]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
zfs: merge openzfs/zfs@3522f57b6 (zfs-2.1-release) to stable/13
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/limits.h>
77 #include <sys/lock.h>
78 #include <sys/mman.h>
79 #include <sys/mount.h>
80 #include <sys/kernel.h>
81 #include <sys/pctrie.h>
82 #include <sys/sysctl.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>           /* for curproc, pageproc */
85 #include <sys/refcount.h>
86 #include <sys/socket.h>
87 #include <sys/resourcevar.h>
88 #include <sys/refcount.h>
89 #include <sys/rwlock.h>
90 #include <sys/user.h>
91 #include <sys/vnode.h>
92 #include <sys/vmmeter.h>
93 #include <sys/sx.h>
94
95 #include <vm/vm.h>
96 #include <vm/vm_param.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_phys.h>
104 #include <vm/vm_pagequeue.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/uma.h>
111
112 static int old_msync;
113 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
114     "Use old (insecure) msync behavior");
115
116 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
117                     int pagerflags, int flags, boolean_t *allclean,
118                     boolean_t *eio);
119 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
120                     boolean_t *allclean);
121 static void     vm_object_backing_remove(vm_object_t object);
122
123 /*
124  *      Virtual memory objects maintain the actual data
125  *      associated with allocated virtual memory.  A given
126  *      page of memory exists within exactly one object.
127  *
128  *      An object is only deallocated when all "references"
129  *      are given up.  Only one "reference" to a given
130  *      region of an object should be writeable.
131  *
132  *      Associated with each object is a list of all resident
133  *      memory pages belonging to that object; this list is
134  *      maintained by the "vm_page" module, and locked by the object's
135  *      lock.
136  *
137  *      Each object also records a "pager" routine which is
138  *      used to retrieve (and store) pages to the proper backing
139  *      storage.  In addition, objects may be backed by other
140  *      objects from which they were virtual-copied.
141  *
142  *      The only items within the object structure which are
143  *      modified after time of creation are:
144  *              reference count         locked by object's lock
145  *              pager routine           locked by object's lock
146  *
147  */
148
149 struct object_q vm_object_list;
150 struct mtx vm_object_list_mtx;  /* lock for object list and count */
151
152 struct vm_object kernel_object_store;
153
154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
155     "VM object stats");
156
157 static COUNTER_U64_DEFINE_EARLY(object_collapses);
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
159     &object_collapses,
160     "VM object collapses");
161
162 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
164     &object_bypasses,
165     "VM object bypasses");
166
167 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
168 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
169     &object_collapse_waits,
170     "Number of sleeps for collapse");
171
172 static uma_zone_t obj_zone;
173
174 static int vm_object_zinit(void *mem, int size, int flags);
175
176 #ifdef INVARIANTS
177 static void vm_object_zdtor(void *mem, int size, void *arg);
178
179 static void
180 vm_object_zdtor(void *mem, int size, void *arg)
181 {
182         vm_object_t object;
183
184         object = (vm_object_t)mem;
185         KASSERT(object->ref_count == 0,
186             ("object %p ref_count = %d", object, object->ref_count));
187         KASSERT(TAILQ_EMPTY(&object->memq),
188             ("object %p has resident pages in its memq", object));
189         KASSERT(vm_radix_is_empty(&object->rtree),
190             ("object %p has resident pages in its trie", object));
191 #if VM_NRESERVLEVEL > 0
192         KASSERT(LIST_EMPTY(&object->rvq),
193             ("object %p has reservations",
194             object));
195 #endif
196         KASSERT(!vm_object_busied(object),
197             ("object %p busy = %d", object, blockcount_read(&object->busy)));
198         KASSERT(object->resident_page_count == 0,
199             ("object %p resident_page_count = %d",
200             object, object->resident_page_count));
201         KASSERT(object->shadow_count == 0,
202             ("object %p shadow_count = %d",
203             object, object->shadow_count));
204         KASSERT(object->type == OBJT_DEAD,
205             ("object %p has non-dead type %d",
206             object, object->type));
207 }
208 #endif
209
210 static int
211 vm_object_zinit(void *mem, int size, int flags)
212 {
213         vm_object_t object;
214
215         object = (vm_object_t)mem;
216         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
217
218         /* These are true for any object that has been freed */
219         object->type = OBJT_DEAD;
220         vm_radix_init(&object->rtree);
221         refcount_init(&object->ref_count, 0);
222         blockcount_init(&object->paging_in_progress);
223         blockcount_init(&object->busy);
224         object->resident_page_count = 0;
225         object->shadow_count = 0;
226         object->flags = OBJ_DEAD;
227
228         mtx_lock(&vm_object_list_mtx);
229         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
230         mtx_unlock(&vm_object_list_mtx);
231         return (0);
232 }
233
234 static void
235 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
236     vm_object_t object, void *handle)
237 {
238
239         TAILQ_INIT(&object->memq);
240         LIST_INIT(&object->shadow_head);
241
242         object->type = type;
243         object->flags = flags;
244         if ((flags & OBJ_SWAP) != 0)
245                 pctrie_init(&object->un_pager.swp.swp_blks);
246
247         /*
248          * Ensure that swap_pager_swapoff() iteration over object_list
249          * sees up to date type and pctrie head if it observed
250          * non-dead object.
251          */
252         atomic_thread_fence_rel();
253
254         object->pg_color = 0;
255         object->size = size;
256         object->domain.dr_policy = NULL;
257         object->generation = 1;
258         object->cleangeneration = 1;
259         refcount_init(&object->ref_count, 1);
260         object->memattr = VM_MEMATTR_DEFAULT;
261         object->cred = NULL;
262         object->charge = 0;
263         object->handle = handle;
264         object->backing_object = NULL;
265         object->backing_object_offset = (vm_ooffset_t) 0;
266 #if VM_NRESERVLEVEL > 0
267         LIST_INIT(&object->rvq);
268 #endif
269         umtx_shm_object_init(object);
270 }
271
272 /*
273  *      vm_object_init:
274  *
275  *      Initialize the VM objects module.
276  */
277 void
278 vm_object_init(void)
279 {
280         TAILQ_INIT(&vm_object_list);
281         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
282
283         rw_init(&kernel_object->lock, "kernel vm object");
284         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
285             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
286 #if VM_NRESERVLEVEL > 0
287         kernel_object->flags |= OBJ_COLORED;
288         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
289 #endif
290         kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
291
292         /*
293          * The lock portion of struct vm_object must be type stable due
294          * to vm_pageout_fallback_object_lock locking a vm object
295          * without holding any references to it.
296          *
297          * paging_in_progress is valid always.  Lockless references to
298          * the objects may acquire pip and then check OBJ_DEAD.
299          */
300         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
301 #ifdef INVARIANTS
302             vm_object_zdtor,
303 #else
304             NULL,
305 #endif
306             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
307
308         vm_radix_zinit();
309 }
310
311 void
312 vm_object_clear_flag(vm_object_t object, u_short bits)
313 {
314
315         VM_OBJECT_ASSERT_WLOCKED(object);
316         object->flags &= ~bits;
317 }
318
319 /*
320  *      Sets the default memory attribute for the specified object.  Pages
321  *      that are allocated to this object are by default assigned this memory
322  *      attribute.
323  *
324  *      Presently, this function must be called before any pages are allocated
325  *      to the object.  In the future, this requirement may be relaxed for
326  *      "default" and "swap" objects.
327  */
328 int
329 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
330 {
331
332         VM_OBJECT_ASSERT_WLOCKED(object);
333
334         if (object->type == OBJT_DEAD)
335                 return (KERN_INVALID_ARGUMENT);
336         if (!TAILQ_EMPTY(&object->memq))
337                 return (KERN_FAILURE);
338
339         object->memattr = memattr;
340         return (KERN_SUCCESS);
341 }
342
343 void
344 vm_object_pip_add(vm_object_t object, short i)
345 {
346
347         if (i > 0)
348                 blockcount_acquire(&object->paging_in_progress, i);
349 }
350
351 void
352 vm_object_pip_wakeup(vm_object_t object)
353 {
354
355         vm_object_pip_wakeupn(object, 1);
356 }
357
358 void
359 vm_object_pip_wakeupn(vm_object_t object, short i)
360 {
361
362         if (i > 0)
363                 blockcount_release(&object->paging_in_progress, i);
364 }
365
366 /*
367  * Atomically drop the object lock and wait for pip to drain.  This protects
368  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
369  * on return.
370  */
371 static void
372 vm_object_pip_sleep(vm_object_t object, const char *waitid)
373 {
374
375         (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
376             waitid, PVM | PDROP);
377 }
378
379 void
380 vm_object_pip_wait(vm_object_t object, const char *waitid)
381 {
382
383         VM_OBJECT_ASSERT_WLOCKED(object);
384
385         blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
386             PVM);
387 }
388
389 void
390 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
391 {
392
393         VM_OBJECT_ASSERT_UNLOCKED(object);
394
395         blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
396 }
397
398 /*
399  *      vm_object_allocate:
400  *
401  *      Returns a new object with the given size.
402  */
403 vm_object_t
404 vm_object_allocate(objtype_t type, vm_pindex_t size)
405 {
406         vm_object_t object;
407         u_short flags;
408
409         switch (type) {
410         case OBJT_DEAD:
411                 panic("vm_object_allocate: can't create OBJT_DEAD");
412         case OBJT_DEFAULT:
413                 flags = OBJ_COLORED;
414                 break;
415         case OBJT_SWAP:
416                 flags = OBJ_COLORED | OBJ_SWAP;
417                 break;
418         case OBJT_DEVICE:
419         case OBJT_SG:
420                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
421                 break;
422         case OBJT_MGTDEVICE:
423                 flags = OBJ_FICTITIOUS;
424                 break;
425         case OBJT_PHYS:
426                 flags = OBJ_UNMANAGED;
427                 break;
428         case OBJT_VNODE:
429                 flags = 0;
430                 break;
431         default:
432                 panic("vm_object_allocate: type %d is undefined or dynamic",
433                     type);
434         }
435         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
436         _vm_object_allocate(type, size, flags, object, NULL);
437
438         return (object);
439 }
440
441 vm_object_t
442 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
443 {
444         vm_object_t object;
445
446         MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
447         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
448         _vm_object_allocate(dyntype, size, flags, object, NULL);
449
450         return (object);
451 }
452
453 /*
454  *      vm_object_allocate_anon:
455  *
456  *      Returns a new default object of the given size and marked as
457  *      anonymous memory for special split/collapse handling.  Color
458  *      to be initialized by the caller.
459  */
460 vm_object_t
461 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
462     struct ucred *cred, vm_size_t charge)
463 {
464         vm_object_t handle, object;
465
466         if (backing_object == NULL)
467                 handle = NULL;
468         else if ((backing_object->flags & OBJ_ANON) != 0)
469                 handle = backing_object->handle;
470         else
471                 handle = backing_object;
472         object = uma_zalloc(obj_zone, M_WAITOK);
473         _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
474             object, handle);
475         object->cred = cred;
476         object->charge = cred != NULL ? charge : 0;
477         return (object);
478 }
479
480 static void
481 vm_object_reference_vnode(vm_object_t object)
482 {
483         u_int old;
484
485         /*
486          * vnode objects need the lock for the first reference
487          * to serialize with vnode_object_deallocate().
488          */
489         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
490                 VM_OBJECT_RLOCK(object);
491                 old = refcount_acquire(&object->ref_count);
492                 if (object->type == OBJT_VNODE && old == 0)
493                         vref(object->handle);
494                 VM_OBJECT_RUNLOCK(object);
495         }
496 }
497
498 /*
499  *      vm_object_reference:
500  *
501  *      Acquires a reference to the given object.
502  */
503 void
504 vm_object_reference(vm_object_t object)
505 {
506
507         if (object == NULL)
508                 return;
509
510         if (object->type == OBJT_VNODE)
511                 vm_object_reference_vnode(object);
512         else
513                 refcount_acquire(&object->ref_count);
514         KASSERT((object->flags & OBJ_DEAD) == 0,
515             ("vm_object_reference: Referenced dead object."));
516 }
517
518 /*
519  *      vm_object_reference_locked:
520  *
521  *      Gets another reference to the given object.
522  *
523  *      The object must be locked.
524  */
525 void
526 vm_object_reference_locked(vm_object_t object)
527 {
528         u_int old;
529
530         VM_OBJECT_ASSERT_LOCKED(object);
531         old = refcount_acquire(&object->ref_count);
532         if (object->type == OBJT_VNODE && old == 0)
533                 vref(object->handle);
534         KASSERT((object->flags & OBJ_DEAD) == 0,
535             ("vm_object_reference: Referenced dead object."));
536 }
537
538 /*
539  * Handle deallocating an object of type OBJT_VNODE.
540  */
541 static void
542 vm_object_deallocate_vnode(vm_object_t object)
543 {
544         struct vnode *vp = (struct vnode *) object->handle;
545         bool last;
546
547         KASSERT(object->type == OBJT_VNODE,
548             ("vm_object_deallocate_vnode: not a vnode object"));
549         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
550
551         /* Object lock to protect handle lookup. */
552         last = refcount_release(&object->ref_count);
553         VM_OBJECT_RUNLOCK(object);
554
555         if (!last)
556                 return;
557
558         if (!umtx_shm_vnobj_persistent)
559                 umtx_shm_object_terminated(object);
560
561         /* vrele may need the vnode lock. */
562         vrele(vp);
563 }
564
565 /*
566  * We dropped a reference on an object and discovered that it had a
567  * single remaining shadow.  This is a sibling of the reference we
568  * dropped.  Attempt to collapse the sibling and backing object.
569  */
570 static vm_object_t
571 vm_object_deallocate_anon(vm_object_t backing_object)
572 {
573         vm_object_t object;
574
575         /* Fetch the final shadow.  */
576         object = LIST_FIRST(&backing_object->shadow_head);
577         KASSERT(object != NULL && backing_object->shadow_count == 1,
578             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
579             backing_object->ref_count, backing_object->shadow_count));
580         KASSERT((object->flags & OBJ_ANON) != 0,
581             ("invalid shadow object %p", object));
582
583         if (!VM_OBJECT_TRYWLOCK(object)) {
584                 /*
585                  * Prevent object from disappearing since we do not have a
586                  * reference.
587                  */
588                 vm_object_pip_add(object, 1);
589                 VM_OBJECT_WUNLOCK(backing_object);
590                 VM_OBJECT_WLOCK(object);
591                 vm_object_pip_wakeup(object);
592         } else
593                 VM_OBJECT_WUNLOCK(backing_object);
594
595         /*
596          * Check for a collapse/terminate race with the last reference holder.
597          */
598         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
599             !refcount_acquire_if_not_zero(&object->ref_count)) {
600                 VM_OBJECT_WUNLOCK(object);
601                 return (NULL);
602         }
603         backing_object = object->backing_object;
604         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
605                 vm_object_collapse(object);
606         VM_OBJECT_WUNLOCK(object);
607
608         return (object);
609 }
610
611 /*
612  *      vm_object_deallocate:
613  *
614  *      Release a reference to the specified object,
615  *      gained either through a vm_object_allocate
616  *      or a vm_object_reference call.  When all references
617  *      are gone, storage associated with this object
618  *      may be relinquished.
619  *
620  *      No object may be locked.
621  */
622 void
623 vm_object_deallocate(vm_object_t object)
624 {
625         vm_object_t temp;
626         bool released;
627
628         while (object != NULL) {
629                 /*
630                  * If the reference count goes to 0 we start calling
631                  * vm_object_terminate() on the object chain.  A ref count
632                  * of 1 may be a special case depending on the shadow count
633                  * being 0 or 1.  These cases require a write lock on the
634                  * object.
635                  */
636                 if ((object->flags & OBJ_ANON) == 0)
637                         released = refcount_release_if_gt(&object->ref_count, 1);
638                 else
639                         released = refcount_release_if_gt(&object->ref_count, 2);
640                 if (released)
641                         return;
642
643                 if (object->type == OBJT_VNODE) {
644                         VM_OBJECT_RLOCK(object);
645                         if (object->type == OBJT_VNODE) {
646                                 vm_object_deallocate_vnode(object);
647                                 return;
648                         }
649                         VM_OBJECT_RUNLOCK(object);
650                 }
651
652                 VM_OBJECT_WLOCK(object);
653                 KASSERT(object->ref_count > 0,
654                     ("vm_object_deallocate: object deallocated too many times: %d",
655                     object->type));
656
657                 /*
658                  * If this is not the final reference to an anonymous
659                  * object we may need to collapse the shadow chain.
660                  */
661                 if (!refcount_release(&object->ref_count)) {
662                         if (object->ref_count > 1 ||
663                             object->shadow_count == 0) {
664                                 if ((object->flags & OBJ_ANON) != 0 &&
665                                     object->ref_count == 1)
666                                         vm_object_set_flag(object,
667                                             OBJ_ONEMAPPING);
668                                 VM_OBJECT_WUNLOCK(object);
669                                 return;
670                         }
671
672                         /* Handle collapsing last ref on anonymous objects. */
673                         object = vm_object_deallocate_anon(object);
674                         continue;
675                 }
676
677                 /*
678                  * Handle the final reference to an object.  We restart
679                  * the loop with the backing object to avoid recursion.
680                  */
681                 umtx_shm_object_terminated(object);
682                 temp = object->backing_object;
683                 if (temp != NULL) {
684                         KASSERT(object->type == OBJT_DEFAULT ||
685                             object->type == OBJT_SWAP,
686                             ("shadowed tmpfs v_object 2 %p", object));
687                         vm_object_backing_remove(object);
688                 }
689
690                 KASSERT((object->flags & OBJ_DEAD) == 0,
691                     ("vm_object_deallocate: Terminating dead object."));
692                 vm_object_set_flag(object, OBJ_DEAD);
693                 vm_object_terminate(object);
694                 object = temp;
695         }
696 }
697
698 /*
699  *      vm_object_destroy removes the object from the global object list
700  *      and frees the space for the object.
701  */
702 void
703 vm_object_destroy(vm_object_t object)
704 {
705
706         /*
707          * Release the allocation charge.
708          */
709         if (object->cred != NULL) {
710                 swap_release_by_cred(object->charge, object->cred);
711                 object->charge = 0;
712                 crfree(object->cred);
713                 object->cred = NULL;
714         }
715
716         /*
717          * Free the space for the object.
718          */
719         uma_zfree(obj_zone, object);
720 }
721
722 static void
723 vm_object_backing_remove_locked(vm_object_t object)
724 {
725         vm_object_t backing_object;
726
727         backing_object = object->backing_object;
728         VM_OBJECT_ASSERT_WLOCKED(object);
729         VM_OBJECT_ASSERT_WLOCKED(backing_object);
730
731         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
732             ("vm_object_backing_remove: Removing collapsing object."));
733
734         if ((object->flags & OBJ_SHADOWLIST) != 0) {
735                 LIST_REMOVE(object, shadow_list);
736                 backing_object->shadow_count--;
737                 object->flags &= ~OBJ_SHADOWLIST;
738         }
739         object->backing_object = NULL;
740 }
741
742 static void
743 vm_object_backing_remove(vm_object_t object)
744 {
745         vm_object_t backing_object;
746
747         VM_OBJECT_ASSERT_WLOCKED(object);
748
749         if ((object->flags & OBJ_SHADOWLIST) != 0) {
750                 backing_object = object->backing_object;
751                 VM_OBJECT_WLOCK(backing_object);
752                 vm_object_backing_remove_locked(object);
753                 VM_OBJECT_WUNLOCK(backing_object);
754         } else
755                 object->backing_object = NULL;
756 }
757
758 static void
759 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
760 {
761
762         VM_OBJECT_ASSERT_WLOCKED(object);
763
764         if ((backing_object->flags & OBJ_ANON) != 0) {
765                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
766                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
767                     shadow_list);
768                 backing_object->shadow_count++;
769                 object->flags |= OBJ_SHADOWLIST;
770         }
771         object->backing_object = backing_object;
772 }
773
774 static void
775 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
776 {
777
778         VM_OBJECT_ASSERT_WLOCKED(object);
779
780         if ((backing_object->flags & OBJ_ANON) != 0) {
781                 VM_OBJECT_WLOCK(backing_object);
782                 vm_object_backing_insert_locked(object, backing_object);
783                 VM_OBJECT_WUNLOCK(backing_object);
784         } else
785                 object->backing_object = backing_object;
786 }
787
788 /*
789  * Insert an object into a backing_object's shadow list with an additional
790  * reference to the backing_object added.
791  */
792 static void
793 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
794 {
795
796         VM_OBJECT_ASSERT_WLOCKED(object);
797
798         if ((backing_object->flags & OBJ_ANON) != 0) {
799                 VM_OBJECT_WLOCK(backing_object);
800                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
801                     ("shadowing dead anonymous object"));
802                 vm_object_reference_locked(backing_object);
803                 vm_object_backing_insert_locked(object, backing_object);
804                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
805                 VM_OBJECT_WUNLOCK(backing_object);
806         } else {
807                 vm_object_reference(backing_object);
808                 object->backing_object = backing_object;
809         }
810 }
811
812 /*
813  * Transfer a backing reference from backing_object to object.
814  */
815 static void
816 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
817 {
818         vm_object_t new_backing_object;
819
820         /*
821          * Note that the reference to backing_object->backing_object
822          * moves from within backing_object to within object.
823          */
824         vm_object_backing_remove_locked(object);
825         new_backing_object = backing_object->backing_object;
826         if (new_backing_object == NULL)
827                 return;
828         if ((new_backing_object->flags & OBJ_ANON) != 0) {
829                 VM_OBJECT_WLOCK(new_backing_object);
830                 vm_object_backing_remove_locked(backing_object);
831                 vm_object_backing_insert_locked(object, new_backing_object);
832                 VM_OBJECT_WUNLOCK(new_backing_object);
833         } else {
834                 object->backing_object = new_backing_object;
835                 backing_object->backing_object = NULL;
836         }
837 }
838
839 /*
840  * Wait for a concurrent collapse to settle.
841  */
842 static void
843 vm_object_collapse_wait(vm_object_t object)
844 {
845
846         VM_OBJECT_ASSERT_WLOCKED(object);
847
848         while ((object->flags & OBJ_COLLAPSING) != 0) {
849                 vm_object_pip_wait(object, "vmcolwait");
850                 counter_u64_add(object_collapse_waits, 1);
851         }
852 }
853
854 /*
855  * Waits for a backing object to clear a pending collapse and returns
856  * it locked if it is an ANON object.
857  */
858 static vm_object_t
859 vm_object_backing_collapse_wait(vm_object_t object)
860 {
861         vm_object_t backing_object;
862
863         VM_OBJECT_ASSERT_WLOCKED(object);
864
865         for (;;) {
866                 backing_object = object->backing_object;
867                 if (backing_object == NULL ||
868                     (backing_object->flags & OBJ_ANON) == 0)
869                         return (NULL);
870                 VM_OBJECT_WLOCK(backing_object);
871                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
872                         break;
873                 VM_OBJECT_WUNLOCK(object);
874                 vm_object_pip_sleep(backing_object, "vmbckwait");
875                 counter_u64_add(object_collapse_waits, 1);
876                 VM_OBJECT_WLOCK(object);
877         }
878         return (backing_object);
879 }
880
881 /*
882  *      vm_object_terminate_pages removes any remaining pageable pages
883  *      from the object and resets the object to an empty state.
884  */
885 static void
886 vm_object_terminate_pages(vm_object_t object)
887 {
888         vm_page_t p, p_next;
889
890         VM_OBJECT_ASSERT_WLOCKED(object);
891
892         /*
893          * Free any remaining pageable pages.  This also removes them from the
894          * paging queues.  However, don't free wired pages, just remove them
895          * from the object.  Rather than incrementally removing each page from
896          * the object, the page and object are reset to any empty state. 
897          */
898         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
899                 vm_page_assert_unbusied(p);
900                 KASSERT(p->object == object &&
901                     (p->ref_count & VPRC_OBJREF) != 0,
902                     ("vm_object_terminate_pages: page %p is inconsistent", p));
903
904                 p->object = NULL;
905                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
906                         VM_CNT_INC(v_pfree);
907                         vm_page_free(p);
908                 }
909         }
910
911         /*
912          * If the object contained any pages, then reset it to an empty state.
913          * None of the object's fields, including "resident_page_count", were
914          * modified by the preceding loop.
915          */
916         if (object->resident_page_count != 0) {
917                 vm_radix_reclaim_allnodes(&object->rtree);
918                 TAILQ_INIT(&object->memq);
919                 object->resident_page_count = 0;
920                 if (object->type == OBJT_VNODE)
921                         vdrop(object->handle);
922         }
923 }
924
925 /*
926  *      vm_object_terminate actually destroys the specified object, freeing
927  *      up all previously used resources.
928  *
929  *      The object must be locked.
930  *      This routine may block.
931  */
932 void
933 vm_object_terminate(vm_object_t object)
934 {
935
936         VM_OBJECT_ASSERT_WLOCKED(object);
937         KASSERT((object->flags & OBJ_DEAD) != 0,
938             ("terminating non-dead obj %p", object));
939         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
940             ("terminating collapsing obj %p", object));
941         KASSERT(object->backing_object == NULL,
942             ("terminating shadow obj %p", object));
943
944         /*
945          * Wait for the pageout daemon and other current users to be
946          * done with the object.  Note that new paging_in_progress
947          * users can come after this wait, but they must check
948          * OBJ_DEAD flag set (without unlocking the object), and avoid
949          * the object being terminated.
950          */
951         vm_object_pip_wait(object, "objtrm");
952
953         KASSERT(object->ref_count == 0,
954             ("vm_object_terminate: object with references, ref_count=%d",
955             object->ref_count));
956
957         if ((object->flags & OBJ_PG_DTOR) == 0)
958                 vm_object_terminate_pages(object);
959
960 #if VM_NRESERVLEVEL > 0
961         if (__predict_false(!LIST_EMPTY(&object->rvq)))
962                 vm_reserv_break_all(object);
963 #endif
964
965         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
966             (object->flags & OBJ_SWAP) != 0,
967             ("%s: non-swap obj %p has cred", __func__, object));
968
969         /*
970          * Let the pager know object is dead.
971          */
972         vm_pager_deallocate(object);
973         VM_OBJECT_WUNLOCK(object);
974
975         vm_object_destroy(object);
976 }
977
978 /*
979  * Make the page read-only so that we can clear the object flags.  However, if
980  * this is a nosync mmap then the object is likely to stay dirty so do not
981  * mess with the page and do not clear the object flags.  Returns TRUE if the
982  * page should be flushed, and FALSE otherwise.
983  */
984 static boolean_t
985 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
986 {
987
988         vm_page_assert_busied(p);
989
990         /*
991          * If we have been asked to skip nosync pages and this is a
992          * nosync page, skip it.  Note that the object flags were not
993          * cleared in this case so we do not have to set them.
994          */
995         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
996                 *allclean = FALSE;
997                 return (FALSE);
998         } else {
999                 pmap_remove_write(p);
1000                 return (p->dirty != 0);
1001         }
1002 }
1003
1004 /*
1005  *      vm_object_page_clean
1006  *
1007  *      Clean all dirty pages in the specified range of object.  Leaves page 
1008  *      on whatever queue it is currently on.   If NOSYNC is set then do not
1009  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1010  *      leaving the object dirty.
1011  *
1012  *      For swap objects backing tmpfs regular files, do not flush anything,
1013  *      but remove write protection on the mapped pages to update mtime through
1014  *      mmaped writes.
1015  *
1016  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
1017  *      synchronous clustering mode implementation.
1018  *
1019  *      Odd semantics: if start == end, we clean everything.
1020  *
1021  *      The object must be locked.
1022  *
1023  *      Returns FALSE if some page from the range was not written, as
1024  *      reported by the pager, and TRUE otherwise.
1025  */
1026 boolean_t
1027 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1028     int flags)
1029 {
1030         vm_page_t np, p;
1031         vm_pindex_t pi, tend, tstart;
1032         int curgeneration, n, pagerflags;
1033         boolean_t eio, res, allclean;
1034
1035         VM_OBJECT_ASSERT_WLOCKED(object);
1036
1037         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1038                 return (TRUE);
1039
1040         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1041             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1042         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1043
1044         tstart = OFF_TO_IDX(start);
1045         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1046         allclean = tstart == 0 && tend >= object->size;
1047         res = TRUE;
1048
1049 rescan:
1050         curgeneration = object->generation;
1051
1052         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1053                 pi = p->pindex;
1054                 if (pi >= tend)
1055                         break;
1056                 np = TAILQ_NEXT(p, listq);
1057                 if (vm_page_none_valid(p))
1058                         continue;
1059                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1060                         if (object->generation != curgeneration &&
1061                             (flags & OBJPC_SYNC) != 0)
1062                                 goto rescan;
1063                         np = vm_page_find_least(object, pi);
1064                         continue;
1065                 }
1066                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1067                         vm_page_xunbusy(p);
1068                         continue;
1069                 }
1070                 if (object->type == OBJT_VNODE) {
1071                         n = vm_object_page_collect_flush(object, p, pagerflags,
1072                             flags, &allclean, &eio);
1073                         if (eio) {
1074                                 res = FALSE;
1075                                 allclean = FALSE;
1076                         }
1077                         if (object->generation != curgeneration &&
1078                             (flags & OBJPC_SYNC) != 0)
1079                                 goto rescan;
1080
1081                         /*
1082                          * If the VOP_PUTPAGES() did a truncated write, so
1083                          * that even the first page of the run is not fully
1084                          * written, vm_pageout_flush() returns 0 as the run
1085                          * length.  Since the condition that caused truncated
1086                          * write may be permanent, e.g. exhausted free space,
1087                          * accepting n == 0 would cause an infinite loop.
1088                          *
1089                          * Forwarding the iterator leaves the unwritten page
1090                          * behind, but there is not much we can do there if
1091                          * filesystem refuses to write it.
1092                          */
1093                         if (n == 0) {
1094                                 n = 1;
1095                                 allclean = FALSE;
1096                         }
1097                 } else {
1098                         n = 1;
1099                         vm_page_xunbusy(p);
1100                 }
1101                 np = vm_page_find_least(object, pi + n);
1102         }
1103 #if 0
1104         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1105 #endif
1106
1107         /*
1108          * Leave updating cleangeneration for tmpfs objects to tmpfs
1109          * scan.  It needs to update mtime, which happens for other
1110          * filesystems during page writeouts.
1111          */
1112         if (allclean && object->type == OBJT_VNODE)
1113                 object->cleangeneration = curgeneration;
1114         return (res);
1115 }
1116
1117 static int
1118 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1119     int flags, boolean_t *allclean, boolean_t *eio)
1120 {
1121         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1122         int count, i, mreq, runlen;
1123
1124         vm_page_lock_assert(p, MA_NOTOWNED);
1125         vm_page_assert_xbusied(p);
1126         VM_OBJECT_ASSERT_WLOCKED(object);
1127
1128         count = 1;
1129         mreq = 0;
1130
1131         for (tp = p; count < vm_pageout_page_count; count++) {
1132                 tp = vm_page_next(tp);
1133                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1134                         break;
1135                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1136                         vm_page_xunbusy(tp);
1137                         break;
1138                 }
1139         }
1140
1141         for (p_first = p; count < vm_pageout_page_count; count++) {
1142                 tp = vm_page_prev(p_first);
1143                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1144                         break;
1145                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1146                         vm_page_xunbusy(tp);
1147                         break;
1148                 }
1149                 p_first = tp;
1150                 mreq++;
1151         }
1152
1153         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1154                 ma[i] = tp;
1155
1156         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1157         return (runlen);
1158 }
1159
1160 /*
1161  * Note that there is absolutely no sense in writing out
1162  * anonymous objects, so we track down the vnode object
1163  * to write out.
1164  * We invalidate (remove) all pages from the address space
1165  * for semantic correctness.
1166  *
1167  * If the backing object is a device object with unmanaged pages, then any
1168  * mappings to the specified range of pages must be removed before this
1169  * function is called.
1170  *
1171  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1172  * may start out with a NULL object.
1173  */
1174 boolean_t
1175 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1176     boolean_t syncio, boolean_t invalidate)
1177 {
1178         vm_object_t backing_object;
1179         struct vnode *vp;
1180         struct mount *mp;
1181         int error, flags, fsync_after;
1182         boolean_t res;
1183
1184         if (object == NULL)
1185                 return (TRUE);
1186         res = TRUE;
1187         error = 0;
1188         VM_OBJECT_WLOCK(object);
1189         while ((backing_object = object->backing_object) != NULL) {
1190                 VM_OBJECT_WLOCK(backing_object);
1191                 offset += object->backing_object_offset;
1192                 VM_OBJECT_WUNLOCK(object);
1193                 object = backing_object;
1194                 if (object->size < OFF_TO_IDX(offset + size))
1195                         size = IDX_TO_OFF(object->size) - offset;
1196         }
1197         /*
1198          * Flush pages if writing is allowed, invalidate them
1199          * if invalidation requested.  Pages undergoing I/O
1200          * will be ignored by vm_object_page_remove().
1201          *
1202          * We cannot lock the vnode and then wait for paging
1203          * to complete without deadlocking against vm_fault.
1204          * Instead we simply call vm_object_page_remove() and
1205          * allow it to block internally on a page-by-page
1206          * basis when it encounters pages undergoing async
1207          * I/O.
1208          */
1209         if (object->type == OBJT_VNODE &&
1210             vm_object_mightbedirty(object) != 0 &&
1211             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1212                 VM_OBJECT_WUNLOCK(object);
1213                 (void) vn_start_write(vp, &mp, V_WAIT);
1214                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1215                 if (syncio && !invalidate && offset == 0 &&
1216                     atop(size) == object->size) {
1217                         /*
1218                          * If syncing the whole mapping of the file,
1219                          * it is faster to schedule all the writes in
1220                          * async mode, also allowing the clustering,
1221                          * and then wait for i/o to complete.
1222                          */
1223                         flags = 0;
1224                         fsync_after = TRUE;
1225                 } else {
1226                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1227                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1228                         fsync_after = FALSE;
1229                 }
1230                 VM_OBJECT_WLOCK(object);
1231                 res = vm_object_page_clean(object, offset, offset + size,
1232                     flags);
1233                 VM_OBJECT_WUNLOCK(object);
1234                 if (fsync_after)
1235                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1236                 VOP_UNLOCK(vp);
1237                 vn_finished_write(mp);
1238                 if (error != 0)
1239                         res = FALSE;
1240                 VM_OBJECT_WLOCK(object);
1241         }
1242         if ((object->type == OBJT_VNODE ||
1243              object->type == OBJT_DEVICE) && invalidate) {
1244                 if (object->type == OBJT_DEVICE)
1245                         /*
1246                          * The option OBJPR_NOTMAPPED must be passed here
1247                          * because vm_object_page_remove() cannot remove
1248                          * unmanaged mappings.
1249                          */
1250                         flags = OBJPR_NOTMAPPED;
1251                 else if (old_msync)
1252                         flags = 0;
1253                 else
1254                         flags = OBJPR_CLEANONLY;
1255                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1256                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1257         }
1258         VM_OBJECT_WUNLOCK(object);
1259         return (res);
1260 }
1261
1262 /*
1263  * Determine whether the given advice can be applied to the object.  Advice is
1264  * not applied to unmanaged pages since they never belong to page queues, and
1265  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1266  * have been mapped at most once.
1267  */
1268 static bool
1269 vm_object_advice_applies(vm_object_t object, int advice)
1270 {
1271
1272         if ((object->flags & OBJ_UNMANAGED) != 0)
1273                 return (false);
1274         if (advice != MADV_FREE)
1275                 return (true);
1276         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1277             (OBJ_ONEMAPPING | OBJ_ANON));
1278 }
1279
1280 static void
1281 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1282     vm_size_t size)
1283 {
1284
1285         if (advice == MADV_FREE)
1286                 vm_pager_freespace(object, pindex, size);
1287 }
1288
1289 /*
1290  *      vm_object_madvise:
1291  *
1292  *      Implements the madvise function at the object/page level.
1293  *
1294  *      MADV_WILLNEED   (any object)
1295  *
1296  *          Activate the specified pages if they are resident.
1297  *
1298  *      MADV_DONTNEED   (any object)
1299  *
1300  *          Deactivate the specified pages if they are resident.
1301  *
1302  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1303  *                       OBJ_ONEMAPPING only)
1304  *
1305  *          Deactivate and clean the specified pages if they are
1306  *          resident.  This permits the process to reuse the pages
1307  *          without faulting or the kernel to reclaim the pages
1308  *          without I/O.
1309  */
1310 void
1311 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1312     int advice)
1313 {
1314         vm_pindex_t tpindex;
1315         vm_object_t backing_object, tobject;
1316         vm_page_t m, tm;
1317
1318         if (object == NULL)
1319                 return;
1320
1321 relookup:
1322         VM_OBJECT_WLOCK(object);
1323         if (!vm_object_advice_applies(object, advice)) {
1324                 VM_OBJECT_WUNLOCK(object);
1325                 return;
1326         }
1327         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1328                 tobject = object;
1329
1330                 /*
1331                  * If the next page isn't resident in the top-level object, we
1332                  * need to search the shadow chain.  When applying MADV_FREE, we
1333                  * take care to release any swap space used to store
1334                  * non-resident pages.
1335                  */
1336                 if (m == NULL || pindex < m->pindex) {
1337                         /*
1338                          * Optimize a common case: if the top-level object has
1339                          * no backing object, we can skip over the non-resident
1340                          * range in constant time.
1341                          */
1342                         if (object->backing_object == NULL) {
1343                                 tpindex = (m != NULL && m->pindex < end) ?
1344                                     m->pindex : end;
1345                                 vm_object_madvise_freespace(object, advice,
1346                                     pindex, tpindex - pindex);
1347                                 if ((pindex = tpindex) == end)
1348                                         break;
1349                                 goto next_page;
1350                         }
1351
1352                         tpindex = pindex;
1353                         do {
1354                                 vm_object_madvise_freespace(tobject, advice,
1355                                     tpindex, 1);
1356                                 /*
1357                                  * Prepare to search the next object in the
1358                                  * chain.
1359                                  */
1360                                 backing_object = tobject->backing_object;
1361                                 if (backing_object == NULL)
1362                                         goto next_pindex;
1363                                 VM_OBJECT_WLOCK(backing_object);
1364                                 tpindex +=
1365                                     OFF_TO_IDX(tobject->backing_object_offset);
1366                                 if (tobject != object)
1367                                         VM_OBJECT_WUNLOCK(tobject);
1368                                 tobject = backing_object;
1369                                 if (!vm_object_advice_applies(tobject, advice))
1370                                         goto next_pindex;
1371                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1372                             NULL);
1373                 } else {
1374 next_page:
1375                         tm = m;
1376                         m = TAILQ_NEXT(m, listq);
1377                 }
1378
1379                 /*
1380                  * If the page is not in a normal state, skip it.  The page
1381                  * can not be invalidated while the object lock is held.
1382                  */
1383                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1384                         goto next_pindex;
1385                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1386                     ("vm_object_madvise: page %p is fictitious", tm));
1387                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1388                     ("vm_object_madvise: page %p is not managed", tm));
1389                 if (vm_page_tryxbusy(tm) == 0) {
1390                         if (object != tobject)
1391                                 VM_OBJECT_WUNLOCK(object);
1392                         if (advice == MADV_WILLNEED) {
1393                                 /*
1394                                  * Reference the page before unlocking and
1395                                  * sleeping so that the page daemon is less
1396                                  * likely to reclaim it.
1397                                  */
1398                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1399                         }
1400                         vm_page_busy_sleep(tm, "madvpo", false);
1401                         goto relookup;
1402                 }
1403                 vm_page_advise(tm, advice);
1404                 vm_page_xunbusy(tm);
1405                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1406 next_pindex:
1407                 if (tobject != object)
1408                         VM_OBJECT_WUNLOCK(tobject);
1409         }
1410         VM_OBJECT_WUNLOCK(object);
1411 }
1412
1413 /*
1414  *      vm_object_shadow:
1415  *
1416  *      Create a new object which is backed by the
1417  *      specified existing object range.  The source
1418  *      object reference is deallocated.
1419  *
1420  *      The new object and offset into that object
1421  *      are returned in the source parameters.
1422  */
1423 void
1424 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1425     struct ucred *cred, bool shared)
1426 {
1427         vm_object_t source;
1428         vm_object_t result;
1429
1430         source = *object;
1431
1432         /*
1433          * Don't create the new object if the old object isn't shared.
1434          *
1435          * If we hold the only reference we can guarantee that it won't
1436          * increase while we have the map locked.  Otherwise the race is
1437          * harmless and we will end up with an extra shadow object that
1438          * will be collapsed later.
1439          */
1440         if (source != NULL && source->ref_count == 1 &&
1441             (source->flags & OBJ_ANON) != 0)
1442                 return;
1443
1444         /*
1445          * Allocate a new object with the given length.
1446          */
1447         result = vm_object_allocate_anon(atop(length), source, cred, length);
1448
1449         /*
1450          * Store the offset into the source object, and fix up the offset into
1451          * the new object.
1452          */
1453         result->backing_object_offset = *offset;
1454
1455         if (shared || source != NULL) {
1456                 VM_OBJECT_WLOCK(result);
1457
1458                 /*
1459                  * The new object shadows the source object, adding a
1460                  * reference to it.  Our caller changes his reference
1461                  * to point to the new object, removing a reference to
1462                  * the source object.  Net result: no change of
1463                  * reference count, unless the caller needs to add one
1464                  * more reference due to forking a shared map entry.
1465                  */
1466                 if (shared) {
1467                         vm_object_reference_locked(result);
1468                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1469                 }
1470
1471                 /*
1472                  * Try to optimize the result object's page color when
1473                  * shadowing in order to maintain page coloring
1474                  * consistency in the combined shadowed object.
1475                  */
1476                 if (source != NULL) {
1477                         vm_object_backing_insert(result, source);
1478                         result->domain = source->domain;
1479 #if VM_NRESERVLEVEL > 0
1480                         result->flags |= source->flags & OBJ_COLORED;
1481                         result->pg_color = (source->pg_color +
1482                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1483                             1)) - 1);
1484 #endif
1485                 }
1486                 VM_OBJECT_WUNLOCK(result);
1487         }
1488
1489         /*
1490          * Return the new things
1491          */
1492         *offset = 0;
1493         *object = result;
1494 }
1495
1496 /*
1497  *      vm_object_split:
1498  *
1499  * Split the pages in a map entry into a new object.  This affords
1500  * easier removal of unused pages, and keeps object inheritance from
1501  * being a negative impact on memory usage.
1502  */
1503 void
1504 vm_object_split(vm_map_entry_t entry)
1505 {
1506         vm_page_t m, m_busy, m_next;
1507         vm_object_t orig_object, new_object, backing_object;
1508         vm_pindex_t idx, offidxstart;
1509         vm_size_t size;
1510
1511         orig_object = entry->object.vm_object;
1512         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1513             ("vm_object_split:  Splitting object with multiple mappings."));
1514         if ((orig_object->flags & OBJ_ANON) == 0)
1515                 return;
1516         if (orig_object->ref_count <= 1)
1517                 return;
1518         VM_OBJECT_WUNLOCK(orig_object);
1519
1520         offidxstart = OFF_TO_IDX(entry->offset);
1521         size = atop(entry->end - entry->start);
1522
1523         /*
1524          * If swap_pager_copy() is later called, it will convert new_object
1525          * into a swap object.
1526          */
1527         new_object = vm_object_allocate_anon(size, orig_object,
1528             orig_object->cred, ptoa(size));
1529
1530         /*
1531          * We must wait for the orig_object to complete any in-progress
1532          * collapse so that the swap blocks are stable below.  The
1533          * additional reference on backing_object by new object will
1534          * prevent further collapse operations until split completes.
1535          */
1536         VM_OBJECT_WLOCK(orig_object);
1537         vm_object_collapse_wait(orig_object);
1538
1539         /*
1540          * At this point, the new object is still private, so the order in
1541          * which the original and new objects are locked does not matter.
1542          */
1543         VM_OBJECT_WLOCK(new_object);
1544         new_object->domain = orig_object->domain;
1545         backing_object = orig_object->backing_object;
1546         if (backing_object != NULL) {
1547                 vm_object_backing_insert_ref(new_object, backing_object);
1548                 new_object->backing_object_offset = 
1549                     orig_object->backing_object_offset + entry->offset;
1550         }
1551         if (orig_object->cred != NULL) {
1552                 crhold(orig_object->cred);
1553                 KASSERT(orig_object->charge >= ptoa(size),
1554                     ("orig_object->charge < 0"));
1555                 orig_object->charge -= ptoa(size);
1556         }
1557
1558         /*
1559          * Mark the split operation so that swap_pager_getpages() knows
1560          * that the object is in transition.
1561          */
1562         vm_object_set_flag(orig_object, OBJ_SPLIT);
1563         m_busy = NULL;
1564 #ifdef INVARIANTS
1565         idx = 0;
1566 #endif
1567 retry:
1568         m = vm_page_find_least(orig_object, offidxstart);
1569         KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1570             ("%s: object %p was repopulated", __func__, orig_object));
1571         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1572             m = m_next) {
1573                 m_next = TAILQ_NEXT(m, listq);
1574
1575                 /*
1576                  * We must wait for pending I/O to complete before we can
1577                  * rename the page.
1578                  *
1579                  * We do not have to VM_PROT_NONE the page as mappings should
1580                  * not be changed by this operation.
1581                  */
1582                 if (vm_page_tryxbusy(m) == 0) {
1583                         VM_OBJECT_WUNLOCK(new_object);
1584                         vm_page_sleep_if_busy(m, "spltwt");
1585                         VM_OBJECT_WLOCK(new_object);
1586                         goto retry;
1587                 }
1588
1589                 /*
1590                  * The page was left invalid.  Likely placed there by
1591                  * an incomplete fault.  Just remove and ignore.
1592                  */
1593                 if (vm_page_none_valid(m)) {
1594                         if (vm_page_remove(m))
1595                                 vm_page_free(m);
1596                         continue;
1597                 }
1598
1599                 /* vm_page_rename() will dirty the page. */
1600                 if (vm_page_rename(m, new_object, idx)) {
1601                         vm_page_xunbusy(m);
1602                         VM_OBJECT_WUNLOCK(new_object);
1603                         VM_OBJECT_WUNLOCK(orig_object);
1604                         vm_radix_wait();
1605                         VM_OBJECT_WLOCK(orig_object);
1606                         VM_OBJECT_WLOCK(new_object);
1607                         goto retry;
1608                 }
1609
1610 #if VM_NRESERVLEVEL > 0
1611                 /*
1612                  * If some of the reservation's allocated pages remain with
1613                  * the original object, then transferring the reservation to
1614                  * the new object is neither particularly beneficial nor
1615                  * particularly harmful as compared to leaving the reservation
1616                  * with the original object.  If, however, all of the
1617                  * reservation's allocated pages are transferred to the new
1618                  * object, then transferring the reservation is typically
1619                  * beneficial.  Determining which of these two cases applies
1620                  * would be more costly than unconditionally renaming the
1621                  * reservation.
1622                  */
1623                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1624 #endif
1625
1626                 /*
1627                  * orig_object's type may change while sleeping, so keep track
1628                  * of the beginning of the busied range.
1629                  */
1630                 if (orig_object->type != OBJT_SWAP)
1631                         vm_page_xunbusy(m);
1632                 else if (m_busy == NULL)
1633                         m_busy = m;
1634         }
1635         if ((orig_object->flags & OBJ_SWAP) != 0) {
1636                 /*
1637                  * swap_pager_copy() can sleep, in which case the orig_object's
1638                  * and new_object's locks are released and reacquired. 
1639                  */
1640                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1641                 if (m_busy != NULL)
1642                         TAILQ_FOREACH_FROM(m_busy, &new_object->memq, listq)
1643                                 vm_page_xunbusy(m_busy);
1644         }
1645         vm_object_clear_flag(orig_object, OBJ_SPLIT);
1646         VM_OBJECT_WUNLOCK(orig_object);
1647         VM_OBJECT_WUNLOCK(new_object);
1648         entry->object.vm_object = new_object;
1649         entry->offset = 0LL;
1650         vm_object_deallocate(orig_object);
1651         VM_OBJECT_WLOCK(new_object);
1652 }
1653
1654 static vm_page_t
1655 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1656 {
1657         vm_object_t backing_object;
1658
1659         VM_OBJECT_ASSERT_WLOCKED(object);
1660         backing_object = object->backing_object;
1661         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1662
1663         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1664             ("invalid ownership %p %p %p", p, object, backing_object));
1665         /* The page is only NULL when rename fails. */
1666         if (p == NULL) {
1667                 VM_OBJECT_WUNLOCK(object);
1668                 VM_OBJECT_WUNLOCK(backing_object);
1669                 vm_radix_wait();
1670         } else {
1671                 if (p->object == object)
1672                         VM_OBJECT_WUNLOCK(backing_object);
1673                 else
1674                         VM_OBJECT_WUNLOCK(object);
1675                 vm_page_busy_sleep(p, "vmocol", false);
1676         }
1677         VM_OBJECT_WLOCK(object);
1678         VM_OBJECT_WLOCK(backing_object);
1679         return (TAILQ_FIRST(&backing_object->memq));
1680 }
1681
1682 static bool
1683 vm_object_scan_all_shadowed(vm_object_t object)
1684 {
1685         vm_object_t backing_object;
1686         vm_page_t p, pp;
1687         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1688
1689         VM_OBJECT_ASSERT_WLOCKED(object);
1690         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1691
1692         backing_object = object->backing_object;
1693
1694         if ((backing_object->flags & OBJ_ANON) == 0)
1695                 return (false);
1696
1697         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1698         p = vm_page_find_least(backing_object, pi);
1699         ps = swap_pager_find_least(backing_object, pi);
1700
1701         /*
1702          * Only check pages inside the parent object's range and
1703          * inside the parent object's mapping of the backing object.
1704          */
1705         for (;; pi++) {
1706                 if (p != NULL && p->pindex < pi)
1707                         p = TAILQ_NEXT(p, listq);
1708                 if (ps < pi)
1709                         ps = swap_pager_find_least(backing_object, pi);
1710                 if (p == NULL && ps >= backing_object->size)
1711                         break;
1712                 else if (p == NULL)
1713                         pi = ps;
1714                 else
1715                         pi = MIN(p->pindex, ps);
1716
1717                 new_pindex = pi - backing_offset_index;
1718                 if (new_pindex >= object->size)
1719                         break;
1720
1721                 if (p != NULL) {
1722                         /*
1723                          * If the backing object page is busy a
1724                          * grandparent or older page may still be
1725                          * undergoing CoW.  It is not safe to collapse
1726                          * the backing object until it is quiesced.
1727                          */
1728                         if (vm_page_tryxbusy(p) == 0)
1729                                 return (false);
1730
1731                         /*
1732                          * We raced with the fault handler that left
1733                          * newly allocated invalid page on the object
1734                          * queue and retried.
1735                          */
1736                         if (!vm_page_all_valid(p))
1737                                 goto unbusy_ret;
1738                 }
1739
1740                 /*
1741                  * See if the parent has the page or if the parent's object
1742                  * pager has the page.  If the parent has the page but the page
1743                  * is not valid, the parent's object pager must have the page.
1744                  *
1745                  * If this fails, the parent does not completely shadow the
1746                  * object and we might as well give up now.
1747                  */
1748                 pp = vm_page_lookup(object, new_pindex);
1749
1750                 /*
1751                  * The valid check here is stable due to object lock
1752                  * being required to clear valid and initiate paging.
1753                  * Busy of p disallows fault handler to validate pp.
1754                  */
1755                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1756                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1757                         goto unbusy_ret;
1758                 if (p != NULL)
1759                         vm_page_xunbusy(p);
1760         }
1761         return (true);
1762
1763 unbusy_ret:
1764         if (p != NULL)
1765                 vm_page_xunbusy(p);
1766         return (false);
1767 }
1768
1769 static void
1770 vm_object_collapse_scan(vm_object_t object)
1771 {
1772         vm_object_t backing_object;
1773         vm_page_t next, p, pp;
1774         vm_pindex_t backing_offset_index, new_pindex;
1775
1776         VM_OBJECT_ASSERT_WLOCKED(object);
1777         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1778
1779         backing_object = object->backing_object;
1780         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1781
1782         /*
1783          * Our scan
1784          */
1785         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1786                 next = TAILQ_NEXT(p, listq);
1787                 new_pindex = p->pindex - backing_offset_index;
1788
1789                 /*
1790                  * Check for busy page
1791                  */
1792                 if (vm_page_tryxbusy(p) == 0) {
1793                         next = vm_object_collapse_scan_wait(object, p);
1794                         continue;
1795                 }
1796
1797                 KASSERT(object->backing_object == backing_object,
1798                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
1799                     object->backing_object, backing_object));
1800                 KASSERT(p->object == backing_object,
1801                     ("vm_object_collapse_scan: object mismatch %p != %p",
1802                     p->object, backing_object));
1803
1804                 if (p->pindex < backing_offset_index ||
1805                     new_pindex >= object->size) {
1806                         vm_pager_freespace(backing_object, p->pindex, 1);
1807
1808                         KASSERT(!pmap_page_is_mapped(p),
1809                             ("freeing mapped page %p", p));
1810                         if (vm_page_remove(p))
1811                                 vm_page_free(p);
1812                         continue;
1813                 }
1814
1815                 if (!vm_page_all_valid(p)) {
1816                         KASSERT(!pmap_page_is_mapped(p),
1817                             ("freeing mapped page %p", p));
1818                         if (vm_page_remove(p))
1819                                 vm_page_free(p);
1820                         continue;
1821                 }
1822
1823                 pp = vm_page_lookup(object, new_pindex);
1824                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1825                         vm_page_xunbusy(p);
1826                         /*
1827                          * The page in the parent is busy and possibly not
1828                          * (yet) valid.  Until its state is finalized by the
1829                          * busy bit owner, we can't tell whether it shadows the
1830                          * original page.
1831                          */
1832                         next = vm_object_collapse_scan_wait(object, pp);
1833                         continue;
1834                 }
1835
1836                 if (pp != NULL && vm_page_none_valid(pp)) {
1837                         /*
1838                          * The page was invalid in the parent.  Likely placed
1839                          * there by an incomplete fault.  Just remove and
1840                          * ignore.  p can replace it.
1841                          */
1842                         if (vm_page_remove(pp))
1843                                 vm_page_free(pp);
1844                         pp = NULL;
1845                 }
1846
1847                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1848                         NULL)) {
1849                         /*
1850                          * The page already exists in the parent OR swap exists
1851                          * for this location in the parent.  Leave the parent's
1852                          * page alone.  Destroy the original page from the
1853                          * backing object.
1854                          */
1855                         vm_pager_freespace(backing_object, p->pindex, 1);
1856                         KASSERT(!pmap_page_is_mapped(p),
1857                             ("freeing mapped page %p", p));
1858                         if (vm_page_remove(p))
1859                                 vm_page_free(p);
1860                         if (pp != NULL)
1861                                 vm_page_xunbusy(pp);
1862                         continue;
1863                 }
1864
1865                 /*
1866                  * Page does not exist in parent, rename the page from the
1867                  * backing object to the main object.
1868                  *
1869                  * If the page was mapped to a process, it can remain mapped
1870                  * through the rename.  vm_page_rename() will dirty the page.
1871                  */
1872                 if (vm_page_rename(p, object, new_pindex)) {
1873                         vm_page_xunbusy(p);
1874                         next = vm_object_collapse_scan_wait(object, NULL);
1875                         continue;
1876                 }
1877
1878                 /* Use the old pindex to free the right page. */
1879                 vm_pager_freespace(backing_object, new_pindex +
1880                     backing_offset_index, 1);
1881
1882 #if VM_NRESERVLEVEL > 0
1883                 /*
1884                  * Rename the reservation.
1885                  */
1886                 vm_reserv_rename(p, object, backing_object,
1887                     backing_offset_index);
1888 #endif
1889                 vm_page_xunbusy(p);
1890         }
1891         return;
1892 }
1893
1894 /*
1895  *      vm_object_collapse:
1896  *
1897  *      Collapse an object with the object backing it.
1898  *      Pages in the backing object are moved into the
1899  *      parent, and the backing object is deallocated.
1900  */
1901 void
1902 vm_object_collapse(vm_object_t object)
1903 {
1904         vm_object_t backing_object, new_backing_object;
1905
1906         VM_OBJECT_ASSERT_WLOCKED(object);
1907
1908         while (TRUE) {
1909                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1910                     ("collapsing invalid object"));
1911
1912                 /*
1913                  * Wait for the backing_object to finish any pending
1914                  * collapse so that the caller sees the shortest possible
1915                  * shadow chain.
1916                  */
1917                 backing_object = vm_object_backing_collapse_wait(object);
1918                 if (backing_object == NULL)
1919                         return;
1920
1921                 KASSERT(object->ref_count > 0 &&
1922                     object->ref_count > object->shadow_count,
1923                     ("collapse with invalid ref %d or shadow %d count.",
1924                     object->ref_count, object->shadow_count));
1925                 KASSERT((backing_object->flags &
1926                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1927                     ("vm_object_collapse: Backing object already collapsing."));
1928                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1929                     ("vm_object_collapse: object is already collapsing."));
1930
1931                 /*
1932                  * We know that we can either collapse the backing object if
1933                  * the parent is the only reference to it, or (perhaps) have
1934                  * the parent bypass the object if the parent happens to shadow
1935                  * all the resident pages in the entire backing object.
1936                  */
1937                 if (backing_object->ref_count == 1) {
1938                         KASSERT(backing_object->shadow_count == 1,
1939                             ("vm_object_collapse: shadow_count: %d",
1940                             backing_object->shadow_count));
1941                         vm_object_pip_add(object, 1);
1942                         vm_object_set_flag(object, OBJ_COLLAPSING);
1943                         vm_object_pip_add(backing_object, 1);
1944                         vm_object_set_flag(backing_object, OBJ_DEAD);
1945
1946                         /*
1947                          * If there is exactly one reference to the backing
1948                          * object, we can collapse it into the parent.
1949                          */
1950                         vm_object_collapse_scan(object);
1951
1952 #if VM_NRESERVLEVEL > 0
1953                         /*
1954                          * Break any reservations from backing_object.
1955                          */
1956                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1957                                 vm_reserv_break_all(backing_object);
1958 #endif
1959
1960                         /*
1961                          * Move the pager from backing_object to object.
1962                          */
1963                         if ((backing_object->flags & OBJ_SWAP) != 0) {
1964                                 /*
1965                                  * swap_pager_copy() can sleep, in which case
1966                                  * the backing_object's and object's locks are
1967                                  * released and reacquired.
1968                                  * Since swap_pager_copy() is being asked to
1969                                  * destroy backing_object, it will change the
1970                                  * type to OBJT_DEFAULT.
1971                                  */
1972                                 swap_pager_copy(
1973                                     backing_object,
1974                                     object,
1975                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1976                         }
1977
1978                         /*
1979                          * Object now shadows whatever backing_object did.
1980                          */
1981                         vm_object_clear_flag(object, OBJ_COLLAPSING);
1982                         vm_object_backing_transfer(object, backing_object);
1983                         object->backing_object_offset +=
1984                             backing_object->backing_object_offset;
1985                         VM_OBJECT_WUNLOCK(object);
1986                         vm_object_pip_wakeup(object);
1987
1988                         /*
1989                          * Discard backing_object.
1990                          *
1991                          * Since the backing object has no pages, no pager left,
1992                          * and no object references within it, all that is
1993                          * necessary is to dispose of it.
1994                          */
1995                         KASSERT(backing_object->ref_count == 1, (
1996 "backing_object %p was somehow re-referenced during collapse!",
1997                             backing_object));
1998                         vm_object_pip_wakeup(backing_object);
1999                         (void)refcount_release(&backing_object->ref_count);
2000                         vm_object_terminate(backing_object);
2001                         counter_u64_add(object_collapses, 1);
2002                         VM_OBJECT_WLOCK(object);
2003                 } else {
2004                         /*
2005                          * If we do not entirely shadow the backing object,
2006                          * there is nothing we can do so we give up.
2007                          *
2008                          * The object lock and backing_object lock must not
2009                          * be dropped during this sequence.
2010                          */
2011                         if (!vm_object_scan_all_shadowed(object)) {
2012                                 VM_OBJECT_WUNLOCK(backing_object);
2013                                 break;
2014                         }
2015
2016                         /*
2017                          * Make the parent shadow the next object in the
2018                          * chain.  Deallocating backing_object will not remove
2019                          * it, since its reference count is at least 2.
2020                          */
2021                         vm_object_backing_remove_locked(object);
2022                         new_backing_object = backing_object->backing_object;
2023                         if (new_backing_object != NULL) {
2024                                 vm_object_backing_insert_ref(object,
2025                                     new_backing_object);
2026                                 object->backing_object_offset +=
2027                                     backing_object->backing_object_offset;
2028                         }
2029
2030                         /*
2031                          * Drop the reference count on backing_object. Since
2032                          * its ref_count was at least 2, it will not vanish.
2033                          */
2034                         (void)refcount_release(&backing_object->ref_count);
2035                         KASSERT(backing_object->ref_count >= 1, (
2036 "backing_object %p was somehow dereferenced during collapse!",
2037                             backing_object));
2038                         VM_OBJECT_WUNLOCK(backing_object);
2039                         counter_u64_add(object_bypasses, 1);
2040                 }
2041
2042                 /*
2043                  * Try again with this object's new backing object.
2044                  */
2045         }
2046 }
2047
2048 /*
2049  *      vm_object_page_remove:
2050  *
2051  *      For the given object, either frees or invalidates each of the
2052  *      specified pages.  In general, a page is freed.  However, if a page is
2053  *      wired for any reason other than the existence of a managed, wired
2054  *      mapping, then it may be invalidated but not removed from the object.
2055  *      Pages are specified by the given range ["start", "end") and the option
2056  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2057  *      extends from "start" to the end of the object.  If the option
2058  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2059  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
2060  *      specified, then the pages within the specified range must have no
2061  *      mappings.  Otherwise, if this option is not specified, any mappings to
2062  *      the specified pages are removed before the pages are freed or
2063  *      invalidated.
2064  *
2065  *      In general, this operation should only be performed on objects that
2066  *      contain managed pages.  There are, however, two exceptions.  First, it
2067  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
2068  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2069  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2070  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
2071  *
2072  *      The object must be locked.
2073  */
2074 void
2075 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2076     int options)
2077 {
2078         vm_page_t p, next;
2079
2080         VM_OBJECT_ASSERT_WLOCKED(object);
2081         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2082             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2083             ("vm_object_page_remove: illegal options for object %p", object));
2084         if (object->resident_page_count == 0)
2085                 return;
2086         vm_object_pip_add(object, 1);
2087 again:
2088         p = vm_page_find_least(object, start);
2089
2090         /*
2091          * Here, the variable "p" is either (1) the page with the least pindex
2092          * greater than or equal to the parameter "start" or (2) NULL. 
2093          */
2094         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2095                 next = TAILQ_NEXT(p, listq);
2096
2097                 /*
2098                  * If the page is wired for any reason besides the existence
2099                  * of managed, wired mappings, then it cannot be freed.  For
2100                  * example, fictitious pages, which represent device memory,
2101                  * are inherently wired and cannot be freed.  They can,
2102                  * however, be invalidated if the option OBJPR_CLEANONLY is
2103                  * not specified.
2104                  */
2105                 if (vm_page_tryxbusy(p) == 0) {
2106                         vm_page_sleep_if_busy(p, "vmopar");
2107                         goto again;
2108                 }
2109                 if (vm_page_wired(p)) {
2110 wired:
2111                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2112                             object->ref_count != 0)
2113                                 pmap_remove_all(p);
2114                         if ((options & OBJPR_CLEANONLY) == 0) {
2115                                 vm_page_invalid(p);
2116                                 vm_page_undirty(p);
2117                         }
2118                         vm_page_xunbusy(p);
2119                         continue;
2120                 }
2121                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2122                     ("vm_object_page_remove: page %p is fictitious", p));
2123                 if ((options & OBJPR_CLEANONLY) != 0 &&
2124                     !vm_page_none_valid(p)) {
2125                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2126                             object->ref_count != 0 &&
2127                             !vm_page_try_remove_write(p))
2128                                 goto wired;
2129                         if (p->dirty != 0) {
2130                                 vm_page_xunbusy(p);
2131                                 continue;
2132                         }
2133                 }
2134                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2135                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2136                         goto wired;
2137                 vm_page_free(p);
2138         }
2139         vm_object_pip_wakeup(object);
2140
2141         vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2142             start);
2143 }
2144
2145 /*
2146  *      vm_object_page_noreuse:
2147  *
2148  *      For the given object, attempt to move the specified pages to
2149  *      the head of the inactive queue.  This bypasses regular LRU
2150  *      operation and allows the pages to be reused quickly under memory
2151  *      pressure.  If a page is wired for any reason, then it will not
2152  *      be queued.  Pages are specified by the range ["start", "end").
2153  *      As a special case, if "end" is zero, then the range extends from
2154  *      "start" to the end of the object.
2155  *
2156  *      This operation should only be performed on objects that
2157  *      contain non-fictitious, managed pages.
2158  *
2159  *      The object must be locked.
2160  */
2161 void
2162 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2163 {
2164         vm_page_t p, next;
2165
2166         VM_OBJECT_ASSERT_LOCKED(object);
2167         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2168             ("vm_object_page_noreuse: illegal object %p", object));
2169         if (object->resident_page_count == 0)
2170                 return;
2171         p = vm_page_find_least(object, start);
2172
2173         /*
2174          * Here, the variable "p" is either (1) the page with the least pindex
2175          * greater than or equal to the parameter "start" or (2) NULL. 
2176          */
2177         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2178                 next = TAILQ_NEXT(p, listq);
2179                 vm_page_deactivate_noreuse(p);
2180         }
2181 }
2182
2183 /*
2184  *      Populate the specified range of the object with valid pages.  Returns
2185  *      TRUE if the range is successfully populated and FALSE otherwise.
2186  *
2187  *      Note: This function should be optimized to pass a larger array of
2188  *      pages to vm_pager_get_pages() before it is applied to a non-
2189  *      OBJT_DEVICE object.
2190  *
2191  *      The object must be locked.
2192  */
2193 boolean_t
2194 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2195 {
2196         vm_page_t m;
2197         vm_pindex_t pindex;
2198         int rv;
2199
2200         VM_OBJECT_ASSERT_WLOCKED(object);
2201         for (pindex = start; pindex < end; pindex++) {
2202                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2203                 if (rv != VM_PAGER_OK)
2204                         break;
2205
2206                 /*
2207                  * Keep "m" busy because a subsequent iteration may unlock
2208                  * the object.
2209                  */
2210         }
2211         if (pindex > start) {
2212                 m = vm_page_lookup(object, start);
2213                 while (m != NULL && m->pindex < pindex) {
2214                         vm_page_xunbusy(m);
2215                         m = TAILQ_NEXT(m, listq);
2216                 }
2217         }
2218         return (pindex == end);
2219 }
2220
2221 /*
2222  *      Routine:        vm_object_coalesce
2223  *      Function:       Coalesces two objects backing up adjoining
2224  *                      regions of memory into a single object.
2225  *
2226  *      returns TRUE if objects were combined.
2227  *
2228  *      NOTE:   Only works at the moment if the second object is NULL -
2229  *              if it's not, which object do we lock first?
2230  *
2231  *      Parameters:
2232  *              prev_object     First object to coalesce
2233  *              prev_offset     Offset into prev_object
2234  *              prev_size       Size of reference to prev_object
2235  *              next_size       Size of reference to the second object
2236  *              reserved        Indicator that extension region has
2237  *                              swap accounted for
2238  *
2239  *      Conditions:
2240  *      The object must *not* be locked.
2241  */
2242 boolean_t
2243 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2244     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2245 {
2246         vm_pindex_t next_pindex;
2247
2248         if (prev_object == NULL)
2249                 return (TRUE);
2250         if ((prev_object->flags & OBJ_ANON) == 0)
2251                 return (FALSE);
2252
2253         VM_OBJECT_WLOCK(prev_object);
2254         /*
2255          * Try to collapse the object first.
2256          */
2257         vm_object_collapse(prev_object);
2258
2259         /*
2260          * Can't coalesce if: . more than one reference . paged out . shadows
2261          * another object . has a copy elsewhere (any of which mean that the
2262          * pages not mapped to prev_entry may be in use anyway)
2263          */
2264         if (prev_object->backing_object != NULL) {
2265                 VM_OBJECT_WUNLOCK(prev_object);
2266                 return (FALSE);
2267         }
2268
2269         prev_size >>= PAGE_SHIFT;
2270         next_size >>= PAGE_SHIFT;
2271         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2272
2273         if (prev_object->ref_count > 1 &&
2274             prev_object->size != next_pindex &&
2275             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2276                 VM_OBJECT_WUNLOCK(prev_object);
2277                 return (FALSE);
2278         }
2279
2280         /*
2281          * Account for the charge.
2282          */
2283         if (prev_object->cred != NULL) {
2284                 /*
2285                  * If prev_object was charged, then this mapping,
2286                  * although not charged now, may become writable
2287                  * later. Non-NULL cred in the object would prevent
2288                  * swap reservation during enabling of the write
2289                  * access, so reserve swap now. Failed reservation
2290                  * cause allocation of the separate object for the map
2291                  * entry, and swap reservation for this entry is
2292                  * managed in appropriate time.
2293                  */
2294                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2295                     prev_object->cred)) {
2296                         VM_OBJECT_WUNLOCK(prev_object);
2297                         return (FALSE);
2298                 }
2299                 prev_object->charge += ptoa(next_size);
2300         }
2301
2302         /*
2303          * Remove any pages that may still be in the object from a previous
2304          * deallocation.
2305          */
2306         if (next_pindex < prev_object->size) {
2307                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2308                     next_size, 0);
2309 #if 0
2310                 if (prev_object->cred != NULL) {
2311                         KASSERT(prev_object->charge >=
2312                             ptoa(prev_object->size - next_pindex),
2313                             ("object %p overcharged 1 %jx %jx", prev_object,
2314                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2315                         prev_object->charge -= ptoa(prev_object->size -
2316                             next_pindex);
2317                 }
2318 #endif
2319         }
2320
2321         /*
2322          * Extend the object if necessary.
2323          */
2324         if (next_pindex + next_size > prev_object->size)
2325                 prev_object->size = next_pindex + next_size;
2326
2327         VM_OBJECT_WUNLOCK(prev_object);
2328         return (TRUE);
2329 }
2330
2331 void
2332 vm_object_set_writeable_dirty_(vm_object_t object)
2333 {
2334         atomic_add_int(&object->generation, 1);
2335 }
2336
2337 bool
2338 vm_object_mightbedirty_(vm_object_t object)
2339 {
2340         return (object->generation != object->cleangeneration);
2341 }
2342
2343 /*
2344  *      vm_object_unwire:
2345  *
2346  *      For each page offset within the specified range of the given object,
2347  *      find the highest-level page in the shadow chain and unwire it.  A page
2348  *      must exist at every page offset, and the highest-level page must be
2349  *      wired.
2350  */
2351 void
2352 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2353     uint8_t queue)
2354 {
2355         vm_object_t tobject, t1object;
2356         vm_page_t m, tm;
2357         vm_pindex_t end_pindex, pindex, tpindex;
2358         int depth, locked_depth;
2359
2360         KASSERT((offset & PAGE_MASK) == 0,
2361             ("vm_object_unwire: offset is not page aligned"));
2362         KASSERT((length & PAGE_MASK) == 0,
2363             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2364         /* The wired count of a fictitious page never changes. */
2365         if ((object->flags & OBJ_FICTITIOUS) != 0)
2366                 return;
2367         pindex = OFF_TO_IDX(offset);
2368         end_pindex = pindex + atop(length);
2369 again:
2370         locked_depth = 1;
2371         VM_OBJECT_RLOCK(object);
2372         m = vm_page_find_least(object, pindex);
2373         while (pindex < end_pindex) {
2374                 if (m == NULL || pindex < m->pindex) {
2375                         /*
2376                          * The first object in the shadow chain doesn't
2377                          * contain a page at the current index.  Therefore,
2378                          * the page must exist in a backing object.
2379                          */
2380                         tobject = object;
2381                         tpindex = pindex;
2382                         depth = 0;
2383                         do {
2384                                 tpindex +=
2385                                     OFF_TO_IDX(tobject->backing_object_offset);
2386                                 tobject = tobject->backing_object;
2387                                 KASSERT(tobject != NULL,
2388                                     ("vm_object_unwire: missing page"));
2389                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2390                                         goto next_page;
2391                                 depth++;
2392                                 if (depth == locked_depth) {
2393                                         locked_depth++;
2394                                         VM_OBJECT_RLOCK(tobject);
2395                                 }
2396                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2397                             NULL);
2398                 } else {
2399                         tm = m;
2400                         m = TAILQ_NEXT(m, listq);
2401                 }
2402                 if (vm_page_trysbusy(tm) == 0) {
2403                         for (tobject = object; locked_depth >= 1;
2404                             locked_depth--) {
2405                                 t1object = tobject->backing_object;
2406                                 if (tm->object != tobject)
2407                                         VM_OBJECT_RUNLOCK(tobject);
2408                                 tobject = t1object;
2409                         }
2410                         vm_page_busy_sleep(tm, "unwbo", true);
2411                         goto again;
2412                 }
2413                 vm_page_unwire(tm, queue);
2414                 vm_page_sunbusy(tm);
2415 next_page:
2416                 pindex++;
2417         }
2418         /* Release the accumulated object locks. */
2419         for (tobject = object; locked_depth >= 1; locked_depth--) {
2420                 t1object = tobject->backing_object;
2421                 VM_OBJECT_RUNLOCK(tobject);
2422                 tobject = t1object;
2423         }
2424 }
2425
2426 /*
2427  * Return the vnode for the given object, or NULL if none exists.
2428  * For tmpfs objects, the function may return NULL if there is
2429  * no vnode allocated at the time of the call.
2430  */
2431 struct vnode *
2432 vm_object_vnode(vm_object_t object)
2433 {
2434         struct vnode *vp;
2435
2436         VM_OBJECT_ASSERT_LOCKED(object);
2437         vm_pager_getvp(object, &vp, NULL);
2438         return (vp);
2439 }
2440
2441 /*
2442  * Busy the vm object.  This prevents new pages belonging to the object from
2443  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2444  * for checking page state before proceeding.
2445  */
2446 void
2447 vm_object_busy(vm_object_t obj)
2448 {
2449
2450         VM_OBJECT_ASSERT_LOCKED(obj);
2451
2452         blockcount_acquire(&obj->busy, 1);
2453         /* The fence is required to order loads of page busy. */
2454         atomic_thread_fence_acq_rel();
2455 }
2456
2457 void
2458 vm_object_unbusy(vm_object_t obj)
2459 {
2460
2461         blockcount_release(&obj->busy, 1);
2462 }
2463
2464 void
2465 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2466 {
2467
2468         VM_OBJECT_ASSERT_UNLOCKED(obj);
2469
2470         (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2471 }
2472
2473 static int
2474 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2475 {
2476         struct kinfo_vmobject *kvo;
2477         char *fullpath, *freepath;
2478         struct vnode *vp;
2479         struct vattr va;
2480         vm_object_t obj;
2481         vm_page_t m;
2482         u_long sp;
2483         int count, error;
2484
2485         if (req->oldptr == NULL) {
2486                 /*
2487                  * If an old buffer has not been provided, generate an
2488                  * estimate of the space needed for a subsequent call.
2489                  */
2490                 mtx_lock(&vm_object_list_mtx);
2491                 count = 0;
2492                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2493                         if (obj->type == OBJT_DEAD)
2494                                 continue;
2495                         count++;
2496                 }
2497                 mtx_unlock(&vm_object_list_mtx);
2498                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2499                     count * 11 / 10));
2500         }
2501
2502         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2503         error = 0;
2504
2505         /*
2506          * VM objects are type stable and are never removed from the
2507          * list once added.  This allows us to safely read obj->object_list
2508          * after reacquiring the VM object lock.
2509          */
2510         mtx_lock(&vm_object_list_mtx);
2511         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2512                 if (obj->type == OBJT_DEAD)
2513                         continue;
2514                 VM_OBJECT_RLOCK(obj);
2515                 if (obj->type == OBJT_DEAD) {
2516                         VM_OBJECT_RUNLOCK(obj);
2517                         continue;
2518                 }
2519                 mtx_unlock(&vm_object_list_mtx);
2520                 kvo->kvo_size = ptoa(obj->size);
2521                 kvo->kvo_resident = obj->resident_page_count;
2522                 kvo->kvo_ref_count = obj->ref_count;
2523                 kvo->kvo_shadow_count = obj->shadow_count;
2524                 kvo->kvo_memattr = obj->memattr;
2525                 kvo->kvo_active = 0;
2526                 kvo->kvo_inactive = 0;
2527                 TAILQ_FOREACH(m, &obj->memq, listq) {
2528                         /*
2529                          * A page may belong to the object but be
2530                          * dequeued and set to PQ_NONE while the
2531                          * object lock is not held.  This makes the
2532                          * reads of m->queue below racy, and we do not
2533                          * count pages set to PQ_NONE.  However, this
2534                          * sysctl is only meant to give an
2535                          * approximation of the system anyway.
2536                          */
2537                         if (m->a.queue == PQ_ACTIVE)
2538                                 kvo->kvo_active++;
2539                         else if (m->a.queue == PQ_INACTIVE)
2540                                 kvo->kvo_inactive++;
2541                 }
2542
2543                 kvo->kvo_vn_fileid = 0;
2544                 kvo->kvo_vn_fsid = 0;
2545                 kvo->kvo_vn_fsid_freebsd11 = 0;
2546                 freepath = NULL;
2547                 fullpath = "";
2548                 kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2549                 if (vp != NULL) {
2550                         vref(vp);
2551                 } else if ((obj->flags & OBJ_ANON) != 0) {
2552                         MPASS(kvo->kvo_type == KVME_TYPE_DEFAULT ||
2553                             kvo->kvo_type == KVME_TYPE_SWAP);
2554                         kvo->kvo_me = (uintptr_t)obj;
2555                         /* tmpfs objs are reported as vnodes */
2556                         kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2557                         sp = swap_pager_swapped_pages(obj);
2558                         kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2559                 }
2560                 VM_OBJECT_RUNLOCK(obj);
2561                 if (vp != NULL) {
2562                         vn_fullpath(vp, &fullpath, &freepath);
2563                         vn_lock(vp, LK_SHARED | LK_RETRY);
2564                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2565                                 kvo->kvo_vn_fileid = va.va_fileid;
2566                                 kvo->kvo_vn_fsid = va.va_fsid;
2567                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2568                                                                 /* truncate */
2569                         }
2570                         vput(vp);
2571                 }
2572
2573                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2574                 if (freepath != NULL)
2575                         free(freepath, M_TEMP);
2576
2577                 /* Pack record size down */
2578                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2579                     + strlen(kvo->kvo_path) + 1;
2580                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2581                     sizeof(uint64_t));
2582                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2583                 mtx_lock(&vm_object_list_mtx);
2584                 if (error)
2585                         break;
2586         }
2587         mtx_unlock(&vm_object_list_mtx);
2588         free(kvo, M_TEMP);
2589         return (error);
2590 }
2591 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2592     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2593     "List of VM objects");
2594
2595 #include "opt_ddb.h"
2596 #ifdef DDB
2597 #include <sys/kernel.h>
2598
2599 #include <sys/cons.h>
2600
2601 #include <ddb/ddb.h>
2602
2603 static int
2604 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2605 {
2606         vm_map_t tmpm;
2607         vm_map_entry_t tmpe;
2608         vm_object_t obj;
2609
2610         if (map == 0)
2611                 return 0;
2612
2613         if (entry == 0) {
2614                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2615                         if (_vm_object_in_map(map, object, tmpe)) {
2616                                 return 1;
2617                         }
2618                 }
2619         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2620                 tmpm = entry->object.sub_map;
2621                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2622                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2623                                 return 1;
2624                         }
2625                 }
2626         } else if ((obj = entry->object.vm_object) != NULL) {
2627                 for (; obj; obj = obj->backing_object)
2628                         if (obj == object) {
2629                                 return 1;
2630                         }
2631         }
2632         return 0;
2633 }
2634
2635 static int
2636 vm_object_in_map(vm_object_t object)
2637 {
2638         struct proc *p;
2639
2640         /* sx_slock(&allproc_lock); */
2641         FOREACH_PROC_IN_SYSTEM(p) {
2642                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2643                         continue;
2644                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2645                         /* sx_sunlock(&allproc_lock); */
2646                         return 1;
2647                 }
2648         }
2649         /* sx_sunlock(&allproc_lock); */
2650         if (_vm_object_in_map(kernel_map, object, 0))
2651                 return 1;
2652         return 0;
2653 }
2654
2655 DB_SHOW_COMMAND(vmochk, vm_object_check)
2656 {
2657         vm_object_t object;
2658
2659         /*
2660          * make sure that internal objs are in a map somewhere
2661          * and none have zero ref counts.
2662          */
2663         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2664                 if ((object->flags & OBJ_ANON) != 0) {
2665                         if (object->ref_count == 0) {
2666                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2667                                         (long)object->size);
2668                         }
2669                         if (!vm_object_in_map(object)) {
2670                                 db_printf(
2671                         "vmochk: internal obj is not in a map: "
2672                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2673                                     object->ref_count, (u_long)object->size, 
2674                                     (u_long)object->size,
2675                                     (void *)object->backing_object);
2676                         }
2677                 }
2678                 if (db_pager_quit)
2679                         return;
2680         }
2681 }
2682
2683 /*
2684  *      vm_object_print:        [ debug ]
2685  */
2686 DB_SHOW_COMMAND(object, vm_object_print_static)
2687 {
2688         /* XXX convert args. */
2689         vm_object_t object = (vm_object_t)addr;
2690         boolean_t full = have_addr;
2691
2692         vm_page_t p;
2693
2694         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2695 #define count   was_count
2696
2697         int count;
2698
2699         if (object == NULL)
2700                 return;
2701
2702         db_iprintf(
2703             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2704             object, (int)object->type, (uintmax_t)object->size,
2705             object->resident_page_count, object->ref_count, object->flags,
2706             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2707         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2708             object->shadow_count, 
2709             object->backing_object ? object->backing_object->ref_count : 0,
2710             object->backing_object, (uintmax_t)object->backing_object_offset);
2711
2712         if (!full)
2713                 return;
2714
2715         db_indent += 2;
2716         count = 0;
2717         TAILQ_FOREACH(p, &object->memq, listq) {
2718                 if (count == 0)
2719                         db_iprintf("memory:=");
2720                 else if (count == 6) {
2721                         db_printf("\n");
2722                         db_iprintf(" ...");
2723                         count = 0;
2724                 } else
2725                         db_printf(",");
2726                 count++;
2727
2728                 db_printf("(off=0x%jx,page=0x%jx)",
2729                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2730
2731                 if (db_pager_quit)
2732                         break;
2733         }
2734         if (count != 0)
2735                 db_printf("\n");
2736         db_indent -= 2;
2737 }
2738
2739 /* XXX. */
2740 #undef count
2741
2742 /* XXX need this non-static entry for calling from vm_map_print. */
2743 void
2744 vm_object_print(
2745         /* db_expr_t */ long addr,
2746         boolean_t have_addr,
2747         /* db_expr_t */ long count,
2748         char *modif)
2749 {
2750         vm_object_print_static(addr, have_addr, count, modif);
2751 }
2752
2753 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2754 {
2755         vm_object_t object;
2756         vm_pindex_t fidx;
2757         vm_paddr_t pa;
2758         vm_page_t m, prev_m;
2759         int rcount, nl, c;
2760
2761         nl = 0;
2762         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2763                 db_printf("new object: %p\n", (void *)object);
2764                 if (nl > 18) {
2765                         c = cngetc();
2766                         if (c != ' ')
2767                                 return;
2768                         nl = 0;
2769                 }
2770                 nl++;
2771                 rcount = 0;
2772                 fidx = 0;
2773                 pa = -1;
2774                 TAILQ_FOREACH(m, &object->memq, listq) {
2775                         if (m->pindex > 128)
2776                                 break;
2777                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2778                             prev_m->pindex + 1 != m->pindex) {
2779                                 if (rcount) {
2780                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2781                                                 (long)fidx, rcount, (long)pa);
2782                                         if (nl > 18) {
2783                                                 c = cngetc();
2784                                                 if (c != ' ')
2785                                                         return;
2786                                                 nl = 0;
2787                                         }
2788                                         nl++;
2789                                         rcount = 0;
2790                                 }
2791                         }                               
2792                         if (rcount &&
2793                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2794                                 ++rcount;
2795                                 continue;
2796                         }
2797                         if (rcount) {
2798                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2799                                         (long)fidx, rcount, (long)pa);
2800                                 if (nl > 18) {
2801                                         c = cngetc();
2802                                         if (c != ' ')
2803                                                 return;
2804                                         nl = 0;
2805                                 }
2806                                 nl++;
2807                         }
2808                         fidx = m->pindex;
2809                         pa = VM_PAGE_TO_PHYS(m);
2810                         rcount = 1;
2811                 }
2812                 if (rcount) {
2813                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2814                                 (long)fidx, rcount, (long)pa);
2815                         if (nl > 18) {
2816                                 c = cngetc();
2817                                 if (c != ' ')
2818                                         return;
2819                                 nl = 0;
2820                         }
2821                         nl++;
2822                 }
2823         }
2824 }
2825 #endif /* DDB */