]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Import the skein hashing algorithm, based on the threefish block cipher
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104     "Use old (insecure) msync behavior");
105
106 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107                     int pagerflags, int flags, boolean_t *clearobjflags,
108                     boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110                     boolean_t *clearobjflags);
111 static void     vm_object_qcollapse(vm_object_t object);
112 static void     vm_object_vndeallocate(vm_object_t object);
113
114 /*
115  *      Virtual memory objects maintain the actual data
116  *      associated with allocated virtual memory.  A given
117  *      page of memory exists within exactly one object.
118  *
119  *      An object is only deallocated when all "references"
120  *      are given up.  Only one "reference" to a given
121  *      region of an object should be writeable.
122  *
123  *      Associated with each object is a list of all resident
124  *      memory pages belonging to that object; this list is
125  *      maintained by the "vm_page" module, and locked by the object's
126  *      lock.
127  *
128  *      Each object also records a "pager" routine which is
129  *      used to retrieve (and store) pages to the proper backing
130  *      storage.  In addition, objects may be backed by other
131  *      objects from which they were virtual-copied.
132  *
133  *      The only items within the object structure which are
134  *      modified after time of creation are:
135  *              reference count         locked by object's lock
136  *              pager routine           locked by object's lock
137  *
138  */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;  /* lock for object list and count */
142
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147     "VM object stats");
148
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156
157 static uma_zone_t obj_zone;
158
159 static int vm_object_zinit(void *mem, int size, int flags);
160
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167         vm_object_t object;
168
169         object = (vm_object_t)mem;
170         KASSERT(object->ref_count == 0,
171             ("object %p ref_count = %d", object, object->ref_count));
172         KASSERT(TAILQ_EMPTY(&object->memq),
173             ("object %p has resident pages in its memq", object));
174         KASSERT(vm_radix_is_empty(&object->rtree),
175             ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177         KASSERT(LIST_EMPTY(&object->rvq),
178             ("object %p has reservations",
179             object));
180 #endif
181         KASSERT(vm_object_cache_is_empty(object),
182             ("object %p has cached pages",
183             object));
184         KASSERT(object->paging_in_progress == 0,
185             ("object %p paging_in_progress = %d",
186             object, object->paging_in_progress));
187         KASSERT(object->resident_page_count == 0,
188             ("object %p resident_page_count = %d",
189             object, object->resident_page_count));
190         KASSERT(object->shadow_count == 0,
191             ("object %p shadow_count = %d",
192             object, object->shadow_count));
193         KASSERT(object->type == OBJT_DEAD,
194             ("object %p has non-dead type %d",
195             object, object->type));
196 }
197 #endif
198
199 static int
200 vm_object_zinit(void *mem, int size, int flags)
201 {
202         vm_object_t object;
203
204         object = (vm_object_t)mem;
205         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
206
207         /* These are true for any object that has been freed */
208         object->type = OBJT_DEAD;
209         object->ref_count = 0;
210         object->rtree.rt_root = 0;
211         object->rtree.rt_flags = 0;
212         object->paging_in_progress = 0;
213         object->resident_page_count = 0;
214         object->shadow_count = 0;
215         object->cache.rt_root = 0;
216         object->cache.rt_flags = 0;
217
218         mtx_lock(&vm_object_list_mtx);
219         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
220         mtx_unlock(&vm_object_list_mtx);
221         return (0);
222 }
223
224 static void
225 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
226 {
227
228         TAILQ_INIT(&object->memq);
229         LIST_INIT(&object->shadow_head);
230
231         object->type = type;
232         switch (type) {
233         case OBJT_DEAD:
234                 panic("_vm_object_allocate: can't create OBJT_DEAD");
235         case OBJT_DEFAULT:
236         case OBJT_SWAP:
237                 object->flags = OBJ_ONEMAPPING;
238                 break;
239         case OBJT_DEVICE:
240         case OBJT_SG:
241                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
242                 break;
243         case OBJT_MGTDEVICE:
244                 object->flags = OBJ_FICTITIOUS;
245                 break;
246         case OBJT_PHYS:
247                 object->flags = OBJ_UNMANAGED;
248                 break;
249         case OBJT_VNODE:
250                 object->flags = 0;
251                 break;
252         default:
253                 panic("_vm_object_allocate: type %d is undefined", type);
254         }
255         object->size = size;
256         object->generation = 1;
257         object->ref_count = 1;
258         object->memattr = VM_MEMATTR_DEFAULT;
259         object->cred = NULL;
260         object->charge = 0;
261         object->handle = NULL;
262         object->backing_object = NULL;
263         object->backing_object_offset = (vm_ooffset_t) 0;
264 #if VM_NRESERVLEVEL > 0
265         LIST_INIT(&object->rvq);
266 #endif
267         umtx_shm_object_init(object);
268 }
269
270 /*
271  *      vm_object_init:
272  *
273  *      Initialize the VM objects module.
274  */
275 void
276 vm_object_init(void)
277 {
278         TAILQ_INIT(&vm_object_list);
279         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
280         
281         rw_init(&kernel_object->lock, "kernel vm object");
282         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283             kernel_object);
284 #if VM_NRESERVLEVEL > 0
285         kernel_object->flags |= OBJ_COLORED;
286         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287 #endif
288
289         rw_init(&kmem_object->lock, "kmem vm object");
290         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
291             kmem_object);
292 #if VM_NRESERVLEVEL > 0
293         kmem_object->flags |= OBJ_COLORED;
294         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
295 #endif
296
297         /*
298          * The lock portion of struct vm_object must be type stable due
299          * to vm_pageout_fallback_object_lock locking a vm object
300          * without holding any references to it.
301          */
302         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
303 #ifdef INVARIANTS
304             vm_object_zdtor,
305 #else
306             NULL,
307 #endif
308             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
309
310         vm_radix_init();
311 }
312
313 void
314 vm_object_clear_flag(vm_object_t object, u_short bits)
315 {
316
317         VM_OBJECT_ASSERT_WLOCKED(object);
318         object->flags &= ~bits;
319 }
320
321 /*
322  *      Sets the default memory attribute for the specified object.  Pages
323  *      that are allocated to this object are by default assigned this memory
324  *      attribute.
325  *
326  *      Presently, this function must be called before any pages are allocated
327  *      to the object.  In the future, this requirement may be relaxed for
328  *      "default" and "swap" objects.
329  */
330 int
331 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
332 {
333
334         VM_OBJECT_ASSERT_WLOCKED(object);
335         switch (object->type) {
336         case OBJT_DEFAULT:
337         case OBJT_DEVICE:
338         case OBJT_MGTDEVICE:
339         case OBJT_PHYS:
340         case OBJT_SG:
341         case OBJT_SWAP:
342         case OBJT_VNODE:
343                 if (!TAILQ_EMPTY(&object->memq))
344                         return (KERN_FAILURE);
345                 break;
346         case OBJT_DEAD:
347                 return (KERN_INVALID_ARGUMENT);
348         default:
349                 panic("vm_object_set_memattr: object %p is of undefined type",
350                     object);
351         }
352         object->memattr = memattr;
353         return (KERN_SUCCESS);
354 }
355
356 void
357 vm_object_pip_add(vm_object_t object, short i)
358 {
359
360         VM_OBJECT_ASSERT_WLOCKED(object);
361         object->paging_in_progress += i;
362 }
363
364 void
365 vm_object_pip_subtract(vm_object_t object, short i)
366 {
367
368         VM_OBJECT_ASSERT_WLOCKED(object);
369         object->paging_in_progress -= i;
370 }
371
372 void
373 vm_object_pip_wakeup(vm_object_t object)
374 {
375
376         VM_OBJECT_ASSERT_WLOCKED(object);
377         object->paging_in_progress--;
378         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
379                 vm_object_clear_flag(object, OBJ_PIPWNT);
380                 wakeup(object);
381         }
382 }
383
384 void
385 vm_object_pip_wakeupn(vm_object_t object, short i)
386 {
387
388         VM_OBJECT_ASSERT_WLOCKED(object);
389         if (i)
390                 object->paging_in_progress -= i;
391         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
392                 vm_object_clear_flag(object, OBJ_PIPWNT);
393                 wakeup(object);
394         }
395 }
396
397 void
398 vm_object_pip_wait(vm_object_t object, char *waitid)
399 {
400
401         VM_OBJECT_ASSERT_WLOCKED(object);
402         while (object->paging_in_progress) {
403                 object->flags |= OBJ_PIPWNT;
404                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
405         }
406 }
407
408 /*
409  *      vm_object_allocate:
410  *
411  *      Returns a new object with the given size.
412  */
413 vm_object_t
414 vm_object_allocate(objtype_t type, vm_pindex_t size)
415 {
416         vm_object_t object;
417
418         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
419         _vm_object_allocate(type, size, object);
420         return (object);
421 }
422
423
424 /*
425  *      vm_object_reference:
426  *
427  *      Gets another reference to the given object.  Note: OBJ_DEAD
428  *      objects can be referenced during final cleaning.
429  */
430 void
431 vm_object_reference(vm_object_t object)
432 {
433         if (object == NULL)
434                 return;
435         VM_OBJECT_WLOCK(object);
436         vm_object_reference_locked(object);
437         VM_OBJECT_WUNLOCK(object);
438 }
439
440 /*
441  *      vm_object_reference_locked:
442  *
443  *      Gets another reference to the given object.
444  *
445  *      The object must be locked.
446  */
447 void
448 vm_object_reference_locked(vm_object_t object)
449 {
450         struct vnode *vp;
451
452         VM_OBJECT_ASSERT_WLOCKED(object);
453         object->ref_count++;
454         if (object->type == OBJT_VNODE) {
455                 vp = object->handle;
456                 vref(vp);
457         }
458 }
459
460 /*
461  * Handle deallocating an object of type OBJT_VNODE.
462  */
463 static void
464 vm_object_vndeallocate(vm_object_t object)
465 {
466         struct vnode *vp = (struct vnode *) object->handle;
467
468         VM_OBJECT_ASSERT_WLOCKED(object);
469         KASSERT(object->type == OBJT_VNODE,
470             ("vm_object_vndeallocate: not a vnode object"));
471         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
472 #ifdef INVARIANTS
473         if (object->ref_count == 0) {
474                 vprint("vm_object_vndeallocate", vp);
475                 panic("vm_object_vndeallocate: bad object reference count");
476         }
477 #endif
478
479         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
480                 umtx_shm_object_terminated(object);
481
482         /*
483          * The test for text of vp vnode does not need a bypass to
484          * reach right VV_TEXT there, since it is obtained from
485          * object->handle.
486          */
487         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
488                 object->ref_count--;
489                 VM_OBJECT_WUNLOCK(object);
490                 /* vrele may need the vnode lock. */
491                 vrele(vp);
492         } else {
493                 vhold(vp);
494                 VM_OBJECT_WUNLOCK(object);
495                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
496                 vdrop(vp);
497                 VM_OBJECT_WLOCK(object);
498                 object->ref_count--;
499                 if (object->type == OBJT_DEAD) {
500                         VM_OBJECT_WUNLOCK(object);
501                         VOP_UNLOCK(vp, 0);
502                 } else {
503                         if (object->ref_count == 0)
504                                 VOP_UNSET_TEXT(vp);
505                         VM_OBJECT_WUNLOCK(object);
506                         vput(vp);
507                 }
508         }
509 }
510
511 /*
512  *      vm_object_deallocate:
513  *
514  *      Release a reference to the specified object,
515  *      gained either through a vm_object_allocate
516  *      or a vm_object_reference call.  When all references
517  *      are gone, storage associated with this object
518  *      may be relinquished.
519  *
520  *      No object may be locked.
521  */
522 void
523 vm_object_deallocate(vm_object_t object)
524 {
525         vm_object_t temp;
526         struct vnode *vp;
527
528         while (object != NULL) {
529                 VM_OBJECT_WLOCK(object);
530                 if (object->type == OBJT_VNODE) {
531                         vm_object_vndeallocate(object);
532                         return;
533                 }
534
535                 KASSERT(object->ref_count != 0,
536                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
537
538                 /*
539                  * If the reference count goes to 0 we start calling
540                  * vm_object_terminate() on the object chain.
541                  * A ref count of 1 may be a special case depending on the
542                  * shadow count being 0 or 1.
543                  */
544                 object->ref_count--;
545                 if (object->ref_count > 1) {
546                         VM_OBJECT_WUNLOCK(object);
547                         return;
548                 } else if (object->ref_count == 1) {
549                         if (object->type == OBJT_SWAP &&
550                             (object->flags & OBJ_TMPFS) != 0) {
551                                 vp = object->un_pager.swp.swp_tmpfs;
552                                 vhold(vp);
553                                 VM_OBJECT_WUNLOCK(object);
554                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
555                                 VM_OBJECT_WLOCK(object);
556                                 if (object->type == OBJT_DEAD ||
557                                     object->ref_count != 1) {
558                                         VM_OBJECT_WUNLOCK(object);
559                                         VOP_UNLOCK(vp, 0);
560                                         vdrop(vp);
561                                         return;
562                                 }
563                                 if ((object->flags & OBJ_TMPFS) != 0)
564                                         VOP_UNSET_TEXT(vp);
565                                 VOP_UNLOCK(vp, 0);
566                                 vdrop(vp);
567                         }
568                         if (object->shadow_count == 0 &&
569                             object->handle == NULL &&
570                             (object->type == OBJT_DEFAULT ||
571                             (object->type == OBJT_SWAP &&
572                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
573                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
574                         } else if ((object->shadow_count == 1) &&
575                             (object->handle == NULL) &&
576                             (object->type == OBJT_DEFAULT ||
577                              object->type == OBJT_SWAP)) {
578                                 vm_object_t robject;
579
580                                 robject = LIST_FIRST(&object->shadow_head);
581                                 KASSERT(robject != NULL,
582                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
583                                          object->ref_count,
584                                          object->shadow_count));
585                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
586                                     ("shadowed tmpfs v_object %p", object));
587                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
588                                         /*
589                                          * Avoid a potential deadlock.
590                                          */
591                                         object->ref_count++;
592                                         VM_OBJECT_WUNLOCK(object);
593                                         /*
594                                          * More likely than not the thread
595                                          * holding robject's lock has lower
596                                          * priority than the current thread.
597                                          * Let the lower priority thread run.
598                                          */
599                                         pause("vmo_de", 1);
600                                         continue;
601                                 }
602                                 /*
603                                  * Collapse object into its shadow unless its
604                                  * shadow is dead.  In that case, object will
605                                  * be deallocated by the thread that is
606                                  * deallocating its shadow.
607                                  */
608                                 if ((robject->flags & OBJ_DEAD) == 0 &&
609                                     (robject->handle == NULL) &&
610                                     (robject->type == OBJT_DEFAULT ||
611                                      robject->type == OBJT_SWAP)) {
612
613                                         robject->ref_count++;
614 retry:
615                                         if (robject->paging_in_progress) {
616                                                 VM_OBJECT_WUNLOCK(object);
617                                                 vm_object_pip_wait(robject,
618                                                     "objde1");
619                                                 temp = robject->backing_object;
620                                                 if (object == temp) {
621                                                         VM_OBJECT_WLOCK(object);
622                                                         goto retry;
623                                                 }
624                                         } else if (object->paging_in_progress) {
625                                                 VM_OBJECT_WUNLOCK(robject);
626                                                 object->flags |= OBJ_PIPWNT;
627                                                 VM_OBJECT_SLEEP(object, object,
628                                                     PDROP | PVM, "objde2", 0);
629                                                 VM_OBJECT_WLOCK(robject);
630                                                 temp = robject->backing_object;
631                                                 if (object == temp) {
632                                                         VM_OBJECT_WLOCK(object);
633                                                         goto retry;
634                                                 }
635                                         } else
636                                                 VM_OBJECT_WUNLOCK(object);
637
638                                         if (robject->ref_count == 1) {
639                                                 robject->ref_count--;
640                                                 object = robject;
641                                                 goto doterm;
642                                         }
643                                         object = robject;
644                                         vm_object_collapse(object);
645                                         VM_OBJECT_WUNLOCK(object);
646                                         continue;
647                                 }
648                                 VM_OBJECT_WUNLOCK(robject);
649                         }
650                         VM_OBJECT_WUNLOCK(object);
651                         return;
652                 }
653 doterm:
654                 umtx_shm_object_terminated(object);
655                 temp = object->backing_object;
656                 if (temp != NULL) {
657                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
658                             ("shadowed tmpfs v_object 2 %p", object));
659                         VM_OBJECT_WLOCK(temp);
660                         LIST_REMOVE(object, shadow_list);
661                         temp->shadow_count--;
662                         VM_OBJECT_WUNLOCK(temp);
663                         object->backing_object = NULL;
664                 }
665                 /*
666                  * Don't double-terminate, we could be in a termination
667                  * recursion due to the terminate having to sync data
668                  * to disk.
669                  */
670                 if ((object->flags & OBJ_DEAD) == 0)
671                         vm_object_terminate(object);
672                 else
673                         VM_OBJECT_WUNLOCK(object);
674                 object = temp;
675         }
676 }
677
678 /*
679  *      vm_object_destroy removes the object from the global object list
680  *      and frees the space for the object.
681  */
682 void
683 vm_object_destroy(vm_object_t object)
684 {
685
686         /*
687          * Release the allocation charge.
688          */
689         if (object->cred != NULL) {
690                 swap_release_by_cred(object->charge, object->cred);
691                 object->charge = 0;
692                 crfree(object->cred);
693                 object->cred = NULL;
694         }
695
696         /*
697          * Free the space for the object.
698          */
699         uma_zfree(obj_zone, object);
700 }
701
702 /*
703  *      vm_object_terminate actually destroys the specified object, freeing
704  *      up all previously used resources.
705  *
706  *      The object must be locked.
707  *      This routine may block.
708  */
709 void
710 vm_object_terminate(vm_object_t object)
711 {
712         vm_page_t p, p_next;
713
714         VM_OBJECT_ASSERT_WLOCKED(object);
715
716         /*
717          * Make sure no one uses us.
718          */
719         vm_object_set_flag(object, OBJ_DEAD);
720
721         /*
722          * wait for the pageout daemon to be done with the object
723          */
724         vm_object_pip_wait(object, "objtrm");
725
726         KASSERT(!object->paging_in_progress,
727                 ("vm_object_terminate: pageout in progress"));
728
729         /*
730          * Clean and free the pages, as appropriate. All references to the
731          * object are gone, so we don't need to lock it.
732          */
733         if (object->type == OBJT_VNODE) {
734                 struct vnode *vp = (struct vnode *)object->handle;
735
736                 /*
737                  * Clean pages and flush buffers.
738                  */
739                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
740                 VM_OBJECT_WUNLOCK(object);
741
742                 vinvalbuf(vp, V_SAVE, 0, 0);
743
744                 VM_OBJECT_WLOCK(object);
745         }
746
747         KASSERT(object->ref_count == 0, 
748                 ("vm_object_terminate: object with references, ref_count=%d",
749                 object->ref_count));
750
751         /*
752          * Free any remaining pageable pages.  This also removes them from the
753          * paging queues.  However, don't free wired pages, just remove them
754          * from the object.  Rather than incrementally removing each page from
755          * the object, the page and object are reset to any empty state. 
756          */
757         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
758                 vm_page_assert_unbusied(p);
759                 vm_page_lock(p);
760                 /*
761                  * Optimize the page's removal from the object by resetting
762                  * its "object" field.  Specifically, if the page is not
763                  * wired, then the effect of this assignment is that
764                  * vm_page_free()'s call to vm_page_remove() will return
765                  * immediately without modifying the page or the object.
766                  */ 
767                 p->object = NULL;
768                 if (p->wire_count == 0) {
769                         vm_page_free(p);
770                         PCPU_INC(cnt.v_pfree);
771                 }
772                 vm_page_unlock(p);
773         }
774         /*
775          * If the object contained any pages, then reset it to an empty state.
776          * None of the object's fields, including "resident_page_count", were
777          * modified by the preceding loop.
778          */
779         if (object->resident_page_count != 0) {
780                 vm_radix_reclaim_allnodes(&object->rtree);
781                 TAILQ_INIT(&object->memq);
782                 object->resident_page_count = 0;
783                 if (object->type == OBJT_VNODE)
784                         vdrop(object->handle);
785         }
786
787 #if VM_NRESERVLEVEL > 0
788         if (__predict_false(!LIST_EMPTY(&object->rvq)))
789                 vm_reserv_break_all(object);
790 #endif
791         if (__predict_false(!vm_object_cache_is_empty(object)))
792                 vm_page_cache_free(object, 0, 0);
793
794         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
795             object->type == OBJT_SWAP,
796             ("%s: non-swap obj %p has cred", __func__, object));
797
798         /*
799          * Let the pager know object is dead.
800          */
801         vm_pager_deallocate(object);
802         VM_OBJECT_WUNLOCK(object);
803
804         vm_object_destroy(object);
805 }
806
807 /*
808  * Make the page read-only so that we can clear the object flags.  However, if
809  * this is a nosync mmap then the object is likely to stay dirty so do not
810  * mess with the page and do not clear the object flags.  Returns TRUE if the
811  * page should be flushed, and FALSE otherwise.
812  */
813 static boolean_t
814 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
815 {
816
817         /*
818          * If we have been asked to skip nosync pages and this is a
819          * nosync page, skip it.  Note that the object flags were not
820          * cleared in this case so we do not have to set them.
821          */
822         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
823                 *clearobjflags = FALSE;
824                 return (FALSE);
825         } else {
826                 pmap_remove_write(p);
827                 return (p->dirty != 0);
828         }
829 }
830
831 /*
832  *      vm_object_page_clean
833  *
834  *      Clean all dirty pages in the specified range of object.  Leaves page 
835  *      on whatever queue it is currently on.   If NOSYNC is set then do not
836  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
837  *      leaving the object dirty.
838  *
839  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
840  *      synchronous clustering mode implementation.
841  *
842  *      Odd semantics: if start == end, we clean everything.
843  *
844  *      The object must be locked.
845  *
846  *      Returns FALSE if some page from the range was not written, as
847  *      reported by the pager, and TRUE otherwise.
848  */
849 boolean_t
850 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
851     int flags)
852 {
853         vm_page_t np, p;
854         vm_pindex_t pi, tend, tstart;
855         int curgeneration, n, pagerflags;
856         boolean_t clearobjflags, eio, res;
857
858         VM_OBJECT_ASSERT_WLOCKED(object);
859
860         /*
861          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
862          * objects.  The check below prevents the function from
863          * operating on non-vnode objects.
864          */
865         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
866             object->resident_page_count == 0)
867                 return (TRUE);
868
869         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
870             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
871         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
872
873         tstart = OFF_TO_IDX(start);
874         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
875         clearobjflags = tstart == 0 && tend >= object->size;
876         res = TRUE;
877
878 rescan:
879         curgeneration = object->generation;
880
881         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
882                 pi = p->pindex;
883                 if (pi >= tend)
884                         break;
885                 np = TAILQ_NEXT(p, listq);
886                 if (p->valid == 0)
887                         continue;
888                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
889                         if (object->generation != curgeneration) {
890                                 if ((flags & OBJPC_SYNC) != 0)
891                                         goto rescan;
892                                 else
893                                         clearobjflags = FALSE;
894                         }
895                         np = vm_page_find_least(object, pi);
896                         continue;
897                 }
898                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
899                         continue;
900
901                 n = vm_object_page_collect_flush(object, p, pagerflags,
902                     flags, &clearobjflags, &eio);
903                 if (eio) {
904                         res = FALSE;
905                         clearobjflags = FALSE;
906                 }
907                 if (object->generation != curgeneration) {
908                         if ((flags & OBJPC_SYNC) != 0)
909                                 goto rescan;
910                         else
911                                 clearobjflags = FALSE;
912                 }
913
914                 /*
915                  * If the VOP_PUTPAGES() did a truncated write, so
916                  * that even the first page of the run is not fully
917                  * written, vm_pageout_flush() returns 0 as the run
918                  * length.  Since the condition that caused truncated
919                  * write may be permanent, e.g. exhausted free space,
920                  * accepting n == 0 would cause an infinite loop.
921                  *
922                  * Forwarding the iterator leaves the unwritten page
923                  * behind, but there is not much we can do there if
924                  * filesystem refuses to write it.
925                  */
926                 if (n == 0) {
927                         n = 1;
928                         clearobjflags = FALSE;
929                 }
930                 np = vm_page_find_least(object, pi + n);
931         }
932 #if 0
933         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
934 #endif
935
936         if (clearobjflags)
937                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
938         return (res);
939 }
940
941 static int
942 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
943     int flags, boolean_t *clearobjflags, boolean_t *eio)
944 {
945         vm_page_t ma[vm_pageout_page_count], p_first, tp;
946         int count, i, mreq, runlen;
947
948         vm_page_lock_assert(p, MA_NOTOWNED);
949         VM_OBJECT_ASSERT_WLOCKED(object);
950
951         count = 1;
952         mreq = 0;
953
954         for (tp = p; count < vm_pageout_page_count; count++) {
955                 tp = vm_page_next(tp);
956                 if (tp == NULL || vm_page_busied(tp))
957                         break;
958                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
959                         break;
960         }
961
962         for (p_first = p; count < vm_pageout_page_count; count++) {
963                 tp = vm_page_prev(p_first);
964                 if (tp == NULL || vm_page_busied(tp))
965                         break;
966                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
967                         break;
968                 p_first = tp;
969                 mreq++;
970         }
971
972         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
973                 ma[i] = tp;
974
975         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
976         return (runlen);
977 }
978
979 /*
980  * Note that there is absolutely no sense in writing out
981  * anonymous objects, so we track down the vnode object
982  * to write out.
983  * We invalidate (remove) all pages from the address space
984  * for semantic correctness.
985  *
986  * If the backing object is a device object with unmanaged pages, then any
987  * mappings to the specified range of pages must be removed before this
988  * function is called.
989  *
990  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
991  * may start out with a NULL object.
992  */
993 boolean_t
994 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
995     boolean_t syncio, boolean_t invalidate)
996 {
997         vm_object_t backing_object;
998         struct vnode *vp;
999         struct mount *mp;
1000         int error, flags, fsync_after;
1001         boolean_t res;
1002
1003         if (object == NULL)
1004                 return (TRUE);
1005         res = TRUE;
1006         error = 0;
1007         VM_OBJECT_WLOCK(object);
1008         while ((backing_object = object->backing_object) != NULL) {
1009                 VM_OBJECT_WLOCK(backing_object);
1010                 offset += object->backing_object_offset;
1011                 VM_OBJECT_WUNLOCK(object);
1012                 object = backing_object;
1013                 if (object->size < OFF_TO_IDX(offset + size))
1014                         size = IDX_TO_OFF(object->size) - offset;
1015         }
1016         /*
1017          * Flush pages if writing is allowed, invalidate them
1018          * if invalidation requested.  Pages undergoing I/O
1019          * will be ignored by vm_object_page_remove().
1020          *
1021          * We cannot lock the vnode and then wait for paging
1022          * to complete without deadlocking against vm_fault.
1023          * Instead we simply call vm_object_page_remove() and
1024          * allow it to block internally on a page-by-page
1025          * basis when it encounters pages undergoing async
1026          * I/O.
1027          */
1028         if (object->type == OBJT_VNODE &&
1029             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1030                 vp = object->handle;
1031                 VM_OBJECT_WUNLOCK(object);
1032                 (void) vn_start_write(vp, &mp, V_WAIT);
1033                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1034                 if (syncio && !invalidate && offset == 0 &&
1035                     OFF_TO_IDX(size) == object->size) {
1036                         /*
1037                          * If syncing the whole mapping of the file,
1038                          * it is faster to schedule all the writes in
1039                          * async mode, also allowing the clustering,
1040                          * and then wait for i/o to complete.
1041                          */
1042                         flags = 0;
1043                         fsync_after = TRUE;
1044                 } else {
1045                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1046                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1047                         fsync_after = FALSE;
1048                 }
1049                 VM_OBJECT_WLOCK(object);
1050                 res = vm_object_page_clean(object, offset, offset + size,
1051                     flags);
1052                 VM_OBJECT_WUNLOCK(object);
1053                 if (fsync_after)
1054                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1055                 VOP_UNLOCK(vp, 0);
1056                 vn_finished_write(mp);
1057                 if (error != 0)
1058                         res = FALSE;
1059                 VM_OBJECT_WLOCK(object);
1060         }
1061         if ((object->type == OBJT_VNODE ||
1062              object->type == OBJT_DEVICE) && invalidate) {
1063                 if (object->type == OBJT_DEVICE)
1064                         /*
1065                          * The option OBJPR_NOTMAPPED must be passed here
1066                          * because vm_object_page_remove() cannot remove
1067                          * unmanaged mappings.
1068                          */
1069                         flags = OBJPR_NOTMAPPED;
1070                 else if (old_msync)
1071                         flags = 0;
1072                 else
1073                         flags = OBJPR_CLEANONLY;
1074                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1075                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1076         }
1077         VM_OBJECT_WUNLOCK(object);
1078         return (res);
1079 }
1080
1081 /*
1082  *      vm_object_madvise:
1083  *
1084  *      Implements the madvise function at the object/page level.
1085  *
1086  *      MADV_WILLNEED   (any object)
1087  *
1088  *          Activate the specified pages if they are resident.
1089  *
1090  *      MADV_DONTNEED   (any object)
1091  *
1092  *          Deactivate the specified pages if they are resident.
1093  *
1094  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1095  *                       OBJ_ONEMAPPING only)
1096  *
1097  *          Deactivate and clean the specified pages if they are
1098  *          resident.  This permits the process to reuse the pages
1099  *          without faulting or the kernel to reclaim the pages
1100  *          without I/O.
1101  */
1102 void
1103 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1104     int advise)
1105 {
1106         vm_pindex_t tpindex;
1107         vm_object_t backing_object, tobject;
1108         vm_page_t m;
1109
1110         if (object == NULL)
1111                 return;
1112         VM_OBJECT_WLOCK(object);
1113         /*
1114          * Locate and adjust resident pages
1115          */
1116         for (; pindex < end; pindex += 1) {
1117 relookup:
1118                 tobject = object;
1119                 tpindex = pindex;
1120 shadowlookup:
1121                 /*
1122                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1123                  * and those pages must be OBJ_ONEMAPPING.
1124                  */
1125                 if (advise == MADV_FREE) {
1126                         if ((tobject->type != OBJT_DEFAULT &&
1127                              tobject->type != OBJT_SWAP) ||
1128                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1129                                 goto unlock_tobject;
1130                         }
1131                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1132                         goto unlock_tobject;
1133                 m = vm_page_lookup(tobject, tpindex);
1134                 if (m == NULL && advise == MADV_WILLNEED) {
1135                         /*
1136                          * If the page is cached, reactivate it.
1137                          */
1138                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1139                             VM_ALLOC_NOBUSY);
1140                 }
1141                 if (m == NULL) {
1142                         /*
1143                          * There may be swap even if there is no backing page
1144                          */
1145                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1146                                 swap_pager_freespace(tobject, tpindex, 1);
1147                         /*
1148                          * next object
1149                          */
1150                         backing_object = tobject->backing_object;
1151                         if (backing_object == NULL)
1152                                 goto unlock_tobject;
1153                         VM_OBJECT_WLOCK(backing_object);
1154                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1155                         if (tobject != object)
1156                                 VM_OBJECT_WUNLOCK(tobject);
1157                         tobject = backing_object;
1158                         goto shadowlookup;
1159                 } else if (m->valid != VM_PAGE_BITS_ALL)
1160                         goto unlock_tobject;
1161                 /*
1162                  * If the page is not in a normal state, skip it.
1163                  */
1164                 vm_page_lock(m);
1165                 if (m->hold_count != 0 || m->wire_count != 0) {
1166                         vm_page_unlock(m);
1167                         goto unlock_tobject;
1168                 }
1169                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1170                     ("vm_object_madvise: page %p is fictitious", m));
1171                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1172                     ("vm_object_madvise: page %p is not managed", m));
1173                 if (vm_page_busied(m)) {
1174                         if (advise == MADV_WILLNEED) {
1175                                 /*
1176                                  * Reference the page before unlocking and
1177                                  * sleeping so that the page daemon is less
1178                                  * likely to reclaim it. 
1179                                  */
1180                                 vm_page_aflag_set(m, PGA_REFERENCED);
1181                         }
1182                         if (object != tobject)
1183                                 VM_OBJECT_WUNLOCK(object);
1184                         VM_OBJECT_WUNLOCK(tobject);
1185                         vm_page_busy_sleep(m, "madvpo");
1186                         VM_OBJECT_WLOCK(object);
1187                         goto relookup;
1188                 }
1189                 if (advise == MADV_WILLNEED) {
1190                         vm_page_activate(m);
1191                 } else {
1192                         vm_page_advise(m, advise);
1193                 }
1194                 vm_page_unlock(m);
1195                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1196                         swap_pager_freespace(tobject, tpindex, 1);
1197 unlock_tobject:
1198                 if (tobject != object)
1199                         VM_OBJECT_WUNLOCK(tobject);
1200         }       
1201         VM_OBJECT_WUNLOCK(object);
1202 }
1203
1204 /*
1205  *      vm_object_shadow:
1206  *
1207  *      Create a new object which is backed by the
1208  *      specified existing object range.  The source
1209  *      object reference is deallocated.
1210  *
1211  *      The new object and offset into that object
1212  *      are returned in the source parameters.
1213  */
1214 void
1215 vm_object_shadow(
1216         vm_object_t *object,    /* IN/OUT */
1217         vm_ooffset_t *offset,   /* IN/OUT */
1218         vm_size_t length)
1219 {
1220         vm_object_t source;
1221         vm_object_t result;
1222
1223         source = *object;
1224
1225         /*
1226          * Don't create the new object if the old object isn't shared.
1227          */
1228         if (source != NULL) {
1229                 VM_OBJECT_WLOCK(source);
1230                 if (source->ref_count == 1 &&
1231                     source->handle == NULL &&
1232                     (source->type == OBJT_DEFAULT ||
1233                      source->type == OBJT_SWAP)) {
1234                         VM_OBJECT_WUNLOCK(source);
1235                         return;
1236                 }
1237                 VM_OBJECT_WUNLOCK(source);
1238         }
1239
1240         /*
1241          * Allocate a new object with the given length.
1242          */
1243         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1244
1245         /*
1246          * The new object shadows the source object, adding a reference to it.
1247          * Our caller changes his reference to point to the new object,
1248          * removing a reference to the source object.  Net result: no change
1249          * of reference count.
1250          *
1251          * Try to optimize the result object's page color when shadowing
1252          * in order to maintain page coloring consistency in the combined 
1253          * shadowed object.
1254          */
1255         result->backing_object = source;
1256         /*
1257          * Store the offset into the source object, and fix up the offset into
1258          * the new object.
1259          */
1260         result->backing_object_offset = *offset;
1261         if (source != NULL) {
1262                 VM_OBJECT_WLOCK(source);
1263                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1264                 source->shadow_count++;
1265 #if VM_NRESERVLEVEL > 0
1266                 result->flags |= source->flags & OBJ_COLORED;
1267                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1268                     ((1 << (VM_NFREEORDER - 1)) - 1);
1269 #endif
1270                 VM_OBJECT_WUNLOCK(source);
1271         }
1272
1273
1274         /*
1275          * Return the new things
1276          */
1277         *offset = 0;
1278         *object = result;
1279 }
1280
1281 /*
1282  *      vm_object_split:
1283  *
1284  * Split the pages in a map entry into a new object.  This affords
1285  * easier removal of unused pages, and keeps object inheritance from
1286  * being a negative impact on memory usage.
1287  */
1288 void
1289 vm_object_split(vm_map_entry_t entry)
1290 {
1291         vm_page_t m, m_next;
1292         vm_object_t orig_object, new_object, source;
1293         vm_pindex_t idx, offidxstart;
1294         vm_size_t size;
1295
1296         orig_object = entry->object.vm_object;
1297         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1298                 return;
1299         if (orig_object->ref_count <= 1)
1300                 return;
1301         VM_OBJECT_WUNLOCK(orig_object);
1302
1303         offidxstart = OFF_TO_IDX(entry->offset);
1304         size = atop(entry->end - entry->start);
1305
1306         /*
1307          * If swap_pager_copy() is later called, it will convert new_object
1308          * into a swap object.
1309          */
1310         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1311
1312         /*
1313          * At this point, the new object is still private, so the order in
1314          * which the original and new objects are locked does not matter.
1315          */
1316         VM_OBJECT_WLOCK(new_object);
1317         VM_OBJECT_WLOCK(orig_object);
1318         source = orig_object->backing_object;
1319         if (source != NULL) {
1320                 VM_OBJECT_WLOCK(source);
1321                 if ((source->flags & OBJ_DEAD) != 0) {
1322                         VM_OBJECT_WUNLOCK(source);
1323                         VM_OBJECT_WUNLOCK(orig_object);
1324                         VM_OBJECT_WUNLOCK(new_object);
1325                         vm_object_deallocate(new_object);
1326                         VM_OBJECT_WLOCK(orig_object);
1327                         return;
1328                 }
1329                 LIST_INSERT_HEAD(&source->shadow_head,
1330                                   new_object, shadow_list);
1331                 source->shadow_count++;
1332                 vm_object_reference_locked(source);     /* for new_object */
1333                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1334                 VM_OBJECT_WUNLOCK(source);
1335                 new_object->backing_object_offset = 
1336                         orig_object->backing_object_offset + entry->offset;
1337                 new_object->backing_object = source;
1338         }
1339         if (orig_object->cred != NULL) {
1340                 new_object->cred = orig_object->cred;
1341                 crhold(orig_object->cred);
1342                 new_object->charge = ptoa(size);
1343                 KASSERT(orig_object->charge >= ptoa(size),
1344                     ("orig_object->charge < 0"));
1345                 orig_object->charge -= ptoa(size);
1346         }
1347 retry:
1348         m = vm_page_find_least(orig_object, offidxstart);
1349         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1350             m = m_next) {
1351                 m_next = TAILQ_NEXT(m, listq);
1352
1353                 /*
1354                  * We must wait for pending I/O to complete before we can
1355                  * rename the page.
1356                  *
1357                  * We do not have to VM_PROT_NONE the page as mappings should
1358                  * not be changed by this operation.
1359                  */
1360                 if (vm_page_busied(m)) {
1361                         VM_OBJECT_WUNLOCK(new_object);
1362                         vm_page_lock(m);
1363                         VM_OBJECT_WUNLOCK(orig_object);
1364                         vm_page_busy_sleep(m, "spltwt");
1365                         VM_OBJECT_WLOCK(orig_object);
1366                         VM_OBJECT_WLOCK(new_object);
1367                         goto retry;
1368                 }
1369
1370                 /* vm_page_rename() will handle dirty and cache. */
1371                 if (vm_page_rename(m, new_object, idx)) {
1372                         VM_OBJECT_WUNLOCK(new_object);
1373                         VM_OBJECT_WUNLOCK(orig_object);
1374                         VM_WAIT;
1375                         VM_OBJECT_WLOCK(orig_object);
1376                         VM_OBJECT_WLOCK(new_object);
1377                         goto retry;
1378                 }
1379 #if VM_NRESERVLEVEL > 0
1380                 /*
1381                  * If some of the reservation's allocated pages remain with
1382                  * the original object, then transferring the reservation to
1383                  * the new object is neither particularly beneficial nor
1384                  * particularly harmful as compared to leaving the reservation
1385                  * with the original object.  If, however, all of the
1386                  * reservation's allocated pages are transferred to the new
1387                  * object, then transferring the reservation is typically
1388                  * beneficial.  Determining which of these two cases applies
1389                  * would be more costly than unconditionally renaming the
1390                  * reservation.
1391                  */
1392                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1393 #endif
1394                 if (orig_object->type == OBJT_SWAP)
1395                         vm_page_xbusy(m);
1396         }
1397         if (orig_object->type == OBJT_SWAP) {
1398                 /*
1399                  * swap_pager_copy() can sleep, in which case the orig_object's
1400                  * and new_object's locks are released and reacquired. 
1401                  */
1402                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1403                 TAILQ_FOREACH(m, &new_object->memq, listq)
1404                         vm_page_xunbusy(m);
1405
1406                 /*
1407                  * Transfer any cached pages from orig_object to new_object.
1408                  * If swap_pager_copy() found swapped out pages within the
1409                  * specified range of orig_object, then it changed
1410                  * new_object's type to OBJT_SWAP when it transferred those
1411                  * pages to new_object.  Otherwise, new_object's type
1412                  * should still be OBJT_DEFAULT and orig_object should not
1413                  * contain any cached pages within the specified range.
1414                  */
1415                 if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1416                         vm_page_cache_transfer(orig_object, offidxstart,
1417                             new_object);
1418         }
1419         VM_OBJECT_WUNLOCK(orig_object);
1420         VM_OBJECT_WUNLOCK(new_object);
1421         entry->object.vm_object = new_object;
1422         entry->offset = 0LL;
1423         vm_object_deallocate(orig_object);
1424         VM_OBJECT_WLOCK(new_object);
1425 }
1426
1427 #define OBSC_COLLAPSE_NOWAIT    0x0002
1428 #define OBSC_COLLAPSE_WAIT      0x0004
1429
1430 static vm_page_t
1431 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1432     int op)
1433 {
1434         vm_object_t backing_object;
1435
1436         VM_OBJECT_ASSERT_WLOCKED(object);
1437         backing_object = object->backing_object;
1438         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1439
1440         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1441         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1442             ("invalid ownership %p %p %p", p, object, backing_object));
1443         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1444                 return (next);
1445         if (p != NULL)
1446                 vm_page_lock(p);
1447         VM_OBJECT_WUNLOCK(object);
1448         VM_OBJECT_WUNLOCK(backing_object);
1449         if (p == NULL)
1450                 VM_WAIT;
1451         else
1452                 vm_page_busy_sleep(p, "vmocol");
1453         VM_OBJECT_WLOCK(object);
1454         VM_OBJECT_WLOCK(backing_object);
1455         return (TAILQ_FIRST(&backing_object->memq));
1456 }
1457
1458 static bool
1459 vm_object_scan_all_shadowed(vm_object_t object)
1460 {
1461         vm_object_t backing_object;
1462         vm_page_t p, pp;
1463         vm_pindex_t backing_offset_index, new_pindex;
1464
1465         VM_OBJECT_ASSERT_WLOCKED(object);
1466         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1467
1468         backing_object = object->backing_object;
1469
1470         /*
1471          * Initial conditions:
1472          *
1473          * We do not want to have to test for the existence of cache or swap
1474          * pages in the backing object.  XXX but with the new swapper this
1475          * would be pretty easy to do.
1476          */
1477         if (backing_object->type != OBJT_DEFAULT)
1478                 return (false);
1479
1480         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1481
1482         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL;
1483             p = TAILQ_NEXT(p, listq)) {
1484                 new_pindex = p->pindex - backing_offset_index;
1485
1486                 /*
1487                  * Ignore pages outside the parent object's range and outside
1488                  * the parent object's mapping of the backing object.
1489                  */
1490                 if (p->pindex < backing_offset_index ||
1491                     new_pindex >= object->size)
1492                         continue;
1493
1494                 /*
1495                  * See if the parent has the page or if the parent's object
1496                  * pager has the page.  If the parent has the page but the page
1497                  * is not valid, the parent's object pager must have the page.
1498                  *
1499                  * If this fails, the parent does not completely shadow the
1500                  * object and we might as well give up now.
1501                  */
1502                 pp = vm_page_lookup(object, new_pindex);
1503                 if ((pp == NULL || pp->valid == 0) &&
1504                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1505                         return (false);
1506         }
1507         return (true);
1508 }
1509
1510 static bool
1511 vm_object_collapse_scan(vm_object_t object, int op)
1512 {
1513         vm_object_t backing_object;
1514         vm_page_t next, p, pp;
1515         vm_pindex_t backing_offset_index, new_pindex;
1516
1517         VM_OBJECT_ASSERT_WLOCKED(object);
1518         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1519
1520         backing_object = object->backing_object;
1521         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1522
1523         /*
1524          * Initial conditions
1525          */
1526         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1527                 vm_object_set_flag(backing_object, OBJ_DEAD);
1528
1529         /*
1530          * Our scan
1531          */
1532         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1533                 next = TAILQ_NEXT(p, listq);
1534                 new_pindex = p->pindex - backing_offset_index;
1535
1536                 /*
1537                  * Check for busy page
1538                  */
1539                 if (vm_page_busied(p)) {
1540                         next = vm_object_collapse_scan_wait(object, p, next, op);
1541                         continue;
1542                 }
1543
1544                 KASSERT(p->object == backing_object,
1545                     ("vm_object_collapse_scan: object mismatch"));
1546
1547                 if (p->pindex < backing_offset_index ||
1548                     new_pindex >= object->size) {
1549                         if (backing_object->type == OBJT_SWAP)
1550                                 swap_pager_freespace(backing_object, p->pindex,
1551                                     1);
1552
1553                         /*
1554                          * Page is out of the parent object's range, we can
1555                          * simply destroy it.
1556                          */
1557                         vm_page_lock(p);
1558                         KASSERT(!pmap_page_is_mapped(p),
1559                             ("freeing mapped page %p", p));
1560                         if (p->wire_count == 0)
1561                                 vm_page_free(p);
1562                         else
1563                                 vm_page_remove(p);
1564                         vm_page_unlock(p);
1565                         continue;
1566                 }
1567
1568                 pp = vm_page_lookup(object, new_pindex);
1569                 if (pp != NULL && vm_page_busied(pp)) {
1570                         /*
1571                          * The page in the parent is busy and possibly not
1572                          * (yet) valid.  Until its state is finalized by the
1573                          * busy bit owner, we can't tell whether it shadows the
1574                          * original page.  Therefore, we must either skip it
1575                          * and the original (backing_object) page or wait for
1576                          * its state to be finalized.
1577                          *
1578                          * This is due to a race with vm_fault() where we must
1579                          * unbusy the original (backing_obj) page before we can
1580                          * (re)lock the parent.  Hence we can get here.
1581                          */
1582                         next = vm_object_collapse_scan_wait(object, pp, next,
1583                             op);
1584                         continue;
1585                 }
1586
1587                 KASSERT(pp == NULL || pp->valid != 0,
1588                     ("unbusy invalid page %p", pp));
1589
1590                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1591                         NULL)) {
1592                         /*
1593                          * The page already exists in the parent OR swap exists
1594                          * for this location in the parent.  Leave the parent's
1595                          * page alone.  Destroy the original page from the
1596                          * backing object.
1597                          */
1598                         if (backing_object->type == OBJT_SWAP)
1599                                 swap_pager_freespace(backing_object, p->pindex,
1600                                     1);
1601                         vm_page_lock(p);
1602                         KASSERT(!pmap_page_is_mapped(p),
1603                             ("freeing mapped page %p", p));
1604                         if (p->wire_count == 0)
1605                                 vm_page_free(p);
1606                         else
1607                                 vm_page_remove(p);
1608                         vm_page_unlock(p);
1609                         continue;
1610                 }
1611
1612                 /*
1613                  * Page does not exist in parent, rename the page from the
1614                  * backing object to the main object.
1615                  *
1616                  * If the page was mapped to a process, it can remain mapped
1617                  * through the rename.  vm_page_rename() will handle dirty and
1618                  * cache.
1619                  */
1620                 if (vm_page_rename(p, object, new_pindex)) {
1621                         next = vm_object_collapse_scan_wait(object, NULL, next,
1622                             op);
1623                         continue;
1624                 }
1625
1626                 /* Use the old pindex to free the right page. */
1627                 if (backing_object->type == OBJT_SWAP)
1628                         swap_pager_freespace(backing_object,
1629                             new_pindex + backing_offset_index, 1);
1630
1631 #if VM_NRESERVLEVEL > 0
1632                 /*
1633                  * Rename the reservation.
1634                  */
1635                 vm_reserv_rename(p, object, backing_object,
1636                     backing_offset_index);
1637 #endif
1638         }
1639         return (true);
1640 }
1641
1642
1643 /*
1644  * this version of collapse allows the operation to occur earlier and
1645  * when paging_in_progress is true for an object...  This is not a complete
1646  * operation, but should plug 99.9% of the rest of the leaks.
1647  */
1648 static void
1649 vm_object_qcollapse(vm_object_t object)
1650 {
1651         vm_object_t backing_object = object->backing_object;
1652
1653         VM_OBJECT_ASSERT_WLOCKED(object);
1654         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1655
1656         if (backing_object->ref_count != 1)
1657                 return;
1658
1659         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1660 }
1661
1662 /*
1663  *      vm_object_collapse:
1664  *
1665  *      Collapse an object with the object backing it.
1666  *      Pages in the backing object are moved into the
1667  *      parent, and the backing object is deallocated.
1668  */
1669 void
1670 vm_object_collapse(vm_object_t object)
1671 {
1672         vm_object_t backing_object, new_backing_object;
1673
1674         VM_OBJECT_ASSERT_WLOCKED(object);
1675
1676         while (TRUE) {
1677                 /*
1678                  * Verify that the conditions are right for collapse:
1679                  *
1680                  * The object exists and the backing object exists.
1681                  */
1682                 if ((backing_object = object->backing_object) == NULL)
1683                         break;
1684
1685                 /*
1686                  * we check the backing object first, because it is most likely
1687                  * not collapsable.
1688                  */
1689                 VM_OBJECT_WLOCK(backing_object);
1690                 if (backing_object->handle != NULL ||
1691                     (backing_object->type != OBJT_DEFAULT &&
1692                      backing_object->type != OBJT_SWAP) ||
1693                     (backing_object->flags & OBJ_DEAD) ||
1694                     object->handle != NULL ||
1695                     (object->type != OBJT_DEFAULT &&
1696                      object->type != OBJT_SWAP) ||
1697                     (object->flags & OBJ_DEAD)) {
1698                         VM_OBJECT_WUNLOCK(backing_object);
1699                         break;
1700                 }
1701
1702                 if (object->paging_in_progress != 0 ||
1703                     backing_object->paging_in_progress != 0) {
1704                         vm_object_qcollapse(object);
1705                         VM_OBJECT_WUNLOCK(backing_object);
1706                         break;
1707                 }
1708
1709                 /*
1710                  * We know that we can either collapse the backing object (if
1711                  * the parent is the only reference to it) or (perhaps) have
1712                  * the parent bypass the object if the parent happens to shadow
1713                  * all the resident pages in the entire backing object.
1714                  *
1715                  * This is ignoring pager-backed pages such as swap pages.
1716                  * vm_object_collapse_scan fails the shadowing test in this
1717                  * case.
1718                  */
1719                 if (backing_object->ref_count == 1) {
1720                         vm_object_pip_add(object, 1);
1721                         vm_object_pip_add(backing_object, 1);
1722
1723                         /*
1724                          * If there is exactly one reference to the backing
1725                          * object, we can collapse it into the parent.
1726                          */
1727                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1728
1729 #if VM_NRESERVLEVEL > 0
1730                         /*
1731                          * Break any reservations from backing_object.
1732                          */
1733                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1734                                 vm_reserv_break_all(backing_object);
1735 #endif
1736
1737                         /*
1738                          * Move the pager from backing_object to object.
1739                          */
1740                         if (backing_object->type == OBJT_SWAP) {
1741                                 /*
1742                                  * swap_pager_copy() can sleep, in which case
1743                                  * the backing_object's and object's locks are
1744                                  * released and reacquired.
1745                                  * Since swap_pager_copy() is being asked to
1746                                  * destroy the source, it will change the
1747                                  * backing_object's type to OBJT_DEFAULT.
1748                                  */
1749                                 swap_pager_copy(
1750                                     backing_object,
1751                                     object,
1752                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1753
1754                                 /*
1755                                  * Free any cached pages from backing_object.
1756                                  */
1757                                 if (__predict_false(
1758                                     !vm_object_cache_is_empty(backing_object)))
1759                                         vm_page_cache_free(backing_object, 0, 0);
1760                         }
1761                         /*
1762                          * Object now shadows whatever backing_object did.
1763                          * Note that the reference to 
1764                          * backing_object->backing_object moves from within 
1765                          * backing_object to within object.
1766                          */
1767                         LIST_REMOVE(object, shadow_list);
1768                         backing_object->shadow_count--;
1769                         if (backing_object->backing_object) {
1770                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1771                                 LIST_REMOVE(backing_object, shadow_list);
1772                                 LIST_INSERT_HEAD(
1773                                     &backing_object->backing_object->shadow_head,
1774                                     object, shadow_list);
1775                                 /*
1776                                  * The shadow_count has not changed.
1777                                  */
1778                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1779                         }
1780                         object->backing_object = backing_object->backing_object;
1781                         object->backing_object_offset +=
1782                             backing_object->backing_object_offset;
1783
1784                         /*
1785                          * Discard backing_object.
1786                          *
1787                          * Since the backing object has no pages, no pager left,
1788                          * and no object references within it, all that is
1789                          * necessary is to dispose of it.
1790                          */
1791                         KASSERT(backing_object->ref_count == 1, (
1792 "backing_object %p was somehow re-referenced during collapse!",
1793                             backing_object));
1794                         vm_object_pip_wakeup(backing_object);
1795                         backing_object->type = OBJT_DEAD;
1796                         backing_object->ref_count = 0;
1797                         VM_OBJECT_WUNLOCK(backing_object);
1798                         vm_object_destroy(backing_object);
1799
1800                         vm_object_pip_wakeup(object);
1801                         object_collapses++;
1802                 } else {
1803                         /*
1804                          * If we do not entirely shadow the backing object,
1805                          * there is nothing we can do so we give up.
1806                          */
1807                         if (object->resident_page_count != object->size &&
1808                             !vm_object_scan_all_shadowed(object)) {
1809                                 VM_OBJECT_WUNLOCK(backing_object);
1810                                 break;
1811                         }
1812
1813                         /*
1814                          * Make the parent shadow the next object in the
1815                          * chain.  Deallocating backing_object will not remove
1816                          * it, since its reference count is at least 2.
1817                          */
1818                         LIST_REMOVE(object, shadow_list);
1819                         backing_object->shadow_count--;
1820
1821                         new_backing_object = backing_object->backing_object;
1822                         if ((object->backing_object = new_backing_object) != NULL) {
1823                                 VM_OBJECT_WLOCK(new_backing_object);
1824                                 LIST_INSERT_HEAD(
1825                                     &new_backing_object->shadow_head,
1826                                     object,
1827                                     shadow_list
1828                                 );
1829                                 new_backing_object->shadow_count++;
1830                                 vm_object_reference_locked(new_backing_object);
1831                                 VM_OBJECT_WUNLOCK(new_backing_object);
1832                                 object->backing_object_offset +=
1833                                         backing_object->backing_object_offset;
1834                         }
1835
1836                         /*
1837                          * Drop the reference count on backing_object. Since
1838                          * its ref_count was at least 2, it will not vanish.
1839                          */
1840                         backing_object->ref_count--;
1841                         VM_OBJECT_WUNLOCK(backing_object);
1842                         object_bypasses++;
1843                 }
1844
1845                 /*
1846                  * Try again with this object's new backing object.
1847                  */
1848         }
1849 }
1850
1851 /*
1852  *      vm_object_page_remove:
1853  *
1854  *      For the given object, either frees or invalidates each of the
1855  *      specified pages.  In general, a page is freed.  However, if a page is
1856  *      wired for any reason other than the existence of a managed, wired
1857  *      mapping, then it may be invalidated but not removed from the object.
1858  *      Pages are specified by the given range ["start", "end") and the option
1859  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1860  *      extends from "start" to the end of the object.  If the option
1861  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1862  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1863  *      specified, then the pages within the specified range must have no
1864  *      mappings.  Otherwise, if this option is not specified, any mappings to
1865  *      the specified pages are removed before the pages are freed or
1866  *      invalidated.
1867  *
1868  *      In general, this operation should only be performed on objects that
1869  *      contain managed pages.  There are, however, two exceptions.  First, it
1870  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1871  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1872  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1873  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1874  *
1875  *      The object must be locked.
1876  */
1877 void
1878 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1879     int options)
1880 {
1881         vm_page_t p, next;
1882
1883         VM_OBJECT_ASSERT_WLOCKED(object);
1884         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1885             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1886             ("vm_object_page_remove: illegal options for object %p", object));
1887         if (object->resident_page_count == 0)
1888                 goto skipmemq;
1889         vm_object_pip_add(object, 1);
1890 again:
1891         p = vm_page_find_least(object, start);
1892
1893         /*
1894          * Here, the variable "p" is either (1) the page with the least pindex
1895          * greater than or equal to the parameter "start" or (2) NULL. 
1896          */
1897         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1898                 next = TAILQ_NEXT(p, listq);
1899
1900                 /*
1901                  * If the page is wired for any reason besides the existence
1902                  * of managed, wired mappings, then it cannot be freed.  For
1903                  * example, fictitious pages, which represent device memory,
1904                  * are inherently wired and cannot be freed.  They can,
1905                  * however, be invalidated if the option OBJPR_CLEANONLY is
1906                  * not specified.
1907                  */
1908                 vm_page_lock(p);
1909                 if (vm_page_xbusied(p)) {
1910                         VM_OBJECT_WUNLOCK(object);
1911                         vm_page_busy_sleep(p, "vmopax");
1912                         VM_OBJECT_WLOCK(object);
1913                         goto again;
1914                 }
1915                 if (p->wire_count != 0) {
1916                         if ((options & OBJPR_NOTMAPPED) == 0)
1917                                 pmap_remove_all(p);
1918                         if ((options & OBJPR_CLEANONLY) == 0) {
1919                                 p->valid = 0;
1920                                 vm_page_undirty(p);
1921                         }
1922                         goto next;
1923                 }
1924                 if (vm_page_busied(p)) {
1925                         VM_OBJECT_WUNLOCK(object);
1926                         vm_page_busy_sleep(p, "vmopar");
1927                         VM_OBJECT_WLOCK(object);
1928                         goto again;
1929                 }
1930                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1931                     ("vm_object_page_remove: page %p is fictitious", p));
1932                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1933                         if ((options & OBJPR_NOTMAPPED) == 0)
1934                                 pmap_remove_write(p);
1935                         if (p->dirty)
1936                                 goto next;
1937                 }
1938                 if ((options & OBJPR_NOTMAPPED) == 0)
1939                         pmap_remove_all(p);
1940                 vm_page_free(p);
1941 next:
1942                 vm_page_unlock(p);
1943         }
1944         vm_object_pip_wakeup(object);
1945 skipmemq:
1946         if (__predict_false(!vm_object_cache_is_empty(object)))
1947                 vm_page_cache_free(object, start, end);
1948 }
1949
1950 /*
1951  *      vm_object_page_noreuse:
1952  *
1953  *      For the given object, attempt to move the specified pages to
1954  *      the head of the inactive queue.  This bypasses regular LRU
1955  *      operation and allows the pages to be reused quickly under memory
1956  *      pressure.  If a page is wired for any reason, then it will not
1957  *      be queued.  Pages are specified by the range ["start", "end").
1958  *      As a special case, if "end" is zero, then the range extends from
1959  *      "start" to the end of the object.
1960  *
1961  *      This operation should only be performed on objects that
1962  *      contain non-fictitious, managed pages.
1963  *
1964  *      The object must be locked.
1965  */
1966 void
1967 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1968 {
1969         struct mtx *mtx, *new_mtx;
1970         vm_page_t p, next;
1971
1972         VM_OBJECT_ASSERT_WLOCKED(object);
1973         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1974             ("vm_object_page_noreuse: illegal object %p", object));
1975         if (object->resident_page_count == 0)
1976                 return;
1977         p = vm_page_find_least(object, start);
1978
1979         /*
1980          * Here, the variable "p" is either (1) the page with the least pindex
1981          * greater than or equal to the parameter "start" or (2) NULL. 
1982          */
1983         mtx = NULL;
1984         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1985                 next = TAILQ_NEXT(p, listq);
1986
1987                 /*
1988                  * Avoid releasing and reacquiring the same page lock.
1989                  */
1990                 new_mtx = vm_page_lockptr(p);
1991                 if (mtx != new_mtx) {
1992                         if (mtx != NULL)
1993                                 mtx_unlock(mtx);
1994                         mtx = new_mtx;
1995                         mtx_lock(mtx);
1996                 }
1997                 vm_page_deactivate_noreuse(p);
1998         }
1999         if (mtx != NULL)
2000                 mtx_unlock(mtx);
2001 }
2002
2003 /*
2004  *      Populate the specified range of the object with valid pages.  Returns
2005  *      TRUE if the range is successfully populated and FALSE otherwise.
2006  *
2007  *      Note: This function should be optimized to pass a larger array of
2008  *      pages to vm_pager_get_pages() before it is applied to a non-
2009  *      OBJT_DEVICE object.
2010  *
2011  *      The object must be locked.
2012  */
2013 boolean_t
2014 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2015 {
2016         vm_page_t m;
2017         vm_pindex_t pindex;
2018         int rv;
2019
2020         VM_OBJECT_ASSERT_WLOCKED(object);
2021         for (pindex = start; pindex < end; pindex++) {
2022                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2023                 if (m->valid != VM_PAGE_BITS_ALL) {
2024                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2025                         if (rv != VM_PAGER_OK) {
2026                                 vm_page_lock(m);
2027                                 vm_page_free(m);
2028                                 vm_page_unlock(m);
2029                                 break;
2030                         }
2031                 }
2032                 /*
2033                  * Keep "m" busy because a subsequent iteration may unlock
2034                  * the object.
2035                  */
2036         }
2037         if (pindex > start) {
2038                 m = vm_page_lookup(object, start);
2039                 while (m != NULL && m->pindex < pindex) {
2040                         vm_page_xunbusy(m);
2041                         m = TAILQ_NEXT(m, listq);
2042                 }
2043         }
2044         return (pindex == end);
2045 }
2046
2047 /*
2048  *      Routine:        vm_object_coalesce
2049  *      Function:       Coalesces two objects backing up adjoining
2050  *                      regions of memory into a single object.
2051  *
2052  *      returns TRUE if objects were combined.
2053  *
2054  *      NOTE:   Only works at the moment if the second object is NULL -
2055  *              if it's not, which object do we lock first?
2056  *
2057  *      Parameters:
2058  *              prev_object     First object to coalesce
2059  *              prev_offset     Offset into prev_object
2060  *              prev_size       Size of reference to prev_object
2061  *              next_size       Size of reference to the second object
2062  *              reserved        Indicator that extension region has
2063  *                              swap accounted for
2064  *
2065  *      Conditions:
2066  *      The object must *not* be locked.
2067  */
2068 boolean_t
2069 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2070     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2071 {
2072         vm_pindex_t next_pindex;
2073
2074         if (prev_object == NULL)
2075                 return (TRUE);
2076         VM_OBJECT_WLOCK(prev_object);
2077         if ((prev_object->type != OBJT_DEFAULT &&
2078             prev_object->type != OBJT_SWAP) ||
2079             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2080                 VM_OBJECT_WUNLOCK(prev_object);
2081                 return (FALSE);
2082         }
2083
2084         /*
2085          * Try to collapse the object first
2086          */
2087         vm_object_collapse(prev_object);
2088
2089         /*
2090          * Can't coalesce if: . more than one reference . paged out . shadows
2091          * another object . has a copy elsewhere (any of which mean that the
2092          * pages not mapped to prev_entry may be in use anyway)
2093          */
2094         if (prev_object->backing_object != NULL) {
2095                 VM_OBJECT_WUNLOCK(prev_object);
2096                 return (FALSE);
2097         }
2098
2099         prev_size >>= PAGE_SHIFT;
2100         next_size >>= PAGE_SHIFT;
2101         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2102
2103         if ((prev_object->ref_count > 1) &&
2104             (prev_object->size != next_pindex)) {
2105                 VM_OBJECT_WUNLOCK(prev_object);
2106                 return (FALSE);
2107         }
2108
2109         /*
2110          * Account for the charge.
2111          */
2112         if (prev_object->cred != NULL) {
2113
2114                 /*
2115                  * If prev_object was charged, then this mapping,
2116                  * although not charged now, may become writable
2117                  * later. Non-NULL cred in the object would prevent
2118                  * swap reservation during enabling of the write
2119                  * access, so reserve swap now. Failed reservation
2120                  * cause allocation of the separate object for the map
2121                  * entry, and swap reservation for this entry is
2122                  * managed in appropriate time.
2123                  */
2124                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2125                     prev_object->cred)) {
2126                         return (FALSE);
2127                 }
2128                 prev_object->charge += ptoa(next_size);
2129         }
2130
2131         /*
2132          * Remove any pages that may still be in the object from a previous
2133          * deallocation.
2134          */
2135         if (next_pindex < prev_object->size) {
2136                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2137                     next_size, 0);
2138                 if (prev_object->type == OBJT_SWAP)
2139                         swap_pager_freespace(prev_object,
2140                                              next_pindex, next_size);
2141 #if 0
2142                 if (prev_object->cred != NULL) {
2143                         KASSERT(prev_object->charge >=
2144                             ptoa(prev_object->size - next_pindex),
2145                             ("object %p overcharged 1 %jx %jx", prev_object,
2146                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2147                         prev_object->charge -= ptoa(prev_object->size -
2148                             next_pindex);
2149                 }
2150 #endif
2151         }
2152
2153         /*
2154          * Extend the object if necessary.
2155          */
2156         if (next_pindex + next_size > prev_object->size)
2157                 prev_object->size = next_pindex + next_size;
2158
2159         VM_OBJECT_WUNLOCK(prev_object);
2160         return (TRUE);
2161 }
2162
2163 void
2164 vm_object_set_writeable_dirty(vm_object_t object)
2165 {
2166
2167         VM_OBJECT_ASSERT_WLOCKED(object);
2168         if (object->type != OBJT_VNODE) {
2169                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2170                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2171                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2172                 }
2173                 return;
2174         }
2175         object->generation++;
2176         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2177                 return;
2178         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2179 }
2180
2181 /*
2182  *      vm_object_unwire:
2183  *
2184  *      For each page offset within the specified range of the given object,
2185  *      find the highest-level page in the shadow chain and unwire it.  A page
2186  *      must exist at every page offset, and the highest-level page must be
2187  *      wired.
2188  */
2189 void
2190 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2191     uint8_t queue)
2192 {
2193         vm_object_t tobject;
2194         vm_page_t m, tm;
2195         vm_pindex_t end_pindex, pindex, tpindex;
2196         int depth, locked_depth;
2197
2198         KASSERT((offset & PAGE_MASK) == 0,
2199             ("vm_object_unwire: offset is not page aligned"));
2200         KASSERT((length & PAGE_MASK) == 0,
2201             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2202         /* The wired count of a fictitious page never changes. */
2203         if ((object->flags & OBJ_FICTITIOUS) != 0)
2204                 return;
2205         pindex = OFF_TO_IDX(offset);
2206         end_pindex = pindex + atop(length);
2207         locked_depth = 1;
2208         VM_OBJECT_RLOCK(object);
2209         m = vm_page_find_least(object, pindex);
2210         while (pindex < end_pindex) {
2211                 if (m == NULL || pindex < m->pindex) {
2212                         /*
2213                          * The first object in the shadow chain doesn't
2214                          * contain a page at the current index.  Therefore,
2215                          * the page must exist in a backing object.
2216                          */
2217                         tobject = object;
2218                         tpindex = pindex;
2219                         depth = 0;
2220                         do {
2221                                 tpindex +=
2222                                     OFF_TO_IDX(tobject->backing_object_offset);
2223                                 tobject = tobject->backing_object;
2224                                 KASSERT(tobject != NULL,
2225                                     ("vm_object_unwire: missing page"));
2226                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2227                                         goto next_page;
2228                                 depth++;
2229                                 if (depth == locked_depth) {
2230                                         locked_depth++;
2231                                         VM_OBJECT_RLOCK(tobject);
2232                                 }
2233                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2234                             NULL);
2235                 } else {
2236                         tm = m;
2237                         m = TAILQ_NEXT(m, listq);
2238                 }
2239                 vm_page_lock(tm);
2240                 vm_page_unwire(tm, queue);
2241                 vm_page_unlock(tm);
2242 next_page:
2243                 pindex++;
2244         }
2245         /* Release the accumulated object locks. */
2246         for (depth = 0; depth < locked_depth; depth++) {
2247                 tobject = object->backing_object;
2248                 VM_OBJECT_RUNLOCK(object);
2249                 object = tobject;
2250         }
2251 }
2252
2253 struct vnode *
2254 vm_object_vnode(vm_object_t object)
2255 {
2256
2257         VM_OBJECT_ASSERT_LOCKED(object);
2258         if (object->type == OBJT_VNODE)
2259                 return (object->handle);
2260         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2261                 return (object->un_pager.swp.swp_tmpfs);
2262         return (NULL);
2263 }
2264
2265 static int
2266 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2267 {
2268         struct kinfo_vmobject kvo;
2269         char *fullpath, *freepath;
2270         struct vnode *vp;
2271         struct vattr va;
2272         vm_object_t obj;
2273         vm_page_t m;
2274         int count, error;
2275
2276         if (req->oldptr == NULL) {
2277                 /*
2278                  * If an old buffer has not been provided, generate an
2279                  * estimate of the space needed for a subsequent call.
2280                  */
2281                 mtx_lock(&vm_object_list_mtx);
2282                 count = 0;
2283                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2284                         if (obj->type == OBJT_DEAD)
2285                                 continue;
2286                         count++;
2287                 }
2288                 mtx_unlock(&vm_object_list_mtx);
2289                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2290                     count * 11 / 10));
2291         }
2292
2293         error = 0;
2294
2295         /*
2296          * VM objects are type stable and are never removed from the
2297          * list once added.  This allows us to safely read obj->object_list
2298          * after reacquiring the VM object lock.
2299          */
2300         mtx_lock(&vm_object_list_mtx);
2301         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2302                 if (obj->type == OBJT_DEAD)
2303                         continue;
2304                 VM_OBJECT_RLOCK(obj);
2305                 if (obj->type == OBJT_DEAD) {
2306                         VM_OBJECT_RUNLOCK(obj);
2307                         continue;
2308                 }
2309                 mtx_unlock(&vm_object_list_mtx);
2310                 kvo.kvo_size = ptoa(obj->size);
2311                 kvo.kvo_resident = obj->resident_page_count;
2312                 kvo.kvo_ref_count = obj->ref_count;
2313                 kvo.kvo_shadow_count = obj->shadow_count;
2314                 kvo.kvo_memattr = obj->memattr;
2315                 kvo.kvo_active = 0;
2316                 kvo.kvo_inactive = 0;
2317                 TAILQ_FOREACH(m, &obj->memq, listq) {
2318                         /*
2319                          * A page may belong to the object but be
2320                          * dequeued and set to PQ_NONE while the
2321                          * object lock is not held.  This makes the
2322                          * reads of m->queue below racy, and we do not
2323                          * count pages set to PQ_NONE.  However, this
2324                          * sysctl is only meant to give an
2325                          * approximation of the system anyway.
2326                          */
2327                         if (m->queue == PQ_ACTIVE)
2328                                 kvo.kvo_active++;
2329                         else if (m->queue == PQ_INACTIVE)
2330                                 kvo.kvo_inactive++;
2331                 }
2332
2333                 kvo.kvo_vn_fileid = 0;
2334                 kvo.kvo_vn_fsid = 0;
2335                 freepath = NULL;
2336                 fullpath = "";
2337                 vp = NULL;
2338                 switch (obj->type) {
2339                 case OBJT_DEFAULT:
2340                         kvo.kvo_type = KVME_TYPE_DEFAULT;
2341                         break;
2342                 case OBJT_VNODE:
2343                         kvo.kvo_type = KVME_TYPE_VNODE;
2344                         vp = obj->handle;
2345                         vref(vp);
2346                         break;
2347                 case OBJT_SWAP:
2348                         kvo.kvo_type = KVME_TYPE_SWAP;
2349                         break;
2350                 case OBJT_DEVICE:
2351                         kvo.kvo_type = KVME_TYPE_DEVICE;
2352                         break;
2353                 case OBJT_PHYS:
2354                         kvo.kvo_type = KVME_TYPE_PHYS;
2355                         break;
2356                 case OBJT_DEAD:
2357                         kvo.kvo_type = KVME_TYPE_DEAD;
2358                         break;
2359                 case OBJT_SG:
2360                         kvo.kvo_type = KVME_TYPE_SG;
2361                         break;
2362                 case OBJT_MGTDEVICE:
2363                         kvo.kvo_type = KVME_TYPE_MGTDEVICE;
2364                         break;
2365                 default:
2366                         kvo.kvo_type = KVME_TYPE_UNKNOWN;
2367                         break;
2368                 }
2369                 VM_OBJECT_RUNLOCK(obj);
2370                 if (vp != NULL) {
2371                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2372                         vn_lock(vp, LK_SHARED | LK_RETRY);
2373                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2374                                 kvo.kvo_vn_fileid = va.va_fileid;
2375                                 kvo.kvo_vn_fsid = va.va_fsid;
2376                         }
2377                         vput(vp);
2378                 }
2379
2380                 strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
2381                 if (freepath != NULL)
2382                         free(freepath, M_TEMP);
2383
2384                 /* Pack record size down */
2385                 kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
2386                     strlen(kvo.kvo_path) + 1;
2387                 kvo.kvo_structsize = roundup(kvo.kvo_structsize,
2388                     sizeof(uint64_t));
2389                 error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
2390                 mtx_lock(&vm_object_list_mtx);
2391                 if (error)
2392                         break;
2393         }
2394         mtx_unlock(&vm_object_list_mtx);
2395         return (error);
2396 }
2397 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2398     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2399     "List of VM objects");
2400
2401 #include "opt_ddb.h"
2402 #ifdef DDB
2403 #include <sys/kernel.h>
2404
2405 #include <sys/cons.h>
2406
2407 #include <ddb/ddb.h>
2408
2409 static int
2410 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2411 {
2412         vm_map_t tmpm;
2413         vm_map_entry_t tmpe;
2414         vm_object_t obj;
2415         int entcount;
2416
2417         if (map == 0)
2418                 return 0;
2419
2420         if (entry == 0) {
2421                 tmpe = map->header.next;
2422                 entcount = map->nentries;
2423                 while (entcount-- && (tmpe != &map->header)) {
2424                         if (_vm_object_in_map(map, object, tmpe)) {
2425                                 return 1;
2426                         }
2427                         tmpe = tmpe->next;
2428                 }
2429         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2430                 tmpm = entry->object.sub_map;
2431                 tmpe = tmpm->header.next;
2432                 entcount = tmpm->nentries;
2433                 while (entcount-- && tmpe != &tmpm->header) {
2434                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2435                                 return 1;
2436                         }
2437                         tmpe = tmpe->next;
2438                 }
2439         } else if ((obj = entry->object.vm_object) != NULL) {
2440                 for (; obj; obj = obj->backing_object)
2441                         if (obj == object) {
2442                                 return 1;
2443                         }
2444         }
2445         return 0;
2446 }
2447
2448 static int
2449 vm_object_in_map(vm_object_t object)
2450 {
2451         struct proc *p;
2452
2453         /* sx_slock(&allproc_lock); */
2454         FOREACH_PROC_IN_SYSTEM(p) {
2455                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2456                         continue;
2457                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2458                         /* sx_sunlock(&allproc_lock); */
2459                         return 1;
2460                 }
2461         }
2462         /* sx_sunlock(&allproc_lock); */
2463         if (_vm_object_in_map(kernel_map, object, 0))
2464                 return 1;
2465         return 0;
2466 }
2467
2468 DB_SHOW_COMMAND(vmochk, vm_object_check)
2469 {
2470         vm_object_t object;
2471
2472         /*
2473          * make sure that internal objs are in a map somewhere
2474          * and none have zero ref counts.
2475          */
2476         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2477                 if (object->handle == NULL &&
2478                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2479                         if (object->ref_count == 0) {
2480                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2481                                         (long)object->size);
2482                         }
2483                         if (!vm_object_in_map(object)) {
2484                                 db_printf(
2485                         "vmochk: internal obj is not in a map: "
2486                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2487                                     object->ref_count, (u_long)object->size, 
2488                                     (u_long)object->size,
2489                                     (void *)object->backing_object);
2490                         }
2491                 }
2492         }
2493 }
2494
2495 /*
2496  *      vm_object_print:        [ debug ]
2497  */
2498 DB_SHOW_COMMAND(object, vm_object_print_static)
2499 {
2500         /* XXX convert args. */
2501         vm_object_t object = (vm_object_t)addr;
2502         boolean_t full = have_addr;
2503
2504         vm_page_t p;
2505
2506         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2507 #define count   was_count
2508
2509         int count;
2510
2511         if (object == NULL)
2512                 return;
2513
2514         db_iprintf(
2515             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2516             object, (int)object->type, (uintmax_t)object->size,
2517             object->resident_page_count, object->ref_count, object->flags,
2518             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2519         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2520             object->shadow_count, 
2521             object->backing_object ? object->backing_object->ref_count : 0,
2522             object->backing_object, (uintmax_t)object->backing_object_offset);
2523
2524         if (!full)
2525                 return;
2526
2527         db_indent += 2;
2528         count = 0;
2529         TAILQ_FOREACH(p, &object->memq, listq) {
2530                 if (count == 0)
2531                         db_iprintf("memory:=");
2532                 else if (count == 6) {
2533                         db_printf("\n");
2534                         db_iprintf(" ...");
2535                         count = 0;
2536                 } else
2537                         db_printf(",");
2538                 count++;
2539
2540                 db_printf("(off=0x%jx,page=0x%jx)",
2541                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2542         }
2543         if (count != 0)
2544                 db_printf("\n");
2545         db_indent -= 2;
2546 }
2547
2548 /* XXX. */
2549 #undef count
2550
2551 /* XXX need this non-static entry for calling from vm_map_print. */
2552 void
2553 vm_object_print(
2554         /* db_expr_t */ long addr,
2555         boolean_t have_addr,
2556         /* db_expr_t */ long count,
2557         char *modif)
2558 {
2559         vm_object_print_static(addr, have_addr, count, modif);
2560 }
2561
2562 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2563 {
2564         vm_object_t object;
2565         vm_pindex_t fidx;
2566         vm_paddr_t pa;
2567         vm_page_t m, prev_m;
2568         int rcount, nl, c;
2569
2570         nl = 0;
2571         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2572                 db_printf("new object: %p\n", (void *)object);
2573                 if (nl > 18) {
2574                         c = cngetc();
2575                         if (c != ' ')
2576                                 return;
2577                         nl = 0;
2578                 }
2579                 nl++;
2580                 rcount = 0;
2581                 fidx = 0;
2582                 pa = -1;
2583                 TAILQ_FOREACH(m, &object->memq, listq) {
2584                         if (m->pindex > 128)
2585                                 break;
2586                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2587                             prev_m->pindex + 1 != m->pindex) {
2588                                 if (rcount) {
2589                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2590                                                 (long)fidx, rcount, (long)pa);
2591                                         if (nl > 18) {
2592                                                 c = cngetc();
2593                                                 if (c != ' ')
2594                                                         return;
2595                                                 nl = 0;
2596                                         }
2597                                         nl++;
2598                                         rcount = 0;
2599                                 }
2600                         }                               
2601                         if (rcount &&
2602                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2603                                 ++rcount;
2604                                 continue;
2605                         }
2606                         if (rcount) {
2607                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2608                                         (long)fidx, rcount, (long)pa);
2609                                 if (nl > 18) {
2610                                         c = cngetc();
2611                                         if (c != ' ')
2612                                                 return;
2613                                         nl = 0;
2614                                 }
2615                                 nl++;
2616                         }
2617                         fidx = m->pindex;
2618                         pa = VM_PAGE_TO_PHYS(m);
2619                         rcount = 1;
2620                 }
2621                 if (rcount) {
2622                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2623                                 (long)fidx, rcount, (long)pa);
2624                         if (nl > 18) {
2625                                 c = cngetc();
2626                                 if (c != ' ')
2627                                         return;
2628                                 nl = 0;
2629                         }
2630                         nl++;
2631                 }
2632         }
2633 }
2634 #endif /* DDB */