]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Merge lldb trunk r366426, resolve conflicts, and update FREEBSD-Xlist.
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>           /* for curproc, pageproc */
83 #include <sys/refcount.h>
84 #include <sys/socket.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/user.h>
88 #include <sys/vnode.h>
89 #include <sys/vmmeter.h>
90 #include <sys/sx.h>
91
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_pager.h>
100 #include <vm/vm_phys.h>
101 #include <vm/vm_pagequeue.h>
102 #include <vm/swap_pager.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_extern.h>
105 #include <vm/vm_radix.h>
106 #include <vm/vm_reserv.h>
107 #include <vm/uma.h>
108
109 static int old_msync;
110 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
111     "Use old (insecure) msync behavior");
112
113 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
114                     int pagerflags, int flags, boolean_t *clearobjflags,
115                     boolean_t *eio);
116 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
117                     boolean_t *clearobjflags);
118 static void     vm_object_qcollapse(vm_object_t object);
119 static void     vm_object_vndeallocate(vm_object_t object);
120
121 /*
122  *      Virtual memory objects maintain the actual data
123  *      associated with allocated virtual memory.  A given
124  *      page of memory exists within exactly one object.
125  *
126  *      An object is only deallocated when all "references"
127  *      are given up.  Only one "reference" to a given
128  *      region of an object should be writeable.
129  *
130  *      Associated with each object is a list of all resident
131  *      memory pages belonging to that object; this list is
132  *      maintained by the "vm_page" module, and locked by the object's
133  *      lock.
134  *
135  *      Each object also records a "pager" routine which is
136  *      used to retrieve (and store) pages to the proper backing
137  *      storage.  In addition, objects may be backed by other
138  *      objects from which they were virtual-copied.
139  *
140  *      The only items within the object structure which are
141  *      modified after time of creation are:
142  *              reference count         locked by object's lock
143  *              pager routine           locked by object's lock
144  *
145  */
146
147 struct object_q vm_object_list;
148 struct mtx vm_object_list_mtx;  /* lock for object list and count */
149
150 struct vm_object kernel_object_store;
151
152 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
153     "VM object stats");
154
155 static counter_u64_t object_collapses = EARLY_COUNTER;
156 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
157     &object_collapses,
158     "VM object collapses");
159
160 static counter_u64_t object_bypasses = EARLY_COUNTER;
161 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
162     &object_bypasses,
163     "VM object bypasses");
164
165 static void
166 counter_startup(void)
167 {
168
169         object_collapses = counter_u64_alloc(M_WAITOK);
170         object_bypasses = counter_u64_alloc(M_WAITOK);
171 }
172 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
173
174 static uma_zone_t obj_zone;
175
176 static int vm_object_zinit(void *mem, int size, int flags);
177
178 #ifdef INVARIANTS
179 static void vm_object_zdtor(void *mem, int size, void *arg);
180
181 static void
182 vm_object_zdtor(void *mem, int size, void *arg)
183 {
184         vm_object_t object;
185
186         object = (vm_object_t)mem;
187         KASSERT(object->ref_count == 0,
188             ("object %p ref_count = %d", object, object->ref_count));
189         KASSERT(TAILQ_EMPTY(&object->memq),
190             ("object %p has resident pages in its memq", object));
191         KASSERT(vm_radix_is_empty(&object->rtree),
192             ("object %p has resident pages in its trie", object));
193 #if VM_NRESERVLEVEL > 0
194         KASSERT(LIST_EMPTY(&object->rvq),
195             ("object %p has reservations",
196             object));
197 #endif
198         KASSERT(object->paging_in_progress == 0,
199             ("object %p paging_in_progress = %d",
200             object, object->paging_in_progress));
201         KASSERT(object->resident_page_count == 0,
202             ("object %p resident_page_count = %d",
203             object, object->resident_page_count));
204         KASSERT(object->shadow_count == 0,
205             ("object %p shadow_count = %d",
206             object, object->shadow_count));
207         KASSERT(object->type == OBJT_DEAD,
208             ("object %p has non-dead type %d",
209             object, object->type));
210 }
211 #endif
212
213 static int
214 vm_object_zinit(void *mem, int size, int flags)
215 {
216         vm_object_t object;
217
218         object = (vm_object_t)mem;
219         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
220
221         /* These are true for any object that has been freed */
222         object->type = OBJT_DEAD;
223         object->ref_count = 0;
224         vm_radix_init(&object->rtree);
225         refcount_init(&object->paging_in_progress, 0);
226         object->resident_page_count = 0;
227         object->shadow_count = 0;
228         object->flags = OBJ_DEAD;
229
230         mtx_lock(&vm_object_list_mtx);
231         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
232         mtx_unlock(&vm_object_list_mtx);
233         return (0);
234 }
235
236 static void
237 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
238 {
239
240         TAILQ_INIT(&object->memq);
241         LIST_INIT(&object->shadow_head);
242
243         object->type = type;
244         if (type == OBJT_SWAP)
245                 pctrie_init(&object->un_pager.swp.swp_blks);
246
247         /*
248          * Ensure that swap_pager_swapoff() iteration over object_list
249          * sees up to date type and pctrie head if it observed
250          * non-dead object.
251          */
252         atomic_thread_fence_rel();
253
254         switch (type) {
255         case OBJT_DEAD:
256                 panic("_vm_object_allocate: can't create OBJT_DEAD");
257         case OBJT_DEFAULT:
258         case OBJT_SWAP:
259                 object->flags = OBJ_ONEMAPPING;
260                 break;
261         case OBJT_DEVICE:
262         case OBJT_SG:
263                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
264                 break;
265         case OBJT_MGTDEVICE:
266                 object->flags = OBJ_FICTITIOUS;
267                 break;
268         case OBJT_PHYS:
269                 object->flags = OBJ_UNMANAGED;
270                 break;
271         case OBJT_VNODE:
272                 object->flags = 0;
273                 break;
274         default:
275                 panic("_vm_object_allocate: type %d is undefined", type);
276         }
277         object->size = size;
278         object->domain.dr_policy = NULL;
279         object->generation = 1;
280         object->ref_count = 1;
281         object->memattr = VM_MEMATTR_DEFAULT;
282         object->cred = NULL;
283         object->charge = 0;
284         object->handle = NULL;
285         object->backing_object = NULL;
286         object->backing_object_offset = (vm_ooffset_t) 0;
287 #if VM_NRESERVLEVEL > 0
288         LIST_INIT(&object->rvq);
289 #endif
290         umtx_shm_object_init(object);
291 }
292
293 /*
294  *      vm_object_init:
295  *
296  *      Initialize the VM objects module.
297  */
298 void
299 vm_object_init(void)
300 {
301         TAILQ_INIT(&vm_object_list);
302         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
303         
304         rw_init(&kernel_object->lock, "kernel vm object");
305         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
306             VM_MIN_KERNEL_ADDRESS), kernel_object);
307 #if VM_NRESERVLEVEL > 0
308         kernel_object->flags |= OBJ_COLORED;
309         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
310 #endif
311
312         /*
313          * The lock portion of struct vm_object must be type stable due
314          * to vm_pageout_fallback_object_lock locking a vm object
315          * without holding any references to it.
316          */
317         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
318 #ifdef INVARIANTS
319             vm_object_zdtor,
320 #else
321             NULL,
322 #endif
323             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
324
325         vm_radix_zinit();
326 }
327
328 void
329 vm_object_clear_flag(vm_object_t object, u_short bits)
330 {
331
332         VM_OBJECT_ASSERT_WLOCKED(object);
333         object->flags &= ~bits;
334 }
335
336 /*
337  *      Sets the default memory attribute for the specified object.  Pages
338  *      that are allocated to this object are by default assigned this memory
339  *      attribute.
340  *
341  *      Presently, this function must be called before any pages are allocated
342  *      to the object.  In the future, this requirement may be relaxed for
343  *      "default" and "swap" objects.
344  */
345 int
346 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
347 {
348
349         VM_OBJECT_ASSERT_WLOCKED(object);
350         switch (object->type) {
351         case OBJT_DEFAULT:
352         case OBJT_DEVICE:
353         case OBJT_MGTDEVICE:
354         case OBJT_PHYS:
355         case OBJT_SG:
356         case OBJT_SWAP:
357         case OBJT_VNODE:
358                 if (!TAILQ_EMPTY(&object->memq))
359                         return (KERN_FAILURE);
360                 break;
361         case OBJT_DEAD:
362                 return (KERN_INVALID_ARGUMENT);
363         default:
364                 panic("vm_object_set_memattr: object %p is of undefined type",
365                     object);
366         }
367         object->memattr = memattr;
368         return (KERN_SUCCESS);
369 }
370
371 void
372 vm_object_pip_add(vm_object_t object, short i)
373 {
374
375         refcount_acquiren(&object->paging_in_progress, i);
376 }
377
378 void
379 vm_object_pip_wakeup(vm_object_t object)
380 {
381
382         refcount_release(&object->paging_in_progress);
383 }
384
385 void
386 vm_object_pip_wakeupn(vm_object_t object, short i)
387 {
388
389         refcount_releasen(&object->paging_in_progress, i);
390 }
391
392 void
393 vm_object_pip_wait(vm_object_t object, char *waitid)
394 {
395
396         VM_OBJECT_ASSERT_WLOCKED(object);
397
398         while (object->paging_in_progress) {
399                 VM_OBJECT_WUNLOCK(object);
400                 refcount_wait(&object->paging_in_progress, waitid, PVM);
401                 VM_OBJECT_WLOCK(object);
402         }
403 }
404
405 void
406 vm_object_pip_wait_unlocked(vm_object_t object, char *waitid)
407 {
408
409         VM_OBJECT_ASSERT_UNLOCKED(object);
410
411         while (object->paging_in_progress)
412                 refcount_wait(&object->paging_in_progress, waitid, PVM);
413 }
414
415 /*
416  *      vm_object_allocate:
417  *
418  *      Returns a new object with the given size.
419  */
420 vm_object_t
421 vm_object_allocate(objtype_t type, vm_pindex_t size)
422 {
423         vm_object_t object;
424
425         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
426         _vm_object_allocate(type, size, object);
427         return (object);
428 }
429
430
431 /*
432  *      vm_object_reference:
433  *
434  *      Gets another reference to the given object.  Note: OBJ_DEAD
435  *      objects can be referenced during final cleaning.
436  */
437 void
438 vm_object_reference(vm_object_t object)
439 {
440         if (object == NULL)
441                 return;
442         VM_OBJECT_WLOCK(object);
443         vm_object_reference_locked(object);
444         VM_OBJECT_WUNLOCK(object);
445 }
446
447 /*
448  *      vm_object_reference_locked:
449  *
450  *      Gets another reference to the given object.
451  *
452  *      The object must be locked.
453  */
454 void
455 vm_object_reference_locked(vm_object_t object)
456 {
457         struct vnode *vp;
458
459         VM_OBJECT_ASSERT_WLOCKED(object);
460         object->ref_count++;
461         if (object->type == OBJT_VNODE) {
462                 vp = object->handle;
463                 vref(vp);
464         }
465 }
466
467 /*
468  * Handle deallocating an object of type OBJT_VNODE.
469  */
470 static void
471 vm_object_vndeallocate(vm_object_t object)
472 {
473         struct vnode *vp = (struct vnode *) object->handle;
474
475         VM_OBJECT_ASSERT_WLOCKED(object);
476         KASSERT(object->type == OBJT_VNODE,
477             ("vm_object_vndeallocate: not a vnode object"));
478         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
479 #ifdef INVARIANTS
480         if (object->ref_count == 0) {
481                 vn_printf(vp, "vm_object_vndeallocate ");
482                 panic("vm_object_vndeallocate: bad object reference count");
483         }
484 #endif
485
486         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
487                 umtx_shm_object_terminated(object);
488
489         object->ref_count--;
490
491         /* vrele may need the vnode lock. */
492         VM_OBJECT_WUNLOCK(object);
493         vrele(vp);
494 }
495
496 /*
497  *      vm_object_deallocate:
498  *
499  *      Release a reference to the specified object,
500  *      gained either through a vm_object_allocate
501  *      or a vm_object_reference call.  When all references
502  *      are gone, storage associated with this object
503  *      may be relinquished.
504  *
505  *      No object may be locked.
506  */
507 void
508 vm_object_deallocate(vm_object_t object)
509 {
510         vm_object_t temp;
511         struct vnode *vp;
512
513         while (object != NULL) {
514                 VM_OBJECT_WLOCK(object);
515                 if (object->type == OBJT_VNODE) {
516                         vm_object_vndeallocate(object);
517                         return;
518                 }
519
520                 KASSERT(object->ref_count != 0,
521                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
522
523                 /*
524                  * If the reference count goes to 0 we start calling
525                  * vm_object_terminate() on the object chain.
526                  * A ref count of 1 may be a special case depending on the
527                  * shadow count being 0 or 1.
528                  */
529                 object->ref_count--;
530                 if (object->ref_count > 1) {
531                         VM_OBJECT_WUNLOCK(object);
532                         return;
533                 } else if (object->ref_count == 1) {
534                         if (object->type == OBJT_SWAP &&
535                             (object->flags & OBJ_TMPFS) != 0) {
536                                 vp = object->un_pager.swp.swp_tmpfs;
537                                 vhold(vp);
538                                 VM_OBJECT_WUNLOCK(object);
539                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
540                                 VM_OBJECT_WLOCK(object);
541                                 if (object->type == OBJT_DEAD ||
542                                     object->ref_count != 1) {
543                                         VM_OBJECT_WUNLOCK(object);
544                                         VOP_UNLOCK(vp, 0);
545                                         vdrop(vp);
546                                         return;
547                                 }
548                                 if ((object->flags & OBJ_TMPFS) != 0)
549                                         VOP_UNSET_TEXT(vp);
550                                 VOP_UNLOCK(vp, 0);
551                                 vdrop(vp);
552                         }
553                         if (object->shadow_count == 0 &&
554                             object->handle == NULL &&
555                             (object->type == OBJT_DEFAULT ||
556                             (object->type == OBJT_SWAP &&
557                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
558                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
559                         } else if ((object->shadow_count == 1) &&
560                             (object->handle == NULL) &&
561                             (object->type == OBJT_DEFAULT ||
562                              object->type == OBJT_SWAP)) {
563                                 vm_object_t robject;
564
565                                 robject = LIST_FIRST(&object->shadow_head);
566                                 KASSERT(robject != NULL,
567                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
568                                          object->ref_count,
569                                          object->shadow_count));
570                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
571                                     ("shadowed tmpfs v_object %p", object));
572                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
573                                         /*
574                                          * Avoid a potential deadlock.
575                                          */
576                                         object->ref_count++;
577                                         VM_OBJECT_WUNLOCK(object);
578                                         /*
579                                          * More likely than not the thread
580                                          * holding robject's lock has lower
581                                          * priority than the current thread.
582                                          * Let the lower priority thread run.
583                                          */
584                                         pause("vmo_de", 1);
585                                         continue;
586                                 }
587                                 /*
588                                  * Collapse object into its shadow unless its
589                                  * shadow is dead.  In that case, object will
590                                  * be deallocated by the thread that is
591                                  * deallocating its shadow.
592                                  */
593                                 if ((robject->flags & OBJ_DEAD) == 0 &&
594                                     (robject->handle == NULL) &&
595                                     (robject->type == OBJT_DEFAULT ||
596                                      robject->type == OBJT_SWAP)) {
597
598                                         robject->ref_count++;
599 retry:
600                                         if (robject->paging_in_progress) {
601                                                 VM_OBJECT_WUNLOCK(object);
602                                                 vm_object_pip_wait(robject,
603                                                     "objde1");
604                                                 temp = robject->backing_object;
605                                                 if (object == temp) {
606                                                         VM_OBJECT_WLOCK(object);
607                                                         goto retry;
608                                                 }
609                                         } else if (object->paging_in_progress) {
610                                                 VM_OBJECT_WUNLOCK(robject);
611                                                 VM_OBJECT_WUNLOCK(object);
612                                                 refcount_wait(
613                                                     &object->paging_in_progress,
614                                                     "objde2", PVM);
615                                                 VM_OBJECT_WLOCK(robject);
616                                                 temp = robject->backing_object;
617                                                 if (object == temp) {
618                                                         VM_OBJECT_WLOCK(object);
619                                                         goto retry;
620                                                 }
621                                         } else
622                                                 VM_OBJECT_WUNLOCK(object);
623
624                                         if (robject->ref_count == 1) {
625                                                 robject->ref_count--;
626                                                 object = robject;
627                                                 goto doterm;
628                                         }
629                                         object = robject;
630                                         vm_object_collapse(object);
631                                         VM_OBJECT_WUNLOCK(object);
632                                         continue;
633                                 }
634                                 VM_OBJECT_WUNLOCK(robject);
635                         }
636                         VM_OBJECT_WUNLOCK(object);
637                         return;
638                 }
639 doterm:
640                 umtx_shm_object_terminated(object);
641                 temp = object->backing_object;
642                 if (temp != NULL) {
643                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
644                             ("shadowed tmpfs v_object 2 %p", object));
645                         VM_OBJECT_WLOCK(temp);
646                         LIST_REMOVE(object, shadow_list);
647                         temp->shadow_count--;
648                         VM_OBJECT_WUNLOCK(temp);
649                         object->backing_object = NULL;
650                 }
651                 /*
652                  * Don't double-terminate, we could be in a termination
653                  * recursion due to the terminate having to sync data
654                  * to disk.
655                  */
656                 if ((object->flags & OBJ_DEAD) == 0)
657                         vm_object_terminate(object);
658                 else
659                         VM_OBJECT_WUNLOCK(object);
660                 object = temp;
661         }
662 }
663
664 /*
665  *      vm_object_destroy removes the object from the global object list
666  *      and frees the space for the object.
667  */
668 void
669 vm_object_destroy(vm_object_t object)
670 {
671
672         /*
673          * Release the allocation charge.
674          */
675         if (object->cred != NULL) {
676                 swap_release_by_cred(object->charge, object->cred);
677                 object->charge = 0;
678                 crfree(object->cred);
679                 object->cred = NULL;
680         }
681
682         /*
683          * Free the space for the object.
684          */
685         uma_zfree(obj_zone, object);
686 }
687
688 /*
689  *      vm_object_terminate_pages removes any remaining pageable pages
690  *      from the object and resets the object to an empty state.
691  */
692 static void
693 vm_object_terminate_pages(vm_object_t object)
694 {
695         vm_page_t p, p_next;
696         struct mtx *mtx;
697
698         VM_OBJECT_ASSERT_WLOCKED(object);
699
700         mtx = NULL;
701
702         /*
703          * Free any remaining pageable pages.  This also removes them from the
704          * paging queues.  However, don't free wired pages, just remove them
705          * from the object.  Rather than incrementally removing each page from
706          * the object, the page and object are reset to any empty state. 
707          */
708         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
709                 vm_page_assert_unbusied(p);
710                 if ((object->flags & OBJ_UNMANAGED) == 0)
711                         /*
712                          * vm_page_free_prep() only needs the page
713                          * lock for managed pages.
714                          */
715                         vm_page_change_lock(p, &mtx);
716                 p->object = NULL;
717                 if (vm_page_wired(p))
718                         continue;
719                 VM_CNT_INC(v_pfree);
720                 vm_page_free(p);
721         }
722         if (mtx != NULL)
723                 mtx_unlock(mtx);
724
725         /*
726          * If the object contained any pages, then reset it to an empty state.
727          * None of the object's fields, including "resident_page_count", were
728          * modified by the preceding loop.
729          */
730         if (object->resident_page_count != 0) {
731                 vm_radix_reclaim_allnodes(&object->rtree);
732                 TAILQ_INIT(&object->memq);
733                 object->resident_page_count = 0;
734                 if (object->type == OBJT_VNODE)
735                         vdrop(object->handle);
736         }
737 }
738
739 /*
740  *      vm_object_terminate actually destroys the specified object, freeing
741  *      up all previously used resources.
742  *
743  *      The object must be locked.
744  *      This routine may block.
745  */
746 void
747 vm_object_terminate(vm_object_t object)
748 {
749
750         VM_OBJECT_ASSERT_WLOCKED(object);
751
752         /*
753          * Make sure no one uses us.
754          */
755         vm_object_set_flag(object, OBJ_DEAD);
756
757         /*
758          * Clean and free the pages, as appropriate. All references to the
759          * object are gone, so we don't need to lock it.
760          */
761         if (object->type == OBJT_VNODE) {
762                 struct vnode *vp = (struct vnode *)object->handle;
763
764                 /*
765                  * Clean pages and flush buffers.
766                  */
767                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
768                 VM_OBJECT_WUNLOCK(object);
769
770                 vinvalbuf(vp, V_SAVE, 0, 0);
771
772                 BO_LOCK(&vp->v_bufobj);
773                 vp->v_bufobj.bo_flag |= BO_DEAD;
774                 BO_UNLOCK(&vp->v_bufobj);
775
776                 VM_OBJECT_WLOCK(object);
777         }
778
779         /*
780          * wait for the pageout daemon to be done with the object
781          */
782         vm_object_pip_wait(object, "objtrm");
783
784         KASSERT(!object->paging_in_progress,
785                 ("vm_object_terminate: pageout in progress"));
786
787         KASSERT(object->ref_count == 0, 
788                 ("vm_object_terminate: object with references, ref_count=%d",
789                 object->ref_count));
790
791         if ((object->flags & OBJ_PG_DTOR) == 0)
792                 vm_object_terminate_pages(object);
793
794 #if VM_NRESERVLEVEL > 0
795         if (__predict_false(!LIST_EMPTY(&object->rvq)))
796                 vm_reserv_break_all(object);
797 #endif
798
799         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
800             object->type == OBJT_SWAP,
801             ("%s: non-swap obj %p has cred", __func__, object));
802
803         /*
804          * Let the pager know object is dead.
805          */
806         vm_pager_deallocate(object);
807         VM_OBJECT_WUNLOCK(object);
808
809         vm_object_destroy(object);
810 }
811
812 /*
813  * Make the page read-only so that we can clear the object flags.  However, if
814  * this is a nosync mmap then the object is likely to stay dirty so do not
815  * mess with the page and do not clear the object flags.  Returns TRUE if the
816  * page should be flushed, and FALSE otherwise.
817  */
818 static boolean_t
819 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
820 {
821
822         /*
823          * If we have been asked to skip nosync pages and this is a
824          * nosync page, skip it.  Note that the object flags were not
825          * cleared in this case so we do not have to set them.
826          */
827         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
828                 *clearobjflags = FALSE;
829                 return (FALSE);
830         } else {
831                 pmap_remove_write(p);
832                 return (p->dirty != 0);
833         }
834 }
835
836 /*
837  *      vm_object_page_clean
838  *
839  *      Clean all dirty pages in the specified range of object.  Leaves page 
840  *      on whatever queue it is currently on.   If NOSYNC is set then do not
841  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
842  *      leaving the object dirty.
843  *
844  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
845  *      synchronous clustering mode implementation.
846  *
847  *      Odd semantics: if start == end, we clean everything.
848  *
849  *      The object must be locked.
850  *
851  *      Returns FALSE if some page from the range was not written, as
852  *      reported by the pager, and TRUE otherwise.
853  */
854 boolean_t
855 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
856     int flags)
857 {
858         vm_page_t np, p;
859         vm_pindex_t pi, tend, tstart;
860         int curgeneration, n, pagerflags;
861         boolean_t clearobjflags, eio, res;
862
863         VM_OBJECT_ASSERT_WLOCKED(object);
864
865         /*
866          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
867          * objects.  The check below prevents the function from
868          * operating on non-vnode objects.
869          */
870         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
871             object->resident_page_count == 0)
872                 return (TRUE);
873
874         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
875             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
876         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
877
878         tstart = OFF_TO_IDX(start);
879         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
880         clearobjflags = tstart == 0 && tend >= object->size;
881         res = TRUE;
882
883 rescan:
884         curgeneration = object->generation;
885
886         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
887                 pi = p->pindex;
888                 if (pi >= tend)
889                         break;
890                 np = TAILQ_NEXT(p, listq);
891                 if (p->valid == 0)
892                         continue;
893                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
894                         if (object->generation != curgeneration) {
895                                 if ((flags & OBJPC_SYNC) != 0)
896                                         goto rescan;
897                                 else
898                                         clearobjflags = FALSE;
899                         }
900                         np = vm_page_find_least(object, pi);
901                         continue;
902                 }
903                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
904                         continue;
905
906                 n = vm_object_page_collect_flush(object, p, pagerflags,
907                     flags, &clearobjflags, &eio);
908                 if (eio) {
909                         res = FALSE;
910                         clearobjflags = FALSE;
911                 }
912                 if (object->generation != curgeneration) {
913                         if ((flags & OBJPC_SYNC) != 0)
914                                 goto rescan;
915                         else
916                                 clearobjflags = FALSE;
917                 }
918
919                 /*
920                  * If the VOP_PUTPAGES() did a truncated write, so
921                  * that even the first page of the run is not fully
922                  * written, vm_pageout_flush() returns 0 as the run
923                  * length.  Since the condition that caused truncated
924                  * write may be permanent, e.g. exhausted free space,
925                  * accepting n == 0 would cause an infinite loop.
926                  *
927                  * Forwarding the iterator leaves the unwritten page
928                  * behind, but there is not much we can do there if
929                  * filesystem refuses to write it.
930                  */
931                 if (n == 0) {
932                         n = 1;
933                         clearobjflags = FALSE;
934                 }
935                 np = vm_page_find_least(object, pi + n);
936         }
937 #if 0
938         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
939 #endif
940
941         if (clearobjflags)
942                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
943         return (res);
944 }
945
946 static int
947 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
948     int flags, boolean_t *clearobjflags, boolean_t *eio)
949 {
950         vm_page_t ma[vm_pageout_page_count], p_first, tp;
951         int count, i, mreq, runlen;
952
953         vm_page_lock_assert(p, MA_NOTOWNED);
954         VM_OBJECT_ASSERT_WLOCKED(object);
955
956         count = 1;
957         mreq = 0;
958
959         for (tp = p; count < vm_pageout_page_count; count++) {
960                 tp = vm_page_next(tp);
961                 if (tp == NULL || vm_page_busied(tp))
962                         break;
963                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
964                         break;
965         }
966
967         for (p_first = p; count < vm_pageout_page_count; count++) {
968                 tp = vm_page_prev(p_first);
969                 if (tp == NULL || vm_page_busied(tp))
970                         break;
971                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
972                         break;
973                 p_first = tp;
974                 mreq++;
975         }
976
977         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
978                 ma[i] = tp;
979
980         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
981         return (runlen);
982 }
983
984 /*
985  * Note that there is absolutely no sense in writing out
986  * anonymous objects, so we track down the vnode object
987  * to write out.
988  * We invalidate (remove) all pages from the address space
989  * for semantic correctness.
990  *
991  * If the backing object is a device object with unmanaged pages, then any
992  * mappings to the specified range of pages must be removed before this
993  * function is called.
994  *
995  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
996  * may start out with a NULL object.
997  */
998 boolean_t
999 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1000     boolean_t syncio, boolean_t invalidate)
1001 {
1002         vm_object_t backing_object;
1003         struct vnode *vp;
1004         struct mount *mp;
1005         int error, flags, fsync_after;
1006         boolean_t res;
1007
1008         if (object == NULL)
1009                 return (TRUE);
1010         res = TRUE;
1011         error = 0;
1012         VM_OBJECT_WLOCK(object);
1013         while ((backing_object = object->backing_object) != NULL) {
1014                 VM_OBJECT_WLOCK(backing_object);
1015                 offset += object->backing_object_offset;
1016                 VM_OBJECT_WUNLOCK(object);
1017                 object = backing_object;
1018                 if (object->size < OFF_TO_IDX(offset + size))
1019                         size = IDX_TO_OFF(object->size) - offset;
1020         }
1021         /*
1022          * Flush pages if writing is allowed, invalidate them
1023          * if invalidation requested.  Pages undergoing I/O
1024          * will be ignored by vm_object_page_remove().
1025          *
1026          * We cannot lock the vnode and then wait for paging
1027          * to complete without deadlocking against vm_fault.
1028          * Instead we simply call vm_object_page_remove() and
1029          * allow it to block internally on a page-by-page
1030          * basis when it encounters pages undergoing async
1031          * I/O.
1032          */
1033         if (object->type == OBJT_VNODE &&
1034             (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1035             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1036                 VM_OBJECT_WUNLOCK(object);
1037                 (void) vn_start_write(vp, &mp, V_WAIT);
1038                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1039                 if (syncio && !invalidate && offset == 0 &&
1040                     atop(size) == object->size) {
1041                         /*
1042                          * If syncing the whole mapping of the file,
1043                          * it is faster to schedule all the writes in
1044                          * async mode, also allowing the clustering,
1045                          * and then wait for i/o to complete.
1046                          */
1047                         flags = 0;
1048                         fsync_after = TRUE;
1049                 } else {
1050                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1051                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1052                         fsync_after = FALSE;
1053                 }
1054                 VM_OBJECT_WLOCK(object);
1055                 res = vm_object_page_clean(object, offset, offset + size,
1056                     flags);
1057                 VM_OBJECT_WUNLOCK(object);
1058                 if (fsync_after)
1059                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1060                 VOP_UNLOCK(vp, 0);
1061                 vn_finished_write(mp);
1062                 if (error != 0)
1063                         res = FALSE;
1064                 VM_OBJECT_WLOCK(object);
1065         }
1066         if ((object->type == OBJT_VNODE ||
1067              object->type == OBJT_DEVICE) && invalidate) {
1068                 if (object->type == OBJT_DEVICE)
1069                         /*
1070                          * The option OBJPR_NOTMAPPED must be passed here
1071                          * because vm_object_page_remove() cannot remove
1072                          * unmanaged mappings.
1073                          */
1074                         flags = OBJPR_NOTMAPPED;
1075                 else if (old_msync)
1076                         flags = 0;
1077                 else
1078                         flags = OBJPR_CLEANONLY;
1079                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1080                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1081         }
1082         VM_OBJECT_WUNLOCK(object);
1083         return (res);
1084 }
1085
1086 /*
1087  * Determine whether the given advice can be applied to the object.  Advice is
1088  * not applied to unmanaged pages since they never belong to page queues, and
1089  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1090  * have been mapped at most once.
1091  */
1092 static bool
1093 vm_object_advice_applies(vm_object_t object, int advice)
1094 {
1095
1096         if ((object->flags & OBJ_UNMANAGED) != 0)
1097                 return (false);
1098         if (advice != MADV_FREE)
1099                 return (true);
1100         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1101             (object->flags & OBJ_ONEMAPPING) != 0);
1102 }
1103
1104 static void
1105 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1106     vm_size_t size)
1107 {
1108
1109         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1110                 swap_pager_freespace(object, pindex, size);
1111 }
1112
1113 /*
1114  *      vm_object_madvise:
1115  *
1116  *      Implements the madvise function at the object/page level.
1117  *
1118  *      MADV_WILLNEED   (any object)
1119  *
1120  *          Activate the specified pages if they are resident.
1121  *
1122  *      MADV_DONTNEED   (any object)
1123  *
1124  *          Deactivate the specified pages if they are resident.
1125  *
1126  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1127  *                       OBJ_ONEMAPPING only)
1128  *
1129  *          Deactivate and clean the specified pages if they are
1130  *          resident.  This permits the process to reuse the pages
1131  *          without faulting or the kernel to reclaim the pages
1132  *          without I/O.
1133  */
1134 void
1135 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1136     int advice)
1137 {
1138         vm_pindex_t tpindex;
1139         vm_object_t backing_object, tobject;
1140         vm_page_t m, tm;
1141
1142         if (object == NULL)
1143                 return;
1144
1145 relookup:
1146         VM_OBJECT_WLOCK(object);
1147         if (!vm_object_advice_applies(object, advice)) {
1148                 VM_OBJECT_WUNLOCK(object);
1149                 return;
1150         }
1151         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1152                 tobject = object;
1153
1154                 /*
1155                  * If the next page isn't resident in the top-level object, we
1156                  * need to search the shadow chain.  When applying MADV_FREE, we
1157                  * take care to release any swap space used to store
1158                  * non-resident pages.
1159                  */
1160                 if (m == NULL || pindex < m->pindex) {
1161                         /*
1162                          * Optimize a common case: if the top-level object has
1163                          * no backing object, we can skip over the non-resident
1164                          * range in constant time.
1165                          */
1166                         if (object->backing_object == NULL) {
1167                                 tpindex = (m != NULL && m->pindex < end) ?
1168                                     m->pindex : end;
1169                                 vm_object_madvise_freespace(object, advice,
1170                                     pindex, tpindex - pindex);
1171                                 if ((pindex = tpindex) == end)
1172                                         break;
1173                                 goto next_page;
1174                         }
1175
1176                         tpindex = pindex;
1177                         do {
1178                                 vm_object_madvise_freespace(tobject, advice,
1179                                     tpindex, 1);
1180                                 /*
1181                                  * Prepare to search the next object in the
1182                                  * chain.
1183                                  */
1184                                 backing_object = tobject->backing_object;
1185                                 if (backing_object == NULL)
1186                                         goto next_pindex;
1187                                 VM_OBJECT_WLOCK(backing_object);
1188                                 tpindex +=
1189                                     OFF_TO_IDX(tobject->backing_object_offset);
1190                                 if (tobject != object)
1191                                         VM_OBJECT_WUNLOCK(tobject);
1192                                 tobject = backing_object;
1193                                 if (!vm_object_advice_applies(tobject, advice))
1194                                         goto next_pindex;
1195                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1196                             NULL);
1197                 } else {
1198 next_page:
1199                         tm = m;
1200                         m = TAILQ_NEXT(m, listq);
1201                 }
1202
1203                 /*
1204                  * If the page is not in a normal state, skip it.
1205                  */
1206                 if (tm->valid != VM_PAGE_BITS_ALL)
1207                         goto next_pindex;
1208                 vm_page_lock(tm);
1209                 if (vm_page_wired(tm)) {
1210                         vm_page_unlock(tm);
1211                         goto next_pindex;
1212                 }
1213                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1214                     ("vm_object_madvise: page %p is fictitious", tm));
1215                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1216                     ("vm_object_madvise: page %p is not managed", tm));
1217                 if (vm_page_busied(tm)) {
1218                         if (object != tobject)
1219                                 VM_OBJECT_WUNLOCK(tobject);
1220                         VM_OBJECT_WUNLOCK(object);
1221                         if (advice == MADV_WILLNEED) {
1222                                 /*
1223                                  * Reference the page before unlocking and
1224                                  * sleeping so that the page daemon is less
1225                                  * likely to reclaim it.
1226                                  */
1227                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1228                         }
1229                         vm_page_busy_sleep(tm, "madvpo", false);
1230                         goto relookup;
1231                 }
1232                 vm_page_advise(tm, advice);
1233                 vm_page_unlock(tm);
1234                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1235 next_pindex:
1236                 if (tobject != object)
1237                         VM_OBJECT_WUNLOCK(tobject);
1238         }
1239         VM_OBJECT_WUNLOCK(object);
1240 }
1241
1242 /*
1243  *      vm_object_shadow:
1244  *
1245  *      Create a new object which is backed by the
1246  *      specified existing object range.  The source
1247  *      object reference is deallocated.
1248  *
1249  *      The new object and offset into that object
1250  *      are returned in the source parameters.
1251  */
1252 void
1253 vm_object_shadow(
1254         vm_object_t *object,    /* IN/OUT */
1255         vm_ooffset_t *offset,   /* IN/OUT */
1256         vm_size_t length)
1257 {
1258         vm_object_t source;
1259         vm_object_t result;
1260
1261         source = *object;
1262
1263         /*
1264          * Don't create the new object if the old object isn't shared.
1265          */
1266         if (source != NULL) {
1267                 VM_OBJECT_WLOCK(source);
1268                 if (source->ref_count == 1 &&
1269                     source->handle == NULL &&
1270                     (source->type == OBJT_DEFAULT ||
1271                      source->type == OBJT_SWAP)) {
1272                         VM_OBJECT_WUNLOCK(source);
1273                         return;
1274                 }
1275                 VM_OBJECT_WUNLOCK(source);
1276         }
1277
1278         /*
1279          * Allocate a new object with the given length.
1280          */
1281         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1282
1283         /*
1284          * The new object shadows the source object, adding a reference to it.
1285          * Our caller changes his reference to point to the new object,
1286          * removing a reference to the source object.  Net result: no change
1287          * of reference count.
1288          *
1289          * Try to optimize the result object's page color when shadowing
1290          * in order to maintain page coloring consistency in the combined 
1291          * shadowed object.
1292          */
1293         result->backing_object = source;
1294         /*
1295          * Store the offset into the source object, and fix up the offset into
1296          * the new object.
1297          */
1298         result->backing_object_offset = *offset;
1299         if (source != NULL) {
1300                 VM_OBJECT_WLOCK(source);
1301                 result->domain = source->domain;
1302                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1303                 source->shadow_count++;
1304 #if VM_NRESERVLEVEL > 0
1305                 result->flags |= source->flags & OBJ_COLORED;
1306                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1307                     ((1 << (VM_NFREEORDER - 1)) - 1);
1308 #endif
1309                 VM_OBJECT_WUNLOCK(source);
1310         }
1311
1312
1313         /*
1314          * Return the new things
1315          */
1316         *offset = 0;
1317         *object = result;
1318 }
1319
1320 /*
1321  *      vm_object_split:
1322  *
1323  * Split the pages in a map entry into a new object.  This affords
1324  * easier removal of unused pages, and keeps object inheritance from
1325  * being a negative impact on memory usage.
1326  */
1327 void
1328 vm_object_split(vm_map_entry_t entry)
1329 {
1330         vm_page_t m, m_next;
1331         vm_object_t orig_object, new_object, source;
1332         vm_pindex_t idx, offidxstart;
1333         vm_size_t size;
1334
1335         orig_object = entry->object.vm_object;
1336         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1337                 return;
1338         if (orig_object->ref_count <= 1)
1339                 return;
1340         VM_OBJECT_WUNLOCK(orig_object);
1341
1342         offidxstart = OFF_TO_IDX(entry->offset);
1343         size = atop(entry->end - entry->start);
1344
1345         /*
1346          * If swap_pager_copy() is later called, it will convert new_object
1347          * into a swap object.
1348          */
1349         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1350
1351         /*
1352          * At this point, the new object is still private, so the order in
1353          * which the original and new objects are locked does not matter.
1354          */
1355         VM_OBJECT_WLOCK(new_object);
1356         VM_OBJECT_WLOCK(orig_object);
1357         new_object->domain = orig_object->domain;
1358         source = orig_object->backing_object;
1359         if (source != NULL) {
1360                 VM_OBJECT_WLOCK(source);
1361                 if ((source->flags & OBJ_DEAD) != 0) {
1362                         VM_OBJECT_WUNLOCK(source);
1363                         VM_OBJECT_WUNLOCK(orig_object);
1364                         VM_OBJECT_WUNLOCK(new_object);
1365                         vm_object_deallocate(new_object);
1366                         VM_OBJECT_WLOCK(orig_object);
1367                         return;
1368                 }
1369                 LIST_INSERT_HEAD(&source->shadow_head,
1370                                   new_object, shadow_list);
1371                 source->shadow_count++;
1372                 vm_object_reference_locked(source);     /* for new_object */
1373                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1374                 VM_OBJECT_WUNLOCK(source);
1375                 new_object->backing_object_offset = 
1376                         orig_object->backing_object_offset + entry->offset;
1377                 new_object->backing_object = source;
1378         }
1379         if (orig_object->cred != NULL) {
1380                 new_object->cred = orig_object->cred;
1381                 crhold(orig_object->cred);
1382                 new_object->charge = ptoa(size);
1383                 KASSERT(orig_object->charge >= ptoa(size),
1384                     ("orig_object->charge < 0"));
1385                 orig_object->charge -= ptoa(size);
1386         }
1387 retry:
1388         m = vm_page_find_least(orig_object, offidxstart);
1389         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1390             m = m_next) {
1391                 m_next = TAILQ_NEXT(m, listq);
1392
1393                 /*
1394                  * We must wait for pending I/O to complete before we can
1395                  * rename the page.
1396                  *
1397                  * We do not have to VM_PROT_NONE the page as mappings should
1398                  * not be changed by this operation.
1399                  */
1400                 if (vm_page_busied(m)) {
1401                         VM_OBJECT_WUNLOCK(new_object);
1402                         vm_page_lock(m);
1403                         VM_OBJECT_WUNLOCK(orig_object);
1404                         vm_page_busy_sleep(m, "spltwt", false);
1405                         VM_OBJECT_WLOCK(orig_object);
1406                         VM_OBJECT_WLOCK(new_object);
1407                         goto retry;
1408                 }
1409
1410                 /* vm_page_rename() will dirty the page. */
1411                 if (vm_page_rename(m, new_object, idx)) {
1412                         VM_OBJECT_WUNLOCK(new_object);
1413                         VM_OBJECT_WUNLOCK(orig_object);
1414                         vm_radix_wait();
1415                         VM_OBJECT_WLOCK(orig_object);
1416                         VM_OBJECT_WLOCK(new_object);
1417                         goto retry;
1418                 }
1419 #if VM_NRESERVLEVEL > 0
1420                 /*
1421                  * If some of the reservation's allocated pages remain with
1422                  * the original object, then transferring the reservation to
1423                  * the new object is neither particularly beneficial nor
1424                  * particularly harmful as compared to leaving the reservation
1425                  * with the original object.  If, however, all of the
1426                  * reservation's allocated pages are transferred to the new
1427                  * object, then transferring the reservation is typically
1428                  * beneficial.  Determining which of these two cases applies
1429                  * would be more costly than unconditionally renaming the
1430                  * reservation.
1431                  */
1432                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1433 #endif
1434                 if (orig_object->type == OBJT_SWAP)
1435                         vm_page_xbusy(m);
1436         }
1437         if (orig_object->type == OBJT_SWAP) {
1438                 /*
1439                  * swap_pager_copy() can sleep, in which case the orig_object's
1440                  * and new_object's locks are released and reacquired. 
1441                  */
1442                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1443                 TAILQ_FOREACH(m, &new_object->memq, listq)
1444                         vm_page_xunbusy(m);
1445         }
1446         VM_OBJECT_WUNLOCK(orig_object);
1447         VM_OBJECT_WUNLOCK(new_object);
1448         entry->object.vm_object = new_object;
1449         entry->offset = 0LL;
1450         vm_object_deallocate(orig_object);
1451         VM_OBJECT_WLOCK(new_object);
1452 }
1453
1454 #define OBSC_COLLAPSE_NOWAIT    0x0002
1455 #define OBSC_COLLAPSE_WAIT      0x0004
1456
1457 static vm_page_t
1458 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1459     int op)
1460 {
1461         vm_object_t backing_object;
1462
1463         VM_OBJECT_ASSERT_WLOCKED(object);
1464         backing_object = object->backing_object;
1465         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1466
1467         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1468         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1469             ("invalid ownership %p %p %p", p, object, backing_object));
1470         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1471                 return (next);
1472         if (p != NULL)
1473                 vm_page_lock(p);
1474         VM_OBJECT_WUNLOCK(object);
1475         VM_OBJECT_WUNLOCK(backing_object);
1476         /* The page is only NULL when rename fails. */
1477         if (p == NULL)
1478                 vm_radix_wait();
1479         else
1480                 vm_page_busy_sleep(p, "vmocol", false);
1481         VM_OBJECT_WLOCK(object);
1482         VM_OBJECT_WLOCK(backing_object);
1483         return (TAILQ_FIRST(&backing_object->memq));
1484 }
1485
1486 static bool
1487 vm_object_scan_all_shadowed(vm_object_t object)
1488 {
1489         vm_object_t backing_object;
1490         vm_page_t p, pp;
1491         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1492
1493         VM_OBJECT_ASSERT_WLOCKED(object);
1494         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1495
1496         backing_object = object->backing_object;
1497
1498         if (backing_object->type != OBJT_DEFAULT &&
1499             backing_object->type != OBJT_SWAP)
1500                 return (false);
1501
1502         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1503         p = vm_page_find_least(backing_object, pi);
1504         ps = swap_pager_find_least(backing_object, pi);
1505
1506         /*
1507          * Only check pages inside the parent object's range and
1508          * inside the parent object's mapping of the backing object.
1509          */
1510         for (;; pi++) {
1511                 if (p != NULL && p->pindex < pi)
1512                         p = TAILQ_NEXT(p, listq);
1513                 if (ps < pi)
1514                         ps = swap_pager_find_least(backing_object, pi);
1515                 if (p == NULL && ps >= backing_object->size)
1516                         break;
1517                 else if (p == NULL)
1518                         pi = ps;
1519                 else
1520                         pi = MIN(p->pindex, ps);
1521
1522                 new_pindex = pi - backing_offset_index;
1523                 if (new_pindex >= object->size)
1524                         break;
1525
1526                 /*
1527                  * See if the parent has the page or if the parent's object
1528                  * pager has the page.  If the parent has the page but the page
1529                  * is not valid, the parent's object pager must have the page.
1530                  *
1531                  * If this fails, the parent does not completely shadow the
1532                  * object and we might as well give up now.
1533                  */
1534                 pp = vm_page_lookup(object, new_pindex);
1535                 if ((pp == NULL || pp->valid == 0) &&
1536                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1537                         return (false);
1538         }
1539         return (true);
1540 }
1541
1542 static bool
1543 vm_object_collapse_scan(vm_object_t object, int op)
1544 {
1545         vm_object_t backing_object;
1546         vm_page_t next, p, pp;
1547         vm_pindex_t backing_offset_index, new_pindex;
1548
1549         VM_OBJECT_ASSERT_WLOCKED(object);
1550         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1551
1552         backing_object = object->backing_object;
1553         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1554
1555         /*
1556          * Initial conditions
1557          */
1558         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1559                 vm_object_set_flag(backing_object, OBJ_DEAD);
1560
1561         /*
1562          * Our scan
1563          */
1564         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1565                 next = TAILQ_NEXT(p, listq);
1566                 new_pindex = p->pindex - backing_offset_index;
1567
1568                 /*
1569                  * Check for busy page
1570                  */
1571                 if (vm_page_busied(p)) {
1572                         next = vm_object_collapse_scan_wait(object, p, next, op);
1573                         continue;
1574                 }
1575
1576                 KASSERT(p->object == backing_object,
1577                     ("vm_object_collapse_scan: object mismatch"));
1578
1579                 if (p->pindex < backing_offset_index ||
1580                     new_pindex >= object->size) {
1581                         if (backing_object->type == OBJT_SWAP)
1582                                 swap_pager_freespace(backing_object, p->pindex,
1583                                     1);
1584
1585                         /*
1586                          * Page is out of the parent object's range, we can
1587                          * simply destroy it.
1588                          */
1589                         vm_page_lock(p);
1590                         KASSERT(!pmap_page_is_mapped(p),
1591                             ("freeing mapped page %p", p));
1592                         if (vm_page_remove(p))
1593                                 vm_page_free(p);
1594                         vm_page_unlock(p);
1595                         continue;
1596                 }
1597
1598                 pp = vm_page_lookup(object, new_pindex);
1599                 if (pp != NULL && vm_page_busied(pp)) {
1600                         /*
1601                          * The page in the parent is busy and possibly not
1602                          * (yet) valid.  Until its state is finalized by the
1603                          * busy bit owner, we can't tell whether it shadows the
1604                          * original page.  Therefore, we must either skip it
1605                          * and the original (backing_object) page or wait for
1606                          * its state to be finalized.
1607                          *
1608                          * This is due to a race with vm_fault() where we must
1609                          * unbusy the original (backing_obj) page before we can
1610                          * (re)lock the parent.  Hence we can get here.
1611                          */
1612                         next = vm_object_collapse_scan_wait(object, pp, next,
1613                             op);
1614                         continue;
1615                 }
1616
1617                 KASSERT(pp == NULL || pp->valid != 0,
1618                     ("unbusy invalid page %p", pp));
1619
1620                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1621                         NULL)) {
1622                         /*
1623                          * The page already exists in the parent OR swap exists
1624                          * for this location in the parent.  Leave the parent's
1625                          * page alone.  Destroy the original page from the
1626                          * backing object.
1627                          */
1628                         if (backing_object->type == OBJT_SWAP)
1629                                 swap_pager_freespace(backing_object, p->pindex,
1630                                     1);
1631                         vm_page_lock(p);
1632                         KASSERT(!pmap_page_is_mapped(p),
1633                             ("freeing mapped page %p", p));
1634                         if (vm_page_remove(p))
1635                                 vm_page_free(p);
1636                         vm_page_unlock(p);
1637                         continue;
1638                 }
1639
1640                 /*
1641                  * Page does not exist in parent, rename the page from the
1642                  * backing object to the main object.
1643                  *
1644                  * If the page was mapped to a process, it can remain mapped
1645                  * through the rename.  vm_page_rename() will dirty the page.
1646                  */
1647                 if (vm_page_rename(p, object, new_pindex)) {
1648                         next = vm_object_collapse_scan_wait(object, NULL, next,
1649                             op);
1650                         continue;
1651                 }
1652
1653                 /* Use the old pindex to free the right page. */
1654                 if (backing_object->type == OBJT_SWAP)
1655                         swap_pager_freespace(backing_object,
1656                             new_pindex + backing_offset_index, 1);
1657
1658 #if VM_NRESERVLEVEL > 0
1659                 /*
1660                  * Rename the reservation.
1661                  */
1662                 vm_reserv_rename(p, object, backing_object,
1663                     backing_offset_index);
1664 #endif
1665         }
1666         return (true);
1667 }
1668
1669
1670 /*
1671  * this version of collapse allows the operation to occur earlier and
1672  * when paging_in_progress is true for an object...  This is not a complete
1673  * operation, but should plug 99.9% of the rest of the leaks.
1674  */
1675 static void
1676 vm_object_qcollapse(vm_object_t object)
1677 {
1678         vm_object_t backing_object = object->backing_object;
1679
1680         VM_OBJECT_ASSERT_WLOCKED(object);
1681         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1682
1683         if (backing_object->ref_count != 1)
1684                 return;
1685
1686         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1687 }
1688
1689 /*
1690  *      vm_object_collapse:
1691  *
1692  *      Collapse an object with the object backing it.
1693  *      Pages in the backing object are moved into the
1694  *      parent, and the backing object is deallocated.
1695  */
1696 void
1697 vm_object_collapse(vm_object_t object)
1698 {
1699         vm_object_t backing_object, new_backing_object;
1700
1701         VM_OBJECT_ASSERT_WLOCKED(object);
1702
1703         while (TRUE) {
1704                 /*
1705                  * Verify that the conditions are right for collapse:
1706                  *
1707                  * The object exists and the backing object exists.
1708                  */
1709                 if ((backing_object = object->backing_object) == NULL)
1710                         break;
1711
1712                 /*
1713                  * we check the backing object first, because it is most likely
1714                  * not collapsable.
1715                  */
1716                 VM_OBJECT_WLOCK(backing_object);
1717                 if (backing_object->handle != NULL ||
1718                     (backing_object->type != OBJT_DEFAULT &&
1719                     backing_object->type != OBJT_SWAP) ||
1720                     (backing_object->flags & (OBJ_DEAD | OBJ_NOSPLIT)) != 0 ||
1721                     object->handle != NULL ||
1722                     (object->type != OBJT_DEFAULT &&
1723                      object->type != OBJT_SWAP) ||
1724                     (object->flags & OBJ_DEAD)) {
1725                         VM_OBJECT_WUNLOCK(backing_object);
1726                         break;
1727                 }
1728
1729                 if (object->paging_in_progress != 0 ||
1730                     backing_object->paging_in_progress != 0) {
1731                         vm_object_qcollapse(object);
1732                         VM_OBJECT_WUNLOCK(backing_object);
1733                         break;
1734                 }
1735
1736                 /*
1737                  * We know that we can either collapse the backing object (if
1738                  * the parent is the only reference to it) or (perhaps) have
1739                  * the parent bypass the object if the parent happens to shadow
1740                  * all the resident pages in the entire backing object.
1741                  *
1742                  * This is ignoring pager-backed pages such as swap pages.
1743                  * vm_object_collapse_scan fails the shadowing test in this
1744                  * case.
1745                  */
1746                 if (backing_object->ref_count == 1) {
1747                         vm_object_pip_add(object, 1);
1748                         vm_object_pip_add(backing_object, 1);
1749
1750                         /*
1751                          * If there is exactly one reference to the backing
1752                          * object, we can collapse it into the parent.
1753                          */
1754                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1755
1756 #if VM_NRESERVLEVEL > 0
1757                         /*
1758                          * Break any reservations from backing_object.
1759                          */
1760                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1761                                 vm_reserv_break_all(backing_object);
1762 #endif
1763
1764                         /*
1765                          * Move the pager from backing_object to object.
1766                          */
1767                         if (backing_object->type == OBJT_SWAP) {
1768                                 /*
1769                                  * swap_pager_copy() can sleep, in which case
1770                                  * the backing_object's and object's locks are
1771                                  * released and reacquired.
1772                                  * Since swap_pager_copy() is being asked to
1773                                  * destroy the source, it will change the
1774                                  * backing_object's type to OBJT_DEFAULT.
1775                                  */
1776                                 swap_pager_copy(
1777                                     backing_object,
1778                                     object,
1779                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1780                         }
1781                         /*
1782                          * Object now shadows whatever backing_object did.
1783                          * Note that the reference to 
1784                          * backing_object->backing_object moves from within 
1785                          * backing_object to within object.
1786                          */
1787                         LIST_REMOVE(object, shadow_list);
1788                         backing_object->shadow_count--;
1789                         if (backing_object->backing_object) {
1790                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1791                                 LIST_REMOVE(backing_object, shadow_list);
1792                                 LIST_INSERT_HEAD(
1793                                     &backing_object->backing_object->shadow_head,
1794                                     object, shadow_list);
1795                                 /*
1796                                  * The shadow_count has not changed.
1797                                  */
1798                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1799                         }
1800                         object->backing_object = backing_object->backing_object;
1801                         object->backing_object_offset +=
1802                             backing_object->backing_object_offset;
1803
1804                         /*
1805                          * Discard backing_object.
1806                          *
1807                          * Since the backing object has no pages, no pager left,
1808                          * and no object references within it, all that is
1809                          * necessary is to dispose of it.
1810                          */
1811                         KASSERT(backing_object->ref_count == 1, (
1812 "backing_object %p was somehow re-referenced during collapse!",
1813                             backing_object));
1814                         vm_object_pip_wakeup(backing_object);
1815                         backing_object->type = OBJT_DEAD;
1816                         backing_object->ref_count = 0;
1817                         VM_OBJECT_WUNLOCK(backing_object);
1818                         vm_object_destroy(backing_object);
1819
1820                         vm_object_pip_wakeup(object);
1821                         counter_u64_add(object_collapses, 1);
1822                 } else {
1823                         /*
1824                          * If we do not entirely shadow the backing object,
1825                          * there is nothing we can do so we give up.
1826                          */
1827                         if (object->resident_page_count != object->size &&
1828                             !vm_object_scan_all_shadowed(object)) {
1829                                 VM_OBJECT_WUNLOCK(backing_object);
1830                                 break;
1831                         }
1832
1833                         /*
1834                          * Make the parent shadow the next object in the
1835                          * chain.  Deallocating backing_object will not remove
1836                          * it, since its reference count is at least 2.
1837                          */
1838                         LIST_REMOVE(object, shadow_list);
1839                         backing_object->shadow_count--;
1840
1841                         new_backing_object = backing_object->backing_object;
1842                         if ((object->backing_object = new_backing_object) != NULL) {
1843                                 VM_OBJECT_WLOCK(new_backing_object);
1844                                 LIST_INSERT_HEAD(
1845                                     &new_backing_object->shadow_head,
1846                                     object,
1847                                     shadow_list
1848                                 );
1849                                 new_backing_object->shadow_count++;
1850                                 vm_object_reference_locked(new_backing_object);
1851                                 VM_OBJECT_WUNLOCK(new_backing_object);
1852                                 object->backing_object_offset +=
1853                                         backing_object->backing_object_offset;
1854                         }
1855
1856                         /*
1857                          * Drop the reference count on backing_object. Since
1858                          * its ref_count was at least 2, it will not vanish.
1859                          */
1860                         backing_object->ref_count--;
1861                         VM_OBJECT_WUNLOCK(backing_object);
1862                         counter_u64_add(object_bypasses, 1);
1863                 }
1864
1865                 /*
1866                  * Try again with this object's new backing object.
1867                  */
1868         }
1869 }
1870
1871 /*
1872  *      vm_object_page_remove:
1873  *
1874  *      For the given object, either frees or invalidates each of the
1875  *      specified pages.  In general, a page is freed.  However, if a page is
1876  *      wired for any reason other than the existence of a managed, wired
1877  *      mapping, then it may be invalidated but not removed from the object.
1878  *      Pages are specified by the given range ["start", "end") and the option
1879  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1880  *      extends from "start" to the end of the object.  If the option
1881  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1882  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1883  *      specified, then the pages within the specified range must have no
1884  *      mappings.  Otherwise, if this option is not specified, any mappings to
1885  *      the specified pages are removed before the pages are freed or
1886  *      invalidated.
1887  *
1888  *      In general, this operation should only be performed on objects that
1889  *      contain managed pages.  There are, however, two exceptions.  First, it
1890  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1891  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1892  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1893  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1894  *
1895  *      The object must be locked.
1896  */
1897 void
1898 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1899     int options)
1900 {
1901         vm_page_t p, next;
1902         struct mtx *mtx;
1903
1904         VM_OBJECT_ASSERT_WLOCKED(object);
1905         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1906             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1907             ("vm_object_page_remove: illegal options for object %p", object));
1908         if (object->resident_page_count == 0)
1909                 return;
1910         vm_object_pip_add(object, 1);
1911 again:
1912         p = vm_page_find_least(object, start);
1913         mtx = NULL;
1914
1915         /*
1916          * Here, the variable "p" is either (1) the page with the least pindex
1917          * greater than or equal to the parameter "start" or (2) NULL. 
1918          */
1919         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1920                 next = TAILQ_NEXT(p, listq);
1921
1922                 /*
1923                  * If the page is wired for any reason besides the existence
1924                  * of managed, wired mappings, then it cannot be freed.  For
1925                  * example, fictitious pages, which represent device memory,
1926                  * are inherently wired and cannot be freed.  They can,
1927                  * however, be invalidated if the option OBJPR_CLEANONLY is
1928                  * not specified.
1929                  */
1930                 vm_page_change_lock(p, &mtx);
1931                 if (vm_page_xbusied(p)) {
1932                         VM_OBJECT_WUNLOCK(object);
1933                         vm_page_busy_sleep(p, "vmopax", true);
1934                         VM_OBJECT_WLOCK(object);
1935                         goto again;
1936                 }
1937                 if (vm_page_wired(p)) {
1938                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1939                             object->ref_count != 0)
1940                                 pmap_remove_all(p);
1941                         if ((options & OBJPR_CLEANONLY) == 0) {
1942                                 p->valid = 0;
1943                                 vm_page_undirty(p);
1944                         }
1945                         continue;
1946                 }
1947                 if (vm_page_busied(p)) {
1948                         VM_OBJECT_WUNLOCK(object);
1949                         vm_page_busy_sleep(p, "vmopar", false);
1950                         VM_OBJECT_WLOCK(object);
1951                         goto again;
1952                 }
1953                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1954                     ("vm_object_page_remove: page %p is fictitious", p));
1955                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1956                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1957                             object->ref_count != 0)
1958                                 pmap_remove_write(p);
1959                         if (p->dirty != 0)
1960                                 continue;
1961                 }
1962                 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
1963                         pmap_remove_all(p);
1964                 vm_page_free(p);
1965         }
1966         if (mtx != NULL)
1967                 mtx_unlock(mtx);
1968         vm_object_pip_wakeup(object);
1969 }
1970
1971 /*
1972  *      vm_object_page_noreuse:
1973  *
1974  *      For the given object, attempt to move the specified pages to
1975  *      the head of the inactive queue.  This bypasses regular LRU
1976  *      operation and allows the pages to be reused quickly under memory
1977  *      pressure.  If a page is wired for any reason, then it will not
1978  *      be queued.  Pages are specified by the range ["start", "end").
1979  *      As a special case, if "end" is zero, then the range extends from
1980  *      "start" to the end of the object.
1981  *
1982  *      This operation should only be performed on objects that
1983  *      contain non-fictitious, managed pages.
1984  *
1985  *      The object must be locked.
1986  */
1987 void
1988 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1989 {
1990         struct mtx *mtx;
1991         vm_page_t p, next;
1992
1993         VM_OBJECT_ASSERT_LOCKED(object);
1994         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1995             ("vm_object_page_noreuse: illegal object %p", object));
1996         if (object->resident_page_count == 0)
1997                 return;
1998         p = vm_page_find_least(object, start);
1999
2000         /*
2001          * Here, the variable "p" is either (1) the page with the least pindex
2002          * greater than or equal to the parameter "start" or (2) NULL. 
2003          */
2004         mtx = NULL;
2005         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2006                 next = TAILQ_NEXT(p, listq);
2007                 vm_page_change_lock(p, &mtx);
2008                 vm_page_deactivate_noreuse(p);
2009         }
2010         if (mtx != NULL)
2011                 mtx_unlock(mtx);
2012 }
2013
2014 /*
2015  *      Populate the specified range of the object with valid pages.  Returns
2016  *      TRUE if the range is successfully populated and FALSE otherwise.
2017  *
2018  *      Note: This function should be optimized to pass a larger array of
2019  *      pages to vm_pager_get_pages() before it is applied to a non-
2020  *      OBJT_DEVICE object.
2021  *
2022  *      The object must be locked.
2023  */
2024 boolean_t
2025 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2026 {
2027         vm_page_t m;
2028         vm_pindex_t pindex;
2029         int rv;
2030
2031         VM_OBJECT_ASSERT_WLOCKED(object);
2032         for (pindex = start; pindex < end; pindex++) {
2033                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2034                 if (m->valid != VM_PAGE_BITS_ALL) {
2035                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2036                         if (rv != VM_PAGER_OK) {
2037                                 vm_page_lock(m);
2038                                 vm_page_free(m);
2039                                 vm_page_unlock(m);
2040                                 break;
2041                         }
2042                 }
2043                 /*
2044                  * Keep "m" busy because a subsequent iteration may unlock
2045                  * the object.
2046                  */
2047         }
2048         if (pindex > start) {
2049                 m = vm_page_lookup(object, start);
2050                 while (m != NULL && m->pindex < pindex) {
2051                         vm_page_xunbusy(m);
2052                         m = TAILQ_NEXT(m, listq);
2053                 }
2054         }
2055         return (pindex == end);
2056 }
2057
2058 /*
2059  *      Routine:        vm_object_coalesce
2060  *      Function:       Coalesces two objects backing up adjoining
2061  *                      regions of memory into a single object.
2062  *
2063  *      returns TRUE if objects were combined.
2064  *
2065  *      NOTE:   Only works at the moment if the second object is NULL -
2066  *              if it's not, which object do we lock first?
2067  *
2068  *      Parameters:
2069  *              prev_object     First object to coalesce
2070  *              prev_offset     Offset into prev_object
2071  *              prev_size       Size of reference to prev_object
2072  *              next_size       Size of reference to the second object
2073  *              reserved        Indicator that extension region has
2074  *                              swap accounted for
2075  *
2076  *      Conditions:
2077  *      The object must *not* be locked.
2078  */
2079 boolean_t
2080 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2081     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2082 {
2083         vm_pindex_t next_pindex;
2084
2085         if (prev_object == NULL)
2086                 return (TRUE);
2087         VM_OBJECT_WLOCK(prev_object);
2088         if ((prev_object->type != OBJT_DEFAULT &&
2089             prev_object->type != OBJT_SWAP) ||
2090             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2091                 VM_OBJECT_WUNLOCK(prev_object);
2092                 return (FALSE);
2093         }
2094
2095         /*
2096          * Try to collapse the object first
2097          */
2098         vm_object_collapse(prev_object);
2099
2100         /*
2101          * Can't coalesce if: . more than one reference . paged out . shadows
2102          * another object . has a copy elsewhere (any of which mean that the
2103          * pages not mapped to prev_entry may be in use anyway)
2104          */
2105         if (prev_object->backing_object != NULL) {
2106                 VM_OBJECT_WUNLOCK(prev_object);
2107                 return (FALSE);
2108         }
2109
2110         prev_size >>= PAGE_SHIFT;
2111         next_size >>= PAGE_SHIFT;
2112         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2113
2114         if (prev_object->ref_count > 1 &&
2115             prev_object->size != next_pindex &&
2116             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2117                 VM_OBJECT_WUNLOCK(prev_object);
2118                 return (FALSE);
2119         }
2120
2121         /*
2122          * Account for the charge.
2123          */
2124         if (prev_object->cred != NULL) {
2125
2126                 /*
2127                  * If prev_object was charged, then this mapping,
2128                  * although not charged now, may become writable
2129                  * later. Non-NULL cred in the object would prevent
2130                  * swap reservation during enabling of the write
2131                  * access, so reserve swap now. Failed reservation
2132                  * cause allocation of the separate object for the map
2133                  * entry, and swap reservation for this entry is
2134                  * managed in appropriate time.
2135                  */
2136                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2137                     prev_object->cred)) {
2138                         VM_OBJECT_WUNLOCK(prev_object);
2139                         return (FALSE);
2140                 }
2141                 prev_object->charge += ptoa(next_size);
2142         }
2143
2144         /*
2145          * Remove any pages that may still be in the object from a previous
2146          * deallocation.
2147          */
2148         if (next_pindex < prev_object->size) {
2149                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2150                     next_size, 0);
2151                 if (prev_object->type == OBJT_SWAP)
2152                         swap_pager_freespace(prev_object,
2153                                              next_pindex, next_size);
2154 #if 0
2155                 if (prev_object->cred != NULL) {
2156                         KASSERT(prev_object->charge >=
2157                             ptoa(prev_object->size - next_pindex),
2158                             ("object %p overcharged 1 %jx %jx", prev_object,
2159                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2160                         prev_object->charge -= ptoa(prev_object->size -
2161                             next_pindex);
2162                 }
2163 #endif
2164         }
2165
2166         /*
2167          * Extend the object if necessary.
2168          */
2169         if (next_pindex + next_size > prev_object->size)
2170                 prev_object->size = next_pindex + next_size;
2171
2172         VM_OBJECT_WUNLOCK(prev_object);
2173         return (TRUE);
2174 }
2175
2176 void
2177 vm_object_set_writeable_dirty(vm_object_t object)
2178 {
2179
2180         VM_OBJECT_ASSERT_WLOCKED(object);
2181         if (object->type != OBJT_VNODE) {
2182                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2183                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2184                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2185                 }
2186                 return;
2187         }
2188         object->generation++;
2189         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2190                 return;
2191         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2192 }
2193
2194 /*
2195  *      vm_object_unwire:
2196  *
2197  *      For each page offset within the specified range of the given object,
2198  *      find the highest-level page in the shadow chain and unwire it.  A page
2199  *      must exist at every page offset, and the highest-level page must be
2200  *      wired.
2201  */
2202 void
2203 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2204     uint8_t queue)
2205 {
2206         vm_object_t tobject, t1object;
2207         vm_page_t m, tm;
2208         vm_pindex_t end_pindex, pindex, tpindex;
2209         int depth, locked_depth;
2210
2211         KASSERT((offset & PAGE_MASK) == 0,
2212             ("vm_object_unwire: offset is not page aligned"));
2213         KASSERT((length & PAGE_MASK) == 0,
2214             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2215         /* The wired count of a fictitious page never changes. */
2216         if ((object->flags & OBJ_FICTITIOUS) != 0)
2217                 return;
2218         pindex = OFF_TO_IDX(offset);
2219         end_pindex = pindex + atop(length);
2220 again:
2221         locked_depth = 1;
2222         VM_OBJECT_RLOCK(object);
2223         m = vm_page_find_least(object, pindex);
2224         while (pindex < end_pindex) {
2225                 if (m == NULL || pindex < m->pindex) {
2226                         /*
2227                          * The first object in the shadow chain doesn't
2228                          * contain a page at the current index.  Therefore,
2229                          * the page must exist in a backing object.
2230                          */
2231                         tobject = object;
2232                         tpindex = pindex;
2233                         depth = 0;
2234                         do {
2235                                 tpindex +=
2236                                     OFF_TO_IDX(tobject->backing_object_offset);
2237                                 tobject = tobject->backing_object;
2238                                 KASSERT(tobject != NULL,
2239                                     ("vm_object_unwire: missing page"));
2240                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2241                                         goto next_page;
2242                                 depth++;
2243                                 if (depth == locked_depth) {
2244                                         locked_depth++;
2245                                         VM_OBJECT_RLOCK(tobject);
2246                                 }
2247                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2248                             NULL);
2249                 } else {
2250                         tm = m;
2251                         m = TAILQ_NEXT(m, listq);
2252                 }
2253                 vm_page_lock(tm);
2254                 if (vm_page_xbusied(tm)) {
2255                         for (tobject = object; locked_depth >= 1;
2256                             locked_depth--) {
2257                                 t1object = tobject->backing_object;
2258                                 VM_OBJECT_RUNLOCK(tobject);
2259                                 tobject = t1object;
2260                         }
2261                         vm_page_busy_sleep(tm, "unwbo", true);
2262                         goto again;
2263                 }
2264                 vm_page_unwire(tm, queue);
2265                 vm_page_unlock(tm);
2266 next_page:
2267                 pindex++;
2268         }
2269         /* Release the accumulated object locks. */
2270         for (tobject = object; locked_depth >= 1; locked_depth--) {
2271                 t1object = tobject->backing_object;
2272                 VM_OBJECT_RUNLOCK(tobject);
2273                 tobject = t1object;
2274         }
2275 }
2276
2277 /*
2278  * Return the vnode for the given object, or NULL if none exists.
2279  * For tmpfs objects, the function may return NULL if there is
2280  * no vnode allocated at the time of the call.
2281  */
2282 struct vnode *
2283 vm_object_vnode(vm_object_t object)
2284 {
2285         struct vnode *vp;
2286
2287         VM_OBJECT_ASSERT_LOCKED(object);
2288         if (object->type == OBJT_VNODE) {
2289                 vp = object->handle;
2290                 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2291         } else if (object->type == OBJT_SWAP &&
2292             (object->flags & OBJ_TMPFS) != 0) {
2293                 vp = object->un_pager.swp.swp_tmpfs;
2294                 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2295         } else {
2296                 vp = NULL;
2297         }
2298         return (vp);
2299 }
2300
2301 /*
2302  * Return the kvme type of the given object.
2303  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2304  */
2305 int
2306 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2307 {
2308
2309         VM_OBJECT_ASSERT_LOCKED(object);
2310         if (vpp != NULL)
2311                 *vpp = vm_object_vnode(object);
2312         switch (object->type) {
2313         case OBJT_DEFAULT:
2314                 return (KVME_TYPE_DEFAULT);
2315         case OBJT_VNODE:
2316                 return (KVME_TYPE_VNODE);
2317         case OBJT_SWAP:
2318                 if ((object->flags & OBJ_TMPFS_NODE) != 0)
2319                         return (KVME_TYPE_VNODE);
2320                 return (KVME_TYPE_SWAP);
2321         case OBJT_DEVICE:
2322                 return (KVME_TYPE_DEVICE);
2323         case OBJT_PHYS:
2324                 return (KVME_TYPE_PHYS);
2325         case OBJT_DEAD:
2326                 return (KVME_TYPE_DEAD);
2327         case OBJT_SG:
2328                 return (KVME_TYPE_SG);
2329         case OBJT_MGTDEVICE:
2330                 return (KVME_TYPE_MGTDEVICE);
2331         default:
2332                 return (KVME_TYPE_UNKNOWN);
2333         }
2334 }
2335
2336 static int
2337 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2338 {
2339         struct kinfo_vmobject *kvo;
2340         char *fullpath, *freepath;
2341         struct vnode *vp;
2342         struct vattr va;
2343         vm_object_t obj;
2344         vm_page_t m;
2345         int count, error;
2346
2347         if (req->oldptr == NULL) {
2348                 /*
2349                  * If an old buffer has not been provided, generate an
2350                  * estimate of the space needed for a subsequent call.
2351                  */
2352                 mtx_lock(&vm_object_list_mtx);
2353                 count = 0;
2354                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2355                         if (obj->type == OBJT_DEAD)
2356                                 continue;
2357                         count++;
2358                 }
2359                 mtx_unlock(&vm_object_list_mtx);
2360                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2361                     count * 11 / 10));
2362         }
2363
2364         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2365         error = 0;
2366
2367         /*
2368          * VM objects are type stable and are never removed from the
2369          * list once added.  This allows us to safely read obj->object_list
2370          * after reacquiring the VM object lock.
2371          */
2372         mtx_lock(&vm_object_list_mtx);
2373         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2374                 if (obj->type == OBJT_DEAD)
2375                         continue;
2376                 VM_OBJECT_RLOCK(obj);
2377                 if (obj->type == OBJT_DEAD) {
2378                         VM_OBJECT_RUNLOCK(obj);
2379                         continue;
2380                 }
2381                 mtx_unlock(&vm_object_list_mtx);
2382                 kvo->kvo_size = ptoa(obj->size);
2383                 kvo->kvo_resident = obj->resident_page_count;
2384                 kvo->kvo_ref_count = obj->ref_count;
2385                 kvo->kvo_shadow_count = obj->shadow_count;
2386                 kvo->kvo_memattr = obj->memattr;
2387                 kvo->kvo_active = 0;
2388                 kvo->kvo_inactive = 0;
2389                 TAILQ_FOREACH(m, &obj->memq, listq) {
2390                         /*
2391                          * A page may belong to the object but be
2392                          * dequeued and set to PQ_NONE while the
2393                          * object lock is not held.  This makes the
2394                          * reads of m->queue below racy, and we do not
2395                          * count pages set to PQ_NONE.  However, this
2396                          * sysctl is only meant to give an
2397                          * approximation of the system anyway.
2398                          */
2399                         if (m->queue == PQ_ACTIVE)
2400                                 kvo->kvo_active++;
2401                         else if (m->queue == PQ_INACTIVE)
2402                                 kvo->kvo_inactive++;
2403                 }
2404
2405                 kvo->kvo_vn_fileid = 0;
2406                 kvo->kvo_vn_fsid = 0;
2407                 kvo->kvo_vn_fsid_freebsd11 = 0;
2408                 freepath = NULL;
2409                 fullpath = "";
2410                 kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2411                 if (vp != NULL)
2412                         vref(vp);
2413                 VM_OBJECT_RUNLOCK(obj);
2414                 if (vp != NULL) {
2415                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2416                         vn_lock(vp, LK_SHARED | LK_RETRY);
2417                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2418                                 kvo->kvo_vn_fileid = va.va_fileid;
2419                                 kvo->kvo_vn_fsid = va.va_fsid;
2420                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2421                                                                 /* truncate */
2422                         }
2423                         vput(vp);
2424                 }
2425
2426                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2427                 if (freepath != NULL)
2428                         free(freepath, M_TEMP);
2429
2430                 /* Pack record size down */
2431                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2432                     + strlen(kvo->kvo_path) + 1;
2433                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2434                     sizeof(uint64_t));
2435                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2436                 mtx_lock(&vm_object_list_mtx);
2437                 if (error)
2438                         break;
2439         }
2440         mtx_unlock(&vm_object_list_mtx);
2441         free(kvo, M_TEMP);
2442         return (error);
2443 }
2444 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2445     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2446     "List of VM objects");
2447
2448 #include "opt_ddb.h"
2449 #ifdef DDB
2450 #include <sys/kernel.h>
2451
2452 #include <sys/cons.h>
2453
2454 #include <ddb/ddb.h>
2455
2456 static int
2457 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2458 {
2459         vm_map_t tmpm;
2460         vm_map_entry_t tmpe;
2461         vm_object_t obj;
2462         int entcount;
2463
2464         if (map == 0)
2465                 return 0;
2466
2467         if (entry == 0) {
2468                 tmpe = map->header.next;
2469                 entcount = map->nentries;
2470                 while (entcount-- && (tmpe != &map->header)) {
2471                         if (_vm_object_in_map(map, object, tmpe)) {
2472                                 return 1;
2473                         }
2474                         tmpe = tmpe->next;
2475                 }
2476         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2477                 tmpm = entry->object.sub_map;
2478                 tmpe = tmpm->header.next;
2479                 entcount = tmpm->nentries;
2480                 while (entcount-- && tmpe != &tmpm->header) {
2481                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2482                                 return 1;
2483                         }
2484                         tmpe = tmpe->next;
2485                 }
2486         } else if ((obj = entry->object.vm_object) != NULL) {
2487                 for (; obj; obj = obj->backing_object)
2488                         if (obj == object) {
2489                                 return 1;
2490                         }
2491         }
2492         return 0;
2493 }
2494
2495 static int
2496 vm_object_in_map(vm_object_t object)
2497 {
2498         struct proc *p;
2499
2500         /* sx_slock(&allproc_lock); */
2501         FOREACH_PROC_IN_SYSTEM(p) {
2502                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2503                         continue;
2504                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2505                         /* sx_sunlock(&allproc_lock); */
2506                         return 1;
2507                 }
2508         }
2509         /* sx_sunlock(&allproc_lock); */
2510         if (_vm_object_in_map(kernel_map, object, 0))
2511                 return 1;
2512         return 0;
2513 }
2514
2515 DB_SHOW_COMMAND(vmochk, vm_object_check)
2516 {
2517         vm_object_t object;
2518
2519         /*
2520          * make sure that internal objs are in a map somewhere
2521          * and none have zero ref counts.
2522          */
2523         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2524                 if (object->handle == NULL &&
2525                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2526                         if (object->ref_count == 0) {
2527                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2528                                         (long)object->size);
2529                         }
2530                         if (!vm_object_in_map(object)) {
2531                                 db_printf(
2532                         "vmochk: internal obj is not in a map: "
2533                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2534                                     object->ref_count, (u_long)object->size, 
2535                                     (u_long)object->size,
2536                                     (void *)object->backing_object);
2537                         }
2538                 }
2539         }
2540 }
2541
2542 /*
2543  *      vm_object_print:        [ debug ]
2544  */
2545 DB_SHOW_COMMAND(object, vm_object_print_static)
2546 {
2547         /* XXX convert args. */
2548         vm_object_t object = (vm_object_t)addr;
2549         boolean_t full = have_addr;
2550
2551         vm_page_t p;
2552
2553         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2554 #define count   was_count
2555
2556         int count;
2557
2558         if (object == NULL)
2559                 return;
2560
2561         db_iprintf(
2562             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2563             object, (int)object->type, (uintmax_t)object->size,
2564             object->resident_page_count, object->ref_count, object->flags,
2565             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2566         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2567             object->shadow_count, 
2568             object->backing_object ? object->backing_object->ref_count : 0,
2569             object->backing_object, (uintmax_t)object->backing_object_offset);
2570
2571         if (!full)
2572                 return;
2573
2574         db_indent += 2;
2575         count = 0;
2576         TAILQ_FOREACH(p, &object->memq, listq) {
2577                 if (count == 0)
2578                         db_iprintf("memory:=");
2579                 else if (count == 6) {
2580                         db_printf("\n");
2581                         db_iprintf(" ...");
2582                         count = 0;
2583                 } else
2584                         db_printf(",");
2585                 count++;
2586
2587                 db_printf("(off=0x%jx,page=0x%jx)",
2588                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2589         }
2590         if (count != 0)
2591                 db_printf("\n");
2592         db_indent -= 2;
2593 }
2594
2595 /* XXX. */
2596 #undef count
2597
2598 /* XXX need this non-static entry for calling from vm_map_print. */
2599 void
2600 vm_object_print(
2601         /* db_expr_t */ long addr,
2602         boolean_t have_addr,
2603         /* db_expr_t */ long count,
2604         char *modif)
2605 {
2606         vm_object_print_static(addr, have_addr, count, modif);
2607 }
2608
2609 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2610 {
2611         vm_object_t object;
2612         vm_pindex_t fidx;
2613         vm_paddr_t pa;
2614         vm_page_t m, prev_m;
2615         int rcount, nl, c;
2616
2617         nl = 0;
2618         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2619                 db_printf("new object: %p\n", (void *)object);
2620                 if (nl > 18) {
2621                         c = cngetc();
2622                         if (c != ' ')
2623                                 return;
2624                         nl = 0;
2625                 }
2626                 nl++;
2627                 rcount = 0;
2628                 fidx = 0;
2629                 pa = -1;
2630                 TAILQ_FOREACH(m, &object->memq, listq) {
2631                         if (m->pindex > 128)
2632                                 break;
2633                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2634                             prev_m->pindex + 1 != m->pindex) {
2635                                 if (rcount) {
2636                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2637                                                 (long)fidx, rcount, (long)pa);
2638                                         if (nl > 18) {
2639                                                 c = cngetc();
2640                                                 if (c != ' ')
2641                                                         return;
2642                                                 nl = 0;
2643                                         }
2644                                         nl++;
2645                                         rcount = 0;
2646                                 }
2647                         }                               
2648                         if (rcount &&
2649                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2650                                 ++rcount;
2651                                 continue;
2652                         }
2653                         if (rcount) {
2654                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2655                                         (long)fidx, rcount, (long)pa);
2656                                 if (nl > 18) {
2657                                         c = cngetc();
2658                                         if (c != ' ')
2659                                                 return;
2660                                         nl = 0;
2661                                 }
2662                                 nl++;
2663                         }
2664                         fidx = m->pindex;
2665                         pa = VM_PAGE_TO_PHYS(m);
2666                         rcount = 1;
2667                 }
2668                 if (rcount) {
2669                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2670                                 (long)fidx, rcount, (long)pa);
2671                         if (nl > 18) {
2672                                 c = cngetc();
2673                                 if (c != ' ')
2674                                         return;
2675                                 nl = 0;
2676                         }
2677                         nl++;
2678                 }
2679         }
2680 }
2681 #endif /* DDB */