]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Import OpenBSM 1.1p1 from vendor branch to 8-CURRENT, populating
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98
99 #define EASY_SCAN_FACTOR       8
100
101 #define MSYNC_FLUSH_HARDSEQ     0x01
102 #define MSYNC_FLUSH_SOFTSEQ     0x02
103
104 /*
105  * msync / VM object flushing optimizations
106  */
107 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
108 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
109     "Enable sequential iteration optimization");
110
111 static int old_msync;
112 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
113     "Use old (insecure) msync behavior");
114
115 static void     vm_object_qcollapse(vm_object_t object);
116 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
117 static void     vm_object_vndeallocate(vm_object_t object);
118
119 /*
120  *      Virtual memory objects maintain the actual data
121  *      associated with allocated virtual memory.  A given
122  *      page of memory exists within exactly one object.
123  *
124  *      An object is only deallocated when all "references"
125  *      are given up.  Only one "reference" to a given
126  *      region of an object should be writeable.
127  *
128  *      Associated with each object is a list of all resident
129  *      memory pages belonging to that object; this list is
130  *      maintained by the "vm_page" module, and locked by the object's
131  *      lock.
132  *
133  *      Each object also records a "pager" routine which is
134  *      used to retrieve (and store) pages to the proper backing
135  *      storage.  In addition, objects may be backed by other
136  *      objects from which they were virtual-copied.
137  *
138  *      The only items within the object structure which are
139  *      modified after time of creation are:
140  *              reference count         locked by object's lock
141  *              pager routine           locked by object's lock
142  *
143  */
144
145 struct object_q vm_object_list;
146 struct mtx vm_object_list_mtx;  /* lock for object list and count */
147
148 struct vm_object kernel_object_store;
149 struct vm_object kmem_object_store;
150
151 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
152
153 static long object_collapses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
155     &object_collapses, 0, "VM object collapses");
156
157 static long object_bypasses;
158 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
159     &object_bypasses, 0, "VM object bypasses");
160
161 static uma_zone_t obj_zone;
162
163 static int vm_object_zinit(void *mem, int size, int flags);
164
165 #ifdef INVARIANTS
166 static void vm_object_zdtor(void *mem, int size, void *arg);
167
168 static void
169 vm_object_zdtor(void *mem, int size, void *arg)
170 {
171         vm_object_t object;
172
173         object = (vm_object_t)mem;
174         KASSERT(TAILQ_EMPTY(&object->memq),
175             ("object %p has resident pages",
176             object));
177 #if VM_NRESERVLEVEL > 0
178         KASSERT(LIST_EMPTY(&object->rvq),
179             ("object %p has reservations",
180             object));
181 #endif
182         KASSERT(object->cache == NULL,
183             ("object %p has cached pages",
184             object));
185         KASSERT(object->paging_in_progress == 0,
186             ("object %p paging_in_progress = %d",
187             object, object->paging_in_progress));
188         KASSERT(object->resident_page_count == 0,
189             ("object %p resident_page_count = %d",
190             object, object->resident_page_count));
191         KASSERT(object->shadow_count == 0,
192             ("object %p shadow_count = %d",
193             object, object->shadow_count));
194 }
195 #endif
196
197 static int
198 vm_object_zinit(void *mem, int size, int flags)
199 {
200         vm_object_t object;
201
202         object = (vm_object_t)mem;
203         bzero(&object->mtx, sizeof(object->mtx));
204         VM_OBJECT_LOCK_INIT(object, "standard object");
205
206         /* These are true for any object that has been freed */
207         object->paging_in_progress = 0;
208         object->resident_page_count = 0;
209         object->shadow_count = 0;
210         return (0);
211 }
212
213 void
214 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
215 {
216
217         TAILQ_INIT(&object->memq);
218         LIST_INIT(&object->shadow_head);
219
220         object->root = NULL;
221         object->type = type;
222         object->size = size;
223         object->generation = 1;
224         object->ref_count = 1;
225         object->memattr = VM_MEMATTR_DEFAULT;
226         object->flags = 0;
227         object->uip = NULL;
228         object->charge = 0;
229         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
230                 object->flags = OBJ_ONEMAPPING;
231         object->pg_color = 0;
232         object->handle = NULL;
233         object->backing_object = NULL;
234         object->backing_object_offset = (vm_ooffset_t) 0;
235 #if VM_NRESERVLEVEL > 0
236         LIST_INIT(&object->rvq);
237 #endif
238         object->cache = NULL;
239
240         mtx_lock(&vm_object_list_mtx);
241         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
242         mtx_unlock(&vm_object_list_mtx);
243 }
244
245 /*
246  *      vm_object_init:
247  *
248  *      Initialize the VM objects module.
249  */
250 void
251 vm_object_init(void)
252 {
253         TAILQ_INIT(&vm_object_list);
254         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
255         
256         VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
257         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
258             kernel_object);
259 #if VM_NRESERVLEVEL > 0
260         kernel_object->flags |= OBJ_COLORED;
261         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
262 #endif
263
264         VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
265         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
266             kmem_object);
267 #if VM_NRESERVLEVEL > 0
268         kmem_object->flags |= OBJ_COLORED;
269         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
270 #endif
271
272         /*
273          * The lock portion of struct vm_object must be type stable due
274          * to vm_pageout_fallback_object_lock locking a vm object
275          * without holding any references to it.
276          */
277         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
278 #ifdef INVARIANTS
279             vm_object_zdtor,
280 #else
281             NULL,
282 #endif
283             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
284 }
285
286 void
287 vm_object_clear_flag(vm_object_t object, u_short bits)
288 {
289
290         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
291         object->flags &= ~bits;
292 }
293
294 /*
295  *      Sets the default memory attribute for the specified object.  Pages
296  *      that are allocated to this object are by default assigned this memory
297  *      attribute.
298  *
299  *      Presently, this function must be called before any pages are allocated
300  *      to the object.  In the future, this requirement may be relaxed for
301  *      "default" and "swap" objects.
302  */
303 int
304 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
305 {
306
307         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
308         switch (object->type) {
309         case OBJT_DEFAULT:
310         case OBJT_DEVICE:
311         case OBJT_PHYS:
312         case OBJT_SWAP:
313         case OBJT_VNODE:
314                 if (!TAILQ_EMPTY(&object->memq))
315                         return (KERN_FAILURE);
316                 break;
317         case OBJT_DEAD:
318                 return (KERN_INVALID_ARGUMENT);
319         }
320         object->memattr = memattr;
321         return (KERN_SUCCESS);
322 }
323
324 void
325 vm_object_pip_add(vm_object_t object, short i)
326 {
327
328         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
329         object->paging_in_progress += i;
330 }
331
332 void
333 vm_object_pip_subtract(vm_object_t object, short i)
334 {
335
336         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
337         object->paging_in_progress -= i;
338 }
339
340 void
341 vm_object_pip_wakeup(vm_object_t object)
342 {
343
344         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
345         object->paging_in_progress--;
346         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
347                 vm_object_clear_flag(object, OBJ_PIPWNT);
348                 wakeup(object);
349         }
350 }
351
352 void
353 vm_object_pip_wakeupn(vm_object_t object, short i)
354 {
355
356         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
357         if (i)
358                 object->paging_in_progress -= i;
359         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
360                 vm_object_clear_flag(object, OBJ_PIPWNT);
361                 wakeup(object);
362         }
363 }
364
365 void
366 vm_object_pip_wait(vm_object_t object, char *waitid)
367 {
368
369         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
370         while (object->paging_in_progress) {
371                 object->flags |= OBJ_PIPWNT;
372                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
373         }
374 }
375
376 /*
377  *      vm_object_allocate:
378  *
379  *      Returns a new object with the given size.
380  */
381 vm_object_t
382 vm_object_allocate(objtype_t type, vm_pindex_t size)
383 {
384         vm_object_t object;
385
386         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
387         _vm_object_allocate(type, size, object);
388         return (object);
389 }
390
391
392 /*
393  *      vm_object_reference:
394  *
395  *      Gets another reference to the given object.  Note: OBJ_DEAD
396  *      objects can be referenced during final cleaning.
397  */
398 void
399 vm_object_reference(vm_object_t object)
400 {
401         if (object == NULL)
402                 return;
403         VM_OBJECT_LOCK(object);
404         vm_object_reference_locked(object);
405         VM_OBJECT_UNLOCK(object);
406 }
407
408 /*
409  *      vm_object_reference_locked:
410  *
411  *      Gets another reference to the given object.
412  *
413  *      The object must be locked.
414  */
415 void
416 vm_object_reference_locked(vm_object_t object)
417 {
418         struct vnode *vp;
419
420         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
421         object->ref_count++;
422         if (object->type == OBJT_VNODE) {
423                 vp = object->handle;
424                 vref(vp);
425         }
426 }
427
428 /*
429  * Handle deallocating an object of type OBJT_VNODE.
430  */
431 static void
432 vm_object_vndeallocate(vm_object_t object)
433 {
434         struct vnode *vp = (struct vnode *) object->handle;
435
436         VFS_ASSERT_GIANT(vp->v_mount);
437         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
438         KASSERT(object->type == OBJT_VNODE,
439             ("vm_object_vndeallocate: not a vnode object"));
440         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
441 #ifdef INVARIANTS
442         if (object->ref_count == 0) {
443                 vprint("vm_object_vndeallocate", vp);
444                 panic("vm_object_vndeallocate: bad object reference count");
445         }
446 #endif
447
448         object->ref_count--;
449         if (object->ref_count == 0) {
450                 mp_fixme("Unlocked vflag access.");
451                 vp->v_vflag &= ~VV_TEXT;
452         }
453         VM_OBJECT_UNLOCK(object);
454         /*
455          * vrele may need a vop lock
456          */
457         vrele(vp);
458 }
459
460 /*
461  *      vm_object_deallocate:
462  *
463  *      Release a reference to the specified object,
464  *      gained either through a vm_object_allocate
465  *      or a vm_object_reference call.  When all references
466  *      are gone, storage associated with this object
467  *      may be relinquished.
468  *
469  *      No object may be locked.
470  */
471 void
472 vm_object_deallocate(vm_object_t object)
473 {
474         vm_object_t temp;
475
476         while (object != NULL) {
477                 int vfslocked;
478
479                 vfslocked = 0;
480         restart:
481                 VM_OBJECT_LOCK(object);
482                 if (object->type == OBJT_VNODE) {
483                         struct vnode *vp = (struct vnode *) object->handle;
484
485                         /*
486                          * Conditionally acquire Giant for a vnode-backed
487                          * object.  We have to be careful since the type of
488                          * a vnode object can change while the object is
489                          * unlocked.
490                          */
491                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
492                                 vfslocked = 1;
493                                 if (!mtx_trylock(&Giant)) {
494                                         VM_OBJECT_UNLOCK(object);
495                                         mtx_lock(&Giant);
496                                         goto restart;
497                                 }
498                         }
499                         vm_object_vndeallocate(object);
500                         VFS_UNLOCK_GIANT(vfslocked);
501                         return;
502                 } else
503                         /*
504                          * This is to handle the case that the object
505                          * changed type while we dropped its lock to
506                          * obtain Giant.
507                          */
508                         VFS_UNLOCK_GIANT(vfslocked);
509
510                 KASSERT(object->ref_count != 0,
511                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
512
513                 /*
514                  * If the reference count goes to 0 we start calling
515                  * vm_object_terminate() on the object chain.
516                  * A ref count of 1 may be a special case depending on the
517                  * shadow count being 0 or 1.
518                  */
519                 object->ref_count--;
520                 if (object->ref_count > 1) {
521                         VM_OBJECT_UNLOCK(object);
522                         return;
523                 } else if (object->ref_count == 1) {
524                         if (object->shadow_count == 0 &&
525                             object->handle == NULL &&
526                             (object->type == OBJT_DEFAULT ||
527                              object->type == OBJT_SWAP)) {
528                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
529                         } else if ((object->shadow_count == 1) &&
530                             (object->handle == NULL) &&
531                             (object->type == OBJT_DEFAULT ||
532                              object->type == OBJT_SWAP)) {
533                                 vm_object_t robject;
534
535                                 robject = LIST_FIRST(&object->shadow_head);
536                                 KASSERT(robject != NULL,
537                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
538                                          object->ref_count,
539                                          object->shadow_count));
540                                 if (!VM_OBJECT_TRYLOCK(robject)) {
541                                         /*
542                                          * Avoid a potential deadlock.
543                                          */
544                                         object->ref_count++;
545                                         VM_OBJECT_UNLOCK(object);
546                                         /*
547                                          * More likely than not the thread
548                                          * holding robject's lock has lower
549                                          * priority than the current thread.
550                                          * Let the lower priority thread run.
551                                          */
552                                         pause("vmo_de", 1);
553                                         continue;
554                                 }
555                                 /*
556                                  * Collapse object into its shadow unless its
557                                  * shadow is dead.  In that case, object will
558                                  * be deallocated by the thread that is
559                                  * deallocating its shadow.
560                                  */
561                                 if ((robject->flags & OBJ_DEAD) == 0 &&
562                                     (robject->handle == NULL) &&
563                                     (robject->type == OBJT_DEFAULT ||
564                                      robject->type == OBJT_SWAP)) {
565
566                                         robject->ref_count++;
567 retry:
568                                         if (robject->paging_in_progress) {
569                                                 VM_OBJECT_UNLOCK(object);
570                                                 vm_object_pip_wait(robject,
571                                                     "objde1");
572                                                 temp = robject->backing_object;
573                                                 if (object == temp) {
574                                                         VM_OBJECT_LOCK(object);
575                                                         goto retry;
576                                                 }
577                                         } else if (object->paging_in_progress) {
578                                                 VM_OBJECT_UNLOCK(robject);
579                                                 object->flags |= OBJ_PIPWNT;
580                                                 msleep(object,
581                                                     VM_OBJECT_MTX(object),
582                                                     PDROP | PVM, "objde2", 0);
583                                                 VM_OBJECT_LOCK(robject);
584                                                 temp = robject->backing_object;
585                                                 if (object == temp) {
586                                                         VM_OBJECT_LOCK(object);
587                                                         goto retry;
588                                                 }
589                                         } else
590                                                 VM_OBJECT_UNLOCK(object);
591
592                                         if (robject->ref_count == 1) {
593                                                 robject->ref_count--;
594                                                 object = robject;
595                                                 goto doterm;
596                                         }
597                                         object = robject;
598                                         vm_object_collapse(object);
599                                         VM_OBJECT_UNLOCK(object);
600                                         continue;
601                                 }
602                                 VM_OBJECT_UNLOCK(robject);
603                         }
604                         VM_OBJECT_UNLOCK(object);
605                         return;
606                 }
607 doterm:
608                 temp = object->backing_object;
609                 if (temp != NULL) {
610                         VM_OBJECT_LOCK(temp);
611                         LIST_REMOVE(object, shadow_list);
612                         temp->shadow_count--;
613                         temp->generation++;
614                         VM_OBJECT_UNLOCK(temp);
615                         object->backing_object = NULL;
616                 }
617                 /*
618                  * Don't double-terminate, we could be in a termination
619                  * recursion due to the terminate having to sync data
620                  * to disk.
621                  */
622                 if ((object->flags & OBJ_DEAD) == 0)
623                         vm_object_terminate(object);
624                 else
625                         VM_OBJECT_UNLOCK(object);
626                 object = temp;
627         }
628 }
629
630 /*
631  *      vm_object_destroy removes the object from the global object list
632  *      and frees the space for the object.
633  */
634 void
635 vm_object_destroy(vm_object_t object)
636 {
637
638         /*
639          * Remove the object from the global object list.
640          */
641         mtx_lock(&vm_object_list_mtx);
642         TAILQ_REMOVE(&vm_object_list, object, object_list);
643         mtx_unlock(&vm_object_list_mtx);
644
645         /*
646          * Release the allocation charge.
647          */
648         if (object->uip != NULL) {
649                 KASSERT(object->type == OBJT_DEFAULT ||
650                     object->type == OBJT_SWAP,
651                     ("vm_object_terminate: non-swap obj %p has uip",
652                      object));
653                 swap_release_by_uid(object->charge, object->uip);
654                 object->charge = 0;
655                 uifree(object->uip);
656                 object->uip = NULL;
657         }
658
659         /*
660          * Free the space for the object.
661          */
662         uma_zfree(obj_zone, object);
663 }
664
665 /*
666  *      vm_object_terminate actually destroys the specified object, freeing
667  *      up all previously used resources.
668  *
669  *      The object must be locked.
670  *      This routine may block.
671  */
672 void
673 vm_object_terminate(vm_object_t object)
674 {
675         vm_page_t p;
676
677         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
678
679         /*
680          * Make sure no one uses us.
681          */
682         vm_object_set_flag(object, OBJ_DEAD);
683
684         /*
685          * wait for the pageout daemon to be done with the object
686          */
687         vm_object_pip_wait(object, "objtrm");
688
689         KASSERT(!object->paging_in_progress,
690                 ("vm_object_terminate: pageout in progress"));
691
692         /*
693          * Clean and free the pages, as appropriate. All references to the
694          * object are gone, so we don't need to lock it.
695          */
696         if (object->type == OBJT_VNODE) {
697                 struct vnode *vp = (struct vnode *)object->handle;
698
699                 /*
700                  * Clean pages and flush buffers.
701                  */
702                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
703                 VM_OBJECT_UNLOCK(object);
704
705                 vinvalbuf(vp, V_SAVE, 0, 0);
706
707                 VM_OBJECT_LOCK(object);
708         }
709
710         KASSERT(object->ref_count == 0, 
711                 ("vm_object_terminate: object with references, ref_count=%d",
712                 object->ref_count));
713
714         /*
715          * Now free any remaining pages. For internal objects, this also
716          * removes them from paging queues. Don't free wired pages, just
717          * remove them from the object. 
718          */
719         vm_page_lock_queues();
720         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
721                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
722                         ("vm_object_terminate: freeing busy page %p "
723                         "p->busy = %d, p->oflags %x\n", p, p->busy, p->oflags));
724                 if (p->wire_count == 0) {
725                         vm_page_free(p);
726                         cnt.v_pfree++;
727                 } else {
728                         vm_page_remove(p);
729                 }
730         }
731         vm_page_unlock_queues();
732
733 #if VM_NRESERVLEVEL > 0
734         if (__predict_false(!LIST_EMPTY(&object->rvq)))
735                 vm_reserv_break_all(object);
736 #endif
737         if (__predict_false(object->cache != NULL))
738                 vm_page_cache_free(object, 0, 0);
739
740         /*
741          * Let the pager know object is dead.
742          */
743         vm_pager_deallocate(object);
744         VM_OBJECT_UNLOCK(object);
745
746         vm_object_destroy(object);
747 }
748
749 /*
750  *      vm_object_page_clean
751  *
752  *      Clean all dirty pages in the specified range of object.  Leaves page 
753  *      on whatever queue it is currently on.   If NOSYNC is set then do not
754  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
755  *      leaving the object dirty.
756  *
757  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
758  *      synchronous clustering mode implementation.
759  *
760  *      Odd semantics: if start == end, we clean everything.
761  *
762  *      The object must be locked.
763  */
764 void
765 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
766 {
767         vm_page_t p, np;
768         vm_pindex_t tstart, tend;
769         vm_pindex_t pi;
770         int clearobjflags;
771         int pagerflags;
772         int curgeneration;
773
774         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
775         if (object->type != OBJT_VNODE ||
776                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
777                 return;
778
779         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
780         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
781
782         vm_object_set_flag(object, OBJ_CLEANING);
783
784         tstart = start;
785         if (end == 0) {
786                 tend = object->size;
787         } else {
788                 tend = end;
789         }
790
791         vm_page_lock_queues();
792         /*
793          * If the caller is smart and only msync()s a range he knows is
794          * dirty, we may be able to avoid an object scan.  This results in
795          * a phenominal improvement in performance.  We cannot do this
796          * as a matter of course because the object may be huge - e.g.
797          * the size might be in the gigabytes or terrabytes.
798          */
799         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
800                 vm_pindex_t tscan;
801                 int scanlimit;
802                 int scanreset;
803
804                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
805                 if (scanreset < 16)
806                         scanreset = 16;
807                 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
808
809                 scanlimit = scanreset;
810                 tscan = tstart;
811                 while (tscan < tend) {
812                         curgeneration = object->generation;
813                         p = vm_page_lookup(object, tscan);
814                         if (p == NULL || p->valid == 0) {
815                                 if (--scanlimit == 0)
816                                         break;
817                                 ++tscan;
818                                 continue;
819                         }
820                         vm_page_test_dirty(p);
821                         if (p->dirty == 0) {
822                                 if (--scanlimit == 0)
823                                         break;
824                                 ++tscan;
825                                 continue;
826                         }
827                         /*
828                          * If we have been asked to skip nosync pages and 
829                          * this is a nosync page, we can't continue.
830                          */
831                         if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
832                                 if (--scanlimit == 0)
833                                         break;
834                                 ++tscan;
835                                 continue;
836                         }
837                         scanlimit = scanreset;
838
839                         /*
840                          * This returns 0 if it was unable to busy the first
841                          * page (i.e. had to sleep).
842                          */
843                         tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
844                 }
845
846                 /*
847                  * If everything was dirty and we flushed it successfully,
848                  * and the requested range is not the entire object, we
849                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
850                  * return immediately.
851                  */
852                 if (tscan >= tend && (tstart || tend < object->size)) {
853                         vm_page_unlock_queues();
854                         vm_object_clear_flag(object, OBJ_CLEANING);
855                         return;
856                 }
857                 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
858         }
859
860         /*
861          * Generally set CLEANCHK interlock and make the page read-only so
862          * we can then clear the object flags.
863          *
864          * However, if this is a nosync mmap then the object is likely to 
865          * stay dirty so do not mess with the page and do not clear the
866          * object flags.
867          */
868         clearobjflags = 1;
869         TAILQ_FOREACH(p, &object->memq, listq) {
870                 p->oflags |= VPO_CLEANCHK;
871                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
872                         clearobjflags = 0;
873                 else
874                         pmap_remove_write(p);
875         }
876
877         if (clearobjflags && (tstart == 0) && (tend == object->size)) {
878                 struct vnode *vp;
879
880                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
881                 if (object->type == OBJT_VNODE &&
882                     (vp = (struct vnode *)object->handle) != NULL) {
883                         VI_LOCK(vp);
884                         if (vp->v_iflag & VI_OBJDIRTY)
885                                 vp->v_iflag &= ~VI_OBJDIRTY;
886                         VI_UNLOCK(vp);
887                 }
888         }
889
890 rescan:
891         curgeneration = object->generation;
892
893         for (p = TAILQ_FIRST(&object->memq); p; p = np) {
894                 int n;
895
896                 np = TAILQ_NEXT(p, listq);
897
898 again:
899                 pi = p->pindex;
900                 if ((p->oflags & VPO_CLEANCHK) == 0 ||
901                         (pi < tstart) || (pi >= tend) ||
902                     p->valid == 0) {
903                         p->oflags &= ~VPO_CLEANCHK;
904                         continue;
905                 }
906
907                 vm_page_test_dirty(p);
908                 if (p->dirty == 0) {
909                         p->oflags &= ~VPO_CLEANCHK;
910                         continue;
911                 }
912
913                 /*
914                  * If we have been asked to skip nosync pages and this is a
915                  * nosync page, skip it.  Note that the object flags were
916                  * not cleared in this case so we do not have to set them.
917                  */
918                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
919                         p->oflags &= ~VPO_CLEANCHK;
920                         continue;
921                 }
922
923                 n = vm_object_page_collect_flush(object, p,
924                         curgeneration, pagerflags);
925                 if (n == 0)
926                         goto rescan;
927
928                 if (object->generation != curgeneration)
929                         goto rescan;
930
931                 /*
932                  * Try to optimize the next page.  If we can't we pick up
933                  * our (random) scan where we left off.
934                  */
935                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
936                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
937                                 goto again;
938                 }
939         }
940         vm_page_unlock_queues();
941 #if 0
942         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
943 #endif
944
945         vm_object_clear_flag(object, OBJ_CLEANING);
946         return;
947 }
948
949 static int
950 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
951 {
952         int runlen;
953         int maxf;
954         int chkb;
955         int maxb;
956         int i;
957         vm_pindex_t pi;
958         vm_page_t maf[vm_pageout_page_count];
959         vm_page_t mab[vm_pageout_page_count];
960         vm_page_t ma[vm_pageout_page_count];
961
962         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
963         pi = p->pindex;
964         while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
965                 vm_page_lock_queues();
966                 if (object->generation != curgeneration) {
967                         return(0);
968                 }
969         }
970         maxf = 0;
971         for(i = 1; i < vm_pageout_page_count; i++) {
972                 vm_page_t tp;
973
974                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
975                         if ((tp->oflags & VPO_BUSY) ||
976                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
977                                  (tp->oflags & VPO_CLEANCHK) == 0) ||
978                                 (tp->busy != 0))
979                                 break;
980                         vm_page_test_dirty(tp);
981                         if (tp->dirty == 0) {
982                                 tp->oflags &= ~VPO_CLEANCHK;
983                                 break;
984                         }
985                         maf[ i - 1 ] = tp;
986                         maxf++;
987                         continue;
988                 }
989                 break;
990         }
991
992         maxb = 0;
993         chkb = vm_pageout_page_count -  maxf;
994         if (chkb) {
995                 for(i = 1; i < chkb;i++) {
996                         vm_page_t tp;
997
998                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
999                                 if ((tp->oflags & VPO_BUSY) ||
1000                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1001                                          (tp->oflags & VPO_CLEANCHK) == 0) ||
1002                                         (tp->busy != 0))
1003                                         break;
1004                                 vm_page_test_dirty(tp);
1005                                 if (tp->dirty == 0) {
1006                                         tp->oflags &= ~VPO_CLEANCHK;
1007                                         break;
1008                                 }
1009                                 mab[ i - 1 ] = tp;
1010                                 maxb++;
1011                                 continue;
1012                         }
1013                         break;
1014                 }
1015         }
1016
1017         for(i = 0; i < maxb; i++) {
1018                 int index = (maxb - i) - 1;
1019                 ma[index] = mab[i];
1020                 ma[index]->oflags &= ~VPO_CLEANCHK;
1021         }
1022         p->oflags &= ~VPO_CLEANCHK;
1023         ma[maxb] = p;
1024         for(i = 0; i < maxf; i++) {
1025                 int index = (maxb + i) + 1;
1026                 ma[index] = maf[i];
1027                 ma[index]->oflags &= ~VPO_CLEANCHK;
1028         }
1029         runlen = maxb + maxf + 1;
1030
1031         vm_pageout_flush(ma, runlen, pagerflags);
1032         for (i = 0; i < runlen; i++) {
1033                 if (ma[i]->dirty) {
1034                         pmap_remove_write(ma[i]);
1035                         ma[i]->oflags |= VPO_CLEANCHK;
1036
1037                         /*
1038                          * maxf will end up being the actual number of pages
1039                          * we wrote out contiguously, non-inclusive of the
1040                          * first page.  We do not count look-behind pages.
1041                          */
1042                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
1043                                 maxf = i - maxb - 1;
1044                 }
1045         }
1046         return(maxf + 1);
1047 }
1048
1049 /*
1050  * Note that there is absolutely no sense in writing out
1051  * anonymous objects, so we track down the vnode object
1052  * to write out.
1053  * We invalidate (remove) all pages from the address space
1054  * for semantic correctness.
1055  *
1056  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1057  * may start out with a NULL object.
1058  */
1059 void
1060 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1061     boolean_t syncio, boolean_t invalidate)
1062 {
1063         vm_object_t backing_object;
1064         struct vnode *vp;
1065         struct mount *mp;
1066         int flags;
1067
1068         if (object == NULL)
1069                 return;
1070         VM_OBJECT_LOCK(object);
1071         while ((backing_object = object->backing_object) != NULL) {
1072                 VM_OBJECT_LOCK(backing_object);
1073                 offset += object->backing_object_offset;
1074                 VM_OBJECT_UNLOCK(object);
1075                 object = backing_object;
1076                 if (object->size < OFF_TO_IDX(offset + size))
1077                         size = IDX_TO_OFF(object->size) - offset;
1078         }
1079         /*
1080          * Flush pages if writing is allowed, invalidate them
1081          * if invalidation requested.  Pages undergoing I/O
1082          * will be ignored by vm_object_page_remove().
1083          *
1084          * We cannot lock the vnode and then wait for paging
1085          * to complete without deadlocking against vm_fault.
1086          * Instead we simply call vm_object_page_remove() and
1087          * allow it to block internally on a page-by-page
1088          * basis when it encounters pages undergoing async
1089          * I/O.
1090          */
1091         if (object->type == OBJT_VNODE &&
1092             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1093                 int vfslocked;
1094                 vp = object->handle;
1095                 VM_OBJECT_UNLOCK(object);
1096                 (void) vn_start_write(vp, &mp, V_WAIT);
1097                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1098                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1099                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1100                 flags |= invalidate ? OBJPC_INVAL : 0;
1101                 VM_OBJECT_LOCK(object);
1102                 vm_object_page_clean(object,
1103                     OFF_TO_IDX(offset),
1104                     OFF_TO_IDX(offset + size + PAGE_MASK),
1105                     flags);
1106                 VM_OBJECT_UNLOCK(object);
1107                 VOP_UNLOCK(vp, 0);
1108                 VFS_UNLOCK_GIANT(vfslocked);
1109                 vn_finished_write(mp);
1110                 VM_OBJECT_LOCK(object);
1111         }
1112         if ((object->type == OBJT_VNODE ||
1113              object->type == OBJT_DEVICE) && invalidate) {
1114                 boolean_t purge;
1115                 purge = old_msync || (object->type == OBJT_DEVICE);
1116                 vm_object_page_remove(object,
1117                     OFF_TO_IDX(offset),
1118                     OFF_TO_IDX(offset + size + PAGE_MASK),
1119                     purge ? FALSE : TRUE);
1120         }
1121         VM_OBJECT_UNLOCK(object);
1122 }
1123
1124 /*
1125  *      vm_object_madvise:
1126  *
1127  *      Implements the madvise function at the object/page level.
1128  *
1129  *      MADV_WILLNEED   (any object)
1130  *
1131  *          Activate the specified pages if they are resident.
1132  *
1133  *      MADV_DONTNEED   (any object)
1134  *
1135  *          Deactivate the specified pages if they are resident.
1136  *
1137  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1138  *                       OBJ_ONEMAPPING only)
1139  *
1140  *          Deactivate and clean the specified pages if they are
1141  *          resident.  This permits the process to reuse the pages
1142  *          without faulting or the kernel to reclaim the pages
1143  *          without I/O.
1144  */
1145 void
1146 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1147 {
1148         vm_pindex_t end, tpindex;
1149         vm_object_t backing_object, tobject;
1150         vm_page_t m;
1151
1152         if (object == NULL)
1153                 return;
1154         VM_OBJECT_LOCK(object);
1155         end = pindex + count;
1156         /*
1157          * Locate and adjust resident pages
1158          */
1159         for (; pindex < end; pindex += 1) {
1160 relookup:
1161                 tobject = object;
1162                 tpindex = pindex;
1163 shadowlookup:
1164                 /*
1165                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1166                  * and those pages must be OBJ_ONEMAPPING.
1167                  */
1168                 if (advise == MADV_FREE) {
1169                         if ((tobject->type != OBJT_DEFAULT &&
1170                              tobject->type != OBJT_SWAP) ||
1171                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1172                                 goto unlock_tobject;
1173                         }
1174                 }
1175                 m = vm_page_lookup(tobject, tpindex);
1176                 if (m == NULL && advise == MADV_WILLNEED) {
1177                         /*
1178                          * If the page is cached, reactivate it.
1179                          */
1180                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1181                             VM_ALLOC_NOBUSY);
1182                 }
1183                 if (m == NULL) {
1184                         /*
1185                          * There may be swap even if there is no backing page
1186                          */
1187                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1188                                 swap_pager_freespace(tobject, tpindex, 1);
1189                         /*
1190                          * next object
1191                          */
1192                         backing_object = tobject->backing_object;
1193                         if (backing_object == NULL)
1194                                 goto unlock_tobject;
1195                         VM_OBJECT_LOCK(backing_object);
1196                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1197                         if (tobject != object)
1198                                 VM_OBJECT_UNLOCK(tobject);
1199                         tobject = backing_object;
1200                         goto shadowlookup;
1201                 }
1202                 /*
1203                  * If the page is busy or not in a normal active state,
1204                  * we skip it.  If the page is not managed there are no
1205                  * page queues to mess with.  Things can break if we mess
1206                  * with pages in any of the below states.
1207                  */
1208                 vm_page_lock_queues();
1209                 if (m->hold_count ||
1210                     m->wire_count ||
1211                     (m->flags & PG_UNMANAGED) ||
1212                     m->valid != VM_PAGE_BITS_ALL) {
1213                         vm_page_unlock_queues();
1214                         goto unlock_tobject;
1215                 }
1216                 if ((m->oflags & VPO_BUSY) || m->busy) {
1217                         vm_page_flag_set(m, PG_REFERENCED);
1218                         vm_page_unlock_queues();
1219                         if (object != tobject)
1220                                 VM_OBJECT_UNLOCK(object);
1221                         m->oflags |= VPO_WANTED;
1222                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0);
1223                         VM_OBJECT_LOCK(object);
1224                         goto relookup;
1225                 }
1226                 if (advise == MADV_WILLNEED) {
1227                         vm_page_activate(m);
1228                 } else if (advise == MADV_DONTNEED) {
1229                         vm_page_dontneed(m);
1230                 } else if (advise == MADV_FREE) {
1231                         /*
1232                          * Mark the page clean.  This will allow the page
1233                          * to be freed up by the system.  However, such pages
1234                          * are often reused quickly by malloc()/free()
1235                          * so we do not do anything that would cause
1236                          * a page fault if we can help it.
1237                          *
1238                          * Specifically, we do not try to actually free
1239                          * the page now nor do we try to put it in the
1240                          * cache (which would cause a page fault on reuse).
1241                          *
1242                          * But we do make the page is freeable as we
1243                          * can without actually taking the step of unmapping
1244                          * it.
1245                          */
1246                         pmap_clear_modify(m);
1247                         m->dirty = 0;
1248                         m->act_count = 0;
1249                         vm_page_dontneed(m);
1250                 }
1251                 vm_page_unlock_queues();
1252                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1253                         swap_pager_freespace(tobject, tpindex, 1);
1254 unlock_tobject:
1255                 if (tobject != object)
1256                         VM_OBJECT_UNLOCK(tobject);
1257         }       
1258         VM_OBJECT_UNLOCK(object);
1259 }
1260
1261 /*
1262  *      vm_object_shadow:
1263  *
1264  *      Create a new object which is backed by the
1265  *      specified existing object range.  The source
1266  *      object reference is deallocated.
1267  *
1268  *      The new object and offset into that object
1269  *      are returned in the source parameters.
1270  */
1271 void
1272 vm_object_shadow(
1273         vm_object_t *object,    /* IN/OUT */
1274         vm_ooffset_t *offset,   /* IN/OUT */
1275         vm_size_t length)
1276 {
1277         vm_object_t source;
1278         vm_object_t result;
1279
1280         source = *object;
1281
1282         /*
1283          * Don't create the new object if the old object isn't shared.
1284          */
1285         if (source != NULL) {
1286                 VM_OBJECT_LOCK(source);
1287                 if (source->ref_count == 1 &&
1288                     source->handle == NULL &&
1289                     (source->type == OBJT_DEFAULT ||
1290                      source->type == OBJT_SWAP)) {
1291                         VM_OBJECT_UNLOCK(source);
1292                         return;
1293                 }
1294                 VM_OBJECT_UNLOCK(source);
1295         }
1296
1297         /*
1298          * Allocate a new object with the given length.
1299          */
1300         result = vm_object_allocate(OBJT_DEFAULT, length);
1301
1302         /*
1303          * The new object shadows the source object, adding a reference to it.
1304          * Our caller changes his reference to point to the new object,
1305          * removing a reference to the source object.  Net result: no change
1306          * of reference count.
1307          *
1308          * Try to optimize the result object's page color when shadowing
1309          * in order to maintain page coloring consistency in the combined 
1310          * shadowed object.
1311          */
1312         result->backing_object = source;
1313         /*
1314          * Store the offset into the source object, and fix up the offset into
1315          * the new object.
1316          */
1317         result->backing_object_offset = *offset;
1318         if (source != NULL) {
1319                 VM_OBJECT_LOCK(source);
1320                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1321                 source->shadow_count++;
1322                 source->generation++;
1323 #if VM_NRESERVLEVEL > 0
1324                 result->flags |= source->flags & OBJ_COLORED;
1325                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1326                     ((1 << (VM_NFREEORDER - 1)) - 1);
1327 #endif
1328                 VM_OBJECT_UNLOCK(source);
1329         }
1330
1331
1332         /*
1333          * Return the new things
1334          */
1335         *offset = 0;
1336         *object = result;
1337 }
1338
1339 /*
1340  *      vm_object_split:
1341  *
1342  * Split the pages in a map entry into a new object.  This affords
1343  * easier removal of unused pages, and keeps object inheritance from
1344  * being a negative impact on memory usage.
1345  */
1346 void
1347 vm_object_split(vm_map_entry_t entry)
1348 {
1349         vm_page_t m, m_next;
1350         vm_object_t orig_object, new_object, source;
1351         vm_pindex_t idx, offidxstart;
1352         vm_size_t size;
1353
1354         orig_object = entry->object.vm_object;
1355         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1356                 return;
1357         if (orig_object->ref_count <= 1)
1358                 return;
1359         VM_OBJECT_UNLOCK(orig_object);
1360
1361         offidxstart = OFF_TO_IDX(entry->offset);
1362         size = atop(entry->end - entry->start);
1363
1364         /*
1365          * If swap_pager_copy() is later called, it will convert new_object
1366          * into a swap object.
1367          */
1368         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1369
1370         /*
1371          * At this point, the new object is still private, so the order in
1372          * which the original and new objects are locked does not matter.
1373          */
1374         VM_OBJECT_LOCK(new_object);
1375         VM_OBJECT_LOCK(orig_object);
1376         source = orig_object->backing_object;
1377         if (source != NULL) {
1378                 VM_OBJECT_LOCK(source);
1379                 if ((source->flags & OBJ_DEAD) != 0) {
1380                         VM_OBJECT_UNLOCK(source);
1381                         VM_OBJECT_UNLOCK(orig_object);
1382                         VM_OBJECT_UNLOCK(new_object);
1383                         vm_object_deallocate(new_object);
1384                         VM_OBJECT_LOCK(orig_object);
1385                         return;
1386                 }
1387                 LIST_INSERT_HEAD(&source->shadow_head,
1388                                   new_object, shadow_list);
1389                 source->shadow_count++;
1390                 source->generation++;
1391                 vm_object_reference_locked(source);     /* for new_object */
1392                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1393                 VM_OBJECT_UNLOCK(source);
1394                 new_object->backing_object_offset = 
1395                         orig_object->backing_object_offset + entry->offset;
1396                 new_object->backing_object = source;
1397         }
1398         if (orig_object->uip != NULL) {
1399                 new_object->uip = orig_object->uip;
1400                 uihold(orig_object->uip);
1401                 new_object->charge = ptoa(size);
1402                 KASSERT(orig_object->charge >= ptoa(size),
1403                     ("orig_object->charge < 0"));
1404                 orig_object->charge -= ptoa(size);
1405         }
1406 retry:
1407         if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
1408                 if (m->pindex < offidxstart) {
1409                         m = vm_page_splay(offidxstart, orig_object->root);
1410                         if ((orig_object->root = m)->pindex < offidxstart)
1411                                 m = TAILQ_NEXT(m, listq);
1412                 }
1413         }
1414         vm_page_lock_queues();
1415         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1416             m = m_next) {
1417                 m_next = TAILQ_NEXT(m, listq);
1418
1419                 /*
1420                  * We must wait for pending I/O to complete before we can
1421                  * rename the page.
1422                  *
1423                  * We do not have to VM_PROT_NONE the page as mappings should
1424                  * not be changed by this operation.
1425                  */
1426                 if ((m->oflags & VPO_BUSY) || m->busy) {
1427                         vm_page_flag_set(m, PG_REFERENCED);
1428                         vm_page_unlock_queues();
1429                         VM_OBJECT_UNLOCK(new_object);
1430                         m->oflags |= VPO_WANTED;
1431                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1432                         VM_OBJECT_LOCK(new_object);
1433                         goto retry;
1434                 }
1435                 vm_page_rename(m, new_object, idx);
1436                 /* page automatically made dirty by rename and cache handled */
1437                 vm_page_busy(m);
1438         }
1439         vm_page_unlock_queues();
1440         if (orig_object->type == OBJT_SWAP) {
1441                 /*
1442                  * swap_pager_copy() can sleep, in which case the orig_object's
1443                  * and new_object's locks are released and reacquired. 
1444                  */
1445                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1446
1447                 /*
1448                  * Transfer any cached pages from orig_object to new_object.
1449                  */
1450                 if (__predict_false(orig_object->cache != NULL))
1451                         vm_page_cache_transfer(orig_object, offidxstart,
1452                             new_object);
1453         }
1454         VM_OBJECT_UNLOCK(orig_object);
1455         TAILQ_FOREACH(m, &new_object->memq, listq)
1456                 vm_page_wakeup(m);
1457         VM_OBJECT_UNLOCK(new_object);
1458         entry->object.vm_object = new_object;
1459         entry->offset = 0LL;
1460         vm_object_deallocate(orig_object);
1461         VM_OBJECT_LOCK(new_object);
1462 }
1463
1464 #define OBSC_TEST_ALL_SHADOWED  0x0001
1465 #define OBSC_COLLAPSE_NOWAIT    0x0002
1466 #define OBSC_COLLAPSE_WAIT      0x0004
1467
1468 static int
1469 vm_object_backing_scan(vm_object_t object, int op)
1470 {
1471         int r = 1;
1472         vm_page_t p;
1473         vm_object_t backing_object;
1474         vm_pindex_t backing_offset_index;
1475
1476         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1477         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1478
1479         backing_object = object->backing_object;
1480         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1481
1482         /*
1483          * Initial conditions
1484          */
1485         if (op & OBSC_TEST_ALL_SHADOWED) {
1486                 /*
1487                  * We do not want to have to test for the existence of cache
1488                  * or swap pages in the backing object.  XXX but with the
1489                  * new swapper this would be pretty easy to do.
1490                  *
1491                  * XXX what about anonymous MAP_SHARED memory that hasn't
1492                  * been ZFOD faulted yet?  If we do not test for this, the
1493                  * shadow test may succeed! XXX
1494                  */
1495                 if (backing_object->type != OBJT_DEFAULT) {
1496                         return (0);
1497                 }
1498         }
1499         if (op & OBSC_COLLAPSE_WAIT) {
1500                 vm_object_set_flag(backing_object, OBJ_DEAD);
1501         }
1502
1503         /*
1504          * Our scan
1505          */
1506         p = TAILQ_FIRST(&backing_object->memq);
1507         while (p) {
1508                 vm_page_t next = TAILQ_NEXT(p, listq);
1509                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1510
1511                 if (op & OBSC_TEST_ALL_SHADOWED) {
1512                         vm_page_t pp;
1513
1514                         /*
1515                          * Ignore pages outside the parent object's range
1516                          * and outside the parent object's mapping of the 
1517                          * backing object.
1518                          *
1519                          * note that we do not busy the backing object's
1520                          * page.
1521                          */
1522                         if (
1523                             p->pindex < backing_offset_index ||
1524                             new_pindex >= object->size
1525                         ) {
1526                                 p = next;
1527                                 continue;
1528                         }
1529
1530                         /*
1531                          * See if the parent has the page or if the parent's
1532                          * object pager has the page.  If the parent has the
1533                          * page but the page is not valid, the parent's
1534                          * object pager must have the page.
1535                          *
1536                          * If this fails, the parent does not completely shadow
1537                          * the object and we might as well give up now.
1538                          */
1539
1540                         pp = vm_page_lookup(object, new_pindex);
1541                         if (
1542                             (pp == NULL || pp->valid == 0) &&
1543                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1544                         ) {
1545                                 r = 0;
1546                                 break;
1547                         }
1548                 }
1549
1550                 /*
1551                  * Check for busy page
1552                  */
1553                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1554                         vm_page_t pp;
1555
1556                         if (op & OBSC_COLLAPSE_NOWAIT) {
1557                                 if ((p->oflags & VPO_BUSY) ||
1558                                     !p->valid || 
1559                                     p->busy) {
1560                                         p = next;
1561                                         continue;
1562                                 }
1563                         } else if (op & OBSC_COLLAPSE_WAIT) {
1564                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1565                                         vm_page_lock_queues();
1566                                         vm_page_flag_set(p, PG_REFERENCED);
1567                                         vm_page_unlock_queues();
1568                                         VM_OBJECT_UNLOCK(object);
1569                                         p->oflags |= VPO_WANTED;
1570                                         msleep(p, VM_OBJECT_MTX(backing_object),
1571                                             PDROP | PVM, "vmocol", 0);
1572                                         VM_OBJECT_LOCK(object);
1573                                         VM_OBJECT_LOCK(backing_object);
1574                                         /*
1575                                          * If we slept, anything could have
1576                                          * happened.  Since the object is
1577                                          * marked dead, the backing offset
1578                                          * should not have changed so we
1579                                          * just restart our scan.
1580                                          */
1581                                         p = TAILQ_FIRST(&backing_object->memq);
1582                                         continue;
1583                                 }
1584                         }
1585
1586                         KASSERT(
1587                             p->object == backing_object,
1588                             ("vm_object_backing_scan: object mismatch")
1589                         );
1590
1591                         /*
1592                          * Destroy any associated swap
1593                          */
1594                         if (backing_object->type == OBJT_SWAP) {
1595                                 swap_pager_freespace(
1596                                     backing_object, 
1597                                     p->pindex,
1598                                     1
1599                                 );
1600                         }
1601
1602                         if (
1603                             p->pindex < backing_offset_index ||
1604                             new_pindex >= object->size
1605                         ) {
1606                                 /*
1607                                  * Page is out of the parent object's range, we 
1608                                  * can simply destroy it. 
1609                                  */
1610                                 vm_page_lock_queues();
1611                                 KASSERT(!pmap_page_is_mapped(p),
1612                                     ("freeing mapped page %p", p));
1613                                 if (p->wire_count == 0)
1614                                         vm_page_free(p);
1615                                 else
1616                                         vm_page_remove(p);
1617                                 vm_page_unlock_queues();
1618                                 p = next;
1619                                 continue;
1620                         }
1621
1622                         pp = vm_page_lookup(object, new_pindex);
1623                         if (
1624                             pp != NULL ||
1625                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1626                         ) {
1627                                 /*
1628                                  * page already exists in parent OR swap exists
1629                                  * for this location in the parent.  Destroy 
1630                                  * the original page from the backing object.
1631                                  *
1632                                  * Leave the parent's page alone
1633                                  */
1634                                 vm_page_lock_queues();
1635                                 KASSERT(!pmap_page_is_mapped(p),
1636                                     ("freeing mapped page %p", p));
1637                                 if (p->wire_count == 0)
1638                                         vm_page_free(p);
1639                                 else
1640                                         vm_page_remove(p);
1641                                 vm_page_unlock_queues();
1642                                 p = next;
1643                                 continue;
1644                         }
1645
1646 #if VM_NRESERVLEVEL > 0
1647                         /*
1648                          * Rename the reservation.
1649                          */
1650                         vm_reserv_rename(p, object, backing_object,
1651                             backing_offset_index);
1652 #endif
1653
1654                         /*
1655                          * Page does not exist in parent, rename the
1656                          * page from the backing object to the main object. 
1657                          *
1658                          * If the page was mapped to a process, it can remain 
1659                          * mapped through the rename.
1660                          */
1661                         vm_page_lock_queues();
1662                         vm_page_rename(p, object, new_pindex);
1663                         vm_page_unlock_queues();
1664                         /* page automatically made dirty by rename */
1665                 }
1666                 p = next;
1667         }
1668         return (r);
1669 }
1670
1671
1672 /*
1673  * this version of collapse allows the operation to occur earlier and
1674  * when paging_in_progress is true for an object...  This is not a complete
1675  * operation, but should plug 99.9% of the rest of the leaks.
1676  */
1677 static void
1678 vm_object_qcollapse(vm_object_t object)
1679 {
1680         vm_object_t backing_object = object->backing_object;
1681
1682         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1683         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1684
1685         if (backing_object->ref_count != 1)
1686                 return;
1687
1688         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1689 }
1690
1691 /*
1692  *      vm_object_collapse:
1693  *
1694  *      Collapse an object with the object backing it.
1695  *      Pages in the backing object are moved into the
1696  *      parent, and the backing object is deallocated.
1697  */
1698 void
1699 vm_object_collapse(vm_object_t object)
1700 {
1701         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1702         
1703         while (TRUE) {
1704                 vm_object_t backing_object;
1705
1706                 /*
1707                  * Verify that the conditions are right for collapse:
1708                  *
1709                  * The object exists and the backing object exists.
1710                  */
1711                 if ((backing_object = object->backing_object) == NULL)
1712                         break;
1713
1714                 /*
1715                  * we check the backing object first, because it is most likely
1716                  * not collapsable.
1717                  */
1718                 VM_OBJECT_LOCK(backing_object);
1719                 if (backing_object->handle != NULL ||
1720                     (backing_object->type != OBJT_DEFAULT &&
1721                      backing_object->type != OBJT_SWAP) ||
1722                     (backing_object->flags & OBJ_DEAD) ||
1723                     object->handle != NULL ||
1724                     (object->type != OBJT_DEFAULT &&
1725                      object->type != OBJT_SWAP) ||
1726                     (object->flags & OBJ_DEAD)) {
1727                         VM_OBJECT_UNLOCK(backing_object);
1728                         break;
1729                 }
1730
1731                 if (
1732                     object->paging_in_progress != 0 ||
1733                     backing_object->paging_in_progress != 0
1734                 ) {
1735                         vm_object_qcollapse(object);
1736                         VM_OBJECT_UNLOCK(backing_object);
1737                         break;
1738                 }
1739                 /*
1740                  * We know that we can either collapse the backing object (if
1741                  * the parent is the only reference to it) or (perhaps) have
1742                  * the parent bypass the object if the parent happens to shadow
1743                  * all the resident pages in the entire backing object.
1744                  *
1745                  * This is ignoring pager-backed pages such as swap pages.
1746                  * vm_object_backing_scan fails the shadowing test in this
1747                  * case.
1748                  */
1749                 if (backing_object->ref_count == 1) {
1750                         /*
1751                          * If there is exactly one reference to the backing
1752                          * object, we can collapse it into the parent.  
1753                          */
1754                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1755
1756 #if VM_NRESERVLEVEL > 0
1757                         /*
1758                          * Break any reservations from backing_object.
1759                          */
1760                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1761                                 vm_reserv_break_all(backing_object);
1762 #endif
1763
1764                         /*
1765                          * Move the pager from backing_object to object.
1766                          */
1767                         if (backing_object->type == OBJT_SWAP) {
1768                                 /*
1769                                  * swap_pager_copy() can sleep, in which case
1770                                  * the backing_object's and object's locks are
1771                                  * released and reacquired.
1772                                  */
1773                                 swap_pager_copy(
1774                                     backing_object,
1775                                     object,
1776                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1777
1778                                 /*
1779                                  * Free any cached pages from backing_object.
1780                                  */
1781                                 if (__predict_false(backing_object->cache != NULL))
1782                                         vm_page_cache_free(backing_object, 0, 0);
1783                         }
1784                         /*
1785                          * Object now shadows whatever backing_object did.
1786                          * Note that the reference to 
1787                          * backing_object->backing_object moves from within 
1788                          * backing_object to within object.
1789                          */
1790                         LIST_REMOVE(object, shadow_list);
1791                         backing_object->shadow_count--;
1792                         backing_object->generation++;
1793                         if (backing_object->backing_object) {
1794                                 VM_OBJECT_LOCK(backing_object->backing_object);
1795                                 LIST_REMOVE(backing_object, shadow_list);
1796                                 LIST_INSERT_HEAD(
1797                                     &backing_object->backing_object->shadow_head,
1798                                     object, shadow_list);
1799                                 /*
1800                                  * The shadow_count has not changed.
1801                                  */
1802                                 backing_object->backing_object->generation++;
1803                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1804                         }
1805                         object->backing_object = backing_object->backing_object;
1806                         object->backing_object_offset +=
1807                             backing_object->backing_object_offset;
1808
1809                         /*
1810                          * Discard backing_object.
1811                          *
1812                          * Since the backing object has no pages, no pager left,
1813                          * and no object references within it, all that is
1814                          * necessary is to dispose of it.
1815                          */
1816                         KASSERT(backing_object->ref_count == 1, (
1817 "backing_object %p was somehow re-referenced during collapse!",
1818                             backing_object));
1819                         VM_OBJECT_UNLOCK(backing_object);
1820                         vm_object_destroy(backing_object);
1821
1822                         object_collapses++;
1823                 } else {
1824                         vm_object_t new_backing_object;
1825
1826                         /*
1827                          * If we do not entirely shadow the backing object,
1828                          * there is nothing we can do so we give up.
1829                          */
1830                         if (object->resident_page_count != object->size &&
1831                             vm_object_backing_scan(object,
1832                             OBSC_TEST_ALL_SHADOWED) == 0) {
1833                                 VM_OBJECT_UNLOCK(backing_object);
1834                                 break;
1835                         }
1836
1837                         /*
1838                          * Make the parent shadow the next object in the
1839                          * chain.  Deallocating backing_object will not remove
1840                          * it, since its reference count is at least 2.
1841                          */
1842                         LIST_REMOVE(object, shadow_list);
1843                         backing_object->shadow_count--;
1844                         backing_object->generation++;
1845
1846                         new_backing_object = backing_object->backing_object;
1847                         if ((object->backing_object = new_backing_object) != NULL) {
1848                                 VM_OBJECT_LOCK(new_backing_object);
1849                                 LIST_INSERT_HEAD(
1850                                     &new_backing_object->shadow_head,
1851                                     object,
1852                                     shadow_list
1853                                 );
1854                                 new_backing_object->shadow_count++;
1855                                 new_backing_object->generation++;
1856                                 vm_object_reference_locked(new_backing_object);
1857                                 VM_OBJECT_UNLOCK(new_backing_object);
1858                                 object->backing_object_offset +=
1859                                         backing_object->backing_object_offset;
1860                         }
1861
1862                         /*
1863                          * Drop the reference count on backing_object. Since
1864                          * its ref_count was at least 2, it will not vanish.
1865                          */
1866                         backing_object->ref_count--;
1867                         VM_OBJECT_UNLOCK(backing_object);
1868                         object_bypasses++;
1869                 }
1870
1871                 /*
1872                  * Try again with this object's new backing object.
1873                  */
1874         }
1875 }
1876
1877 /*
1878  *      vm_object_page_remove:
1879  *
1880  *      For the given object, either frees or invalidates each of the
1881  *      specified pages.  In general, a page is freed.  However, if a
1882  *      page is wired for any reason other than the existence of a
1883  *      managed, wired mapping, then it may be invalidated but not
1884  *      removed from the object.  Pages are specified by the given
1885  *      range ["start", "end") and Boolean "clean_only".  As a
1886  *      special case, if "end" is zero, then the range extends from
1887  *      "start" to the end of the object.  If "clean_only" is TRUE,
1888  *      then only the non-dirty pages within the specified range are
1889  *      affected.
1890  *
1891  *      In general, this operation should only be performed on objects
1892  *      that contain managed pages.  There are two exceptions.  First,
1893  *      it may be performed on the kernel and kmem objects.  Second,
1894  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
1895  *      device-backed pages.
1896  *
1897  *      The object must be locked.
1898  */
1899 void
1900 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1901     boolean_t clean_only)
1902 {
1903         vm_page_t p, next;
1904         int wirings;
1905
1906         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1907         if (object->resident_page_count == 0)
1908                 goto skipmemq;
1909
1910         /*
1911          * Since physically-backed objects do not use managed pages, we can't
1912          * remove pages from the object (we must instead remove the page
1913          * references, and then destroy the object).
1914          */
1915         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1916             object == kmem_object,
1917             ("attempt to remove pages from a physical object"));
1918
1919         vm_object_pip_add(object, 1);
1920 again:
1921         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1922                 if (p->pindex < start) {
1923                         p = vm_page_splay(start, object->root);
1924                         if ((object->root = p)->pindex < start)
1925                                 p = TAILQ_NEXT(p, listq);
1926                 }
1927         }
1928         vm_page_lock_queues();
1929         /*
1930          * Assert: the variable p is either (1) the page with the
1931          * least pindex greater than or equal to the parameter pindex
1932          * or (2) NULL.
1933          */
1934         for (;
1935              p != NULL && (p->pindex < end || end == 0);
1936              p = next) {
1937                 next = TAILQ_NEXT(p, listq);
1938
1939                 /*
1940                  * If the page is wired for any reason besides the
1941                  * existence of managed, wired mappings, then it cannot
1942                  * be freed.  For example, fictitious pages, which
1943                  * represent device memory, are inherently wired and
1944                  * cannot be freed.  They can, however, be invalidated
1945                  * if "clean_only" is FALSE.
1946                  */
1947                 if ((wirings = p->wire_count) != 0 &&
1948                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1949                         /* Fictitious pages do not have managed mappings. */
1950                         if ((p->flags & PG_FICTITIOUS) == 0)
1951                                 pmap_remove_all(p);
1952                         /* Account for removal of managed, wired mappings. */
1953                         p->wire_count -= wirings;
1954                         if (!clean_only) {
1955                                 p->valid = 0;
1956                                 vm_page_undirty(p);
1957                         }
1958                         continue;
1959                 }
1960                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1961                         goto again;
1962                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1963                     ("vm_object_page_remove: page %p is fictitious", p));
1964                 if (clean_only && p->valid) {
1965                         pmap_remove_write(p);
1966                         if (p->dirty)
1967                                 continue;
1968                 }
1969                 pmap_remove_all(p);
1970                 /* Account for removal of managed, wired mappings. */
1971                 if (wirings != 0)
1972                         p->wire_count -= wirings;
1973                 vm_page_free(p);
1974         }
1975         vm_page_unlock_queues();
1976         vm_object_pip_wakeup(object);
1977 skipmemq:
1978         if (__predict_false(object->cache != NULL))
1979                 vm_page_cache_free(object, start, end);
1980 }
1981
1982 /*
1983  *      Populate the specified range of the object with valid pages.  Returns
1984  *      TRUE if the range is successfully populated and FALSE otherwise.
1985  *
1986  *      Note: This function should be optimized to pass a larger array of
1987  *      pages to vm_pager_get_pages() before it is applied to a non-
1988  *      OBJT_DEVICE object.
1989  *
1990  *      The object must be locked.
1991  */
1992 boolean_t
1993 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1994 {
1995         vm_page_t m, ma[1];
1996         vm_pindex_t pindex;
1997         int rv;
1998
1999         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2000         for (pindex = start; pindex < end; pindex++) {
2001                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
2002                     VM_ALLOC_RETRY);
2003                 if (m->valid != VM_PAGE_BITS_ALL) {
2004                         ma[0] = m;
2005                         rv = vm_pager_get_pages(object, ma, 1, 0);
2006                         m = vm_page_lookup(object, pindex);
2007                         if (m == NULL)
2008                                 break;
2009                         if (rv != VM_PAGER_OK) {
2010                                 vm_page_lock_queues();
2011                                 vm_page_free(m);
2012                                 vm_page_unlock_queues();
2013                                 break;
2014                         }
2015                 }
2016                 /*
2017                  * Keep "m" busy because a subsequent iteration may unlock
2018                  * the object.
2019                  */
2020         }
2021         if (pindex > start) {
2022                 m = vm_page_lookup(object, start);
2023                 while (m != NULL && m->pindex < pindex) {
2024                         vm_page_wakeup(m);
2025                         m = TAILQ_NEXT(m, listq);
2026                 }
2027         }
2028         return (pindex == end);
2029 }
2030
2031 /*
2032  *      Routine:        vm_object_coalesce
2033  *      Function:       Coalesces two objects backing up adjoining
2034  *                      regions of memory into a single object.
2035  *
2036  *      returns TRUE if objects were combined.
2037  *
2038  *      NOTE:   Only works at the moment if the second object is NULL -
2039  *              if it's not, which object do we lock first?
2040  *
2041  *      Parameters:
2042  *              prev_object     First object to coalesce
2043  *              prev_offset     Offset into prev_object
2044  *              prev_size       Size of reference to prev_object
2045  *              next_size       Size of reference to the second object
2046  *              reserved        Indicator that extension region has
2047  *                              swap accounted for
2048  *
2049  *      Conditions:
2050  *      The object must *not* be locked.
2051  */
2052 boolean_t
2053 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2054     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2055 {
2056         vm_pindex_t next_pindex;
2057
2058         if (prev_object == NULL)
2059                 return (TRUE);
2060         VM_OBJECT_LOCK(prev_object);
2061         if (prev_object->type != OBJT_DEFAULT &&
2062             prev_object->type != OBJT_SWAP) {
2063                 VM_OBJECT_UNLOCK(prev_object);
2064                 return (FALSE);
2065         }
2066
2067         /*
2068          * Try to collapse the object first
2069          */
2070         vm_object_collapse(prev_object);
2071
2072         /*
2073          * Can't coalesce if: . more than one reference . paged out . shadows
2074          * another object . has a copy elsewhere (any of which mean that the
2075          * pages not mapped to prev_entry may be in use anyway)
2076          */
2077         if (prev_object->backing_object != NULL) {
2078                 VM_OBJECT_UNLOCK(prev_object);
2079                 return (FALSE);
2080         }
2081
2082         prev_size >>= PAGE_SHIFT;
2083         next_size >>= PAGE_SHIFT;
2084         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2085
2086         if ((prev_object->ref_count > 1) &&
2087             (prev_object->size != next_pindex)) {
2088                 VM_OBJECT_UNLOCK(prev_object);
2089                 return (FALSE);
2090         }
2091
2092         /*
2093          * Account for the charge.
2094          */
2095         if (prev_object->uip != NULL) {
2096
2097                 /*
2098                  * If prev_object was charged, then this mapping,
2099                  * althought not charged now, may become writable
2100                  * later. Non-NULL uip in the object would prevent
2101                  * swap reservation during enabling of the write
2102                  * access, so reserve swap now. Failed reservation
2103                  * cause allocation of the separate object for the map
2104                  * entry, and swap reservation for this entry is
2105                  * managed in appropriate time.
2106                  */
2107                 if (!reserved && !swap_reserve_by_uid(ptoa(next_size),
2108                     prev_object->uip)) {
2109                         return (FALSE);
2110                 }
2111                 prev_object->charge += ptoa(next_size);
2112         }
2113
2114         /*
2115          * Remove any pages that may still be in the object from a previous
2116          * deallocation.
2117          */
2118         if (next_pindex < prev_object->size) {
2119                 vm_object_page_remove(prev_object,
2120                                       next_pindex,
2121                                       next_pindex + next_size, FALSE);
2122                 if (prev_object->type == OBJT_SWAP)
2123                         swap_pager_freespace(prev_object,
2124                                              next_pindex, next_size);
2125 #if 0
2126                 if (prev_object->uip != NULL) {
2127                         KASSERT(prev_object->charge >=
2128                             ptoa(prev_object->size - next_pindex),
2129                             ("object %p overcharged 1 %jx %jx", prev_object,
2130                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2131                         prev_object->charge -= ptoa(prev_object->size -
2132                             next_pindex);
2133                 }
2134 #endif
2135         }
2136
2137         /*
2138          * Extend the object if necessary.
2139          */
2140         if (next_pindex + next_size > prev_object->size)
2141                 prev_object->size = next_pindex + next_size;
2142
2143         VM_OBJECT_UNLOCK(prev_object);
2144         return (TRUE);
2145 }
2146
2147 void
2148 vm_object_set_writeable_dirty(vm_object_t object)
2149 {
2150         struct vnode *vp;
2151
2152         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2153         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2154                 return;
2155         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2156         if (object->type == OBJT_VNODE &&
2157             (vp = (struct vnode *)object->handle) != NULL) {
2158                 VI_LOCK(vp);
2159                 vp->v_iflag |= VI_OBJDIRTY;
2160                 VI_UNLOCK(vp);
2161         }
2162 }
2163
2164 #include "opt_ddb.h"
2165 #ifdef DDB
2166 #include <sys/kernel.h>
2167
2168 #include <sys/cons.h>
2169
2170 #include <ddb/ddb.h>
2171
2172 static int
2173 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2174 {
2175         vm_map_t tmpm;
2176         vm_map_entry_t tmpe;
2177         vm_object_t obj;
2178         int entcount;
2179
2180         if (map == 0)
2181                 return 0;
2182
2183         if (entry == 0) {
2184                 tmpe = map->header.next;
2185                 entcount = map->nentries;
2186                 while (entcount-- && (tmpe != &map->header)) {
2187                         if (_vm_object_in_map(map, object, tmpe)) {
2188                                 return 1;
2189                         }
2190                         tmpe = tmpe->next;
2191                 }
2192         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2193                 tmpm = entry->object.sub_map;
2194                 tmpe = tmpm->header.next;
2195                 entcount = tmpm->nentries;
2196                 while (entcount-- && tmpe != &tmpm->header) {
2197                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2198                                 return 1;
2199                         }
2200                         tmpe = tmpe->next;
2201                 }
2202         } else if ((obj = entry->object.vm_object) != NULL) {
2203                 for (; obj; obj = obj->backing_object)
2204                         if (obj == object) {
2205                                 return 1;
2206                         }
2207         }
2208         return 0;
2209 }
2210
2211 static int
2212 vm_object_in_map(vm_object_t object)
2213 {
2214         struct proc *p;
2215
2216         /* sx_slock(&allproc_lock); */
2217         FOREACH_PROC_IN_SYSTEM(p) {
2218                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2219                         continue;
2220                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2221                         /* sx_sunlock(&allproc_lock); */
2222                         return 1;
2223                 }
2224         }
2225         /* sx_sunlock(&allproc_lock); */
2226         if (_vm_object_in_map(kernel_map, object, 0))
2227                 return 1;
2228         if (_vm_object_in_map(kmem_map, object, 0))
2229                 return 1;
2230         if (_vm_object_in_map(pager_map, object, 0))
2231                 return 1;
2232         if (_vm_object_in_map(buffer_map, object, 0))
2233                 return 1;
2234         return 0;
2235 }
2236
2237 DB_SHOW_COMMAND(vmochk, vm_object_check)
2238 {
2239         vm_object_t object;
2240
2241         /*
2242          * make sure that internal objs are in a map somewhere
2243          * and none have zero ref counts.
2244          */
2245         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2246                 if (object->handle == NULL &&
2247                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2248                         if (object->ref_count == 0) {
2249                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2250                                         (long)object->size);
2251                         }
2252                         if (!vm_object_in_map(object)) {
2253                                 db_printf(
2254                         "vmochk: internal obj is not in a map: "
2255                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2256                                     object->ref_count, (u_long)object->size, 
2257                                     (u_long)object->size,
2258                                     (void *)object->backing_object);
2259                         }
2260                 }
2261         }
2262 }
2263
2264 /*
2265  *      vm_object_print:        [ debug ]
2266  */
2267 DB_SHOW_COMMAND(object, vm_object_print_static)
2268 {
2269         /* XXX convert args. */
2270         vm_object_t object = (vm_object_t)addr;
2271         boolean_t full = have_addr;
2272
2273         vm_page_t p;
2274
2275         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2276 #define count   was_count
2277
2278         int count;
2279
2280         if (object == NULL)
2281                 return;
2282
2283         db_iprintf(
2284             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x uip %d charge %jx\n",
2285             object, (int)object->type, (uintmax_t)object->size,
2286             object->resident_page_count, object->ref_count, object->flags,
2287             object->uip ? object->uip->ui_uid : -1, (uintmax_t)object->charge);
2288         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2289             object->shadow_count, 
2290             object->backing_object ? object->backing_object->ref_count : 0,
2291             object->backing_object, (uintmax_t)object->backing_object_offset);
2292
2293         if (!full)
2294                 return;
2295
2296         db_indent += 2;
2297         count = 0;
2298         TAILQ_FOREACH(p, &object->memq, listq) {
2299                 if (count == 0)
2300                         db_iprintf("memory:=");
2301                 else if (count == 6) {
2302                         db_printf("\n");
2303                         db_iprintf(" ...");
2304                         count = 0;
2305                 } else
2306                         db_printf(",");
2307                 count++;
2308
2309                 db_printf("(off=0x%jx,page=0x%jx)",
2310                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2311         }
2312         if (count != 0)
2313                 db_printf("\n");
2314         db_indent -= 2;
2315 }
2316
2317 /* XXX. */
2318 #undef count
2319
2320 /* XXX need this non-static entry for calling from vm_map_print. */
2321 void
2322 vm_object_print(
2323         /* db_expr_t */ long addr,
2324         boolean_t have_addr,
2325         /* db_expr_t */ long count,
2326         char *modif)
2327 {
2328         vm_object_print_static(addr, have_addr, count, modif);
2329 }
2330
2331 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2332 {
2333         vm_object_t object;
2334         vm_pindex_t fidx;
2335         vm_paddr_t pa;
2336         vm_page_t m, prev_m;
2337         int rcount, nl, c;
2338
2339         nl = 0;
2340         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2341                 db_printf("new object: %p\n", (void *)object);
2342                 if (nl > 18) {
2343                         c = cngetc();
2344                         if (c != ' ')
2345                                 return;
2346                         nl = 0;
2347                 }
2348                 nl++;
2349                 rcount = 0;
2350                 fidx = 0;
2351                 pa = -1;
2352                 TAILQ_FOREACH(m, &object->memq, listq) {
2353                         if (m->pindex > 128)
2354                                 break;
2355                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2356                             prev_m->pindex + 1 != m->pindex) {
2357                                 if (rcount) {
2358                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2359                                                 (long)fidx, rcount, (long)pa);
2360                                         if (nl > 18) {
2361                                                 c = cngetc();
2362                                                 if (c != ' ')
2363                                                         return;
2364                                                 nl = 0;
2365                                         }
2366                                         nl++;
2367                                         rcount = 0;
2368                                 }
2369                         }                               
2370                         if (rcount &&
2371                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2372                                 ++rcount;
2373                                 continue;
2374                         }
2375                         if (rcount) {
2376                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2377                                         (long)fidx, rcount, (long)pa);
2378                                 if (nl > 18) {
2379                                         c = cngetc();
2380                                         if (c != ' ')
2381                                                 return;
2382                                         nl = 0;
2383                                 }
2384                                 nl++;
2385                         }
2386                         fidx = m->pindex;
2387                         pa = VM_PAGE_TO_PHYS(m);
2388                         rcount = 1;
2389                 }
2390                 if (rcount) {
2391                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2392                                 (long)fidx, rcount, (long)pa);
2393                         if (nl > 18) {
2394                                 c = cngetc();
2395                                 if (c != ' ')
2396                                         return;
2397                                 nl = 0;
2398                         }
2399                         nl++;
2400                 }
2401         }
2402 }
2403 #endif /* DDB */