]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Add pgo_freespace method
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/limits.h>
77 #include <sys/lock.h>
78 #include <sys/mman.h>
79 #include <sys/mount.h>
80 #include <sys/kernel.h>
81 #include <sys/pctrie.h>
82 #include <sys/sysctl.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>           /* for curproc, pageproc */
85 #include <sys/refcount.h>
86 #include <sys/socket.h>
87 #include <sys/resourcevar.h>
88 #include <sys/refcount.h>
89 #include <sys/rwlock.h>
90 #include <sys/user.h>
91 #include <sys/vnode.h>
92 #include <sys/vmmeter.h>
93 #include <sys/sx.h>
94
95 #include <vm/vm.h>
96 #include <vm/vm_param.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_phys.h>
104 #include <vm/vm_pagequeue.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/uma.h>
111
112 static int old_msync;
113 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
114     "Use old (insecure) msync behavior");
115
116 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
117                     int pagerflags, int flags, boolean_t *allclean,
118                     boolean_t *eio);
119 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
120                     boolean_t *allclean);
121 static void     vm_object_backing_remove(vm_object_t object);
122
123 /*
124  *      Virtual memory objects maintain the actual data
125  *      associated with allocated virtual memory.  A given
126  *      page of memory exists within exactly one object.
127  *
128  *      An object is only deallocated when all "references"
129  *      are given up.  Only one "reference" to a given
130  *      region of an object should be writeable.
131  *
132  *      Associated with each object is a list of all resident
133  *      memory pages belonging to that object; this list is
134  *      maintained by the "vm_page" module, and locked by the object's
135  *      lock.
136  *
137  *      Each object also records a "pager" routine which is
138  *      used to retrieve (and store) pages to the proper backing
139  *      storage.  In addition, objects may be backed by other
140  *      objects from which they were virtual-copied.
141  *
142  *      The only items within the object structure which are
143  *      modified after time of creation are:
144  *              reference count         locked by object's lock
145  *              pager routine           locked by object's lock
146  *
147  */
148
149 struct object_q vm_object_list;
150 struct mtx vm_object_list_mtx;  /* lock for object list and count */
151
152 struct vm_object kernel_object_store;
153
154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
155     "VM object stats");
156
157 static COUNTER_U64_DEFINE_EARLY(object_collapses);
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
159     &object_collapses,
160     "VM object collapses");
161
162 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
164     &object_bypasses,
165     "VM object bypasses");
166
167 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
168 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
169     &object_collapse_waits,
170     "Number of sleeps for collapse");
171
172 static uma_zone_t obj_zone;
173
174 static int vm_object_zinit(void *mem, int size, int flags);
175
176 #ifdef INVARIANTS
177 static void vm_object_zdtor(void *mem, int size, void *arg);
178
179 static void
180 vm_object_zdtor(void *mem, int size, void *arg)
181 {
182         vm_object_t object;
183
184         object = (vm_object_t)mem;
185         KASSERT(object->ref_count == 0,
186             ("object %p ref_count = %d", object, object->ref_count));
187         KASSERT(TAILQ_EMPTY(&object->memq),
188             ("object %p has resident pages in its memq", object));
189         KASSERT(vm_radix_is_empty(&object->rtree),
190             ("object %p has resident pages in its trie", object));
191 #if VM_NRESERVLEVEL > 0
192         KASSERT(LIST_EMPTY(&object->rvq),
193             ("object %p has reservations",
194             object));
195 #endif
196         KASSERT(!vm_object_busied(object),
197             ("object %p busy = %d", object, blockcount_read(&object->busy)));
198         KASSERT(object->resident_page_count == 0,
199             ("object %p resident_page_count = %d",
200             object, object->resident_page_count));
201         KASSERT(object->shadow_count == 0,
202             ("object %p shadow_count = %d",
203             object, object->shadow_count));
204         KASSERT(object->type == OBJT_DEAD,
205             ("object %p has non-dead type %d",
206             object, object->type));
207 }
208 #endif
209
210 static int
211 vm_object_zinit(void *mem, int size, int flags)
212 {
213         vm_object_t object;
214
215         object = (vm_object_t)mem;
216         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
217
218         /* These are true for any object that has been freed */
219         object->type = OBJT_DEAD;
220         vm_radix_init(&object->rtree);
221         refcount_init(&object->ref_count, 0);
222         blockcount_init(&object->paging_in_progress);
223         blockcount_init(&object->busy);
224         object->resident_page_count = 0;
225         object->shadow_count = 0;
226         object->flags = OBJ_DEAD;
227
228         mtx_lock(&vm_object_list_mtx);
229         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
230         mtx_unlock(&vm_object_list_mtx);
231         return (0);
232 }
233
234 static void
235 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
236     vm_object_t object, void *handle)
237 {
238
239         TAILQ_INIT(&object->memq);
240         LIST_INIT(&object->shadow_head);
241
242         object->type = type;
243         if (type == OBJT_SWAP)
244                 pctrie_init(&object->un_pager.swp.swp_blks);
245
246         /*
247          * Ensure that swap_pager_swapoff() iteration over object_list
248          * sees up to date type and pctrie head if it observed
249          * non-dead object.
250          */
251         atomic_thread_fence_rel();
252
253         object->pg_color = 0;
254         object->flags = flags;
255         object->size = size;
256         object->domain.dr_policy = NULL;
257         object->generation = 1;
258         object->cleangeneration = 1;
259         refcount_init(&object->ref_count, 1);
260         object->memattr = VM_MEMATTR_DEFAULT;
261         object->cred = NULL;
262         object->charge = 0;
263         object->handle = handle;
264         object->backing_object = NULL;
265         object->backing_object_offset = (vm_ooffset_t) 0;
266 #if VM_NRESERVLEVEL > 0
267         LIST_INIT(&object->rvq);
268 #endif
269         umtx_shm_object_init(object);
270 }
271
272 /*
273  *      vm_object_init:
274  *
275  *      Initialize the VM objects module.
276  */
277 void
278 vm_object_init(void)
279 {
280         TAILQ_INIT(&vm_object_list);
281         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
282
283         rw_init(&kernel_object->lock, "kernel vm object");
284         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
285             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
286 #if VM_NRESERVLEVEL > 0
287         kernel_object->flags |= OBJ_COLORED;
288         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
289 #endif
290         kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
291
292         /*
293          * The lock portion of struct vm_object must be type stable due
294          * to vm_pageout_fallback_object_lock locking a vm object
295          * without holding any references to it.
296          *
297          * paging_in_progress is valid always.  Lockless references to
298          * the objects may acquire pip and then check OBJ_DEAD.
299          */
300         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
301 #ifdef INVARIANTS
302             vm_object_zdtor,
303 #else
304             NULL,
305 #endif
306             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
307
308         vm_radix_zinit();
309 }
310
311 void
312 vm_object_clear_flag(vm_object_t object, u_short bits)
313 {
314
315         VM_OBJECT_ASSERT_WLOCKED(object);
316         object->flags &= ~bits;
317 }
318
319 /*
320  *      Sets the default memory attribute for the specified object.  Pages
321  *      that are allocated to this object are by default assigned this memory
322  *      attribute.
323  *
324  *      Presently, this function must be called before any pages are allocated
325  *      to the object.  In the future, this requirement may be relaxed for
326  *      "default" and "swap" objects.
327  */
328 int
329 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
330 {
331
332         VM_OBJECT_ASSERT_WLOCKED(object);
333         switch (object->type) {
334         case OBJT_DEFAULT:
335         case OBJT_DEVICE:
336         case OBJT_MGTDEVICE:
337         case OBJT_PHYS:
338         case OBJT_SG:
339         case OBJT_SWAP:
340         case OBJT_VNODE:
341                 if (!TAILQ_EMPTY(&object->memq))
342                         return (KERN_FAILURE);
343                 break;
344         case OBJT_DEAD:
345                 return (KERN_INVALID_ARGUMENT);
346         default:
347                 panic("vm_object_set_memattr: object %p is of undefined type",
348                     object);
349         }
350         object->memattr = memattr;
351         return (KERN_SUCCESS);
352 }
353
354 void
355 vm_object_pip_add(vm_object_t object, short i)
356 {
357
358         if (i > 0)
359                 blockcount_acquire(&object->paging_in_progress, i);
360 }
361
362 void
363 vm_object_pip_wakeup(vm_object_t object)
364 {
365
366         vm_object_pip_wakeupn(object, 1);
367 }
368
369 void
370 vm_object_pip_wakeupn(vm_object_t object, short i)
371 {
372
373         if (i > 0)
374                 blockcount_release(&object->paging_in_progress, i);
375 }
376
377 /*
378  * Atomically drop the object lock and wait for pip to drain.  This protects
379  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
380  * on return.
381  */
382 static void
383 vm_object_pip_sleep(vm_object_t object, const char *waitid)
384 {
385
386         (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
387             waitid, PVM | PDROP);
388 }
389
390 void
391 vm_object_pip_wait(vm_object_t object, const char *waitid)
392 {
393
394         VM_OBJECT_ASSERT_WLOCKED(object);
395
396         blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
397             PVM);
398 }
399
400 void
401 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
402 {
403
404         VM_OBJECT_ASSERT_UNLOCKED(object);
405
406         blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
407 }
408
409 /*
410  *      vm_object_allocate:
411  *
412  *      Returns a new object with the given size.
413  */
414 vm_object_t
415 vm_object_allocate(objtype_t type, vm_pindex_t size)
416 {
417         vm_object_t object;
418         u_short flags;
419
420         switch (type) {
421         case OBJT_DEAD:
422                 panic("vm_object_allocate: can't create OBJT_DEAD");
423         case OBJT_DEFAULT:
424         case OBJT_SWAP:
425                 flags = OBJ_COLORED;
426                 break;
427         case OBJT_DEVICE:
428         case OBJT_SG:
429                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
430                 break;
431         case OBJT_MGTDEVICE:
432                 flags = OBJ_FICTITIOUS;
433                 break;
434         case OBJT_PHYS:
435                 flags = OBJ_UNMANAGED;
436                 break;
437         case OBJT_VNODE:
438                 flags = 0;
439                 break;
440         default:
441                 panic("vm_object_allocate: type %d is undefined", type);
442         }
443         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
444         _vm_object_allocate(type, size, flags, object, NULL);
445
446         return (object);
447 }
448
449 /*
450  *      vm_object_allocate_anon:
451  *
452  *      Returns a new default object of the given size and marked as
453  *      anonymous memory for special split/collapse handling.  Color
454  *      to be initialized by the caller.
455  */
456 vm_object_t
457 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
458     struct ucred *cred, vm_size_t charge)
459 {
460         vm_object_t handle, object;
461
462         if (backing_object == NULL)
463                 handle = NULL;
464         else if ((backing_object->flags & OBJ_ANON) != 0)
465                 handle = backing_object->handle;
466         else
467                 handle = backing_object;
468         object = uma_zalloc(obj_zone, M_WAITOK);
469         _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
470             object, handle);
471         object->cred = cred;
472         object->charge = cred != NULL ? charge : 0;
473         return (object);
474 }
475
476 static void
477 vm_object_reference_vnode(vm_object_t object)
478 {
479         u_int old;
480
481         /*
482          * vnode objects need the lock for the first reference
483          * to serialize with vnode_object_deallocate().
484          */
485         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
486                 VM_OBJECT_RLOCK(object);
487                 old = refcount_acquire(&object->ref_count);
488                 if (object->type == OBJT_VNODE && old == 0)
489                         vref(object->handle);
490                 VM_OBJECT_RUNLOCK(object);
491         }
492 }
493
494 /*
495  *      vm_object_reference:
496  *
497  *      Acquires a reference to the given object.
498  */
499 void
500 vm_object_reference(vm_object_t object)
501 {
502
503         if (object == NULL)
504                 return;
505
506         if (object->type == OBJT_VNODE)
507                 vm_object_reference_vnode(object);
508         else
509                 refcount_acquire(&object->ref_count);
510         KASSERT((object->flags & OBJ_DEAD) == 0,
511             ("vm_object_reference: Referenced dead object."));
512 }
513
514 /*
515  *      vm_object_reference_locked:
516  *
517  *      Gets another reference to the given object.
518  *
519  *      The object must be locked.
520  */
521 void
522 vm_object_reference_locked(vm_object_t object)
523 {
524         u_int old;
525
526         VM_OBJECT_ASSERT_LOCKED(object);
527         old = refcount_acquire(&object->ref_count);
528         if (object->type == OBJT_VNODE && old == 0)
529                 vref(object->handle);
530         KASSERT((object->flags & OBJ_DEAD) == 0,
531             ("vm_object_reference: Referenced dead object."));
532 }
533
534 /*
535  * Handle deallocating an object of type OBJT_VNODE.
536  */
537 static void
538 vm_object_deallocate_vnode(vm_object_t object)
539 {
540         struct vnode *vp = (struct vnode *) object->handle;
541         bool last;
542
543         KASSERT(object->type == OBJT_VNODE,
544             ("vm_object_deallocate_vnode: not a vnode object"));
545         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
546
547         /* Object lock to protect handle lookup. */
548         last = refcount_release(&object->ref_count);
549         VM_OBJECT_RUNLOCK(object);
550
551         if (!last)
552                 return;
553
554         if (!umtx_shm_vnobj_persistent)
555                 umtx_shm_object_terminated(object);
556
557         /* vrele may need the vnode lock. */
558         vrele(vp);
559 }
560
561 /*
562  * We dropped a reference on an object and discovered that it had a
563  * single remaining shadow.  This is a sibling of the reference we
564  * dropped.  Attempt to collapse the sibling and backing object.
565  */
566 static vm_object_t
567 vm_object_deallocate_anon(vm_object_t backing_object)
568 {
569         vm_object_t object;
570
571         /* Fetch the final shadow.  */
572         object = LIST_FIRST(&backing_object->shadow_head);
573         KASSERT(object != NULL && backing_object->shadow_count == 1,
574             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
575             backing_object->ref_count, backing_object->shadow_count));
576         KASSERT((object->flags & (OBJ_TMPFS_NODE | OBJ_ANON)) == OBJ_ANON,
577             ("invalid shadow object %p", object));
578
579         if (!VM_OBJECT_TRYWLOCK(object)) {
580                 /*
581                  * Prevent object from disappearing since we do not have a
582                  * reference.
583                  */
584                 vm_object_pip_add(object, 1);
585                 VM_OBJECT_WUNLOCK(backing_object);
586                 VM_OBJECT_WLOCK(object);
587                 vm_object_pip_wakeup(object);
588         } else
589                 VM_OBJECT_WUNLOCK(backing_object);
590
591         /*
592          * Check for a collapse/terminate race with the last reference holder.
593          */
594         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
595             !refcount_acquire_if_not_zero(&object->ref_count)) {
596                 VM_OBJECT_WUNLOCK(object);
597                 return (NULL);
598         }
599         backing_object = object->backing_object;
600         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
601                 vm_object_collapse(object);
602         VM_OBJECT_WUNLOCK(object);
603
604         return (object);
605 }
606
607 /*
608  *      vm_object_deallocate:
609  *
610  *      Release a reference to the specified object,
611  *      gained either through a vm_object_allocate
612  *      or a vm_object_reference call.  When all references
613  *      are gone, storage associated with this object
614  *      may be relinquished.
615  *
616  *      No object may be locked.
617  */
618 void
619 vm_object_deallocate(vm_object_t object)
620 {
621         vm_object_t temp;
622         bool released;
623
624         while (object != NULL) {
625                 /*
626                  * If the reference count goes to 0 we start calling
627                  * vm_object_terminate() on the object chain.  A ref count
628                  * of 1 may be a special case depending on the shadow count
629                  * being 0 or 1.  These cases require a write lock on the
630                  * object.
631                  */
632                 if ((object->flags & OBJ_ANON) == 0)
633                         released = refcount_release_if_gt(&object->ref_count, 1);
634                 else
635                         released = refcount_release_if_gt(&object->ref_count, 2);
636                 if (released)
637                         return;
638
639                 if (object->type == OBJT_VNODE) {
640                         VM_OBJECT_RLOCK(object);
641                         if (object->type == OBJT_VNODE) {
642                                 vm_object_deallocate_vnode(object);
643                                 return;
644                         }
645                         VM_OBJECT_RUNLOCK(object);
646                 }
647
648                 VM_OBJECT_WLOCK(object);
649                 KASSERT(object->ref_count > 0,
650                     ("vm_object_deallocate: object deallocated too many times: %d",
651                     object->type));
652
653                 /*
654                  * If this is not the final reference to an anonymous
655                  * object we may need to collapse the shadow chain.
656                  */
657                 if (!refcount_release(&object->ref_count)) {
658                         if (object->ref_count > 1 ||
659                             object->shadow_count == 0) {
660                                 if ((object->flags & OBJ_ANON) != 0 &&
661                                     object->ref_count == 1)
662                                         vm_object_set_flag(object,
663                                             OBJ_ONEMAPPING);
664                                 VM_OBJECT_WUNLOCK(object);
665                                 return;
666                         }
667
668                         /* Handle collapsing last ref on anonymous objects. */
669                         object = vm_object_deallocate_anon(object);
670                         continue;
671                 }
672
673                 /*
674                  * Handle the final reference to an object.  We restart
675                  * the loop with the backing object to avoid recursion.
676                  */
677                 umtx_shm_object_terminated(object);
678                 temp = object->backing_object;
679                 if (temp != NULL) {
680                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
681                             ("shadowed tmpfs v_object 2 %p", object));
682                         vm_object_backing_remove(object);
683                 }
684
685                 KASSERT((object->flags & OBJ_DEAD) == 0,
686                     ("vm_object_deallocate: Terminating dead object."));
687                 vm_object_set_flag(object, OBJ_DEAD);
688                 vm_object_terminate(object);
689                 object = temp;
690         }
691 }
692
693 /*
694  *      vm_object_destroy removes the object from the global object list
695  *      and frees the space for the object.
696  */
697 void
698 vm_object_destroy(vm_object_t object)
699 {
700
701         /*
702          * Release the allocation charge.
703          */
704         if (object->cred != NULL) {
705                 swap_release_by_cred(object->charge, object->cred);
706                 object->charge = 0;
707                 crfree(object->cred);
708                 object->cred = NULL;
709         }
710
711         /*
712          * Free the space for the object.
713          */
714         uma_zfree(obj_zone, object);
715 }
716
717 static void
718 vm_object_backing_remove_locked(vm_object_t object)
719 {
720         vm_object_t backing_object;
721
722         backing_object = object->backing_object;
723         VM_OBJECT_ASSERT_WLOCKED(object);
724         VM_OBJECT_ASSERT_WLOCKED(backing_object);
725
726         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
727             ("vm_object_backing_remove: Removing collapsing object."));
728
729         if ((object->flags & OBJ_SHADOWLIST) != 0) {
730                 LIST_REMOVE(object, shadow_list);
731                 backing_object->shadow_count--;
732                 object->flags &= ~OBJ_SHADOWLIST;
733         }
734         object->backing_object = NULL;
735 }
736
737 static void
738 vm_object_backing_remove(vm_object_t object)
739 {
740         vm_object_t backing_object;
741
742         VM_OBJECT_ASSERT_WLOCKED(object);
743
744         if ((object->flags & OBJ_SHADOWLIST) != 0) {
745                 backing_object = object->backing_object;
746                 VM_OBJECT_WLOCK(backing_object);
747                 vm_object_backing_remove_locked(object);
748                 VM_OBJECT_WUNLOCK(backing_object);
749         } else
750                 object->backing_object = NULL;
751 }
752
753 static void
754 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
755 {
756
757         VM_OBJECT_ASSERT_WLOCKED(object);
758
759         if ((backing_object->flags & OBJ_ANON) != 0) {
760                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
761                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
762                     shadow_list);
763                 backing_object->shadow_count++;
764                 object->flags |= OBJ_SHADOWLIST;
765         }
766         object->backing_object = backing_object;
767 }
768
769 static void
770 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
771 {
772
773         VM_OBJECT_ASSERT_WLOCKED(object);
774
775         if ((backing_object->flags & OBJ_ANON) != 0) {
776                 VM_OBJECT_WLOCK(backing_object);
777                 vm_object_backing_insert_locked(object, backing_object);
778                 VM_OBJECT_WUNLOCK(backing_object);
779         } else
780                 object->backing_object = backing_object;
781 }
782
783 /*
784  * Insert an object into a backing_object's shadow list with an additional
785  * reference to the backing_object added.
786  */
787 static void
788 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
789 {
790
791         VM_OBJECT_ASSERT_WLOCKED(object);
792
793         if ((backing_object->flags & OBJ_ANON) != 0) {
794                 VM_OBJECT_WLOCK(backing_object);
795                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
796                     ("shadowing dead anonymous object"));
797                 vm_object_reference_locked(backing_object);
798                 vm_object_backing_insert_locked(object, backing_object);
799                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
800                 VM_OBJECT_WUNLOCK(backing_object);
801         } else {
802                 vm_object_reference(backing_object);
803                 object->backing_object = backing_object;
804         }
805 }
806
807 /*
808  * Transfer a backing reference from backing_object to object.
809  */
810 static void
811 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
812 {
813         vm_object_t new_backing_object;
814
815         /*
816          * Note that the reference to backing_object->backing_object
817          * moves from within backing_object to within object.
818          */
819         vm_object_backing_remove_locked(object);
820         new_backing_object = backing_object->backing_object;
821         if (new_backing_object == NULL)
822                 return;
823         if ((new_backing_object->flags & OBJ_ANON) != 0) {
824                 VM_OBJECT_WLOCK(new_backing_object);
825                 vm_object_backing_remove_locked(backing_object);
826                 vm_object_backing_insert_locked(object, new_backing_object);
827                 VM_OBJECT_WUNLOCK(new_backing_object);
828         } else {
829                 object->backing_object = new_backing_object;
830                 backing_object->backing_object = NULL;
831         }
832 }
833
834 /*
835  * Wait for a concurrent collapse to settle.
836  */
837 static void
838 vm_object_collapse_wait(vm_object_t object)
839 {
840
841         VM_OBJECT_ASSERT_WLOCKED(object);
842
843         while ((object->flags & OBJ_COLLAPSING) != 0) {
844                 vm_object_pip_wait(object, "vmcolwait");
845                 counter_u64_add(object_collapse_waits, 1);
846         }
847 }
848
849 /*
850  * Waits for a backing object to clear a pending collapse and returns
851  * it locked if it is an ANON object.
852  */
853 static vm_object_t
854 vm_object_backing_collapse_wait(vm_object_t object)
855 {
856         vm_object_t backing_object;
857
858         VM_OBJECT_ASSERT_WLOCKED(object);
859
860         for (;;) {
861                 backing_object = object->backing_object;
862                 if (backing_object == NULL ||
863                     (backing_object->flags & OBJ_ANON) == 0)
864                         return (NULL);
865                 VM_OBJECT_WLOCK(backing_object);
866                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
867                         break;
868                 VM_OBJECT_WUNLOCK(object);
869                 vm_object_pip_sleep(backing_object, "vmbckwait");
870                 counter_u64_add(object_collapse_waits, 1);
871                 VM_OBJECT_WLOCK(object);
872         }
873         return (backing_object);
874 }
875
876 /*
877  *      vm_object_terminate_pages removes any remaining pageable pages
878  *      from the object and resets the object to an empty state.
879  */
880 static void
881 vm_object_terminate_pages(vm_object_t object)
882 {
883         vm_page_t p, p_next;
884
885         VM_OBJECT_ASSERT_WLOCKED(object);
886
887         /*
888          * Free any remaining pageable pages.  This also removes them from the
889          * paging queues.  However, don't free wired pages, just remove them
890          * from the object.  Rather than incrementally removing each page from
891          * the object, the page and object are reset to any empty state. 
892          */
893         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
894                 vm_page_assert_unbusied(p);
895                 KASSERT(p->object == object &&
896                     (p->ref_count & VPRC_OBJREF) != 0,
897                     ("vm_object_terminate_pages: page %p is inconsistent", p));
898
899                 p->object = NULL;
900                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
901                         VM_CNT_INC(v_pfree);
902                         vm_page_free(p);
903                 }
904         }
905
906         /*
907          * If the object contained any pages, then reset it to an empty state.
908          * None of the object's fields, including "resident_page_count", were
909          * modified by the preceding loop.
910          */
911         if (object->resident_page_count != 0) {
912                 vm_radix_reclaim_allnodes(&object->rtree);
913                 TAILQ_INIT(&object->memq);
914                 object->resident_page_count = 0;
915                 if (object->type == OBJT_VNODE)
916                         vdrop(object->handle);
917         }
918 }
919
920 /*
921  *      vm_object_terminate actually destroys the specified object, freeing
922  *      up all previously used resources.
923  *
924  *      The object must be locked.
925  *      This routine may block.
926  */
927 void
928 vm_object_terminate(vm_object_t object)
929 {
930
931         VM_OBJECT_ASSERT_WLOCKED(object);
932         KASSERT((object->flags & OBJ_DEAD) != 0,
933             ("terminating non-dead obj %p", object));
934         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
935             ("terminating collapsing obj %p", object));
936         KASSERT(object->backing_object == NULL,
937             ("terminating shadow obj %p", object));
938
939         /*
940          * Wait for the pageout daemon and other current users to be
941          * done with the object.  Note that new paging_in_progress
942          * users can come after this wait, but they must check
943          * OBJ_DEAD flag set (without unlocking the object), and avoid
944          * the object being terminated.
945          */
946         vm_object_pip_wait(object, "objtrm");
947
948         KASSERT(object->ref_count == 0,
949             ("vm_object_terminate: object with references, ref_count=%d",
950             object->ref_count));
951
952         if ((object->flags & OBJ_PG_DTOR) == 0)
953                 vm_object_terminate_pages(object);
954
955 #if VM_NRESERVLEVEL > 0
956         if (__predict_false(!LIST_EMPTY(&object->rvq)))
957                 vm_reserv_break_all(object);
958 #endif
959
960         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
961             object->type == OBJT_SWAP,
962             ("%s: non-swap obj %p has cred", __func__, object));
963
964         /*
965          * Let the pager know object is dead.
966          */
967         vm_pager_deallocate(object);
968         VM_OBJECT_WUNLOCK(object);
969
970         vm_object_destroy(object);
971 }
972
973 /*
974  * Make the page read-only so that we can clear the object flags.  However, if
975  * this is a nosync mmap then the object is likely to stay dirty so do not
976  * mess with the page and do not clear the object flags.  Returns TRUE if the
977  * page should be flushed, and FALSE otherwise.
978  */
979 static boolean_t
980 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
981 {
982
983         vm_page_assert_busied(p);
984
985         /*
986          * If we have been asked to skip nosync pages and this is a
987          * nosync page, skip it.  Note that the object flags were not
988          * cleared in this case so we do not have to set them.
989          */
990         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
991                 *allclean = FALSE;
992                 return (FALSE);
993         } else {
994                 pmap_remove_write(p);
995                 return (p->dirty != 0);
996         }
997 }
998
999 /*
1000  *      vm_object_page_clean
1001  *
1002  *      Clean all dirty pages in the specified range of object.  Leaves page 
1003  *      on whatever queue it is currently on.   If NOSYNC is set then do not
1004  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1005  *      leaving the object dirty.
1006  *
1007  *      For swap objects backing tmpfs regular files, do not flush anything,
1008  *      but remove write protection on the mapped pages to update mtime through
1009  *      mmaped writes.
1010  *
1011  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
1012  *      synchronous clustering mode implementation.
1013  *
1014  *      Odd semantics: if start == end, we clean everything.
1015  *
1016  *      The object must be locked.
1017  *
1018  *      Returns FALSE if some page from the range was not written, as
1019  *      reported by the pager, and TRUE otherwise.
1020  */
1021 boolean_t
1022 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1023     int flags)
1024 {
1025         vm_page_t np, p;
1026         vm_pindex_t pi, tend, tstart;
1027         int curgeneration, n, pagerflags;
1028         boolean_t eio, res, allclean;
1029
1030         VM_OBJECT_ASSERT_WLOCKED(object);
1031
1032         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1033                 return (TRUE);
1034
1035         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1036             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1037         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1038
1039         tstart = OFF_TO_IDX(start);
1040         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1041         allclean = tstart == 0 && tend >= object->size;
1042         res = TRUE;
1043
1044 rescan:
1045         curgeneration = object->generation;
1046
1047         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1048                 pi = p->pindex;
1049                 if (pi >= tend)
1050                         break;
1051                 np = TAILQ_NEXT(p, listq);
1052                 if (vm_page_none_valid(p))
1053                         continue;
1054                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1055                         if (object->generation != curgeneration &&
1056                             (flags & OBJPC_SYNC) != 0)
1057                                 goto rescan;
1058                         np = vm_page_find_least(object, pi);
1059                         continue;
1060                 }
1061                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1062                         vm_page_xunbusy(p);
1063                         continue;
1064                 }
1065                 if (object->type == OBJT_VNODE) {
1066                         n = vm_object_page_collect_flush(object, p, pagerflags,
1067                             flags, &allclean, &eio);
1068                         if (eio) {
1069                                 res = FALSE;
1070                                 allclean = FALSE;
1071                         }
1072                         if (object->generation != curgeneration &&
1073                             (flags & OBJPC_SYNC) != 0)
1074                                 goto rescan;
1075
1076                         /*
1077                          * If the VOP_PUTPAGES() did a truncated write, so
1078                          * that even the first page of the run is not fully
1079                          * written, vm_pageout_flush() returns 0 as the run
1080                          * length.  Since the condition that caused truncated
1081                          * write may be permanent, e.g. exhausted free space,
1082                          * accepting n == 0 would cause an infinite loop.
1083                          *
1084                          * Forwarding the iterator leaves the unwritten page
1085                          * behind, but there is not much we can do there if
1086                          * filesystem refuses to write it.
1087                          */
1088                         if (n == 0) {
1089                                 n = 1;
1090                                 allclean = FALSE;
1091                         }
1092                 } else {
1093                         n = 1;
1094                         vm_page_xunbusy(p);
1095                 }
1096                 np = vm_page_find_least(object, pi + n);
1097         }
1098 #if 0
1099         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1100 #endif
1101
1102         /*
1103          * Leave updating cleangeneration for tmpfs objects to tmpfs
1104          * scan.  It needs to update mtime, which happens for other
1105          * filesystems during page writeouts.
1106          */
1107         if (allclean && object->type == OBJT_VNODE)
1108                 object->cleangeneration = curgeneration;
1109         return (res);
1110 }
1111
1112 static int
1113 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1114     int flags, boolean_t *allclean, boolean_t *eio)
1115 {
1116         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1117         int count, i, mreq, runlen;
1118
1119         vm_page_lock_assert(p, MA_NOTOWNED);
1120         vm_page_assert_xbusied(p);
1121         VM_OBJECT_ASSERT_WLOCKED(object);
1122
1123         count = 1;
1124         mreq = 0;
1125
1126         for (tp = p; count < vm_pageout_page_count; count++) {
1127                 tp = vm_page_next(tp);
1128                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1129                         break;
1130                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1131                         vm_page_xunbusy(tp);
1132                         break;
1133                 }
1134         }
1135
1136         for (p_first = p; count < vm_pageout_page_count; count++) {
1137                 tp = vm_page_prev(p_first);
1138                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1139                         break;
1140                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1141                         vm_page_xunbusy(tp);
1142                         break;
1143                 }
1144                 p_first = tp;
1145                 mreq++;
1146         }
1147
1148         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1149                 ma[i] = tp;
1150
1151         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1152         return (runlen);
1153 }
1154
1155 /*
1156  * Note that there is absolutely no sense in writing out
1157  * anonymous objects, so we track down the vnode object
1158  * to write out.
1159  * We invalidate (remove) all pages from the address space
1160  * for semantic correctness.
1161  *
1162  * If the backing object is a device object with unmanaged pages, then any
1163  * mappings to the specified range of pages must be removed before this
1164  * function is called.
1165  *
1166  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1167  * may start out with a NULL object.
1168  */
1169 boolean_t
1170 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1171     boolean_t syncio, boolean_t invalidate)
1172 {
1173         vm_object_t backing_object;
1174         struct vnode *vp;
1175         struct mount *mp;
1176         int error, flags, fsync_after;
1177         boolean_t res;
1178
1179         if (object == NULL)
1180                 return (TRUE);
1181         res = TRUE;
1182         error = 0;
1183         VM_OBJECT_WLOCK(object);
1184         while ((backing_object = object->backing_object) != NULL) {
1185                 VM_OBJECT_WLOCK(backing_object);
1186                 offset += object->backing_object_offset;
1187                 VM_OBJECT_WUNLOCK(object);
1188                 object = backing_object;
1189                 if (object->size < OFF_TO_IDX(offset + size))
1190                         size = IDX_TO_OFF(object->size) - offset;
1191         }
1192         /*
1193          * Flush pages if writing is allowed, invalidate them
1194          * if invalidation requested.  Pages undergoing I/O
1195          * will be ignored by vm_object_page_remove().
1196          *
1197          * We cannot lock the vnode and then wait for paging
1198          * to complete without deadlocking against vm_fault.
1199          * Instead we simply call vm_object_page_remove() and
1200          * allow it to block internally on a page-by-page
1201          * basis when it encounters pages undergoing async
1202          * I/O.
1203          */
1204         if (object->type == OBJT_VNODE &&
1205             vm_object_mightbedirty(object) != 0 &&
1206             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1207                 VM_OBJECT_WUNLOCK(object);
1208                 (void) vn_start_write(vp, &mp, V_WAIT);
1209                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1210                 if (syncio && !invalidate && offset == 0 &&
1211                     atop(size) == object->size) {
1212                         /*
1213                          * If syncing the whole mapping of the file,
1214                          * it is faster to schedule all the writes in
1215                          * async mode, also allowing the clustering,
1216                          * and then wait for i/o to complete.
1217                          */
1218                         flags = 0;
1219                         fsync_after = TRUE;
1220                 } else {
1221                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1222                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1223                         fsync_after = FALSE;
1224                 }
1225                 VM_OBJECT_WLOCK(object);
1226                 res = vm_object_page_clean(object, offset, offset + size,
1227                     flags);
1228                 VM_OBJECT_WUNLOCK(object);
1229                 if (fsync_after)
1230                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1231                 VOP_UNLOCK(vp);
1232                 vn_finished_write(mp);
1233                 if (error != 0)
1234                         res = FALSE;
1235                 VM_OBJECT_WLOCK(object);
1236         }
1237         if ((object->type == OBJT_VNODE ||
1238              object->type == OBJT_DEVICE) && invalidate) {
1239                 if (object->type == OBJT_DEVICE)
1240                         /*
1241                          * The option OBJPR_NOTMAPPED must be passed here
1242                          * because vm_object_page_remove() cannot remove
1243                          * unmanaged mappings.
1244                          */
1245                         flags = OBJPR_NOTMAPPED;
1246                 else if (old_msync)
1247                         flags = 0;
1248                 else
1249                         flags = OBJPR_CLEANONLY;
1250                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1251                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1252         }
1253         VM_OBJECT_WUNLOCK(object);
1254         return (res);
1255 }
1256
1257 /*
1258  * Determine whether the given advice can be applied to the object.  Advice is
1259  * not applied to unmanaged pages since they never belong to page queues, and
1260  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1261  * have been mapped at most once.
1262  */
1263 static bool
1264 vm_object_advice_applies(vm_object_t object, int advice)
1265 {
1266
1267         if ((object->flags & OBJ_UNMANAGED) != 0)
1268                 return (false);
1269         if (advice != MADV_FREE)
1270                 return (true);
1271         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1272             (OBJ_ONEMAPPING | OBJ_ANON));
1273 }
1274
1275 static void
1276 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1277     vm_size_t size)
1278 {
1279
1280         if (advice == MADV_FREE)
1281                 vm_pager_freespace(object, pindex, size);
1282 }
1283
1284 /*
1285  *      vm_object_madvise:
1286  *
1287  *      Implements the madvise function at the object/page level.
1288  *
1289  *      MADV_WILLNEED   (any object)
1290  *
1291  *          Activate the specified pages if they are resident.
1292  *
1293  *      MADV_DONTNEED   (any object)
1294  *
1295  *          Deactivate the specified pages if they are resident.
1296  *
1297  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1298  *                       OBJ_ONEMAPPING only)
1299  *
1300  *          Deactivate and clean the specified pages if they are
1301  *          resident.  This permits the process to reuse the pages
1302  *          without faulting or the kernel to reclaim the pages
1303  *          without I/O.
1304  */
1305 void
1306 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1307     int advice)
1308 {
1309         vm_pindex_t tpindex;
1310         vm_object_t backing_object, tobject;
1311         vm_page_t m, tm;
1312
1313         if (object == NULL)
1314                 return;
1315
1316 relookup:
1317         VM_OBJECT_WLOCK(object);
1318         if (!vm_object_advice_applies(object, advice)) {
1319                 VM_OBJECT_WUNLOCK(object);
1320                 return;
1321         }
1322         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1323                 tobject = object;
1324
1325                 /*
1326                  * If the next page isn't resident in the top-level object, we
1327                  * need to search the shadow chain.  When applying MADV_FREE, we
1328                  * take care to release any swap space used to store
1329                  * non-resident pages.
1330                  */
1331                 if (m == NULL || pindex < m->pindex) {
1332                         /*
1333                          * Optimize a common case: if the top-level object has
1334                          * no backing object, we can skip over the non-resident
1335                          * range in constant time.
1336                          */
1337                         if (object->backing_object == NULL) {
1338                                 tpindex = (m != NULL && m->pindex < end) ?
1339                                     m->pindex : end;
1340                                 vm_object_madvise_freespace(object, advice,
1341                                     pindex, tpindex - pindex);
1342                                 if ((pindex = tpindex) == end)
1343                                         break;
1344                                 goto next_page;
1345                         }
1346
1347                         tpindex = pindex;
1348                         do {
1349                                 vm_object_madvise_freespace(tobject, advice,
1350                                     tpindex, 1);
1351                                 /*
1352                                  * Prepare to search the next object in the
1353                                  * chain.
1354                                  */
1355                                 backing_object = tobject->backing_object;
1356                                 if (backing_object == NULL)
1357                                         goto next_pindex;
1358                                 VM_OBJECT_WLOCK(backing_object);
1359                                 tpindex +=
1360                                     OFF_TO_IDX(tobject->backing_object_offset);
1361                                 if (tobject != object)
1362                                         VM_OBJECT_WUNLOCK(tobject);
1363                                 tobject = backing_object;
1364                                 if (!vm_object_advice_applies(tobject, advice))
1365                                         goto next_pindex;
1366                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1367                             NULL);
1368                 } else {
1369 next_page:
1370                         tm = m;
1371                         m = TAILQ_NEXT(m, listq);
1372                 }
1373
1374                 /*
1375                  * If the page is not in a normal state, skip it.  The page
1376                  * can not be invalidated while the object lock is held.
1377                  */
1378                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1379                         goto next_pindex;
1380                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1381                     ("vm_object_madvise: page %p is fictitious", tm));
1382                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1383                     ("vm_object_madvise: page %p is not managed", tm));
1384                 if (vm_page_tryxbusy(tm) == 0) {
1385                         if (object != tobject)
1386                                 VM_OBJECT_WUNLOCK(object);
1387                         if (advice == MADV_WILLNEED) {
1388                                 /*
1389                                  * Reference the page before unlocking and
1390                                  * sleeping so that the page daemon is less
1391                                  * likely to reclaim it.
1392                                  */
1393                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1394                         }
1395                         vm_page_busy_sleep(tm, "madvpo", false);
1396                         goto relookup;
1397                 }
1398                 vm_page_advise(tm, advice);
1399                 vm_page_xunbusy(tm);
1400                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1401 next_pindex:
1402                 if (tobject != object)
1403                         VM_OBJECT_WUNLOCK(tobject);
1404         }
1405         VM_OBJECT_WUNLOCK(object);
1406 }
1407
1408 /*
1409  *      vm_object_shadow:
1410  *
1411  *      Create a new object which is backed by the
1412  *      specified existing object range.  The source
1413  *      object reference is deallocated.
1414  *
1415  *      The new object and offset into that object
1416  *      are returned in the source parameters.
1417  */
1418 void
1419 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1420     struct ucred *cred, bool shared)
1421 {
1422         vm_object_t source;
1423         vm_object_t result;
1424
1425         source = *object;
1426
1427         /*
1428          * Don't create the new object if the old object isn't shared.
1429          *
1430          * If we hold the only reference we can guarantee that it won't
1431          * increase while we have the map locked.  Otherwise the race is
1432          * harmless and we will end up with an extra shadow object that
1433          * will be collapsed later.
1434          */
1435         if (source != NULL && source->ref_count == 1 &&
1436             (source->flags & OBJ_ANON) != 0)
1437                 return;
1438
1439         /*
1440          * Allocate a new object with the given length.
1441          */
1442         result = vm_object_allocate_anon(atop(length), source, cred, length);
1443
1444         /*
1445          * Store the offset into the source object, and fix up the offset into
1446          * the new object.
1447          */
1448         result->backing_object_offset = *offset;
1449
1450         if (shared || source != NULL) {
1451                 VM_OBJECT_WLOCK(result);
1452
1453                 /*
1454                  * The new object shadows the source object, adding a
1455                  * reference to it.  Our caller changes his reference
1456                  * to point to the new object, removing a reference to
1457                  * the source object.  Net result: no change of
1458                  * reference count, unless the caller needs to add one
1459                  * more reference due to forking a shared map entry.
1460                  */
1461                 if (shared) {
1462                         vm_object_reference_locked(result);
1463                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1464                 }
1465
1466                 /*
1467                  * Try to optimize the result object's page color when
1468                  * shadowing in order to maintain page coloring
1469                  * consistency in the combined shadowed object.
1470                  */
1471                 if (source != NULL) {
1472                         vm_object_backing_insert(result, source);
1473                         result->domain = source->domain;
1474 #if VM_NRESERVLEVEL > 0
1475                         result->flags |= source->flags & OBJ_COLORED;
1476                         result->pg_color = (source->pg_color +
1477                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1478                             1)) - 1);
1479 #endif
1480                 }
1481                 VM_OBJECT_WUNLOCK(result);
1482         }
1483
1484         /*
1485          * Return the new things
1486          */
1487         *offset = 0;
1488         *object = result;
1489 }
1490
1491 /*
1492  *      vm_object_split:
1493  *
1494  * Split the pages in a map entry into a new object.  This affords
1495  * easier removal of unused pages, and keeps object inheritance from
1496  * being a negative impact on memory usage.
1497  */
1498 void
1499 vm_object_split(vm_map_entry_t entry)
1500 {
1501         vm_page_t m, m_busy, m_next;
1502         vm_object_t orig_object, new_object, backing_object;
1503         vm_pindex_t idx, offidxstart;
1504         vm_size_t size;
1505
1506         orig_object = entry->object.vm_object;
1507         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1508             ("vm_object_split:  Splitting object with multiple mappings."));
1509         if ((orig_object->flags & OBJ_ANON) == 0)
1510                 return;
1511         if (orig_object->ref_count <= 1)
1512                 return;
1513         VM_OBJECT_WUNLOCK(orig_object);
1514
1515         offidxstart = OFF_TO_IDX(entry->offset);
1516         size = atop(entry->end - entry->start);
1517
1518         /*
1519          * If swap_pager_copy() is later called, it will convert new_object
1520          * into a swap object.
1521          */
1522         new_object = vm_object_allocate_anon(size, orig_object,
1523             orig_object->cred, ptoa(size));
1524
1525         /*
1526          * We must wait for the orig_object to complete any in-progress
1527          * collapse so that the swap blocks are stable below.  The
1528          * additional reference on backing_object by new object will
1529          * prevent further collapse operations until split completes.
1530          */
1531         VM_OBJECT_WLOCK(orig_object);
1532         vm_object_collapse_wait(orig_object);
1533
1534         /*
1535          * At this point, the new object is still private, so the order in
1536          * which the original and new objects are locked does not matter.
1537          */
1538         VM_OBJECT_WLOCK(new_object);
1539         new_object->domain = orig_object->domain;
1540         backing_object = orig_object->backing_object;
1541         if (backing_object != NULL) {
1542                 vm_object_backing_insert_ref(new_object, backing_object);
1543                 new_object->backing_object_offset = 
1544                     orig_object->backing_object_offset + entry->offset;
1545         }
1546         if (orig_object->cred != NULL) {
1547                 crhold(orig_object->cred);
1548                 KASSERT(orig_object->charge >= ptoa(size),
1549                     ("orig_object->charge < 0"));
1550                 orig_object->charge -= ptoa(size);
1551         }
1552
1553         /*
1554          * Mark the split operation so that swap_pager_getpages() knows
1555          * that the object is in transition.
1556          */
1557         vm_object_set_flag(orig_object, OBJ_SPLIT);
1558         m_busy = NULL;
1559 #ifdef INVARIANTS
1560         idx = 0;
1561 #endif
1562 retry:
1563         m = vm_page_find_least(orig_object, offidxstart);
1564         KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1565             ("%s: object %p was repopulated", __func__, orig_object));
1566         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1567             m = m_next) {
1568                 m_next = TAILQ_NEXT(m, listq);
1569
1570                 /*
1571                  * We must wait for pending I/O to complete before we can
1572                  * rename the page.
1573                  *
1574                  * We do not have to VM_PROT_NONE the page as mappings should
1575                  * not be changed by this operation.
1576                  */
1577                 if (vm_page_tryxbusy(m) == 0) {
1578                         VM_OBJECT_WUNLOCK(new_object);
1579                         vm_page_sleep_if_busy(m, "spltwt");
1580                         VM_OBJECT_WLOCK(new_object);
1581                         goto retry;
1582                 }
1583
1584                 /*
1585                  * The page was left invalid.  Likely placed there by
1586                  * an incomplete fault.  Just remove and ignore.
1587                  */
1588                 if (vm_page_none_valid(m)) {
1589                         if (vm_page_remove(m))
1590                                 vm_page_free(m);
1591                         continue;
1592                 }
1593
1594                 /* vm_page_rename() will dirty the page. */
1595                 if (vm_page_rename(m, new_object, idx)) {
1596                         vm_page_xunbusy(m);
1597                         VM_OBJECT_WUNLOCK(new_object);
1598                         VM_OBJECT_WUNLOCK(orig_object);
1599                         vm_radix_wait();
1600                         VM_OBJECT_WLOCK(orig_object);
1601                         VM_OBJECT_WLOCK(new_object);
1602                         goto retry;
1603                 }
1604
1605 #if VM_NRESERVLEVEL > 0
1606                 /*
1607                  * If some of the reservation's allocated pages remain with
1608                  * the original object, then transferring the reservation to
1609                  * the new object is neither particularly beneficial nor
1610                  * particularly harmful as compared to leaving the reservation
1611                  * with the original object.  If, however, all of the
1612                  * reservation's allocated pages are transferred to the new
1613                  * object, then transferring the reservation is typically
1614                  * beneficial.  Determining which of these two cases applies
1615                  * would be more costly than unconditionally renaming the
1616                  * reservation.
1617                  */
1618                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1619 #endif
1620
1621                 /*
1622                  * orig_object's type may change while sleeping, so keep track
1623                  * of the beginning of the busied range.
1624                  */
1625                 if (orig_object->type != OBJT_SWAP)
1626                         vm_page_xunbusy(m);
1627                 else if (m_busy == NULL)
1628                         m_busy = m;
1629         }
1630         if (orig_object->type == OBJT_SWAP) {
1631                 /*
1632                  * swap_pager_copy() can sleep, in which case the orig_object's
1633                  * and new_object's locks are released and reacquired. 
1634                  */
1635                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1636                 if (m_busy != NULL)
1637                         TAILQ_FOREACH_FROM(m_busy, &new_object->memq, listq)
1638                                 vm_page_xunbusy(m_busy);
1639         }
1640         vm_object_clear_flag(orig_object, OBJ_SPLIT);
1641         VM_OBJECT_WUNLOCK(orig_object);
1642         VM_OBJECT_WUNLOCK(new_object);
1643         entry->object.vm_object = new_object;
1644         entry->offset = 0LL;
1645         vm_object_deallocate(orig_object);
1646         VM_OBJECT_WLOCK(new_object);
1647 }
1648
1649 static vm_page_t
1650 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1651 {
1652         vm_object_t backing_object;
1653
1654         VM_OBJECT_ASSERT_WLOCKED(object);
1655         backing_object = object->backing_object;
1656         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1657
1658         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1659             ("invalid ownership %p %p %p", p, object, backing_object));
1660         /* The page is only NULL when rename fails. */
1661         if (p == NULL) {
1662                 VM_OBJECT_WUNLOCK(object);
1663                 VM_OBJECT_WUNLOCK(backing_object);
1664                 vm_radix_wait();
1665         } else {
1666                 if (p->object == object)
1667                         VM_OBJECT_WUNLOCK(backing_object);
1668                 else
1669                         VM_OBJECT_WUNLOCK(object);
1670                 vm_page_busy_sleep(p, "vmocol", false);
1671         }
1672         VM_OBJECT_WLOCK(object);
1673         VM_OBJECT_WLOCK(backing_object);
1674         return (TAILQ_FIRST(&backing_object->memq));
1675 }
1676
1677 static bool
1678 vm_object_scan_all_shadowed(vm_object_t object)
1679 {
1680         vm_object_t backing_object;
1681         vm_page_t p, pp;
1682         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1683
1684         VM_OBJECT_ASSERT_WLOCKED(object);
1685         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1686
1687         backing_object = object->backing_object;
1688
1689         if ((backing_object->flags & OBJ_ANON) == 0)
1690                 return (false);
1691
1692         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1693         p = vm_page_find_least(backing_object, pi);
1694         ps = swap_pager_find_least(backing_object, pi);
1695
1696         /*
1697          * Only check pages inside the parent object's range and
1698          * inside the parent object's mapping of the backing object.
1699          */
1700         for (;; pi++) {
1701                 if (p != NULL && p->pindex < pi)
1702                         p = TAILQ_NEXT(p, listq);
1703                 if (ps < pi)
1704                         ps = swap_pager_find_least(backing_object, pi);
1705                 if (p == NULL && ps >= backing_object->size)
1706                         break;
1707                 else if (p == NULL)
1708                         pi = ps;
1709                 else
1710                         pi = MIN(p->pindex, ps);
1711
1712                 new_pindex = pi - backing_offset_index;
1713                 if (new_pindex >= object->size)
1714                         break;
1715
1716                 if (p != NULL) {
1717                         /*
1718                          * If the backing object page is busy a
1719                          * grandparent or older page may still be
1720                          * undergoing CoW.  It is not safe to collapse
1721                          * the backing object until it is quiesced.
1722                          */
1723                         if (vm_page_tryxbusy(p) == 0)
1724                                 return (false);
1725
1726                         /*
1727                          * We raced with the fault handler that left
1728                          * newly allocated invalid page on the object
1729                          * queue and retried.
1730                          */
1731                         if (!vm_page_all_valid(p))
1732                                 goto unbusy_ret;
1733                 }
1734
1735                 /*
1736                  * See if the parent has the page or if the parent's object
1737                  * pager has the page.  If the parent has the page but the page
1738                  * is not valid, the parent's object pager must have the page.
1739                  *
1740                  * If this fails, the parent does not completely shadow the
1741                  * object and we might as well give up now.
1742                  */
1743                 pp = vm_page_lookup(object, new_pindex);
1744
1745                 /*
1746                  * The valid check here is stable due to object lock
1747                  * being required to clear valid and initiate paging.
1748                  * Busy of p disallows fault handler to validate pp.
1749                  */
1750                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1751                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1752                         goto unbusy_ret;
1753                 if (p != NULL)
1754                         vm_page_xunbusy(p);
1755         }
1756         return (true);
1757
1758 unbusy_ret:
1759         if (p != NULL)
1760                 vm_page_xunbusy(p);
1761         return (false);
1762 }
1763
1764 static void
1765 vm_object_collapse_scan(vm_object_t object)
1766 {
1767         vm_object_t backing_object;
1768         vm_page_t next, p, pp;
1769         vm_pindex_t backing_offset_index, new_pindex;
1770
1771         VM_OBJECT_ASSERT_WLOCKED(object);
1772         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1773
1774         backing_object = object->backing_object;
1775         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1776
1777         /*
1778          * Our scan
1779          */
1780         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1781                 next = TAILQ_NEXT(p, listq);
1782                 new_pindex = p->pindex - backing_offset_index;
1783
1784                 /*
1785                  * Check for busy page
1786                  */
1787                 if (vm_page_tryxbusy(p) == 0) {
1788                         next = vm_object_collapse_scan_wait(object, p);
1789                         continue;
1790                 }
1791
1792                 KASSERT(object->backing_object == backing_object,
1793                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
1794                     object->backing_object, backing_object));
1795                 KASSERT(p->object == backing_object,
1796                     ("vm_object_collapse_scan: object mismatch %p != %p",
1797                     p->object, backing_object));
1798
1799                 if (p->pindex < backing_offset_index ||
1800                     new_pindex >= object->size) {
1801                         vm_pager_freespace(backing_object, p->pindex, 1);
1802
1803                         KASSERT(!pmap_page_is_mapped(p),
1804                             ("freeing mapped page %p", p));
1805                         if (vm_page_remove(p))
1806                                 vm_page_free(p);
1807                         continue;
1808                 }
1809
1810                 if (!vm_page_all_valid(p)) {
1811                         KASSERT(!pmap_page_is_mapped(p),
1812                             ("freeing mapped page %p", p));
1813                         if (vm_page_remove(p))
1814                                 vm_page_free(p);
1815                         continue;
1816                 }
1817
1818                 pp = vm_page_lookup(object, new_pindex);
1819                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1820                         vm_page_xunbusy(p);
1821                         /*
1822                          * The page in the parent is busy and possibly not
1823                          * (yet) valid.  Until its state is finalized by the
1824                          * busy bit owner, we can't tell whether it shadows the
1825                          * original page.
1826                          */
1827                         next = vm_object_collapse_scan_wait(object, pp);
1828                         continue;
1829                 }
1830
1831                 if (pp != NULL && vm_page_none_valid(pp)) {
1832                         /*
1833                          * The page was invalid in the parent.  Likely placed
1834                          * there by an incomplete fault.  Just remove and
1835                          * ignore.  p can replace it.
1836                          */
1837                         if (vm_page_remove(pp))
1838                                 vm_page_free(pp);
1839                         pp = NULL;
1840                 }
1841
1842                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1843                         NULL)) {
1844                         /*
1845                          * The page already exists in the parent OR swap exists
1846                          * for this location in the parent.  Leave the parent's
1847                          * page alone.  Destroy the original page from the
1848                          * backing object.
1849                          */
1850                         vm_pager_freespace(backing_object, p->pindex, 1);
1851                         KASSERT(!pmap_page_is_mapped(p),
1852                             ("freeing mapped page %p", p));
1853                         if (vm_page_remove(p))
1854                                 vm_page_free(p);
1855                         if (pp != NULL)
1856                                 vm_page_xunbusy(pp);
1857                         continue;
1858                 }
1859
1860                 /*
1861                  * Page does not exist in parent, rename the page from the
1862                  * backing object to the main object.
1863                  *
1864                  * If the page was mapped to a process, it can remain mapped
1865                  * through the rename.  vm_page_rename() will dirty the page.
1866                  */
1867                 if (vm_page_rename(p, object, new_pindex)) {
1868                         vm_page_xunbusy(p);
1869                         next = vm_object_collapse_scan_wait(object, NULL);
1870                         continue;
1871                 }
1872
1873                 /* Use the old pindex to free the right page. */
1874                 vm_pager_freespace(backing_object, new_pindex +
1875                     backing_offset_index, 1);
1876
1877 #if VM_NRESERVLEVEL > 0
1878                 /*
1879                  * Rename the reservation.
1880                  */
1881                 vm_reserv_rename(p, object, backing_object,
1882                     backing_offset_index);
1883 #endif
1884                 vm_page_xunbusy(p);
1885         }
1886         return;
1887 }
1888
1889 /*
1890  *      vm_object_collapse:
1891  *
1892  *      Collapse an object with the object backing it.
1893  *      Pages in the backing object are moved into the
1894  *      parent, and the backing object is deallocated.
1895  */
1896 void
1897 vm_object_collapse(vm_object_t object)
1898 {
1899         vm_object_t backing_object, new_backing_object;
1900
1901         VM_OBJECT_ASSERT_WLOCKED(object);
1902
1903         while (TRUE) {
1904                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1905                     ("collapsing invalid object"));
1906
1907                 /*
1908                  * Wait for the backing_object to finish any pending
1909                  * collapse so that the caller sees the shortest possible
1910                  * shadow chain.
1911                  */
1912                 backing_object = vm_object_backing_collapse_wait(object);
1913                 if (backing_object == NULL)
1914                         return;
1915
1916                 KASSERT(object->ref_count > 0 &&
1917                     object->ref_count > object->shadow_count,
1918                     ("collapse with invalid ref %d or shadow %d count.",
1919                     object->ref_count, object->shadow_count));
1920                 KASSERT((backing_object->flags &
1921                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1922                     ("vm_object_collapse: Backing object already collapsing."));
1923                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1924                     ("vm_object_collapse: object is already collapsing."));
1925
1926                 /*
1927                  * We know that we can either collapse the backing object if
1928                  * the parent is the only reference to it, or (perhaps) have
1929                  * the parent bypass the object if the parent happens to shadow
1930                  * all the resident pages in the entire backing object.
1931                  */
1932                 if (backing_object->ref_count == 1) {
1933                         KASSERT(backing_object->shadow_count == 1,
1934                             ("vm_object_collapse: shadow_count: %d",
1935                             backing_object->shadow_count));
1936                         vm_object_pip_add(object, 1);
1937                         vm_object_set_flag(object, OBJ_COLLAPSING);
1938                         vm_object_pip_add(backing_object, 1);
1939                         vm_object_set_flag(backing_object, OBJ_DEAD);
1940
1941                         /*
1942                          * If there is exactly one reference to the backing
1943                          * object, we can collapse it into the parent.
1944                          */
1945                         vm_object_collapse_scan(object);
1946
1947 #if VM_NRESERVLEVEL > 0
1948                         /*
1949                          * Break any reservations from backing_object.
1950                          */
1951                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1952                                 vm_reserv_break_all(backing_object);
1953 #endif
1954
1955                         /*
1956                          * Move the pager from backing_object to object.
1957                          */
1958                         if (backing_object->type == OBJT_SWAP) {
1959                                 /*
1960                                  * swap_pager_copy() can sleep, in which case
1961                                  * the backing_object's and object's locks are
1962                                  * released and reacquired.
1963                                  * Since swap_pager_copy() is being asked to
1964                                  * destroy backing_object, it will change the
1965                                  * type to OBJT_DEFAULT.
1966                                  */
1967                                 swap_pager_copy(
1968                                     backing_object,
1969                                     object,
1970                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1971                         }
1972
1973                         /*
1974                          * Object now shadows whatever backing_object did.
1975                          */
1976                         vm_object_clear_flag(object, OBJ_COLLAPSING);
1977                         vm_object_backing_transfer(object, backing_object);
1978                         object->backing_object_offset +=
1979                             backing_object->backing_object_offset;
1980                         VM_OBJECT_WUNLOCK(object);
1981                         vm_object_pip_wakeup(object);
1982
1983                         /*
1984                          * Discard backing_object.
1985                          *
1986                          * Since the backing object has no pages, no pager left,
1987                          * and no object references within it, all that is
1988                          * necessary is to dispose of it.
1989                          */
1990                         KASSERT(backing_object->ref_count == 1, (
1991 "backing_object %p was somehow re-referenced during collapse!",
1992                             backing_object));
1993                         vm_object_pip_wakeup(backing_object);
1994                         (void)refcount_release(&backing_object->ref_count);
1995                         vm_object_terminate(backing_object);
1996                         counter_u64_add(object_collapses, 1);
1997                         VM_OBJECT_WLOCK(object);
1998                 } else {
1999                         /*
2000                          * If we do not entirely shadow the backing object,
2001                          * there is nothing we can do so we give up.
2002                          *
2003                          * The object lock and backing_object lock must not
2004                          * be dropped during this sequence.
2005                          */
2006                         if (!vm_object_scan_all_shadowed(object)) {
2007                                 VM_OBJECT_WUNLOCK(backing_object);
2008                                 break;
2009                         }
2010
2011                         /*
2012                          * Make the parent shadow the next object in the
2013                          * chain.  Deallocating backing_object will not remove
2014                          * it, since its reference count is at least 2.
2015                          */
2016                         vm_object_backing_remove_locked(object);
2017                         new_backing_object = backing_object->backing_object;
2018                         if (new_backing_object != NULL) {
2019                                 vm_object_backing_insert_ref(object,
2020                                     new_backing_object);
2021                                 object->backing_object_offset +=
2022                                     backing_object->backing_object_offset;
2023                         }
2024
2025                         /*
2026                          * Drop the reference count on backing_object. Since
2027                          * its ref_count was at least 2, it will not vanish.
2028                          */
2029                         (void)refcount_release(&backing_object->ref_count);
2030                         KASSERT(backing_object->ref_count >= 1, (
2031 "backing_object %p was somehow dereferenced during collapse!",
2032                             backing_object));
2033                         VM_OBJECT_WUNLOCK(backing_object);
2034                         counter_u64_add(object_bypasses, 1);
2035                 }
2036
2037                 /*
2038                  * Try again with this object's new backing object.
2039                  */
2040         }
2041 }
2042
2043 /*
2044  *      vm_object_page_remove:
2045  *
2046  *      For the given object, either frees or invalidates each of the
2047  *      specified pages.  In general, a page is freed.  However, if a page is
2048  *      wired for any reason other than the existence of a managed, wired
2049  *      mapping, then it may be invalidated but not removed from the object.
2050  *      Pages are specified by the given range ["start", "end") and the option
2051  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2052  *      extends from "start" to the end of the object.  If the option
2053  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2054  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
2055  *      specified, then the pages within the specified range must have no
2056  *      mappings.  Otherwise, if this option is not specified, any mappings to
2057  *      the specified pages are removed before the pages are freed or
2058  *      invalidated.
2059  *
2060  *      In general, this operation should only be performed on objects that
2061  *      contain managed pages.  There are, however, two exceptions.  First, it
2062  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
2063  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2064  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2065  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
2066  *
2067  *      The object must be locked.
2068  */
2069 void
2070 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2071     int options)
2072 {
2073         vm_page_t p, next;
2074
2075         VM_OBJECT_ASSERT_WLOCKED(object);
2076         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2077             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2078             ("vm_object_page_remove: illegal options for object %p", object));
2079         if (object->resident_page_count == 0)
2080                 return;
2081         vm_object_pip_add(object, 1);
2082 again:
2083         p = vm_page_find_least(object, start);
2084
2085         /*
2086          * Here, the variable "p" is either (1) the page with the least pindex
2087          * greater than or equal to the parameter "start" or (2) NULL. 
2088          */
2089         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2090                 next = TAILQ_NEXT(p, listq);
2091
2092                 /*
2093                  * If the page is wired for any reason besides the existence
2094                  * of managed, wired mappings, then it cannot be freed.  For
2095                  * example, fictitious pages, which represent device memory,
2096                  * are inherently wired and cannot be freed.  They can,
2097                  * however, be invalidated if the option OBJPR_CLEANONLY is
2098                  * not specified.
2099                  */
2100                 if (vm_page_tryxbusy(p) == 0) {
2101                         vm_page_sleep_if_busy(p, "vmopar");
2102                         goto again;
2103                 }
2104                 if (vm_page_wired(p)) {
2105 wired:
2106                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2107                             object->ref_count != 0)
2108                                 pmap_remove_all(p);
2109                         if ((options & OBJPR_CLEANONLY) == 0) {
2110                                 vm_page_invalid(p);
2111                                 vm_page_undirty(p);
2112                         }
2113                         vm_page_xunbusy(p);
2114                         continue;
2115                 }
2116                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2117                     ("vm_object_page_remove: page %p is fictitious", p));
2118                 if ((options & OBJPR_CLEANONLY) != 0 &&
2119                     !vm_page_none_valid(p)) {
2120                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2121                             object->ref_count != 0 &&
2122                             !vm_page_try_remove_write(p))
2123                                 goto wired;
2124                         if (p->dirty != 0) {
2125                                 vm_page_xunbusy(p);
2126                                 continue;
2127                         }
2128                 }
2129                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2130                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2131                         goto wired;
2132                 vm_page_free(p);
2133         }
2134         vm_object_pip_wakeup(object);
2135
2136         vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2137             start);
2138 }
2139
2140 /*
2141  *      vm_object_page_noreuse:
2142  *
2143  *      For the given object, attempt to move the specified pages to
2144  *      the head of the inactive queue.  This bypasses regular LRU
2145  *      operation and allows the pages to be reused quickly under memory
2146  *      pressure.  If a page is wired for any reason, then it will not
2147  *      be queued.  Pages are specified by the range ["start", "end").
2148  *      As a special case, if "end" is zero, then the range extends from
2149  *      "start" to the end of the object.
2150  *
2151  *      This operation should only be performed on objects that
2152  *      contain non-fictitious, managed pages.
2153  *
2154  *      The object must be locked.
2155  */
2156 void
2157 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2158 {
2159         vm_page_t p, next;
2160
2161         VM_OBJECT_ASSERT_LOCKED(object);
2162         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2163             ("vm_object_page_noreuse: illegal object %p", object));
2164         if (object->resident_page_count == 0)
2165                 return;
2166         p = vm_page_find_least(object, start);
2167
2168         /*
2169          * Here, the variable "p" is either (1) the page with the least pindex
2170          * greater than or equal to the parameter "start" or (2) NULL. 
2171          */
2172         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2173                 next = TAILQ_NEXT(p, listq);
2174                 vm_page_deactivate_noreuse(p);
2175         }
2176 }
2177
2178 /*
2179  *      Populate the specified range of the object with valid pages.  Returns
2180  *      TRUE if the range is successfully populated and FALSE otherwise.
2181  *
2182  *      Note: This function should be optimized to pass a larger array of
2183  *      pages to vm_pager_get_pages() before it is applied to a non-
2184  *      OBJT_DEVICE object.
2185  *
2186  *      The object must be locked.
2187  */
2188 boolean_t
2189 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2190 {
2191         vm_page_t m;
2192         vm_pindex_t pindex;
2193         int rv;
2194
2195         VM_OBJECT_ASSERT_WLOCKED(object);
2196         for (pindex = start; pindex < end; pindex++) {
2197                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2198                 if (rv != VM_PAGER_OK)
2199                         break;
2200
2201                 /*
2202                  * Keep "m" busy because a subsequent iteration may unlock
2203                  * the object.
2204                  */
2205         }
2206         if (pindex > start) {
2207                 m = vm_page_lookup(object, start);
2208                 while (m != NULL && m->pindex < pindex) {
2209                         vm_page_xunbusy(m);
2210                         m = TAILQ_NEXT(m, listq);
2211                 }
2212         }
2213         return (pindex == end);
2214 }
2215
2216 /*
2217  *      Routine:        vm_object_coalesce
2218  *      Function:       Coalesces two objects backing up adjoining
2219  *                      regions of memory into a single object.
2220  *
2221  *      returns TRUE if objects were combined.
2222  *
2223  *      NOTE:   Only works at the moment if the second object is NULL -
2224  *              if it's not, which object do we lock first?
2225  *
2226  *      Parameters:
2227  *              prev_object     First object to coalesce
2228  *              prev_offset     Offset into prev_object
2229  *              prev_size       Size of reference to prev_object
2230  *              next_size       Size of reference to the second object
2231  *              reserved        Indicator that extension region has
2232  *                              swap accounted for
2233  *
2234  *      Conditions:
2235  *      The object must *not* be locked.
2236  */
2237 boolean_t
2238 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2239     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2240 {
2241         vm_pindex_t next_pindex;
2242
2243         if (prev_object == NULL)
2244                 return (TRUE);
2245         if ((prev_object->flags & OBJ_ANON) == 0)
2246                 return (FALSE);
2247
2248         VM_OBJECT_WLOCK(prev_object);
2249         /*
2250          * Try to collapse the object first.
2251          */
2252         vm_object_collapse(prev_object);
2253
2254         /*
2255          * Can't coalesce if: . more than one reference . paged out . shadows
2256          * another object . has a copy elsewhere (any of which mean that the
2257          * pages not mapped to prev_entry may be in use anyway)
2258          */
2259         if (prev_object->backing_object != NULL) {
2260                 VM_OBJECT_WUNLOCK(prev_object);
2261                 return (FALSE);
2262         }
2263
2264         prev_size >>= PAGE_SHIFT;
2265         next_size >>= PAGE_SHIFT;
2266         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2267
2268         if (prev_object->ref_count > 1 &&
2269             prev_object->size != next_pindex &&
2270             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2271                 VM_OBJECT_WUNLOCK(prev_object);
2272                 return (FALSE);
2273         }
2274
2275         /*
2276          * Account for the charge.
2277          */
2278         if (prev_object->cred != NULL) {
2279                 /*
2280                  * If prev_object was charged, then this mapping,
2281                  * although not charged now, may become writable
2282                  * later. Non-NULL cred in the object would prevent
2283                  * swap reservation during enabling of the write
2284                  * access, so reserve swap now. Failed reservation
2285                  * cause allocation of the separate object for the map
2286                  * entry, and swap reservation for this entry is
2287                  * managed in appropriate time.
2288                  */
2289                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2290                     prev_object->cred)) {
2291                         VM_OBJECT_WUNLOCK(prev_object);
2292                         return (FALSE);
2293                 }
2294                 prev_object->charge += ptoa(next_size);
2295         }
2296
2297         /*
2298          * Remove any pages that may still be in the object from a previous
2299          * deallocation.
2300          */
2301         if (next_pindex < prev_object->size) {
2302                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2303                     next_size, 0);
2304 #if 0
2305                 if (prev_object->cred != NULL) {
2306                         KASSERT(prev_object->charge >=
2307                             ptoa(prev_object->size - next_pindex),
2308                             ("object %p overcharged 1 %jx %jx", prev_object,
2309                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2310                         prev_object->charge -= ptoa(prev_object->size -
2311                             next_pindex);
2312                 }
2313 #endif
2314         }
2315
2316         /*
2317          * Extend the object if necessary.
2318          */
2319         if (next_pindex + next_size > prev_object->size)
2320                 prev_object->size = next_pindex + next_size;
2321
2322         VM_OBJECT_WUNLOCK(prev_object);
2323         return (TRUE);
2324 }
2325
2326 void
2327 vm_object_set_writeable_dirty_(vm_object_t object)
2328 {
2329         atomic_add_int(&object->generation, 1);
2330 }
2331
2332 bool
2333 vm_object_mightbedirty_(vm_object_t object)
2334 {
2335         return (object->generation != object->cleangeneration);
2336 }
2337
2338 /*
2339  *      vm_object_unwire:
2340  *
2341  *      For each page offset within the specified range of the given object,
2342  *      find the highest-level page in the shadow chain and unwire it.  A page
2343  *      must exist at every page offset, and the highest-level page must be
2344  *      wired.
2345  */
2346 void
2347 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2348     uint8_t queue)
2349 {
2350         vm_object_t tobject, t1object;
2351         vm_page_t m, tm;
2352         vm_pindex_t end_pindex, pindex, tpindex;
2353         int depth, locked_depth;
2354
2355         KASSERT((offset & PAGE_MASK) == 0,
2356             ("vm_object_unwire: offset is not page aligned"));
2357         KASSERT((length & PAGE_MASK) == 0,
2358             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2359         /* The wired count of a fictitious page never changes. */
2360         if ((object->flags & OBJ_FICTITIOUS) != 0)
2361                 return;
2362         pindex = OFF_TO_IDX(offset);
2363         end_pindex = pindex + atop(length);
2364 again:
2365         locked_depth = 1;
2366         VM_OBJECT_RLOCK(object);
2367         m = vm_page_find_least(object, pindex);
2368         while (pindex < end_pindex) {
2369                 if (m == NULL || pindex < m->pindex) {
2370                         /*
2371                          * The first object in the shadow chain doesn't
2372                          * contain a page at the current index.  Therefore,
2373                          * the page must exist in a backing object.
2374                          */
2375                         tobject = object;
2376                         tpindex = pindex;
2377                         depth = 0;
2378                         do {
2379                                 tpindex +=
2380                                     OFF_TO_IDX(tobject->backing_object_offset);
2381                                 tobject = tobject->backing_object;
2382                                 KASSERT(tobject != NULL,
2383                                     ("vm_object_unwire: missing page"));
2384                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2385                                         goto next_page;
2386                                 depth++;
2387                                 if (depth == locked_depth) {
2388                                         locked_depth++;
2389                                         VM_OBJECT_RLOCK(tobject);
2390                                 }
2391                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2392                             NULL);
2393                 } else {
2394                         tm = m;
2395                         m = TAILQ_NEXT(m, listq);
2396                 }
2397                 if (vm_page_trysbusy(tm) == 0) {
2398                         for (tobject = object; locked_depth >= 1;
2399                             locked_depth--) {
2400                                 t1object = tobject->backing_object;
2401                                 if (tm->object != tobject)
2402                                         VM_OBJECT_RUNLOCK(tobject);
2403                                 tobject = t1object;
2404                         }
2405                         vm_page_busy_sleep(tm, "unwbo", true);
2406                         goto again;
2407                 }
2408                 vm_page_unwire(tm, queue);
2409                 vm_page_sunbusy(tm);
2410 next_page:
2411                 pindex++;
2412         }
2413         /* Release the accumulated object locks. */
2414         for (tobject = object; locked_depth >= 1; locked_depth--) {
2415                 t1object = tobject->backing_object;
2416                 VM_OBJECT_RUNLOCK(tobject);
2417                 tobject = t1object;
2418         }
2419 }
2420
2421 /*
2422  * Return the vnode for the given object, or NULL if none exists.
2423  * For tmpfs objects, the function may return NULL if there is
2424  * no vnode allocated at the time of the call.
2425  */
2426 struct vnode *
2427 vm_object_vnode(vm_object_t object)
2428 {
2429         struct vnode *vp;
2430
2431         VM_OBJECT_ASSERT_LOCKED(object);
2432         if (object->type == OBJT_VNODE) {
2433                 vp = object->handle;
2434                 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2435         } else if (object->type == OBJT_SWAP &&
2436             (object->flags & OBJ_TMPFS) != 0) {
2437                 vp = object->un_pager.swp.swp_tmpfs;
2438                 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2439         } else {
2440                 vp = NULL;
2441         }
2442         return (vp);
2443 }
2444
2445 /*
2446  * Busy the vm object.  This prevents new pages belonging to the object from
2447  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2448  * for checking page state before proceeding.
2449  */
2450 void
2451 vm_object_busy(vm_object_t obj)
2452 {
2453
2454         VM_OBJECT_ASSERT_LOCKED(obj);
2455
2456         blockcount_acquire(&obj->busy, 1);
2457         /* The fence is required to order loads of page busy. */
2458         atomic_thread_fence_acq_rel();
2459 }
2460
2461 void
2462 vm_object_unbusy(vm_object_t obj)
2463 {
2464
2465         blockcount_release(&obj->busy, 1);
2466 }
2467
2468 void
2469 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2470 {
2471
2472         VM_OBJECT_ASSERT_UNLOCKED(obj);
2473
2474         (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2475 }
2476
2477 /*
2478  * Return the kvme type of the given object.
2479  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2480  */
2481 int
2482 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2483 {
2484
2485         VM_OBJECT_ASSERT_LOCKED(object);
2486         if (vpp != NULL)
2487                 *vpp = vm_object_vnode(object);
2488         switch (object->type) {
2489         case OBJT_DEFAULT:
2490                 return (KVME_TYPE_DEFAULT);
2491         case OBJT_VNODE:
2492                 return (KVME_TYPE_VNODE);
2493         case OBJT_SWAP:
2494                 if ((object->flags & OBJ_TMPFS_NODE) != 0)
2495                         return (KVME_TYPE_VNODE);
2496                 return (KVME_TYPE_SWAP);
2497         case OBJT_DEVICE:
2498                 return (KVME_TYPE_DEVICE);
2499         case OBJT_PHYS:
2500                 return (KVME_TYPE_PHYS);
2501         case OBJT_DEAD:
2502                 return (KVME_TYPE_DEAD);
2503         case OBJT_SG:
2504                 return (KVME_TYPE_SG);
2505         case OBJT_MGTDEVICE:
2506                 return (KVME_TYPE_MGTDEVICE);
2507         default:
2508                 return (KVME_TYPE_UNKNOWN);
2509         }
2510 }
2511
2512 static int
2513 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2514 {
2515         struct kinfo_vmobject *kvo;
2516         char *fullpath, *freepath;
2517         struct vnode *vp;
2518         struct vattr va;
2519         vm_object_t obj;
2520         vm_page_t m;
2521         u_long sp;
2522         int count, error;
2523
2524         if (req->oldptr == NULL) {
2525                 /*
2526                  * If an old buffer has not been provided, generate an
2527                  * estimate of the space needed for a subsequent call.
2528                  */
2529                 mtx_lock(&vm_object_list_mtx);
2530                 count = 0;
2531                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2532                         if (obj->type == OBJT_DEAD)
2533                                 continue;
2534                         count++;
2535                 }
2536                 mtx_unlock(&vm_object_list_mtx);
2537                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2538                     count * 11 / 10));
2539         }
2540
2541         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2542         error = 0;
2543
2544         /*
2545          * VM objects are type stable and are never removed from the
2546          * list once added.  This allows us to safely read obj->object_list
2547          * after reacquiring the VM object lock.
2548          */
2549         mtx_lock(&vm_object_list_mtx);
2550         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2551                 if (obj->type == OBJT_DEAD)
2552                         continue;
2553                 VM_OBJECT_RLOCK(obj);
2554                 if (obj->type == OBJT_DEAD) {
2555                         VM_OBJECT_RUNLOCK(obj);
2556                         continue;
2557                 }
2558                 mtx_unlock(&vm_object_list_mtx);
2559                 kvo->kvo_size = ptoa(obj->size);
2560                 kvo->kvo_resident = obj->resident_page_count;
2561                 kvo->kvo_ref_count = obj->ref_count;
2562                 kvo->kvo_shadow_count = obj->shadow_count;
2563                 kvo->kvo_memattr = obj->memattr;
2564                 kvo->kvo_active = 0;
2565                 kvo->kvo_inactive = 0;
2566                 TAILQ_FOREACH(m, &obj->memq, listq) {
2567                         /*
2568                          * A page may belong to the object but be
2569                          * dequeued and set to PQ_NONE while the
2570                          * object lock is not held.  This makes the
2571                          * reads of m->queue below racy, and we do not
2572                          * count pages set to PQ_NONE.  However, this
2573                          * sysctl is only meant to give an
2574                          * approximation of the system anyway.
2575                          */
2576                         if (m->a.queue == PQ_ACTIVE)
2577                                 kvo->kvo_active++;
2578                         else if (m->a.queue == PQ_INACTIVE)
2579                                 kvo->kvo_inactive++;
2580                 }
2581
2582                 kvo->kvo_vn_fileid = 0;
2583                 kvo->kvo_vn_fsid = 0;
2584                 kvo->kvo_vn_fsid_freebsd11 = 0;
2585                 freepath = NULL;
2586                 fullpath = "";
2587                 kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2588                 if (vp != NULL) {
2589                         vref(vp);
2590                 } else if ((obj->flags & OBJ_ANON) != 0) {
2591                         MPASS(kvo->kvo_type == KVME_TYPE_DEFAULT ||
2592                             kvo->kvo_type == KVME_TYPE_SWAP);
2593                         kvo->kvo_me = (uintptr_t)obj;
2594                         /* tmpfs objs are reported as vnodes */
2595                         kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2596                         sp = swap_pager_swapped_pages(obj);
2597                         kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2598                 }
2599                 VM_OBJECT_RUNLOCK(obj);
2600                 if (vp != NULL) {
2601                         vn_fullpath(vp, &fullpath, &freepath);
2602                         vn_lock(vp, LK_SHARED | LK_RETRY);
2603                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2604                                 kvo->kvo_vn_fileid = va.va_fileid;
2605                                 kvo->kvo_vn_fsid = va.va_fsid;
2606                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2607                                                                 /* truncate */
2608                         }
2609                         vput(vp);
2610                 }
2611
2612                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2613                 if (freepath != NULL)
2614                         free(freepath, M_TEMP);
2615
2616                 /* Pack record size down */
2617                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2618                     + strlen(kvo->kvo_path) + 1;
2619                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2620                     sizeof(uint64_t));
2621                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2622                 mtx_lock(&vm_object_list_mtx);
2623                 if (error)
2624                         break;
2625         }
2626         mtx_unlock(&vm_object_list_mtx);
2627         free(kvo, M_TEMP);
2628         return (error);
2629 }
2630 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2631     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2632     "List of VM objects");
2633
2634 #include "opt_ddb.h"
2635 #ifdef DDB
2636 #include <sys/kernel.h>
2637
2638 #include <sys/cons.h>
2639
2640 #include <ddb/ddb.h>
2641
2642 static int
2643 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2644 {
2645         vm_map_t tmpm;
2646         vm_map_entry_t tmpe;
2647         vm_object_t obj;
2648
2649         if (map == 0)
2650                 return 0;
2651
2652         if (entry == 0) {
2653                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2654                         if (_vm_object_in_map(map, object, tmpe)) {
2655                                 return 1;
2656                         }
2657                 }
2658         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2659                 tmpm = entry->object.sub_map;
2660                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2661                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2662                                 return 1;
2663                         }
2664                 }
2665         } else if ((obj = entry->object.vm_object) != NULL) {
2666                 for (; obj; obj = obj->backing_object)
2667                         if (obj == object) {
2668                                 return 1;
2669                         }
2670         }
2671         return 0;
2672 }
2673
2674 static int
2675 vm_object_in_map(vm_object_t object)
2676 {
2677         struct proc *p;
2678
2679         /* sx_slock(&allproc_lock); */
2680         FOREACH_PROC_IN_SYSTEM(p) {
2681                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2682                         continue;
2683                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2684                         /* sx_sunlock(&allproc_lock); */
2685                         return 1;
2686                 }
2687         }
2688         /* sx_sunlock(&allproc_lock); */
2689         if (_vm_object_in_map(kernel_map, object, 0))
2690                 return 1;
2691         return 0;
2692 }
2693
2694 DB_SHOW_COMMAND(vmochk, vm_object_check)
2695 {
2696         vm_object_t object;
2697
2698         /*
2699          * make sure that internal objs are in a map somewhere
2700          * and none have zero ref counts.
2701          */
2702         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2703                 if ((object->flags & OBJ_ANON) != 0) {
2704                         if (object->ref_count == 0) {
2705                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2706                                         (long)object->size);
2707                         }
2708                         if (!vm_object_in_map(object)) {
2709                                 db_printf(
2710                         "vmochk: internal obj is not in a map: "
2711                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2712                                     object->ref_count, (u_long)object->size, 
2713                                     (u_long)object->size,
2714                                     (void *)object->backing_object);
2715                         }
2716                 }
2717                 if (db_pager_quit)
2718                         return;
2719         }
2720 }
2721
2722 /*
2723  *      vm_object_print:        [ debug ]
2724  */
2725 DB_SHOW_COMMAND(object, vm_object_print_static)
2726 {
2727         /* XXX convert args. */
2728         vm_object_t object = (vm_object_t)addr;
2729         boolean_t full = have_addr;
2730
2731         vm_page_t p;
2732
2733         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2734 #define count   was_count
2735
2736         int count;
2737
2738         if (object == NULL)
2739                 return;
2740
2741         db_iprintf(
2742             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2743             object, (int)object->type, (uintmax_t)object->size,
2744             object->resident_page_count, object->ref_count, object->flags,
2745             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2746         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2747             object->shadow_count, 
2748             object->backing_object ? object->backing_object->ref_count : 0,
2749             object->backing_object, (uintmax_t)object->backing_object_offset);
2750
2751         if (!full)
2752                 return;
2753
2754         db_indent += 2;
2755         count = 0;
2756         TAILQ_FOREACH(p, &object->memq, listq) {
2757                 if (count == 0)
2758                         db_iprintf("memory:=");
2759                 else if (count == 6) {
2760                         db_printf("\n");
2761                         db_iprintf(" ...");
2762                         count = 0;
2763                 } else
2764                         db_printf(",");
2765                 count++;
2766
2767                 db_printf("(off=0x%jx,page=0x%jx)",
2768                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2769
2770                 if (db_pager_quit)
2771                         break;
2772         }
2773         if (count != 0)
2774                 db_printf("\n");
2775         db_indent -= 2;
2776 }
2777
2778 /* XXX. */
2779 #undef count
2780
2781 /* XXX need this non-static entry for calling from vm_map_print. */
2782 void
2783 vm_object_print(
2784         /* db_expr_t */ long addr,
2785         boolean_t have_addr,
2786         /* db_expr_t */ long count,
2787         char *modif)
2788 {
2789         vm_object_print_static(addr, have_addr, count, modif);
2790 }
2791
2792 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2793 {
2794         vm_object_t object;
2795         vm_pindex_t fidx;
2796         vm_paddr_t pa;
2797         vm_page_t m, prev_m;
2798         int rcount, nl, c;
2799
2800         nl = 0;
2801         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2802                 db_printf("new object: %p\n", (void *)object);
2803                 if (nl > 18) {
2804                         c = cngetc();
2805                         if (c != ' ')
2806                                 return;
2807                         nl = 0;
2808                 }
2809                 nl++;
2810                 rcount = 0;
2811                 fidx = 0;
2812                 pa = -1;
2813                 TAILQ_FOREACH(m, &object->memq, listq) {
2814                         if (m->pindex > 128)
2815                                 break;
2816                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2817                             prev_m->pindex + 1 != m->pindex) {
2818                                 if (rcount) {
2819                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2820                                                 (long)fidx, rcount, (long)pa);
2821                                         if (nl > 18) {
2822                                                 c = cngetc();
2823                                                 if (c != ' ')
2824                                                         return;
2825                                                 nl = 0;
2826                                         }
2827                                         nl++;
2828                                         rcount = 0;
2829                                 }
2830                         }                               
2831                         if (rcount &&
2832                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2833                                 ++rcount;
2834                                 continue;
2835                         }
2836                         if (rcount) {
2837                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2838                                         (long)fidx, rcount, (long)pa);
2839                                 if (nl > 18) {
2840                                         c = cngetc();
2841                                         if (c != ' ')
2842                                                 return;
2843                                         nl = 0;
2844                                 }
2845                                 nl++;
2846                         }
2847                         fidx = m->pindex;
2848                         pa = VM_PAGE_TO_PHYS(m);
2849                         rcount = 1;
2850                 }
2851                 if (rcount) {
2852                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2853                                 (long)fidx, rcount, (long)pa);
2854                         if (nl > 18) {
2855                                 c = cngetc();
2856                                 if (c != ' ')
2857                                         return;
2858                                 nl = 0;
2859                         }
2860                         nl++;
2861                 }
2862         }
2863 }
2864 #endif /* DDB */