]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
dts: Update our copy for arm, arm64 and riscv dts to Linux 5.5
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>           /* for curproc, pageproc */
83 #include <sys/refcount.h>
84 #include <sys/socket.h>
85 #include <sys/resourcevar.h>
86 #include <sys/refcount.h>
87 #include <sys/rwlock.h>
88 #include <sys/user.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91 #include <sys/sx.h>
92
93 #include <vm/vm.h>
94 #include <vm/vm_param.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/swap_pager.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_radix.h>
107 #include <vm/vm_reserv.h>
108 #include <vm/uma.h>
109
110 static int old_msync;
111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112     "Use old (insecure) msync behavior");
113
114 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
115                     int pagerflags, int flags, boolean_t *allclean,
116                     boolean_t *eio);
117 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
118                     boolean_t *allclean);
119 static void     vm_object_backing_remove(vm_object_t object);
120
121 /*
122  *      Virtual memory objects maintain the actual data
123  *      associated with allocated virtual memory.  A given
124  *      page of memory exists within exactly one object.
125  *
126  *      An object is only deallocated when all "references"
127  *      are given up.  Only one "reference" to a given
128  *      region of an object should be writeable.
129  *
130  *      Associated with each object is a list of all resident
131  *      memory pages belonging to that object; this list is
132  *      maintained by the "vm_page" module, and locked by the object's
133  *      lock.
134  *
135  *      Each object also records a "pager" routine which is
136  *      used to retrieve (and store) pages to the proper backing
137  *      storage.  In addition, objects may be backed by other
138  *      objects from which they were virtual-copied.
139  *
140  *      The only items within the object structure which are
141  *      modified after time of creation are:
142  *              reference count         locked by object's lock
143  *              pager routine           locked by object's lock
144  *
145  */
146
147 struct object_q vm_object_list;
148 struct mtx vm_object_list_mtx;  /* lock for object list and count */
149
150 struct vm_object kernel_object_store;
151
152 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
153     "VM object stats");
154
155 static counter_u64_t object_collapses = EARLY_COUNTER;
156 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
157     &object_collapses,
158     "VM object collapses");
159
160 static counter_u64_t object_bypasses = EARLY_COUNTER;
161 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
162     &object_bypasses,
163     "VM object bypasses");
164
165 static counter_u64_t object_collapse_waits = EARLY_COUNTER;
166 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
167     &object_collapse_waits,
168     "Number of sleeps for collapse");
169
170 static void
171 counter_startup(void)
172 {
173
174         object_collapses = counter_u64_alloc(M_WAITOK);
175         object_bypasses = counter_u64_alloc(M_WAITOK);
176         object_collapse_waits = counter_u64_alloc(M_WAITOK);
177 }
178 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
179
180 static uma_zone_t obj_zone;
181
182 static int vm_object_zinit(void *mem, int size, int flags);
183
184 #ifdef INVARIANTS
185 static void vm_object_zdtor(void *mem, int size, void *arg);
186
187 static void
188 vm_object_zdtor(void *mem, int size, void *arg)
189 {
190         vm_object_t object;
191
192         object = (vm_object_t)mem;
193         KASSERT(object->ref_count == 0,
194             ("object %p ref_count = %d", object, object->ref_count));
195         KASSERT(TAILQ_EMPTY(&object->memq),
196             ("object %p has resident pages in its memq", object));
197         KASSERT(vm_radix_is_empty(&object->rtree),
198             ("object %p has resident pages in its trie", object));
199 #if VM_NRESERVLEVEL > 0
200         KASSERT(LIST_EMPTY(&object->rvq),
201             ("object %p has reservations",
202             object));
203 #endif
204         KASSERT(REFCOUNT_COUNT(object->paging_in_progress) == 0,
205             ("object %p paging_in_progress = %d",
206             object, REFCOUNT_COUNT(object->paging_in_progress)));
207         KASSERT(object->busy == 0,
208             ("object %p busy = %d",
209             object, object->busy));
210         KASSERT(object->resident_page_count == 0,
211             ("object %p resident_page_count = %d",
212             object, object->resident_page_count));
213         KASSERT(object->shadow_count == 0,
214             ("object %p shadow_count = %d",
215             object, object->shadow_count));
216         KASSERT(object->type == OBJT_DEAD,
217             ("object %p has non-dead type %d",
218             object, object->type));
219 }
220 #endif
221
222 static int
223 vm_object_zinit(void *mem, int size, int flags)
224 {
225         vm_object_t object;
226
227         object = (vm_object_t)mem;
228         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
229
230         /* These are true for any object that has been freed */
231         object->type = OBJT_DEAD;
232         vm_radix_init(&object->rtree);
233         refcount_init(&object->ref_count, 0);
234         refcount_init(&object->paging_in_progress, 0);
235         refcount_init(&object->busy, 0);
236         object->resident_page_count = 0;
237         object->shadow_count = 0;
238         object->flags = OBJ_DEAD;
239
240         mtx_lock(&vm_object_list_mtx);
241         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
242         mtx_unlock(&vm_object_list_mtx);
243         return (0);
244 }
245
246 static void
247 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
248     vm_object_t object, void *handle)
249 {
250
251         TAILQ_INIT(&object->memq);
252         LIST_INIT(&object->shadow_head);
253
254         object->type = type;
255         if (type == OBJT_SWAP)
256                 pctrie_init(&object->un_pager.swp.swp_blks);
257
258         /*
259          * Ensure that swap_pager_swapoff() iteration over object_list
260          * sees up to date type and pctrie head if it observed
261          * non-dead object.
262          */
263         atomic_thread_fence_rel();
264
265         object->pg_color = 0;
266         object->flags = flags;
267         object->size = size;
268         object->domain.dr_policy = NULL;
269         object->generation = 1;
270         object->cleangeneration = 1;
271         refcount_init(&object->ref_count, 1);
272         object->memattr = VM_MEMATTR_DEFAULT;
273         object->cred = NULL;
274         object->charge = 0;
275         object->handle = handle;
276         object->backing_object = NULL;
277         object->backing_object_offset = (vm_ooffset_t) 0;
278 #if VM_NRESERVLEVEL > 0
279         LIST_INIT(&object->rvq);
280 #endif
281         umtx_shm_object_init(object);
282 }
283
284 /*
285  *      vm_object_init:
286  *
287  *      Initialize the VM objects module.
288  */
289 void
290 vm_object_init(void)
291 {
292         TAILQ_INIT(&vm_object_list);
293         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
294         
295         rw_init(&kernel_object->lock, "kernel vm object");
296         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
297             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
298 #if VM_NRESERVLEVEL > 0
299         kernel_object->flags |= OBJ_COLORED;
300         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
301 #endif
302
303         /*
304          * The lock portion of struct vm_object must be type stable due
305          * to vm_pageout_fallback_object_lock locking a vm object
306          * without holding any references to it.
307          */
308         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
309 #ifdef INVARIANTS
310             vm_object_zdtor,
311 #else
312             NULL,
313 #endif
314             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315
316         vm_radix_zinit();
317 }
318
319 void
320 vm_object_clear_flag(vm_object_t object, u_short bits)
321 {
322
323         VM_OBJECT_ASSERT_WLOCKED(object);
324         object->flags &= ~bits;
325 }
326
327 /*
328  *      Sets the default memory attribute for the specified object.  Pages
329  *      that are allocated to this object are by default assigned this memory
330  *      attribute.
331  *
332  *      Presently, this function must be called before any pages are allocated
333  *      to the object.  In the future, this requirement may be relaxed for
334  *      "default" and "swap" objects.
335  */
336 int
337 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
338 {
339
340         VM_OBJECT_ASSERT_WLOCKED(object);
341         switch (object->type) {
342         case OBJT_DEFAULT:
343         case OBJT_DEVICE:
344         case OBJT_MGTDEVICE:
345         case OBJT_PHYS:
346         case OBJT_SG:
347         case OBJT_SWAP:
348         case OBJT_VNODE:
349                 if (!TAILQ_EMPTY(&object->memq))
350                         return (KERN_FAILURE);
351                 break;
352         case OBJT_DEAD:
353                 return (KERN_INVALID_ARGUMENT);
354         default:
355                 panic("vm_object_set_memattr: object %p is of undefined type",
356                     object);
357         }
358         object->memattr = memattr;
359         return (KERN_SUCCESS);
360 }
361
362 void
363 vm_object_pip_add(vm_object_t object, short i)
364 {
365
366         refcount_acquiren(&object->paging_in_progress, i);
367 }
368
369 void
370 vm_object_pip_wakeup(vm_object_t object)
371 {
372
373         refcount_release(&object->paging_in_progress);
374 }
375
376 void
377 vm_object_pip_wakeupn(vm_object_t object, short i)
378 {
379
380         refcount_releasen(&object->paging_in_progress, i);
381 }
382
383 /*
384  * Atomically drop the interlock and wait for pip to drain.  This protects
385  * from sleep/wakeup races due to identity changes.  The lock is not
386  * re-acquired on return.
387  */
388 static void
389 vm_object_pip_sleep(vm_object_t object, const char *waitid)
390 {
391
392         refcount_sleep_interlock(&object->paging_in_progress,
393             &object->lock, waitid, PVM);
394 }
395
396 void
397 vm_object_pip_wait(vm_object_t object, const char *waitid)
398 {
399
400         VM_OBJECT_ASSERT_WLOCKED(object);
401
402         while (REFCOUNT_COUNT(object->paging_in_progress) > 0) {
403                 vm_object_pip_sleep(object, waitid);
404                 VM_OBJECT_WLOCK(object);
405         }
406 }
407
408 void
409 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
410 {
411
412         VM_OBJECT_ASSERT_UNLOCKED(object);
413
414         while (REFCOUNT_COUNT(object->paging_in_progress) > 0)
415                 refcount_wait(&object->paging_in_progress, waitid, PVM);
416 }
417
418 /*
419  *      vm_object_allocate:
420  *
421  *      Returns a new object with the given size.
422  */
423 vm_object_t
424 vm_object_allocate(objtype_t type, vm_pindex_t size)
425 {
426         vm_object_t object;
427         u_short flags;
428
429         switch (type) {
430         case OBJT_DEAD:
431                 panic("vm_object_allocate: can't create OBJT_DEAD");
432         case OBJT_DEFAULT:
433         case OBJT_SWAP:
434                 flags = OBJ_COLORED;
435                 break;
436         case OBJT_DEVICE:
437         case OBJT_SG:
438                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
439                 break;
440         case OBJT_MGTDEVICE:
441                 flags = OBJ_FICTITIOUS;
442                 break;
443         case OBJT_PHYS:
444                 flags = OBJ_UNMANAGED;
445                 break;
446         case OBJT_VNODE:
447                 flags = 0;
448                 break;
449         default:
450                 panic("vm_object_allocate: type %d is undefined", type);
451         }
452         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
453         _vm_object_allocate(type, size, flags, object, NULL);
454
455         return (object);
456 }
457
458 /*
459  *      vm_object_allocate_anon:
460  *
461  *      Returns a new default object of the given size and marked as
462  *      anonymous memory for special split/collapse handling.  Color
463  *      to be initialized by the caller.
464  */
465 vm_object_t
466 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
467     struct ucred *cred, vm_size_t charge)
468 {
469         vm_object_t handle, object;
470
471         if (backing_object == NULL)
472                 handle = NULL;
473         else if ((backing_object->flags & OBJ_ANON) != 0)
474                 handle = backing_object->handle;
475         else
476                 handle = backing_object;
477         object = uma_zalloc(obj_zone, M_WAITOK);
478         _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
479             object, handle);
480         object->cred = cred;
481         object->charge = cred != NULL ? charge : 0;
482         return (object);
483 }
484
485 static void
486 vm_object_reference_vnode(vm_object_t object)
487 {
488         struct vnode *vp;
489         u_int old;
490
491         /*
492          * vnode objects need the lock for the first reference
493          * to serialize with vnode_object_deallocate().
494          */
495         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
496                 VM_OBJECT_RLOCK(object);
497                 old = refcount_acquire(&object->ref_count);
498                 if (object->type == OBJT_VNODE && old == 0) {
499                         vp = object->handle;
500                         vref(vp);
501                 }
502                 VM_OBJECT_RUNLOCK(object);
503         }
504 }
505
506 /*
507  *      vm_object_reference:
508  *
509  *      Acquires a reference to the given object.
510  */
511 void
512 vm_object_reference(vm_object_t object)
513 {
514
515         if (object == NULL)
516                 return;
517
518         if (object->type == OBJT_VNODE)
519                 vm_object_reference_vnode(object);
520         else
521                 refcount_acquire(&object->ref_count);
522         KASSERT((object->flags & OBJ_DEAD) == 0,
523             ("vm_object_reference: Referenced dead object."));
524 }
525
526 /*
527  *      vm_object_reference_locked:
528  *
529  *      Gets another reference to the given object.
530  *
531  *      The object must be locked.
532  */
533 void
534 vm_object_reference_locked(vm_object_t object)
535 {
536         struct vnode *vp;
537         u_int old;
538
539         VM_OBJECT_ASSERT_LOCKED(object);
540         old = refcount_acquire(&object->ref_count);
541         if (object->type == OBJT_VNODE && old == 0) {
542                 vp = object->handle; vref(vp); }
543         KASSERT((object->flags & OBJ_DEAD) == 0,
544             ("vm_object_reference: Referenced dead object."));
545 }
546
547 /*
548  * Handle deallocating an object of type OBJT_VNODE.
549  */
550 static void
551 vm_object_deallocate_vnode(vm_object_t object)
552 {
553         struct vnode *vp = (struct vnode *) object->handle;
554         bool last;
555
556         KASSERT(object->type == OBJT_VNODE,
557             ("vm_object_deallocate_vnode: not a vnode object"));
558         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
559
560         /* Object lock to protect handle lookup. */
561         last = refcount_release(&object->ref_count);
562         VM_OBJECT_RUNLOCK(object);
563
564         if (!last)
565                 return;
566
567         if (!umtx_shm_vnobj_persistent)
568                 umtx_shm_object_terminated(object);
569
570         /* vrele may need the vnode lock. */
571         vrele(vp);
572 }
573
574
575 /*
576  * We dropped a reference on an object and discovered that it had a
577  * single remaining shadow.  This is a sibling of the reference we
578  * dropped.  Attempt to collapse the sibling and backing object.
579  */
580 static vm_object_t
581 vm_object_deallocate_anon(vm_object_t backing_object)
582 {
583         vm_object_t object;
584
585         /* Fetch the final shadow.  */
586         object = LIST_FIRST(&backing_object->shadow_head);
587         KASSERT(object != NULL && backing_object->shadow_count == 1,
588             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
589             backing_object->ref_count, backing_object->shadow_count));
590         KASSERT((object->flags & (OBJ_TMPFS_NODE | OBJ_ANON)) == OBJ_ANON,
591             ("invalid shadow object %p", object));
592
593         if (!VM_OBJECT_TRYWLOCK(object)) {
594                 /*
595                  * Prevent object from disappearing since we do not have a
596                  * reference.
597                  */
598                 vm_object_pip_add(object, 1);
599                 VM_OBJECT_WUNLOCK(backing_object);
600                 VM_OBJECT_WLOCK(object);
601                 vm_object_pip_wakeup(object);
602         } else
603                 VM_OBJECT_WUNLOCK(backing_object);
604
605         /*
606          * Check for a collapse/terminate race with the last reference holder.
607          */
608         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
609             !refcount_acquire_if_not_zero(&object->ref_count)) {
610                 VM_OBJECT_WUNLOCK(object);
611                 return (NULL);
612         }
613         backing_object = object->backing_object;
614         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
615                 vm_object_collapse(object);
616         VM_OBJECT_WUNLOCK(object);
617
618         return (object);
619 }
620
621 /*
622  *      vm_object_deallocate:
623  *
624  *      Release a reference to the specified object,
625  *      gained either through a vm_object_allocate
626  *      or a vm_object_reference call.  When all references
627  *      are gone, storage associated with this object
628  *      may be relinquished.
629  *
630  *      No object may be locked.
631  */
632 void
633 vm_object_deallocate(vm_object_t object)
634 {
635         vm_object_t temp;
636         bool released;
637
638         while (object != NULL) {
639                 /*
640                  * If the reference count goes to 0 we start calling
641                  * vm_object_terminate() on the object chain.  A ref count
642                  * of 1 may be a special case depending on the shadow count
643                  * being 0 or 1.  These cases require a write lock on the
644                  * object.
645                  */
646                 if ((object->flags & OBJ_ANON) == 0)
647                         released = refcount_release_if_gt(&object->ref_count, 1);
648                 else
649                         released = refcount_release_if_gt(&object->ref_count, 2);
650                 if (released)
651                         return;
652
653                 if (object->type == OBJT_VNODE) {
654                         VM_OBJECT_RLOCK(object);
655                         if (object->type == OBJT_VNODE) {
656                                 vm_object_deallocate_vnode(object);
657                                 return;
658                         }
659                         VM_OBJECT_RUNLOCK(object);
660                 }
661
662                 VM_OBJECT_WLOCK(object);
663                 KASSERT(object->ref_count > 0,
664                     ("vm_object_deallocate: object deallocated too many times: %d",
665                     object->type));
666
667                 /*
668                  * If this is not the final reference to an anonymous
669                  * object we may need to collapse the shadow chain.
670                  */
671                 if (!refcount_release(&object->ref_count)) {
672                         if (object->ref_count > 1 ||
673                             object->shadow_count == 0) {
674                                 if ((object->flags & OBJ_ANON) != 0 &&
675                                     object->ref_count == 1)
676                                         vm_object_set_flag(object,
677                                             OBJ_ONEMAPPING);
678                                 VM_OBJECT_WUNLOCK(object);
679                                 return;
680                         }
681
682                         /* Handle collapsing last ref on anonymous objects. */
683                         object = vm_object_deallocate_anon(object);
684                         continue;
685                 }
686
687                 /*
688                  * Handle the final reference to an object.  We restart
689                  * the loop with the backing object to avoid recursion.
690                  */
691                 umtx_shm_object_terminated(object);
692                 temp = object->backing_object;
693                 if (temp != NULL) {
694                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
695                             ("shadowed tmpfs v_object 2 %p", object));
696                         vm_object_backing_remove(object);
697                 }
698
699                 KASSERT((object->flags & OBJ_DEAD) == 0,
700                     ("vm_object_deallocate: Terminating dead object."));
701                 vm_object_set_flag(object, OBJ_DEAD);
702                 vm_object_terminate(object);
703                 object = temp;
704         }
705 }
706
707 /*
708  *      vm_object_destroy removes the object from the global object list
709  *      and frees the space for the object.
710  */
711 void
712 vm_object_destroy(vm_object_t object)
713 {
714
715         /*
716          * Release the allocation charge.
717          */
718         if (object->cred != NULL) {
719                 swap_release_by_cred(object->charge, object->cred);
720                 object->charge = 0;
721                 crfree(object->cred);
722                 object->cred = NULL;
723         }
724
725         /*
726          * Free the space for the object.
727          */
728         uma_zfree(obj_zone, object);
729 }
730
731 static void
732 vm_object_backing_remove_locked(vm_object_t object)
733 {
734         vm_object_t backing_object;
735
736         backing_object = object->backing_object;
737         VM_OBJECT_ASSERT_WLOCKED(object);
738         VM_OBJECT_ASSERT_WLOCKED(backing_object);
739
740         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
741             ("vm_object_backing_remove: Removing collapsing object."));
742
743         if ((object->flags & OBJ_SHADOWLIST) != 0) {
744                 LIST_REMOVE(object, shadow_list);
745                 backing_object->shadow_count--;
746                 object->flags &= ~OBJ_SHADOWLIST;
747         }
748         object->backing_object = NULL;
749 }
750
751 static void
752 vm_object_backing_remove(vm_object_t object)
753 {
754         vm_object_t backing_object;
755
756         VM_OBJECT_ASSERT_WLOCKED(object);
757
758         if ((object->flags & OBJ_SHADOWLIST) != 0) {
759                 backing_object = object->backing_object;
760                 VM_OBJECT_WLOCK(backing_object);
761                 vm_object_backing_remove_locked(object);
762                 VM_OBJECT_WUNLOCK(backing_object);
763         } else
764                 object->backing_object = NULL;
765 }
766
767 static void
768 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
769 {
770
771         VM_OBJECT_ASSERT_WLOCKED(object);
772
773         if ((backing_object->flags & OBJ_ANON) != 0) {
774                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
775                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
776                     shadow_list);
777                 backing_object->shadow_count++;
778                 object->flags |= OBJ_SHADOWLIST;
779         }
780         object->backing_object = backing_object;
781 }
782
783 static void
784 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
785 {
786
787         VM_OBJECT_ASSERT_WLOCKED(object);
788
789         if ((backing_object->flags & OBJ_ANON) != 0) {
790                 VM_OBJECT_WLOCK(backing_object);
791                 vm_object_backing_insert_locked(object, backing_object);
792                 VM_OBJECT_WUNLOCK(backing_object);
793         } else
794                 object->backing_object = backing_object;
795 }
796
797 /*
798  * Insert an object into a backing_object's shadow list with an additional
799  * reference to the backing_object added.
800  */
801 static void
802 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
803 {
804
805         VM_OBJECT_ASSERT_WLOCKED(object);
806
807         if ((backing_object->flags & OBJ_ANON) != 0) {
808                 VM_OBJECT_WLOCK(backing_object);
809                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
810                     ("shadowing dead anonymous object"));
811                 vm_object_reference_locked(backing_object);
812                 vm_object_backing_insert_locked(object, backing_object);
813                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
814                 VM_OBJECT_WUNLOCK(backing_object);
815         } else {
816                 vm_object_reference(backing_object);
817                 object->backing_object = backing_object;
818         }
819 }
820
821 /*
822  * Transfer a backing reference from backing_object to object.
823  */
824 static void
825 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
826 {
827         vm_object_t new_backing_object;
828
829         /*
830          * Note that the reference to backing_object->backing_object
831          * moves from within backing_object to within object.
832          */
833         vm_object_backing_remove_locked(object);
834         new_backing_object = backing_object->backing_object;
835         if (new_backing_object == NULL)
836                 return;
837         if ((new_backing_object->flags & OBJ_ANON) != 0) {
838                 VM_OBJECT_WLOCK(new_backing_object);
839                 vm_object_backing_remove_locked(backing_object);
840                 vm_object_backing_insert_locked(object, new_backing_object);
841                 VM_OBJECT_WUNLOCK(new_backing_object);
842         } else {
843                 object->backing_object = new_backing_object;
844                 backing_object->backing_object = NULL;
845         }
846 }
847
848 /*
849  * Wait for a concurrent collapse to settle.
850  */
851 static void
852 vm_object_collapse_wait(vm_object_t object)
853 {
854
855         VM_OBJECT_ASSERT_WLOCKED(object);
856
857         while ((object->flags & OBJ_COLLAPSING) != 0) {
858                 vm_object_pip_wait(object, "vmcolwait");
859                 counter_u64_add(object_collapse_waits, 1);
860         }
861 }
862
863 /*
864  * Waits for a backing object to clear a pending collapse and returns
865  * it locked if it is an ANON object.
866  */
867 static vm_object_t
868 vm_object_backing_collapse_wait(vm_object_t object)
869 {
870         vm_object_t backing_object;
871
872         VM_OBJECT_ASSERT_WLOCKED(object);
873
874         for (;;) {
875                 backing_object = object->backing_object;
876                 if (backing_object == NULL ||
877                     (backing_object->flags & OBJ_ANON) == 0)
878                         return (NULL);
879                 VM_OBJECT_WLOCK(backing_object);
880                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
881                         break;
882                 VM_OBJECT_WUNLOCK(object);
883                 vm_object_pip_sleep(backing_object, "vmbckwait");
884                 counter_u64_add(object_collapse_waits, 1);
885                 VM_OBJECT_WLOCK(object);
886         }
887         return (backing_object);
888 }
889
890 /*
891  *      vm_object_terminate_pages removes any remaining pageable pages
892  *      from the object and resets the object to an empty state.
893  */
894 static void
895 vm_object_terminate_pages(vm_object_t object)
896 {
897         vm_page_t p, p_next;
898
899         VM_OBJECT_ASSERT_WLOCKED(object);
900
901         /*
902          * Free any remaining pageable pages.  This also removes them from the
903          * paging queues.  However, don't free wired pages, just remove them
904          * from the object.  Rather than incrementally removing each page from
905          * the object, the page and object are reset to any empty state. 
906          */
907         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
908                 vm_page_assert_unbusied(p);
909                 KASSERT(p->object == object &&
910                     (p->ref_count & VPRC_OBJREF) != 0,
911                     ("vm_object_terminate_pages: page %p is inconsistent", p));
912
913                 p->object = NULL;
914                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
915                         VM_CNT_INC(v_pfree);
916                         vm_page_free(p);
917                 }
918         }
919
920         /*
921          * If the object contained any pages, then reset it to an empty state.
922          * None of the object's fields, including "resident_page_count", were
923          * modified by the preceding loop.
924          */
925         if (object->resident_page_count != 0) {
926                 vm_radix_reclaim_allnodes(&object->rtree);
927                 TAILQ_INIT(&object->memq);
928                 object->resident_page_count = 0;
929                 if (object->type == OBJT_VNODE)
930                         vdrop(object->handle);
931         }
932 }
933
934 /*
935  *      vm_object_terminate actually destroys the specified object, freeing
936  *      up all previously used resources.
937  *
938  *      The object must be locked.
939  *      This routine may block.
940  */
941 void
942 vm_object_terminate(vm_object_t object)
943 {
944
945         VM_OBJECT_ASSERT_WLOCKED(object);
946         KASSERT((object->flags & OBJ_DEAD) != 0,
947             ("terminating non-dead obj %p", object));
948         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
949             ("terminating collapsing obj %p", object));
950         KASSERT(object->backing_object == NULL,
951             ("terminating shadow obj %p", object));
952
953         /*
954          * wait for the pageout daemon to be done with the object
955          */
956         vm_object_pip_wait(object, "objtrm");
957
958         KASSERT(!REFCOUNT_COUNT(object->paging_in_progress),
959             ("vm_object_terminate: pageout in progress"));
960
961         KASSERT(object->ref_count == 0,
962             ("vm_object_terminate: object with references, ref_count=%d",
963             object->ref_count));
964
965         if ((object->flags & OBJ_PG_DTOR) == 0)
966                 vm_object_terminate_pages(object);
967
968 #if VM_NRESERVLEVEL > 0
969         if (__predict_false(!LIST_EMPTY(&object->rvq)))
970                 vm_reserv_break_all(object);
971 #endif
972
973         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
974             object->type == OBJT_SWAP,
975             ("%s: non-swap obj %p has cred", __func__, object));
976
977         /*
978          * Let the pager know object is dead.
979          */
980         vm_pager_deallocate(object);
981         VM_OBJECT_WUNLOCK(object);
982
983         vm_object_destroy(object);
984 }
985
986 /*
987  * Make the page read-only so that we can clear the object flags.  However, if
988  * this is a nosync mmap then the object is likely to stay dirty so do not
989  * mess with the page and do not clear the object flags.  Returns TRUE if the
990  * page should be flushed, and FALSE otherwise.
991  */
992 static boolean_t
993 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
994 {
995
996         vm_page_assert_busied(p);
997
998         /*
999          * If we have been asked to skip nosync pages and this is a
1000          * nosync page, skip it.  Note that the object flags were not
1001          * cleared in this case so we do not have to set them.
1002          */
1003         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
1004                 *allclean = FALSE;
1005                 return (FALSE);
1006         } else {
1007                 pmap_remove_write(p);
1008                 return (p->dirty != 0);
1009         }
1010 }
1011
1012 /*
1013  *      vm_object_page_clean
1014  *
1015  *      Clean all dirty pages in the specified range of object.  Leaves page 
1016  *      on whatever queue it is currently on.   If NOSYNC is set then do not
1017  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1018  *      leaving the object dirty.
1019  *
1020  *      For swap objects backing tmpfs regular files, do not flush anything,
1021  *      but remove write protection on the mapped pages to update mtime through
1022  *      mmaped writes.
1023  *
1024  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
1025  *      synchronous clustering mode implementation.
1026  *
1027  *      Odd semantics: if start == end, we clean everything.
1028  *
1029  *      The object must be locked.
1030  *
1031  *      Returns FALSE if some page from the range was not written, as
1032  *      reported by the pager, and TRUE otherwise.
1033  */
1034 boolean_t
1035 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1036     int flags)
1037 {
1038         vm_page_t np, p;
1039         vm_pindex_t pi, tend, tstart;
1040         int curgeneration, n, pagerflags;
1041         boolean_t eio, res, allclean;
1042
1043         VM_OBJECT_ASSERT_WLOCKED(object);
1044
1045         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1046                 return (TRUE);
1047
1048         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1049             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1050         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1051
1052         tstart = OFF_TO_IDX(start);
1053         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1054         allclean = tstart == 0 && tend >= object->size;
1055         res = TRUE;
1056
1057 rescan:
1058         curgeneration = object->generation;
1059
1060         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1061                 pi = p->pindex;
1062                 if (pi >= tend)
1063                         break;
1064                 np = TAILQ_NEXT(p, listq);
1065                 if (vm_page_none_valid(p))
1066                         continue;
1067                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1068                         if (object->generation != curgeneration &&
1069                             (flags & OBJPC_SYNC) != 0)
1070                                 goto rescan;
1071                         np = vm_page_find_least(object, pi);
1072                         continue;
1073                 }
1074                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1075                         vm_page_xunbusy(p);
1076                         continue;
1077                 }
1078                 if (object->type == OBJT_VNODE) {
1079                         n = vm_object_page_collect_flush(object, p, pagerflags,
1080                             flags, &allclean, &eio);
1081                         if (eio) {
1082                                 res = FALSE;
1083                                 allclean = FALSE;
1084                         }
1085                         if (object->generation != curgeneration &&
1086                             (flags & OBJPC_SYNC) != 0)
1087                                 goto rescan;
1088
1089                         /*
1090                          * If the VOP_PUTPAGES() did a truncated write, so
1091                          * that even the first page of the run is not fully
1092                          * written, vm_pageout_flush() returns 0 as the run
1093                          * length.  Since the condition that caused truncated
1094                          * write may be permanent, e.g. exhausted free space,
1095                          * accepting n == 0 would cause an infinite loop.
1096                          *
1097                          * Forwarding the iterator leaves the unwritten page
1098                          * behind, but there is not much we can do there if
1099                          * filesystem refuses to write it.
1100                          */
1101                         if (n == 0) {
1102                                 n = 1;
1103                                 allclean = FALSE;
1104                         }
1105                 } else {
1106                         n = 1;
1107                         vm_page_xunbusy(p);
1108                 }
1109                 np = vm_page_find_least(object, pi + n);
1110         }
1111 #if 0
1112         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1113 #endif
1114
1115         /*
1116          * Leave updating cleangeneration for tmpfs objects to tmpfs
1117          * scan.  It needs to update mtime, which happens for other
1118          * filesystems during page writeouts.
1119          */
1120         if (allclean && object->type == OBJT_VNODE)
1121                 object->cleangeneration = curgeneration;
1122         return (res);
1123 }
1124
1125 static int
1126 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1127     int flags, boolean_t *allclean, boolean_t *eio)
1128 {
1129         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1130         int count, i, mreq, runlen;
1131
1132         vm_page_lock_assert(p, MA_NOTOWNED);
1133         vm_page_assert_xbusied(p);
1134         VM_OBJECT_ASSERT_WLOCKED(object);
1135
1136         count = 1;
1137         mreq = 0;
1138
1139         for (tp = p; count < vm_pageout_page_count; count++) {
1140                 tp = vm_page_next(tp);
1141                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1142                         break;
1143                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1144                         vm_page_xunbusy(tp);
1145                         break;
1146                 }
1147         }
1148
1149         for (p_first = p; count < vm_pageout_page_count; count++) {
1150                 tp = vm_page_prev(p_first);
1151                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1152                         break;
1153                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1154                         vm_page_xunbusy(tp);
1155                         break;
1156                 }
1157                 p_first = tp;
1158                 mreq++;
1159         }
1160
1161         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1162                 ma[i] = tp;
1163
1164         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1165         return (runlen);
1166 }
1167
1168 /*
1169  * Note that there is absolutely no sense in writing out
1170  * anonymous objects, so we track down the vnode object
1171  * to write out.
1172  * We invalidate (remove) all pages from the address space
1173  * for semantic correctness.
1174  *
1175  * If the backing object is a device object with unmanaged pages, then any
1176  * mappings to the specified range of pages must be removed before this
1177  * function is called.
1178  *
1179  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1180  * may start out with a NULL object.
1181  */
1182 boolean_t
1183 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1184     boolean_t syncio, boolean_t invalidate)
1185 {
1186         vm_object_t backing_object;
1187         struct vnode *vp;
1188         struct mount *mp;
1189         int error, flags, fsync_after;
1190         boolean_t res;
1191
1192         if (object == NULL)
1193                 return (TRUE);
1194         res = TRUE;
1195         error = 0;
1196         VM_OBJECT_WLOCK(object);
1197         while ((backing_object = object->backing_object) != NULL) {
1198                 VM_OBJECT_WLOCK(backing_object);
1199                 offset += object->backing_object_offset;
1200                 VM_OBJECT_WUNLOCK(object);
1201                 object = backing_object;
1202                 if (object->size < OFF_TO_IDX(offset + size))
1203                         size = IDX_TO_OFF(object->size) - offset;
1204         }
1205         /*
1206          * Flush pages if writing is allowed, invalidate them
1207          * if invalidation requested.  Pages undergoing I/O
1208          * will be ignored by vm_object_page_remove().
1209          *
1210          * We cannot lock the vnode and then wait for paging
1211          * to complete without deadlocking against vm_fault.
1212          * Instead we simply call vm_object_page_remove() and
1213          * allow it to block internally on a page-by-page
1214          * basis when it encounters pages undergoing async
1215          * I/O.
1216          */
1217         if (object->type == OBJT_VNODE &&
1218             vm_object_mightbedirty(object) != 0 &&
1219             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1220                 VM_OBJECT_WUNLOCK(object);
1221                 (void) vn_start_write(vp, &mp, V_WAIT);
1222                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1223                 if (syncio && !invalidate && offset == 0 &&
1224                     atop(size) == object->size) {
1225                         /*
1226                          * If syncing the whole mapping of the file,
1227                          * it is faster to schedule all the writes in
1228                          * async mode, also allowing the clustering,
1229                          * and then wait for i/o to complete.
1230                          */
1231                         flags = 0;
1232                         fsync_after = TRUE;
1233                 } else {
1234                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1235                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1236                         fsync_after = FALSE;
1237                 }
1238                 VM_OBJECT_WLOCK(object);
1239                 res = vm_object_page_clean(object, offset, offset + size,
1240                     flags);
1241                 VM_OBJECT_WUNLOCK(object);
1242                 if (fsync_after)
1243                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1244                 VOP_UNLOCK(vp);
1245                 vn_finished_write(mp);
1246                 if (error != 0)
1247                         res = FALSE;
1248                 VM_OBJECT_WLOCK(object);
1249         }
1250         if ((object->type == OBJT_VNODE ||
1251              object->type == OBJT_DEVICE) && invalidate) {
1252                 if (object->type == OBJT_DEVICE)
1253                         /*
1254                          * The option OBJPR_NOTMAPPED must be passed here
1255                          * because vm_object_page_remove() cannot remove
1256                          * unmanaged mappings.
1257                          */
1258                         flags = OBJPR_NOTMAPPED;
1259                 else if (old_msync)
1260                         flags = 0;
1261                 else
1262                         flags = OBJPR_CLEANONLY;
1263                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1264                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1265         }
1266         VM_OBJECT_WUNLOCK(object);
1267         return (res);
1268 }
1269
1270 /*
1271  * Determine whether the given advice can be applied to the object.  Advice is
1272  * not applied to unmanaged pages since they never belong to page queues, and
1273  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1274  * have been mapped at most once.
1275  */
1276 static bool
1277 vm_object_advice_applies(vm_object_t object, int advice)
1278 {
1279
1280         if ((object->flags & OBJ_UNMANAGED) != 0)
1281                 return (false);
1282         if (advice != MADV_FREE)
1283                 return (true);
1284         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1285             (OBJ_ONEMAPPING | OBJ_ANON));
1286 }
1287
1288 static void
1289 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1290     vm_size_t size)
1291 {
1292
1293         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1294                 swap_pager_freespace(object, pindex, size);
1295 }
1296
1297 /*
1298  *      vm_object_madvise:
1299  *
1300  *      Implements the madvise function at the object/page level.
1301  *
1302  *      MADV_WILLNEED   (any object)
1303  *
1304  *          Activate the specified pages if they are resident.
1305  *
1306  *      MADV_DONTNEED   (any object)
1307  *
1308  *          Deactivate the specified pages if they are resident.
1309  *
1310  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1311  *                       OBJ_ONEMAPPING only)
1312  *
1313  *          Deactivate and clean the specified pages if they are
1314  *          resident.  This permits the process to reuse the pages
1315  *          without faulting or the kernel to reclaim the pages
1316  *          without I/O.
1317  */
1318 void
1319 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1320     int advice)
1321 {
1322         vm_pindex_t tpindex;
1323         vm_object_t backing_object, tobject;
1324         vm_page_t m, tm;
1325
1326         if (object == NULL)
1327                 return;
1328
1329 relookup:
1330         VM_OBJECT_WLOCK(object);
1331         if (!vm_object_advice_applies(object, advice)) {
1332                 VM_OBJECT_WUNLOCK(object);
1333                 return;
1334         }
1335         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1336                 tobject = object;
1337
1338                 /*
1339                  * If the next page isn't resident in the top-level object, we
1340                  * need to search the shadow chain.  When applying MADV_FREE, we
1341                  * take care to release any swap space used to store
1342                  * non-resident pages.
1343                  */
1344                 if (m == NULL || pindex < m->pindex) {
1345                         /*
1346                          * Optimize a common case: if the top-level object has
1347                          * no backing object, we can skip over the non-resident
1348                          * range in constant time.
1349                          */
1350                         if (object->backing_object == NULL) {
1351                                 tpindex = (m != NULL && m->pindex < end) ?
1352                                     m->pindex : end;
1353                                 vm_object_madvise_freespace(object, advice,
1354                                     pindex, tpindex - pindex);
1355                                 if ((pindex = tpindex) == end)
1356                                         break;
1357                                 goto next_page;
1358                         }
1359
1360                         tpindex = pindex;
1361                         do {
1362                                 vm_object_madvise_freespace(tobject, advice,
1363                                     tpindex, 1);
1364                                 /*
1365                                  * Prepare to search the next object in the
1366                                  * chain.
1367                                  */
1368                                 backing_object = tobject->backing_object;
1369                                 if (backing_object == NULL)
1370                                         goto next_pindex;
1371                                 VM_OBJECT_WLOCK(backing_object);
1372                                 tpindex +=
1373                                     OFF_TO_IDX(tobject->backing_object_offset);
1374                                 if (tobject != object)
1375                                         VM_OBJECT_WUNLOCK(tobject);
1376                                 tobject = backing_object;
1377                                 if (!vm_object_advice_applies(tobject, advice))
1378                                         goto next_pindex;
1379                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1380                             NULL);
1381                 } else {
1382 next_page:
1383                         tm = m;
1384                         m = TAILQ_NEXT(m, listq);
1385                 }
1386
1387                 /*
1388                  * If the page is not in a normal state, skip it.  The page
1389                  * can not be invalidated while the object lock is held.
1390                  */
1391                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1392                         goto next_pindex;
1393                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1394                     ("vm_object_madvise: page %p is fictitious", tm));
1395                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1396                     ("vm_object_madvise: page %p is not managed", tm));
1397                 if (vm_page_tryxbusy(tm) == 0) {
1398                         if (object != tobject)
1399                                 VM_OBJECT_WUNLOCK(object);
1400                         if (advice == MADV_WILLNEED) {
1401                                 /*
1402                                  * Reference the page before unlocking and
1403                                  * sleeping so that the page daemon is less
1404                                  * likely to reclaim it.
1405                                  */
1406                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1407                         }
1408                         vm_page_busy_sleep(tm, "madvpo", false);
1409                         goto relookup;
1410                 }
1411                 vm_page_advise(tm, advice);
1412                 vm_page_xunbusy(tm);
1413                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1414 next_pindex:
1415                 if (tobject != object)
1416                         VM_OBJECT_WUNLOCK(tobject);
1417         }
1418         VM_OBJECT_WUNLOCK(object);
1419 }
1420
1421 /*
1422  *      vm_object_shadow:
1423  *
1424  *      Create a new object which is backed by the
1425  *      specified existing object range.  The source
1426  *      object reference is deallocated.
1427  *
1428  *      The new object and offset into that object
1429  *      are returned in the source parameters.
1430  */
1431 void
1432 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1433     struct ucred *cred, bool shared)
1434 {
1435         vm_object_t source;
1436         vm_object_t result;
1437
1438         source = *object;
1439
1440         /*
1441          * Don't create the new object if the old object isn't shared.
1442          *
1443          * If we hold the only reference we can guarantee that it won't
1444          * increase while we have the map locked.  Otherwise the race is
1445          * harmless and we will end up with an extra shadow object that
1446          * will be collapsed later.
1447          */
1448         if (source != NULL && source->ref_count == 1 &&
1449             (source->flags & OBJ_ANON) != 0)
1450                 return;
1451
1452         /*
1453          * Allocate a new object with the given length.
1454          */
1455         result = vm_object_allocate_anon(atop(length), source, cred, length);
1456
1457         /*
1458          * Store the offset into the source object, and fix up the offset into
1459          * the new object.
1460          */
1461         result->backing_object_offset = *offset;
1462
1463         if (shared || source != NULL) {
1464                 VM_OBJECT_WLOCK(result);
1465
1466                 /*
1467                  * The new object shadows the source object, adding a
1468                  * reference to it.  Our caller changes his reference
1469                  * to point to the new object, removing a reference to
1470                  * the source object.  Net result: no change of
1471                  * reference count, unless the caller needs to add one
1472                  * more reference due to forking a shared map entry.
1473                  */
1474                 if (shared) {
1475                         vm_object_reference_locked(result);
1476                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1477                 }
1478
1479                 /*
1480                  * Try to optimize the result object's page color when
1481                  * shadowing in order to maintain page coloring
1482                  * consistency in the combined shadowed object.
1483                  */
1484                 if (source != NULL) {
1485                         vm_object_backing_insert(result, source);
1486                         result->domain = source->domain;
1487 #if VM_NRESERVLEVEL > 0
1488                         result->flags |= source->flags & OBJ_COLORED;
1489                         result->pg_color = (source->pg_color +
1490                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1491                             1)) - 1);
1492 #endif
1493                 }
1494                 VM_OBJECT_WUNLOCK(result);
1495         }
1496
1497         /*
1498          * Return the new things
1499          */
1500         *offset = 0;
1501         *object = result;
1502 }
1503
1504 /*
1505  *      vm_object_split:
1506  *
1507  * Split the pages in a map entry into a new object.  This affords
1508  * easier removal of unused pages, and keeps object inheritance from
1509  * being a negative impact on memory usage.
1510  */
1511 void
1512 vm_object_split(vm_map_entry_t entry)
1513 {
1514         vm_page_t m, m_next;
1515         vm_object_t orig_object, new_object, backing_object;
1516         vm_pindex_t idx, offidxstart;
1517         vm_size_t size;
1518
1519         orig_object = entry->object.vm_object;
1520         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1521             ("vm_object_split:  Splitting object with multiple mappings."));
1522         if ((orig_object->flags & OBJ_ANON) == 0)
1523                 return;
1524         if (orig_object->ref_count <= 1)
1525                 return;
1526         VM_OBJECT_WUNLOCK(orig_object);
1527
1528         offidxstart = OFF_TO_IDX(entry->offset);
1529         size = atop(entry->end - entry->start);
1530
1531         /*
1532          * If swap_pager_copy() is later called, it will convert new_object
1533          * into a swap object.
1534          */
1535         new_object = vm_object_allocate_anon(size, orig_object,
1536             orig_object->cred, ptoa(size));
1537
1538         /*
1539          * We must wait for the orig_object to complete any in-progress
1540          * collapse so that the swap blocks are stable below.  The
1541          * additional reference on backing_object by new object will
1542          * prevent further collapse operations until split completes.
1543          */
1544         VM_OBJECT_WLOCK(orig_object);
1545         vm_object_collapse_wait(orig_object);
1546
1547         /*
1548          * At this point, the new object is still private, so the order in
1549          * which the original and new objects are locked does not matter.
1550          */
1551         VM_OBJECT_WLOCK(new_object);
1552         new_object->domain = orig_object->domain;
1553         backing_object = orig_object->backing_object;
1554         if (backing_object != NULL) {
1555                 vm_object_backing_insert_ref(new_object, backing_object);
1556                 new_object->backing_object_offset = 
1557                     orig_object->backing_object_offset + entry->offset;
1558         }
1559         if (orig_object->cred != NULL) {
1560                 crhold(orig_object->cred);
1561                 KASSERT(orig_object->charge >= ptoa(size),
1562                     ("orig_object->charge < 0"));
1563                 orig_object->charge -= ptoa(size);
1564         }
1565
1566         /*
1567          * Mark the split operation so that swap_pager_getpages() knows
1568          * that the object is in transition.
1569          */
1570         vm_object_set_flag(orig_object, OBJ_SPLIT);
1571 retry:
1572         m = vm_page_find_least(orig_object, offidxstart);
1573         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1574             m = m_next) {
1575                 m_next = TAILQ_NEXT(m, listq);
1576
1577                 /*
1578                  * We must wait for pending I/O to complete before we can
1579                  * rename the page.
1580                  *
1581                  * We do not have to VM_PROT_NONE the page as mappings should
1582                  * not be changed by this operation.
1583                  */
1584                 if (vm_page_tryxbusy(m) == 0) {
1585                         VM_OBJECT_WUNLOCK(new_object);
1586                         vm_page_sleep_if_busy(m, "spltwt");
1587                         VM_OBJECT_WLOCK(new_object);
1588                         goto retry;
1589                 }
1590
1591                 /*
1592                  * The page was left invalid.  Likely placed there by
1593                  * an incomplete fault.  Just remove and ignore.
1594                  */
1595                 if (vm_page_none_valid(m)) {
1596                         if (vm_page_remove(m))
1597                                 vm_page_free(m);
1598                         continue;
1599                 }
1600
1601                 /* vm_page_rename() will dirty the page. */
1602                 if (vm_page_rename(m, new_object, idx)) {
1603                         vm_page_xunbusy(m);
1604                         VM_OBJECT_WUNLOCK(new_object);
1605                         VM_OBJECT_WUNLOCK(orig_object);
1606                         vm_radix_wait();
1607                         VM_OBJECT_WLOCK(orig_object);
1608                         VM_OBJECT_WLOCK(new_object);
1609                         goto retry;
1610                 }
1611
1612 #if VM_NRESERVLEVEL > 0
1613                 /*
1614                  * If some of the reservation's allocated pages remain with
1615                  * the original object, then transferring the reservation to
1616                  * the new object is neither particularly beneficial nor
1617                  * particularly harmful as compared to leaving the reservation
1618                  * with the original object.  If, however, all of the
1619                  * reservation's allocated pages are transferred to the new
1620                  * object, then transferring the reservation is typically
1621                  * beneficial.  Determining which of these two cases applies
1622                  * would be more costly than unconditionally renaming the
1623                  * reservation.
1624                  */
1625                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1626 #endif
1627                 if (orig_object->type != OBJT_SWAP)
1628                         vm_page_xunbusy(m);
1629         }
1630         if (orig_object->type == OBJT_SWAP) {
1631                 /*
1632                  * swap_pager_copy() can sleep, in which case the orig_object's
1633                  * and new_object's locks are released and reacquired. 
1634                  */
1635                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1636                 TAILQ_FOREACH(m, &new_object->memq, listq)
1637                         vm_page_xunbusy(m);
1638         }
1639         vm_object_clear_flag(orig_object, OBJ_SPLIT);
1640         VM_OBJECT_WUNLOCK(orig_object);
1641         VM_OBJECT_WUNLOCK(new_object);
1642         entry->object.vm_object = new_object;
1643         entry->offset = 0LL;
1644         vm_object_deallocate(orig_object);
1645         VM_OBJECT_WLOCK(new_object);
1646 }
1647
1648 static vm_page_t
1649 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1650 {
1651         vm_object_t backing_object;
1652
1653         VM_OBJECT_ASSERT_WLOCKED(object);
1654         backing_object = object->backing_object;
1655         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1656
1657         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1658             ("invalid ownership %p %p %p", p, object, backing_object));
1659         /* The page is only NULL when rename fails. */
1660         if (p == NULL) {
1661                 VM_OBJECT_WUNLOCK(object);
1662                 VM_OBJECT_WUNLOCK(backing_object);
1663                 vm_radix_wait();
1664         } else {
1665                 if (p->object == object)
1666                         VM_OBJECT_WUNLOCK(backing_object);
1667                 else
1668                         VM_OBJECT_WUNLOCK(object);
1669                 vm_page_busy_sleep(p, "vmocol", false);
1670         }
1671         VM_OBJECT_WLOCK(object);
1672         VM_OBJECT_WLOCK(backing_object);
1673         return (TAILQ_FIRST(&backing_object->memq));
1674 }
1675
1676 static bool
1677 vm_object_scan_all_shadowed(vm_object_t object)
1678 {
1679         vm_object_t backing_object;
1680         vm_page_t p, pp;
1681         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1682
1683         VM_OBJECT_ASSERT_WLOCKED(object);
1684         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1685
1686         backing_object = object->backing_object;
1687
1688         if ((backing_object->flags & OBJ_ANON) == 0)
1689                 return (false);
1690
1691         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1692         p = vm_page_find_least(backing_object, pi);
1693         ps = swap_pager_find_least(backing_object, pi);
1694
1695         /*
1696          * Only check pages inside the parent object's range and
1697          * inside the parent object's mapping of the backing object.
1698          */
1699         for (;; pi++) {
1700                 if (p != NULL && p->pindex < pi)
1701                         p = TAILQ_NEXT(p, listq);
1702                 if (ps < pi)
1703                         ps = swap_pager_find_least(backing_object, pi);
1704                 if (p == NULL && ps >= backing_object->size)
1705                         break;
1706                 else if (p == NULL)
1707                         pi = ps;
1708                 else
1709                         pi = MIN(p->pindex, ps);
1710
1711                 new_pindex = pi - backing_offset_index;
1712                 if (new_pindex >= object->size)
1713                         break;
1714
1715                 if (p != NULL) {
1716                         /*
1717                          * If the backing object page is busy a
1718                          * grandparent or older page may still be
1719                          * undergoing CoW.  It is not safe to collapse
1720                          * the backing object until it is quiesced.
1721                          */
1722                         if (vm_page_tryxbusy(p) == 0)
1723                                 return (false);
1724
1725                         /*
1726                          * We raced with the fault handler that left
1727                          * newly allocated invalid page on the object
1728                          * queue and retried.
1729                          */
1730                         if (!vm_page_all_valid(p))
1731                                 goto unbusy_ret;
1732                 }
1733
1734                 /*
1735                  * See if the parent has the page or if the parent's object
1736                  * pager has the page.  If the parent has the page but the page
1737                  * is not valid, the parent's object pager must have the page.
1738                  *
1739                  * If this fails, the parent does not completely shadow the
1740                  * object and we might as well give up now.
1741                  */
1742                 pp = vm_page_lookup(object, new_pindex);
1743
1744                 /*
1745                  * The valid check here is stable due to object lock
1746                  * being required to clear valid and initiate paging.
1747                  * Busy of p disallows fault handler to validate pp.
1748                  */
1749                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1750                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1751                         goto unbusy_ret;
1752                 if (p != NULL)
1753                         vm_page_xunbusy(p);
1754         }
1755         return (true);
1756
1757 unbusy_ret:
1758         if (p != NULL)
1759                 vm_page_xunbusy(p);
1760         return (false);
1761 }
1762
1763 static void
1764 vm_object_collapse_scan(vm_object_t object)
1765 {
1766         vm_object_t backing_object;
1767         vm_page_t next, p, pp;
1768         vm_pindex_t backing_offset_index, new_pindex;
1769
1770         VM_OBJECT_ASSERT_WLOCKED(object);
1771         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1772
1773         backing_object = object->backing_object;
1774         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1775
1776         /*
1777          * Our scan
1778          */
1779         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1780                 next = TAILQ_NEXT(p, listq);
1781                 new_pindex = p->pindex - backing_offset_index;
1782
1783                 /*
1784                  * Check for busy page
1785                  */
1786                 if (vm_page_tryxbusy(p) == 0) {
1787                         next = vm_object_collapse_scan_wait(object, p);
1788                         continue;
1789                 }
1790
1791                 KASSERT(object->backing_object == backing_object,
1792                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
1793                     object->backing_object, backing_object));
1794                 KASSERT(p->object == backing_object,
1795                     ("vm_object_collapse_scan: object mismatch %p != %p",
1796                     p->object, backing_object));
1797
1798                 if (p->pindex < backing_offset_index ||
1799                     new_pindex >= object->size) {
1800                         if (backing_object->type == OBJT_SWAP)
1801                                 swap_pager_freespace(backing_object, p->pindex,
1802                                     1);
1803
1804                         KASSERT(!pmap_page_is_mapped(p),
1805                             ("freeing mapped page %p", p));
1806                         if (vm_page_remove(p))
1807                                 vm_page_free(p);
1808                         continue;
1809                 }
1810
1811                 if (!vm_page_all_valid(p)) {
1812                         KASSERT(!pmap_page_is_mapped(p),
1813                             ("freeing mapped page %p", p));
1814                         if (vm_page_remove(p))
1815                                 vm_page_free(p);
1816                         continue;
1817                 }
1818
1819                 pp = vm_page_lookup(object, new_pindex);
1820                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1821                         vm_page_xunbusy(p);
1822                         /*
1823                          * The page in the parent is busy and possibly not
1824                          * (yet) valid.  Until its state is finalized by the
1825                          * busy bit owner, we can't tell whether it shadows the
1826                          * original page.
1827                          */
1828                         next = vm_object_collapse_scan_wait(object, pp);
1829                         continue;
1830                 }
1831
1832                 if (pp != NULL && vm_page_none_valid(pp)) {
1833                         /*
1834                          * The page was invalid in the parent.  Likely placed
1835                          * there by an incomplete fault.  Just remove and
1836                          * ignore.  p can replace it.
1837                          */
1838                         if (vm_page_remove(pp))
1839                                 vm_page_free(pp);
1840                         pp = NULL;
1841                 }
1842
1843                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1844                         NULL)) {
1845                         /*
1846                          * The page already exists in the parent OR swap exists
1847                          * for this location in the parent.  Leave the parent's
1848                          * page alone.  Destroy the original page from the
1849                          * backing object.
1850                          */
1851                         if (backing_object->type == OBJT_SWAP)
1852                                 swap_pager_freespace(backing_object, p->pindex,
1853                                     1);
1854                         KASSERT(!pmap_page_is_mapped(p),
1855                             ("freeing mapped page %p", p));
1856                         if (vm_page_remove(p))
1857                                 vm_page_free(p);
1858                         if (pp != NULL)
1859                                 vm_page_xunbusy(pp);
1860                         continue;
1861                 }
1862
1863                 /*
1864                  * Page does not exist in parent, rename the page from the
1865                  * backing object to the main object.
1866                  *
1867                  * If the page was mapped to a process, it can remain mapped
1868                  * through the rename.  vm_page_rename() will dirty the page.
1869                  */
1870                 if (vm_page_rename(p, object, new_pindex)) {
1871                         vm_page_xunbusy(p);
1872                         next = vm_object_collapse_scan_wait(object, NULL);
1873                         continue;
1874                 }
1875
1876                 /* Use the old pindex to free the right page. */
1877                 if (backing_object->type == OBJT_SWAP)
1878                         swap_pager_freespace(backing_object,
1879                             new_pindex + backing_offset_index, 1);
1880
1881 #if VM_NRESERVLEVEL > 0
1882                 /*
1883                  * Rename the reservation.
1884                  */
1885                 vm_reserv_rename(p, object, backing_object,
1886                     backing_offset_index);
1887 #endif
1888                 vm_page_xunbusy(p);
1889         }
1890         return;
1891 }
1892
1893 /*
1894  *      vm_object_collapse:
1895  *
1896  *      Collapse an object with the object backing it.
1897  *      Pages in the backing object are moved into the
1898  *      parent, and the backing object is deallocated.
1899  */
1900 void
1901 vm_object_collapse(vm_object_t object)
1902 {
1903         vm_object_t backing_object, new_backing_object;
1904
1905         VM_OBJECT_ASSERT_WLOCKED(object);
1906
1907         while (TRUE) {
1908                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1909                     ("collapsing invalid object"));
1910
1911                 /*
1912                  * Wait for the backing_object to finish any pending
1913                  * collapse so that the caller sees the shortest possible
1914                  * shadow chain.
1915                  */
1916                 backing_object = vm_object_backing_collapse_wait(object);
1917                 if (backing_object == NULL)
1918                         return;
1919
1920                 KASSERT(object->ref_count > 0 &&
1921                     object->ref_count > object->shadow_count,
1922                     ("collapse with invalid ref %d or shadow %d count.",
1923                     object->ref_count, object->shadow_count));
1924                 KASSERT((backing_object->flags &
1925                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1926                     ("vm_object_collapse: Backing object already collapsing."));
1927                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1928                     ("vm_object_collapse: object is already collapsing."));
1929
1930                 /*
1931                  * We know that we can either collapse the backing object if
1932                  * the parent is the only reference to it, or (perhaps) have
1933                  * the parent bypass the object if the parent happens to shadow
1934                  * all the resident pages in the entire backing object.
1935                  */
1936                 if (backing_object->ref_count == 1) {
1937                         KASSERT(backing_object->shadow_count == 1,
1938                             ("vm_object_collapse: shadow_count: %d",
1939                             backing_object->shadow_count));
1940                         vm_object_pip_add(object, 1);
1941                         vm_object_set_flag(object, OBJ_COLLAPSING);
1942                         vm_object_pip_add(backing_object, 1);
1943                         vm_object_set_flag(backing_object, OBJ_DEAD);
1944
1945                         /*
1946                          * If there is exactly one reference to the backing
1947                          * object, we can collapse it into the parent.
1948                          */
1949                         vm_object_collapse_scan(object);
1950
1951 #if VM_NRESERVLEVEL > 0
1952                         /*
1953                          * Break any reservations from backing_object.
1954                          */
1955                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1956                                 vm_reserv_break_all(backing_object);
1957 #endif
1958
1959                         /*
1960                          * Move the pager from backing_object to object.
1961                          */
1962                         if (backing_object->type == OBJT_SWAP) {
1963                                 /*
1964                                  * swap_pager_copy() can sleep, in which case
1965                                  * the backing_object's and object's locks are
1966                                  * released and reacquired.
1967                                  * Since swap_pager_copy() is being asked to
1968                                  * destroy backing_object, it will change the
1969                                  * type to OBJT_DEFAULT.
1970                                  */
1971                                 swap_pager_copy(
1972                                     backing_object,
1973                                     object,
1974                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1975                         }
1976
1977                         /*
1978                          * Object now shadows whatever backing_object did.
1979                          */
1980                         vm_object_clear_flag(object, OBJ_COLLAPSING);
1981                         vm_object_backing_transfer(object, backing_object);
1982                         object->backing_object_offset +=
1983                             backing_object->backing_object_offset;
1984                         VM_OBJECT_WUNLOCK(object);
1985                         vm_object_pip_wakeup(object);
1986
1987                         /*
1988                          * Discard backing_object.
1989                          *
1990                          * Since the backing object has no pages, no pager left,
1991                          * and no object references within it, all that is
1992                          * necessary is to dispose of it.
1993                          */
1994                         KASSERT(backing_object->ref_count == 1, (
1995 "backing_object %p was somehow re-referenced during collapse!",
1996                             backing_object));
1997                         vm_object_pip_wakeup(backing_object);
1998                         (void)refcount_release(&backing_object->ref_count);
1999                         vm_object_terminate(backing_object);
2000                         counter_u64_add(object_collapses, 1);
2001                         VM_OBJECT_WLOCK(object);
2002                 } else {
2003                         /*
2004                          * If we do not entirely shadow the backing object,
2005                          * there is nothing we can do so we give up.
2006                          *
2007                          * The object lock and backing_object lock must not
2008                          * be dropped during this sequence.
2009                          */
2010                         if (!vm_object_scan_all_shadowed(object)) {
2011                                 VM_OBJECT_WUNLOCK(backing_object);
2012                                 break;
2013                         }
2014
2015                         /*
2016                          * Make the parent shadow the next object in the
2017                          * chain.  Deallocating backing_object will not remove
2018                          * it, since its reference count is at least 2.
2019                          */
2020                         vm_object_backing_remove_locked(object);
2021                         new_backing_object = backing_object->backing_object;
2022                         if (new_backing_object != NULL) {
2023                                 vm_object_backing_insert_ref(object,
2024                                     new_backing_object);
2025                                 object->backing_object_offset +=
2026                                     backing_object->backing_object_offset;
2027                         }
2028
2029                         /*
2030                          * Drop the reference count on backing_object. Since
2031                          * its ref_count was at least 2, it will not vanish.
2032                          */
2033                         (void)refcount_release(&backing_object->ref_count);
2034                         KASSERT(backing_object->ref_count >= 1, (
2035 "backing_object %p was somehow dereferenced during collapse!",
2036                             backing_object));
2037                         VM_OBJECT_WUNLOCK(backing_object);
2038                         counter_u64_add(object_bypasses, 1);
2039                 }
2040
2041                 /*
2042                  * Try again with this object's new backing object.
2043                  */
2044         }
2045 }
2046
2047 /*
2048  *      vm_object_page_remove:
2049  *
2050  *      For the given object, either frees or invalidates each of the
2051  *      specified pages.  In general, a page is freed.  However, if a page is
2052  *      wired for any reason other than the existence of a managed, wired
2053  *      mapping, then it may be invalidated but not removed from the object.
2054  *      Pages are specified by the given range ["start", "end") and the option
2055  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2056  *      extends from "start" to the end of the object.  If the option
2057  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2058  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
2059  *      specified, then the pages within the specified range must have no
2060  *      mappings.  Otherwise, if this option is not specified, any mappings to
2061  *      the specified pages are removed before the pages are freed or
2062  *      invalidated.
2063  *
2064  *      In general, this operation should only be performed on objects that
2065  *      contain managed pages.  There are, however, two exceptions.  First, it
2066  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
2067  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2068  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2069  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
2070  *
2071  *      The object must be locked.
2072  */
2073 void
2074 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2075     int options)
2076 {
2077         vm_page_t p, next;
2078
2079         VM_OBJECT_ASSERT_WLOCKED(object);
2080         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2081             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2082             ("vm_object_page_remove: illegal options for object %p", object));
2083         if (object->resident_page_count == 0)
2084                 return;
2085         vm_object_pip_add(object, 1);
2086 again:
2087         p = vm_page_find_least(object, start);
2088
2089         /*
2090          * Here, the variable "p" is either (1) the page with the least pindex
2091          * greater than or equal to the parameter "start" or (2) NULL. 
2092          */
2093         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2094                 next = TAILQ_NEXT(p, listq);
2095
2096                 /*
2097                  * If the page is wired for any reason besides the existence
2098                  * of managed, wired mappings, then it cannot be freed.  For
2099                  * example, fictitious pages, which represent device memory,
2100                  * are inherently wired and cannot be freed.  They can,
2101                  * however, be invalidated if the option OBJPR_CLEANONLY is
2102                  * not specified.
2103                  */
2104                 if (vm_page_tryxbusy(p) == 0) {
2105                         vm_page_sleep_if_busy(p, "vmopar");
2106                         goto again;
2107                 }
2108                 if (vm_page_wired(p)) {
2109 wired:
2110                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2111                             object->ref_count != 0)
2112                                 pmap_remove_all(p);
2113                         if ((options & OBJPR_CLEANONLY) == 0) {
2114                                 vm_page_invalid(p);
2115                                 vm_page_undirty(p);
2116                         }
2117                         vm_page_xunbusy(p);
2118                         continue;
2119                 }
2120                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2121                     ("vm_object_page_remove: page %p is fictitious", p));
2122                 if ((options & OBJPR_CLEANONLY) != 0 &&
2123                     !vm_page_none_valid(p)) {
2124                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2125                             object->ref_count != 0 &&
2126                             !vm_page_try_remove_write(p))
2127                                 goto wired;
2128                         if (p->dirty != 0) {
2129                                 vm_page_xunbusy(p);
2130                                 continue;
2131                         }
2132                 }
2133                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2134                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2135                         goto wired;
2136                 vm_page_free(p);
2137         }
2138         vm_object_pip_wakeup(object);
2139 }
2140
2141 /*
2142  *      vm_object_page_noreuse:
2143  *
2144  *      For the given object, attempt to move the specified pages to
2145  *      the head of the inactive queue.  This bypasses regular LRU
2146  *      operation and allows the pages to be reused quickly under memory
2147  *      pressure.  If a page is wired for any reason, then it will not
2148  *      be queued.  Pages are specified by the range ["start", "end").
2149  *      As a special case, if "end" is zero, then the range extends from
2150  *      "start" to the end of the object.
2151  *
2152  *      This operation should only be performed on objects that
2153  *      contain non-fictitious, managed pages.
2154  *
2155  *      The object must be locked.
2156  */
2157 void
2158 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2159 {
2160         vm_page_t p, next;
2161
2162         VM_OBJECT_ASSERT_LOCKED(object);
2163         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2164             ("vm_object_page_noreuse: illegal object %p", object));
2165         if (object->resident_page_count == 0)
2166                 return;
2167         p = vm_page_find_least(object, start);
2168
2169         /*
2170          * Here, the variable "p" is either (1) the page with the least pindex
2171          * greater than or equal to the parameter "start" or (2) NULL. 
2172          */
2173         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2174                 next = TAILQ_NEXT(p, listq);
2175                 vm_page_deactivate_noreuse(p);
2176         }
2177 }
2178
2179 /*
2180  *      Populate the specified range of the object with valid pages.  Returns
2181  *      TRUE if the range is successfully populated and FALSE otherwise.
2182  *
2183  *      Note: This function should be optimized to pass a larger array of
2184  *      pages to vm_pager_get_pages() before it is applied to a non-
2185  *      OBJT_DEVICE object.
2186  *
2187  *      The object must be locked.
2188  */
2189 boolean_t
2190 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2191 {
2192         vm_page_t m;
2193         vm_pindex_t pindex;
2194         int rv;
2195
2196         VM_OBJECT_ASSERT_WLOCKED(object);
2197         for (pindex = start; pindex < end; pindex++) {
2198                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2199                 if (rv != VM_PAGER_OK)
2200                         break;
2201
2202                 /*
2203                  * Keep "m" busy because a subsequent iteration may unlock
2204                  * the object.
2205                  */
2206         }
2207         if (pindex > start) {
2208                 m = vm_page_lookup(object, start);
2209                 while (m != NULL && m->pindex < pindex) {
2210                         vm_page_xunbusy(m);
2211                         m = TAILQ_NEXT(m, listq);
2212                 }
2213         }
2214         return (pindex == end);
2215 }
2216
2217 /*
2218  *      Routine:        vm_object_coalesce
2219  *      Function:       Coalesces two objects backing up adjoining
2220  *                      regions of memory into a single object.
2221  *
2222  *      returns TRUE if objects were combined.
2223  *
2224  *      NOTE:   Only works at the moment if the second object is NULL -
2225  *              if it's not, which object do we lock first?
2226  *
2227  *      Parameters:
2228  *              prev_object     First object to coalesce
2229  *              prev_offset     Offset into prev_object
2230  *              prev_size       Size of reference to prev_object
2231  *              next_size       Size of reference to the second object
2232  *              reserved        Indicator that extension region has
2233  *                              swap accounted for
2234  *
2235  *      Conditions:
2236  *      The object must *not* be locked.
2237  */
2238 boolean_t
2239 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2240     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2241 {
2242         vm_pindex_t next_pindex;
2243
2244         if (prev_object == NULL)
2245                 return (TRUE);
2246         if ((prev_object->flags & OBJ_ANON) == 0)
2247                 return (FALSE);
2248
2249         VM_OBJECT_WLOCK(prev_object);
2250         /*
2251          * Try to collapse the object first.
2252          */
2253         vm_object_collapse(prev_object);
2254
2255         /*
2256          * Can't coalesce if: . more than one reference . paged out . shadows
2257          * another object . has a copy elsewhere (any of which mean that the
2258          * pages not mapped to prev_entry may be in use anyway)
2259          */
2260         if (prev_object->backing_object != NULL) {
2261                 VM_OBJECT_WUNLOCK(prev_object);
2262                 return (FALSE);
2263         }
2264
2265         prev_size >>= PAGE_SHIFT;
2266         next_size >>= PAGE_SHIFT;
2267         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2268
2269         if (prev_object->ref_count > 1 &&
2270             prev_object->size != next_pindex &&
2271             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2272                 VM_OBJECT_WUNLOCK(prev_object);
2273                 return (FALSE);
2274         }
2275
2276         /*
2277          * Account for the charge.
2278          */
2279         if (prev_object->cred != NULL) {
2280
2281                 /*
2282                  * If prev_object was charged, then this mapping,
2283                  * although not charged now, may become writable
2284                  * later. Non-NULL cred in the object would prevent
2285                  * swap reservation during enabling of the write
2286                  * access, so reserve swap now. Failed reservation
2287                  * cause allocation of the separate object for the map
2288                  * entry, and swap reservation for this entry is
2289                  * managed in appropriate time.
2290                  */
2291                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2292                     prev_object->cred)) {
2293                         VM_OBJECT_WUNLOCK(prev_object);
2294                         return (FALSE);
2295                 }
2296                 prev_object->charge += ptoa(next_size);
2297         }
2298
2299         /*
2300          * Remove any pages that may still be in the object from a previous
2301          * deallocation.
2302          */
2303         if (next_pindex < prev_object->size) {
2304                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2305                     next_size, 0);
2306                 if (prev_object->type == OBJT_SWAP)
2307                         swap_pager_freespace(prev_object,
2308                                              next_pindex, next_size);
2309 #if 0
2310                 if (prev_object->cred != NULL) {
2311                         KASSERT(prev_object->charge >=
2312                             ptoa(prev_object->size - next_pindex),
2313                             ("object %p overcharged 1 %jx %jx", prev_object,
2314                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2315                         prev_object->charge -= ptoa(prev_object->size -
2316                             next_pindex);
2317                 }
2318 #endif
2319         }
2320
2321         /*
2322          * Extend the object if necessary.
2323          */
2324         if (next_pindex + next_size > prev_object->size)
2325                 prev_object->size = next_pindex + next_size;
2326
2327         VM_OBJECT_WUNLOCK(prev_object);
2328         return (TRUE);
2329 }
2330
2331 void
2332 vm_object_set_writeable_dirty(vm_object_t object)
2333 {
2334
2335         /* Only set for vnodes & tmpfs */
2336         if (object->type != OBJT_VNODE &&
2337             (object->flags & OBJ_TMPFS_NODE) == 0)
2338                 return;
2339         atomic_add_int(&object->generation, 1);
2340 }
2341
2342 /*
2343  *      vm_object_unwire:
2344  *
2345  *      For each page offset within the specified range of the given object,
2346  *      find the highest-level page in the shadow chain and unwire it.  A page
2347  *      must exist at every page offset, and the highest-level page must be
2348  *      wired.
2349  */
2350 void
2351 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2352     uint8_t queue)
2353 {
2354         vm_object_t tobject, t1object;
2355         vm_page_t m, tm;
2356         vm_pindex_t end_pindex, pindex, tpindex;
2357         int depth, locked_depth;
2358
2359         KASSERT((offset & PAGE_MASK) == 0,
2360             ("vm_object_unwire: offset is not page aligned"));
2361         KASSERT((length & PAGE_MASK) == 0,
2362             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2363         /* The wired count of a fictitious page never changes. */
2364         if ((object->flags & OBJ_FICTITIOUS) != 0)
2365                 return;
2366         pindex = OFF_TO_IDX(offset);
2367         end_pindex = pindex + atop(length);
2368 again:
2369         locked_depth = 1;
2370         VM_OBJECT_RLOCK(object);
2371         m = vm_page_find_least(object, pindex);
2372         while (pindex < end_pindex) {
2373                 if (m == NULL || pindex < m->pindex) {
2374                         /*
2375                          * The first object in the shadow chain doesn't
2376                          * contain a page at the current index.  Therefore,
2377                          * the page must exist in a backing object.
2378                          */
2379                         tobject = object;
2380                         tpindex = pindex;
2381                         depth = 0;
2382                         do {
2383                                 tpindex +=
2384                                     OFF_TO_IDX(tobject->backing_object_offset);
2385                                 tobject = tobject->backing_object;
2386                                 KASSERT(tobject != NULL,
2387                                     ("vm_object_unwire: missing page"));
2388                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2389                                         goto next_page;
2390                                 depth++;
2391                                 if (depth == locked_depth) {
2392                                         locked_depth++;
2393                                         VM_OBJECT_RLOCK(tobject);
2394                                 }
2395                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2396                             NULL);
2397                 } else {
2398                         tm = m;
2399                         m = TAILQ_NEXT(m, listq);
2400                 }
2401                 if (vm_page_trysbusy(tm) == 0) {
2402                         for (tobject = object; locked_depth >= 1;
2403                             locked_depth--) {
2404                                 t1object = tobject->backing_object;
2405                                 if (tm->object != tobject)
2406                                         VM_OBJECT_RUNLOCK(tobject);
2407                                 tobject = t1object;
2408                         }
2409                         vm_page_busy_sleep(tm, "unwbo", true);
2410                         goto again;
2411                 }
2412                 vm_page_unwire(tm, queue);
2413                 vm_page_sunbusy(tm);
2414 next_page:
2415                 pindex++;
2416         }
2417         /* Release the accumulated object locks. */
2418         for (tobject = object; locked_depth >= 1; locked_depth--) {
2419                 t1object = tobject->backing_object;
2420                 VM_OBJECT_RUNLOCK(tobject);
2421                 tobject = t1object;
2422         }
2423 }
2424
2425 /*
2426  * Return the vnode for the given object, or NULL if none exists.
2427  * For tmpfs objects, the function may return NULL if there is
2428  * no vnode allocated at the time of the call.
2429  */
2430 struct vnode *
2431 vm_object_vnode(vm_object_t object)
2432 {
2433         struct vnode *vp;
2434
2435         VM_OBJECT_ASSERT_LOCKED(object);
2436         if (object->type == OBJT_VNODE) {
2437                 vp = object->handle;
2438                 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2439         } else if (object->type == OBJT_SWAP &&
2440             (object->flags & OBJ_TMPFS) != 0) {
2441                 vp = object->un_pager.swp.swp_tmpfs;
2442                 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2443         } else {
2444                 vp = NULL;
2445         }
2446         return (vp);
2447 }
2448
2449
2450 /*
2451  * Busy the vm object.  This prevents new pages belonging to the object from
2452  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2453  * for checking page state before proceeding.
2454  */
2455 void
2456 vm_object_busy(vm_object_t obj)
2457 {
2458
2459         VM_OBJECT_ASSERT_LOCKED(obj);
2460
2461         refcount_acquire(&obj->busy);
2462         /* The fence is required to order loads of page busy. */
2463         atomic_thread_fence_acq_rel();
2464 }
2465
2466 void
2467 vm_object_unbusy(vm_object_t obj)
2468 {
2469
2470
2471         refcount_release(&obj->busy);
2472 }
2473
2474 void
2475 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2476 {
2477
2478         VM_OBJECT_ASSERT_UNLOCKED(obj);
2479
2480         if (obj->busy)
2481                 refcount_sleep(&obj->busy, wmesg, PVM);
2482 }
2483
2484 /*
2485  * Return the kvme type of the given object.
2486  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2487  */
2488 int
2489 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2490 {
2491
2492         VM_OBJECT_ASSERT_LOCKED(object);
2493         if (vpp != NULL)
2494                 *vpp = vm_object_vnode(object);
2495         switch (object->type) {
2496         case OBJT_DEFAULT:
2497                 return (KVME_TYPE_DEFAULT);
2498         case OBJT_VNODE:
2499                 return (KVME_TYPE_VNODE);
2500         case OBJT_SWAP:
2501                 if ((object->flags & OBJ_TMPFS_NODE) != 0)
2502                         return (KVME_TYPE_VNODE);
2503                 return (KVME_TYPE_SWAP);
2504         case OBJT_DEVICE:
2505                 return (KVME_TYPE_DEVICE);
2506         case OBJT_PHYS:
2507                 return (KVME_TYPE_PHYS);
2508         case OBJT_DEAD:
2509                 return (KVME_TYPE_DEAD);
2510         case OBJT_SG:
2511                 return (KVME_TYPE_SG);
2512         case OBJT_MGTDEVICE:
2513                 return (KVME_TYPE_MGTDEVICE);
2514         default:
2515                 return (KVME_TYPE_UNKNOWN);
2516         }
2517 }
2518
2519 static int
2520 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2521 {
2522         struct kinfo_vmobject *kvo;
2523         char *fullpath, *freepath;
2524         struct vnode *vp;
2525         struct vattr va;
2526         vm_object_t obj;
2527         vm_page_t m;
2528         int count, error;
2529
2530         if (req->oldptr == NULL) {
2531                 /*
2532                  * If an old buffer has not been provided, generate an
2533                  * estimate of the space needed for a subsequent call.
2534                  */
2535                 mtx_lock(&vm_object_list_mtx);
2536                 count = 0;
2537                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2538                         if (obj->type == OBJT_DEAD)
2539                                 continue;
2540                         count++;
2541                 }
2542                 mtx_unlock(&vm_object_list_mtx);
2543                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2544                     count * 11 / 10));
2545         }
2546
2547         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2548         error = 0;
2549
2550         /*
2551          * VM objects are type stable and are never removed from the
2552          * list once added.  This allows us to safely read obj->object_list
2553          * after reacquiring the VM object lock.
2554          */
2555         mtx_lock(&vm_object_list_mtx);
2556         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2557                 if (obj->type == OBJT_DEAD)
2558                         continue;
2559                 VM_OBJECT_RLOCK(obj);
2560                 if (obj->type == OBJT_DEAD) {
2561                         VM_OBJECT_RUNLOCK(obj);
2562                         continue;
2563                 }
2564                 mtx_unlock(&vm_object_list_mtx);
2565                 kvo->kvo_size = ptoa(obj->size);
2566                 kvo->kvo_resident = obj->resident_page_count;
2567                 kvo->kvo_ref_count = obj->ref_count;
2568                 kvo->kvo_shadow_count = obj->shadow_count;
2569                 kvo->kvo_memattr = obj->memattr;
2570                 kvo->kvo_active = 0;
2571                 kvo->kvo_inactive = 0;
2572                 TAILQ_FOREACH(m, &obj->memq, listq) {
2573                         /*
2574                          * A page may belong to the object but be
2575                          * dequeued and set to PQ_NONE while the
2576                          * object lock is not held.  This makes the
2577                          * reads of m->queue below racy, and we do not
2578                          * count pages set to PQ_NONE.  However, this
2579                          * sysctl is only meant to give an
2580                          * approximation of the system anyway.
2581                          */
2582                         if (m->a.queue == PQ_ACTIVE)
2583                                 kvo->kvo_active++;
2584                         else if (m->a.queue == PQ_INACTIVE)
2585                                 kvo->kvo_inactive++;
2586                 }
2587
2588                 kvo->kvo_vn_fileid = 0;
2589                 kvo->kvo_vn_fsid = 0;
2590                 kvo->kvo_vn_fsid_freebsd11 = 0;
2591                 freepath = NULL;
2592                 fullpath = "";
2593                 kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2594                 if (vp != NULL)
2595                         vref(vp);
2596                 VM_OBJECT_RUNLOCK(obj);
2597                 if (vp != NULL) {
2598                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2599                         vn_lock(vp, LK_SHARED | LK_RETRY);
2600                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2601                                 kvo->kvo_vn_fileid = va.va_fileid;
2602                                 kvo->kvo_vn_fsid = va.va_fsid;
2603                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2604                                                                 /* truncate */
2605                         }
2606                         vput(vp);
2607                 }
2608
2609                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2610                 if (freepath != NULL)
2611                         free(freepath, M_TEMP);
2612
2613                 /* Pack record size down */
2614                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2615                     + strlen(kvo->kvo_path) + 1;
2616                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2617                     sizeof(uint64_t));
2618                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2619                 mtx_lock(&vm_object_list_mtx);
2620                 if (error)
2621                         break;
2622         }
2623         mtx_unlock(&vm_object_list_mtx);
2624         free(kvo, M_TEMP);
2625         return (error);
2626 }
2627 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2628     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2629     "List of VM objects");
2630
2631 #include "opt_ddb.h"
2632 #ifdef DDB
2633 #include <sys/kernel.h>
2634
2635 #include <sys/cons.h>
2636
2637 #include <ddb/ddb.h>
2638
2639 static int
2640 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2641 {
2642         vm_map_t tmpm;
2643         vm_map_entry_t tmpe;
2644         vm_object_t obj;
2645
2646         if (map == 0)
2647                 return 0;
2648
2649         if (entry == 0) {
2650                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2651                         if (_vm_object_in_map(map, object, tmpe)) {
2652                                 return 1;
2653                         }
2654                 }
2655         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2656                 tmpm = entry->object.sub_map;
2657                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2658                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2659                                 return 1;
2660                         }
2661                 }
2662         } else if ((obj = entry->object.vm_object) != NULL) {
2663                 for (; obj; obj = obj->backing_object)
2664                         if (obj == object) {
2665                                 return 1;
2666                         }
2667         }
2668         return 0;
2669 }
2670
2671 static int
2672 vm_object_in_map(vm_object_t object)
2673 {
2674         struct proc *p;
2675
2676         /* sx_slock(&allproc_lock); */
2677         FOREACH_PROC_IN_SYSTEM(p) {
2678                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2679                         continue;
2680                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2681                         /* sx_sunlock(&allproc_lock); */
2682                         return 1;
2683                 }
2684         }
2685         /* sx_sunlock(&allproc_lock); */
2686         if (_vm_object_in_map(kernel_map, object, 0))
2687                 return 1;
2688         return 0;
2689 }
2690
2691 DB_SHOW_COMMAND(vmochk, vm_object_check)
2692 {
2693         vm_object_t object;
2694
2695         /*
2696          * make sure that internal objs are in a map somewhere
2697          * and none have zero ref counts.
2698          */
2699         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2700                 if ((object->flags & OBJ_ANON) != 0) {
2701                         if (object->ref_count == 0) {
2702                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2703                                         (long)object->size);
2704                         }
2705                         if (!vm_object_in_map(object)) {
2706                                 db_printf(
2707                         "vmochk: internal obj is not in a map: "
2708                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2709                                     object->ref_count, (u_long)object->size, 
2710                                     (u_long)object->size,
2711                                     (void *)object->backing_object);
2712                         }
2713                 }
2714         }
2715 }
2716
2717 /*
2718  *      vm_object_print:        [ debug ]
2719  */
2720 DB_SHOW_COMMAND(object, vm_object_print_static)
2721 {
2722         /* XXX convert args. */
2723         vm_object_t object = (vm_object_t)addr;
2724         boolean_t full = have_addr;
2725
2726         vm_page_t p;
2727
2728         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2729 #define count   was_count
2730
2731         int count;
2732
2733         if (object == NULL)
2734                 return;
2735
2736         db_iprintf(
2737             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2738             object, (int)object->type, (uintmax_t)object->size,
2739             object->resident_page_count, object->ref_count, object->flags,
2740             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2741         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2742             object->shadow_count, 
2743             object->backing_object ? object->backing_object->ref_count : 0,
2744             object->backing_object, (uintmax_t)object->backing_object_offset);
2745
2746         if (!full)
2747                 return;
2748
2749         db_indent += 2;
2750         count = 0;
2751         TAILQ_FOREACH(p, &object->memq, listq) {
2752                 if (count == 0)
2753                         db_iprintf("memory:=");
2754                 else if (count == 6) {
2755                         db_printf("\n");
2756                         db_iprintf(" ...");
2757                         count = 0;
2758                 } else
2759                         db_printf(",");
2760                 count++;
2761
2762                 db_printf("(off=0x%jx,page=0x%jx)",
2763                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2764         }
2765         if (count != 0)
2766                 db_printf("\n");
2767         db_indent -= 2;
2768 }
2769
2770 /* XXX. */
2771 #undef count
2772
2773 /* XXX need this non-static entry for calling from vm_map_print. */
2774 void
2775 vm_object_print(
2776         /* db_expr_t */ long addr,
2777         boolean_t have_addr,
2778         /* db_expr_t */ long count,
2779         char *modif)
2780 {
2781         vm_object_print_static(addr, have_addr, count, modif);
2782 }
2783
2784 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2785 {
2786         vm_object_t object;
2787         vm_pindex_t fidx;
2788         vm_paddr_t pa;
2789         vm_page_t m, prev_m;
2790         int rcount, nl, c;
2791
2792         nl = 0;
2793         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2794                 db_printf("new object: %p\n", (void *)object);
2795                 if (nl > 18) {
2796                         c = cngetc();
2797                         if (c != ' ')
2798                                 return;
2799                         nl = 0;
2800                 }
2801                 nl++;
2802                 rcount = 0;
2803                 fidx = 0;
2804                 pa = -1;
2805                 TAILQ_FOREACH(m, &object->memq, listq) {
2806                         if (m->pindex > 128)
2807                                 break;
2808                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2809                             prev_m->pindex + 1 != m->pindex) {
2810                                 if (rcount) {
2811                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2812                                                 (long)fidx, rcount, (long)pa);
2813                                         if (nl > 18) {
2814                                                 c = cngetc();
2815                                                 if (c != ' ')
2816                                                         return;
2817                                                 nl = 0;
2818                                         }
2819                                         nl++;
2820                                         rcount = 0;
2821                                 }
2822                         }                               
2823                         if (rcount &&
2824                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2825                                 ++rcount;
2826                                 continue;
2827                         }
2828                         if (rcount) {
2829                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2830                                         (long)fidx, rcount, (long)pa);
2831                                 if (nl > 18) {
2832                                         c = cngetc();
2833                                         if (c != ' ')
2834                                                 return;
2835                                         nl = 0;
2836                                 }
2837                                 nl++;
2838                         }
2839                         fidx = m->pindex;
2840                         pa = VM_PAGE_TO_PHYS(m);
2841                         rcount = 1;
2842                 }
2843                 if (rcount) {
2844                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2845                                 (long)fidx, rcount, (long)pa);
2846                         if (nl > 18) {
2847                                 c = cngetc();
2848                                 if (c != ' ')
2849                                         return;
2850                                 nl = 0;
2851                         }
2852                         nl++;
2853                 }
2854         }
2855 }
2856 #endif /* DDB */