]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
This commit was generated by cvs2svn to compensate for changes in r92828,
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66
67 /*
68  *      Virtual memory object module.
69  */
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/lock.h>
74 #include <sys/mman.h>
75 #include <sys/mount.h>
76 #include <sys/kernel.h>
77 #include <sys/sysctl.h>
78 #include <sys/mutex.h>
79 #include <sys/proc.h>           /* for curproc, pageproc */
80 #include <sys/socket.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/uma.h>
97
98 #define EASY_SCAN_FACTOR       8
99
100 #define MSYNC_FLUSH_HARDSEQ     0x01
101 #define MSYNC_FLUSH_SOFTSEQ     0x02
102
103 /*
104  * msync / VM object flushing optimizations
105  */
106 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
108         CTLFLAG_RW, &msync_flush_flags, 0, "");
109
110 static void     vm_object_qcollapse(vm_object_t object);
111 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
112
113 /*
114  *      Virtual memory objects maintain the actual data
115  *      associated with allocated virtual memory.  A given
116  *      page of memory exists within exactly one object.
117  *
118  *      An object is only deallocated when all "references"
119  *      are given up.  Only one "reference" to a given
120  *      region of an object should be writeable.
121  *
122  *      Associated with each object is a list of all resident
123  *      memory pages belonging to that object; this list is
124  *      maintained by the "vm_page" module, and locked by the object's
125  *      lock.
126  *
127  *      Each object also records a "pager" routine which is
128  *      used to retrieve (and store) pages to the proper backing
129  *      storage.  In addition, objects may be backed by other
130  *      objects from which they were virtual-copied.
131  *
132  *      The only items within the object structure which are
133  *      modified after time of creation are:
134  *              reference count         locked by object's lock
135  *              pager routine           locked by object's lock
136  *
137  */
138
139 struct object_q vm_object_list;
140 static struct mtx vm_object_list_mtx;   /* lock for object list and count */
141 vm_object_t kernel_object;
142 vm_object_t kmem_object;
143 static struct vm_object kernel_object_store;
144 static struct vm_object kmem_object_store;
145 extern int vm_pageout_page_count;
146
147 static long object_collapses;
148 static long object_bypasses;
149 static int next_index;
150 static int object_hash_rand;
151 static uma_zone_t obj_zone;
152 #define VM_OBJECTS_INIT 256
153
154 static void vm_object_zinit(void *mem, int size);
155
156 #ifdef INVARIANTS
157 static void vm_object_zdtor(void *mem, int size, void *arg);
158
159 static void
160 vm_object_zdtor(void *mem, int size, void *arg)
161 {
162         vm_object_t object;
163
164         object = (vm_object_t)mem;
165         KASSERT(object->paging_in_progress == 0,
166             ("object %p paging_in_progress = %d",
167             object, object->paging_in_progress));
168         KASSERT(object->resident_page_count == 0,
169             ("object %p resident_page_count = %d",
170             object, object->resident_page_count));
171         KASSERT(object->shadow_count == 0,
172             ("object %p shadow_count = %d",
173             object, object->shadow_count));
174 }
175 #endif
176
177 static void
178 vm_object_zinit(void *mem, int size)
179 {
180         vm_object_t object;
181
182         object = (vm_object_t)mem;
183
184         /* These are true for any object that has been freed */
185         object->paging_in_progress = 0;
186         object->resident_page_count = 0;
187         object->shadow_count = 0;
188 }
189
190 void
191 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
192 {
193         int incr;
194
195         GIANT_REQUIRED;
196
197         TAILQ_INIT(&object->memq);
198         TAILQ_INIT(&object->shadow_head);
199
200         object->type = type;
201         object->size = size;
202         object->ref_count = 1;
203         object->flags = 0;
204         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
205                 vm_object_set_flag(object, OBJ_ONEMAPPING);
206         object->pg_color = next_index;
207         if (size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
208                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
209         else
210                 incr = size;
211         next_index = (next_index + incr) & PQ_L2_MASK;
212         object->handle = NULL;
213         object->backing_object = NULL;
214         object->backing_object_offset = (vm_ooffset_t) 0;
215         /*
216          * Try to generate a number that will spread objects out in the
217          * hash table.  We 'wipe' new objects across the hash in 128 page
218          * increments plus 1 more to offset it a little more by the time
219          * it wraps around.
220          */
221         object->hash_rand = object_hash_rand - 129;
222
223         object->generation++;
224
225         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
226
227         object_hash_rand = object->hash_rand;
228 }
229
230 /*
231  *      vm_object_init:
232  *
233  *      Initialize the VM objects module.
234  */
235 void
236 vm_object_init(void)
237 {
238         GIANT_REQUIRED;
239
240         TAILQ_INIT(&vm_object_list);
241         mtx_init(&vm_object_list_mtx, "vm object_list", MTX_DEF);
242         
243         kernel_object = &kernel_object_store;
244         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
245             kernel_object);
246
247         kmem_object = &kmem_object_store;
248         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
249             kmem_object);
250         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
251 #ifdef INVARIANTS
252             vm_object_zdtor,
253 #else
254             NULL,
255 #endif
256             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
257         uma_prealloc(obj_zone, VM_OBJECTS_INIT);
258 }
259
260 void
261 vm_object_init2(void)
262 {
263 }
264
265 void
266 vm_object_set_flag(vm_object_t object, u_short bits)
267 {
268         GIANT_REQUIRED;
269         object->flags |= bits;
270 }
271
272 void
273 vm_object_clear_flag(vm_object_t object, u_short bits)
274 {
275         GIANT_REQUIRED;
276         object->flags &= ~bits;
277 }
278
279 void
280 vm_object_pip_add(vm_object_t object, short i)
281 {
282         GIANT_REQUIRED;
283         object->paging_in_progress += i;
284 }
285
286 void
287 vm_object_pip_subtract(vm_object_t object, short i)
288 {
289         GIANT_REQUIRED;
290         object->paging_in_progress -= i;
291 }
292
293 void
294 vm_object_pip_wakeup(vm_object_t object)
295 {
296         GIANT_REQUIRED;
297         object->paging_in_progress--;
298         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
299                 vm_object_clear_flag(object, OBJ_PIPWNT);
300                 wakeup(object);
301         }
302 }
303
304 void
305 vm_object_pip_wakeupn(vm_object_t object, short i)
306 {
307         GIANT_REQUIRED;
308         if (i)
309                 object->paging_in_progress -= i;
310         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
311                 vm_object_clear_flag(object, OBJ_PIPWNT);
312                 wakeup(object);
313         }
314 }
315
316 void
317 vm_object_pip_sleep(vm_object_t object, char *waitid)
318 {
319         GIANT_REQUIRED;
320         if (object->paging_in_progress) {
321                 int s = splvm();
322                 if (object->paging_in_progress) {
323                         vm_object_set_flag(object, OBJ_PIPWNT);
324                         tsleep(object, PVM, waitid, 0);
325                 }
326                 splx(s);
327         }
328 }
329
330 void
331 vm_object_pip_wait(vm_object_t object, char *waitid)
332 {
333         GIANT_REQUIRED;
334         while (object->paging_in_progress)
335                 vm_object_pip_sleep(object, waitid);
336 }
337
338 /*
339  *      vm_object_allocate:
340  *
341  *      Returns a new object with the given size.
342  */
343 vm_object_t
344 vm_object_allocate(objtype_t type, vm_size_t size)
345 {
346         vm_object_t result;
347
348         GIANT_REQUIRED;
349
350         result = (vm_object_t) uma_zalloc(obj_zone, M_WAITOK);
351         _vm_object_allocate(type, size, result);
352
353         return (result);
354 }
355
356
357 /*
358  *      vm_object_reference:
359  *
360  *      Gets another reference to the given object.
361  */
362 void
363 vm_object_reference(vm_object_t object)
364 {
365         GIANT_REQUIRED;
366
367         if (object == NULL)
368                 return;
369
370 #if 0
371         /* object can be re-referenced during final cleaning */
372         KASSERT(!(object->flags & OBJ_DEAD),
373             ("vm_object_reference: attempting to reference dead obj"));
374 #endif
375
376         object->ref_count++;
377         if (object->type == OBJT_VNODE) {
378                 while (vget((struct vnode *) object->handle, LK_RETRY|LK_NOOBJ, curthread)) {
379                         printf("vm_object_reference: delay in getting object\n");
380                 }
381         }
382 }
383
384 /*
385  * handle deallocating a object of type OBJT_VNODE
386  */
387 void
388 vm_object_vndeallocate(vm_object_t object)
389 {
390         struct vnode *vp = (struct vnode *) object->handle;
391
392         GIANT_REQUIRED;
393         KASSERT(object->type == OBJT_VNODE,
394             ("vm_object_vndeallocate: not a vnode object"));
395         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
396 #ifdef INVARIANTS
397         if (object->ref_count == 0) {
398                 vprint("vm_object_vndeallocate", vp);
399                 panic("vm_object_vndeallocate: bad object reference count");
400         }
401 #endif
402
403         object->ref_count--;
404         if (object->ref_count == 0) {
405                 vp->v_flag &= ~VTEXT;
406                 vm_object_clear_flag(object, OBJ_OPT);
407         }
408         /*
409          * vrele may need a vop lock
410          */
411         vrele(vp);
412 }
413
414 /*
415  *      vm_object_deallocate:
416  *
417  *      Release a reference to the specified object,
418  *      gained either through a vm_object_allocate
419  *      or a vm_object_reference call.  When all references
420  *      are gone, storage associated with this object
421  *      may be relinquished.
422  *
423  *      No object may be locked.
424  */
425 void
426 vm_object_deallocate(vm_object_t object)
427 {
428         vm_object_t temp;
429
430         GIANT_REQUIRED;
431
432         while (object != NULL) {
433
434                 if (object->type == OBJT_VNODE) {
435                         vm_object_vndeallocate(object);
436                         return;
437                 }
438
439                 KASSERT(object->ref_count != 0,
440                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
441
442                 /*
443                  * If the reference count goes to 0 we start calling
444                  * vm_object_terminate() on the object chain.
445                  * A ref count of 1 may be a special case depending on the
446                  * shadow count being 0 or 1.
447                  */
448                 object->ref_count--;
449                 if (object->ref_count > 1) {
450                         return;
451                 } else if (object->ref_count == 1) {
452                         if (object->shadow_count == 0) {
453                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
454                         } else if ((object->shadow_count == 1) &&
455                             (object->handle == NULL) &&
456                             (object->type == OBJT_DEFAULT ||
457                              object->type == OBJT_SWAP)) {
458                                 vm_object_t robject;
459
460                                 robject = TAILQ_FIRST(&object->shadow_head);
461                                 KASSERT(robject != NULL,
462                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
463                                          object->ref_count,
464                                          object->shadow_count));
465                                 if ((robject->handle == NULL) &&
466                                     (robject->type == OBJT_DEFAULT ||
467                                      robject->type == OBJT_SWAP)) {
468
469                                         robject->ref_count++;
470
471                                         while (
472                                                 robject->paging_in_progress ||
473                                                 object->paging_in_progress
474                                         ) {
475                                                 vm_object_pip_sleep(robject, "objde1");
476                                                 vm_object_pip_sleep(object, "objde2");
477                                         }
478
479                                         if (robject->ref_count == 1) {
480                                                 robject->ref_count--;
481                                                 object = robject;
482                                                 goto doterm;
483                                         }
484
485                                         object = robject;
486                                         vm_object_collapse(object);
487                                         continue;
488                                 }
489                         }
490
491                         return;
492
493                 }
494
495 doterm:
496
497                 temp = object->backing_object;
498                 if (temp) {
499                         TAILQ_REMOVE(&temp->shadow_head, object, shadow_list);
500                         temp->shadow_count--;
501                         if (temp->ref_count == 0)
502                                 vm_object_clear_flag(temp, OBJ_OPT);
503                         temp->generation++;
504                         object->backing_object = NULL;
505                 }
506                 /*
507                  * Don't double-terminate, we could be in a termination
508                  * recursion due to the terminate having to sync data
509                  * to disk.
510                  */
511                 if ((object->flags & OBJ_DEAD) == 0)
512                         vm_object_terminate(object);
513                 object = temp;
514         }
515 }
516
517 /*
518  *      vm_object_terminate actually destroys the specified object, freeing
519  *      up all previously used resources.
520  *
521  *      The object must be locked.
522  *      This routine may block.
523  */
524 void
525 vm_object_terminate(vm_object_t object)
526 {
527         vm_page_t p;
528         int s;
529
530         GIANT_REQUIRED;
531
532         /*
533          * Make sure no one uses us.
534          */
535         vm_object_set_flag(object, OBJ_DEAD);
536
537         /*
538          * wait for the pageout daemon to be done with the object
539          */
540         vm_object_pip_wait(object, "objtrm");
541
542         KASSERT(!object->paging_in_progress,
543                 ("vm_object_terminate: pageout in progress"));
544
545         /*
546          * Clean and free the pages, as appropriate. All references to the
547          * object are gone, so we don't need to lock it.
548          */
549         if (object->type == OBJT_VNODE) {
550                 struct vnode *vp;
551
552                 /*
553                  * Freeze optimized copies.
554                  */
555                 vm_freeze_copyopts(object, 0, object->size);
556
557                 /*
558                  * Clean pages and flush buffers.
559                  */
560                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
561
562                 vp = (struct vnode *) object->handle;
563                 vinvalbuf(vp, V_SAVE, NOCRED, NULL, 0, 0);
564         }
565
566         KASSERT(object->ref_count == 0, 
567                 ("vm_object_terminate: object with references, ref_count=%d",
568                 object->ref_count));
569
570         /*
571          * Now free any remaining pages. For internal objects, this also
572          * removes them from paging queues. Don't free wired pages, just
573          * remove them from the object. 
574          */
575         s = splvm();
576         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
577                 KASSERT(!p->busy && (p->flags & PG_BUSY) == 0,
578                         ("vm_object_terminate: freeing busy page %p "
579                         "p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
580                 if (p->wire_count == 0) {
581                         vm_page_busy(p);
582                         vm_page_free(p);
583                         cnt.v_pfree++;
584                 } else {
585                         vm_page_busy(p);
586                         vm_page_remove(p);
587                 }
588         }
589         splx(s);
590
591         /*
592          * Let the pager know object is dead.
593          */
594         vm_pager_deallocate(object);
595
596         /*
597          * Remove the object from the global object list.
598          */
599         mtx_lock(&vm_object_list_mtx);
600         TAILQ_REMOVE(&vm_object_list, object, object_list);
601         mtx_unlock(&vm_object_list_mtx);
602
603         wakeup(object);
604
605         /*
606          * Free the space for the object.
607          */
608         uma_zfree(obj_zone, object);
609 }
610
611 /*
612  *      vm_object_page_clean
613  *
614  *      Clean all dirty pages in the specified range of object.  Leaves page 
615  *      on whatever queue it is currently on.   If NOSYNC is set then do not
616  *      write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
617  *      leaving the object dirty.
618  *
619  *      Odd semantics: if start == end, we clean everything.
620  *
621  *      The object must be locked.
622  */
623 void
624 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
625 {
626         vm_page_t p, np;
627         vm_offset_t tstart, tend;
628         vm_pindex_t pi;
629         struct vnode *vp;
630         int clearobjflags;
631         int pagerflags;
632         int curgeneration;
633
634         GIANT_REQUIRED;
635
636         if (object->type != OBJT_VNODE ||
637                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
638                 return;
639
640         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : 0;
641         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
642
643         vp = object->handle;
644
645         vm_object_set_flag(object, OBJ_CLEANING);
646
647         tstart = start;
648         if (end == 0) {
649                 tend = object->size;
650         } else {
651                 tend = end;
652         }
653
654         /*
655          * If the caller is smart and only msync()s a range he knows is
656          * dirty, we may be able to avoid an object scan.  This results in
657          * a phenominal improvement in performance.  We cannot do this
658          * as a matter of course because the object may be huge - e.g.
659          * the size might be in the gigabytes or terrabytes.
660          */
661         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
662                 vm_offset_t tscan;
663                 int scanlimit;
664                 int scanreset;
665
666                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
667                 if (scanreset < 16)
668                         scanreset = 16;
669
670                 scanlimit = scanreset;
671                 tscan = tstart;
672                 while (tscan < tend) {
673                         curgeneration = object->generation;
674                         p = vm_page_lookup(object, tscan);
675                         if (p == NULL || p->valid == 0 ||
676                             (p->queue - p->pc) == PQ_CACHE) {
677                                 if (--scanlimit == 0)
678                                         break;
679                                 ++tscan;
680                                 continue;
681                         }
682                         vm_page_test_dirty(p);
683                         if ((p->dirty & p->valid) == 0) {
684                                 if (--scanlimit == 0)
685                                         break;
686                                 ++tscan;
687                                 continue;
688                         }
689                         /*
690                          * If we have been asked to skip nosync pages and 
691                          * this is a nosync page, we can't continue.
692                          */
693                         if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
694                                 if (--scanlimit == 0)
695                                         break;
696                                 ++tscan;
697                                 continue;
698                         }
699                         scanlimit = scanreset;
700
701                         /*
702                          * This returns 0 if it was unable to busy the first
703                          * page (i.e. had to sleep).
704                          */
705                         tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
706                 }
707
708                 /*
709                  * If everything was dirty and we flushed it successfully,
710                  * and the requested range is not the entire object, we
711                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
712                  * return immediately.
713                  */
714                 if (tscan >= tend && (tstart || tend < object->size)) {
715                         vm_object_clear_flag(object, OBJ_CLEANING);
716                         return;
717                 }
718         }
719
720         /*
721          * Generally set CLEANCHK interlock and make the page read-only so
722          * we can then clear the object flags.
723          *
724          * However, if this is a nosync mmap then the object is likely to 
725          * stay dirty so do not mess with the page and do not clear the
726          * object flags.
727          */
728         clearobjflags = 1;
729
730         TAILQ_FOREACH(p, &object->memq, listq) {
731                 vm_page_flag_set(p, PG_CLEANCHK);
732                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
733                         clearobjflags = 0;
734                 else
735                         vm_page_protect(p, VM_PROT_READ);
736         }
737
738         if (clearobjflags && (tstart == 0) && (tend == object->size)) {
739                 struct vnode *vp;
740
741                 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
742                 if (object->type == OBJT_VNODE &&
743                     (vp = (struct vnode *)object->handle) != NULL) {
744                         if (vp->v_flag & VOBJDIRTY) {
745                                 mtx_lock(&vp->v_interlock);
746                                 vp->v_flag &= ~VOBJDIRTY;
747                                 mtx_unlock(&vp->v_interlock);
748                         }
749                 }
750         }
751
752 rescan:
753         curgeneration = object->generation;
754
755         for (p = TAILQ_FIRST(&object->memq); p; p = np) {
756                 int n;
757
758                 np = TAILQ_NEXT(p, listq);
759
760 again:
761                 pi = p->pindex;
762                 if (((p->flags & PG_CLEANCHK) == 0) ||
763                         (pi < tstart) || (pi >= tend) ||
764                         (p->valid == 0) ||
765                         ((p->queue - p->pc) == PQ_CACHE)) {
766                         vm_page_flag_clear(p, PG_CLEANCHK);
767                         continue;
768                 }
769
770                 vm_page_test_dirty(p);
771                 if ((p->dirty & p->valid) == 0) {
772                         vm_page_flag_clear(p, PG_CLEANCHK);
773                         continue;
774                 }
775
776                 /*
777                  * If we have been asked to skip nosync pages and this is a
778                  * nosync page, skip it.  Note that the object flags were
779                  * not cleared in this case so we do not have to set them.
780                  */
781                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
782                         vm_page_flag_clear(p, PG_CLEANCHK);
783                         continue;
784                 }
785
786                 n = vm_object_page_collect_flush(object, p,
787                         curgeneration, pagerflags);
788                 if (n == 0)
789                         goto rescan;
790
791                 if (object->generation != curgeneration)
792                         goto rescan;
793
794                 /*
795                  * Try to optimize the next page.  If we can't we pick up
796                  * our (random) scan where we left off.
797                  */
798                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
799                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
800                                 goto again;
801                 }
802         }
803
804 #if 0
805         VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
806 #endif
807
808         vm_object_clear_flag(object, OBJ_CLEANING);
809         return;
810 }
811
812 static int
813 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
814 {
815         int runlen;
816         int s;
817         int maxf;
818         int chkb;
819         int maxb;
820         int i;
821         vm_pindex_t pi;
822         vm_page_t maf[vm_pageout_page_count];
823         vm_page_t mab[vm_pageout_page_count];
824         vm_page_t ma[vm_pageout_page_count];
825
826         s = splvm();
827         pi = p->pindex;
828         while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
829                 if (object->generation != curgeneration) {
830                         splx(s);
831                         return(0);
832                 }
833         }
834
835         maxf = 0;
836         for(i = 1; i < vm_pageout_page_count; i++) {
837                 vm_page_t tp;
838
839                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
840                         if ((tp->flags & PG_BUSY) ||
841                                 (tp->flags & PG_CLEANCHK) == 0 ||
842                                 (tp->busy != 0))
843                                 break;
844                         if((tp->queue - tp->pc) == PQ_CACHE) {
845                                 vm_page_flag_clear(tp, PG_CLEANCHK);
846                                 break;
847                         }
848                         vm_page_test_dirty(tp);
849                         if ((tp->dirty & tp->valid) == 0) {
850                                 vm_page_flag_clear(tp, PG_CLEANCHK);
851                                 break;
852                         }
853                         maf[ i - 1 ] = tp;
854                         maxf++;
855                         continue;
856                 }
857                 break;
858         }
859
860         maxb = 0;
861         chkb = vm_pageout_page_count -  maxf;
862         if (chkb) {
863                 for(i = 1; i < chkb;i++) {
864                         vm_page_t tp;
865
866                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
867                                 if ((tp->flags & PG_BUSY) ||
868                                         (tp->flags & PG_CLEANCHK) == 0 ||
869                                         (tp->busy != 0))
870                                         break;
871                                 if ((tp->queue - tp->pc) == PQ_CACHE) {
872                                         vm_page_flag_clear(tp, PG_CLEANCHK);
873                                         break;
874                                 }
875                                 vm_page_test_dirty(tp);
876                                 if ((tp->dirty & tp->valid) == 0) {
877                                         vm_page_flag_clear(tp, PG_CLEANCHK);
878                                         break;
879                                 }
880                                 mab[ i - 1 ] = tp;
881                                 maxb++;
882                                 continue;
883                         }
884                         break;
885                 }
886         }
887
888         for(i = 0; i < maxb; i++) {
889                 int index = (maxb - i) - 1;
890                 ma[index] = mab[i];
891                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
892         }
893         vm_page_flag_clear(p, PG_CLEANCHK);
894         ma[maxb] = p;
895         for(i = 0; i < maxf; i++) {
896                 int index = (maxb + i) + 1;
897                 ma[index] = maf[i];
898                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
899         }
900         runlen = maxb + maxf + 1;
901
902         splx(s);
903         vm_pageout_flush(ma, runlen, pagerflags);
904         for (i = 0; i < runlen; i++) {
905                 if (ma[i]->valid & ma[i]->dirty) {
906                         vm_page_protect(ma[i], VM_PROT_READ);
907                         vm_page_flag_set(ma[i], PG_CLEANCHK);
908
909                         /*
910                          * maxf will end up being the actual number of pages
911                          * we wrote out contiguously, non-inclusive of the
912                          * first page.  We do not count look-behind pages.
913                          */
914                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
915                                 maxf = i - maxb - 1;
916                 }
917         }
918         return(maxf + 1);
919 }
920
921 /*
922  * Same as vm_object_pmap_copy, except range checking really
923  * works, and is meant for small sections of an object.
924  *
925  * This code protects resident pages by making them read-only
926  * and is typically called on a fork or split when a page
927  * is converted to copy-on-write.  
928  *
929  * NOTE: If the page is already at VM_PROT_NONE, calling
930  * vm_page_protect will have no effect.
931  */
932 void
933 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
934 {
935         vm_pindex_t idx;
936         vm_page_t p;
937
938         GIANT_REQUIRED;
939
940         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
941                 return;
942
943         for (idx = start; idx < end; idx++) {
944                 p = vm_page_lookup(object, idx);
945                 if (p == NULL)
946                         continue;
947                 vm_page_protect(p, VM_PROT_READ);
948         }
949 }
950
951 /*
952  *      vm_object_pmap_remove:
953  *
954  *      Removes all physical pages in the specified
955  *      object range from all physical maps.
956  *
957  *      The object must *not* be locked.
958  */
959 void
960 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
961 {
962         vm_page_t p;
963
964         GIANT_REQUIRED;
965         if (object == NULL)
966                 return;
967         TAILQ_FOREACH(p, &object->memq, listq) {
968                 if (p->pindex >= start && p->pindex < end)
969                         vm_page_protect(p, VM_PROT_NONE);
970         }
971         if ((start == 0) && (object->size == end))
972                 vm_object_clear_flag(object, OBJ_WRITEABLE);
973 }
974
975 /*
976  *      vm_object_madvise:
977  *
978  *      Implements the madvise function at the object/page level.
979  *
980  *      MADV_WILLNEED   (any object)
981  *
982  *          Activate the specified pages if they are resident.
983  *
984  *      MADV_DONTNEED   (any object)
985  *
986  *          Deactivate the specified pages if they are resident.
987  *
988  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
989  *                       OBJ_ONEMAPPING only)
990  *
991  *          Deactivate and clean the specified pages if they are
992  *          resident.  This permits the process to reuse the pages
993  *          without faulting or the kernel to reclaim the pages
994  *          without I/O.
995  */
996 void
997 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
998 {
999         vm_pindex_t end, tpindex;
1000         vm_object_t tobject;
1001         vm_page_t m;
1002
1003         GIANT_REQUIRED;
1004         if (object == NULL)
1005                 return;
1006
1007         end = pindex + count;
1008
1009         /*
1010          * Locate and adjust resident pages
1011          */
1012         for (; pindex < end; pindex += 1) {
1013 relookup:
1014                 tobject = object;
1015                 tpindex = pindex;
1016 shadowlookup:
1017                 /*
1018                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1019                  * and those pages must be OBJ_ONEMAPPING.
1020                  */
1021                 if (advise == MADV_FREE) {
1022                         if ((tobject->type != OBJT_DEFAULT &&
1023                              tobject->type != OBJT_SWAP) ||
1024                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1025                                 continue;
1026                         }
1027                 }
1028
1029                 m = vm_page_lookup(tobject, tpindex);
1030
1031                 if (m == NULL) {
1032                         /*
1033                          * There may be swap even if there is no backing page
1034                          */
1035                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1036                                 swap_pager_freespace(tobject, tpindex, 1);
1037
1038                         /*
1039                          * next object
1040                          */
1041                         tobject = tobject->backing_object;
1042                         if (tobject == NULL)
1043                                 continue;
1044                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1045                         goto shadowlookup;
1046                 }
1047
1048                 /*
1049                  * If the page is busy or not in a normal active state,
1050                  * we skip it.  If the page is not managed there are no
1051                  * page queues to mess with.  Things can break if we mess
1052                  * with pages in any of the below states.
1053                  */
1054                 if (
1055                     m->hold_count ||
1056                     m->wire_count ||
1057                     (m->flags & PG_UNMANAGED) ||
1058                     m->valid != VM_PAGE_BITS_ALL
1059                 ) {
1060                         continue;
1061                 }
1062
1063                 if (vm_page_sleep_busy(m, TRUE, "madvpo"))
1064                         goto relookup;
1065
1066                 if (advise == MADV_WILLNEED) {
1067                         vm_page_activate(m);
1068                 } else if (advise == MADV_DONTNEED) {
1069                         vm_page_dontneed(m);
1070                 } else if (advise == MADV_FREE) {
1071                         /*
1072                          * Mark the page clean.  This will allow the page
1073                          * to be freed up by the system.  However, such pages
1074                          * are often reused quickly by malloc()/free()
1075                          * so we do not do anything that would cause
1076                          * a page fault if we can help it.
1077                          *
1078                          * Specifically, we do not try to actually free
1079                          * the page now nor do we try to put it in the
1080                          * cache (which would cause a page fault on reuse).
1081                          *
1082                          * But we do make the page is freeable as we
1083                          * can without actually taking the step of unmapping
1084                          * it.
1085                          */
1086                         pmap_clear_modify(m);
1087                         m->dirty = 0;
1088                         m->act_count = 0;
1089                         vm_page_dontneed(m);
1090                         if (tobject->type == OBJT_SWAP)
1091                                 swap_pager_freespace(tobject, tpindex, 1);
1092                 }
1093         }       
1094 }
1095
1096 /*
1097  *      vm_object_shadow:
1098  *
1099  *      Create a new object which is backed by the
1100  *      specified existing object range.  The source
1101  *      object reference is deallocated.
1102  *
1103  *      The new object and offset into that object
1104  *      are returned in the source parameters.
1105  */
1106 void
1107 vm_object_shadow(
1108         vm_object_t *object,    /* IN/OUT */
1109         vm_ooffset_t *offset,   /* IN/OUT */
1110         vm_size_t length)
1111 {
1112         vm_object_t source;
1113         vm_object_t result;
1114
1115         GIANT_REQUIRED;
1116         source = *object;
1117
1118         /*
1119          * Don't create the new object if the old object isn't shared.
1120          */
1121         if (source != NULL &&
1122             source->ref_count == 1 &&
1123             source->handle == NULL &&
1124             (source->type == OBJT_DEFAULT ||
1125              source->type == OBJT_SWAP))
1126                 return;
1127
1128         /*
1129          * Allocate a new object with the given length
1130          */
1131         result = vm_object_allocate(OBJT_DEFAULT, length);
1132         KASSERT(result != NULL, ("vm_object_shadow: no object for shadowing"));
1133
1134         /*
1135          * The new object shadows the source object, adding a reference to it.
1136          * Our caller changes his reference to point to the new object,
1137          * removing a reference to the source object.  Net result: no change
1138          * of reference count.
1139          *
1140          * Try to optimize the result object's page color when shadowing
1141          * in order to maintain page coloring consistency in the combined 
1142          * shadowed object.
1143          */
1144         result->backing_object = source;
1145         if (source) {
1146                 TAILQ_INSERT_TAIL(&source->shadow_head, result, shadow_list);
1147                 source->shadow_count++;
1148                 source->generation++;
1149                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1150         }
1151
1152         /*
1153          * Store the offset into the source object, and fix up the offset into
1154          * the new object.
1155          */
1156         result->backing_object_offset = *offset;
1157
1158         /*
1159          * Return the new things
1160          */
1161         *offset = 0;
1162         *object = result;
1163 }
1164
1165 #define OBSC_TEST_ALL_SHADOWED  0x0001
1166 #define OBSC_COLLAPSE_NOWAIT    0x0002
1167 #define OBSC_COLLAPSE_WAIT      0x0004
1168
1169 static __inline int
1170 vm_object_backing_scan(vm_object_t object, int op)
1171 {
1172         int s;
1173         int r = 1;
1174         vm_page_t p;
1175         vm_object_t backing_object;
1176         vm_pindex_t backing_offset_index;
1177
1178         s = splvm();
1179         GIANT_REQUIRED;
1180
1181         backing_object = object->backing_object;
1182         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1183
1184         /*
1185          * Initial conditions
1186          */
1187         if (op & OBSC_TEST_ALL_SHADOWED) {
1188                 /*
1189                  * We do not want to have to test for the existence of
1190                  * swap pages in the backing object.  XXX but with the
1191                  * new swapper this would be pretty easy to do.
1192                  *
1193                  * XXX what about anonymous MAP_SHARED memory that hasn't
1194                  * been ZFOD faulted yet?  If we do not test for this, the
1195                  * shadow test may succeed! XXX
1196                  */
1197                 if (backing_object->type != OBJT_DEFAULT) {
1198                         splx(s);
1199                         return (0);
1200                 }
1201         }
1202         if (op & OBSC_COLLAPSE_WAIT) {
1203                 vm_object_set_flag(backing_object, OBJ_DEAD);
1204         }
1205
1206         /*
1207          * Our scan
1208          */
1209         p = TAILQ_FIRST(&backing_object->memq);
1210         while (p) {
1211                 vm_page_t next = TAILQ_NEXT(p, listq);
1212                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1213
1214                 if (op & OBSC_TEST_ALL_SHADOWED) {
1215                         vm_page_t pp;
1216
1217                         /*
1218                          * Ignore pages outside the parent object's range
1219                          * and outside the parent object's mapping of the 
1220                          * backing object.
1221                          *
1222                          * note that we do not busy the backing object's
1223                          * page.
1224                          */
1225                         if (
1226                             p->pindex < backing_offset_index ||
1227                             new_pindex >= object->size
1228                         ) {
1229                                 p = next;
1230                                 continue;
1231                         }
1232
1233                         /*
1234                          * See if the parent has the page or if the parent's
1235                          * object pager has the page.  If the parent has the
1236                          * page but the page is not valid, the parent's
1237                          * object pager must have the page.
1238                          *
1239                          * If this fails, the parent does not completely shadow
1240                          * the object and we might as well give up now.
1241                          */
1242
1243                         pp = vm_page_lookup(object, new_pindex);
1244                         if (
1245                             (pp == NULL || pp->valid == 0) &&
1246                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1247                         ) {
1248                                 r = 0;
1249                                 break;
1250                         }
1251                 }
1252
1253                 /*
1254                  * Check for busy page
1255                  */
1256                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1257                         vm_page_t pp;
1258
1259                         if (op & OBSC_COLLAPSE_NOWAIT) {
1260                                 if (
1261                                     (p->flags & PG_BUSY) ||
1262                                     !p->valid || 
1263                                     p->hold_count || 
1264                                     p->wire_count ||
1265                                     p->busy
1266                                 ) {
1267                                         p = next;
1268                                         continue;
1269                                 }
1270                         } else if (op & OBSC_COLLAPSE_WAIT) {
1271                                 if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1272                                         /*
1273                                          * If we slept, anything could have
1274                                          * happened.  Since the object is
1275                                          * marked dead, the backing offset
1276                                          * should not have changed so we
1277                                          * just restart our scan.
1278                                          */
1279                                         p = TAILQ_FIRST(&backing_object->memq);
1280                                         continue;
1281                                 }
1282                         }
1283
1284                         /* 
1285                          * Busy the page
1286                          */
1287                         vm_page_busy(p);
1288
1289                         KASSERT(
1290                             p->object == backing_object,
1291                             ("vm_object_qcollapse(): object mismatch")
1292                         );
1293
1294                         /*
1295                          * Destroy any associated swap
1296                          */
1297                         if (backing_object->type == OBJT_SWAP) {
1298                                 swap_pager_freespace(
1299                                     backing_object, 
1300                                     p->pindex,
1301                                     1
1302                                 );
1303                         }
1304
1305                         if (
1306                             p->pindex < backing_offset_index ||
1307                             new_pindex >= object->size
1308                         ) {
1309                                 /*
1310                                  * Page is out of the parent object's range, we 
1311                                  * can simply destroy it. 
1312                                  */
1313                                 vm_page_protect(p, VM_PROT_NONE);
1314                                 vm_page_free(p);
1315                                 p = next;
1316                                 continue;
1317                         }
1318
1319                         pp = vm_page_lookup(object, new_pindex);
1320                         if (
1321                             pp != NULL ||
1322                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1323                         ) {
1324                                 /*
1325                                  * page already exists in parent OR swap exists
1326                                  * for this location in the parent.  Destroy 
1327                                  * the original page from the backing object.
1328                                  *
1329                                  * Leave the parent's page alone
1330                                  */
1331                                 vm_page_protect(p, VM_PROT_NONE);
1332                                 vm_page_free(p);
1333                                 p = next;
1334                                 continue;
1335                         }
1336
1337                         /*
1338                          * Page does not exist in parent, rename the
1339                          * page from the backing object to the main object. 
1340                          *
1341                          * If the page was mapped to a process, it can remain 
1342                          * mapped through the rename.
1343                          */
1344                         if ((p->queue - p->pc) == PQ_CACHE)
1345                                 vm_page_deactivate(p);
1346
1347                         vm_page_rename(p, object, new_pindex);
1348                         /* page automatically made dirty by rename */
1349                 }
1350                 p = next;
1351         }
1352         splx(s);
1353         return (r);
1354 }
1355
1356
1357 /*
1358  * this version of collapse allows the operation to occur earlier and
1359  * when paging_in_progress is true for an object...  This is not a complete
1360  * operation, but should plug 99.9% of the rest of the leaks.
1361  */
1362 static void
1363 vm_object_qcollapse(vm_object_t object)
1364 {
1365         vm_object_t backing_object = object->backing_object;
1366
1367         GIANT_REQUIRED;
1368
1369         if (backing_object->ref_count != 1)
1370                 return;
1371
1372         backing_object->ref_count += 2;
1373
1374         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1375
1376         backing_object->ref_count -= 2;
1377 }
1378
1379 /*
1380  *      vm_object_collapse:
1381  *
1382  *      Collapse an object with the object backing it.
1383  *      Pages in the backing object are moved into the
1384  *      parent, and the backing object is deallocated.
1385  */
1386 void
1387 vm_object_collapse(vm_object_t object)
1388 {
1389         GIANT_REQUIRED;
1390         
1391         while (TRUE) {
1392                 vm_object_t backing_object;
1393
1394                 /*
1395                  * Verify that the conditions are right for collapse:
1396                  *
1397                  * The object exists and the backing object exists.
1398                  */
1399                 if (object == NULL)
1400                         break;
1401
1402                 if ((backing_object = object->backing_object) == NULL)
1403                         break;
1404
1405                 /*
1406                  * we check the backing object first, because it is most likely
1407                  * not collapsable.
1408                  */
1409                 if (backing_object->handle != NULL ||
1410                     (backing_object->type != OBJT_DEFAULT &&
1411                      backing_object->type != OBJT_SWAP) ||
1412                     (backing_object->flags & OBJ_DEAD) ||
1413                     object->handle != NULL ||
1414                     (object->type != OBJT_DEFAULT &&
1415                      object->type != OBJT_SWAP) ||
1416                     (object->flags & OBJ_DEAD)) {
1417                         break;
1418                 }
1419
1420                 if (
1421                     object->paging_in_progress != 0 ||
1422                     backing_object->paging_in_progress != 0
1423                 ) {
1424                         vm_object_qcollapse(object);
1425                         break;
1426                 }
1427
1428                 /*
1429                  * We know that we can either collapse the backing object (if
1430                  * the parent is the only reference to it) or (perhaps) have
1431                  * the parent bypass the object if the parent happens to shadow
1432                  * all the resident pages in the entire backing object.
1433                  *
1434                  * This is ignoring pager-backed pages such as swap pages.
1435                  * vm_object_backing_scan fails the shadowing test in this
1436                  * case.
1437                  */
1438                 if (backing_object->ref_count == 1) {
1439                         /*
1440                          * If there is exactly one reference to the backing
1441                          * object, we can collapse it into the parent.  
1442                          */
1443                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1444
1445                         /*
1446                          * Move the pager from backing_object to object.
1447                          */
1448                         if (backing_object->type == OBJT_SWAP) {
1449                                 vm_object_pip_add(backing_object, 1);
1450
1451                                 /*
1452                                  * scrap the paging_offset junk and do a 
1453                                  * discrete copy.  This also removes major 
1454                                  * assumptions about how the swap-pager 
1455                                  * works from where it doesn't belong.  The
1456                                  * new swapper is able to optimize the
1457                                  * destroy-source case.
1458                                  */
1459                                 vm_object_pip_add(object, 1);
1460                                 swap_pager_copy(
1461                                     backing_object,
1462                                     object,
1463                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1464                                 vm_object_pip_wakeup(object);
1465
1466                                 vm_object_pip_wakeup(backing_object);
1467                         }
1468                         /*
1469                          * Object now shadows whatever backing_object did.
1470                          * Note that the reference to 
1471                          * backing_object->backing_object moves from within 
1472                          * backing_object to within object.
1473                          */
1474                         TAILQ_REMOVE(
1475                             &object->backing_object->shadow_head, 
1476                             object,
1477                             shadow_list
1478                         );
1479                         object->backing_object->shadow_count--;
1480                         object->backing_object->generation++;
1481                         if (backing_object->backing_object) {
1482                                 TAILQ_REMOVE(
1483                                     &backing_object->backing_object->shadow_head,
1484                                     backing_object, 
1485                                     shadow_list
1486                                 );
1487                                 backing_object->backing_object->shadow_count--;
1488                                 backing_object->backing_object->generation++;
1489                         }
1490                         object->backing_object = backing_object->backing_object;
1491                         if (object->backing_object) {
1492                                 TAILQ_INSERT_TAIL(
1493                                     &object->backing_object->shadow_head,
1494                                     object, 
1495                                     shadow_list
1496                                 );
1497                                 object->backing_object->shadow_count++;
1498                                 object->backing_object->generation++;
1499                         }
1500
1501                         object->backing_object_offset +=
1502                             backing_object->backing_object_offset;
1503
1504                         /*
1505                          * Discard backing_object.
1506                          *
1507                          * Since the backing object has no pages, no pager left,
1508                          * and no object references within it, all that is
1509                          * necessary is to dispose of it.
1510                          */
1511                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1512                         KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1513
1514                         TAILQ_REMOVE(
1515                             &vm_object_list, 
1516                             backing_object,
1517                             object_list
1518                         );
1519
1520                         uma_zfree(obj_zone, backing_object);
1521
1522                         object_collapses++;
1523                 } else {
1524                         vm_object_t new_backing_object;
1525
1526                         /*
1527                          * If we do not entirely shadow the backing object,
1528                          * there is nothing we can do so we give up.
1529                          */
1530                         if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1531                                 break;
1532                         }
1533
1534                         /*
1535                          * Make the parent shadow the next object in the
1536                          * chain.  Deallocating backing_object will not remove
1537                          * it, since its reference count is at least 2.
1538                          */
1539                         TAILQ_REMOVE(
1540                             &backing_object->shadow_head,
1541                             object,
1542                             shadow_list
1543                         );
1544                         backing_object->shadow_count--;
1545                         backing_object->generation++;
1546
1547                         new_backing_object = backing_object->backing_object;
1548                         if ((object->backing_object = new_backing_object) != NULL) {
1549                                 vm_object_reference(new_backing_object);
1550                                 TAILQ_INSERT_TAIL(
1551                                     &new_backing_object->shadow_head,
1552                                     object,
1553                                     shadow_list
1554                                 );
1555                                 new_backing_object->shadow_count++;
1556                                 new_backing_object->generation++;
1557                                 object->backing_object_offset +=
1558                                         backing_object->backing_object_offset;
1559                         }
1560
1561                         /*
1562                          * Drop the reference count on backing_object. Since
1563                          * its ref_count was at least 2, it will not vanish;
1564                          * so we don't need to call vm_object_deallocate, but
1565                          * we do anyway.
1566                          */
1567                         vm_object_deallocate(backing_object);
1568                         object_bypasses++;
1569                 }
1570
1571                 /*
1572                  * Try again with this object's new backing object.
1573                  */
1574         }
1575 }
1576
1577 /*
1578  *      vm_object_page_remove: [internal]
1579  *
1580  *      Removes all physical pages in the specified
1581  *      object range from the object's list of pages.
1582  *
1583  *      The object must be locked.
1584  */
1585 void
1586 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, boolean_t clean_only)
1587 {
1588         vm_page_t p, next;
1589         unsigned int size;
1590         int all;
1591
1592         GIANT_REQUIRED;
1593         
1594         if (object == NULL ||
1595             object->resident_page_count == 0)
1596                 return;
1597
1598         all = ((end == 0) && (start == 0));
1599
1600         /*
1601          * Since physically-backed objects do not use managed pages, we can't
1602          * remove pages from the object (we must instead remove the page
1603          * references, and then destroy the object).
1604          */
1605         KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1606
1607         vm_object_pip_add(object, 1);
1608 again:
1609         size = end - start;
1610         if (all || size > object->resident_page_count / 4) {
1611                 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1612                         next = TAILQ_NEXT(p, listq);
1613                         if (all || ((start <= p->pindex) && (p->pindex < end))) {
1614                                 if (p->wire_count != 0) {
1615                                         vm_page_protect(p, VM_PROT_NONE);
1616                                         if (!clean_only)
1617                                                 p->valid = 0;
1618                                         continue;
1619                                 }
1620
1621                                 /*
1622                                  * The busy flags are only cleared at
1623                                  * interrupt -- minimize the spl transitions
1624                                  */
1625                                 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1626                                         goto again;
1627
1628                                 if (clean_only && p->valid) {
1629                                         vm_page_test_dirty(p);
1630                                         if (p->valid & p->dirty)
1631                                                 continue;
1632                                 }
1633
1634                                 vm_page_busy(p);
1635                                 vm_page_protect(p, VM_PROT_NONE);
1636                                 vm_page_free(p);
1637                         }
1638                 }
1639         } else {
1640                 while (size > 0) {
1641                         if ((p = vm_page_lookup(object, start)) != 0) {
1642
1643                                 if (p->wire_count != 0) {
1644                                         vm_page_protect(p, VM_PROT_NONE);
1645                                         if (!clean_only)
1646                                                 p->valid = 0;
1647                                         start += 1;
1648                                         size -= 1;
1649                                         continue;
1650                                 }
1651
1652                                 /*
1653                                  * The busy flags are only cleared at
1654                                  * interrupt -- minimize the spl transitions
1655                                  */
1656                                 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1657                                         goto again;
1658
1659                                 if (clean_only && p->valid) {
1660                                         vm_page_test_dirty(p);
1661                                         if (p->valid & p->dirty) {
1662                                                 start += 1;
1663                                                 size -= 1;
1664                                                 continue;
1665                                         }
1666                                 }
1667
1668                                 vm_page_busy(p);
1669                                 vm_page_protect(p, VM_PROT_NONE);
1670                                 vm_page_free(p);
1671                         }
1672                         start += 1;
1673                         size -= 1;
1674                 }
1675         }
1676         vm_object_pip_wakeup(object);
1677 }
1678
1679 /*
1680  *      Routine:        vm_object_coalesce
1681  *      Function:       Coalesces two objects backing up adjoining
1682  *                      regions of memory into a single object.
1683  *
1684  *      returns TRUE if objects were combined.
1685  *
1686  *      NOTE:   Only works at the moment if the second object is NULL -
1687  *              if it's not, which object do we lock first?
1688  *
1689  *      Parameters:
1690  *              prev_object     First object to coalesce
1691  *              prev_offset     Offset into prev_object
1692  *              next_object     Second object into coalesce
1693  *              next_offset     Offset into next_object
1694  *
1695  *              prev_size       Size of reference to prev_object
1696  *              next_size       Size of reference to next_object
1697  *
1698  *      Conditions:
1699  *      The object must *not* be locked.
1700  */
1701 boolean_t
1702 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex, vm_size_t prev_size, vm_size_t next_size)
1703 {
1704         vm_pindex_t next_pindex;
1705
1706         GIANT_REQUIRED;
1707
1708         if (prev_object == NULL) {
1709                 return (TRUE);
1710         }
1711
1712         if (prev_object->type != OBJT_DEFAULT &&
1713             prev_object->type != OBJT_SWAP) {
1714                 return (FALSE);
1715         }
1716
1717         /*
1718          * Try to collapse the object first
1719          */
1720         vm_object_collapse(prev_object);
1721
1722         /*
1723          * Can't coalesce if: . more than one reference . paged out . shadows
1724          * another object . has a copy elsewhere (any of which mean that the
1725          * pages not mapped to prev_entry may be in use anyway)
1726          */
1727         if (prev_object->backing_object != NULL) {
1728                 return (FALSE);
1729         }
1730
1731         prev_size >>= PAGE_SHIFT;
1732         next_size >>= PAGE_SHIFT;
1733         next_pindex = prev_pindex + prev_size;
1734
1735         if ((prev_object->ref_count > 1) &&
1736             (prev_object->size != next_pindex)) {
1737                 return (FALSE);
1738         }
1739
1740         /*
1741          * Remove any pages that may still be in the object from a previous
1742          * deallocation.
1743          */
1744         if (next_pindex < prev_object->size) {
1745                 vm_object_page_remove(prev_object,
1746                                       next_pindex,
1747                                       next_pindex + next_size, FALSE);
1748                 if (prev_object->type == OBJT_SWAP)
1749                         swap_pager_freespace(prev_object,
1750                                              next_pindex, next_size);
1751         }
1752
1753         /*
1754          * Extend the object if necessary.
1755          */
1756         if (next_pindex + next_size > prev_object->size)
1757                 prev_object->size = next_pindex + next_size;
1758
1759         return (TRUE);
1760 }
1761
1762 void
1763 vm_object_set_writeable_dirty(vm_object_t object)
1764 {
1765         struct vnode *vp;
1766
1767         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1768         if (object->type == OBJT_VNODE &&
1769             (vp = (struct vnode *)object->handle) != NULL) {
1770                 if ((vp->v_flag & VOBJDIRTY) == 0) {
1771                         mtx_lock(&vp->v_interlock);
1772                         vp->v_flag |= VOBJDIRTY;
1773                         mtx_unlock(&vp->v_interlock);
1774                 }
1775         }
1776 }
1777
1778 #include "opt_ddb.h"
1779 #ifdef DDB
1780 #include <sys/kernel.h>
1781
1782 #include <sys/cons.h>
1783
1784 #include <ddb/ddb.h>
1785
1786 static int
1787 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1788 {
1789         vm_map_t tmpm;
1790         vm_map_entry_t tmpe;
1791         vm_object_t obj;
1792         int entcount;
1793
1794         if (map == 0)
1795                 return 0;
1796
1797         if (entry == 0) {
1798                 tmpe = map->header.next;
1799                 entcount = map->nentries;
1800                 while (entcount-- && (tmpe != &map->header)) {
1801                         if (_vm_object_in_map(map, object, tmpe)) {
1802                                 return 1;
1803                         }
1804                         tmpe = tmpe->next;
1805                 }
1806         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1807                 tmpm = entry->object.sub_map;
1808                 tmpe = tmpm->header.next;
1809                 entcount = tmpm->nentries;
1810                 while (entcount-- && tmpe != &tmpm->header) {
1811                         if (_vm_object_in_map(tmpm, object, tmpe)) {
1812                                 return 1;
1813                         }
1814                         tmpe = tmpe->next;
1815                 }
1816         } else if ((obj = entry->object.vm_object) != NULL) {
1817                 for (; obj; obj = obj->backing_object)
1818                         if (obj == object) {
1819                                 return 1;
1820                         }
1821         }
1822         return 0;
1823 }
1824
1825 static int
1826 vm_object_in_map(vm_object_t object)
1827 {
1828         struct proc *p;
1829
1830         /* sx_slock(&allproc_lock); */
1831         LIST_FOREACH(p, &allproc, p_list) {
1832                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1833                         continue;
1834                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
1835                         /* sx_sunlock(&allproc_lock); */
1836                         return 1;
1837                 }
1838         }
1839         /* sx_sunlock(&allproc_lock); */
1840         if (_vm_object_in_map(kernel_map, object, 0))
1841                 return 1;
1842         if (_vm_object_in_map(kmem_map, object, 0))
1843                 return 1;
1844         if (_vm_object_in_map(pager_map, object, 0))
1845                 return 1;
1846         if (_vm_object_in_map(buffer_map, object, 0))
1847                 return 1;
1848         return 0;
1849 }
1850
1851 DB_SHOW_COMMAND(vmochk, vm_object_check)
1852 {
1853         vm_object_t object;
1854
1855         /*
1856          * make sure that internal objs are in a map somewhere
1857          * and none have zero ref counts.
1858          */
1859         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1860                 if (object->handle == NULL &&
1861                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1862                         if (object->ref_count == 0) {
1863                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1864                                         (long)object->size);
1865                         }
1866                         if (!vm_object_in_map(object)) {
1867                                 db_printf(
1868                         "vmochk: internal obj is not in a map: "
1869                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1870                                     object->ref_count, (u_long)object->size, 
1871                                     (u_long)object->size,
1872                                     (void *)object->backing_object);
1873                         }
1874                 }
1875         }
1876 }
1877
1878 /*
1879  *      vm_object_print:        [ debug ]
1880  */
1881 DB_SHOW_COMMAND(object, vm_object_print_static)
1882 {
1883         /* XXX convert args. */
1884         vm_object_t object = (vm_object_t)addr;
1885         boolean_t full = have_addr;
1886
1887         vm_page_t p;
1888
1889         /* XXX count is an (unused) arg.  Avoid shadowing it. */
1890 #define count   was_count
1891
1892         int count;
1893
1894         if (object == NULL)
1895                 return;
1896
1897         db_iprintf(
1898             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1899             object, (int)object->type, (u_long)object->size,
1900             object->resident_page_count, object->ref_count, object->flags);
1901         /*
1902          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1903          */
1904         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1905             object->shadow_count, 
1906             object->backing_object ? object->backing_object->ref_count : 0,
1907             object->backing_object, (long)object->backing_object_offset);
1908
1909         if (!full)
1910                 return;
1911
1912         db_indent += 2;
1913         count = 0;
1914         TAILQ_FOREACH(p, &object->memq, listq) {
1915                 if (count == 0)
1916                         db_iprintf("memory:=");
1917                 else if (count == 6) {
1918                         db_printf("\n");
1919                         db_iprintf(" ...");
1920                         count = 0;
1921                 } else
1922                         db_printf(",");
1923                 count++;
1924
1925                 db_printf("(off=0x%lx,page=0x%lx)",
1926                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1927         }
1928         if (count != 0)
1929                 db_printf("\n");
1930         db_indent -= 2;
1931 }
1932
1933 /* XXX. */
1934 #undef count
1935
1936 /* XXX need this non-static entry for calling from vm_map_print. */
1937 void
1938 vm_object_print(
1939         /* db_expr_t */ long addr,
1940         boolean_t have_addr,
1941         /* db_expr_t */ long count,
1942         char *modif)
1943 {
1944         vm_object_print_static(addr, have_addr, count, modif);
1945 }
1946
1947 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1948 {
1949         vm_object_t object;
1950         int nl = 0;
1951         int c;
1952
1953         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1954                 vm_pindex_t idx, fidx;
1955                 vm_pindex_t osize;
1956                 vm_offset_t pa = -1, padiff;
1957                 int rcount;
1958                 vm_page_t m;
1959
1960                 db_printf("new object: %p\n", (void *)object);
1961                 if (nl > 18) {
1962                         c = cngetc();
1963                         if (c != ' ')
1964                                 return;
1965                         nl = 0;
1966                 }
1967                 nl++;
1968                 rcount = 0;
1969                 fidx = 0;
1970                 osize = object->size;
1971                 if (osize > 128)
1972                         osize = 128;
1973                 for (idx = 0; idx < osize; idx++) {
1974                         m = vm_page_lookup(object, idx);
1975                         if (m == NULL) {
1976                                 if (rcount) {
1977                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1978                                                 (long)fidx, rcount, (long)pa);
1979                                         if (nl > 18) {
1980                                                 c = cngetc();
1981                                                 if (c != ' ')
1982                                                         return;
1983                                                 nl = 0;
1984                                         }
1985                                         nl++;
1986                                         rcount = 0;
1987                                 }
1988                                 continue;
1989                         }
1990
1991                                 
1992                         if (rcount &&
1993                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1994                                 ++rcount;
1995                                 continue;
1996                         }
1997                         if (rcount) {
1998                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1999                                 padiff >>= PAGE_SHIFT;
2000                                 padiff &= PQ_L2_MASK;
2001                                 if (padiff == 0) {
2002                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2003                                         ++rcount;
2004                                         continue;
2005                                 }
2006                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2007                                         (long)fidx, rcount, (long)pa);
2008                                 db_printf("pd(%ld)\n", (long)padiff);
2009                                 if (nl > 18) {
2010                                         c = cngetc();
2011                                         if (c != ' ')
2012                                                 return;
2013                                         nl = 0;
2014                                 }
2015                                 nl++;
2016                         }
2017                         fidx = idx;
2018                         pa = VM_PAGE_TO_PHYS(m);
2019                         rcount = 1;
2020                 }
2021                 if (rcount) {
2022                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2023                                 (long)fidx, rcount, (long)pa);
2024                         if (nl > 18) {
2025                                 c = cngetc();
2026                                 if (c != ' ')
2027                                         return;
2028                                 nl = 0;
2029                         }
2030                         nl++;
2031                 }
2032         }
2033 }
2034 #endif /* DDB */