]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Add a vm_page_change_lock() helper, the common code to not relock page
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/pctrie.h>
77 #include <sys/sysctl.h>
78 #include <sys/mutex.h>
79 #include <sys/proc.h>           /* for curproc, pageproc */
80 #include <sys/socket.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/user.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sx.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vm_radix.h>
100 #include <vm/vm_reserv.h>
101 #include <vm/uma.h>
102
103 static int old_msync;
104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
105     "Use old (insecure) msync behavior");
106
107 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
108                     int pagerflags, int flags, boolean_t *clearobjflags,
109                     boolean_t *eio);
110 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
111                     boolean_t *clearobjflags);
112 static void     vm_object_qcollapse(vm_object_t object);
113 static void     vm_object_vndeallocate(vm_object_t object);
114
115 /*
116  *      Virtual memory objects maintain the actual data
117  *      associated with allocated virtual memory.  A given
118  *      page of memory exists within exactly one object.
119  *
120  *      An object is only deallocated when all "references"
121  *      are given up.  Only one "reference" to a given
122  *      region of an object should be writeable.
123  *
124  *      Associated with each object is a list of all resident
125  *      memory pages belonging to that object; this list is
126  *      maintained by the "vm_page" module, and locked by the object's
127  *      lock.
128  *
129  *      Each object also records a "pager" routine which is
130  *      used to retrieve (and store) pages to the proper backing
131  *      storage.  In addition, objects may be backed by other
132  *      objects from which they were virtual-copied.
133  *
134  *      The only items within the object structure which are
135  *      modified after time of creation are:
136  *              reference count         locked by object's lock
137  *              pager routine           locked by object's lock
138  *
139  */
140
141 struct object_q vm_object_list;
142 struct mtx vm_object_list_mtx;  /* lock for object list and count */
143
144 struct vm_object kernel_object_store;
145 struct vm_object kmem_object_store;
146
147 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
148     "VM object stats");
149
150 static long object_collapses;
151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
152     &object_collapses, 0, "VM object collapses");
153
154 static long object_bypasses;
155 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
156     &object_bypasses, 0, "VM object bypasses");
157
158 static uma_zone_t obj_zone;
159
160 static int vm_object_zinit(void *mem, int size, int flags);
161
162 #ifdef INVARIANTS
163 static void vm_object_zdtor(void *mem, int size, void *arg);
164
165 static void
166 vm_object_zdtor(void *mem, int size, void *arg)
167 {
168         vm_object_t object;
169
170         object = (vm_object_t)mem;
171         KASSERT(object->ref_count == 0,
172             ("object %p ref_count = %d", object, object->ref_count));
173         KASSERT(TAILQ_EMPTY(&object->memq),
174             ("object %p has resident pages in its memq", object));
175         KASSERT(vm_radix_is_empty(&object->rtree),
176             ("object %p has resident pages in its trie", object));
177 #if VM_NRESERVLEVEL > 0
178         KASSERT(LIST_EMPTY(&object->rvq),
179             ("object %p has reservations",
180             object));
181 #endif
182         KASSERT(object->paging_in_progress == 0,
183             ("object %p paging_in_progress = %d",
184             object, object->paging_in_progress));
185         KASSERT(object->resident_page_count == 0,
186             ("object %p resident_page_count = %d",
187             object, object->resident_page_count));
188         KASSERT(object->shadow_count == 0,
189             ("object %p shadow_count = %d",
190             object, object->shadow_count));
191         KASSERT(object->type == OBJT_DEAD,
192             ("object %p has non-dead type %d",
193             object, object->type));
194 }
195 #endif
196
197 static int
198 vm_object_zinit(void *mem, int size, int flags)
199 {
200         vm_object_t object;
201
202         object = (vm_object_t)mem;
203         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
204
205         /* These are true for any object that has been freed */
206         object->type = OBJT_DEAD;
207         object->ref_count = 0;
208         vm_radix_init(&object->rtree);
209         object->paging_in_progress = 0;
210         object->resident_page_count = 0;
211         object->shadow_count = 0;
212         object->flags = OBJ_DEAD;
213
214         mtx_lock(&vm_object_list_mtx);
215         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
216         mtx_unlock(&vm_object_list_mtx);
217         return (0);
218 }
219
220 static void
221 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
222 {
223
224         TAILQ_INIT(&object->memq);
225         LIST_INIT(&object->shadow_head);
226
227         object->type = type;
228         if (type == OBJT_SWAP)
229                 pctrie_init(&object->un_pager.swp.swp_blks);
230
231         /*
232          * Ensure that swap_pager_swapoff() iteration over object_list
233          * sees up to date type and pctrie head if it observed
234          * non-dead object.
235          */
236         atomic_thread_fence_rel();
237
238         switch (type) {
239         case OBJT_DEAD:
240                 panic("_vm_object_allocate: can't create OBJT_DEAD");
241         case OBJT_DEFAULT:
242         case OBJT_SWAP:
243                 object->flags = OBJ_ONEMAPPING;
244                 break;
245         case OBJT_DEVICE:
246         case OBJT_SG:
247                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
248                 break;
249         case OBJT_MGTDEVICE:
250                 object->flags = OBJ_FICTITIOUS;
251                 break;
252         case OBJT_PHYS:
253                 object->flags = OBJ_UNMANAGED;
254                 break;
255         case OBJT_VNODE:
256                 object->flags = 0;
257                 break;
258         default:
259                 panic("_vm_object_allocate: type %d is undefined", type);
260         }
261         object->size = size;
262         object->generation = 1;
263         object->ref_count = 1;
264         object->memattr = VM_MEMATTR_DEFAULT;
265         object->cred = NULL;
266         object->charge = 0;
267         object->handle = NULL;
268         object->backing_object = NULL;
269         object->backing_object_offset = (vm_ooffset_t) 0;
270 #if VM_NRESERVLEVEL > 0
271         LIST_INIT(&object->rvq);
272 #endif
273         umtx_shm_object_init(object);
274 }
275
276 /*
277  *      vm_object_init:
278  *
279  *      Initialize the VM objects module.
280  */
281 void
282 vm_object_init(void)
283 {
284         TAILQ_INIT(&vm_object_list);
285         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
286         
287         rw_init(&kernel_object->lock, "kernel vm object");
288         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
289             VM_MIN_KERNEL_ADDRESS), kernel_object);
290 #if VM_NRESERVLEVEL > 0
291         kernel_object->flags |= OBJ_COLORED;
292         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
293 #endif
294
295         rw_init(&kmem_object->lock, "kmem vm object");
296         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
297             VM_MIN_KERNEL_ADDRESS), kmem_object);
298 #if VM_NRESERVLEVEL > 0
299         kmem_object->flags |= OBJ_COLORED;
300         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
301 #endif
302
303         /*
304          * The lock portion of struct vm_object must be type stable due
305          * to vm_pageout_fallback_object_lock locking a vm object
306          * without holding any references to it.
307          */
308         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
309 #ifdef INVARIANTS
310             vm_object_zdtor,
311 #else
312             NULL,
313 #endif
314             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315
316         vm_radix_zinit();
317 }
318
319 void
320 vm_object_clear_flag(vm_object_t object, u_short bits)
321 {
322
323         VM_OBJECT_ASSERT_WLOCKED(object);
324         object->flags &= ~bits;
325 }
326
327 /*
328  *      Sets the default memory attribute for the specified object.  Pages
329  *      that are allocated to this object are by default assigned this memory
330  *      attribute.
331  *
332  *      Presently, this function must be called before any pages are allocated
333  *      to the object.  In the future, this requirement may be relaxed for
334  *      "default" and "swap" objects.
335  */
336 int
337 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
338 {
339
340         VM_OBJECT_ASSERT_WLOCKED(object);
341         switch (object->type) {
342         case OBJT_DEFAULT:
343         case OBJT_DEVICE:
344         case OBJT_MGTDEVICE:
345         case OBJT_PHYS:
346         case OBJT_SG:
347         case OBJT_SWAP:
348         case OBJT_VNODE:
349                 if (!TAILQ_EMPTY(&object->memq))
350                         return (KERN_FAILURE);
351                 break;
352         case OBJT_DEAD:
353                 return (KERN_INVALID_ARGUMENT);
354         default:
355                 panic("vm_object_set_memattr: object %p is of undefined type",
356                     object);
357         }
358         object->memattr = memattr;
359         return (KERN_SUCCESS);
360 }
361
362 void
363 vm_object_pip_add(vm_object_t object, short i)
364 {
365
366         VM_OBJECT_ASSERT_WLOCKED(object);
367         object->paging_in_progress += i;
368 }
369
370 void
371 vm_object_pip_subtract(vm_object_t object, short i)
372 {
373
374         VM_OBJECT_ASSERT_WLOCKED(object);
375         object->paging_in_progress -= i;
376 }
377
378 void
379 vm_object_pip_wakeup(vm_object_t object)
380 {
381
382         VM_OBJECT_ASSERT_WLOCKED(object);
383         object->paging_in_progress--;
384         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
385                 vm_object_clear_flag(object, OBJ_PIPWNT);
386                 wakeup(object);
387         }
388 }
389
390 void
391 vm_object_pip_wakeupn(vm_object_t object, short i)
392 {
393
394         VM_OBJECT_ASSERT_WLOCKED(object);
395         if (i)
396                 object->paging_in_progress -= i;
397         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
398                 vm_object_clear_flag(object, OBJ_PIPWNT);
399                 wakeup(object);
400         }
401 }
402
403 void
404 vm_object_pip_wait(vm_object_t object, char *waitid)
405 {
406
407         VM_OBJECT_ASSERT_WLOCKED(object);
408         while (object->paging_in_progress) {
409                 object->flags |= OBJ_PIPWNT;
410                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
411         }
412 }
413
414 /*
415  *      vm_object_allocate:
416  *
417  *      Returns a new object with the given size.
418  */
419 vm_object_t
420 vm_object_allocate(objtype_t type, vm_pindex_t size)
421 {
422         vm_object_t object;
423
424         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
425         _vm_object_allocate(type, size, object);
426         return (object);
427 }
428
429
430 /*
431  *      vm_object_reference:
432  *
433  *      Gets another reference to the given object.  Note: OBJ_DEAD
434  *      objects can be referenced during final cleaning.
435  */
436 void
437 vm_object_reference(vm_object_t object)
438 {
439         if (object == NULL)
440                 return;
441         VM_OBJECT_WLOCK(object);
442         vm_object_reference_locked(object);
443         VM_OBJECT_WUNLOCK(object);
444 }
445
446 /*
447  *      vm_object_reference_locked:
448  *
449  *      Gets another reference to the given object.
450  *
451  *      The object must be locked.
452  */
453 void
454 vm_object_reference_locked(vm_object_t object)
455 {
456         struct vnode *vp;
457
458         VM_OBJECT_ASSERT_WLOCKED(object);
459         object->ref_count++;
460         if (object->type == OBJT_VNODE) {
461                 vp = object->handle;
462                 vref(vp);
463         }
464 }
465
466 /*
467  * Handle deallocating an object of type OBJT_VNODE.
468  */
469 static void
470 vm_object_vndeallocate(vm_object_t object)
471 {
472         struct vnode *vp = (struct vnode *) object->handle;
473
474         VM_OBJECT_ASSERT_WLOCKED(object);
475         KASSERT(object->type == OBJT_VNODE,
476             ("vm_object_vndeallocate: not a vnode object"));
477         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
478 #ifdef INVARIANTS
479         if (object->ref_count == 0) {
480                 vn_printf(vp, "vm_object_vndeallocate ");
481                 panic("vm_object_vndeallocate: bad object reference count");
482         }
483 #endif
484
485         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
486                 umtx_shm_object_terminated(object);
487
488         /*
489          * The test for text of vp vnode does not need a bypass to
490          * reach right VV_TEXT there, since it is obtained from
491          * object->handle.
492          */
493         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
494                 object->ref_count--;
495                 VM_OBJECT_WUNLOCK(object);
496                 /* vrele may need the vnode lock. */
497                 vrele(vp);
498         } else {
499                 vhold(vp);
500                 VM_OBJECT_WUNLOCK(object);
501                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
502                 vdrop(vp);
503                 VM_OBJECT_WLOCK(object);
504                 object->ref_count--;
505                 if (object->type == OBJT_DEAD) {
506                         VM_OBJECT_WUNLOCK(object);
507                         VOP_UNLOCK(vp, 0);
508                 } else {
509                         if (object->ref_count == 0)
510                                 VOP_UNSET_TEXT(vp);
511                         VM_OBJECT_WUNLOCK(object);
512                         vput(vp);
513                 }
514         }
515 }
516
517 /*
518  *      vm_object_deallocate:
519  *
520  *      Release a reference to the specified object,
521  *      gained either through a vm_object_allocate
522  *      or a vm_object_reference call.  When all references
523  *      are gone, storage associated with this object
524  *      may be relinquished.
525  *
526  *      No object may be locked.
527  */
528 void
529 vm_object_deallocate(vm_object_t object)
530 {
531         vm_object_t temp;
532         struct vnode *vp;
533
534         while (object != NULL) {
535                 VM_OBJECT_WLOCK(object);
536                 if (object->type == OBJT_VNODE) {
537                         vm_object_vndeallocate(object);
538                         return;
539                 }
540
541                 KASSERT(object->ref_count != 0,
542                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
543
544                 /*
545                  * If the reference count goes to 0 we start calling
546                  * vm_object_terminate() on the object chain.
547                  * A ref count of 1 may be a special case depending on the
548                  * shadow count being 0 or 1.
549                  */
550                 object->ref_count--;
551                 if (object->ref_count > 1) {
552                         VM_OBJECT_WUNLOCK(object);
553                         return;
554                 } else if (object->ref_count == 1) {
555                         if (object->type == OBJT_SWAP &&
556                             (object->flags & OBJ_TMPFS) != 0) {
557                                 vp = object->un_pager.swp.swp_tmpfs;
558                                 vhold(vp);
559                                 VM_OBJECT_WUNLOCK(object);
560                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
561                                 VM_OBJECT_WLOCK(object);
562                                 if (object->type == OBJT_DEAD ||
563                                     object->ref_count != 1) {
564                                         VM_OBJECT_WUNLOCK(object);
565                                         VOP_UNLOCK(vp, 0);
566                                         vdrop(vp);
567                                         return;
568                                 }
569                                 if ((object->flags & OBJ_TMPFS) != 0)
570                                         VOP_UNSET_TEXT(vp);
571                                 VOP_UNLOCK(vp, 0);
572                                 vdrop(vp);
573                         }
574                         if (object->shadow_count == 0 &&
575                             object->handle == NULL &&
576                             (object->type == OBJT_DEFAULT ||
577                             (object->type == OBJT_SWAP &&
578                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
579                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
580                         } else if ((object->shadow_count == 1) &&
581                             (object->handle == NULL) &&
582                             (object->type == OBJT_DEFAULT ||
583                              object->type == OBJT_SWAP)) {
584                                 vm_object_t robject;
585
586                                 robject = LIST_FIRST(&object->shadow_head);
587                                 KASSERT(robject != NULL,
588                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
589                                          object->ref_count,
590                                          object->shadow_count));
591                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
592                                     ("shadowed tmpfs v_object %p", object));
593                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
594                                         /*
595                                          * Avoid a potential deadlock.
596                                          */
597                                         object->ref_count++;
598                                         VM_OBJECT_WUNLOCK(object);
599                                         /*
600                                          * More likely than not the thread
601                                          * holding robject's lock has lower
602                                          * priority than the current thread.
603                                          * Let the lower priority thread run.
604                                          */
605                                         pause("vmo_de", 1);
606                                         continue;
607                                 }
608                                 /*
609                                  * Collapse object into its shadow unless its
610                                  * shadow is dead.  In that case, object will
611                                  * be deallocated by the thread that is
612                                  * deallocating its shadow.
613                                  */
614                                 if ((robject->flags & OBJ_DEAD) == 0 &&
615                                     (robject->handle == NULL) &&
616                                     (robject->type == OBJT_DEFAULT ||
617                                      robject->type == OBJT_SWAP)) {
618
619                                         robject->ref_count++;
620 retry:
621                                         if (robject->paging_in_progress) {
622                                                 VM_OBJECT_WUNLOCK(object);
623                                                 vm_object_pip_wait(robject,
624                                                     "objde1");
625                                                 temp = robject->backing_object;
626                                                 if (object == temp) {
627                                                         VM_OBJECT_WLOCK(object);
628                                                         goto retry;
629                                                 }
630                                         } else if (object->paging_in_progress) {
631                                                 VM_OBJECT_WUNLOCK(robject);
632                                                 object->flags |= OBJ_PIPWNT;
633                                                 VM_OBJECT_SLEEP(object, object,
634                                                     PDROP | PVM, "objde2", 0);
635                                                 VM_OBJECT_WLOCK(robject);
636                                                 temp = robject->backing_object;
637                                                 if (object == temp) {
638                                                         VM_OBJECT_WLOCK(object);
639                                                         goto retry;
640                                                 }
641                                         } else
642                                                 VM_OBJECT_WUNLOCK(object);
643
644                                         if (robject->ref_count == 1) {
645                                                 robject->ref_count--;
646                                                 object = robject;
647                                                 goto doterm;
648                                         }
649                                         object = robject;
650                                         vm_object_collapse(object);
651                                         VM_OBJECT_WUNLOCK(object);
652                                         continue;
653                                 }
654                                 VM_OBJECT_WUNLOCK(robject);
655                         }
656                         VM_OBJECT_WUNLOCK(object);
657                         return;
658                 }
659 doterm:
660                 umtx_shm_object_terminated(object);
661                 temp = object->backing_object;
662                 if (temp != NULL) {
663                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
664                             ("shadowed tmpfs v_object 2 %p", object));
665                         VM_OBJECT_WLOCK(temp);
666                         LIST_REMOVE(object, shadow_list);
667                         temp->shadow_count--;
668                         VM_OBJECT_WUNLOCK(temp);
669                         object->backing_object = NULL;
670                 }
671                 /*
672                  * Don't double-terminate, we could be in a termination
673                  * recursion due to the terminate having to sync data
674                  * to disk.
675                  */
676                 if ((object->flags & OBJ_DEAD) == 0)
677                         vm_object_terminate(object);
678                 else
679                         VM_OBJECT_WUNLOCK(object);
680                 object = temp;
681         }
682 }
683
684 /*
685  *      vm_object_destroy removes the object from the global object list
686  *      and frees the space for the object.
687  */
688 void
689 vm_object_destroy(vm_object_t object)
690 {
691
692         /*
693          * Release the allocation charge.
694          */
695         if (object->cred != NULL) {
696                 swap_release_by_cred(object->charge, object->cred);
697                 object->charge = 0;
698                 crfree(object->cred);
699                 object->cred = NULL;
700         }
701
702         /*
703          * Free the space for the object.
704          */
705         uma_zfree(obj_zone, object);
706 }
707
708 /*
709  *      vm_object_terminate_pages removes any remaining pageable pages
710  *      from the object and resets the object to an empty state.
711  */
712 static void
713 vm_object_terminate_pages(vm_object_t object)
714 {
715         vm_page_t p, p_next;
716
717         VM_OBJECT_ASSERT_WLOCKED(object);
718
719         /*
720          * Free any remaining pageable pages.  This also removes them from the
721          * paging queues.  However, don't free wired pages, just remove them
722          * from the object.  Rather than incrementally removing each page from
723          * the object, the page and object are reset to any empty state. 
724          */
725         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
726                 vm_page_assert_unbusied(p);
727                 vm_page_lock(p);
728                 /*
729                  * Optimize the page's removal from the object by resetting
730                  * its "object" field.  Specifically, if the page is not
731                  * wired, then the effect of this assignment is that
732                  * vm_page_free()'s call to vm_page_remove() will return
733                  * immediately without modifying the page or the object.
734                  */ 
735                 p->object = NULL;
736                 if (p->wire_count == 0) {
737                         vm_page_free(p);
738                         VM_CNT_INC(v_pfree);
739                 }
740                 vm_page_unlock(p);
741         }
742         /*
743          * If the object contained any pages, then reset it to an empty state.
744          * None of the object's fields, including "resident_page_count", were
745          * modified by the preceding loop.
746          */
747         if (object->resident_page_count != 0) {
748                 vm_radix_reclaim_allnodes(&object->rtree);
749                 TAILQ_INIT(&object->memq);
750                 object->resident_page_count = 0;
751                 if (object->type == OBJT_VNODE)
752                         vdrop(object->handle);
753         }
754 }
755
756 /*
757  *      vm_object_terminate actually destroys the specified object, freeing
758  *      up all previously used resources.
759  *
760  *      The object must be locked.
761  *      This routine may block.
762  */
763 void
764 vm_object_terminate(vm_object_t object)
765 {
766
767         VM_OBJECT_ASSERT_WLOCKED(object);
768
769         /*
770          * Make sure no one uses us.
771          */
772         vm_object_set_flag(object, OBJ_DEAD);
773
774         /*
775          * wait for the pageout daemon to be done with the object
776          */
777         vm_object_pip_wait(object, "objtrm");
778
779         KASSERT(!object->paging_in_progress,
780                 ("vm_object_terminate: pageout in progress"));
781
782         /*
783          * Clean and free the pages, as appropriate. All references to the
784          * object are gone, so we don't need to lock it.
785          */
786         if (object->type == OBJT_VNODE) {
787                 struct vnode *vp = (struct vnode *)object->handle;
788
789                 /*
790                  * Clean pages and flush buffers.
791                  */
792                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
793                 VM_OBJECT_WUNLOCK(object);
794
795                 vinvalbuf(vp, V_SAVE, 0, 0);
796
797                 BO_LOCK(&vp->v_bufobj);
798                 vp->v_bufobj.bo_flag |= BO_DEAD;
799                 BO_UNLOCK(&vp->v_bufobj);
800
801                 VM_OBJECT_WLOCK(object);
802         }
803
804         KASSERT(object->ref_count == 0, 
805                 ("vm_object_terminate: object with references, ref_count=%d",
806                 object->ref_count));
807
808         if ((object->flags & OBJ_PG_DTOR) == 0)
809                 vm_object_terminate_pages(object);
810
811 #if VM_NRESERVLEVEL > 0
812         if (__predict_false(!LIST_EMPTY(&object->rvq)))
813                 vm_reserv_break_all(object);
814 #endif
815
816         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
817             object->type == OBJT_SWAP,
818             ("%s: non-swap obj %p has cred", __func__, object));
819
820         /*
821          * Let the pager know object is dead.
822          */
823         vm_pager_deallocate(object);
824         VM_OBJECT_WUNLOCK(object);
825
826         vm_object_destroy(object);
827 }
828
829 /*
830  * Make the page read-only so that we can clear the object flags.  However, if
831  * this is a nosync mmap then the object is likely to stay dirty so do not
832  * mess with the page and do not clear the object flags.  Returns TRUE if the
833  * page should be flushed, and FALSE otherwise.
834  */
835 static boolean_t
836 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
837 {
838
839         /*
840          * If we have been asked to skip nosync pages and this is a
841          * nosync page, skip it.  Note that the object flags were not
842          * cleared in this case so we do not have to set them.
843          */
844         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
845                 *clearobjflags = FALSE;
846                 return (FALSE);
847         } else {
848                 pmap_remove_write(p);
849                 return (p->dirty != 0);
850         }
851 }
852
853 /*
854  *      vm_object_page_clean
855  *
856  *      Clean all dirty pages in the specified range of object.  Leaves page 
857  *      on whatever queue it is currently on.   If NOSYNC is set then do not
858  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
859  *      leaving the object dirty.
860  *
861  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
862  *      synchronous clustering mode implementation.
863  *
864  *      Odd semantics: if start == end, we clean everything.
865  *
866  *      The object must be locked.
867  *
868  *      Returns FALSE if some page from the range was not written, as
869  *      reported by the pager, and TRUE otherwise.
870  */
871 boolean_t
872 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
873     int flags)
874 {
875         vm_page_t np, p;
876         vm_pindex_t pi, tend, tstart;
877         int curgeneration, n, pagerflags;
878         boolean_t clearobjflags, eio, res;
879
880         VM_OBJECT_ASSERT_WLOCKED(object);
881
882         /*
883          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
884          * objects.  The check below prevents the function from
885          * operating on non-vnode objects.
886          */
887         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
888             object->resident_page_count == 0)
889                 return (TRUE);
890
891         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
892             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
893         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
894
895         tstart = OFF_TO_IDX(start);
896         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
897         clearobjflags = tstart == 0 && tend >= object->size;
898         res = TRUE;
899
900 rescan:
901         curgeneration = object->generation;
902
903         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
904                 pi = p->pindex;
905                 if (pi >= tend)
906                         break;
907                 np = TAILQ_NEXT(p, listq);
908                 if (p->valid == 0)
909                         continue;
910                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
911                         if (object->generation != curgeneration) {
912                                 if ((flags & OBJPC_SYNC) != 0)
913                                         goto rescan;
914                                 else
915                                         clearobjflags = FALSE;
916                         }
917                         np = vm_page_find_least(object, pi);
918                         continue;
919                 }
920                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
921                         continue;
922
923                 n = vm_object_page_collect_flush(object, p, pagerflags,
924                     flags, &clearobjflags, &eio);
925                 if (eio) {
926                         res = FALSE;
927                         clearobjflags = FALSE;
928                 }
929                 if (object->generation != curgeneration) {
930                         if ((flags & OBJPC_SYNC) != 0)
931                                 goto rescan;
932                         else
933                                 clearobjflags = FALSE;
934                 }
935
936                 /*
937                  * If the VOP_PUTPAGES() did a truncated write, so
938                  * that even the first page of the run is not fully
939                  * written, vm_pageout_flush() returns 0 as the run
940                  * length.  Since the condition that caused truncated
941                  * write may be permanent, e.g. exhausted free space,
942                  * accepting n == 0 would cause an infinite loop.
943                  *
944                  * Forwarding the iterator leaves the unwritten page
945                  * behind, but there is not much we can do there if
946                  * filesystem refuses to write it.
947                  */
948                 if (n == 0) {
949                         n = 1;
950                         clearobjflags = FALSE;
951                 }
952                 np = vm_page_find_least(object, pi + n);
953         }
954 #if 0
955         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
956 #endif
957
958         if (clearobjflags)
959                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
960         return (res);
961 }
962
963 static int
964 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
965     int flags, boolean_t *clearobjflags, boolean_t *eio)
966 {
967         vm_page_t ma[vm_pageout_page_count], p_first, tp;
968         int count, i, mreq, runlen;
969
970         vm_page_lock_assert(p, MA_NOTOWNED);
971         VM_OBJECT_ASSERT_WLOCKED(object);
972
973         count = 1;
974         mreq = 0;
975
976         for (tp = p; count < vm_pageout_page_count; count++) {
977                 tp = vm_page_next(tp);
978                 if (tp == NULL || vm_page_busied(tp))
979                         break;
980                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
981                         break;
982         }
983
984         for (p_first = p; count < vm_pageout_page_count; count++) {
985                 tp = vm_page_prev(p_first);
986                 if (tp == NULL || vm_page_busied(tp))
987                         break;
988                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
989                         break;
990                 p_first = tp;
991                 mreq++;
992         }
993
994         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
995                 ma[i] = tp;
996
997         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
998         return (runlen);
999 }
1000
1001 /*
1002  * Note that there is absolutely no sense in writing out
1003  * anonymous objects, so we track down the vnode object
1004  * to write out.
1005  * We invalidate (remove) all pages from the address space
1006  * for semantic correctness.
1007  *
1008  * If the backing object is a device object with unmanaged pages, then any
1009  * mappings to the specified range of pages must be removed before this
1010  * function is called.
1011  *
1012  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1013  * may start out with a NULL object.
1014  */
1015 boolean_t
1016 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1017     boolean_t syncio, boolean_t invalidate)
1018 {
1019         vm_object_t backing_object;
1020         struct vnode *vp;
1021         struct mount *mp;
1022         int error, flags, fsync_after;
1023         boolean_t res;
1024
1025         if (object == NULL)
1026                 return (TRUE);
1027         res = TRUE;
1028         error = 0;
1029         VM_OBJECT_WLOCK(object);
1030         while ((backing_object = object->backing_object) != NULL) {
1031                 VM_OBJECT_WLOCK(backing_object);
1032                 offset += object->backing_object_offset;
1033                 VM_OBJECT_WUNLOCK(object);
1034                 object = backing_object;
1035                 if (object->size < OFF_TO_IDX(offset + size))
1036                         size = IDX_TO_OFF(object->size) - offset;
1037         }
1038         /*
1039          * Flush pages if writing is allowed, invalidate them
1040          * if invalidation requested.  Pages undergoing I/O
1041          * will be ignored by vm_object_page_remove().
1042          *
1043          * We cannot lock the vnode and then wait for paging
1044          * to complete without deadlocking against vm_fault.
1045          * Instead we simply call vm_object_page_remove() and
1046          * allow it to block internally on a page-by-page
1047          * basis when it encounters pages undergoing async
1048          * I/O.
1049          */
1050         if (object->type == OBJT_VNODE &&
1051             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1052                 vp = object->handle;
1053                 VM_OBJECT_WUNLOCK(object);
1054                 (void) vn_start_write(vp, &mp, V_WAIT);
1055                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1056                 if (syncio && !invalidate && offset == 0 &&
1057                     atop(size) == object->size) {
1058                         /*
1059                          * If syncing the whole mapping of the file,
1060                          * it is faster to schedule all the writes in
1061                          * async mode, also allowing the clustering,
1062                          * and then wait for i/o to complete.
1063                          */
1064                         flags = 0;
1065                         fsync_after = TRUE;
1066                 } else {
1067                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1068                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1069                         fsync_after = FALSE;
1070                 }
1071                 VM_OBJECT_WLOCK(object);
1072                 res = vm_object_page_clean(object, offset, offset + size,
1073                     flags);
1074                 VM_OBJECT_WUNLOCK(object);
1075                 if (fsync_after)
1076                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1077                 VOP_UNLOCK(vp, 0);
1078                 vn_finished_write(mp);
1079                 if (error != 0)
1080                         res = FALSE;
1081                 VM_OBJECT_WLOCK(object);
1082         }
1083         if ((object->type == OBJT_VNODE ||
1084              object->type == OBJT_DEVICE) && invalidate) {
1085                 if (object->type == OBJT_DEVICE)
1086                         /*
1087                          * The option OBJPR_NOTMAPPED must be passed here
1088                          * because vm_object_page_remove() cannot remove
1089                          * unmanaged mappings.
1090                          */
1091                         flags = OBJPR_NOTMAPPED;
1092                 else if (old_msync)
1093                         flags = 0;
1094                 else
1095                         flags = OBJPR_CLEANONLY;
1096                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1097                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1098         }
1099         VM_OBJECT_WUNLOCK(object);
1100         return (res);
1101 }
1102
1103 /*
1104  * Determine whether the given advice can be applied to the object.  Advice is
1105  * not applied to unmanaged pages since they never belong to page queues, and
1106  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1107  * have been mapped at most once.
1108  */
1109 static bool
1110 vm_object_advice_applies(vm_object_t object, int advice)
1111 {
1112
1113         if ((object->flags & OBJ_UNMANAGED) != 0)
1114                 return (false);
1115         if (advice != MADV_FREE)
1116                 return (true);
1117         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1118             (object->flags & OBJ_ONEMAPPING) != 0);
1119 }
1120
1121 static void
1122 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1123     vm_size_t size)
1124 {
1125
1126         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1127                 swap_pager_freespace(object, pindex, size);
1128 }
1129
1130 /*
1131  *      vm_object_madvise:
1132  *
1133  *      Implements the madvise function at the object/page level.
1134  *
1135  *      MADV_WILLNEED   (any object)
1136  *
1137  *          Activate the specified pages if they are resident.
1138  *
1139  *      MADV_DONTNEED   (any object)
1140  *
1141  *          Deactivate the specified pages if they are resident.
1142  *
1143  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1144  *                       OBJ_ONEMAPPING only)
1145  *
1146  *          Deactivate and clean the specified pages if they are
1147  *          resident.  This permits the process to reuse the pages
1148  *          without faulting or the kernel to reclaim the pages
1149  *          without I/O.
1150  */
1151 void
1152 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1153     int advice)
1154 {
1155         vm_pindex_t tpindex;
1156         vm_object_t backing_object, tobject;
1157         vm_page_t m, tm;
1158
1159         if (object == NULL)
1160                 return;
1161
1162 relookup:
1163         VM_OBJECT_WLOCK(object);
1164         if (!vm_object_advice_applies(object, advice)) {
1165                 VM_OBJECT_WUNLOCK(object);
1166                 return;
1167         }
1168         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1169                 tobject = object;
1170
1171                 /*
1172                  * If the next page isn't resident in the top-level object, we
1173                  * need to search the shadow chain.  When applying MADV_FREE, we
1174                  * take care to release any swap space used to store
1175                  * non-resident pages.
1176                  */
1177                 if (m == NULL || pindex < m->pindex) {
1178                         /*
1179                          * Optimize a common case: if the top-level object has
1180                          * no backing object, we can skip over the non-resident
1181                          * range in constant time.
1182                          */
1183                         if (object->backing_object == NULL) {
1184                                 tpindex = (m != NULL && m->pindex < end) ?
1185                                     m->pindex : end;
1186                                 vm_object_madvise_freespace(object, advice,
1187                                     pindex, tpindex - pindex);
1188                                 if ((pindex = tpindex) == end)
1189                                         break;
1190                                 goto next_page;
1191                         }
1192
1193                         tpindex = pindex;
1194                         do {
1195                                 vm_object_madvise_freespace(tobject, advice,
1196                                     tpindex, 1);
1197                                 /*
1198                                  * Prepare to search the next object in the
1199                                  * chain.
1200                                  */
1201                                 backing_object = tobject->backing_object;
1202                                 if (backing_object == NULL)
1203                                         goto next_pindex;
1204                                 VM_OBJECT_WLOCK(backing_object);
1205                                 tpindex +=
1206                                     OFF_TO_IDX(tobject->backing_object_offset);
1207                                 if (tobject != object)
1208                                         VM_OBJECT_WUNLOCK(tobject);
1209                                 tobject = backing_object;
1210                                 if (!vm_object_advice_applies(tobject, advice))
1211                                         goto next_pindex;
1212                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1213                             NULL);
1214                 } else {
1215 next_page:
1216                         tm = m;
1217                         m = TAILQ_NEXT(m, listq);
1218                 }
1219
1220                 /*
1221                  * If the page is not in a normal state, skip it.
1222                  */
1223                 if (tm->valid != VM_PAGE_BITS_ALL)
1224                         goto next_pindex;
1225                 vm_page_lock(tm);
1226                 if (tm->hold_count != 0 || tm->wire_count != 0) {
1227                         vm_page_unlock(tm);
1228                         goto next_pindex;
1229                 }
1230                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1231                     ("vm_object_madvise: page %p is fictitious", tm));
1232                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1233                     ("vm_object_madvise: page %p is not managed", tm));
1234                 if (vm_page_busied(tm)) {
1235                         if (object != tobject)
1236                                 VM_OBJECT_WUNLOCK(tobject);
1237                         VM_OBJECT_WUNLOCK(object);
1238                         if (advice == MADV_WILLNEED) {
1239                                 /*
1240                                  * Reference the page before unlocking and
1241                                  * sleeping so that the page daemon is less
1242                                  * likely to reclaim it.
1243                                  */
1244                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1245                         }
1246                         vm_page_busy_sleep(tm, "madvpo", false);
1247                         goto relookup;
1248                 }
1249                 vm_page_advise(tm, advice);
1250                 vm_page_unlock(tm);
1251                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1252 next_pindex:
1253                 if (tobject != object)
1254                         VM_OBJECT_WUNLOCK(tobject);
1255         }
1256         VM_OBJECT_WUNLOCK(object);
1257 }
1258
1259 /*
1260  *      vm_object_shadow:
1261  *
1262  *      Create a new object which is backed by the
1263  *      specified existing object range.  The source
1264  *      object reference is deallocated.
1265  *
1266  *      The new object and offset into that object
1267  *      are returned in the source parameters.
1268  */
1269 void
1270 vm_object_shadow(
1271         vm_object_t *object,    /* IN/OUT */
1272         vm_ooffset_t *offset,   /* IN/OUT */
1273         vm_size_t length)
1274 {
1275         vm_object_t source;
1276         vm_object_t result;
1277
1278         source = *object;
1279
1280         /*
1281          * Don't create the new object if the old object isn't shared.
1282          */
1283         if (source != NULL) {
1284                 VM_OBJECT_WLOCK(source);
1285                 if (source->ref_count == 1 &&
1286                     source->handle == NULL &&
1287                     (source->type == OBJT_DEFAULT ||
1288                      source->type == OBJT_SWAP)) {
1289                         VM_OBJECT_WUNLOCK(source);
1290                         return;
1291                 }
1292                 VM_OBJECT_WUNLOCK(source);
1293         }
1294
1295         /*
1296          * Allocate a new object with the given length.
1297          */
1298         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1299
1300         /*
1301          * The new object shadows the source object, adding a reference to it.
1302          * Our caller changes his reference to point to the new object,
1303          * removing a reference to the source object.  Net result: no change
1304          * of reference count.
1305          *
1306          * Try to optimize the result object's page color when shadowing
1307          * in order to maintain page coloring consistency in the combined 
1308          * shadowed object.
1309          */
1310         result->backing_object = source;
1311         /*
1312          * Store the offset into the source object, and fix up the offset into
1313          * the new object.
1314          */
1315         result->backing_object_offset = *offset;
1316         if (source != NULL) {
1317                 VM_OBJECT_WLOCK(source);
1318                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1319                 source->shadow_count++;
1320 #if VM_NRESERVLEVEL > 0
1321                 result->flags |= source->flags & OBJ_COLORED;
1322                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1323                     ((1 << (VM_NFREEORDER - 1)) - 1);
1324 #endif
1325                 VM_OBJECT_WUNLOCK(source);
1326         }
1327
1328
1329         /*
1330          * Return the new things
1331          */
1332         *offset = 0;
1333         *object = result;
1334 }
1335
1336 /*
1337  *      vm_object_split:
1338  *
1339  * Split the pages in a map entry into a new object.  This affords
1340  * easier removal of unused pages, and keeps object inheritance from
1341  * being a negative impact on memory usage.
1342  */
1343 void
1344 vm_object_split(vm_map_entry_t entry)
1345 {
1346         vm_page_t m, m_next;
1347         vm_object_t orig_object, new_object, source;
1348         vm_pindex_t idx, offidxstart;
1349         vm_size_t size;
1350
1351         orig_object = entry->object.vm_object;
1352         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1353                 return;
1354         if (orig_object->ref_count <= 1)
1355                 return;
1356         VM_OBJECT_WUNLOCK(orig_object);
1357
1358         offidxstart = OFF_TO_IDX(entry->offset);
1359         size = atop(entry->end - entry->start);
1360
1361         /*
1362          * If swap_pager_copy() is later called, it will convert new_object
1363          * into a swap object.
1364          */
1365         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1366
1367         /*
1368          * At this point, the new object is still private, so the order in
1369          * which the original and new objects are locked does not matter.
1370          */
1371         VM_OBJECT_WLOCK(new_object);
1372         VM_OBJECT_WLOCK(orig_object);
1373         source = orig_object->backing_object;
1374         if (source != NULL) {
1375                 VM_OBJECT_WLOCK(source);
1376                 if ((source->flags & OBJ_DEAD) != 0) {
1377                         VM_OBJECT_WUNLOCK(source);
1378                         VM_OBJECT_WUNLOCK(orig_object);
1379                         VM_OBJECT_WUNLOCK(new_object);
1380                         vm_object_deallocate(new_object);
1381                         VM_OBJECT_WLOCK(orig_object);
1382                         return;
1383                 }
1384                 LIST_INSERT_HEAD(&source->shadow_head,
1385                                   new_object, shadow_list);
1386                 source->shadow_count++;
1387                 vm_object_reference_locked(source);     /* for new_object */
1388                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1389                 VM_OBJECT_WUNLOCK(source);
1390                 new_object->backing_object_offset = 
1391                         orig_object->backing_object_offset + entry->offset;
1392                 new_object->backing_object = source;
1393         }
1394         if (orig_object->cred != NULL) {
1395                 new_object->cred = orig_object->cred;
1396                 crhold(orig_object->cred);
1397                 new_object->charge = ptoa(size);
1398                 KASSERT(orig_object->charge >= ptoa(size),
1399                     ("orig_object->charge < 0"));
1400                 orig_object->charge -= ptoa(size);
1401         }
1402 retry:
1403         m = vm_page_find_least(orig_object, offidxstart);
1404         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1405             m = m_next) {
1406                 m_next = TAILQ_NEXT(m, listq);
1407
1408                 /*
1409                  * We must wait for pending I/O to complete before we can
1410                  * rename the page.
1411                  *
1412                  * We do not have to VM_PROT_NONE the page as mappings should
1413                  * not be changed by this operation.
1414                  */
1415                 if (vm_page_busied(m)) {
1416                         VM_OBJECT_WUNLOCK(new_object);
1417                         vm_page_lock(m);
1418                         VM_OBJECT_WUNLOCK(orig_object);
1419                         vm_page_busy_sleep(m, "spltwt", false);
1420                         VM_OBJECT_WLOCK(orig_object);
1421                         VM_OBJECT_WLOCK(new_object);
1422                         goto retry;
1423                 }
1424
1425                 /* vm_page_rename() will dirty the page. */
1426                 if (vm_page_rename(m, new_object, idx)) {
1427                         VM_OBJECT_WUNLOCK(new_object);
1428                         VM_OBJECT_WUNLOCK(orig_object);
1429                         VM_WAIT;
1430                         VM_OBJECT_WLOCK(orig_object);
1431                         VM_OBJECT_WLOCK(new_object);
1432                         goto retry;
1433                 }
1434 #if VM_NRESERVLEVEL > 0
1435                 /*
1436                  * If some of the reservation's allocated pages remain with
1437                  * the original object, then transferring the reservation to
1438                  * the new object is neither particularly beneficial nor
1439                  * particularly harmful as compared to leaving the reservation
1440                  * with the original object.  If, however, all of the
1441                  * reservation's allocated pages are transferred to the new
1442                  * object, then transferring the reservation is typically
1443                  * beneficial.  Determining which of these two cases applies
1444                  * would be more costly than unconditionally renaming the
1445                  * reservation.
1446                  */
1447                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1448 #endif
1449                 if (orig_object->type == OBJT_SWAP)
1450                         vm_page_xbusy(m);
1451         }
1452         if (orig_object->type == OBJT_SWAP) {
1453                 /*
1454                  * swap_pager_copy() can sleep, in which case the orig_object's
1455                  * and new_object's locks are released and reacquired. 
1456                  */
1457                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1458                 TAILQ_FOREACH(m, &new_object->memq, listq)
1459                         vm_page_xunbusy(m);
1460         }
1461         VM_OBJECT_WUNLOCK(orig_object);
1462         VM_OBJECT_WUNLOCK(new_object);
1463         entry->object.vm_object = new_object;
1464         entry->offset = 0LL;
1465         vm_object_deallocate(orig_object);
1466         VM_OBJECT_WLOCK(new_object);
1467 }
1468
1469 #define OBSC_COLLAPSE_NOWAIT    0x0002
1470 #define OBSC_COLLAPSE_WAIT      0x0004
1471
1472 static vm_page_t
1473 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1474     int op)
1475 {
1476         vm_object_t backing_object;
1477
1478         VM_OBJECT_ASSERT_WLOCKED(object);
1479         backing_object = object->backing_object;
1480         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1481
1482         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1483         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1484             ("invalid ownership %p %p %p", p, object, backing_object));
1485         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1486                 return (next);
1487         if (p != NULL)
1488                 vm_page_lock(p);
1489         VM_OBJECT_WUNLOCK(object);
1490         VM_OBJECT_WUNLOCK(backing_object);
1491         if (p == NULL)
1492                 VM_WAIT;
1493         else
1494                 vm_page_busy_sleep(p, "vmocol", false);
1495         VM_OBJECT_WLOCK(object);
1496         VM_OBJECT_WLOCK(backing_object);
1497         return (TAILQ_FIRST(&backing_object->memq));
1498 }
1499
1500 static bool
1501 vm_object_scan_all_shadowed(vm_object_t object)
1502 {
1503         vm_object_t backing_object;
1504         vm_page_t p, pp;
1505         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1506
1507         VM_OBJECT_ASSERT_WLOCKED(object);
1508         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1509
1510         backing_object = object->backing_object;
1511
1512         if (backing_object->type != OBJT_DEFAULT &&
1513             backing_object->type != OBJT_SWAP)
1514                 return (false);
1515
1516         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1517         p = vm_page_find_least(backing_object, pi);
1518         ps = swap_pager_find_least(backing_object, pi);
1519
1520         /*
1521          * Only check pages inside the parent object's range and
1522          * inside the parent object's mapping of the backing object.
1523          */
1524         for (;; pi++) {
1525                 if (p != NULL && p->pindex < pi)
1526                         p = TAILQ_NEXT(p, listq);
1527                 if (ps < pi)
1528                         ps = swap_pager_find_least(backing_object, pi);
1529                 if (p == NULL && ps >= backing_object->size)
1530                         break;
1531                 else if (p == NULL)
1532                         pi = ps;
1533                 else
1534                         pi = MIN(p->pindex, ps);
1535
1536                 new_pindex = pi - backing_offset_index;
1537                 if (new_pindex >= object->size)
1538                         break;
1539
1540                 /*
1541                  * See if the parent has the page or if the parent's object
1542                  * pager has the page.  If the parent has the page but the page
1543                  * is not valid, the parent's object pager must have the page.
1544                  *
1545                  * If this fails, the parent does not completely shadow the
1546                  * object and we might as well give up now.
1547                  */
1548                 pp = vm_page_lookup(object, new_pindex);
1549                 if ((pp == NULL || pp->valid == 0) &&
1550                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1551                         return (false);
1552         }
1553         return (true);
1554 }
1555
1556 static bool
1557 vm_object_collapse_scan(vm_object_t object, int op)
1558 {
1559         vm_object_t backing_object;
1560         vm_page_t next, p, pp;
1561         vm_pindex_t backing_offset_index, new_pindex;
1562
1563         VM_OBJECT_ASSERT_WLOCKED(object);
1564         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1565
1566         backing_object = object->backing_object;
1567         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1568
1569         /*
1570          * Initial conditions
1571          */
1572         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1573                 vm_object_set_flag(backing_object, OBJ_DEAD);
1574
1575         /*
1576          * Our scan
1577          */
1578         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1579                 next = TAILQ_NEXT(p, listq);
1580                 new_pindex = p->pindex - backing_offset_index;
1581
1582                 /*
1583                  * Check for busy page
1584                  */
1585                 if (vm_page_busied(p)) {
1586                         next = vm_object_collapse_scan_wait(object, p, next, op);
1587                         continue;
1588                 }
1589
1590                 KASSERT(p->object == backing_object,
1591                     ("vm_object_collapse_scan: object mismatch"));
1592
1593                 if (p->pindex < backing_offset_index ||
1594                     new_pindex >= object->size) {
1595                         if (backing_object->type == OBJT_SWAP)
1596                                 swap_pager_freespace(backing_object, p->pindex,
1597                                     1);
1598
1599                         /*
1600                          * Page is out of the parent object's range, we can
1601                          * simply destroy it.
1602                          */
1603                         vm_page_lock(p);
1604                         KASSERT(!pmap_page_is_mapped(p),
1605                             ("freeing mapped page %p", p));
1606                         if (p->wire_count == 0)
1607                                 vm_page_free(p);
1608                         else
1609                                 vm_page_remove(p);
1610                         vm_page_unlock(p);
1611                         continue;
1612                 }
1613
1614                 pp = vm_page_lookup(object, new_pindex);
1615                 if (pp != NULL && vm_page_busied(pp)) {
1616                         /*
1617                          * The page in the parent is busy and possibly not
1618                          * (yet) valid.  Until its state is finalized by the
1619                          * busy bit owner, we can't tell whether it shadows the
1620                          * original page.  Therefore, we must either skip it
1621                          * and the original (backing_object) page or wait for
1622                          * its state to be finalized.
1623                          *
1624                          * This is due to a race with vm_fault() where we must
1625                          * unbusy the original (backing_obj) page before we can
1626                          * (re)lock the parent.  Hence we can get here.
1627                          */
1628                         next = vm_object_collapse_scan_wait(object, pp, next,
1629                             op);
1630                         continue;
1631                 }
1632
1633                 KASSERT(pp == NULL || pp->valid != 0,
1634                     ("unbusy invalid page %p", pp));
1635
1636                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1637                         NULL)) {
1638                         /*
1639                          * The page already exists in the parent OR swap exists
1640                          * for this location in the parent.  Leave the parent's
1641                          * page alone.  Destroy the original page from the
1642                          * backing object.
1643                          */
1644                         if (backing_object->type == OBJT_SWAP)
1645                                 swap_pager_freespace(backing_object, p->pindex,
1646                                     1);
1647                         vm_page_lock(p);
1648                         KASSERT(!pmap_page_is_mapped(p),
1649                             ("freeing mapped page %p", p));
1650                         if (p->wire_count == 0)
1651                                 vm_page_free(p);
1652                         else
1653                                 vm_page_remove(p);
1654                         vm_page_unlock(p);
1655                         continue;
1656                 }
1657
1658                 /*
1659                  * Page does not exist in parent, rename the page from the
1660                  * backing object to the main object.
1661                  *
1662                  * If the page was mapped to a process, it can remain mapped
1663                  * through the rename.  vm_page_rename() will dirty the page.
1664                  */
1665                 if (vm_page_rename(p, object, new_pindex)) {
1666                         next = vm_object_collapse_scan_wait(object, NULL, next,
1667                             op);
1668                         continue;
1669                 }
1670
1671                 /* Use the old pindex to free the right page. */
1672                 if (backing_object->type == OBJT_SWAP)
1673                         swap_pager_freespace(backing_object,
1674                             new_pindex + backing_offset_index, 1);
1675
1676 #if VM_NRESERVLEVEL > 0
1677                 /*
1678                  * Rename the reservation.
1679                  */
1680                 vm_reserv_rename(p, object, backing_object,
1681                     backing_offset_index);
1682 #endif
1683         }
1684         return (true);
1685 }
1686
1687
1688 /*
1689  * this version of collapse allows the operation to occur earlier and
1690  * when paging_in_progress is true for an object...  This is not a complete
1691  * operation, but should plug 99.9% of the rest of the leaks.
1692  */
1693 static void
1694 vm_object_qcollapse(vm_object_t object)
1695 {
1696         vm_object_t backing_object = object->backing_object;
1697
1698         VM_OBJECT_ASSERT_WLOCKED(object);
1699         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1700
1701         if (backing_object->ref_count != 1)
1702                 return;
1703
1704         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1705 }
1706
1707 /*
1708  *      vm_object_collapse:
1709  *
1710  *      Collapse an object with the object backing it.
1711  *      Pages in the backing object are moved into the
1712  *      parent, and the backing object is deallocated.
1713  */
1714 void
1715 vm_object_collapse(vm_object_t object)
1716 {
1717         vm_object_t backing_object, new_backing_object;
1718
1719         VM_OBJECT_ASSERT_WLOCKED(object);
1720
1721         while (TRUE) {
1722                 /*
1723                  * Verify that the conditions are right for collapse:
1724                  *
1725                  * The object exists and the backing object exists.
1726                  */
1727                 if ((backing_object = object->backing_object) == NULL)
1728                         break;
1729
1730                 /*
1731                  * we check the backing object first, because it is most likely
1732                  * not collapsable.
1733                  */
1734                 VM_OBJECT_WLOCK(backing_object);
1735                 if (backing_object->handle != NULL ||
1736                     (backing_object->type != OBJT_DEFAULT &&
1737                      backing_object->type != OBJT_SWAP) ||
1738                     (backing_object->flags & OBJ_DEAD) ||
1739                     object->handle != NULL ||
1740                     (object->type != OBJT_DEFAULT &&
1741                      object->type != OBJT_SWAP) ||
1742                     (object->flags & OBJ_DEAD)) {
1743                         VM_OBJECT_WUNLOCK(backing_object);
1744                         break;
1745                 }
1746
1747                 if (object->paging_in_progress != 0 ||
1748                     backing_object->paging_in_progress != 0) {
1749                         vm_object_qcollapse(object);
1750                         VM_OBJECT_WUNLOCK(backing_object);
1751                         break;
1752                 }
1753
1754                 /*
1755                  * We know that we can either collapse the backing object (if
1756                  * the parent is the only reference to it) or (perhaps) have
1757                  * the parent bypass the object if the parent happens to shadow
1758                  * all the resident pages in the entire backing object.
1759                  *
1760                  * This is ignoring pager-backed pages such as swap pages.
1761                  * vm_object_collapse_scan fails the shadowing test in this
1762                  * case.
1763                  */
1764                 if (backing_object->ref_count == 1) {
1765                         vm_object_pip_add(object, 1);
1766                         vm_object_pip_add(backing_object, 1);
1767
1768                         /*
1769                          * If there is exactly one reference to the backing
1770                          * object, we can collapse it into the parent.
1771                          */
1772                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1773
1774 #if VM_NRESERVLEVEL > 0
1775                         /*
1776                          * Break any reservations from backing_object.
1777                          */
1778                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1779                                 vm_reserv_break_all(backing_object);
1780 #endif
1781
1782                         /*
1783                          * Move the pager from backing_object to object.
1784                          */
1785                         if (backing_object->type == OBJT_SWAP) {
1786                                 /*
1787                                  * swap_pager_copy() can sleep, in which case
1788                                  * the backing_object's and object's locks are
1789                                  * released and reacquired.
1790                                  * Since swap_pager_copy() is being asked to
1791                                  * destroy the source, it will change the
1792                                  * backing_object's type to OBJT_DEFAULT.
1793                                  */
1794                                 swap_pager_copy(
1795                                     backing_object,
1796                                     object,
1797                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1798                         }
1799                         /*
1800                          * Object now shadows whatever backing_object did.
1801                          * Note that the reference to 
1802                          * backing_object->backing_object moves from within 
1803                          * backing_object to within object.
1804                          */
1805                         LIST_REMOVE(object, shadow_list);
1806                         backing_object->shadow_count--;
1807                         if (backing_object->backing_object) {
1808                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1809                                 LIST_REMOVE(backing_object, shadow_list);
1810                                 LIST_INSERT_HEAD(
1811                                     &backing_object->backing_object->shadow_head,
1812                                     object, shadow_list);
1813                                 /*
1814                                  * The shadow_count has not changed.
1815                                  */
1816                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1817                         }
1818                         object->backing_object = backing_object->backing_object;
1819                         object->backing_object_offset +=
1820                             backing_object->backing_object_offset;
1821
1822                         /*
1823                          * Discard backing_object.
1824                          *
1825                          * Since the backing object has no pages, no pager left,
1826                          * and no object references within it, all that is
1827                          * necessary is to dispose of it.
1828                          */
1829                         KASSERT(backing_object->ref_count == 1, (
1830 "backing_object %p was somehow re-referenced during collapse!",
1831                             backing_object));
1832                         vm_object_pip_wakeup(backing_object);
1833                         backing_object->type = OBJT_DEAD;
1834                         backing_object->ref_count = 0;
1835                         VM_OBJECT_WUNLOCK(backing_object);
1836                         vm_object_destroy(backing_object);
1837
1838                         vm_object_pip_wakeup(object);
1839                         object_collapses++;
1840                 } else {
1841                         /*
1842                          * If we do not entirely shadow the backing object,
1843                          * there is nothing we can do so we give up.
1844                          */
1845                         if (object->resident_page_count != object->size &&
1846                             !vm_object_scan_all_shadowed(object)) {
1847                                 VM_OBJECT_WUNLOCK(backing_object);
1848                                 break;
1849                         }
1850
1851                         /*
1852                          * Make the parent shadow the next object in the
1853                          * chain.  Deallocating backing_object will not remove
1854                          * it, since its reference count is at least 2.
1855                          */
1856                         LIST_REMOVE(object, shadow_list);
1857                         backing_object->shadow_count--;
1858
1859                         new_backing_object = backing_object->backing_object;
1860                         if ((object->backing_object = new_backing_object) != NULL) {
1861                                 VM_OBJECT_WLOCK(new_backing_object);
1862                                 LIST_INSERT_HEAD(
1863                                     &new_backing_object->shadow_head,
1864                                     object,
1865                                     shadow_list
1866                                 );
1867                                 new_backing_object->shadow_count++;
1868                                 vm_object_reference_locked(new_backing_object);
1869                                 VM_OBJECT_WUNLOCK(new_backing_object);
1870                                 object->backing_object_offset +=
1871                                         backing_object->backing_object_offset;
1872                         }
1873
1874                         /*
1875                          * Drop the reference count on backing_object. Since
1876                          * its ref_count was at least 2, it will not vanish.
1877                          */
1878                         backing_object->ref_count--;
1879                         VM_OBJECT_WUNLOCK(backing_object);
1880                         object_bypasses++;
1881                 }
1882
1883                 /*
1884                  * Try again with this object's new backing object.
1885                  */
1886         }
1887 }
1888
1889 /*
1890  *      vm_object_page_remove:
1891  *
1892  *      For the given object, either frees or invalidates each of the
1893  *      specified pages.  In general, a page is freed.  However, if a page is
1894  *      wired for any reason other than the existence of a managed, wired
1895  *      mapping, then it may be invalidated but not removed from the object.
1896  *      Pages are specified by the given range ["start", "end") and the option
1897  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1898  *      extends from "start" to the end of the object.  If the option
1899  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1900  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1901  *      specified, then the pages within the specified range must have no
1902  *      mappings.  Otherwise, if this option is not specified, any mappings to
1903  *      the specified pages are removed before the pages are freed or
1904  *      invalidated.
1905  *
1906  *      In general, this operation should only be performed on objects that
1907  *      contain managed pages.  There are, however, two exceptions.  First, it
1908  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1909  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1910  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1911  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1912  *
1913  *      The object must be locked.
1914  */
1915 void
1916 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1917     int options)
1918 {
1919         vm_page_t p, next;
1920         struct mtx *mtx;
1921
1922         VM_OBJECT_ASSERT_WLOCKED(object);
1923         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1924             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1925             ("vm_object_page_remove: illegal options for object %p", object));
1926         if (object->resident_page_count == 0)
1927                 return;
1928         vm_object_pip_add(object, 1);
1929 again:
1930         p = vm_page_find_least(object, start);
1931         mtx = NULL;
1932
1933         /*
1934          * Here, the variable "p" is either (1) the page with the least pindex
1935          * greater than or equal to the parameter "start" or (2) NULL. 
1936          */
1937         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1938                 next = TAILQ_NEXT(p, listq);
1939
1940                 /*
1941                  * If the page is wired for any reason besides the existence
1942                  * of managed, wired mappings, then it cannot be freed.  For
1943                  * example, fictitious pages, which represent device memory,
1944                  * are inherently wired and cannot be freed.  They can,
1945                  * however, be invalidated if the option OBJPR_CLEANONLY is
1946                  * not specified.
1947                  */
1948                 vm_page_change_lock(p, &mtx);
1949                 if (vm_page_xbusied(p)) {
1950                         VM_OBJECT_WUNLOCK(object);
1951                         vm_page_busy_sleep(p, "vmopax", true);
1952                         VM_OBJECT_WLOCK(object);
1953                         goto again;
1954                 }
1955                 if (p->wire_count != 0) {
1956                         if ((options & OBJPR_NOTMAPPED) == 0)
1957                                 pmap_remove_all(p);
1958                         if ((options & OBJPR_CLEANONLY) == 0) {
1959                                 p->valid = 0;
1960                                 vm_page_undirty(p);
1961                         }
1962                         continue;
1963                 }
1964                 if (vm_page_busied(p)) {
1965                         VM_OBJECT_WUNLOCK(object);
1966                         vm_page_busy_sleep(p, "vmopar", false);
1967                         VM_OBJECT_WLOCK(object);
1968                         goto again;
1969                 }
1970                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1971                     ("vm_object_page_remove: page %p is fictitious", p));
1972                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1973                         if ((options & OBJPR_NOTMAPPED) == 0)
1974                                 pmap_remove_write(p);
1975                         if (p->dirty)
1976                                 continue;
1977                 }
1978                 if ((options & OBJPR_NOTMAPPED) == 0)
1979                         pmap_remove_all(p);
1980                 vm_page_free(p);
1981         }
1982         if (mtx != NULL)
1983                 mtx_unlock(mtx);
1984         vm_object_pip_wakeup(object);
1985 }
1986
1987 /*
1988  *      vm_object_page_noreuse:
1989  *
1990  *      For the given object, attempt to move the specified pages to
1991  *      the head of the inactive queue.  This bypasses regular LRU
1992  *      operation and allows the pages to be reused quickly under memory
1993  *      pressure.  If a page is wired for any reason, then it will not
1994  *      be queued.  Pages are specified by the range ["start", "end").
1995  *      As a special case, if "end" is zero, then the range extends from
1996  *      "start" to the end of the object.
1997  *
1998  *      This operation should only be performed on objects that
1999  *      contain non-fictitious, managed pages.
2000  *
2001  *      The object must be locked.
2002  */
2003 void
2004 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2005 {
2006         struct mtx *mtx;
2007         vm_page_t p, next;
2008
2009         VM_OBJECT_ASSERT_LOCKED(object);
2010         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2011             ("vm_object_page_noreuse: illegal object %p", object));
2012         if (object->resident_page_count == 0)
2013                 return;
2014         p = vm_page_find_least(object, start);
2015
2016         /*
2017          * Here, the variable "p" is either (1) the page with the least pindex
2018          * greater than or equal to the parameter "start" or (2) NULL. 
2019          */
2020         mtx = NULL;
2021         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2022                 next = TAILQ_NEXT(p, listq);
2023                 vm_page_change_lock(p, &mtx);
2024                 vm_page_deactivate_noreuse(p);
2025         }
2026         if (mtx != NULL)
2027                 mtx_unlock(mtx);
2028 }
2029
2030 /*
2031  *      Populate the specified range of the object with valid pages.  Returns
2032  *      TRUE if the range is successfully populated and FALSE otherwise.
2033  *
2034  *      Note: This function should be optimized to pass a larger array of
2035  *      pages to vm_pager_get_pages() before it is applied to a non-
2036  *      OBJT_DEVICE object.
2037  *
2038  *      The object must be locked.
2039  */
2040 boolean_t
2041 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2042 {
2043         vm_page_t m;
2044         vm_pindex_t pindex;
2045         int rv;
2046
2047         VM_OBJECT_ASSERT_WLOCKED(object);
2048         for (pindex = start; pindex < end; pindex++) {
2049                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2050                 if (m->valid != VM_PAGE_BITS_ALL) {
2051                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2052                         if (rv != VM_PAGER_OK) {
2053                                 vm_page_lock(m);
2054                                 vm_page_free(m);
2055                                 vm_page_unlock(m);
2056                                 break;
2057                         }
2058                 }
2059                 /*
2060                  * Keep "m" busy because a subsequent iteration may unlock
2061                  * the object.
2062                  */
2063         }
2064         if (pindex > start) {
2065                 m = vm_page_lookup(object, start);
2066                 while (m != NULL && m->pindex < pindex) {
2067                         vm_page_xunbusy(m);
2068                         m = TAILQ_NEXT(m, listq);
2069                 }
2070         }
2071         return (pindex == end);
2072 }
2073
2074 /*
2075  *      Routine:        vm_object_coalesce
2076  *      Function:       Coalesces two objects backing up adjoining
2077  *                      regions of memory into a single object.
2078  *
2079  *      returns TRUE if objects were combined.
2080  *
2081  *      NOTE:   Only works at the moment if the second object is NULL -
2082  *              if it's not, which object do we lock first?
2083  *
2084  *      Parameters:
2085  *              prev_object     First object to coalesce
2086  *              prev_offset     Offset into prev_object
2087  *              prev_size       Size of reference to prev_object
2088  *              next_size       Size of reference to the second object
2089  *              reserved        Indicator that extension region has
2090  *                              swap accounted for
2091  *
2092  *      Conditions:
2093  *      The object must *not* be locked.
2094  */
2095 boolean_t
2096 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2097     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2098 {
2099         vm_pindex_t next_pindex;
2100
2101         if (prev_object == NULL)
2102                 return (TRUE);
2103         VM_OBJECT_WLOCK(prev_object);
2104         if ((prev_object->type != OBJT_DEFAULT &&
2105             prev_object->type != OBJT_SWAP) ||
2106             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2107                 VM_OBJECT_WUNLOCK(prev_object);
2108                 return (FALSE);
2109         }
2110
2111         /*
2112          * Try to collapse the object first
2113          */
2114         vm_object_collapse(prev_object);
2115
2116         /*
2117          * Can't coalesce if: . more than one reference . paged out . shadows
2118          * another object . has a copy elsewhere (any of which mean that the
2119          * pages not mapped to prev_entry may be in use anyway)
2120          */
2121         if (prev_object->backing_object != NULL) {
2122                 VM_OBJECT_WUNLOCK(prev_object);
2123                 return (FALSE);
2124         }
2125
2126         prev_size >>= PAGE_SHIFT;
2127         next_size >>= PAGE_SHIFT;
2128         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2129
2130         if ((prev_object->ref_count > 1) &&
2131             (prev_object->size != next_pindex)) {
2132                 VM_OBJECT_WUNLOCK(prev_object);
2133                 return (FALSE);
2134         }
2135
2136         /*
2137          * Account for the charge.
2138          */
2139         if (prev_object->cred != NULL) {
2140
2141                 /*
2142                  * If prev_object was charged, then this mapping,
2143                  * although not charged now, may become writable
2144                  * later. Non-NULL cred in the object would prevent
2145                  * swap reservation during enabling of the write
2146                  * access, so reserve swap now. Failed reservation
2147                  * cause allocation of the separate object for the map
2148                  * entry, and swap reservation for this entry is
2149                  * managed in appropriate time.
2150                  */
2151                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2152                     prev_object->cred)) {
2153                         VM_OBJECT_WUNLOCK(prev_object);
2154                         return (FALSE);
2155                 }
2156                 prev_object->charge += ptoa(next_size);
2157         }
2158
2159         /*
2160          * Remove any pages that may still be in the object from a previous
2161          * deallocation.
2162          */
2163         if (next_pindex < prev_object->size) {
2164                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2165                     next_size, 0);
2166                 if (prev_object->type == OBJT_SWAP)
2167                         swap_pager_freespace(prev_object,
2168                                              next_pindex, next_size);
2169 #if 0
2170                 if (prev_object->cred != NULL) {
2171                         KASSERT(prev_object->charge >=
2172                             ptoa(prev_object->size - next_pindex),
2173                             ("object %p overcharged 1 %jx %jx", prev_object,
2174                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2175                         prev_object->charge -= ptoa(prev_object->size -
2176                             next_pindex);
2177                 }
2178 #endif
2179         }
2180
2181         /*
2182          * Extend the object if necessary.
2183          */
2184         if (next_pindex + next_size > prev_object->size)
2185                 prev_object->size = next_pindex + next_size;
2186
2187         VM_OBJECT_WUNLOCK(prev_object);
2188         return (TRUE);
2189 }
2190
2191 void
2192 vm_object_set_writeable_dirty(vm_object_t object)
2193 {
2194
2195         VM_OBJECT_ASSERT_WLOCKED(object);
2196         if (object->type != OBJT_VNODE) {
2197                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2198                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2199                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2200                 }
2201                 return;
2202         }
2203         object->generation++;
2204         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2205                 return;
2206         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2207 }
2208
2209 /*
2210  *      vm_object_unwire:
2211  *
2212  *      For each page offset within the specified range of the given object,
2213  *      find the highest-level page in the shadow chain and unwire it.  A page
2214  *      must exist at every page offset, and the highest-level page must be
2215  *      wired.
2216  */
2217 void
2218 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2219     uint8_t queue)
2220 {
2221         vm_object_t tobject;
2222         vm_page_t m, tm;
2223         vm_pindex_t end_pindex, pindex, tpindex;
2224         int depth, locked_depth;
2225
2226         KASSERT((offset & PAGE_MASK) == 0,
2227             ("vm_object_unwire: offset is not page aligned"));
2228         KASSERT((length & PAGE_MASK) == 0,
2229             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2230         /* The wired count of a fictitious page never changes. */
2231         if ((object->flags & OBJ_FICTITIOUS) != 0)
2232                 return;
2233         pindex = OFF_TO_IDX(offset);
2234         end_pindex = pindex + atop(length);
2235         locked_depth = 1;
2236         VM_OBJECT_RLOCK(object);
2237         m = vm_page_find_least(object, pindex);
2238         while (pindex < end_pindex) {
2239                 if (m == NULL || pindex < m->pindex) {
2240                         /*
2241                          * The first object in the shadow chain doesn't
2242                          * contain a page at the current index.  Therefore,
2243                          * the page must exist in a backing object.
2244                          */
2245                         tobject = object;
2246                         tpindex = pindex;
2247                         depth = 0;
2248                         do {
2249                                 tpindex +=
2250                                     OFF_TO_IDX(tobject->backing_object_offset);
2251                                 tobject = tobject->backing_object;
2252                                 KASSERT(tobject != NULL,
2253                                     ("vm_object_unwire: missing page"));
2254                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2255                                         goto next_page;
2256                                 depth++;
2257                                 if (depth == locked_depth) {
2258                                         locked_depth++;
2259                                         VM_OBJECT_RLOCK(tobject);
2260                                 }
2261                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2262                             NULL);
2263                 } else {
2264                         tm = m;
2265                         m = TAILQ_NEXT(m, listq);
2266                 }
2267                 vm_page_lock(tm);
2268                 vm_page_unwire(tm, queue);
2269                 vm_page_unlock(tm);
2270 next_page:
2271                 pindex++;
2272         }
2273         /* Release the accumulated object locks. */
2274         for (depth = 0; depth < locked_depth; depth++) {
2275                 tobject = object->backing_object;
2276                 VM_OBJECT_RUNLOCK(object);
2277                 object = tobject;
2278         }
2279 }
2280
2281 struct vnode *
2282 vm_object_vnode(vm_object_t object)
2283 {
2284
2285         VM_OBJECT_ASSERT_LOCKED(object);
2286         if (object->type == OBJT_VNODE)
2287                 return (object->handle);
2288         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2289                 return (object->un_pager.swp.swp_tmpfs);
2290         return (NULL);
2291 }
2292
2293 static int
2294 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2295 {
2296         struct kinfo_vmobject *kvo;
2297         char *fullpath, *freepath;
2298         struct vnode *vp;
2299         struct vattr va;
2300         vm_object_t obj;
2301         vm_page_t m;
2302         int count, error;
2303
2304         if (req->oldptr == NULL) {
2305                 /*
2306                  * If an old buffer has not been provided, generate an
2307                  * estimate of the space needed for a subsequent call.
2308                  */
2309                 mtx_lock(&vm_object_list_mtx);
2310                 count = 0;
2311                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2312                         if (obj->type == OBJT_DEAD)
2313                                 continue;
2314                         count++;
2315                 }
2316                 mtx_unlock(&vm_object_list_mtx);
2317                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2318                     count * 11 / 10));
2319         }
2320
2321         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2322         error = 0;
2323
2324         /*
2325          * VM objects are type stable and are never removed from the
2326          * list once added.  This allows us to safely read obj->object_list
2327          * after reacquiring the VM object lock.
2328          */
2329         mtx_lock(&vm_object_list_mtx);
2330         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2331                 if (obj->type == OBJT_DEAD)
2332                         continue;
2333                 VM_OBJECT_RLOCK(obj);
2334                 if (obj->type == OBJT_DEAD) {
2335                         VM_OBJECT_RUNLOCK(obj);
2336                         continue;
2337                 }
2338                 mtx_unlock(&vm_object_list_mtx);
2339                 kvo->kvo_size = ptoa(obj->size);
2340                 kvo->kvo_resident = obj->resident_page_count;
2341                 kvo->kvo_ref_count = obj->ref_count;
2342                 kvo->kvo_shadow_count = obj->shadow_count;
2343                 kvo->kvo_memattr = obj->memattr;
2344                 kvo->kvo_active = 0;
2345                 kvo->kvo_inactive = 0;
2346                 TAILQ_FOREACH(m, &obj->memq, listq) {
2347                         /*
2348                          * A page may belong to the object but be
2349                          * dequeued and set to PQ_NONE while the
2350                          * object lock is not held.  This makes the
2351                          * reads of m->queue below racy, and we do not
2352                          * count pages set to PQ_NONE.  However, this
2353                          * sysctl is only meant to give an
2354                          * approximation of the system anyway.
2355                          */
2356                         if (vm_page_active(m))
2357                                 kvo->kvo_active++;
2358                         else if (vm_page_inactive(m))
2359                                 kvo->kvo_inactive++;
2360                 }
2361
2362                 kvo->kvo_vn_fileid = 0;
2363                 kvo->kvo_vn_fsid = 0;
2364                 kvo->kvo_vn_fsid_freebsd11 = 0;
2365                 freepath = NULL;
2366                 fullpath = "";
2367                 vp = NULL;
2368                 switch (obj->type) {
2369                 case OBJT_DEFAULT:
2370                         kvo->kvo_type = KVME_TYPE_DEFAULT;
2371                         break;
2372                 case OBJT_VNODE:
2373                         kvo->kvo_type = KVME_TYPE_VNODE;
2374                         vp = obj->handle;
2375                         vref(vp);
2376                         break;
2377                 case OBJT_SWAP:
2378                         kvo->kvo_type = KVME_TYPE_SWAP;
2379                         break;
2380                 case OBJT_DEVICE:
2381                         kvo->kvo_type = KVME_TYPE_DEVICE;
2382                         break;
2383                 case OBJT_PHYS:
2384                         kvo->kvo_type = KVME_TYPE_PHYS;
2385                         break;
2386                 case OBJT_DEAD:
2387                         kvo->kvo_type = KVME_TYPE_DEAD;
2388                         break;
2389                 case OBJT_SG:
2390                         kvo->kvo_type = KVME_TYPE_SG;
2391                         break;
2392                 case OBJT_MGTDEVICE:
2393                         kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2394                         break;
2395                 default:
2396                         kvo->kvo_type = KVME_TYPE_UNKNOWN;
2397                         break;
2398                 }
2399                 VM_OBJECT_RUNLOCK(obj);
2400                 if (vp != NULL) {
2401                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2402                         vn_lock(vp, LK_SHARED | LK_RETRY);
2403                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2404                                 kvo->kvo_vn_fileid = va.va_fileid;
2405                                 kvo->kvo_vn_fsid = va.va_fsid;
2406                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2407                                                                 /* truncate */
2408                         }
2409                         vput(vp);
2410                 }
2411
2412                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2413                 if (freepath != NULL)
2414                         free(freepath, M_TEMP);
2415
2416                 /* Pack record size down */
2417                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2418                     + strlen(kvo->kvo_path) + 1;
2419                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2420                     sizeof(uint64_t));
2421                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2422                 mtx_lock(&vm_object_list_mtx);
2423                 if (error)
2424                         break;
2425         }
2426         mtx_unlock(&vm_object_list_mtx);
2427         free(kvo, M_TEMP);
2428         return (error);
2429 }
2430 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2431     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2432     "List of VM objects");
2433
2434 #include "opt_ddb.h"
2435 #ifdef DDB
2436 #include <sys/kernel.h>
2437
2438 #include <sys/cons.h>
2439
2440 #include <ddb/ddb.h>
2441
2442 static int
2443 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2444 {
2445         vm_map_t tmpm;
2446         vm_map_entry_t tmpe;
2447         vm_object_t obj;
2448         int entcount;
2449
2450         if (map == 0)
2451                 return 0;
2452
2453         if (entry == 0) {
2454                 tmpe = map->header.next;
2455                 entcount = map->nentries;
2456                 while (entcount-- && (tmpe != &map->header)) {
2457                         if (_vm_object_in_map(map, object, tmpe)) {
2458                                 return 1;
2459                         }
2460                         tmpe = tmpe->next;
2461                 }
2462         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2463                 tmpm = entry->object.sub_map;
2464                 tmpe = tmpm->header.next;
2465                 entcount = tmpm->nentries;
2466                 while (entcount-- && tmpe != &tmpm->header) {
2467                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2468                                 return 1;
2469                         }
2470                         tmpe = tmpe->next;
2471                 }
2472         } else if ((obj = entry->object.vm_object) != NULL) {
2473                 for (; obj; obj = obj->backing_object)
2474                         if (obj == object) {
2475                                 return 1;
2476                         }
2477         }
2478         return 0;
2479 }
2480
2481 static int
2482 vm_object_in_map(vm_object_t object)
2483 {
2484         struct proc *p;
2485
2486         /* sx_slock(&allproc_lock); */
2487         FOREACH_PROC_IN_SYSTEM(p) {
2488                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2489                         continue;
2490                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2491                         /* sx_sunlock(&allproc_lock); */
2492                         return 1;
2493                 }
2494         }
2495         /* sx_sunlock(&allproc_lock); */
2496         if (_vm_object_in_map(kernel_map, object, 0))
2497                 return 1;
2498         return 0;
2499 }
2500
2501 DB_SHOW_COMMAND(vmochk, vm_object_check)
2502 {
2503         vm_object_t object;
2504
2505         /*
2506          * make sure that internal objs are in a map somewhere
2507          * and none have zero ref counts.
2508          */
2509         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2510                 if (object->handle == NULL &&
2511                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2512                         if (object->ref_count == 0) {
2513                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2514                                         (long)object->size);
2515                         }
2516                         if (!vm_object_in_map(object)) {
2517                                 db_printf(
2518                         "vmochk: internal obj is not in a map: "
2519                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2520                                     object->ref_count, (u_long)object->size, 
2521                                     (u_long)object->size,
2522                                     (void *)object->backing_object);
2523                         }
2524                 }
2525         }
2526 }
2527
2528 /*
2529  *      vm_object_print:        [ debug ]
2530  */
2531 DB_SHOW_COMMAND(object, vm_object_print_static)
2532 {
2533         /* XXX convert args. */
2534         vm_object_t object = (vm_object_t)addr;
2535         boolean_t full = have_addr;
2536
2537         vm_page_t p;
2538
2539         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2540 #define count   was_count
2541
2542         int count;
2543
2544         if (object == NULL)
2545                 return;
2546
2547         db_iprintf(
2548             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2549             object, (int)object->type, (uintmax_t)object->size,
2550             object->resident_page_count, object->ref_count, object->flags,
2551             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2552         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2553             object->shadow_count, 
2554             object->backing_object ? object->backing_object->ref_count : 0,
2555             object->backing_object, (uintmax_t)object->backing_object_offset);
2556
2557         if (!full)
2558                 return;
2559
2560         db_indent += 2;
2561         count = 0;
2562         TAILQ_FOREACH(p, &object->memq, listq) {
2563                 if (count == 0)
2564                         db_iprintf("memory:=");
2565                 else if (count == 6) {
2566                         db_printf("\n");
2567                         db_iprintf(" ...");
2568                         count = 0;
2569                 } else
2570                         db_printf(",");
2571                 count++;
2572
2573                 db_printf("(off=0x%jx,page=0x%jx)",
2574                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2575         }
2576         if (count != 0)
2577                 db_printf("\n");
2578         db_indent -= 2;
2579 }
2580
2581 /* XXX. */
2582 #undef count
2583
2584 /* XXX need this non-static entry for calling from vm_map_print. */
2585 void
2586 vm_object_print(
2587         /* db_expr_t */ long addr,
2588         boolean_t have_addr,
2589         /* db_expr_t */ long count,
2590         char *modif)
2591 {
2592         vm_object_print_static(addr, have_addr, count, modif);
2593 }
2594
2595 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2596 {
2597         vm_object_t object;
2598         vm_pindex_t fidx;
2599         vm_paddr_t pa;
2600         vm_page_t m, prev_m;
2601         int rcount, nl, c;
2602
2603         nl = 0;
2604         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2605                 db_printf("new object: %p\n", (void *)object);
2606                 if (nl > 18) {
2607                         c = cngetc();
2608                         if (c != ' ')
2609                                 return;
2610                         nl = 0;
2611                 }
2612                 nl++;
2613                 rcount = 0;
2614                 fidx = 0;
2615                 pa = -1;
2616                 TAILQ_FOREACH(m, &object->memq, listq) {
2617                         if (m->pindex > 128)
2618                                 break;
2619                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2620                             prev_m->pindex + 1 != m->pindex) {
2621                                 if (rcount) {
2622                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2623                                                 (long)fidx, rcount, (long)pa);
2624                                         if (nl > 18) {
2625                                                 c = cngetc();
2626                                                 if (c != ' ')
2627                                                         return;
2628                                                 nl = 0;
2629                                         }
2630                                         nl++;
2631                                         rcount = 0;
2632                                 }
2633                         }                               
2634                         if (rcount &&
2635                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2636                                 ++rcount;
2637                                 continue;
2638                         }
2639                         if (rcount) {
2640                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2641                                         (long)fidx, rcount, (long)pa);
2642                                 if (nl > 18) {
2643                                         c = cngetc();
2644                                         if (c != ' ')
2645                                                 return;
2646                                         nl = 0;
2647                                 }
2648                                 nl++;
2649                         }
2650                         fidx = m->pindex;
2651                         pa = VM_PAGE_TO_PHYS(m);
2652                         rcount = 1;
2653                 }
2654                 if (rcount) {
2655                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2656                                 (long)fidx, rcount, (long)pa);
2657                         if (nl > 18) {
2658                                 c = cngetc();
2659                                 if (c != ' ')
2660                                         return;
2661                                 nl = 0;
2662                         }
2663                         nl++;
2664                 }
2665         }
2666 }
2667 #endif /* DDB */