]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Merge llvm trunk r338150 (just before the 7.0.0 branch point), and
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>           /* for curproc, pageproc */
83 #include <sys/socket.h>
84 #include <sys/resourcevar.h>
85 #include <sys/rwlock.h>
86 #include <sys/user.h>
87 #include <sys/vnode.h>
88 #include <sys/vmmeter.h>
89 #include <sys/sx.h>
90
91 #include <vm/vm.h>
92 #include <vm/vm_param.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pageout.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_phys.h>
100 #include <vm/vm_pagequeue.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_extern.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/uma.h>
107
108 static int old_msync;
109 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
110     "Use old (insecure) msync behavior");
111
112 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
113                     int pagerflags, int flags, boolean_t *clearobjflags,
114                     boolean_t *eio);
115 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
116                     boolean_t *clearobjflags);
117 static void     vm_object_qcollapse(vm_object_t object);
118 static void     vm_object_vndeallocate(vm_object_t object);
119
120 /*
121  *      Virtual memory objects maintain the actual data
122  *      associated with allocated virtual memory.  A given
123  *      page of memory exists within exactly one object.
124  *
125  *      An object is only deallocated when all "references"
126  *      are given up.  Only one "reference" to a given
127  *      region of an object should be writeable.
128  *
129  *      Associated with each object is a list of all resident
130  *      memory pages belonging to that object; this list is
131  *      maintained by the "vm_page" module, and locked by the object's
132  *      lock.
133  *
134  *      Each object also records a "pager" routine which is
135  *      used to retrieve (and store) pages to the proper backing
136  *      storage.  In addition, objects may be backed by other
137  *      objects from which they were virtual-copied.
138  *
139  *      The only items within the object structure which are
140  *      modified after time of creation are:
141  *              reference count         locked by object's lock
142  *              pager routine           locked by object's lock
143  *
144  */
145
146 struct object_q vm_object_list;
147 struct mtx vm_object_list_mtx;  /* lock for object list and count */
148
149 struct vm_object kernel_object_store;
150
151 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
152     "VM object stats");
153
154 static counter_u64_t object_collapses = EARLY_COUNTER;
155 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
156     &object_collapses,
157     "VM object collapses");
158
159 static counter_u64_t object_bypasses = EARLY_COUNTER;
160 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
161     &object_bypasses,
162     "VM object bypasses");
163
164 static void
165 counter_startup(void)
166 {
167
168         object_collapses = counter_u64_alloc(M_WAITOK);
169         object_bypasses = counter_u64_alloc(M_WAITOK);
170 }
171 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
172
173 static uma_zone_t obj_zone;
174
175 static int vm_object_zinit(void *mem, int size, int flags);
176
177 #ifdef INVARIANTS
178 static void vm_object_zdtor(void *mem, int size, void *arg);
179
180 static void
181 vm_object_zdtor(void *mem, int size, void *arg)
182 {
183         vm_object_t object;
184
185         object = (vm_object_t)mem;
186         KASSERT(object->ref_count == 0,
187             ("object %p ref_count = %d", object, object->ref_count));
188         KASSERT(TAILQ_EMPTY(&object->memq),
189             ("object %p has resident pages in its memq", object));
190         KASSERT(vm_radix_is_empty(&object->rtree),
191             ("object %p has resident pages in its trie", object));
192 #if VM_NRESERVLEVEL > 0
193         KASSERT(LIST_EMPTY(&object->rvq),
194             ("object %p has reservations",
195             object));
196 #endif
197         KASSERT(object->paging_in_progress == 0,
198             ("object %p paging_in_progress = %d",
199             object, object->paging_in_progress));
200         KASSERT(object->resident_page_count == 0,
201             ("object %p resident_page_count = %d",
202             object, object->resident_page_count));
203         KASSERT(object->shadow_count == 0,
204             ("object %p shadow_count = %d",
205             object, object->shadow_count));
206         KASSERT(object->type == OBJT_DEAD,
207             ("object %p has non-dead type %d",
208             object, object->type));
209 }
210 #endif
211
212 static int
213 vm_object_zinit(void *mem, int size, int flags)
214 {
215         vm_object_t object;
216
217         object = (vm_object_t)mem;
218         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
219
220         /* These are true for any object that has been freed */
221         object->type = OBJT_DEAD;
222         object->ref_count = 0;
223         vm_radix_init(&object->rtree);
224         object->paging_in_progress = 0;
225         object->resident_page_count = 0;
226         object->shadow_count = 0;
227         object->flags = OBJ_DEAD;
228
229         mtx_lock(&vm_object_list_mtx);
230         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231         mtx_unlock(&vm_object_list_mtx);
232         return (0);
233 }
234
235 static void
236 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
237 {
238
239         TAILQ_INIT(&object->memq);
240         LIST_INIT(&object->shadow_head);
241
242         object->type = type;
243         if (type == OBJT_SWAP)
244                 pctrie_init(&object->un_pager.swp.swp_blks);
245
246         /*
247          * Ensure that swap_pager_swapoff() iteration over object_list
248          * sees up to date type and pctrie head if it observed
249          * non-dead object.
250          */
251         atomic_thread_fence_rel();
252
253         switch (type) {
254         case OBJT_DEAD:
255                 panic("_vm_object_allocate: can't create OBJT_DEAD");
256         case OBJT_DEFAULT:
257         case OBJT_SWAP:
258                 object->flags = OBJ_ONEMAPPING;
259                 break;
260         case OBJT_DEVICE:
261         case OBJT_SG:
262                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
263                 break;
264         case OBJT_MGTDEVICE:
265                 object->flags = OBJ_FICTITIOUS;
266                 break;
267         case OBJT_PHYS:
268                 object->flags = OBJ_UNMANAGED;
269                 break;
270         case OBJT_VNODE:
271                 object->flags = 0;
272                 break;
273         default:
274                 panic("_vm_object_allocate: type %d is undefined", type);
275         }
276         object->size = size;
277         object->generation = 1;
278         object->ref_count = 1;
279         object->memattr = VM_MEMATTR_DEFAULT;
280         object->cred = NULL;
281         object->charge = 0;
282         object->handle = NULL;
283         object->backing_object = NULL;
284         object->backing_object_offset = (vm_ooffset_t) 0;
285 #if VM_NRESERVLEVEL > 0
286         LIST_INIT(&object->rvq);
287 #endif
288         umtx_shm_object_init(object);
289 }
290
291 /*
292  *      vm_object_init:
293  *
294  *      Initialize the VM objects module.
295  */
296 void
297 vm_object_init(void)
298 {
299         TAILQ_INIT(&vm_object_list);
300         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
301         
302         rw_init(&kernel_object->lock, "kernel vm object");
303         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
304             VM_MIN_KERNEL_ADDRESS), kernel_object);
305 #if VM_NRESERVLEVEL > 0
306         kernel_object->flags |= OBJ_COLORED;
307         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
308 #endif
309
310         /*
311          * The lock portion of struct vm_object must be type stable due
312          * to vm_pageout_fallback_object_lock locking a vm object
313          * without holding any references to it.
314          */
315         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
316 #ifdef INVARIANTS
317             vm_object_zdtor,
318 #else
319             NULL,
320 #endif
321             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
322
323         vm_radix_zinit();
324 }
325
326 void
327 vm_object_clear_flag(vm_object_t object, u_short bits)
328 {
329
330         VM_OBJECT_ASSERT_WLOCKED(object);
331         object->flags &= ~bits;
332 }
333
334 /*
335  *      Sets the default memory attribute for the specified object.  Pages
336  *      that are allocated to this object are by default assigned this memory
337  *      attribute.
338  *
339  *      Presently, this function must be called before any pages are allocated
340  *      to the object.  In the future, this requirement may be relaxed for
341  *      "default" and "swap" objects.
342  */
343 int
344 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
345 {
346
347         VM_OBJECT_ASSERT_WLOCKED(object);
348         switch (object->type) {
349         case OBJT_DEFAULT:
350         case OBJT_DEVICE:
351         case OBJT_MGTDEVICE:
352         case OBJT_PHYS:
353         case OBJT_SG:
354         case OBJT_SWAP:
355         case OBJT_VNODE:
356                 if (!TAILQ_EMPTY(&object->memq))
357                         return (KERN_FAILURE);
358                 break;
359         case OBJT_DEAD:
360                 return (KERN_INVALID_ARGUMENT);
361         default:
362                 panic("vm_object_set_memattr: object %p is of undefined type",
363                     object);
364         }
365         object->memattr = memattr;
366         return (KERN_SUCCESS);
367 }
368
369 void
370 vm_object_pip_add(vm_object_t object, short i)
371 {
372
373         VM_OBJECT_ASSERT_WLOCKED(object);
374         object->paging_in_progress += i;
375 }
376
377 void
378 vm_object_pip_subtract(vm_object_t object, short i)
379 {
380
381         VM_OBJECT_ASSERT_WLOCKED(object);
382         object->paging_in_progress -= i;
383 }
384
385 void
386 vm_object_pip_wakeup(vm_object_t object)
387 {
388
389         VM_OBJECT_ASSERT_WLOCKED(object);
390         object->paging_in_progress--;
391         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
392                 vm_object_clear_flag(object, OBJ_PIPWNT);
393                 wakeup(object);
394         }
395 }
396
397 void
398 vm_object_pip_wakeupn(vm_object_t object, short i)
399 {
400
401         VM_OBJECT_ASSERT_WLOCKED(object);
402         if (i)
403                 object->paging_in_progress -= i;
404         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
405                 vm_object_clear_flag(object, OBJ_PIPWNT);
406                 wakeup(object);
407         }
408 }
409
410 void
411 vm_object_pip_wait(vm_object_t object, char *waitid)
412 {
413
414         VM_OBJECT_ASSERT_WLOCKED(object);
415         while (object->paging_in_progress) {
416                 object->flags |= OBJ_PIPWNT;
417                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
418         }
419 }
420
421 /*
422  *      vm_object_allocate:
423  *
424  *      Returns a new object with the given size.
425  */
426 vm_object_t
427 vm_object_allocate(objtype_t type, vm_pindex_t size)
428 {
429         vm_object_t object;
430
431         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
432         _vm_object_allocate(type, size, object);
433         return (object);
434 }
435
436
437 /*
438  *      vm_object_reference:
439  *
440  *      Gets another reference to the given object.  Note: OBJ_DEAD
441  *      objects can be referenced during final cleaning.
442  */
443 void
444 vm_object_reference(vm_object_t object)
445 {
446         if (object == NULL)
447                 return;
448         VM_OBJECT_WLOCK(object);
449         vm_object_reference_locked(object);
450         VM_OBJECT_WUNLOCK(object);
451 }
452
453 /*
454  *      vm_object_reference_locked:
455  *
456  *      Gets another reference to the given object.
457  *
458  *      The object must be locked.
459  */
460 void
461 vm_object_reference_locked(vm_object_t object)
462 {
463         struct vnode *vp;
464
465         VM_OBJECT_ASSERT_WLOCKED(object);
466         object->ref_count++;
467         if (object->type == OBJT_VNODE) {
468                 vp = object->handle;
469                 vref(vp);
470         }
471 }
472
473 /*
474  * Handle deallocating an object of type OBJT_VNODE.
475  */
476 static void
477 vm_object_vndeallocate(vm_object_t object)
478 {
479         struct vnode *vp = (struct vnode *) object->handle;
480
481         VM_OBJECT_ASSERT_WLOCKED(object);
482         KASSERT(object->type == OBJT_VNODE,
483             ("vm_object_vndeallocate: not a vnode object"));
484         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
485 #ifdef INVARIANTS
486         if (object->ref_count == 0) {
487                 vn_printf(vp, "vm_object_vndeallocate ");
488                 panic("vm_object_vndeallocate: bad object reference count");
489         }
490 #endif
491
492         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
493                 umtx_shm_object_terminated(object);
494
495         /*
496          * The test for text of vp vnode does not need a bypass to
497          * reach right VV_TEXT there, since it is obtained from
498          * object->handle.
499          */
500         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
501                 object->ref_count--;
502                 VM_OBJECT_WUNLOCK(object);
503                 /* vrele may need the vnode lock. */
504                 vrele(vp);
505         } else {
506                 vhold(vp);
507                 VM_OBJECT_WUNLOCK(object);
508                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
509                 vdrop(vp);
510                 VM_OBJECT_WLOCK(object);
511                 object->ref_count--;
512                 if (object->type == OBJT_DEAD) {
513                         VM_OBJECT_WUNLOCK(object);
514                         VOP_UNLOCK(vp, 0);
515                 } else {
516                         if (object->ref_count == 0)
517                                 VOP_UNSET_TEXT(vp);
518                         VM_OBJECT_WUNLOCK(object);
519                         vput(vp);
520                 }
521         }
522 }
523
524 /*
525  *      vm_object_deallocate:
526  *
527  *      Release a reference to the specified object,
528  *      gained either through a vm_object_allocate
529  *      or a vm_object_reference call.  When all references
530  *      are gone, storage associated with this object
531  *      may be relinquished.
532  *
533  *      No object may be locked.
534  */
535 void
536 vm_object_deallocate(vm_object_t object)
537 {
538         vm_object_t temp;
539         struct vnode *vp;
540
541         while (object != NULL) {
542                 VM_OBJECT_WLOCK(object);
543                 if (object->type == OBJT_VNODE) {
544                         vm_object_vndeallocate(object);
545                         return;
546                 }
547
548                 KASSERT(object->ref_count != 0,
549                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
550
551                 /*
552                  * If the reference count goes to 0 we start calling
553                  * vm_object_terminate() on the object chain.
554                  * A ref count of 1 may be a special case depending on the
555                  * shadow count being 0 or 1.
556                  */
557                 object->ref_count--;
558                 if (object->ref_count > 1) {
559                         VM_OBJECT_WUNLOCK(object);
560                         return;
561                 } else if (object->ref_count == 1) {
562                         if (object->type == OBJT_SWAP &&
563                             (object->flags & OBJ_TMPFS) != 0) {
564                                 vp = object->un_pager.swp.swp_tmpfs;
565                                 vhold(vp);
566                                 VM_OBJECT_WUNLOCK(object);
567                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
568                                 VM_OBJECT_WLOCK(object);
569                                 if (object->type == OBJT_DEAD ||
570                                     object->ref_count != 1) {
571                                         VM_OBJECT_WUNLOCK(object);
572                                         VOP_UNLOCK(vp, 0);
573                                         vdrop(vp);
574                                         return;
575                                 }
576                                 if ((object->flags & OBJ_TMPFS) != 0)
577                                         VOP_UNSET_TEXT(vp);
578                                 VOP_UNLOCK(vp, 0);
579                                 vdrop(vp);
580                         }
581                         if (object->shadow_count == 0 &&
582                             object->handle == NULL &&
583                             (object->type == OBJT_DEFAULT ||
584                             (object->type == OBJT_SWAP &&
585                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
586                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
587                         } else if ((object->shadow_count == 1) &&
588                             (object->handle == NULL) &&
589                             (object->type == OBJT_DEFAULT ||
590                              object->type == OBJT_SWAP)) {
591                                 vm_object_t robject;
592
593                                 robject = LIST_FIRST(&object->shadow_head);
594                                 KASSERT(robject != NULL,
595                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
596                                          object->ref_count,
597                                          object->shadow_count));
598                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
599                                     ("shadowed tmpfs v_object %p", object));
600                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
601                                         /*
602                                          * Avoid a potential deadlock.
603                                          */
604                                         object->ref_count++;
605                                         VM_OBJECT_WUNLOCK(object);
606                                         /*
607                                          * More likely than not the thread
608                                          * holding robject's lock has lower
609                                          * priority than the current thread.
610                                          * Let the lower priority thread run.
611                                          */
612                                         pause("vmo_de", 1);
613                                         continue;
614                                 }
615                                 /*
616                                  * Collapse object into its shadow unless its
617                                  * shadow is dead.  In that case, object will
618                                  * be deallocated by the thread that is
619                                  * deallocating its shadow.
620                                  */
621                                 if ((robject->flags & OBJ_DEAD) == 0 &&
622                                     (robject->handle == NULL) &&
623                                     (robject->type == OBJT_DEFAULT ||
624                                      robject->type == OBJT_SWAP)) {
625
626                                         robject->ref_count++;
627 retry:
628                                         if (robject->paging_in_progress) {
629                                                 VM_OBJECT_WUNLOCK(object);
630                                                 vm_object_pip_wait(robject,
631                                                     "objde1");
632                                                 temp = robject->backing_object;
633                                                 if (object == temp) {
634                                                         VM_OBJECT_WLOCK(object);
635                                                         goto retry;
636                                                 }
637                                         } else if (object->paging_in_progress) {
638                                                 VM_OBJECT_WUNLOCK(robject);
639                                                 object->flags |= OBJ_PIPWNT;
640                                                 VM_OBJECT_SLEEP(object, object,
641                                                     PDROP | PVM, "objde2", 0);
642                                                 VM_OBJECT_WLOCK(robject);
643                                                 temp = robject->backing_object;
644                                                 if (object == temp) {
645                                                         VM_OBJECT_WLOCK(object);
646                                                         goto retry;
647                                                 }
648                                         } else
649                                                 VM_OBJECT_WUNLOCK(object);
650
651                                         if (robject->ref_count == 1) {
652                                                 robject->ref_count--;
653                                                 object = robject;
654                                                 goto doterm;
655                                         }
656                                         object = robject;
657                                         vm_object_collapse(object);
658                                         VM_OBJECT_WUNLOCK(object);
659                                         continue;
660                                 }
661                                 VM_OBJECT_WUNLOCK(robject);
662                         }
663                         VM_OBJECT_WUNLOCK(object);
664                         return;
665                 }
666 doterm:
667                 umtx_shm_object_terminated(object);
668                 temp = object->backing_object;
669                 if (temp != NULL) {
670                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
671                             ("shadowed tmpfs v_object 2 %p", object));
672                         VM_OBJECT_WLOCK(temp);
673                         LIST_REMOVE(object, shadow_list);
674                         temp->shadow_count--;
675                         VM_OBJECT_WUNLOCK(temp);
676                         object->backing_object = NULL;
677                 }
678                 /*
679                  * Don't double-terminate, we could be in a termination
680                  * recursion due to the terminate having to sync data
681                  * to disk.
682                  */
683                 if ((object->flags & OBJ_DEAD) == 0)
684                         vm_object_terminate(object);
685                 else
686                         VM_OBJECT_WUNLOCK(object);
687                 object = temp;
688         }
689 }
690
691 /*
692  *      vm_object_destroy removes the object from the global object list
693  *      and frees the space for the object.
694  */
695 void
696 vm_object_destroy(vm_object_t object)
697 {
698
699         /*
700          * Release the allocation charge.
701          */
702         if (object->cred != NULL) {
703                 swap_release_by_cred(object->charge, object->cred);
704                 object->charge = 0;
705                 crfree(object->cred);
706                 object->cred = NULL;
707         }
708
709         /*
710          * Free the space for the object.
711          */
712         uma_zfree(obj_zone, object);
713 }
714
715 /*
716  *      vm_object_terminate_pages removes any remaining pageable pages
717  *      from the object and resets the object to an empty state.
718  */
719 static void
720 vm_object_terminate_pages(vm_object_t object)
721 {
722         vm_page_t p, p_next;
723         struct mtx *mtx;
724
725         VM_OBJECT_ASSERT_WLOCKED(object);
726
727         mtx = NULL;
728
729         /*
730          * Free any remaining pageable pages.  This also removes them from the
731          * paging queues.  However, don't free wired pages, just remove them
732          * from the object.  Rather than incrementally removing each page from
733          * the object, the page and object are reset to any empty state. 
734          */
735         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
736                 vm_page_assert_unbusied(p);
737                 if ((object->flags & OBJ_UNMANAGED) == 0)
738                         /*
739                          * vm_page_free_prep() only needs the page
740                          * lock for managed pages.
741                          */
742                         vm_page_change_lock(p, &mtx);
743                 p->object = NULL;
744                 if (p->wire_count != 0)
745                         continue;
746                 VM_CNT_INC(v_pfree);
747                 vm_page_free(p);
748         }
749         if (mtx != NULL)
750                 mtx_unlock(mtx);
751
752         /*
753          * If the object contained any pages, then reset it to an empty state.
754          * None of the object's fields, including "resident_page_count", were
755          * modified by the preceding loop.
756          */
757         if (object->resident_page_count != 0) {
758                 vm_radix_reclaim_allnodes(&object->rtree);
759                 TAILQ_INIT(&object->memq);
760                 object->resident_page_count = 0;
761                 if (object->type == OBJT_VNODE)
762                         vdrop(object->handle);
763         }
764 }
765
766 /*
767  *      vm_object_terminate actually destroys the specified object, freeing
768  *      up all previously used resources.
769  *
770  *      The object must be locked.
771  *      This routine may block.
772  */
773 void
774 vm_object_terminate(vm_object_t object)
775 {
776
777         VM_OBJECT_ASSERT_WLOCKED(object);
778
779         /*
780          * Make sure no one uses us.
781          */
782         vm_object_set_flag(object, OBJ_DEAD);
783
784         /*
785          * wait for the pageout daemon to be done with the object
786          */
787         vm_object_pip_wait(object, "objtrm");
788
789         KASSERT(!object->paging_in_progress,
790                 ("vm_object_terminate: pageout in progress"));
791
792         /*
793          * Clean and free the pages, as appropriate. All references to the
794          * object are gone, so we don't need to lock it.
795          */
796         if (object->type == OBJT_VNODE) {
797                 struct vnode *vp = (struct vnode *)object->handle;
798
799                 /*
800                  * Clean pages and flush buffers.
801                  */
802                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
803                 VM_OBJECT_WUNLOCK(object);
804
805                 vinvalbuf(vp, V_SAVE, 0, 0);
806
807                 BO_LOCK(&vp->v_bufobj);
808                 vp->v_bufobj.bo_flag |= BO_DEAD;
809                 BO_UNLOCK(&vp->v_bufobj);
810
811                 VM_OBJECT_WLOCK(object);
812         }
813
814         KASSERT(object->ref_count == 0, 
815                 ("vm_object_terminate: object with references, ref_count=%d",
816                 object->ref_count));
817
818         if ((object->flags & OBJ_PG_DTOR) == 0)
819                 vm_object_terminate_pages(object);
820
821 #if VM_NRESERVLEVEL > 0
822         if (__predict_false(!LIST_EMPTY(&object->rvq)))
823                 vm_reserv_break_all(object);
824 #endif
825
826         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
827             object->type == OBJT_SWAP,
828             ("%s: non-swap obj %p has cred", __func__, object));
829
830         /*
831          * Let the pager know object is dead.
832          */
833         vm_pager_deallocate(object);
834         VM_OBJECT_WUNLOCK(object);
835
836         vm_object_destroy(object);
837 }
838
839 /*
840  * Make the page read-only so that we can clear the object flags.  However, if
841  * this is a nosync mmap then the object is likely to stay dirty so do not
842  * mess with the page and do not clear the object flags.  Returns TRUE if the
843  * page should be flushed, and FALSE otherwise.
844  */
845 static boolean_t
846 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
847 {
848
849         /*
850          * If we have been asked to skip nosync pages and this is a
851          * nosync page, skip it.  Note that the object flags were not
852          * cleared in this case so we do not have to set them.
853          */
854         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
855                 *clearobjflags = FALSE;
856                 return (FALSE);
857         } else {
858                 pmap_remove_write(p);
859                 return (p->dirty != 0);
860         }
861 }
862
863 /*
864  *      vm_object_page_clean
865  *
866  *      Clean all dirty pages in the specified range of object.  Leaves page 
867  *      on whatever queue it is currently on.   If NOSYNC is set then do not
868  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
869  *      leaving the object dirty.
870  *
871  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
872  *      synchronous clustering mode implementation.
873  *
874  *      Odd semantics: if start == end, we clean everything.
875  *
876  *      The object must be locked.
877  *
878  *      Returns FALSE if some page from the range was not written, as
879  *      reported by the pager, and TRUE otherwise.
880  */
881 boolean_t
882 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
883     int flags)
884 {
885         vm_page_t np, p;
886         vm_pindex_t pi, tend, tstart;
887         int curgeneration, n, pagerflags;
888         boolean_t clearobjflags, eio, res;
889
890         VM_OBJECT_ASSERT_WLOCKED(object);
891
892         /*
893          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
894          * objects.  The check below prevents the function from
895          * operating on non-vnode objects.
896          */
897         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
898             object->resident_page_count == 0)
899                 return (TRUE);
900
901         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
902             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
903         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
904
905         tstart = OFF_TO_IDX(start);
906         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
907         clearobjflags = tstart == 0 && tend >= object->size;
908         res = TRUE;
909
910 rescan:
911         curgeneration = object->generation;
912
913         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
914                 pi = p->pindex;
915                 if (pi >= tend)
916                         break;
917                 np = TAILQ_NEXT(p, listq);
918                 if (p->valid == 0)
919                         continue;
920                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
921                         if (object->generation != curgeneration) {
922                                 if ((flags & OBJPC_SYNC) != 0)
923                                         goto rescan;
924                                 else
925                                         clearobjflags = FALSE;
926                         }
927                         np = vm_page_find_least(object, pi);
928                         continue;
929                 }
930                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
931                         continue;
932
933                 n = vm_object_page_collect_flush(object, p, pagerflags,
934                     flags, &clearobjflags, &eio);
935                 if (eio) {
936                         res = FALSE;
937                         clearobjflags = FALSE;
938                 }
939                 if (object->generation != curgeneration) {
940                         if ((flags & OBJPC_SYNC) != 0)
941                                 goto rescan;
942                         else
943                                 clearobjflags = FALSE;
944                 }
945
946                 /*
947                  * If the VOP_PUTPAGES() did a truncated write, so
948                  * that even the first page of the run is not fully
949                  * written, vm_pageout_flush() returns 0 as the run
950                  * length.  Since the condition that caused truncated
951                  * write may be permanent, e.g. exhausted free space,
952                  * accepting n == 0 would cause an infinite loop.
953                  *
954                  * Forwarding the iterator leaves the unwritten page
955                  * behind, but there is not much we can do there if
956                  * filesystem refuses to write it.
957                  */
958                 if (n == 0) {
959                         n = 1;
960                         clearobjflags = FALSE;
961                 }
962                 np = vm_page_find_least(object, pi + n);
963         }
964 #if 0
965         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
966 #endif
967
968         if (clearobjflags)
969                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
970         return (res);
971 }
972
973 static int
974 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
975     int flags, boolean_t *clearobjflags, boolean_t *eio)
976 {
977         vm_page_t ma[vm_pageout_page_count], p_first, tp;
978         int count, i, mreq, runlen;
979
980         vm_page_lock_assert(p, MA_NOTOWNED);
981         VM_OBJECT_ASSERT_WLOCKED(object);
982
983         count = 1;
984         mreq = 0;
985
986         for (tp = p; count < vm_pageout_page_count; count++) {
987                 tp = vm_page_next(tp);
988                 if (tp == NULL || vm_page_busied(tp))
989                         break;
990                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
991                         break;
992         }
993
994         for (p_first = p; count < vm_pageout_page_count; count++) {
995                 tp = vm_page_prev(p_first);
996                 if (tp == NULL || vm_page_busied(tp))
997                         break;
998                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
999                         break;
1000                 p_first = tp;
1001                 mreq++;
1002         }
1003
1004         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1005                 ma[i] = tp;
1006
1007         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1008         return (runlen);
1009 }
1010
1011 /*
1012  * Note that there is absolutely no sense in writing out
1013  * anonymous objects, so we track down the vnode object
1014  * to write out.
1015  * We invalidate (remove) all pages from the address space
1016  * for semantic correctness.
1017  *
1018  * If the backing object is a device object with unmanaged pages, then any
1019  * mappings to the specified range of pages must be removed before this
1020  * function is called.
1021  *
1022  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1023  * may start out with a NULL object.
1024  */
1025 boolean_t
1026 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1027     boolean_t syncio, boolean_t invalidate)
1028 {
1029         vm_object_t backing_object;
1030         struct vnode *vp;
1031         struct mount *mp;
1032         int error, flags, fsync_after;
1033         boolean_t res;
1034
1035         if (object == NULL)
1036                 return (TRUE);
1037         res = TRUE;
1038         error = 0;
1039         VM_OBJECT_WLOCK(object);
1040         while ((backing_object = object->backing_object) != NULL) {
1041                 VM_OBJECT_WLOCK(backing_object);
1042                 offset += object->backing_object_offset;
1043                 VM_OBJECT_WUNLOCK(object);
1044                 object = backing_object;
1045                 if (object->size < OFF_TO_IDX(offset + size))
1046                         size = IDX_TO_OFF(object->size) - offset;
1047         }
1048         /*
1049          * Flush pages if writing is allowed, invalidate them
1050          * if invalidation requested.  Pages undergoing I/O
1051          * will be ignored by vm_object_page_remove().
1052          *
1053          * We cannot lock the vnode and then wait for paging
1054          * to complete without deadlocking against vm_fault.
1055          * Instead we simply call vm_object_page_remove() and
1056          * allow it to block internally on a page-by-page
1057          * basis when it encounters pages undergoing async
1058          * I/O.
1059          */
1060         if (object->type == OBJT_VNODE &&
1061             (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1062             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1063                 VM_OBJECT_WUNLOCK(object);
1064                 (void) vn_start_write(vp, &mp, V_WAIT);
1065                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1066                 if (syncio && !invalidate && offset == 0 &&
1067                     atop(size) == object->size) {
1068                         /*
1069                          * If syncing the whole mapping of the file,
1070                          * it is faster to schedule all the writes in
1071                          * async mode, also allowing the clustering,
1072                          * and then wait for i/o to complete.
1073                          */
1074                         flags = 0;
1075                         fsync_after = TRUE;
1076                 } else {
1077                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1078                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1079                         fsync_after = FALSE;
1080                 }
1081                 VM_OBJECT_WLOCK(object);
1082                 res = vm_object_page_clean(object, offset, offset + size,
1083                     flags);
1084                 VM_OBJECT_WUNLOCK(object);
1085                 if (fsync_after)
1086                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1087                 VOP_UNLOCK(vp, 0);
1088                 vn_finished_write(mp);
1089                 if (error != 0)
1090                         res = FALSE;
1091                 VM_OBJECT_WLOCK(object);
1092         }
1093         if ((object->type == OBJT_VNODE ||
1094              object->type == OBJT_DEVICE) && invalidate) {
1095                 if (object->type == OBJT_DEVICE)
1096                         /*
1097                          * The option OBJPR_NOTMAPPED must be passed here
1098                          * because vm_object_page_remove() cannot remove
1099                          * unmanaged mappings.
1100                          */
1101                         flags = OBJPR_NOTMAPPED;
1102                 else if (old_msync)
1103                         flags = 0;
1104                 else
1105                         flags = OBJPR_CLEANONLY;
1106                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1107                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1108         }
1109         VM_OBJECT_WUNLOCK(object);
1110         return (res);
1111 }
1112
1113 /*
1114  * Determine whether the given advice can be applied to the object.  Advice is
1115  * not applied to unmanaged pages since they never belong to page queues, and
1116  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1117  * have been mapped at most once.
1118  */
1119 static bool
1120 vm_object_advice_applies(vm_object_t object, int advice)
1121 {
1122
1123         if ((object->flags & OBJ_UNMANAGED) != 0)
1124                 return (false);
1125         if (advice != MADV_FREE)
1126                 return (true);
1127         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1128             (object->flags & OBJ_ONEMAPPING) != 0);
1129 }
1130
1131 static void
1132 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1133     vm_size_t size)
1134 {
1135
1136         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1137                 swap_pager_freespace(object, pindex, size);
1138 }
1139
1140 /*
1141  *      vm_object_madvise:
1142  *
1143  *      Implements the madvise function at the object/page level.
1144  *
1145  *      MADV_WILLNEED   (any object)
1146  *
1147  *          Activate the specified pages if they are resident.
1148  *
1149  *      MADV_DONTNEED   (any object)
1150  *
1151  *          Deactivate the specified pages if they are resident.
1152  *
1153  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1154  *                       OBJ_ONEMAPPING only)
1155  *
1156  *          Deactivate and clean the specified pages if they are
1157  *          resident.  This permits the process to reuse the pages
1158  *          without faulting or the kernel to reclaim the pages
1159  *          without I/O.
1160  */
1161 void
1162 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1163     int advice)
1164 {
1165         vm_pindex_t tpindex;
1166         vm_object_t backing_object, tobject;
1167         vm_page_t m, tm;
1168
1169         if (object == NULL)
1170                 return;
1171
1172 relookup:
1173         VM_OBJECT_WLOCK(object);
1174         if (!vm_object_advice_applies(object, advice)) {
1175                 VM_OBJECT_WUNLOCK(object);
1176                 return;
1177         }
1178         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1179                 tobject = object;
1180
1181                 /*
1182                  * If the next page isn't resident in the top-level object, we
1183                  * need to search the shadow chain.  When applying MADV_FREE, we
1184                  * take care to release any swap space used to store
1185                  * non-resident pages.
1186                  */
1187                 if (m == NULL || pindex < m->pindex) {
1188                         /*
1189                          * Optimize a common case: if the top-level object has
1190                          * no backing object, we can skip over the non-resident
1191                          * range in constant time.
1192                          */
1193                         if (object->backing_object == NULL) {
1194                                 tpindex = (m != NULL && m->pindex < end) ?
1195                                     m->pindex : end;
1196                                 vm_object_madvise_freespace(object, advice,
1197                                     pindex, tpindex - pindex);
1198                                 if ((pindex = tpindex) == end)
1199                                         break;
1200                                 goto next_page;
1201                         }
1202
1203                         tpindex = pindex;
1204                         do {
1205                                 vm_object_madvise_freespace(tobject, advice,
1206                                     tpindex, 1);
1207                                 /*
1208                                  * Prepare to search the next object in the
1209                                  * chain.
1210                                  */
1211                                 backing_object = tobject->backing_object;
1212                                 if (backing_object == NULL)
1213                                         goto next_pindex;
1214                                 VM_OBJECT_WLOCK(backing_object);
1215                                 tpindex +=
1216                                     OFF_TO_IDX(tobject->backing_object_offset);
1217                                 if (tobject != object)
1218                                         VM_OBJECT_WUNLOCK(tobject);
1219                                 tobject = backing_object;
1220                                 if (!vm_object_advice_applies(tobject, advice))
1221                                         goto next_pindex;
1222                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1223                             NULL);
1224                 } else {
1225 next_page:
1226                         tm = m;
1227                         m = TAILQ_NEXT(m, listq);
1228                 }
1229
1230                 /*
1231                  * If the page is not in a normal state, skip it.
1232                  */
1233                 if (tm->valid != VM_PAGE_BITS_ALL)
1234                         goto next_pindex;
1235                 vm_page_lock(tm);
1236                 if (vm_page_held(tm)) {
1237                         vm_page_unlock(tm);
1238                         goto next_pindex;
1239                 }
1240                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1241                     ("vm_object_madvise: page %p is fictitious", tm));
1242                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1243                     ("vm_object_madvise: page %p is not managed", tm));
1244                 if (vm_page_busied(tm)) {
1245                         if (object != tobject)
1246                                 VM_OBJECT_WUNLOCK(tobject);
1247                         VM_OBJECT_WUNLOCK(object);
1248                         if (advice == MADV_WILLNEED) {
1249                                 /*
1250                                  * Reference the page before unlocking and
1251                                  * sleeping so that the page daemon is less
1252                                  * likely to reclaim it.
1253                                  */
1254                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1255                         }
1256                         vm_page_busy_sleep(tm, "madvpo", false);
1257                         goto relookup;
1258                 }
1259                 vm_page_advise(tm, advice);
1260                 vm_page_unlock(tm);
1261                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1262 next_pindex:
1263                 if (tobject != object)
1264                         VM_OBJECT_WUNLOCK(tobject);
1265         }
1266         VM_OBJECT_WUNLOCK(object);
1267 }
1268
1269 /*
1270  *      vm_object_shadow:
1271  *
1272  *      Create a new object which is backed by the
1273  *      specified existing object range.  The source
1274  *      object reference is deallocated.
1275  *
1276  *      The new object and offset into that object
1277  *      are returned in the source parameters.
1278  */
1279 void
1280 vm_object_shadow(
1281         vm_object_t *object,    /* IN/OUT */
1282         vm_ooffset_t *offset,   /* IN/OUT */
1283         vm_size_t length)
1284 {
1285         vm_object_t source;
1286         vm_object_t result;
1287
1288         source = *object;
1289
1290         /*
1291          * Don't create the new object if the old object isn't shared.
1292          */
1293         if (source != NULL) {
1294                 VM_OBJECT_WLOCK(source);
1295                 if (source->ref_count == 1 &&
1296                     source->handle == NULL &&
1297                     (source->type == OBJT_DEFAULT ||
1298                      source->type == OBJT_SWAP)) {
1299                         VM_OBJECT_WUNLOCK(source);
1300                         return;
1301                 }
1302                 VM_OBJECT_WUNLOCK(source);
1303         }
1304
1305         /*
1306          * Allocate a new object with the given length.
1307          */
1308         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1309
1310         /*
1311          * The new object shadows the source object, adding a reference to it.
1312          * Our caller changes his reference to point to the new object,
1313          * removing a reference to the source object.  Net result: no change
1314          * of reference count.
1315          *
1316          * Try to optimize the result object's page color when shadowing
1317          * in order to maintain page coloring consistency in the combined 
1318          * shadowed object.
1319          */
1320         result->backing_object = source;
1321         /*
1322          * Store the offset into the source object, and fix up the offset into
1323          * the new object.
1324          */
1325         result->backing_object_offset = *offset;
1326         if (source != NULL) {
1327                 VM_OBJECT_WLOCK(source);
1328                 result->domain = source->domain;
1329                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1330                 source->shadow_count++;
1331 #if VM_NRESERVLEVEL > 0
1332                 result->flags |= source->flags & OBJ_COLORED;
1333                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1334                     ((1 << (VM_NFREEORDER - 1)) - 1);
1335 #endif
1336                 VM_OBJECT_WUNLOCK(source);
1337         }
1338
1339
1340         /*
1341          * Return the new things
1342          */
1343         *offset = 0;
1344         *object = result;
1345 }
1346
1347 /*
1348  *      vm_object_split:
1349  *
1350  * Split the pages in a map entry into a new object.  This affords
1351  * easier removal of unused pages, and keeps object inheritance from
1352  * being a negative impact on memory usage.
1353  */
1354 void
1355 vm_object_split(vm_map_entry_t entry)
1356 {
1357         vm_page_t m, m_next;
1358         vm_object_t orig_object, new_object, source;
1359         vm_pindex_t idx, offidxstart;
1360         vm_size_t size;
1361
1362         orig_object = entry->object.vm_object;
1363         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1364                 return;
1365         if (orig_object->ref_count <= 1)
1366                 return;
1367         VM_OBJECT_WUNLOCK(orig_object);
1368
1369         offidxstart = OFF_TO_IDX(entry->offset);
1370         size = atop(entry->end - entry->start);
1371
1372         /*
1373          * If swap_pager_copy() is later called, it will convert new_object
1374          * into a swap object.
1375          */
1376         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1377
1378         /*
1379          * At this point, the new object is still private, so the order in
1380          * which the original and new objects are locked does not matter.
1381          */
1382         VM_OBJECT_WLOCK(new_object);
1383         VM_OBJECT_WLOCK(orig_object);
1384         new_object->domain = orig_object->domain;
1385         source = orig_object->backing_object;
1386         if (source != NULL) {
1387                 VM_OBJECT_WLOCK(source);
1388                 if ((source->flags & OBJ_DEAD) != 0) {
1389                         VM_OBJECT_WUNLOCK(source);
1390                         VM_OBJECT_WUNLOCK(orig_object);
1391                         VM_OBJECT_WUNLOCK(new_object);
1392                         vm_object_deallocate(new_object);
1393                         VM_OBJECT_WLOCK(orig_object);
1394                         return;
1395                 }
1396                 LIST_INSERT_HEAD(&source->shadow_head,
1397                                   new_object, shadow_list);
1398                 source->shadow_count++;
1399                 vm_object_reference_locked(source);     /* for new_object */
1400                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1401                 VM_OBJECT_WUNLOCK(source);
1402                 new_object->backing_object_offset = 
1403                         orig_object->backing_object_offset + entry->offset;
1404                 new_object->backing_object = source;
1405         }
1406         if (orig_object->cred != NULL) {
1407                 new_object->cred = orig_object->cred;
1408                 crhold(orig_object->cred);
1409                 new_object->charge = ptoa(size);
1410                 KASSERT(orig_object->charge >= ptoa(size),
1411                     ("orig_object->charge < 0"));
1412                 orig_object->charge -= ptoa(size);
1413         }
1414 retry:
1415         m = vm_page_find_least(orig_object, offidxstart);
1416         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1417             m = m_next) {
1418                 m_next = TAILQ_NEXT(m, listq);
1419
1420                 /*
1421                  * We must wait for pending I/O to complete before we can
1422                  * rename the page.
1423                  *
1424                  * We do not have to VM_PROT_NONE the page as mappings should
1425                  * not be changed by this operation.
1426                  */
1427                 if (vm_page_busied(m)) {
1428                         VM_OBJECT_WUNLOCK(new_object);
1429                         vm_page_lock(m);
1430                         VM_OBJECT_WUNLOCK(orig_object);
1431                         vm_page_busy_sleep(m, "spltwt", false);
1432                         VM_OBJECT_WLOCK(orig_object);
1433                         VM_OBJECT_WLOCK(new_object);
1434                         goto retry;
1435                 }
1436
1437                 /* vm_page_rename() will dirty the page. */
1438                 if (vm_page_rename(m, new_object, idx)) {
1439                         VM_OBJECT_WUNLOCK(new_object);
1440                         VM_OBJECT_WUNLOCK(orig_object);
1441                         vm_radix_wait();
1442                         VM_OBJECT_WLOCK(orig_object);
1443                         VM_OBJECT_WLOCK(new_object);
1444                         goto retry;
1445                 }
1446 #if VM_NRESERVLEVEL > 0
1447                 /*
1448                  * If some of the reservation's allocated pages remain with
1449                  * the original object, then transferring the reservation to
1450                  * the new object is neither particularly beneficial nor
1451                  * particularly harmful as compared to leaving the reservation
1452                  * with the original object.  If, however, all of the
1453                  * reservation's allocated pages are transferred to the new
1454                  * object, then transferring the reservation is typically
1455                  * beneficial.  Determining which of these two cases applies
1456                  * would be more costly than unconditionally renaming the
1457                  * reservation.
1458                  */
1459                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1460 #endif
1461                 if (orig_object->type == OBJT_SWAP)
1462                         vm_page_xbusy(m);
1463         }
1464         if (orig_object->type == OBJT_SWAP) {
1465                 /*
1466                  * swap_pager_copy() can sleep, in which case the orig_object's
1467                  * and new_object's locks are released and reacquired. 
1468                  */
1469                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1470                 TAILQ_FOREACH(m, &new_object->memq, listq)
1471                         vm_page_xunbusy(m);
1472         }
1473         VM_OBJECT_WUNLOCK(orig_object);
1474         VM_OBJECT_WUNLOCK(new_object);
1475         entry->object.vm_object = new_object;
1476         entry->offset = 0LL;
1477         vm_object_deallocate(orig_object);
1478         VM_OBJECT_WLOCK(new_object);
1479 }
1480
1481 #define OBSC_COLLAPSE_NOWAIT    0x0002
1482 #define OBSC_COLLAPSE_WAIT      0x0004
1483
1484 static vm_page_t
1485 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1486     int op)
1487 {
1488         vm_object_t backing_object;
1489
1490         VM_OBJECT_ASSERT_WLOCKED(object);
1491         backing_object = object->backing_object;
1492         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1493
1494         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1495         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1496             ("invalid ownership %p %p %p", p, object, backing_object));
1497         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1498                 return (next);
1499         if (p != NULL)
1500                 vm_page_lock(p);
1501         VM_OBJECT_WUNLOCK(object);
1502         VM_OBJECT_WUNLOCK(backing_object);
1503         /* The page is only NULL when rename fails. */
1504         if (p == NULL)
1505                 vm_radix_wait();
1506         else
1507                 vm_page_busy_sleep(p, "vmocol", false);
1508         VM_OBJECT_WLOCK(object);
1509         VM_OBJECT_WLOCK(backing_object);
1510         return (TAILQ_FIRST(&backing_object->memq));
1511 }
1512
1513 static bool
1514 vm_object_scan_all_shadowed(vm_object_t object)
1515 {
1516         vm_object_t backing_object;
1517         vm_page_t p, pp;
1518         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1519
1520         VM_OBJECT_ASSERT_WLOCKED(object);
1521         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1522
1523         backing_object = object->backing_object;
1524
1525         if (backing_object->type != OBJT_DEFAULT &&
1526             backing_object->type != OBJT_SWAP)
1527                 return (false);
1528
1529         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1530         p = vm_page_find_least(backing_object, pi);
1531         ps = swap_pager_find_least(backing_object, pi);
1532
1533         /*
1534          * Only check pages inside the parent object's range and
1535          * inside the parent object's mapping of the backing object.
1536          */
1537         for (;; pi++) {
1538                 if (p != NULL && p->pindex < pi)
1539                         p = TAILQ_NEXT(p, listq);
1540                 if (ps < pi)
1541                         ps = swap_pager_find_least(backing_object, pi);
1542                 if (p == NULL && ps >= backing_object->size)
1543                         break;
1544                 else if (p == NULL)
1545                         pi = ps;
1546                 else
1547                         pi = MIN(p->pindex, ps);
1548
1549                 new_pindex = pi - backing_offset_index;
1550                 if (new_pindex >= object->size)
1551                         break;
1552
1553                 /*
1554                  * See if the parent has the page or if the parent's object
1555                  * pager has the page.  If the parent has the page but the page
1556                  * is not valid, the parent's object pager must have the page.
1557                  *
1558                  * If this fails, the parent does not completely shadow the
1559                  * object and we might as well give up now.
1560                  */
1561                 pp = vm_page_lookup(object, new_pindex);
1562                 if ((pp == NULL || pp->valid == 0) &&
1563                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1564                         return (false);
1565         }
1566         return (true);
1567 }
1568
1569 static bool
1570 vm_object_collapse_scan(vm_object_t object, int op)
1571 {
1572         vm_object_t backing_object;
1573         vm_page_t next, p, pp;
1574         vm_pindex_t backing_offset_index, new_pindex;
1575
1576         VM_OBJECT_ASSERT_WLOCKED(object);
1577         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1578
1579         backing_object = object->backing_object;
1580         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1581
1582         /*
1583          * Initial conditions
1584          */
1585         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1586                 vm_object_set_flag(backing_object, OBJ_DEAD);
1587
1588         /*
1589          * Our scan
1590          */
1591         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1592                 next = TAILQ_NEXT(p, listq);
1593                 new_pindex = p->pindex - backing_offset_index;
1594
1595                 /*
1596                  * Check for busy page
1597                  */
1598                 if (vm_page_busied(p)) {
1599                         next = vm_object_collapse_scan_wait(object, p, next, op);
1600                         continue;
1601                 }
1602
1603                 KASSERT(p->object == backing_object,
1604                     ("vm_object_collapse_scan: object mismatch"));
1605
1606                 if (p->pindex < backing_offset_index ||
1607                     new_pindex >= object->size) {
1608                         if (backing_object->type == OBJT_SWAP)
1609                                 swap_pager_freespace(backing_object, p->pindex,
1610                                     1);
1611
1612                         /*
1613                          * Page is out of the parent object's range, we can
1614                          * simply destroy it.
1615                          */
1616                         vm_page_lock(p);
1617                         KASSERT(!pmap_page_is_mapped(p),
1618                             ("freeing mapped page %p", p));
1619                         if (p->wire_count == 0)
1620                                 vm_page_free(p);
1621                         else
1622                                 vm_page_remove(p);
1623                         vm_page_unlock(p);
1624                         continue;
1625                 }
1626
1627                 pp = vm_page_lookup(object, new_pindex);
1628                 if (pp != NULL && vm_page_busied(pp)) {
1629                         /*
1630                          * The page in the parent is busy and possibly not
1631                          * (yet) valid.  Until its state is finalized by the
1632                          * busy bit owner, we can't tell whether it shadows the
1633                          * original page.  Therefore, we must either skip it
1634                          * and the original (backing_object) page or wait for
1635                          * its state to be finalized.
1636                          *
1637                          * This is due to a race with vm_fault() where we must
1638                          * unbusy the original (backing_obj) page before we can
1639                          * (re)lock the parent.  Hence we can get here.
1640                          */
1641                         next = vm_object_collapse_scan_wait(object, pp, next,
1642                             op);
1643                         continue;
1644                 }
1645
1646                 KASSERT(pp == NULL || pp->valid != 0,
1647                     ("unbusy invalid page %p", pp));
1648
1649                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1650                         NULL)) {
1651                         /*
1652                          * The page already exists in the parent OR swap exists
1653                          * for this location in the parent.  Leave the parent's
1654                          * page alone.  Destroy the original page from the
1655                          * backing object.
1656                          */
1657                         if (backing_object->type == OBJT_SWAP)
1658                                 swap_pager_freespace(backing_object, p->pindex,
1659                                     1);
1660                         vm_page_lock(p);
1661                         KASSERT(!pmap_page_is_mapped(p),
1662                             ("freeing mapped page %p", p));
1663                         if (p->wire_count == 0)
1664                                 vm_page_free(p);
1665                         else
1666                                 vm_page_remove(p);
1667                         vm_page_unlock(p);
1668                         continue;
1669                 }
1670
1671                 /*
1672                  * Page does not exist in parent, rename the page from the
1673                  * backing object to the main object.
1674                  *
1675                  * If the page was mapped to a process, it can remain mapped
1676                  * through the rename.  vm_page_rename() will dirty the page.
1677                  */
1678                 if (vm_page_rename(p, object, new_pindex)) {
1679                         next = vm_object_collapse_scan_wait(object, NULL, next,
1680                             op);
1681                         continue;
1682                 }
1683
1684                 /* Use the old pindex to free the right page. */
1685                 if (backing_object->type == OBJT_SWAP)
1686                         swap_pager_freespace(backing_object,
1687                             new_pindex + backing_offset_index, 1);
1688
1689 #if VM_NRESERVLEVEL > 0
1690                 /*
1691                  * Rename the reservation.
1692                  */
1693                 vm_reserv_rename(p, object, backing_object,
1694                     backing_offset_index);
1695 #endif
1696         }
1697         return (true);
1698 }
1699
1700
1701 /*
1702  * this version of collapse allows the operation to occur earlier and
1703  * when paging_in_progress is true for an object...  This is not a complete
1704  * operation, but should plug 99.9% of the rest of the leaks.
1705  */
1706 static void
1707 vm_object_qcollapse(vm_object_t object)
1708 {
1709         vm_object_t backing_object = object->backing_object;
1710
1711         VM_OBJECT_ASSERT_WLOCKED(object);
1712         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1713
1714         if (backing_object->ref_count != 1)
1715                 return;
1716
1717         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1718 }
1719
1720 /*
1721  *      vm_object_collapse:
1722  *
1723  *      Collapse an object with the object backing it.
1724  *      Pages in the backing object are moved into the
1725  *      parent, and the backing object is deallocated.
1726  */
1727 void
1728 vm_object_collapse(vm_object_t object)
1729 {
1730         vm_object_t backing_object, new_backing_object;
1731
1732         VM_OBJECT_ASSERT_WLOCKED(object);
1733
1734         while (TRUE) {
1735                 /*
1736                  * Verify that the conditions are right for collapse:
1737                  *
1738                  * The object exists and the backing object exists.
1739                  */
1740                 if ((backing_object = object->backing_object) == NULL)
1741                         break;
1742
1743                 /*
1744                  * we check the backing object first, because it is most likely
1745                  * not collapsable.
1746                  */
1747                 VM_OBJECT_WLOCK(backing_object);
1748                 if (backing_object->handle != NULL ||
1749                     (backing_object->type != OBJT_DEFAULT &&
1750                      backing_object->type != OBJT_SWAP) ||
1751                     (backing_object->flags & OBJ_DEAD) ||
1752                     object->handle != NULL ||
1753                     (object->type != OBJT_DEFAULT &&
1754                      object->type != OBJT_SWAP) ||
1755                     (object->flags & OBJ_DEAD)) {
1756                         VM_OBJECT_WUNLOCK(backing_object);
1757                         break;
1758                 }
1759
1760                 if (object->paging_in_progress != 0 ||
1761                     backing_object->paging_in_progress != 0) {
1762                         vm_object_qcollapse(object);
1763                         VM_OBJECT_WUNLOCK(backing_object);
1764                         break;
1765                 }
1766
1767                 /*
1768                  * We know that we can either collapse the backing object (if
1769                  * the parent is the only reference to it) or (perhaps) have
1770                  * the parent bypass the object if the parent happens to shadow
1771                  * all the resident pages in the entire backing object.
1772                  *
1773                  * This is ignoring pager-backed pages such as swap pages.
1774                  * vm_object_collapse_scan fails the shadowing test in this
1775                  * case.
1776                  */
1777                 if (backing_object->ref_count == 1) {
1778                         vm_object_pip_add(object, 1);
1779                         vm_object_pip_add(backing_object, 1);
1780
1781                         /*
1782                          * If there is exactly one reference to the backing
1783                          * object, we can collapse it into the parent.
1784                          */
1785                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1786
1787 #if VM_NRESERVLEVEL > 0
1788                         /*
1789                          * Break any reservations from backing_object.
1790                          */
1791                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1792                                 vm_reserv_break_all(backing_object);
1793 #endif
1794
1795                         /*
1796                          * Move the pager from backing_object to object.
1797                          */
1798                         if (backing_object->type == OBJT_SWAP) {
1799                                 /*
1800                                  * swap_pager_copy() can sleep, in which case
1801                                  * the backing_object's and object's locks are
1802                                  * released and reacquired.
1803                                  * Since swap_pager_copy() is being asked to
1804                                  * destroy the source, it will change the
1805                                  * backing_object's type to OBJT_DEFAULT.
1806                                  */
1807                                 swap_pager_copy(
1808                                     backing_object,
1809                                     object,
1810                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1811                         }
1812                         /*
1813                          * Object now shadows whatever backing_object did.
1814                          * Note that the reference to 
1815                          * backing_object->backing_object moves from within 
1816                          * backing_object to within object.
1817                          */
1818                         LIST_REMOVE(object, shadow_list);
1819                         backing_object->shadow_count--;
1820                         if (backing_object->backing_object) {
1821                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1822                                 LIST_REMOVE(backing_object, shadow_list);
1823                                 LIST_INSERT_HEAD(
1824                                     &backing_object->backing_object->shadow_head,
1825                                     object, shadow_list);
1826                                 /*
1827                                  * The shadow_count has not changed.
1828                                  */
1829                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1830                         }
1831                         object->backing_object = backing_object->backing_object;
1832                         object->backing_object_offset +=
1833                             backing_object->backing_object_offset;
1834
1835                         /*
1836                          * Discard backing_object.
1837                          *
1838                          * Since the backing object has no pages, no pager left,
1839                          * and no object references within it, all that is
1840                          * necessary is to dispose of it.
1841                          */
1842                         KASSERT(backing_object->ref_count == 1, (
1843 "backing_object %p was somehow re-referenced during collapse!",
1844                             backing_object));
1845                         vm_object_pip_wakeup(backing_object);
1846                         backing_object->type = OBJT_DEAD;
1847                         backing_object->ref_count = 0;
1848                         VM_OBJECT_WUNLOCK(backing_object);
1849                         vm_object_destroy(backing_object);
1850
1851                         vm_object_pip_wakeup(object);
1852                         counter_u64_add(object_collapses, 1);
1853                 } else {
1854                         /*
1855                          * If we do not entirely shadow the backing object,
1856                          * there is nothing we can do so we give up.
1857                          */
1858                         if (object->resident_page_count != object->size &&
1859                             !vm_object_scan_all_shadowed(object)) {
1860                                 VM_OBJECT_WUNLOCK(backing_object);
1861                                 break;
1862                         }
1863
1864                         /*
1865                          * Make the parent shadow the next object in the
1866                          * chain.  Deallocating backing_object will not remove
1867                          * it, since its reference count is at least 2.
1868                          */
1869                         LIST_REMOVE(object, shadow_list);
1870                         backing_object->shadow_count--;
1871
1872                         new_backing_object = backing_object->backing_object;
1873                         if ((object->backing_object = new_backing_object) != NULL) {
1874                                 VM_OBJECT_WLOCK(new_backing_object);
1875                                 LIST_INSERT_HEAD(
1876                                     &new_backing_object->shadow_head,
1877                                     object,
1878                                     shadow_list
1879                                 );
1880                                 new_backing_object->shadow_count++;
1881                                 vm_object_reference_locked(new_backing_object);
1882                                 VM_OBJECT_WUNLOCK(new_backing_object);
1883                                 object->backing_object_offset +=
1884                                         backing_object->backing_object_offset;
1885                         }
1886
1887                         /*
1888                          * Drop the reference count on backing_object. Since
1889                          * its ref_count was at least 2, it will not vanish.
1890                          */
1891                         backing_object->ref_count--;
1892                         VM_OBJECT_WUNLOCK(backing_object);
1893                         counter_u64_add(object_bypasses, 1);
1894                 }
1895
1896                 /*
1897                  * Try again with this object's new backing object.
1898                  */
1899         }
1900 }
1901
1902 /*
1903  *      vm_object_page_remove:
1904  *
1905  *      For the given object, either frees or invalidates each of the
1906  *      specified pages.  In general, a page is freed.  However, if a page is
1907  *      wired for any reason other than the existence of a managed, wired
1908  *      mapping, then it may be invalidated but not removed from the object.
1909  *      Pages are specified by the given range ["start", "end") and the option
1910  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1911  *      extends from "start" to the end of the object.  If the option
1912  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1913  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1914  *      specified, then the pages within the specified range must have no
1915  *      mappings.  Otherwise, if this option is not specified, any mappings to
1916  *      the specified pages are removed before the pages are freed or
1917  *      invalidated.
1918  *
1919  *      In general, this operation should only be performed on objects that
1920  *      contain managed pages.  There are, however, two exceptions.  First, it
1921  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1922  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1923  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1924  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1925  *
1926  *      The object must be locked.
1927  */
1928 void
1929 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1930     int options)
1931 {
1932         vm_page_t p, next;
1933         struct mtx *mtx;
1934
1935         VM_OBJECT_ASSERT_WLOCKED(object);
1936         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1937             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1938             ("vm_object_page_remove: illegal options for object %p", object));
1939         if (object->resident_page_count == 0)
1940                 return;
1941         vm_object_pip_add(object, 1);
1942 again:
1943         p = vm_page_find_least(object, start);
1944         mtx = NULL;
1945
1946         /*
1947          * Here, the variable "p" is either (1) the page with the least pindex
1948          * greater than or equal to the parameter "start" or (2) NULL. 
1949          */
1950         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1951                 next = TAILQ_NEXT(p, listq);
1952
1953                 /*
1954                  * If the page is wired for any reason besides the existence
1955                  * of managed, wired mappings, then it cannot be freed.  For
1956                  * example, fictitious pages, which represent device memory,
1957                  * are inherently wired and cannot be freed.  They can,
1958                  * however, be invalidated if the option OBJPR_CLEANONLY is
1959                  * not specified.
1960                  */
1961                 vm_page_change_lock(p, &mtx);
1962                 if (vm_page_xbusied(p)) {
1963                         VM_OBJECT_WUNLOCK(object);
1964                         vm_page_busy_sleep(p, "vmopax", true);
1965                         VM_OBJECT_WLOCK(object);
1966                         goto again;
1967                 }
1968                 if (p->wire_count != 0) {
1969                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1970                             object->ref_count != 0)
1971                                 pmap_remove_all(p);
1972                         if ((options & OBJPR_CLEANONLY) == 0) {
1973                                 p->valid = 0;
1974                                 vm_page_undirty(p);
1975                         }
1976                         continue;
1977                 }
1978                 if (vm_page_busied(p)) {
1979                         VM_OBJECT_WUNLOCK(object);
1980                         vm_page_busy_sleep(p, "vmopar", false);
1981                         VM_OBJECT_WLOCK(object);
1982                         goto again;
1983                 }
1984                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1985                     ("vm_object_page_remove: page %p is fictitious", p));
1986                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1987                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1988                             object->ref_count != 0)
1989                                 pmap_remove_write(p);
1990                         if (p->dirty != 0)
1991                                 continue;
1992                 }
1993                 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
1994                         pmap_remove_all(p);
1995                 vm_page_free(p);
1996         }
1997         if (mtx != NULL)
1998                 mtx_unlock(mtx);
1999         vm_object_pip_wakeup(object);
2000 }
2001
2002 /*
2003  *      vm_object_page_noreuse:
2004  *
2005  *      For the given object, attempt to move the specified pages to
2006  *      the head of the inactive queue.  This bypasses regular LRU
2007  *      operation and allows the pages to be reused quickly under memory
2008  *      pressure.  If a page is wired for any reason, then it will not
2009  *      be queued.  Pages are specified by the range ["start", "end").
2010  *      As a special case, if "end" is zero, then the range extends from
2011  *      "start" to the end of the object.
2012  *
2013  *      This operation should only be performed on objects that
2014  *      contain non-fictitious, managed pages.
2015  *
2016  *      The object must be locked.
2017  */
2018 void
2019 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2020 {
2021         struct mtx *mtx;
2022         vm_page_t p, next;
2023
2024         VM_OBJECT_ASSERT_LOCKED(object);
2025         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2026             ("vm_object_page_noreuse: illegal object %p", object));
2027         if (object->resident_page_count == 0)
2028                 return;
2029         p = vm_page_find_least(object, start);
2030
2031         /*
2032          * Here, the variable "p" is either (1) the page with the least pindex
2033          * greater than or equal to the parameter "start" or (2) NULL. 
2034          */
2035         mtx = NULL;
2036         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2037                 next = TAILQ_NEXT(p, listq);
2038                 vm_page_change_lock(p, &mtx);
2039                 vm_page_deactivate_noreuse(p);
2040         }
2041         if (mtx != NULL)
2042                 mtx_unlock(mtx);
2043 }
2044
2045 /*
2046  *      Populate the specified range of the object with valid pages.  Returns
2047  *      TRUE if the range is successfully populated and FALSE otherwise.
2048  *
2049  *      Note: This function should be optimized to pass a larger array of
2050  *      pages to vm_pager_get_pages() before it is applied to a non-
2051  *      OBJT_DEVICE object.
2052  *
2053  *      The object must be locked.
2054  */
2055 boolean_t
2056 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2057 {
2058         vm_page_t m;
2059         vm_pindex_t pindex;
2060         int rv;
2061
2062         VM_OBJECT_ASSERT_WLOCKED(object);
2063         for (pindex = start; pindex < end; pindex++) {
2064                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2065                 if (m->valid != VM_PAGE_BITS_ALL) {
2066                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2067                         if (rv != VM_PAGER_OK) {
2068                                 vm_page_lock(m);
2069                                 vm_page_free(m);
2070                                 vm_page_unlock(m);
2071                                 break;
2072                         }
2073                 }
2074                 /*
2075                  * Keep "m" busy because a subsequent iteration may unlock
2076                  * the object.
2077                  */
2078         }
2079         if (pindex > start) {
2080                 m = vm_page_lookup(object, start);
2081                 while (m != NULL && m->pindex < pindex) {
2082                         vm_page_xunbusy(m);
2083                         m = TAILQ_NEXT(m, listq);
2084                 }
2085         }
2086         return (pindex == end);
2087 }
2088
2089 /*
2090  *      Routine:        vm_object_coalesce
2091  *      Function:       Coalesces two objects backing up adjoining
2092  *                      regions of memory into a single object.
2093  *
2094  *      returns TRUE if objects were combined.
2095  *
2096  *      NOTE:   Only works at the moment if the second object is NULL -
2097  *              if it's not, which object do we lock first?
2098  *
2099  *      Parameters:
2100  *              prev_object     First object to coalesce
2101  *              prev_offset     Offset into prev_object
2102  *              prev_size       Size of reference to prev_object
2103  *              next_size       Size of reference to the second object
2104  *              reserved        Indicator that extension region has
2105  *                              swap accounted for
2106  *
2107  *      Conditions:
2108  *      The object must *not* be locked.
2109  */
2110 boolean_t
2111 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2112     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2113 {
2114         vm_pindex_t next_pindex;
2115
2116         if (prev_object == NULL)
2117                 return (TRUE);
2118         VM_OBJECT_WLOCK(prev_object);
2119         if ((prev_object->type != OBJT_DEFAULT &&
2120             prev_object->type != OBJT_SWAP) ||
2121             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2122                 VM_OBJECT_WUNLOCK(prev_object);
2123                 return (FALSE);
2124         }
2125
2126         /*
2127          * Try to collapse the object first
2128          */
2129         vm_object_collapse(prev_object);
2130
2131         /*
2132          * Can't coalesce if: . more than one reference . paged out . shadows
2133          * another object . has a copy elsewhere (any of which mean that the
2134          * pages not mapped to prev_entry may be in use anyway)
2135          */
2136         if (prev_object->backing_object != NULL) {
2137                 VM_OBJECT_WUNLOCK(prev_object);
2138                 return (FALSE);
2139         }
2140
2141         prev_size >>= PAGE_SHIFT;
2142         next_size >>= PAGE_SHIFT;
2143         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2144
2145         if ((prev_object->ref_count > 1) &&
2146             (prev_object->size != next_pindex)) {
2147                 VM_OBJECT_WUNLOCK(prev_object);
2148                 return (FALSE);
2149         }
2150
2151         /*
2152          * Account for the charge.
2153          */
2154         if (prev_object->cred != NULL) {
2155
2156                 /*
2157                  * If prev_object was charged, then this mapping,
2158                  * although not charged now, may become writable
2159                  * later. Non-NULL cred in the object would prevent
2160                  * swap reservation during enabling of the write
2161                  * access, so reserve swap now. Failed reservation
2162                  * cause allocation of the separate object for the map
2163                  * entry, and swap reservation for this entry is
2164                  * managed in appropriate time.
2165                  */
2166                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2167                     prev_object->cred)) {
2168                         VM_OBJECT_WUNLOCK(prev_object);
2169                         return (FALSE);
2170                 }
2171                 prev_object->charge += ptoa(next_size);
2172         }
2173
2174         /*
2175          * Remove any pages that may still be in the object from a previous
2176          * deallocation.
2177          */
2178         if (next_pindex < prev_object->size) {
2179                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2180                     next_size, 0);
2181                 if (prev_object->type == OBJT_SWAP)
2182                         swap_pager_freespace(prev_object,
2183                                              next_pindex, next_size);
2184 #if 0
2185                 if (prev_object->cred != NULL) {
2186                         KASSERT(prev_object->charge >=
2187                             ptoa(prev_object->size - next_pindex),
2188                             ("object %p overcharged 1 %jx %jx", prev_object,
2189                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2190                         prev_object->charge -= ptoa(prev_object->size -
2191                             next_pindex);
2192                 }
2193 #endif
2194         }
2195
2196         /*
2197          * Extend the object if necessary.
2198          */
2199         if (next_pindex + next_size > prev_object->size)
2200                 prev_object->size = next_pindex + next_size;
2201
2202         VM_OBJECT_WUNLOCK(prev_object);
2203         return (TRUE);
2204 }
2205
2206 void
2207 vm_object_set_writeable_dirty(vm_object_t object)
2208 {
2209
2210         VM_OBJECT_ASSERT_WLOCKED(object);
2211         if (object->type != OBJT_VNODE) {
2212                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2213                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2214                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2215                 }
2216                 return;
2217         }
2218         object->generation++;
2219         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2220                 return;
2221         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2222 }
2223
2224 /*
2225  *      vm_object_unwire:
2226  *
2227  *      For each page offset within the specified range of the given object,
2228  *      find the highest-level page in the shadow chain and unwire it.  A page
2229  *      must exist at every page offset, and the highest-level page must be
2230  *      wired.
2231  */
2232 void
2233 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2234     uint8_t queue)
2235 {
2236         vm_object_t tobject, t1object;
2237         vm_page_t m, tm;
2238         vm_pindex_t end_pindex, pindex, tpindex;
2239         int depth, locked_depth;
2240
2241         KASSERT((offset & PAGE_MASK) == 0,
2242             ("vm_object_unwire: offset is not page aligned"));
2243         KASSERT((length & PAGE_MASK) == 0,
2244             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2245         /* The wired count of a fictitious page never changes. */
2246         if ((object->flags & OBJ_FICTITIOUS) != 0)
2247                 return;
2248         pindex = OFF_TO_IDX(offset);
2249         end_pindex = pindex + atop(length);
2250 again:
2251         locked_depth = 1;
2252         VM_OBJECT_RLOCK(object);
2253         m = vm_page_find_least(object, pindex);
2254         while (pindex < end_pindex) {
2255                 if (m == NULL || pindex < m->pindex) {
2256                         /*
2257                          * The first object in the shadow chain doesn't
2258                          * contain a page at the current index.  Therefore,
2259                          * the page must exist in a backing object.
2260                          */
2261                         tobject = object;
2262                         tpindex = pindex;
2263                         depth = 0;
2264                         do {
2265                                 tpindex +=
2266                                     OFF_TO_IDX(tobject->backing_object_offset);
2267                                 tobject = tobject->backing_object;
2268                                 KASSERT(tobject != NULL,
2269                                     ("vm_object_unwire: missing page"));
2270                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2271                                         goto next_page;
2272                                 depth++;
2273                                 if (depth == locked_depth) {
2274                                         locked_depth++;
2275                                         VM_OBJECT_RLOCK(tobject);
2276                                 }
2277                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2278                             NULL);
2279                 } else {
2280                         tm = m;
2281                         m = TAILQ_NEXT(m, listq);
2282                 }
2283                 vm_page_lock(tm);
2284                 if (vm_page_xbusied(tm)) {
2285                         for (tobject = object; locked_depth >= 1;
2286                             locked_depth--) {
2287                                 t1object = tobject->backing_object;
2288                                 VM_OBJECT_RUNLOCK(tobject);
2289                                 tobject = t1object;
2290                         }
2291                         vm_page_busy_sleep(tm, "unwbo", true);
2292                         goto again;
2293                 }
2294                 vm_page_unwire(tm, queue);
2295                 vm_page_unlock(tm);
2296 next_page:
2297                 pindex++;
2298         }
2299         /* Release the accumulated object locks. */
2300         for (tobject = object; locked_depth >= 1; locked_depth--) {
2301                 t1object = tobject->backing_object;
2302                 VM_OBJECT_RUNLOCK(tobject);
2303                 tobject = t1object;
2304         }
2305 }
2306
2307 struct vnode *
2308 vm_object_vnode(vm_object_t object)
2309 {
2310
2311         VM_OBJECT_ASSERT_LOCKED(object);
2312         if (object->type == OBJT_VNODE)
2313                 return (object->handle);
2314         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2315                 return (object->un_pager.swp.swp_tmpfs);
2316         return (NULL);
2317 }
2318
2319 static int
2320 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2321 {
2322         struct kinfo_vmobject *kvo;
2323         char *fullpath, *freepath;
2324         struct vnode *vp;
2325         struct vattr va;
2326         vm_object_t obj;
2327         vm_page_t m;
2328         int count, error;
2329
2330         if (req->oldptr == NULL) {
2331                 /*
2332                  * If an old buffer has not been provided, generate an
2333                  * estimate of the space needed for a subsequent call.
2334                  */
2335                 mtx_lock(&vm_object_list_mtx);
2336                 count = 0;
2337                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2338                         if (obj->type == OBJT_DEAD)
2339                                 continue;
2340                         count++;
2341                 }
2342                 mtx_unlock(&vm_object_list_mtx);
2343                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2344                     count * 11 / 10));
2345         }
2346
2347         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2348         error = 0;
2349
2350         /*
2351          * VM objects are type stable and are never removed from the
2352          * list once added.  This allows us to safely read obj->object_list
2353          * after reacquiring the VM object lock.
2354          */
2355         mtx_lock(&vm_object_list_mtx);
2356         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2357                 if (obj->type == OBJT_DEAD)
2358                         continue;
2359                 VM_OBJECT_RLOCK(obj);
2360                 if (obj->type == OBJT_DEAD) {
2361                         VM_OBJECT_RUNLOCK(obj);
2362                         continue;
2363                 }
2364                 mtx_unlock(&vm_object_list_mtx);
2365                 kvo->kvo_size = ptoa(obj->size);
2366                 kvo->kvo_resident = obj->resident_page_count;
2367                 kvo->kvo_ref_count = obj->ref_count;
2368                 kvo->kvo_shadow_count = obj->shadow_count;
2369                 kvo->kvo_memattr = obj->memattr;
2370                 kvo->kvo_active = 0;
2371                 kvo->kvo_inactive = 0;
2372                 TAILQ_FOREACH(m, &obj->memq, listq) {
2373                         /*
2374                          * A page may belong to the object but be
2375                          * dequeued and set to PQ_NONE while the
2376                          * object lock is not held.  This makes the
2377                          * reads of m->queue below racy, and we do not
2378                          * count pages set to PQ_NONE.  However, this
2379                          * sysctl is only meant to give an
2380                          * approximation of the system anyway.
2381                          */
2382                         if (m->queue == PQ_ACTIVE)
2383                                 kvo->kvo_active++;
2384                         else if (m->queue == PQ_INACTIVE)
2385                                 kvo->kvo_inactive++;
2386                 }
2387
2388                 kvo->kvo_vn_fileid = 0;
2389                 kvo->kvo_vn_fsid = 0;
2390                 kvo->kvo_vn_fsid_freebsd11 = 0;
2391                 freepath = NULL;
2392                 fullpath = "";
2393                 vp = NULL;
2394                 switch (obj->type) {
2395                 case OBJT_DEFAULT:
2396                         kvo->kvo_type = KVME_TYPE_DEFAULT;
2397                         break;
2398                 case OBJT_VNODE:
2399                         kvo->kvo_type = KVME_TYPE_VNODE;
2400                         vp = obj->handle;
2401                         vref(vp);
2402                         break;
2403                 case OBJT_SWAP:
2404                         kvo->kvo_type = KVME_TYPE_SWAP;
2405                         break;
2406                 case OBJT_DEVICE:
2407                         kvo->kvo_type = KVME_TYPE_DEVICE;
2408                         break;
2409                 case OBJT_PHYS:
2410                         kvo->kvo_type = KVME_TYPE_PHYS;
2411                         break;
2412                 case OBJT_DEAD:
2413                         kvo->kvo_type = KVME_TYPE_DEAD;
2414                         break;
2415                 case OBJT_SG:
2416                         kvo->kvo_type = KVME_TYPE_SG;
2417                         break;
2418                 case OBJT_MGTDEVICE:
2419                         kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2420                         break;
2421                 default:
2422                         kvo->kvo_type = KVME_TYPE_UNKNOWN;
2423                         break;
2424                 }
2425                 VM_OBJECT_RUNLOCK(obj);
2426                 if (vp != NULL) {
2427                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2428                         vn_lock(vp, LK_SHARED | LK_RETRY);
2429                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2430                                 kvo->kvo_vn_fileid = va.va_fileid;
2431                                 kvo->kvo_vn_fsid = va.va_fsid;
2432                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2433                                                                 /* truncate */
2434                         }
2435                         vput(vp);
2436                 }
2437
2438                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2439                 if (freepath != NULL)
2440                         free(freepath, M_TEMP);
2441
2442                 /* Pack record size down */
2443                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2444                     + strlen(kvo->kvo_path) + 1;
2445                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2446                     sizeof(uint64_t));
2447                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2448                 mtx_lock(&vm_object_list_mtx);
2449                 if (error)
2450                         break;
2451         }
2452         mtx_unlock(&vm_object_list_mtx);
2453         free(kvo, M_TEMP);
2454         return (error);
2455 }
2456 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2457     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2458     "List of VM objects");
2459
2460 #include "opt_ddb.h"
2461 #ifdef DDB
2462 #include <sys/kernel.h>
2463
2464 #include <sys/cons.h>
2465
2466 #include <ddb/ddb.h>
2467
2468 static int
2469 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2470 {
2471         vm_map_t tmpm;
2472         vm_map_entry_t tmpe;
2473         vm_object_t obj;
2474         int entcount;
2475
2476         if (map == 0)
2477                 return 0;
2478
2479         if (entry == 0) {
2480                 tmpe = map->header.next;
2481                 entcount = map->nentries;
2482                 while (entcount-- && (tmpe != &map->header)) {
2483                         if (_vm_object_in_map(map, object, tmpe)) {
2484                                 return 1;
2485                         }
2486                         tmpe = tmpe->next;
2487                 }
2488         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2489                 tmpm = entry->object.sub_map;
2490                 tmpe = tmpm->header.next;
2491                 entcount = tmpm->nentries;
2492                 while (entcount-- && tmpe != &tmpm->header) {
2493                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2494                                 return 1;
2495                         }
2496                         tmpe = tmpe->next;
2497                 }
2498         } else if ((obj = entry->object.vm_object) != NULL) {
2499                 for (; obj; obj = obj->backing_object)
2500                         if (obj == object) {
2501                                 return 1;
2502                         }
2503         }
2504         return 0;
2505 }
2506
2507 static int
2508 vm_object_in_map(vm_object_t object)
2509 {
2510         struct proc *p;
2511
2512         /* sx_slock(&allproc_lock); */
2513         FOREACH_PROC_IN_SYSTEM(p) {
2514                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2515                         continue;
2516                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2517                         /* sx_sunlock(&allproc_lock); */
2518                         return 1;
2519                 }
2520         }
2521         /* sx_sunlock(&allproc_lock); */
2522         if (_vm_object_in_map(kernel_map, object, 0))
2523                 return 1;
2524         return 0;
2525 }
2526
2527 DB_SHOW_COMMAND(vmochk, vm_object_check)
2528 {
2529         vm_object_t object;
2530
2531         /*
2532          * make sure that internal objs are in a map somewhere
2533          * and none have zero ref counts.
2534          */
2535         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2536                 if (object->handle == NULL &&
2537                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2538                         if (object->ref_count == 0) {
2539                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2540                                         (long)object->size);
2541                         }
2542                         if (!vm_object_in_map(object)) {
2543                                 db_printf(
2544                         "vmochk: internal obj is not in a map: "
2545                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2546                                     object->ref_count, (u_long)object->size, 
2547                                     (u_long)object->size,
2548                                     (void *)object->backing_object);
2549                         }
2550                 }
2551         }
2552 }
2553
2554 /*
2555  *      vm_object_print:        [ debug ]
2556  */
2557 DB_SHOW_COMMAND(object, vm_object_print_static)
2558 {
2559         /* XXX convert args. */
2560         vm_object_t object = (vm_object_t)addr;
2561         boolean_t full = have_addr;
2562
2563         vm_page_t p;
2564
2565         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2566 #define count   was_count
2567
2568         int count;
2569
2570         if (object == NULL)
2571                 return;
2572
2573         db_iprintf(
2574             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2575             object, (int)object->type, (uintmax_t)object->size,
2576             object->resident_page_count, object->ref_count, object->flags,
2577             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2578         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2579             object->shadow_count, 
2580             object->backing_object ? object->backing_object->ref_count : 0,
2581             object->backing_object, (uintmax_t)object->backing_object_offset);
2582
2583         if (!full)
2584                 return;
2585
2586         db_indent += 2;
2587         count = 0;
2588         TAILQ_FOREACH(p, &object->memq, listq) {
2589                 if (count == 0)
2590                         db_iprintf("memory:=");
2591                 else if (count == 6) {
2592                         db_printf("\n");
2593                         db_iprintf(" ...");
2594                         count = 0;
2595                 } else
2596                         db_printf(",");
2597                 count++;
2598
2599                 db_printf("(off=0x%jx,page=0x%jx)",
2600                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2601         }
2602         if (count != 0)
2603                 db_printf("\n");
2604         db_indent -= 2;
2605 }
2606
2607 /* XXX. */
2608 #undef count
2609
2610 /* XXX need this non-static entry for calling from vm_map_print. */
2611 void
2612 vm_object_print(
2613         /* db_expr_t */ long addr,
2614         boolean_t have_addr,
2615         /* db_expr_t */ long count,
2616         char *modif)
2617 {
2618         vm_object_print_static(addr, have_addr, count, modif);
2619 }
2620
2621 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2622 {
2623         vm_object_t object;
2624         vm_pindex_t fidx;
2625         vm_paddr_t pa;
2626         vm_page_t m, prev_m;
2627         int rcount, nl, c;
2628
2629         nl = 0;
2630         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2631                 db_printf("new object: %p\n", (void *)object);
2632                 if (nl > 18) {
2633                         c = cngetc();
2634                         if (c != ' ')
2635                                 return;
2636                         nl = 0;
2637                 }
2638                 nl++;
2639                 rcount = 0;
2640                 fidx = 0;
2641                 pa = -1;
2642                 TAILQ_FOREACH(m, &object->memq, listq) {
2643                         if (m->pindex > 128)
2644                                 break;
2645                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2646                             prev_m->pindex + 1 != m->pindex) {
2647                                 if (rcount) {
2648                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2649                                                 (long)fidx, rcount, (long)pa);
2650                                         if (nl > 18) {
2651                                                 c = cngetc();
2652                                                 if (c != ' ')
2653                                                         return;
2654                                                 nl = 0;
2655                                         }
2656                                         nl++;
2657                                         rcount = 0;
2658                                 }
2659                         }                               
2660                         if (rcount &&
2661                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2662                                 ++rcount;
2663                                 continue;
2664                         }
2665                         if (rcount) {
2666                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2667                                         (long)fidx, rcount, (long)pa);
2668                                 if (nl > 18) {
2669                                         c = cngetc();
2670                                         if (c != ' ')
2671                                                 return;
2672                                         nl = 0;
2673                                 }
2674                                 nl++;
2675                         }
2676                         fidx = m->pindex;
2677                         pa = VM_PAGE_TO_PHYS(m);
2678                         rcount = 1;
2679                 }
2680                 if (rcount) {
2681                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2682                                 (long)fidx, rcount, (long)pa);
2683                         if (nl > 18) {
2684                                 c = cngetc();
2685                                 if (c != ' ')
2686                                         return;
2687                                 nl = 0;
2688                         }
2689                         nl++;
2690                 }
2691         }
2692 }
2693 #endif /* DDB */