
1341         /*
1342          * At this point, the new object is still private, so the order in
1343          * which the original and new objects are locked does not matter.
1344          */
1345         VM_OBJECT_WLOCK(new_object);
1346         VM_OBJECT_WLOCK(orig_object);
1347         source = orig_object->backing_object;
1348         if (source != NULL) {
1349                 VM_OBJECT_WLOCK(source);
1350                 if ((source->flags & OBJ_DEAD) != 0) {
1351                         VM_OBJECT_WUNLOCK(source);
1352                         VM_OBJECT_WUNLOCK(orig_object);
1353                         VM_OBJECT_WUNLOCK(new_object);
1354                         vm_object_deallocate(new_object);
1355                         VM_OBJECT_WLOCK(orig_object);
1356                         return;
1357                 }
1358                 LIST_INSERT_HEAD(&source->shadow_head,
1359                                   new_object, shadow_list);
1360                 source->shadow_count++;
1361                 vm_object_reference_locked(source);     /* for new_object */
1362                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1363                 VM_OBJECT_WUNLOCK(source);
1364                 new_object->backing_object_offset = 
1365                         orig_object->backing_object_offset + entry->offset;
1366                 new_object->backing_object = source;
1367         }
1368         if (orig_object->cred != NULL) {
1369                 new_object->cred = orig_object->cred;
1370                 crhold(orig_object->cred);
1371                 new_object->charge = ptoa(size);
1372                 KASSERT(orig_object->charge >= ptoa(size),
1373                     ("orig_object->charge < 0"));
1374                 orig_object->charge -= ptoa(size);
1375         }
1376 retry:
1377         m = vm_page_find_least(orig_object, offidxstart);
1378         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1379             m = m_next) {
1380                 m_next = TAILQ_NEXT(m, listq);
1381
1382                 /*
1383                  * We must wait for pending I/O to complete before we can
1384                  * rename the page.
1385                  *
1386                  * We do not have to VM_PROT_NONE the page as mappings should
1387                  * not be changed by this operation.
1388                  */
1389                 if (vm_page_busied(m)) {
1390                         VM_OBJECT_WUNLOCK(new_object);
1391                         vm_page_lock(m);
1392                         VM_OBJECT_WUNLOCK(orig_object);
1393                         vm_page_busy_sleep(m, "spltwt", false);
1394                         VM_OBJECT_WLOCK(orig_object);
1395                         VM_OBJECT_WLOCK(new_object);
1396                         goto retry;
1397                 }
1398
1399                 /* vm_page_rename() will dirty the page. */
1400                 if (vm_page_rename(m, new_object, idx)) {
1401                         VM_OBJECT_WUNLOCK(new_object);
1402                         VM_OBJECT_WUNLOCK(orig_object);
1403                         VM_WAIT;
1404                         VM_OBJECT_WLOCK(orig_object);
1405                         VM_OBJECT_WLOCK(new_object);
1406                         goto retry;
1407                 }
1408 #if VM_NRESERVLEVEL > 0
1409                 /*
1410                  * If some of the reservation's allocated pages remain with
1411                  * the original object, then transferring the reservation to
1412                  * the new object is neither particularly beneficial nor
1413                  * particularly harmful as compared to leaving the reservation
1414                  * with the original object.  If, however, all of the
1415                  * reservation's allocated pages are transferred to the new
1416                  * object, then transferring the reservation is typically
1417                  * beneficial.  Determining which of these two cases applies
1418                  * would be more costly than unconditionally renaming the
1419                  * reservation.
1420                  */
1421                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1422 #endif
1423                 if (orig_object->type == OBJT_SWAP)
1424                         vm_page_xbusy(m);
1425         }
1426         if (orig_object->type == OBJT_SWAP) {
1427                 /*
1428                  * swap_pager_copy() can sleep, in which case the orig_object's
1429                  * and new_object's locks are released and reacquired. 
1430                  */
1431                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1432                 TAILQ_FOREACH(m, &new_object->memq, listq)
1433                         vm_page_xunbusy(m);
1434         }
1435         VM_OBJECT_WUNLOCK(orig_object);
1436         VM_OBJECT_WUNLOCK(new_object);
1437         entry->object.vm_object = new_object;
1438         entry->offset = 0LL;
1439         vm_object_deallocate(orig_object);
1440         VM_OBJECT_WLOCK(new_object);
1441 }
1442
1443 #define OBSC_COLLAPSE_NOWAIT    0x0002
1444 #define OBSC_COLLAPSE_WAIT      0x0004
1445
1446 static vm_page_t
1447 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1448     int op)
1449 {
1450         vm_object_t backing_object;
1451
1452         VM_OBJECT_ASSERT_WLOCKED(object);
1453         backing_object = object->backing_object;
1454         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1455
1456         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1457         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1458             ("invalid ownership %p %p %p", p, object, backing_object));
1459         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1460                 return (next);
1461         if (p != NULL)
1462                 vm_page_lock(p);
1463         VM_OBJECT_WUNLOCK(object);
1464         VM_OBJECT_WUNLOCK(backing_object);
1465         if (p == NULL)
1466                 VM_WAIT;
1467         else
1468                 vm_page_busy_sleep(p, "vmocol", false);
1469         VM_OBJECT_WLOCK(object);
1470         VM_OBJECT_WLOCK(backing_object);
1471         return (TAILQ_FIRST(&backing_object->memq));
1472 }
1473
1474 static bool
1475 vm_object_scan_all_shadowed(vm_object_t object)
1476 {
1477         vm_object_t backing_object;
1478         vm_page_t p, pp;
1479         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1480
1481         VM_OBJECT_ASSERT_WLOCKED(object);
1482         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1483
1484         backing_object = object->backing_object;
1485
1486         /*
1487          * Initial conditions:
1488          *
1489          * We do not want to have to test for the existence of swap
1490          * pages in the backing object.  XXX but with the new swapper this
1491          * would be pretty easy to do.
1492          */
1493         if (backing_object->type != OBJT_DEFAULT &&
1494             backing_object->type != OBJT_SWAP)
1495                 return (false);
1496
1497         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1498         p = vm_page_find_least(backing_object, pi);
1499         ps = swap_pager_find_least(backing_object, pi);
1500
1501         /*
1502          * Only check pages inside the parent object's range and
1503          * inside the parent object's mapping of the backing object.
1504          */
1505         for (;; pi++) {
1506                 if (p != NULL && p->pindex < pi)
1507                         p = TAILQ_NEXT(p, listq);
1508                 if (ps < pi)
1509                         ps = swap_pager_find_least(backing_object, pi);
1510                 if (p == NULL && ps >= backing_object->size)
1511                         break;
1512                 else if (p == NULL)
1513                         pi = ps;
1514                 else
1515                         pi = MIN(p->pindex, ps);
1516
1517                 new_pindex = pi - backing_offset_index;
1518                 if (new_pindex >= object->size)
1519                         break;
1520
1521                 /*
1522                  * See if the parent has the page or if the parent's object
1523                  * pager has the page.  If the parent has the page but the page
1524                  * is not valid, the parent's object pager must have the page.
1525                  *
1526                  * If this fails, the parent does not completely shadow the
1527                  * object and we might as well give up now.
1528                  */
1529                 pp = vm_page_lookup(object, new_pindex);
1530                 if ((pp == NULL || pp->valid == 0) &&
1531                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1532                         return (false);
1533         }
1534         return (true);
1535 }
1536
1537 static bool
1538 vm_object_collapse_scan(vm_object_t object, int op)
1539 {
1540         vm_object_t backing_object;
1541         vm_page_t next, p, pp;
1542         vm_pindex_t backing_offset_index, new_pindex;
1543
1544         VM_OBJECT_ASSERT_WLOCKED(object);
1545         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1546
1547         backing_object = object->backing_object;
1548         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1549
1550         /*
1551          * Initial conditions
1552          */
1553         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1554                 vm_object_set_flag(backing_object, OBJ_DEAD);
1555
1556         /*
1557          * Our scan
1558          */
1559         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1560                 next = TAILQ_NEXT(p, listq);
1561                 new_pindex = p->pindex - backing_offset_index;
1562
1563                 /*
1564                  * Check for busy page
1565                  */
1566                 if (vm_page_busied(p)) {
1567                         next = vm_object_collapse_scan_wait(object, p, next, op);
1568                         continue;
1569                 }
1570
1571                 KASSERT(p->object == backing_object,
1572                     ("vm_object_collapse_scan: object mismatch"));
1573
1574                 if (p->pindex < backing_offset_index ||
1575                     new_pindex >= object->size) {
1576                         if (backing_object->type == OBJT_SWAP)
1577                                 swap_pager_freespace(backing_object, p->pindex,
1578                                     1);
1579
1580                         /*
1581                          * Page is out of the parent object's range, we can
1582                          * simply destroy it.
1583                          */
1584                         vm_page_lock(p);
1585                         KASSERT(!pmap_page_is_mapped(p),
1586                             ("freeing mapped page %p", p));
1587                         if (p->wire_count == 0)
1588                                 vm_page_free(p);
1589                         else
1590                                 vm_page_remove(p);
1591                         vm_page_unlock(p);
1592                         continue;
1593                 }
1594
1595                 pp = vm_page_lookup(object, new_pindex);
1596                 if (pp != NULL && vm_page_busied(pp)) {
1597                         /*
1598                          * The page in the parent is busy and possibly not
1599                          * (yet) valid.  Until its state is finalized by the
1600                          * busy bit owner, we can't tell whether it shadows the
1601                          * original page.  Therefore, we must either skip it
1602                          * and the original (backing_object) page or wait for
1603                          * its state to be finalized.
1604                          *
1605                          * This is due to a race with vm_fault() where we must
1606                          * unbusy the original (backing_obj) page before we can
1607                          * (re)lock the parent.  Hence we can get here.
1608                          */
1609                         next = vm_object_collapse_scan_wait(object, pp, next,
1610                             op);
1611                         continue;
1612                 }
1613
1614                 KASSERT(pp == NULL || pp->valid != 0,
1615                     ("unbusy invalid page %p", pp));
1616
1617                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1618                         NULL)) {
1619                         /*
1620                          * The page already exists in the parent OR swap exists
1621                          * for this location in the parent.  Leave the parent's
1622                          * page alone.  Destroy the original page from the
1623                          * backing object.
1624                          */
1625                         if (backing_object->type == OBJT_SWAP)
1626                                 swap_pager_freespace(backing_object, p->pindex,
1627                                     1);
1628                         vm_page_lock(p);
1629                         KASSERT(!pmap_page_is_mapped(p),
1630                             ("freeing mapped page %p", p));
1631                         if (p->wire_count == 0)
1632                                 vm_page_free(p);
1633                         else
1634                                 vm_page_remove(p);
1635                         vm_page_unlock(p);
1636                         continue;
1637                 }
1638
1639                 /*
1640                  * Page does not exist in parent, rename the page from the
1641                  * backing object to the main object.
1642                  *
1643                  * If the page was mapped to a process, it can remain mapped
1644                  * through the rename.  vm_page_rename() will dirty the page.
1645                  */
1646                 if (vm_page_rename(p, object, new_pindex)) {
1647                         next = vm_object_collapse_scan_wait(object, NULL, next,
1648                             op);
1649                         continue;
1650                 }
1651
1652                 /* Use the old pindex to free the right page. */
1653                 if (backing_object->type == OBJT_SWAP)
1654                         swap_pager_freespace(backing_object,
1655                             new_pindex + backing_offset_index, 1);
1656
1657 #if VM_NRESERVLEVEL > 0
1658                 /*
1659                  * Rename the reservation.
1660                  */
1661                 vm_reserv_rename(p, object, backing_object,
1662                     backing_offset_index);
1663 #endif
1664         }
1665         return (true);
1666 }
1667
1668
1669 /*
1670  * this version of collapse allows the operation to occur earlier and
1671  * when paging_in_progress is true for an object...  This is not a complete
1672  * operation, but should plug 99.9% of the rest of the leaks.
1673  */
1674 static void
1675 vm_object_qcollapse(vm_object_t object)
1676 {
1677         vm_object_t backing_object = object->backing_object;
1678
1679         VM_OBJECT_ASSERT_WLOCKED(object);
1680         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1681
1682         if (backing_object->ref_count != 1)
1683                 return;
1684
1685         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1686 }
1687
1688 /*
1689  *      vm_object_collapse:
1690  *
1691  *      Collapse an object with the object backing it.
1692  *      Pages in the backing object are moved into the
1693  *      parent, and the backing object is deallocated.
1694  */
1695 void
1696 vm_object_collapse(vm_object_t object)
1697 {
1698         vm_object_t backing_object, new_backing_object;
1699
1700         VM_OBJECT_ASSERT_WLOCKED(object);
1701
1702         while (TRUE) {
1703                 /*
1704                  * Verify that the conditions are right for collapse:
1705                  *
1706                  * The object exists and the backing object exists.
1707                  */
1708                 if ((backing_object = object->backing_object) == NULL)
1709                         break;
1710
1711                 /*
1712                  * we check the backing object first, because it is most likely
1713                  * not collapsable.
1714                  */
1715                 VM_OBJECT_WLOCK(backing_object);
1716                 if (backing_object->handle != NULL ||
1717                     (backing_object->type != OBJT_DEFAULT &&
1718                      backing_object->type != OBJT_SWAP) ||
1719                     (backing_object->flags & OBJ_DEAD) ||
1720                     object->handle != NULL ||
1721                     (object->type != OBJT_DEFAULT &&
1722                      object->type != OBJT_SWAP) ||
1723                     (object->flags & OBJ_DEAD)) {
1724                         VM_OBJECT_WUNLOCK(backing_object);
1725                         break;
1726                 }
1727
1728                 if (object->paging_in_progress != 0 ||
1729                     backing_object->paging_in_progress != 0) {
1730                         vm_object_qcollapse(object);
1731                         VM_OBJECT_WUNLOCK(backing_object);
1732                         break;
1733                 }
1734
1735                 /*
1736                  * We know that we can either collapse the backing object (if
1737                  * the parent is the only reference to it) or (perhaps) have
1738                  * the parent bypass the object if the parent happens to shadow
1739                  * all the resident pages in the entire backing object.
1740                  *
1741                  * This is ignoring pager-backed pages such as swap pages.
1742                  * vm_object_collapse_scan fails the shadowing test in this
1743                  * case.
1744                  */
1745                 if (backing_object->ref_count == 1) {
1746                         vm_object_pip_add(object, 1);
1747                         vm_object_pip_add(backing_object, 1);
1748
1749                         /*
1750                          * If there is exactly one reference to the backing
1751                          * object, we can collapse it into the parent.
1752                          */
1753                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1754
1755 #if VM_NRESERVLEVEL > 0
1756                         /*
1757                          * Break any reservations from backing_object.
1758                          */
1759                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1760                                 vm_reserv_break_all(backing_object);
1761 #endif
1762
1763                         /*
1764                          * Move the pager from backing_object to object.
1765                          */
1766                         if (backing_object->type == OBJT_SWAP) {
1767                                 /*
1768                                  * swap_pager_copy() can sleep, in which case
1769                                  * the backing_object's and object's locks are
1770                                  * released and reacquired.
1771                                  * Since swap_pager_copy() is being asked to
1772                                  * destroy the source, it will change the
1773                                  * backing_object's type to OBJT_DEFAULT.
1774                                  */
1775                                 swap_pager_copy(
1776                                     backing_object,
1777                                     object,
1778                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1779                         }
1780                         /*
1781                          * Object now shadows whatever backing_object did.
1782                          * Note that the reference to 
1783                          * backing_object->backing_object moves from within 
1784                          * backing_object to within object.
1785                          */
1786                         LIST_REMOVE(object, shadow_list);
1787                         backing_object->shadow_count--;
1788                         if (backing_object->backing_object) {
1789                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1790                                 LIST_REMOVE(backing_object, shadow_list);
1791                                 LIST_INSERT_HEAD(
1792                                     &backing_object->backing_object->shadow_head,
1793                                     object, shadow_list);
1794                                 /*
1795                                  * The shadow_count has not changed.
1796                                  */
1797                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1798                         }
1799                         object->backing_object = backing_object->backing_object;
1800                         object->backing_object_offset +=
1801                             backing_object->backing_object_offset;
1802
1803                         /*
1804                          * Discard backing_object.
1805                          *
1806                          * Since the backing object has no pages, no pager left,
1807                          * and no object references within it, all that is
1808                          * necessary is to dispose of it.
1809                          */
1810                         KASSERT(backing_object->ref_count == 1, (
1811 "backing_object %p was somehow re-referenced during collapse!",
1812                             backing_object));
1813                         vm_object_pip_wakeup(backing_object);
1814                         backing_object->type = OBJT_DEAD;
1815                         backing_object->ref_count = 0;
1816                         VM_OBJECT_WUNLOCK(backing_object);
1817                         vm_object_destroy(backing_object);
1818
1819                         vm_object_pip_wakeup(object);
1820                         object_collapses++;
1821                 } else {
1822                         /*
1823                          * If we do not entirely shadow the backing object,
1824                          * there is nothing we can do so we give up.
1825                          */
1826                         if (object->resident_page_count != object->size &&
1827                             !vm_object_scan_all_shadowed(object)) {
1828                                 VM_OBJECT_WUNLOCK(backing_object);
1829                                 break;
1830                         }
1831
1832                         /*
1833                          * Make the parent shadow the next object in the
1834                          * chain.  Deallocating backing_object will not remove
1835                          * it, since its reference count is at least 2.
1836                          */
1837                         LIST_REMOVE(object, shadow_list);
1838                         backing_object->shadow_count--;
1839
1840                         new_backing_object = backing_object->backing_object;
1841                         if ((object->backing_object = new_backing_object) != NULL) {
1842                                 VM_OBJECT_WLOCK(new_backing_object);
1843                                 LIST_INSERT_HEAD(
1844                                     &new_backing_object->shadow_head,
1845                                     object,
1846                                     shadow_list
1847                                 );
1848                                 new_backing_object->shadow_count++;
1849                                 vm_object_reference_locked(new_backing_object);
1850                                 VM_OBJECT_WUNLOCK(new_backing_object);
1851                                 object->backing_object_offset +=
1852                                         backing_object->backing_object_offset;
1853                         }
1854
1855                         /*
1856                          * Drop the reference count on backing_object. Since
1857                          * its ref_count was at least 2, it will not vanish.
1858                          */
1859                         backing_object->ref_count--;
1860                         VM_OBJECT_WUNLOCK(backing_object);
1861                         object_bypasses++;
1862                 }
1863
1864                 /*
1865                  * Try again with this object's new backing object.
1866                  */
1867         }
1868 }
1869
1870 /*
1871  *      vm_object_page_remove:
1872  *
1873  *      For the given object, either frees or invalidates each of the
1874  *      specified pages.  In general, a page is freed.  However, if a page is
1875  *      wired for any reason other than the existence of a managed, wired
1876  *      mapping, then it may be invalidated but not removed from the object.
1877  *      Pages are specified by the given range ["start", "end") and the option
1878  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1879  *      extends from "start" to the end of the object.  If the option
1880  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1881  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1882  *      specified, then the pages within the specified range must have no
1883  *      mappings.  Otherwise, if this option is not specified, any mappings to
1884  *      the specified pages are removed before the pages are freed or
1885  *      invalidated.
1886  *
1887  *      In general, this operation should only be performed on objects that
1888  *      contain managed pages.  There are, however, two exceptions.  First, it
1889  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1890  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1891  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1892  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1893  *
1894  *      The object must be locked.
1895  */
1896 void
1897 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1898     int options)
1899 {
1900         vm_page_t p, next;
1901
1902         VM_OBJECT_ASSERT_WLOCKED(object);
1903         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1904             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1905             ("vm_object_page_remove: illegal options for object %p", object));
1906         if (object->resident_page_count == 0)
1907                 return;
1908         vm_object_pip_add(object, 1);
1909 again:
1910         p = vm_page_find_least(object, start);
1911
1912         /*
1913          * Here, the variable "p" is either (1) the page with the least pindex
1914          * greater than or equal to the parameter "start" or (2) NULL. 
1915          */
1916         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1917                 next = TAILQ_NEXT(p, listq);
1918
1919                 /*
1920                  * If the page is wired for any reason besides the existence
1921                  * of managed, wired mappings, then it cannot be freed.  For
1922                  * example, fictitious pages, which represent device memory,
1923                  * are inherently wired and cannot be freed.  They can,
1924                  * however, be invalidated if the option OBJPR_CLEANONLY is
1925                  * not specified.
1926                  */
1927                 vm_page_lock(p);
1928                 if (vm_page_xbusied(p)) {
1929                         VM_OBJECT_WUNLOCK(object);
1930                         vm_page_busy_sleep(p, "vmopax", true);
1931                         VM_OBJECT_WLOCK(object);
1932                         goto again;
1933                 }
1934                 if (p->wire_count != 0) {
1935                         if ((options & OBJPR_NOTMAPPED) == 0)
1936                                 pmap_remove_all(p);
1937                         if ((options & OBJPR_CLEANONLY) == 0) {
1938                                 p->valid = 0;
1939                                 vm_page_undirty(p);
1940                         }
1941                         goto next;
1942                 }
1943                 if (vm_page_busied(p)) {
1944                         VM_OBJECT_WUNLOCK(object);
1945                         vm_page_busy_sleep(p, "vmopar", false);
1946                         VM_OBJECT_WLOCK(object);
1947                         goto again;
1948                 }
1949                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1950                     ("vm_object_page_remove: page %p is fictitious", p));
1951                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1952                         if ((options & OBJPR_NOTMAPPED) == 0)
1953                                 pmap_remove_write(p);
1954                         if (p->dirty)
1955                                 goto next;
1956                 }
1957                 if ((options & OBJPR_NOTMAPPED) == 0)
1958                         pmap_remove_all(p);
1959                 vm_page_free(p);
1960 next:
1961                 vm_page_unlock(p);
1962         }
1963         vm_object_pip_wakeup(object);
1964 }
1965
1966 /*
1967  *      vm_object_page_noreuse:
1968  *
1969  *      For the given object, attempt to move the specified pages to
1970  *      the head of the inactive queue.  This bypasses regular LRU
1971  *      operation and allows the pages to be reused quickly under memory
1972  *      pressure.  If a page is wired for any reason, then it will not
1973  *      be queued.  Pages are specified by the range ["start", "end").
1974  *      As a special case, if "end" is zero, then the range extends from
1975  *      "start" to the end of the object.
1976  *
1977  *      This operation should only be performed on objects that
1978  *      contain non-fictitious, managed pages.
1979  *
1980  *      The object must be locked.
1981  */
1982 void
1983 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1984 {
1985         struct mtx *mtx, *new_mtx;
1986         vm_page_t p, next;
1987
1988         VM_OBJECT_ASSERT_LOCKED(object);
1989         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1990             ("vm_object_page_noreuse: illegal object %p", object));
1991         if (object->resident_page_count == 0)
1992                 return;
1993         p = vm_page_find_least(object, start);
1994
1995         /*
1996          * Here, the variable "p" is either (1) the page with the least pindex
1997          * greater than or equal to the parameter "start" or (2) NULL. 
1998          */
1999         mtx = NULL;
2000         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2001                 next = TAILQ_NEXT(p, listq);
2002
2003                 /*
2004                  * Avoid releasing and reacquiring the same page lock.
2005                  */
2006                 new_mtx = vm_page_lockptr(p);
2007                 if (mtx != new_mtx) {
2008                         if (mtx != NULL)
2009                                 mtx_unlock(mtx);
2010                         mtx = new_mtx;
2011                         mtx_lock(mtx);
2012                 }
2013                 vm_page_deactivate_noreuse(p);
2014         }
2015         if (mtx != NULL)
2016                 mtx_unlock(mtx);
2017 }
2018
2019 /*
2020  *      Populate the specified range of the object with valid pages.  Returns
2021  *      TRUE if the range is successfully populated and FALSE otherwise.
2022  *
2023  *      Note: This function should be optimized to pass a larger array of
2024  *      pages to vm_pager_get_pages() before it is applied to a non-
2025  *      OBJT_DEVICE object.
2026  *
2027  *      The object must be locked.
2028  */
2029 boolean_t
2030 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2031 {
2032         vm_page_t m;
2033         vm_pindex_t pindex;
2034         int rv;
2035
2036         VM_OBJECT_ASSERT_WLOCKED(object);
2037         for (pindex = start; pindex < end; pindex++) {
2038                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2039                 if (m->valid != VM_PAGE_BITS_ALL) {
2040                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2041                         if (rv != VM_PAGER_OK) {
2042                                 vm_page_lock(m);
2043                                 vm_page_free(m);
2044                                 vm_page_unlock(m);
2045                                 break;
2046                         }
2047                 }
2048                 /*
2049                  * Keep "m" busy because a subsequent iteration may unlock
2050                  * the object.
2051                  */
2052         }
2053         if (pindex > start) {
2054                 m = vm_page_lookup(object, start);
2055                 while (m != NULL && m->pindex < pindex) {
2056                         vm_page_xunbusy(m);
2057                         m = TAILQ_NEXT(m, listq);
2058                 }
2059         }
2060         return (pindex == end);
2061 }
2062
2063 /*
2064  *      Routine:        vm_object_coalesce
2065  *      Function:       Coalesces two objects backing up adjoining
2066  *                      regions of memory into a single object.
2067  *
2068  *      returns TRUE if objects were combined.
2069  *
2070  *      NOTE:   Only works at the moment if the second object is NULL -
2071  *              if it's not, which object do we lock first?
2072  *
2073  *      Parameters:
2074  *              prev_object     First object to coalesce
2075  *              prev_offset     Offset into prev_object
2076  *              prev_size       Size of reference to prev_object
2077  *              next_size       Size of reference to the second object
2078  *              reserved        Indicator that extension region has
2079  *                              swap accounted for
2080  *
2081  *      Conditions:
2082  *      The object must *not* be locked.
2083  */
2084 boolean_t
2085 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2086     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2087 {
2088         vm_pindex_t next_pindex;
2089
2090         if (prev_object == NULL)
2091                 return (TRUE);
2092         VM_OBJECT_WLOCK(prev_object);
2093         if ((prev_object->type != OBJT_DEFAULT &&
2094             prev_object->type != OBJT_SWAP) ||
2095             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2096                 VM_OBJECT_WUNLOCK(prev_object);
2097                 return (FALSE);
2098         }
2099
2100         /*
2101          * Try to collapse the object first
2102          */
2103         vm_object_collapse(prev_object);
2104
2105         /*
2106          * Can't coalesce if: . more than one reference . paged out . shadows
2107          * another object . has a copy elsewhere (any of which mean that the
2108          * pages not mapped to prev_entry may be in use anyway)
2109          */
2110         if (prev_object->backing_object != NULL) {
2111                 VM_OBJECT_WUNLOCK(prev_object);
2112                 return (FALSE);
2113         }
2114
2115         prev_size >>= PAGE_SHIFT;
2116         next_size >>= PAGE_SHIFT;
2117         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2118
2119         if ((prev_object->ref_count > 1) &&
2120             (prev_object->size != next_pindex)) {
2121                 VM_OBJECT_WUNLOCK(prev_object);
2122                 return (FALSE);
2123         }
2124
2125         /*
2126          * Account for the charge.
2127          */
2128         if (prev_object->cred != NULL) {
2129
2130                 /*
2131                  * If prev_object was charged, then this mapping,
2132                  * although not charged now, may become writable
2133                  * later. Non-NULL cred in the object would prevent
2134                  * swap reservation during enabling of the write
2135                  * access, so reserve swap now. Failed reservation
2136                  * cause allocation of the separate object for the map
2137                  * entry, and swap reservation for this entry is
2138                  * managed in appropriate time.
2139                  */
2140                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2141                     prev_object->cred)) {
2142                         VM_OBJECT_WUNLOCK(prev_object);
2143                         return (FALSE);
2144                 }
2145                 prev_object->charge += ptoa(next_size);
2146         }
2147
2148         /*
2149          * Remove any pages that may still be in the object from a previous
2150          * deallocation.
2151          */
2152         if (next_pindex < prev_object->size) {
2153                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2154                     next_size, 0);
2155                 if (prev_object->type == OBJT_SWAP)
2156                         swap_pager_freespace(prev_object,
2157                                              next_pindex, next_size);
2158 #if 0
2159                 if (prev_object->cred != NULL) {
2160                         KASSERT(prev_object->charge >=
2161                             ptoa(prev_object->size - next_pindex),
2162                             ("object %p overcharged 1 %jx %jx", prev_object,
2163                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2164                         prev_object->charge -= ptoa(prev_object->size -
2165                             next_pindex);
2166                 }
2167 #endif
2168         }
2169
2170         /*
2171          * Extend the object if necessary.
2172          */
2173         if (next_pindex + next_size > prev_object->size)
2174                 prev_object->size = next_pindex + next_size;
2175
2176         VM_OBJECT_WUNLOCK(prev_object);
2177         return (TRUE);
2178 }
2179
2180 void
2181 vm_object_set_writeable_dirty(vm_object_t object)
2182 {
2183
2184         VM_OBJECT_ASSERT_WLOCKED(object);
2185         if (object->type != OBJT_VNODE) {
2186                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2187                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2188                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2189                 }
2190                 return;
2191         }
2192         object->generation++;
2193         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2194                 return;
2195         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2196 }
2197
2198 /*
2199  *      vm_object_unwire:
2200  *
2201  *      For each page offset within the specified range of the given object,
2202  *      find the highest-level page in the shadow chain and unwire it.  A page
2203  *      must exist at every page offset, and the highest-level page must be
2204  *      wired.
2205  */
2206 void
2207 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2208     uint8_t queue)
2209 {
2210         vm_object_t tobject;
2211         vm_page_t m, tm;
2212         vm_pindex_t end_pindex, pindex, tpindex;
2213         int depth, locked_depth;
2214
2215         KASSERT((offset & PAGE_MASK) == 0,
2216             ("vm_object_unwire: offset is not page aligned"));
2217         KASSERT((length & PAGE_MASK) == 0,
2218             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2219         /* The wired count of a fictitious page never changes. */
2220         if ((object->flags & OBJ_FICTITIOUS) != 0)
2221                 return;
2222         pindex = OFF_TO_IDX(offset);
2223         end_pindex = pindex + atop(length);
2224         locked_depth = 1;
2225         VM_OBJECT_RLOCK(object);
2226         m = vm_page_find_least(object, pindex);
2227         while (pindex < end_pindex) {
2228                 if (m == NULL || pindex < m->pindex) {
2229                         /*
2230                          * The first object in the shadow chain doesn't
2231                          * contain a page at the current index.  Therefore,
2232                          * the page must exist in a backing object.
2233                          */
2234                         tobject = object;
2235                         tpindex = pindex;
2236                         depth = 0;
2237                         do {
2238                                 tpindex +=
2239                                     OFF_TO_IDX(tobject->backing_object_offset);
2240                                 tobject = tobject->backing_object;
2241                                 KASSERT(tobject != NULL,
2242                                     ("vm_object_unwire: missing page"));
2243                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2244                                         goto next_page;
2245                                 depth++;
2246                                 if (depth == locked_depth) {
2247                                         locked_depth++;
2248                                         VM_OBJECT_RLOCK(tobject);
2249                                 }
2250                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2251                             NULL);
2252                 } else {
2253                         tm = m;
2254                         m = TAILQ_NEXT(m, listq);
2255                 }
2256                 vm_page_lock(tm);
2257                 vm_page_unwire(tm, queue);
2258                 vm_page_unlock(tm);
2259 next_page:
2260                 pindex++;
2261         }
2262         /* Release the accumulated object locks. */
2263         for (depth = 0; depth < locked_depth; depth++) {
2264                 tobject = object->backing_object;
2265                 VM_OBJECT_RUNLOCK(object);
2266                 object = tobject;
2267         }
2268 }
2269
2270 struct vnode *
2271 vm_object_vnode(vm_object_t object)
2272 {
2273
2274         VM_OBJECT_ASSERT_LOCKED(object);
2275         if (object->type == OBJT_VNODE)
2276                 return (object->handle);
2277         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2278                 return (object->un_pager.swp.swp_tmpfs);
2279         return (NULL);
2280 }
2281
2282 static int
2283 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2284 {
2285         struct kinfo_vmobject kvo;
2286         char *fullpath, *freepath;
2287         struct vnode *vp;
2288         struct vattr va;
2289         vm_object_t obj;
2290         vm_page_t m;
2291         int count, error;
2292
2293         if (req->oldptr == NULL) {
2294                 /*
2295                  * If an old buffer has not been provided, generate an
2296                  * estimate of the space needed for a subsequent call.
2297                  */
2298                 mtx_lock(&vm_object_list_mtx);
2299                 count = 0;
2300                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2301                         if (obj->type == OBJT_DEAD)
2302                                 continue;
2303                         count++;
2304                 }
2305                 mtx_unlock(&vm_object_list_mtx);
2306                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2307                     count * 11 / 10));
2308         }
2309
2310         error = 0;
2311
2312         /*
2313          * VM objects are type stable and are never removed from the
2314          * list once added.  This allows us to safely read obj->object_list
2315          * after reacquiring the VM object lock.
2316          */
2317         mtx_lock(&vm_object_list_mtx);
2318         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2319                 if (obj->type == OBJT_DEAD)
2320                         continue;
2321                 VM_OBJECT_RLOCK(obj);
2322                 if (obj->type == OBJT_DEAD) {
2323                         VM_OBJECT_RUNLOCK(obj);
2324                         continue;
2325                 }
2326                 mtx_unlock(&vm_object_list_mtx);
2327                 kvo.kvo_size = ptoa(obj->size);
2328                 kvo.kvo_resident = obj->resident_page_count;
2329                 kvo.kvo_ref_count = obj->ref_count;
2330                 kvo.kvo_shadow_count = obj->shadow_count;
2331                 kvo.kvo_memattr = obj->memattr;
2332                 kvo.kvo_active = 0;
2333                 kvo.kvo_inactive = 0;
2334                 TAILQ_FOREACH(m, &obj->memq, listq) {
2335                         /*
2336                          * A page may belong to the object but be
2337                          * dequeued and set to PQ_NONE while the
2338                          * object lock is not held.  This makes the
2339                          * reads of m->queue below racy, and we do not
2340                          * count pages set to PQ_NONE.  However, this
2341                          * sysctl is only meant to give an
2342                          * approximation of the system anyway.
2343                          */
2344                         if (vm_page_active(m))
2345                                 kvo.kvo_active++;
2346                         else if (vm_page_inactive(m))
2347                                 kvo.kvo_inactive++;
2348                 }
2349
2350                 kvo.kvo_vn_fileid = 0;
2351                 kvo.kvo_vn_fsid = 0;
2352                 freepath = NULL;
2353                 fullpath = "";
2354                 vp = NULL;
2355                 switch (obj->type) {
2356                 case OBJT_DEFAULT:
2357                         kvo.kvo_type = KVME_TYPE_DEFAULT;
2358                         break;
2359                 case OBJT_VNODE:
2360                         kvo.kvo_type = KVME_TYPE_VNODE;
2361                         vp = obj->handle;
2362                         vref(vp);
2363                         break;
2364                 case OBJT_SWAP:
2365                         kvo.kvo_type = KVME_TYPE_SWAP;
2366                         break;
2367                 case OBJT_DEVICE:
2368                         kvo.kvo_type = KVME_TYPE_DEVICE;
2369                         break;
2370                 case OBJT_PHYS:
2371                         kvo.kvo_type = KVME_TYPE_PHYS;
2372                         break;
2373                 case OBJT_DEAD:
2374                         kvo.kvo_type = KVME_TYPE_DEAD;
2375                         break;
2376                 case OBJT_SG:
2377                         kvo.kvo_type = KVME_TYPE_SG;
2378                         break;
2379                 case OBJT_MGTDEVICE:
2380                         kvo.kvo_type = KVME_TYPE_MGTDEVICE;
2381                         break;
2382                 default:
2383                         kvo.kvo_type = KVME_TYPE_UNKNOWN;
2384                         break;
2385                 }
2386                 VM_OBJECT_RUNLOCK(obj);
2387                 if (vp != NULL) {
2388                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2389                         vn_lock(vp, LK_SHARED | LK_RETRY);
2390                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2391                                 kvo.kvo_vn_fileid = va.va_fileid;
2392                                 kvo.kvo_vn_fsid = va.va_fsid;
2393                         }
2394                         vput(vp);
2395                 }
2396
2397                 strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
2398                 if (freepath != NULL)
2399                         free(freepath, M_TEMP);
2400
2401                 /* Pack record size down */
2402                 kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
2403                     strlen(kvo.kvo_path) + 1;
2404                 kvo.kvo_structsize = roundup(kvo.kvo_structsize,
2405                     sizeof(uint64_t));
2406                 error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
2407                 mtx_lock(&vm_object_list_mtx);
2408                 if (error)
2409                         break;
2410         }
2411         mtx_unlock(&vm_object_list_mtx);
2412         return (error);
2413 }
2414 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2415     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2416     "List of VM objects");
2417
2418 #include "opt_ddb.h"
2419 #ifdef DDB
2420 #include <sys/kernel.h>
2421
2422 #include <sys/cons.h>
2423
2424 #include <ddb/ddb.h>
2425
2426 static int
2427 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2428 {
2429         vm_map_t tmpm;
2430         vm_map_entry_t tmpe;
2431         vm_object_t obj;
2432         int entcount;
2433
2434         if (map == 0)
2435                 return 0;
2436
2437         if (entry == 0) {
2438                 tmpe = map->header.next;
2439                 entcount = map->nentries;
2440                 while (entcount-- && (tmpe != &map->header)) {
2441                         if (_vm_object_in_map(map, object, tmpe)) {
2442                                 return 1;
2443                         }
2444                         tmpe = tmpe->next;
2445                 }
2446         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2447                 tmpm = entry->object.sub_map;
2448                 tmpe = tmpm->header.next;
2449                 entcount = tmpm->nentries;
2450                 while (entcount-- && tmpe != &tmpm->header) {
2451                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2452                                 return 1;
2453                         }
2454                         tmpe = tmpe->next;
2455                 }
2456         } else if ((obj = entry->object.vm_object) != NULL) {
2457                 for (; obj; obj = obj->backing_object)
2458                         if (obj == object) {
2459                                 return 1;
2460                         }
2461         }
2462         return 0;
2463 }
2464
2465 static int
2466 vm_object_in_map(vm_object_t object)
2467 {
2468         struct proc *p;
2469
2470         /* sx_slock(&allproc_lock); */
2471         FOREACH_PROC_IN_SYSTEM(p) {
2472                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2473                         continue;
2474                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2475                         /* sx_sunlock(&allproc_lock); */
2476                         return 1;
2477                 }
2478         }
2479         /* sx_sunlock(&allproc_lock); */
2480         if (_vm_object_in_map(kernel_map, object, 0))
2481                 return 1;
2482         return 0;
2483 }
2484
2485 DB_SHOW_COMMAND(vmochk, vm_object_check)
2486 {
2487         vm_object_t object;
2488
2489         /*
2490          * make sure that internal objs are in a map somewhere
2491          * and none have zero ref counts.
2492          */
2493         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2494                 if (object->handle == NULL &&
2495                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2496                         if (object->ref_count == 0) {
2497                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2498                                         (long)object->size);
2499                         }
2500                         if (!vm_object_in_map(object)) {
2501                                 db_printf(
2502                         "vmochk: internal obj is not in a map: "
2503                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2504                                     object->ref_count, (u_long)object->size, 
2505                                     (u_long)object->size,
2506                                     (void *)object->backing_object);
2507                         }
2508                 }
2509         }
2510 }
2511
2512 /*
2513  *      vm_object_print:        [ debug ]
2514  */
2515 DB_SHOW_COMMAND(object, vm_object_print_static)
2516 {
2517         /* XXX convert args. */
2518         vm_object_t object = (vm_object_t)addr;
2519         boolean_t full = have_addr;
2520
2521         vm_page_t p;
2522
2523         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2524 #define count   was_count
2525
2526         int count;
2527
2528         if (object == NULL)
2529                 return;
2530
2531         db_iprintf(
2532             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2533             object, (int)object->type, (uintmax_t)object->size,
2534             object->resident_page_count, object->ref_count, object->flags,
2535             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2536         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2537             object->shadow_count, 
2538             object->backing_object ? object->backing_object->ref_count : 0,
2539             object->backing_object, (uintmax_t)object->backing_object_offset);
2540
2541         if (!full)
2542                 return;
2543
2544         db_indent += 2;
2545         count = 0;
2546         TAILQ_FOREACH(p, &object->memq, listq) {
2547                 if (count == 0)
2548                         db_iprintf("memory:=");
2549                 else if (count == 6) {
2550                         db_printf("\n");
2551                         db_iprintf(" ...");
2552                         count = 0;
2553                 } else
2554                         db_printf(",");
2555                 count++;
2556
2557                 db_printf("(off=0x%jx,page=0x%jx)",
2558                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2559         }
2560         if (count != 0)
2561                 db_printf("\n");
2562         db_indent -= 2;
2563 }
2564
2565 /* XXX. */
2566 #undef count
2567
2568 /* XXX need this non-static entry for calling from vm_map_print. */
2569 void
2570 vm_object_print(
2571         /* db_expr_t */ long addr,
2572         boolean_t have_addr,
2573         /* db_expr_t */ long count,
2574         char *modif)
2575 {
2576         vm_object_print_static(addr, have_addr, count, modif);
2577 }
2578
2579 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2580 {
2581         vm_object_t object;
2582         vm_pindex_t fidx;
2583         vm_paddr_t pa;
2584         vm_page_t m, prev_m;
2585         int rcount, nl, c;
2586
2587         nl = 0;
2588         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2589                 db_printf("new object: %p\n", (void *)object);
2590                 if (nl > 18) {
2591                         c = cngetc();
2592                         if (c != ' ')
2593                                 return;
2594                         nl = 0;
2595                 }
2596                 nl++;
2597                 rcount = 0;
2598                 fidx = 0;
2599                 pa = -1;
2600                 TAILQ_FOREACH(m, &object->memq, listq) {
2601                         if (m->pindex > 128)
2602                                 break;
2603                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2604                             prev_m->pindex + 1 != m->pindex) {
2605                                 if (rcount) {
2606                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2607                                                 (long)fidx, rcount, (long)pa);
2608                                         if (nl > 18) {
2609                                                 c = cngetc();
2610                                                 if (c != ' ')
2611                                                         return;
2612                                                 nl = 0;
2613                                         }
2614                                         nl++;
2615                                         rcount = 0;
2616                                 }
2617                         }                               
2618                         if (rcount &&
2619                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2620                                 ++rcount;
2621                                 continue;
2622                         }
2623                         if (rcount) {
2624                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2625                                         (long)fidx, rcount, (long)pa);
2626                                 if (nl > 18) {
2627                                         c = cngetc();
2628                                         if (c != ' ')
2629                                                 return;
2630                                         nl = 0;
2631                                 }
2632                                 nl++;
2633                         }
2634                         fidx = m->pindex;
2635                         pa = VM_PAGE_TO_PHYS(m);
2636                         rcount = 1;
2637                 }
2638                 if (rcount) {
2639                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2640                                 (long)fidx, rcount, (long)pa);
2641                         if (nl > 18) {
2642                                 c = cngetc();
2643                                 if (c != ' ')
2644                                         return;
2645                                 nl = 0;
2646                         }
2647                         nl++;
2648                 }
2649         }
2650 }
2651 #endif /* DDB */