]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Update bmake to version 20180919
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>           /* for curproc, pageproc */
83 #include <sys/socket.h>
84 #include <sys/resourcevar.h>
85 #include <sys/rwlock.h>
86 #include <sys/user.h>
87 #include <sys/vnode.h>
88 #include <sys/vmmeter.h>
89 #include <sys/sx.h>
90
91 #include <vm/vm.h>
92 #include <vm/vm_param.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pageout.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_phys.h>
100 #include <vm/vm_pagequeue.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_extern.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/uma.h>
107
108 static int old_msync;
109 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
110     "Use old (insecure) msync behavior");
111
112 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
113                     int pagerflags, int flags, boolean_t *clearobjflags,
114                     boolean_t *eio);
115 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
116                     boolean_t *clearobjflags);
117 static void     vm_object_qcollapse(vm_object_t object);
118 static void     vm_object_vndeallocate(vm_object_t object);
119
120 /*
121  *      Virtual memory objects maintain the actual data
122  *      associated with allocated virtual memory.  A given
123  *      page of memory exists within exactly one object.
124  *
125  *      An object is only deallocated when all "references"
126  *      are given up.  Only one "reference" to a given
127  *      region of an object should be writeable.
128  *
129  *      Associated with each object is a list of all resident
130  *      memory pages belonging to that object; this list is
131  *      maintained by the "vm_page" module, and locked by the object's
132  *      lock.
133  *
134  *      Each object also records a "pager" routine which is
135  *      used to retrieve (and store) pages to the proper backing
136  *      storage.  In addition, objects may be backed by other
137  *      objects from which they were virtual-copied.
138  *
139  *      The only items within the object structure which are
140  *      modified after time of creation are:
141  *              reference count         locked by object's lock
142  *              pager routine           locked by object's lock
143  *
144  */
145
146 struct object_q vm_object_list;
147 struct mtx vm_object_list_mtx;  /* lock for object list and count */
148
149 struct vm_object kernel_object_store;
150
151 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
152     "VM object stats");
153
154 static counter_u64_t object_collapses = EARLY_COUNTER;
155 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
156     &object_collapses,
157     "VM object collapses");
158
159 static counter_u64_t object_bypasses = EARLY_COUNTER;
160 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
161     &object_bypasses,
162     "VM object bypasses");
163
164 static void
165 counter_startup(void)
166 {
167
168         object_collapses = counter_u64_alloc(M_WAITOK);
169         object_bypasses = counter_u64_alloc(M_WAITOK);
170 }
171 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
172
173 static uma_zone_t obj_zone;
174
175 static int vm_object_zinit(void *mem, int size, int flags);
176
177 #ifdef INVARIANTS
178 static void vm_object_zdtor(void *mem, int size, void *arg);
179
180 static void
181 vm_object_zdtor(void *mem, int size, void *arg)
182 {
183         vm_object_t object;
184
185         object = (vm_object_t)mem;
186         KASSERT(object->ref_count == 0,
187             ("object %p ref_count = %d", object, object->ref_count));
188         KASSERT(TAILQ_EMPTY(&object->memq),
189             ("object %p has resident pages in its memq", object));
190         KASSERT(vm_radix_is_empty(&object->rtree),
191             ("object %p has resident pages in its trie", object));
192 #if VM_NRESERVLEVEL > 0
193         KASSERT(LIST_EMPTY(&object->rvq),
194             ("object %p has reservations",
195             object));
196 #endif
197         KASSERT(object->paging_in_progress == 0,
198             ("object %p paging_in_progress = %d",
199             object, object->paging_in_progress));
200         KASSERT(object->resident_page_count == 0,
201             ("object %p resident_page_count = %d",
202             object, object->resident_page_count));
203         KASSERT(object->shadow_count == 0,
204             ("object %p shadow_count = %d",
205             object, object->shadow_count));
206         KASSERT(object->type == OBJT_DEAD,
207             ("object %p has non-dead type %d",
208             object, object->type));
209 }
210 #endif
211
212 static int
213 vm_object_zinit(void *mem, int size, int flags)
214 {
215         vm_object_t object;
216
217         object = (vm_object_t)mem;
218         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
219
220         /* These are true for any object that has been freed */
221         object->type = OBJT_DEAD;
222         object->ref_count = 0;
223         vm_radix_init(&object->rtree);
224         object->paging_in_progress = 0;
225         object->resident_page_count = 0;
226         object->shadow_count = 0;
227         object->flags = OBJ_DEAD;
228
229         mtx_lock(&vm_object_list_mtx);
230         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231         mtx_unlock(&vm_object_list_mtx);
232         return (0);
233 }
234
235 static void
236 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
237 {
238
239         TAILQ_INIT(&object->memq);
240         LIST_INIT(&object->shadow_head);
241
242         object->type = type;
243         if (type == OBJT_SWAP)
244                 pctrie_init(&object->un_pager.swp.swp_blks);
245
246         /*
247          * Ensure that swap_pager_swapoff() iteration over object_list
248          * sees up to date type and pctrie head if it observed
249          * non-dead object.
250          */
251         atomic_thread_fence_rel();
252
253         switch (type) {
254         case OBJT_DEAD:
255                 panic("_vm_object_allocate: can't create OBJT_DEAD");
256         case OBJT_DEFAULT:
257         case OBJT_SWAP:
258                 object->flags = OBJ_ONEMAPPING;
259                 break;
260         case OBJT_DEVICE:
261         case OBJT_SG:
262                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
263                 break;
264         case OBJT_MGTDEVICE:
265                 object->flags = OBJ_FICTITIOUS;
266                 break;
267         case OBJT_PHYS:
268                 object->flags = OBJ_UNMANAGED;
269                 break;
270         case OBJT_VNODE:
271                 object->flags = 0;
272                 break;
273         default:
274                 panic("_vm_object_allocate: type %d is undefined", type);
275         }
276         object->size = size;
277         object->domain.dr_policy = NULL;
278         object->generation = 1;
279         object->ref_count = 1;
280         object->memattr = VM_MEMATTR_DEFAULT;
281         object->cred = NULL;
282         object->charge = 0;
283         object->handle = NULL;
284         object->backing_object = NULL;
285         object->backing_object_offset = (vm_ooffset_t) 0;
286 #if VM_NRESERVLEVEL > 0
287         LIST_INIT(&object->rvq);
288 #endif
289         umtx_shm_object_init(object);
290 }
291
292 /*
293  *      vm_object_init:
294  *
295  *      Initialize the VM objects module.
296  */
297 void
298 vm_object_init(void)
299 {
300         TAILQ_INIT(&vm_object_list);
301         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
302         
303         rw_init(&kernel_object->lock, "kernel vm object");
304         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
305             VM_MIN_KERNEL_ADDRESS), kernel_object);
306 #if VM_NRESERVLEVEL > 0
307         kernel_object->flags |= OBJ_COLORED;
308         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
309 #endif
310
311         /*
312          * The lock portion of struct vm_object must be type stable due
313          * to vm_pageout_fallback_object_lock locking a vm object
314          * without holding any references to it.
315          */
316         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
317 #ifdef INVARIANTS
318             vm_object_zdtor,
319 #else
320             NULL,
321 #endif
322             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
323
324         vm_radix_zinit();
325 }
326
327 void
328 vm_object_clear_flag(vm_object_t object, u_short bits)
329 {
330
331         VM_OBJECT_ASSERT_WLOCKED(object);
332         object->flags &= ~bits;
333 }
334
335 /*
336  *      Sets the default memory attribute for the specified object.  Pages
337  *      that are allocated to this object are by default assigned this memory
338  *      attribute.
339  *
340  *      Presently, this function must be called before any pages are allocated
341  *      to the object.  In the future, this requirement may be relaxed for
342  *      "default" and "swap" objects.
343  */
344 int
345 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
346 {
347
348         VM_OBJECT_ASSERT_WLOCKED(object);
349         switch (object->type) {
350         case OBJT_DEFAULT:
351         case OBJT_DEVICE:
352         case OBJT_MGTDEVICE:
353         case OBJT_PHYS:
354         case OBJT_SG:
355         case OBJT_SWAP:
356         case OBJT_VNODE:
357                 if (!TAILQ_EMPTY(&object->memq))
358                         return (KERN_FAILURE);
359                 break;
360         case OBJT_DEAD:
361                 return (KERN_INVALID_ARGUMENT);
362         default:
363                 panic("vm_object_set_memattr: object %p is of undefined type",
364                     object);
365         }
366         object->memattr = memattr;
367         return (KERN_SUCCESS);
368 }
369
370 void
371 vm_object_pip_add(vm_object_t object, short i)
372 {
373
374         VM_OBJECT_ASSERT_WLOCKED(object);
375         object->paging_in_progress += i;
376 }
377
378 void
379 vm_object_pip_subtract(vm_object_t object, short i)
380 {
381
382         VM_OBJECT_ASSERT_WLOCKED(object);
383         object->paging_in_progress -= i;
384 }
385
386 void
387 vm_object_pip_wakeup(vm_object_t object)
388 {
389
390         VM_OBJECT_ASSERT_WLOCKED(object);
391         object->paging_in_progress--;
392         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
393                 vm_object_clear_flag(object, OBJ_PIPWNT);
394                 wakeup(object);
395         }
396 }
397
398 void
399 vm_object_pip_wakeupn(vm_object_t object, short i)
400 {
401
402         VM_OBJECT_ASSERT_WLOCKED(object);
403         if (i)
404                 object->paging_in_progress -= i;
405         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
406                 vm_object_clear_flag(object, OBJ_PIPWNT);
407                 wakeup(object);
408         }
409 }
410
411 void
412 vm_object_pip_wait(vm_object_t object, char *waitid)
413 {
414
415         VM_OBJECT_ASSERT_WLOCKED(object);
416         while (object->paging_in_progress) {
417                 object->flags |= OBJ_PIPWNT;
418                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
419         }
420 }
421
422 /*
423  *      vm_object_allocate:
424  *
425  *      Returns a new object with the given size.
426  */
427 vm_object_t
428 vm_object_allocate(objtype_t type, vm_pindex_t size)
429 {
430         vm_object_t object;
431
432         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
433         _vm_object_allocate(type, size, object);
434         return (object);
435 }
436
437
438 /*
439  *      vm_object_reference:
440  *
441  *      Gets another reference to the given object.  Note: OBJ_DEAD
442  *      objects can be referenced during final cleaning.
443  */
444 void
445 vm_object_reference(vm_object_t object)
446 {
447         if (object == NULL)
448                 return;
449         VM_OBJECT_WLOCK(object);
450         vm_object_reference_locked(object);
451         VM_OBJECT_WUNLOCK(object);
452 }
453
454 /*
455  *      vm_object_reference_locked:
456  *
457  *      Gets another reference to the given object.
458  *
459  *      The object must be locked.
460  */
461 void
462 vm_object_reference_locked(vm_object_t object)
463 {
464         struct vnode *vp;
465
466         VM_OBJECT_ASSERT_WLOCKED(object);
467         object->ref_count++;
468         if (object->type == OBJT_VNODE) {
469                 vp = object->handle;
470                 vref(vp);
471         }
472 }
473
474 /*
475  * Handle deallocating an object of type OBJT_VNODE.
476  */
477 static void
478 vm_object_vndeallocate(vm_object_t object)
479 {
480         struct vnode *vp = (struct vnode *) object->handle;
481
482         VM_OBJECT_ASSERT_WLOCKED(object);
483         KASSERT(object->type == OBJT_VNODE,
484             ("vm_object_vndeallocate: not a vnode object"));
485         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
486 #ifdef INVARIANTS
487         if (object->ref_count == 0) {
488                 vn_printf(vp, "vm_object_vndeallocate ");
489                 panic("vm_object_vndeallocate: bad object reference count");
490         }
491 #endif
492
493         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
494                 umtx_shm_object_terminated(object);
495
496         /*
497          * The test for text of vp vnode does not need a bypass to
498          * reach right VV_TEXT there, since it is obtained from
499          * object->handle.
500          */
501         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
502                 object->ref_count--;
503                 VM_OBJECT_WUNLOCK(object);
504                 /* vrele may need the vnode lock. */
505                 vrele(vp);
506         } else {
507                 vhold(vp);
508                 VM_OBJECT_WUNLOCK(object);
509                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
510                 vdrop(vp);
511                 VM_OBJECT_WLOCK(object);
512                 object->ref_count--;
513                 if (object->type == OBJT_DEAD) {
514                         VM_OBJECT_WUNLOCK(object);
515                         VOP_UNLOCK(vp, 0);
516                 } else {
517                         if (object->ref_count == 0)
518                                 VOP_UNSET_TEXT(vp);
519                         VM_OBJECT_WUNLOCK(object);
520                         vput(vp);
521                 }
522         }
523 }
524
525 /*
526  *      vm_object_deallocate:
527  *
528  *      Release a reference to the specified object,
529  *      gained either through a vm_object_allocate
530  *      or a vm_object_reference call.  When all references
531  *      are gone, storage associated with this object
532  *      may be relinquished.
533  *
534  *      No object may be locked.
535  */
536 void
537 vm_object_deallocate(vm_object_t object)
538 {
539         vm_object_t temp;
540         struct vnode *vp;
541
542         while (object != NULL) {
543                 VM_OBJECT_WLOCK(object);
544                 if (object->type == OBJT_VNODE) {
545                         vm_object_vndeallocate(object);
546                         return;
547                 }
548
549                 KASSERT(object->ref_count != 0,
550                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
551
552                 /*
553                  * If the reference count goes to 0 we start calling
554                  * vm_object_terminate() on the object chain.
555                  * A ref count of 1 may be a special case depending on the
556                  * shadow count being 0 or 1.
557                  */
558                 object->ref_count--;
559                 if (object->ref_count > 1) {
560                         VM_OBJECT_WUNLOCK(object);
561                         return;
562                 } else if (object->ref_count == 1) {
563                         if (object->type == OBJT_SWAP &&
564                             (object->flags & OBJ_TMPFS) != 0) {
565                                 vp = object->un_pager.swp.swp_tmpfs;
566                                 vhold(vp);
567                                 VM_OBJECT_WUNLOCK(object);
568                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
569                                 VM_OBJECT_WLOCK(object);
570                                 if (object->type == OBJT_DEAD ||
571                                     object->ref_count != 1) {
572                                         VM_OBJECT_WUNLOCK(object);
573                                         VOP_UNLOCK(vp, 0);
574                                         vdrop(vp);
575                                         return;
576                                 }
577                                 if ((object->flags & OBJ_TMPFS) != 0)
578                                         VOP_UNSET_TEXT(vp);
579                                 VOP_UNLOCK(vp, 0);
580                                 vdrop(vp);
581                         }
582                         if (object->shadow_count == 0 &&
583                             object->handle == NULL &&
584                             (object->type == OBJT_DEFAULT ||
585                             (object->type == OBJT_SWAP &&
586                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
587                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
588                         } else if ((object->shadow_count == 1) &&
589                             (object->handle == NULL) &&
590                             (object->type == OBJT_DEFAULT ||
591                              object->type == OBJT_SWAP)) {
592                                 vm_object_t robject;
593
594                                 robject = LIST_FIRST(&object->shadow_head);
595                                 KASSERT(robject != NULL,
596                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
597                                          object->ref_count,
598                                          object->shadow_count));
599                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
600                                     ("shadowed tmpfs v_object %p", object));
601                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
602                                         /*
603                                          * Avoid a potential deadlock.
604                                          */
605                                         object->ref_count++;
606                                         VM_OBJECT_WUNLOCK(object);
607                                         /*
608                                          * More likely than not the thread
609                                          * holding robject's lock has lower
610                                          * priority than the current thread.
611                                          * Let the lower priority thread run.
612                                          */
613                                         pause("vmo_de", 1);
614                                         continue;
615                                 }
616                                 /*
617                                  * Collapse object into its shadow unless its
618                                  * shadow is dead.  In that case, object will
619                                  * be deallocated by the thread that is
620                                  * deallocating its shadow.
621                                  */
622                                 if ((robject->flags & OBJ_DEAD) == 0 &&
623                                     (robject->handle == NULL) &&
624                                     (robject->type == OBJT_DEFAULT ||
625                                      robject->type == OBJT_SWAP)) {
626
627                                         robject->ref_count++;
628 retry:
629                                         if (robject->paging_in_progress) {
630                                                 VM_OBJECT_WUNLOCK(object);
631                                                 vm_object_pip_wait(robject,
632                                                     "objde1");
633                                                 temp = robject->backing_object;
634                                                 if (object == temp) {
635                                                         VM_OBJECT_WLOCK(object);
636                                                         goto retry;
637                                                 }
638                                         } else if (object->paging_in_progress) {
639                                                 VM_OBJECT_WUNLOCK(robject);
640                                                 object->flags |= OBJ_PIPWNT;
641                                                 VM_OBJECT_SLEEP(object, object,
642                                                     PDROP | PVM, "objde2", 0);
643                                                 VM_OBJECT_WLOCK(robject);
644                                                 temp = robject->backing_object;
645                                                 if (object == temp) {
646                                                         VM_OBJECT_WLOCK(object);
647                                                         goto retry;
648                                                 }
649                                         } else
650                                                 VM_OBJECT_WUNLOCK(object);
651
652                                         if (robject->ref_count == 1) {
653                                                 robject->ref_count--;
654                                                 object = robject;
655                                                 goto doterm;
656                                         }
657                                         object = robject;
658                                         vm_object_collapse(object);
659                                         VM_OBJECT_WUNLOCK(object);
660                                         continue;
661                                 }
662                                 VM_OBJECT_WUNLOCK(robject);
663                         }
664                         VM_OBJECT_WUNLOCK(object);
665                         return;
666                 }
667 doterm:
668                 umtx_shm_object_terminated(object);
669                 temp = object->backing_object;
670                 if (temp != NULL) {
671                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
672                             ("shadowed tmpfs v_object 2 %p", object));
673                         VM_OBJECT_WLOCK(temp);
674                         LIST_REMOVE(object, shadow_list);
675                         temp->shadow_count--;
676                         VM_OBJECT_WUNLOCK(temp);
677                         object->backing_object = NULL;
678                 }
679                 /*
680                  * Don't double-terminate, we could be in a termination
681                  * recursion due to the terminate having to sync data
682                  * to disk.
683                  */
684                 if ((object->flags & OBJ_DEAD) == 0)
685                         vm_object_terminate(object);
686                 else
687                         VM_OBJECT_WUNLOCK(object);
688                 object = temp;
689         }
690 }
691
692 /*
693  *      vm_object_destroy removes the object from the global object list
694  *      and frees the space for the object.
695  */
696 void
697 vm_object_destroy(vm_object_t object)
698 {
699
700         /*
701          * Release the allocation charge.
702          */
703         if (object->cred != NULL) {
704                 swap_release_by_cred(object->charge, object->cred);
705                 object->charge = 0;
706                 crfree(object->cred);
707                 object->cred = NULL;
708         }
709
710         /*
711          * Free the space for the object.
712          */
713         uma_zfree(obj_zone, object);
714 }
715
716 /*
717  *      vm_object_terminate_pages removes any remaining pageable pages
718  *      from the object and resets the object to an empty state.
719  */
720 static void
721 vm_object_terminate_pages(vm_object_t object)
722 {
723         vm_page_t p, p_next;
724         struct mtx *mtx;
725
726         VM_OBJECT_ASSERT_WLOCKED(object);
727
728         mtx = NULL;
729
730         /*
731          * Free any remaining pageable pages.  This also removes them from the
732          * paging queues.  However, don't free wired pages, just remove them
733          * from the object.  Rather than incrementally removing each page from
734          * the object, the page and object are reset to any empty state. 
735          */
736         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
737                 vm_page_assert_unbusied(p);
738                 if ((object->flags & OBJ_UNMANAGED) == 0)
739                         /*
740                          * vm_page_free_prep() only needs the page
741                          * lock for managed pages.
742                          */
743                         vm_page_change_lock(p, &mtx);
744                 p->object = NULL;
745                 if (p->wire_count != 0)
746                         continue;
747                 VM_CNT_INC(v_pfree);
748                 vm_page_free(p);
749         }
750         if (mtx != NULL)
751                 mtx_unlock(mtx);
752
753         /*
754          * If the object contained any pages, then reset it to an empty state.
755          * None of the object's fields, including "resident_page_count", were
756          * modified by the preceding loop.
757          */
758         if (object->resident_page_count != 0) {
759                 vm_radix_reclaim_allnodes(&object->rtree);
760                 TAILQ_INIT(&object->memq);
761                 object->resident_page_count = 0;
762                 if (object->type == OBJT_VNODE)
763                         vdrop(object->handle);
764         }
765 }
766
767 /*
768  *      vm_object_terminate actually destroys the specified object, freeing
769  *      up all previously used resources.
770  *
771  *      The object must be locked.
772  *      This routine may block.
773  */
774 void
775 vm_object_terminate(vm_object_t object)
776 {
777
778         VM_OBJECT_ASSERT_WLOCKED(object);
779
780         /*
781          * Make sure no one uses us.
782          */
783         vm_object_set_flag(object, OBJ_DEAD);
784
785         /*
786          * wait for the pageout daemon to be done with the object
787          */
788         vm_object_pip_wait(object, "objtrm");
789
790         KASSERT(!object->paging_in_progress,
791                 ("vm_object_terminate: pageout in progress"));
792
793         /*
794          * Clean and free the pages, as appropriate. All references to the
795          * object are gone, so we don't need to lock it.
796          */
797         if (object->type == OBJT_VNODE) {
798                 struct vnode *vp = (struct vnode *)object->handle;
799
800                 /*
801                  * Clean pages and flush buffers.
802                  */
803                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
804                 VM_OBJECT_WUNLOCK(object);
805
806                 vinvalbuf(vp, V_SAVE, 0, 0);
807
808                 BO_LOCK(&vp->v_bufobj);
809                 vp->v_bufobj.bo_flag |= BO_DEAD;
810                 BO_UNLOCK(&vp->v_bufobj);
811
812                 VM_OBJECT_WLOCK(object);
813         }
814
815         KASSERT(object->ref_count == 0, 
816                 ("vm_object_terminate: object with references, ref_count=%d",
817                 object->ref_count));
818
819         if ((object->flags & OBJ_PG_DTOR) == 0)
820                 vm_object_terminate_pages(object);
821
822 #if VM_NRESERVLEVEL > 0
823         if (__predict_false(!LIST_EMPTY(&object->rvq)))
824                 vm_reserv_break_all(object);
825 #endif
826
827         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
828             object->type == OBJT_SWAP,
829             ("%s: non-swap obj %p has cred", __func__, object));
830
831         /*
832          * Let the pager know object is dead.
833          */
834         vm_pager_deallocate(object);
835         VM_OBJECT_WUNLOCK(object);
836
837         vm_object_destroy(object);
838 }
839
840 /*
841  * Make the page read-only so that we can clear the object flags.  However, if
842  * this is a nosync mmap then the object is likely to stay dirty so do not
843  * mess with the page and do not clear the object flags.  Returns TRUE if the
844  * page should be flushed, and FALSE otherwise.
845  */
846 static boolean_t
847 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
848 {
849
850         /*
851          * If we have been asked to skip nosync pages and this is a
852          * nosync page, skip it.  Note that the object flags were not
853          * cleared in this case so we do not have to set them.
854          */
855         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
856                 *clearobjflags = FALSE;
857                 return (FALSE);
858         } else {
859                 pmap_remove_write(p);
860                 return (p->dirty != 0);
861         }
862 }
863
864 /*
865  *      vm_object_page_clean
866  *
867  *      Clean all dirty pages in the specified range of object.  Leaves page 
868  *      on whatever queue it is currently on.   If NOSYNC is set then do not
869  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
870  *      leaving the object dirty.
871  *
872  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
873  *      synchronous clustering mode implementation.
874  *
875  *      Odd semantics: if start == end, we clean everything.
876  *
877  *      The object must be locked.
878  *
879  *      Returns FALSE if some page from the range was not written, as
880  *      reported by the pager, and TRUE otherwise.
881  */
882 boolean_t
883 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
884     int flags)
885 {
886         vm_page_t np, p;
887         vm_pindex_t pi, tend, tstart;
888         int curgeneration, n, pagerflags;
889         boolean_t clearobjflags, eio, res;
890
891         VM_OBJECT_ASSERT_WLOCKED(object);
892
893         /*
894          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
895          * objects.  The check below prevents the function from
896          * operating on non-vnode objects.
897          */
898         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
899             object->resident_page_count == 0)
900                 return (TRUE);
901
902         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
903             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
904         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
905
906         tstart = OFF_TO_IDX(start);
907         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
908         clearobjflags = tstart == 0 && tend >= object->size;
909         res = TRUE;
910
911 rescan:
912         curgeneration = object->generation;
913
914         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
915                 pi = p->pindex;
916                 if (pi >= tend)
917                         break;
918                 np = TAILQ_NEXT(p, listq);
919                 if (p->valid == 0)
920                         continue;
921                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
922                         if (object->generation != curgeneration) {
923                                 if ((flags & OBJPC_SYNC) != 0)
924                                         goto rescan;
925                                 else
926                                         clearobjflags = FALSE;
927                         }
928                         np = vm_page_find_least(object, pi);
929                         continue;
930                 }
931                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
932                         continue;
933
934                 n = vm_object_page_collect_flush(object, p, pagerflags,
935                     flags, &clearobjflags, &eio);
936                 if (eio) {
937                         res = FALSE;
938                         clearobjflags = FALSE;
939                 }
940                 if (object->generation != curgeneration) {
941                         if ((flags & OBJPC_SYNC) != 0)
942                                 goto rescan;
943                         else
944                                 clearobjflags = FALSE;
945                 }
946
947                 /*
948                  * If the VOP_PUTPAGES() did a truncated write, so
949                  * that even the first page of the run is not fully
950                  * written, vm_pageout_flush() returns 0 as the run
951                  * length.  Since the condition that caused truncated
952                  * write may be permanent, e.g. exhausted free space,
953                  * accepting n == 0 would cause an infinite loop.
954                  *
955                  * Forwarding the iterator leaves the unwritten page
956                  * behind, but there is not much we can do there if
957                  * filesystem refuses to write it.
958                  */
959                 if (n == 0) {
960                         n = 1;
961                         clearobjflags = FALSE;
962                 }
963                 np = vm_page_find_least(object, pi + n);
964         }
965 #if 0
966         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
967 #endif
968
969         if (clearobjflags)
970                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
971         return (res);
972 }
973
974 static int
975 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
976     int flags, boolean_t *clearobjflags, boolean_t *eio)
977 {
978         vm_page_t ma[vm_pageout_page_count], p_first, tp;
979         int count, i, mreq, runlen;
980
981         vm_page_lock_assert(p, MA_NOTOWNED);
982         VM_OBJECT_ASSERT_WLOCKED(object);
983
984         count = 1;
985         mreq = 0;
986
987         for (tp = p; count < vm_pageout_page_count; count++) {
988                 tp = vm_page_next(tp);
989                 if (tp == NULL || vm_page_busied(tp))
990                         break;
991                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
992                         break;
993         }
994
995         for (p_first = p; count < vm_pageout_page_count; count++) {
996                 tp = vm_page_prev(p_first);
997                 if (tp == NULL || vm_page_busied(tp))
998                         break;
999                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1000                         break;
1001                 p_first = tp;
1002                 mreq++;
1003         }
1004
1005         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1006                 ma[i] = tp;
1007
1008         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1009         return (runlen);
1010 }
1011
1012 /*
1013  * Note that there is absolutely no sense in writing out
1014  * anonymous objects, so we track down the vnode object
1015  * to write out.
1016  * We invalidate (remove) all pages from the address space
1017  * for semantic correctness.
1018  *
1019  * If the backing object is a device object with unmanaged pages, then any
1020  * mappings to the specified range of pages must be removed before this
1021  * function is called.
1022  *
1023  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1024  * may start out with a NULL object.
1025  */
1026 boolean_t
1027 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1028     boolean_t syncio, boolean_t invalidate)
1029 {
1030         vm_object_t backing_object;
1031         struct vnode *vp;
1032         struct mount *mp;
1033         int error, flags, fsync_after;
1034         boolean_t res;
1035
1036         if (object == NULL)
1037                 return (TRUE);
1038         res = TRUE;
1039         error = 0;
1040         VM_OBJECT_WLOCK(object);
1041         while ((backing_object = object->backing_object) != NULL) {
1042                 VM_OBJECT_WLOCK(backing_object);
1043                 offset += object->backing_object_offset;
1044                 VM_OBJECT_WUNLOCK(object);
1045                 object = backing_object;
1046                 if (object->size < OFF_TO_IDX(offset + size))
1047                         size = IDX_TO_OFF(object->size) - offset;
1048         }
1049         /*
1050          * Flush pages if writing is allowed, invalidate them
1051          * if invalidation requested.  Pages undergoing I/O
1052          * will be ignored by vm_object_page_remove().
1053          *
1054          * We cannot lock the vnode and then wait for paging
1055          * to complete without deadlocking against vm_fault.
1056          * Instead we simply call vm_object_page_remove() and
1057          * allow it to block internally on a page-by-page
1058          * basis when it encounters pages undergoing async
1059          * I/O.
1060          */
1061         if (object->type == OBJT_VNODE &&
1062             (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1063             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1064                 VM_OBJECT_WUNLOCK(object);
1065                 (void) vn_start_write(vp, &mp, V_WAIT);
1066                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1067                 if (syncio && !invalidate && offset == 0 &&
1068                     atop(size) == object->size) {
1069                         /*
1070                          * If syncing the whole mapping of the file,
1071                          * it is faster to schedule all the writes in
1072                          * async mode, also allowing the clustering,
1073                          * and then wait for i/o to complete.
1074                          */
1075                         flags = 0;
1076                         fsync_after = TRUE;
1077                 } else {
1078                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1079                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1080                         fsync_after = FALSE;
1081                 }
1082                 VM_OBJECT_WLOCK(object);
1083                 res = vm_object_page_clean(object, offset, offset + size,
1084                     flags);
1085                 VM_OBJECT_WUNLOCK(object);
1086                 if (fsync_after)
1087                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1088                 VOP_UNLOCK(vp, 0);
1089                 vn_finished_write(mp);
1090                 if (error != 0)
1091                         res = FALSE;
1092                 VM_OBJECT_WLOCK(object);
1093         }
1094         if ((object->type == OBJT_VNODE ||
1095              object->type == OBJT_DEVICE) && invalidate) {
1096                 if (object->type == OBJT_DEVICE)
1097                         /*
1098                          * The option OBJPR_NOTMAPPED must be passed here
1099                          * because vm_object_page_remove() cannot remove
1100                          * unmanaged mappings.
1101                          */
1102                         flags = OBJPR_NOTMAPPED;
1103                 else if (old_msync)
1104                         flags = 0;
1105                 else
1106                         flags = OBJPR_CLEANONLY;
1107                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1108                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1109         }
1110         VM_OBJECT_WUNLOCK(object);
1111         return (res);
1112 }
1113
1114 /*
1115  * Determine whether the given advice can be applied to the object.  Advice is
1116  * not applied to unmanaged pages since they never belong to page queues, and
1117  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1118  * have been mapped at most once.
1119  */
1120 static bool
1121 vm_object_advice_applies(vm_object_t object, int advice)
1122 {
1123
1124         if ((object->flags & OBJ_UNMANAGED) != 0)
1125                 return (false);
1126         if (advice != MADV_FREE)
1127                 return (true);
1128         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1129             (object->flags & OBJ_ONEMAPPING) != 0);
1130 }
1131
1132 static void
1133 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1134     vm_size_t size)
1135 {
1136
1137         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1138                 swap_pager_freespace(object, pindex, size);
1139 }
1140
1141 /*
1142  *      vm_object_madvise:
1143  *
1144  *      Implements the madvise function at the object/page level.
1145  *
1146  *      MADV_WILLNEED   (any object)
1147  *
1148  *          Activate the specified pages if they are resident.
1149  *
1150  *      MADV_DONTNEED   (any object)
1151  *
1152  *          Deactivate the specified pages if they are resident.
1153  *
1154  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1155  *                       OBJ_ONEMAPPING only)
1156  *
1157  *          Deactivate and clean the specified pages if they are
1158  *          resident.  This permits the process to reuse the pages
1159  *          without faulting or the kernel to reclaim the pages
1160  *          without I/O.
1161  */
1162 void
1163 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1164     int advice)
1165 {
1166         vm_pindex_t tpindex;
1167         vm_object_t backing_object, tobject;
1168         vm_page_t m, tm;
1169
1170         if (object == NULL)
1171                 return;
1172
1173 relookup:
1174         VM_OBJECT_WLOCK(object);
1175         if (!vm_object_advice_applies(object, advice)) {
1176                 VM_OBJECT_WUNLOCK(object);
1177                 return;
1178         }
1179         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1180                 tobject = object;
1181
1182                 /*
1183                  * If the next page isn't resident in the top-level object, we
1184                  * need to search the shadow chain.  When applying MADV_FREE, we
1185                  * take care to release any swap space used to store
1186                  * non-resident pages.
1187                  */
1188                 if (m == NULL || pindex < m->pindex) {
1189                         /*
1190                          * Optimize a common case: if the top-level object has
1191                          * no backing object, we can skip over the non-resident
1192                          * range in constant time.
1193                          */
1194                         if (object->backing_object == NULL) {
1195                                 tpindex = (m != NULL && m->pindex < end) ?
1196                                     m->pindex : end;
1197                                 vm_object_madvise_freespace(object, advice,
1198                                     pindex, tpindex - pindex);
1199                                 if ((pindex = tpindex) == end)
1200                                         break;
1201                                 goto next_page;
1202                         }
1203
1204                         tpindex = pindex;
1205                         do {
1206                                 vm_object_madvise_freespace(tobject, advice,
1207                                     tpindex, 1);
1208                                 /*
1209                                  * Prepare to search the next object in the
1210                                  * chain.
1211                                  */
1212                                 backing_object = tobject->backing_object;
1213                                 if (backing_object == NULL)
1214                                         goto next_pindex;
1215                                 VM_OBJECT_WLOCK(backing_object);
1216                                 tpindex +=
1217                                     OFF_TO_IDX(tobject->backing_object_offset);
1218                                 if (tobject != object)
1219                                         VM_OBJECT_WUNLOCK(tobject);
1220                                 tobject = backing_object;
1221                                 if (!vm_object_advice_applies(tobject, advice))
1222                                         goto next_pindex;
1223                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1224                             NULL);
1225                 } else {
1226 next_page:
1227                         tm = m;
1228                         m = TAILQ_NEXT(m, listq);
1229                 }
1230
1231                 /*
1232                  * If the page is not in a normal state, skip it.
1233                  */
1234                 if (tm->valid != VM_PAGE_BITS_ALL)
1235                         goto next_pindex;
1236                 vm_page_lock(tm);
1237                 if (vm_page_held(tm)) {
1238                         vm_page_unlock(tm);
1239                         goto next_pindex;
1240                 }
1241                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1242                     ("vm_object_madvise: page %p is fictitious", tm));
1243                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1244                     ("vm_object_madvise: page %p is not managed", tm));
1245                 if (vm_page_busied(tm)) {
1246                         if (object != tobject)
1247                                 VM_OBJECT_WUNLOCK(tobject);
1248                         VM_OBJECT_WUNLOCK(object);
1249                         if (advice == MADV_WILLNEED) {
1250                                 /*
1251                                  * Reference the page before unlocking and
1252                                  * sleeping so that the page daemon is less
1253                                  * likely to reclaim it.
1254                                  */
1255                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1256                         }
1257                         vm_page_busy_sleep(tm, "madvpo", false);
1258                         goto relookup;
1259                 }
1260                 vm_page_advise(tm, advice);
1261                 vm_page_unlock(tm);
1262                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1263 next_pindex:
1264                 if (tobject != object)
1265                         VM_OBJECT_WUNLOCK(tobject);
1266         }
1267         VM_OBJECT_WUNLOCK(object);
1268 }
1269
1270 /*
1271  *      vm_object_shadow:
1272  *
1273  *      Create a new object which is backed by the
1274  *      specified existing object range.  The source
1275  *      object reference is deallocated.
1276  *
1277  *      The new object and offset into that object
1278  *      are returned in the source parameters.
1279  */
1280 void
1281 vm_object_shadow(
1282         vm_object_t *object,    /* IN/OUT */
1283         vm_ooffset_t *offset,   /* IN/OUT */
1284         vm_size_t length)
1285 {
1286         vm_object_t source;
1287         vm_object_t result;
1288
1289         source = *object;
1290
1291         /*
1292          * Don't create the new object if the old object isn't shared.
1293          */
1294         if (source != NULL) {
1295                 VM_OBJECT_WLOCK(source);
1296                 if (source->ref_count == 1 &&
1297                     source->handle == NULL &&
1298                     (source->type == OBJT_DEFAULT ||
1299                      source->type == OBJT_SWAP)) {
1300                         VM_OBJECT_WUNLOCK(source);
1301                         return;
1302                 }
1303                 VM_OBJECT_WUNLOCK(source);
1304         }
1305
1306         /*
1307          * Allocate a new object with the given length.
1308          */
1309         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1310
1311         /*
1312          * The new object shadows the source object, adding a reference to it.
1313          * Our caller changes his reference to point to the new object,
1314          * removing a reference to the source object.  Net result: no change
1315          * of reference count.
1316          *
1317          * Try to optimize the result object's page color when shadowing
1318          * in order to maintain page coloring consistency in the combined 
1319          * shadowed object.
1320          */
1321         result->backing_object = source;
1322         /*
1323          * Store the offset into the source object, and fix up the offset into
1324          * the new object.
1325          */
1326         result->backing_object_offset = *offset;
1327         if (source != NULL) {
1328                 VM_OBJECT_WLOCK(source);
1329                 result->domain = source->domain;
1330                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1331                 source->shadow_count++;
1332 #if VM_NRESERVLEVEL > 0
1333                 result->flags |= source->flags & OBJ_COLORED;
1334                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1335                     ((1 << (VM_NFREEORDER - 1)) - 1);
1336 #endif
1337                 VM_OBJECT_WUNLOCK(source);
1338         }
1339
1340
1341         /*
1342          * Return the new things
1343          */
1344         *offset = 0;
1345         *object = result;
1346 }
1347
1348 /*
1349  *      vm_object_split:
1350  *
1351  * Split the pages in a map entry into a new object.  This affords
1352  * easier removal of unused pages, and keeps object inheritance from
1353  * being a negative impact on memory usage.
1354  */
1355 void
1356 vm_object_split(vm_map_entry_t entry)
1357 {
1358         vm_page_t m, m_next;
1359         vm_object_t orig_object, new_object, source;
1360         vm_pindex_t idx, offidxstart;
1361         vm_size_t size;
1362
1363         orig_object = entry->object.vm_object;
1364         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1365                 return;
1366         if (orig_object->ref_count <= 1)
1367                 return;
1368         VM_OBJECT_WUNLOCK(orig_object);
1369
1370         offidxstart = OFF_TO_IDX(entry->offset);
1371         size = atop(entry->end - entry->start);
1372
1373         /*
1374          * If swap_pager_copy() is later called, it will convert new_object
1375          * into a swap object.
1376          */
1377         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1378
1379         /*
1380          * At this point, the new object is still private, so the order in
1381          * which the original and new objects are locked does not matter.
1382          */
1383         VM_OBJECT_WLOCK(new_object);
1384         VM_OBJECT_WLOCK(orig_object);
1385         new_object->domain = orig_object->domain;
1386         source = orig_object->backing_object;
1387         if (source != NULL) {
1388                 VM_OBJECT_WLOCK(source);
1389                 if ((source->flags & OBJ_DEAD) != 0) {
1390                         VM_OBJECT_WUNLOCK(source);
1391                         VM_OBJECT_WUNLOCK(orig_object);
1392                         VM_OBJECT_WUNLOCK(new_object);
1393                         vm_object_deallocate(new_object);
1394                         VM_OBJECT_WLOCK(orig_object);
1395                         return;
1396                 }
1397                 LIST_INSERT_HEAD(&source->shadow_head,
1398                                   new_object, shadow_list);
1399                 source->shadow_count++;
1400                 vm_object_reference_locked(source);     /* for new_object */
1401                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1402                 VM_OBJECT_WUNLOCK(source);
1403                 new_object->backing_object_offset = 
1404                         orig_object->backing_object_offset + entry->offset;
1405                 new_object->backing_object = source;
1406         }
1407         if (orig_object->cred != NULL) {
1408                 new_object->cred = orig_object->cred;
1409                 crhold(orig_object->cred);
1410                 new_object->charge = ptoa(size);
1411                 KASSERT(orig_object->charge >= ptoa(size),
1412                     ("orig_object->charge < 0"));
1413                 orig_object->charge -= ptoa(size);
1414         }
1415 retry:
1416         m = vm_page_find_least(orig_object, offidxstart);
1417         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1418             m = m_next) {
1419                 m_next = TAILQ_NEXT(m, listq);
1420
1421                 /*
1422                  * We must wait for pending I/O to complete before we can
1423                  * rename the page.
1424                  *
1425                  * We do not have to VM_PROT_NONE the page as mappings should
1426                  * not be changed by this operation.
1427                  */
1428                 if (vm_page_busied(m)) {
1429                         VM_OBJECT_WUNLOCK(new_object);
1430                         vm_page_lock(m);
1431                         VM_OBJECT_WUNLOCK(orig_object);
1432                         vm_page_busy_sleep(m, "spltwt", false);
1433                         VM_OBJECT_WLOCK(orig_object);
1434                         VM_OBJECT_WLOCK(new_object);
1435                         goto retry;
1436                 }
1437
1438                 /* vm_page_rename() will dirty the page. */
1439                 if (vm_page_rename(m, new_object, idx)) {
1440                         VM_OBJECT_WUNLOCK(new_object);
1441                         VM_OBJECT_WUNLOCK(orig_object);
1442                         vm_radix_wait();
1443                         VM_OBJECT_WLOCK(orig_object);
1444                         VM_OBJECT_WLOCK(new_object);
1445                         goto retry;
1446                 }
1447 #if VM_NRESERVLEVEL > 0
1448                 /*
1449                  * If some of the reservation's allocated pages remain with
1450                  * the original object, then transferring the reservation to
1451                  * the new object is neither particularly beneficial nor
1452                  * particularly harmful as compared to leaving the reservation
1453                  * with the original object.  If, however, all of the
1454                  * reservation's allocated pages are transferred to the new
1455                  * object, then transferring the reservation is typically
1456                  * beneficial.  Determining which of these two cases applies
1457                  * would be more costly than unconditionally renaming the
1458                  * reservation.
1459                  */
1460                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1461 #endif
1462                 if (orig_object->type == OBJT_SWAP)
1463                         vm_page_xbusy(m);
1464         }
1465         if (orig_object->type == OBJT_SWAP) {
1466                 /*
1467                  * swap_pager_copy() can sleep, in which case the orig_object's
1468                  * and new_object's locks are released and reacquired. 
1469                  */
1470                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1471                 TAILQ_FOREACH(m, &new_object->memq, listq)
1472                         vm_page_xunbusy(m);
1473         }
1474         VM_OBJECT_WUNLOCK(orig_object);
1475         VM_OBJECT_WUNLOCK(new_object);
1476         entry->object.vm_object = new_object;
1477         entry->offset = 0LL;
1478         vm_object_deallocate(orig_object);
1479         VM_OBJECT_WLOCK(new_object);
1480 }
1481
1482 #define OBSC_COLLAPSE_NOWAIT    0x0002
1483 #define OBSC_COLLAPSE_WAIT      0x0004
1484
1485 static vm_page_t
1486 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1487     int op)
1488 {
1489         vm_object_t backing_object;
1490
1491         VM_OBJECT_ASSERT_WLOCKED(object);
1492         backing_object = object->backing_object;
1493         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1494
1495         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1496         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1497             ("invalid ownership %p %p %p", p, object, backing_object));
1498         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1499                 return (next);
1500         if (p != NULL)
1501                 vm_page_lock(p);
1502         VM_OBJECT_WUNLOCK(object);
1503         VM_OBJECT_WUNLOCK(backing_object);
1504         /* The page is only NULL when rename fails. */
1505         if (p == NULL)
1506                 vm_radix_wait();
1507         else
1508                 vm_page_busy_sleep(p, "vmocol", false);
1509         VM_OBJECT_WLOCK(object);
1510         VM_OBJECT_WLOCK(backing_object);
1511         return (TAILQ_FIRST(&backing_object->memq));
1512 }
1513
1514 static bool
1515 vm_object_scan_all_shadowed(vm_object_t object)
1516 {
1517         vm_object_t backing_object;
1518         vm_page_t p, pp;
1519         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1520
1521         VM_OBJECT_ASSERT_WLOCKED(object);
1522         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1523
1524         backing_object = object->backing_object;
1525
1526         if (backing_object->type != OBJT_DEFAULT &&
1527             backing_object->type != OBJT_SWAP)
1528                 return (false);
1529
1530         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1531         p = vm_page_find_least(backing_object, pi);
1532         ps = swap_pager_find_least(backing_object, pi);
1533
1534         /*
1535          * Only check pages inside the parent object's range and
1536          * inside the parent object's mapping of the backing object.
1537          */
1538         for (;; pi++) {
1539                 if (p != NULL && p->pindex < pi)
1540                         p = TAILQ_NEXT(p, listq);
1541                 if (ps < pi)
1542                         ps = swap_pager_find_least(backing_object, pi);
1543                 if (p == NULL && ps >= backing_object->size)
1544                         break;
1545                 else if (p == NULL)
1546                         pi = ps;
1547                 else
1548                         pi = MIN(p->pindex, ps);
1549
1550                 new_pindex = pi - backing_offset_index;
1551                 if (new_pindex >= object->size)
1552                         break;
1553
1554                 /*
1555                  * See if the parent has the page or if the parent's object
1556                  * pager has the page.  If the parent has the page but the page
1557                  * is not valid, the parent's object pager must have the page.
1558                  *
1559                  * If this fails, the parent does not completely shadow the
1560                  * object and we might as well give up now.
1561                  */
1562                 pp = vm_page_lookup(object, new_pindex);
1563                 if ((pp == NULL || pp->valid == 0) &&
1564                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1565                         return (false);
1566         }
1567         return (true);
1568 }
1569
1570 static bool
1571 vm_object_collapse_scan(vm_object_t object, int op)
1572 {
1573         vm_object_t backing_object;
1574         vm_page_t next, p, pp;
1575         vm_pindex_t backing_offset_index, new_pindex;
1576
1577         VM_OBJECT_ASSERT_WLOCKED(object);
1578         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1579
1580         backing_object = object->backing_object;
1581         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1582
1583         /*
1584          * Initial conditions
1585          */
1586         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1587                 vm_object_set_flag(backing_object, OBJ_DEAD);
1588
1589         /*
1590          * Our scan
1591          */
1592         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1593                 next = TAILQ_NEXT(p, listq);
1594                 new_pindex = p->pindex - backing_offset_index;
1595
1596                 /*
1597                  * Check for busy page
1598                  */
1599                 if (vm_page_busied(p)) {
1600                         next = vm_object_collapse_scan_wait(object, p, next, op);
1601                         continue;
1602                 }
1603
1604                 KASSERT(p->object == backing_object,
1605                     ("vm_object_collapse_scan: object mismatch"));
1606
1607                 if (p->pindex < backing_offset_index ||
1608                     new_pindex >= object->size) {
1609                         if (backing_object->type == OBJT_SWAP)
1610                                 swap_pager_freespace(backing_object, p->pindex,
1611                                     1);
1612
1613                         /*
1614                          * Page is out of the parent object's range, we can
1615                          * simply destroy it.
1616                          */
1617                         vm_page_lock(p);
1618                         KASSERT(!pmap_page_is_mapped(p),
1619                             ("freeing mapped page %p", p));
1620                         if (p->wire_count == 0)
1621                                 vm_page_free(p);
1622                         else
1623                                 vm_page_remove(p);
1624                         vm_page_unlock(p);
1625                         continue;
1626                 }
1627
1628                 pp = vm_page_lookup(object, new_pindex);
1629                 if (pp != NULL && vm_page_busied(pp)) {
1630                         /*
1631                          * The page in the parent is busy and possibly not
1632                          * (yet) valid.  Until its state is finalized by the
1633                          * busy bit owner, we can't tell whether it shadows the
1634                          * original page.  Therefore, we must either skip it
1635                          * and the original (backing_object) page or wait for
1636                          * its state to be finalized.
1637                          *
1638                          * This is due to a race with vm_fault() where we must
1639                          * unbusy the original (backing_obj) page before we can
1640                          * (re)lock the parent.  Hence we can get here.
1641                          */
1642                         next = vm_object_collapse_scan_wait(object, pp, next,
1643                             op);
1644                         continue;
1645                 }
1646
1647                 KASSERT(pp == NULL || pp->valid != 0,
1648                     ("unbusy invalid page %p", pp));
1649
1650                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1651                         NULL)) {
1652                         /*
1653                          * The page already exists in the parent OR swap exists
1654                          * for this location in the parent.  Leave the parent's
1655                          * page alone.  Destroy the original page from the
1656                          * backing object.
1657                          */
1658                         if (backing_object->type == OBJT_SWAP)
1659                                 swap_pager_freespace(backing_object, p->pindex,
1660                                     1);
1661                         vm_page_lock(p);
1662                         KASSERT(!pmap_page_is_mapped(p),
1663                             ("freeing mapped page %p", p));
1664                         if (p->wire_count == 0)
1665                                 vm_page_free(p);
1666                         else
1667                                 vm_page_remove(p);
1668                         vm_page_unlock(p);
1669                         continue;
1670                 }
1671
1672                 /*
1673                  * Page does not exist in parent, rename the page from the
1674                  * backing object to the main object.
1675                  *
1676                  * If the page was mapped to a process, it can remain mapped
1677                  * through the rename.  vm_page_rename() will dirty the page.
1678                  */
1679                 if (vm_page_rename(p, object, new_pindex)) {
1680                         next = vm_object_collapse_scan_wait(object, NULL, next,
1681                             op);
1682                         continue;
1683                 }
1684
1685                 /* Use the old pindex to free the right page. */
1686                 if (backing_object->type == OBJT_SWAP)
1687                         swap_pager_freespace(backing_object,
1688                             new_pindex + backing_offset_index, 1);
1689
1690 #if VM_NRESERVLEVEL > 0
1691                 /*
1692                  * Rename the reservation.
1693                  */
1694                 vm_reserv_rename(p, object, backing_object,
1695                     backing_offset_index);
1696 #endif
1697         }
1698         return (true);
1699 }
1700
1701
1702 /*
1703  * this version of collapse allows the operation to occur earlier and
1704  * when paging_in_progress is true for an object...  This is not a complete
1705  * operation, but should plug 99.9% of the rest of the leaks.
1706  */
1707 static void
1708 vm_object_qcollapse(vm_object_t object)
1709 {
1710         vm_object_t backing_object = object->backing_object;
1711
1712         VM_OBJECT_ASSERT_WLOCKED(object);
1713         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1714
1715         if (backing_object->ref_count != 1)
1716                 return;
1717
1718         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1719 }
1720
1721 /*
1722  *      vm_object_collapse:
1723  *
1724  *      Collapse an object with the object backing it.
1725  *      Pages in the backing object are moved into the
1726  *      parent, and the backing object is deallocated.
1727  */
1728 void
1729 vm_object_collapse(vm_object_t object)
1730 {
1731         vm_object_t backing_object, new_backing_object;
1732
1733         VM_OBJECT_ASSERT_WLOCKED(object);
1734
1735         while (TRUE) {
1736                 /*
1737                  * Verify that the conditions are right for collapse:
1738                  *
1739                  * The object exists and the backing object exists.
1740                  */
1741                 if ((backing_object = object->backing_object) == NULL)
1742                         break;
1743
1744                 /*
1745                  * we check the backing object first, because it is most likely
1746                  * not collapsable.
1747                  */
1748                 VM_OBJECT_WLOCK(backing_object);
1749                 if (backing_object->handle != NULL ||
1750                     (backing_object->type != OBJT_DEFAULT &&
1751                      backing_object->type != OBJT_SWAP) ||
1752                     (backing_object->flags & OBJ_DEAD) ||
1753                     object->handle != NULL ||
1754                     (object->type != OBJT_DEFAULT &&
1755                      object->type != OBJT_SWAP) ||
1756                     (object->flags & OBJ_DEAD)) {
1757                         VM_OBJECT_WUNLOCK(backing_object);
1758                         break;
1759                 }
1760
1761                 if (object->paging_in_progress != 0 ||
1762                     backing_object->paging_in_progress != 0) {
1763                         vm_object_qcollapse(object);
1764                         VM_OBJECT_WUNLOCK(backing_object);
1765                         break;
1766                 }
1767
1768                 /*
1769                  * We know that we can either collapse the backing object (if
1770                  * the parent is the only reference to it) or (perhaps) have
1771                  * the parent bypass the object if the parent happens to shadow
1772                  * all the resident pages in the entire backing object.
1773                  *
1774                  * This is ignoring pager-backed pages such as swap pages.
1775                  * vm_object_collapse_scan fails the shadowing test in this
1776                  * case.
1777                  */
1778                 if (backing_object->ref_count == 1) {
1779                         vm_object_pip_add(object, 1);
1780                         vm_object_pip_add(backing_object, 1);
1781
1782                         /*
1783                          * If there is exactly one reference to the backing
1784                          * object, we can collapse it into the parent.
1785                          */
1786                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1787
1788 #if VM_NRESERVLEVEL > 0
1789                         /*
1790                          * Break any reservations from backing_object.
1791                          */
1792                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1793                                 vm_reserv_break_all(backing_object);
1794 #endif
1795
1796                         /*
1797                          * Move the pager from backing_object to object.
1798                          */
1799                         if (backing_object->type == OBJT_SWAP) {
1800                                 /*
1801                                  * swap_pager_copy() can sleep, in which case
1802                                  * the backing_object's and object's locks are
1803                                  * released and reacquired.
1804                                  * Since swap_pager_copy() is being asked to
1805                                  * destroy the source, it will change the
1806                                  * backing_object's type to OBJT_DEFAULT.
1807                                  */
1808                                 swap_pager_copy(
1809                                     backing_object,
1810                                     object,
1811                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1812                         }
1813                         /*
1814                          * Object now shadows whatever backing_object did.
1815                          * Note that the reference to 
1816                          * backing_object->backing_object moves from within 
1817                          * backing_object to within object.
1818                          */
1819                         LIST_REMOVE(object, shadow_list);
1820                         backing_object->shadow_count--;
1821                         if (backing_object->backing_object) {
1822                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1823                                 LIST_REMOVE(backing_object, shadow_list);
1824                                 LIST_INSERT_HEAD(
1825                                     &backing_object->backing_object->shadow_head,
1826                                     object, shadow_list);
1827                                 /*
1828                                  * The shadow_count has not changed.
1829                                  */
1830                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1831                         }
1832                         object->backing_object = backing_object->backing_object;
1833                         object->backing_object_offset +=
1834                             backing_object->backing_object_offset;
1835
1836                         /*
1837                          * Discard backing_object.
1838                          *
1839                          * Since the backing object has no pages, no pager left,
1840                          * and no object references within it, all that is
1841                          * necessary is to dispose of it.
1842                          */
1843                         KASSERT(backing_object->ref_count == 1, (
1844 "backing_object %p was somehow re-referenced during collapse!",
1845                             backing_object));
1846                         vm_object_pip_wakeup(backing_object);
1847                         backing_object->type = OBJT_DEAD;
1848                         backing_object->ref_count = 0;
1849                         VM_OBJECT_WUNLOCK(backing_object);
1850                         vm_object_destroy(backing_object);
1851
1852                         vm_object_pip_wakeup(object);
1853                         counter_u64_add(object_collapses, 1);
1854                 } else {
1855                         /*
1856                          * If we do not entirely shadow the backing object,
1857                          * there is nothing we can do so we give up.
1858                          */
1859                         if (object->resident_page_count != object->size &&
1860                             !vm_object_scan_all_shadowed(object)) {
1861                                 VM_OBJECT_WUNLOCK(backing_object);
1862                                 break;
1863                         }
1864
1865                         /*
1866                          * Make the parent shadow the next object in the
1867                          * chain.  Deallocating backing_object will not remove
1868                          * it, since its reference count is at least 2.
1869                          */
1870                         LIST_REMOVE(object, shadow_list);
1871                         backing_object->shadow_count--;
1872
1873                         new_backing_object = backing_object->backing_object;
1874                         if ((object->backing_object = new_backing_object) != NULL) {
1875                                 VM_OBJECT_WLOCK(new_backing_object);
1876                                 LIST_INSERT_HEAD(
1877                                     &new_backing_object->shadow_head,
1878                                     object,
1879                                     shadow_list
1880                                 );
1881                                 new_backing_object->shadow_count++;
1882                                 vm_object_reference_locked(new_backing_object);
1883                                 VM_OBJECT_WUNLOCK(new_backing_object);
1884                                 object->backing_object_offset +=
1885                                         backing_object->backing_object_offset;
1886                         }
1887
1888                         /*
1889                          * Drop the reference count on backing_object. Since
1890                          * its ref_count was at least 2, it will not vanish.
1891                          */
1892                         backing_object->ref_count--;
1893                         VM_OBJECT_WUNLOCK(backing_object);
1894                         counter_u64_add(object_bypasses, 1);
1895                 }
1896
1897                 /*
1898                  * Try again with this object's new backing object.
1899                  */
1900         }
1901 }
1902
1903 /*
1904  *      vm_object_page_remove:
1905  *
1906  *      For the given object, either frees or invalidates each of the
1907  *      specified pages.  In general, a page is freed.  However, if a page is
1908  *      wired for any reason other than the existence of a managed, wired
1909  *      mapping, then it may be invalidated but not removed from the object.
1910  *      Pages are specified by the given range ["start", "end") and the option
1911  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1912  *      extends from "start" to the end of the object.  If the option
1913  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1914  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1915  *      specified, then the pages within the specified range must have no
1916  *      mappings.  Otherwise, if this option is not specified, any mappings to
1917  *      the specified pages are removed before the pages are freed or
1918  *      invalidated.
1919  *
1920  *      In general, this operation should only be performed on objects that
1921  *      contain managed pages.  There are, however, two exceptions.  First, it
1922  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1923  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1924  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1925  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1926  *
1927  *      The object must be locked.
1928  */
1929 void
1930 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1931     int options)
1932 {
1933         vm_page_t p, next;
1934         struct mtx *mtx;
1935
1936         VM_OBJECT_ASSERT_WLOCKED(object);
1937         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1938             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1939             ("vm_object_page_remove: illegal options for object %p", object));
1940         if (object->resident_page_count == 0)
1941                 return;
1942         vm_object_pip_add(object, 1);
1943 again:
1944         p = vm_page_find_least(object, start);
1945         mtx = NULL;
1946
1947         /*
1948          * Here, the variable "p" is either (1) the page with the least pindex
1949          * greater than or equal to the parameter "start" or (2) NULL. 
1950          */
1951         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1952                 next = TAILQ_NEXT(p, listq);
1953
1954                 /*
1955                  * If the page is wired for any reason besides the existence
1956                  * of managed, wired mappings, then it cannot be freed.  For
1957                  * example, fictitious pages, which represent device memory,
1958                  * are inherently wired and cannot be freed.  They can,
1959                  * however, be invalidated if the option OBJPR_CLEANONLY is
1960                  * not specified.
1961                  */
1962                 vm_page_change_lock(p, &mtx);
1963                 if (vm_page_xbusied(p)) {
1964                         VM_OBJECT_WUNLOCK(object);
1965                         vm_page_busy_sleep(p, "vmopax", true);
1966                         VM_OBJECT_WLOCK(object);
1967                         goto again;
1968                 }
1969                 if (p->wire_count != 0) {
1970                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1971                             object->ref_count != 0)
1972                                 pmap_remove_all(p);
1973                         if ((options & OBJPR_CLEANONLY) == 0) {
1974                                 p->valid = 0;
1975                                 vm_page_undirty(p);
1976                         }
1977                         continue;
1978                 }
1979                 if (vm_page_busied(p)) {
1980                         VM_OBJECT_WUNLOCK(object);
1981                         vm_page_busy_sleep(p, "vmopar", false);
1982                         VM_OBJECT_WLOCK(object);
1983                         goto again;
1984                 }
1985                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1986                     ("vm_object_page_remove: page %p is fictitious", p));
1987                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1988                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1989                             object->ref_count != 0)
1990                                 pmap_remove_write(p);
1991                         if (p->dirty != 0)
1992                                 continue;
1993                 }
1994                 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
1995                         pmap_remove_all(p);
1996                 vm_page_free(p);
1997         }
1998         if (mtx != NULL)
1999                 mtx_unlock(mtx);
2000         vm_object_pip_wakeup(object);
2001 }
2002
2003 /*
2004  *      vm_object_page_noreuse:
2005  *
2006  *      For the given object, attempt to move the specified pages to
2007  *      the head of the inactive queue.  This bypasses regular LRU
2008  *      operation and allows the pages to be reused quickly under memory
2009  *      pressure.  If a page is wired for any reason, then it will not
2010  *      be queued.  Pages are specified by the range ["start", "end").
2011  *      As a special case, if "end" is zero, then the range extends from
2012  *      "start" to the end of the object.
2013  *
2014  *      This operation should only be performed on objects that
2015  *      contain non-fictitious, managed pages.
2016  *
2017  *      The object must be locked.
2018  */
2019 void
2020 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2021 {
2022         struct mtx *mtx;
2023         vm_page_t p, next;
2024
2025         VM_OBJECT_ASSERT_LOCKED(object);
2026         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2027             ("vm_object_page_noreuse: illegal object %p", object));
2028         if (object->resident_page_count == 0)
2029                 return;
2030         p = vm_page_find_least(object, start);
2031
2032         /*
2033          * Here, the variable "p" is either (1) the page with the least pindex
2034          * greater than or equal to the parameter "start" or (2) NULL. 
2035          */
2036         mtx = NULL;
2037         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2038                 next = TAILQ_NEXT(p, listq);
2039                 vm_page_change_lock(p, &mtx);
2040                 vm_page_deactivate_noreuse(p);
2041         }
2042         if (mtx != NULL)
2043                 mtx_unlock(mtx);
2044 }
2045
2046 /*
2047  *      Populate the specified range of the object with valid pages.  Returns
2048  *      TRUE if the range is successfully populated and FALSE otherwise.
2049  *
2050  *      Note: This function should be optimized to pass a larger array of
2051  *      pages to vm_pager_get_pages() before it is applied to a non-
2052  *      OBJT_DEVICE object.
2053  *
2054  *      The object must be locked.
2055  */
2056 boolean_t
2057 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2058 {
2059         vm_page_t m;
2060         vm_pindex_t pindex;
2061         int rv;
2062
2063         VM_OBJECT_ASSERT_WLOCKED(object);
2064         for (pindex = start; pindex < end; pindex++) {
2065                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2066                 if (m->valid != VM_PAGE_BITS_ALL) {
2067                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2068                         if (rv != VM_PAGER_OK) {
2069                                 vm_page_lock(m);
2070                                 vm_page_free(m);
2071                                 vm_page_unlock(m);
2072                                 break;
2073                         }
2074                 }
2075                 /*
2076                  * Keep "m" busy because a subsequent iteration may unlock
2077                  * the object.
2078                  */
2079         }
2080         if (pindex > start) {
2081                 m = vm_page_lookup(object, start);
2082                 while (m != NULL && m->pindex < pindex) {
2083                         vm_page_xunbusy(m);
2084                         m = TAILQ_NEXT(m, listq);
2085                 }
2086         }
2087         return (pindex == end);
2088 }
2089
2090 /*
2091  *      Routine:        vm_object_coalesce
2092  *      Function:       Coalesces two objects backing up adjoining
2093  *                      regions of memory into a single object.
2094  *
2095  *      returns TRUE if objects were combined.
2096  *
2097  *      NOTE:   Only works at the moment if the second object is NULL -
2098  *              if it's not, which object do we lock first?
2099  *
2100  *      Parameters:
2101  *              prev_object     First object to coalesce
2102  *              prev_offset     Offset into prev_object
2103  *              prev_size       Size of reference to prev_object
2104  *              next_size       Size of reference to the second object
2105  *              reserved        Indicator that extension region has
2106  *                              swap accounted for
2107  *
2108  *      Conditions:
2109  *      The object must *not* be locked.
2110  */
2111 boolean_t
2112 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2113     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2114 {
2115         vm_pindex_t next_pindex;
2116
2117         if (prev_object == NULL)
2118                 return (TRUE);
2119         VM_OBJECT_WLOCK(prev_object);
2120         if ((prev_object->type != OBJT_DEFAULT &&
2121             prev_object->type != OBJT_SWAP) ||
2122             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2123                 VM_OBJECT_WUNLOCK(prev_object);
2124                 return (FALSE);
2125         }
2126
2127         /*
2128          * Try to collapse the object first
2129          */
2130         vm_object_collapse(prev_object);
2131
2132         /*
2133          * Can't coalesce if: . more than one reference . paged out . shadows
2134          * another object . has a copy elsewhere (any of which mean that the
2135          * pages not mapped to prev_entry may be in use anyway)
2136          */
2137         if (prev_object->backing_object != NULL) {
2138                 VM_OBJECT_WUNLOCK(prev_object);
2139                 return (FALSE);
2140         }
2141
2142         prev_size >>= PAGE_SHIFT;
2143         next_size >>= PAGE_SHIFT;
2144         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2145
2146         if (prev_object->ref_count > 1 &&
2147             prev_object->size != next_pindex &&
2148             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2149                 VM_OBJECT_WUNLOCK(prev_object);
2150                 return (FALSE);
2151         }
2152
2153         /*
2154          * Account for the charge.
2155          */
2156         if (prev_object->cred != NULL) {
2157
2158                 /*
2159                  * If prev_object was charged, then this mapping,
2160                  * although not charged now, may become writable
2161                  * later. Non-NULL cred in the object would prevent
2162                  * swap reservation during enabling of the write
2163                  * access, so reserve swap now. Failed reservation
2164                  * cause allocation of the separate object for the map
2165                  * entry, and swap reservation for this entry is
2166                  * managed in appropriate time.
2167                  */
2168                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2169                     prev_object->cred)) {
2170                         VM_OBJECT_WUNLOCK(prev_object);
2171                         return (FALSE);
2172                 }
2173                 prev_object->charge += ptoa(next_size);
2174         }
2175
2176         /*
2177          * Remove any pages that may still be in the object from a previous
2178          * deallocation.
2179          */
2180         if (next_pindex < prev_object->size) {
2181                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2182                     next_size, 0);
2183                 if (prev_object->type == OBJT_SWAP)
2184                         swap_pager_freespace(prev_object,
2185                                              next_pindex, next_size);
2186 #if 0
2187                 if (prev_object->cred != NULL) {
2188                         KASSERT(prev_object->charge >=
2189                             ptoa(prev_object->size - next_pindex),
2190                             ("object %p overcharged 1 %jx %jx", prev_object,
2191                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2192                         prev_object->charge -= ptoa(prev_object->size -
2193                             next_pindex);
2194                 }
2195 #endif
2196         }
2197
2198         /*
2199          * Extend the object if necessary.
2200          */
2201         if (next_pindex + next_size > prev_object->size)
2202                 prev_object->size = next_pindex + next_size;
2203
2204         VM_OBJECT_WUNLOCK(prev_object);
2205         return (TRUE);
2206 }
2207
2208 void
2209 vm_object_set_writeable_dirty(vm_object_t object)
2210 {
2211
2212         VM_OBJECT_ASSERT_WLOCKED(object);
2213         if (object->type != OBJT_VNODE) {
2214                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2215                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2216                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2217                 }
2218                 return;
2219         }
2220         object->generation++;
2221         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2222                 return;
2223         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2224 }
2225
2226 /*
2227  *      vm_object_unwire:
2228  *
2229  *      For each page offset within the specified range of the given object,
2230  *      find the highest-level page in the shadow chain and unwire it.  A page
2231  *      must exist at every page offset, and the highest-level page must be
2232  *      wired.
2233  */
2234 void
2235 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2236     uint8_t queue)
2237 {
2238         vm_object_t tobject, t1object;
2239         vm_page_t m, tm;
2240         vm_pindex_t end_pindex, pindex, tpindex;
2241         int depth, locked_depth;
2242
2243         KASSERT((offset & PAGE_MASK) == 0,
2244             ("vm_object_unwire: offset is not page aligned"));
2245         KASSERT((length & PAGE_MASK) == 0,
2246             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2247         /* The wired count of a fictitious page never changes. */
2248         if ((object->flags & OBJ_FICTITIOUS) != 0)
2249                 return;
2250         pindex = OFF_TO_IDX(offset);
2251         end_pindex = pindex + atop(length);
2252 again:
2253         locked_depth = 1;
2254         VM_OBJECT_RLOCK(object);
2255         m = vm_page_find_least(object, pindex);
2256         while (pindex < end_pindex) {
2257                 if (m == NULL || pindex < m->pindex) {
2258                         /*
2259                          * The first object in the shadow chain doesn't
2260                          * contain a page at the current index.  Therefore,
2261                          * the page must exist in a backing object.
2262                          */
2263                         tobject = object;
2264                         tpindex = pindex;
2265                         depth = 0;
2266                         do {
2267                                 tpindex +=
2268                                     OFF_TO_IDX(tobject->backing_object_offset);
2269                                 tobject = tobject->backing_object;
2270                                 KASSERT(tobject != NULL,
2271                                     ("vm_object_unwire: missing page"));
2272                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2273                                         goto next_page;
2274                                 depth++;
2275                                 if (depth == locked_depth) {
2276                                         locked_depth++;
2277                                         VM_OBJECT_RLOCK(tobject);
2278                                 }
2279                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2280                             NULL);
2281                 } else {
2282                         tm = m;
2283                         m = TAILQ_NEXT(m, listq);
2284                 }
2285                 vm_page_lock(tm);
2286                 if (vm_page_xbusied(tm)) {
2287                         for (tobject = object; locked_depth >= 1;
2288                             locked_depth--) {
2289                                 t1object = tobject->backing_object;
2290                                 VM_OBJECT_RUNLOCK(tobject);
2291                                 tobject = t1object;
2292                         }
2293                         vm_page_busy_sleep(tm, "unwbo", true);
2294                         goto again;
2295                 }
2296                 vm_page_unwire(tm, queue);
2297                 vm_page_unlock(tm);
2298 next_page:
2299                 pindex++;
2300         }
2301         /* Release the accumulated object locks. */
2302         for (tobject = object; locked_depth >= 1; locked_depth--) {
2303                 t1object = tobject->backing_object;
2304                 VM_OBJECT_RUNLOCK(tobject);
2305                 tobject = t1object;
2306         }
2307 }
2308
2309 /*
2310  * Return the vnode for the given object, or NULL if none exists.
2311  * For tmpfs objects, the function may return NULL if there is
2312  * no vnode allocated at the time of the call.
2313  */
2314 struct vnode *
2315 vm_object_vnode(vm_object_t object)
2316 {
2317         struct vnode *vp;
2318
2319         VM_OBJECT_ASSERT_LOCKED(object);
2320         if (object->type == OBJT_VNODE) {
2321                 vp = object->handle;
2322                 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2323         } else if (object->type == OBJT_SWAP &&
2324             (object->flags & OBJ_TMPFS) != 0) {
2325                 vp = object->un_pager.swp.swp_tmpfs;
2326                 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2327         } else {
2328                 vp = NULL;
2329         }
2330         return (vp);
2331 }
2332
2333 /*
2334  * Return the kvme type of the given object.
2335  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2336  */
2337 int
2338 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2339 {
2340
2341         VM_OBJECT_ASSERT_LOCKED(object);
2342         if (vpp != NULL)
2343                 *vpp = vm_object_vnode(object);
2344         switch (object->type) {
2345         case OBJT_DEFAULT:
2346                 return (KVME_TYPE_DEFAULT);
2347         case OBJT_VNODE:
2348                 return (KVME_TYPE_VNODE);
2349         case OBJT_SWAP:
2350                 if ((object->flags & OBJ_TMPFS_NODE) != 0)
2351                         return (KVME_TYPE_VNODE);
2352                 return (KVME_TYPE_SWAP);
2353         case OBJT_DEVICE:
2354                 return (KVME_TYPE_DEVICE);
2355         case OBJT_PHYS:
2356                 return (KVME_TYPE_PHYS);
2357         case OBJT_DEAD:
2358                 return (KVME_TYPE_DEAD);
2359         case OBJT_SG:
2360                 return (KVME_TYPE_SG);
2361         case OBJT_MGTDEVICE:
2362                 return (KVME_TYPE_MGTDEVICE);
2363         default:
2364                 return (KVME_TYPE_UNKNOWN);
2365         }
2366 }
2367
2368 static int
2369 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2370 {
2371         struct kinfo_vmobject *kvo;
2372         char *fullpath, *freepath;
2373         struct vnode *vp;
2374         struct vattr va;
2375         vm_object_t obj;
2376         vm_page_t m;
2377         int count, error;
2378
2379         if (req->oldptr == NULL) {
2380                 /*
2381                  * If an old buffer has not been provided, generate an
2382                  * estimate of the space needed for a subsequent call.
2383                  */
2384                 mtx_lock(&vm_object_list_mtx);
2385                 count = 0;
2386                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2387                         if (obj->type == OBJT_DEAD)
2388                                 continue;
2389                         count++;
2390                 }
2391                 mtx_unlock(&vm_object_list_mtx);
2392                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2393                     count * 11 / 10));
2394         }
2395
2396         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2397         error = 0;
2398
2399         /*
2400          * VM objects are type stable and are never removed from the
2401          * list once added.  This allows us to safely read obj->object_list
2402          * after reacquiring the VM object lock.
2403          */
2404         mtx_lock(&vm_object_list_mtx);
2405         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2406                 if (obj->type == OBJT_DEAD)
2407                         continue;
2408                 VM_OBJECT_RLOCK(obj);
2409                 if (obj->type == OBJT_DEAD) {
2410                         VM_OBJECT_RUNLOCK(obj);
2411                         continue;
2412                 }
2413                 mtx_unlock(&vm_object_list_mtx);
2414                 kvo->kvo_size = ptoa(obj->size);
2415                 kvo->kvo_resident = obj->resident_page_count;
2416                 kvo->kvo_ref_count = obj->ref_count;
2417                 kvo->kvo_shadow_count = obj->shadow_count;
2418                 kvo->kvo_memattr = obj->memattr;
2419                 kvo->kvo_active = 0;
2420                 kvo->kvo_inactive = 0;
2421                 TAILQ_FOREACH(m, &obj->memq, listq) {
2422                         /*
2423                          * A page may belong to the object but be
2424                          * dequeued and set to PQ_NONE while the
2425                          * object lock is not held.  This makes the
2426                          * reads of m->queue below racy, and we do not
2427                          * count pages set to PQ_NONE.  However, this
2428                          * sysctl is only meant to give an
2429                          * approximation of the system anyway.
2430                          */
2431                         if (m->queue == PQ_ACTIVE)
2432                                 kvo->kvo_active++;
2433                         else if (m->queue == PQ_INACTIVE)
2434                                 kvo->kvo_inactive++;
2435                 }
2436
2437                 kvo->kvo_vn_fileid = 0;
2438                 kvo->kvo_vn_fsid = 0;
2439                 kvo->kvo_vn_fsid_freebsd11 = 0;
2440                 freepath = NULL;
2441                 fullpath = "";
2442                 kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2443                 if (vp != NULL)
2444                         vref(vp);
2445                 VM_OBJECT_RUNLOCK(obj);
2446                 if (vp != NULL) {
2447                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2448                         vn_lock(vp, LK_SHARED | LK_RETRY);
2449                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2450                                 kvo->kvo_vn_fileid = va.va_fileid;
2451                                 kvo->kvo_vn_fsid = va.va_fsid;
2452                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2453                                                                 /* truncate */
2454                         }
2455                         vput(vp);
2456                 }
2457
2458                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2459                 if (freepath != NULL)
2460                         free(freepath, M_TEMP);
2461
2462                 /* Pack record size down */
2463                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2464                     + strlen(kvo->kvo_path) + 1;
2465                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2466                     sizeof(uint64_t));
2467                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2468                 mtx_lock(&vm_object_list_mtx);
2469                 if (error)
2470                         break;
2471         }
2472         mtx_unlock(&vm_object_list_mtx);
2473         free(kvo, M_TEMP);
2474         return (error);
2475 }
2476 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2477     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2478     "List of VM objects");
2479
2480 #include "opt_ddb.h"
2481 #ifdef DDB
2482 #include <sys/kernel.h>
2483
2484 #include <sys/cons.h>
2485
2486 #include <ddb/ddb.h>
2487
2488 static int
2489 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2490 {
2491         vm_map_t tmpm;
2492         vm_map_entry_t tmpe;
2493         vm_object_t obj;
2494         int entcount;
2495
2496         if (map == 0)
2497                 return 0;
2498
2499         if (entry == 0) {
2500                 tmpe = map->header.next;
2501                 entcount = map->nentries;
2502                 while (entcount-- && (tmpe != &map->header)) {
2503                         if (_vm_object_in_map(map, object, tmpe)) {
2504                                 return 1;
2505                         }
2506                         tmpe = tmpe->next;
2507                 }
2508         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2509                 tmpm = entry->object.sub_map;
2510                 tmpe = tmpm->header.next;
2511                 entcount = tmpm->nentries;
2512                 while (entcount-- && tmpe != &tmpm->header) {
2513                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2514                                 return 1;
2515                         }
2516                         tmpe = tmpe->next;
2517                 }
2518         } else if ((obj = entry->object.vm_object) != NULL) {
2519                 for (; obj; obj = obj->backing_object)
2520                         if (obj == object) {
2521                                 return 1;
2522                         }
2523         }
2524         return 0;
2525 }
2526
2527 static int
2528 vm_object_in_map(vm_object_t object)
2529 {
2530         struct proc *p;
2531
2532         /* sx_slock(&allproc_lock); */
2533         FOREACH_PROC_IN_SYSTEM(p) {
2534                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2535                         continue;
2536                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2537                         /* sx_sunlock(&allproc_lock); */
2538                         return 1;
2539                 }
2540         }
2541         /* sx_sunlock(&allproc_lock); */
2542         if (_vm_object_in_map(kernel_map, object, 0))
2543                 return 1;
2544         return 0;
2545 }
2546
2547 DB_SHOW_COMMAND(vmochk, vm_object_check)
2548 {
2549         vm_object_t object;
2550
2551         /*
2552          * make sure that internal objs are in a map somewhere
2553          * and none have zero ref counts.
2554          */
2555         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2556                 if (object->handle == NULL &&
2557                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2558                         if (object->ref_count == 0) {
2559                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2560                                         (long)object->size);
2561                         }
2562                         if (!vm_object_in_map(object)) {
2563                                 db_printf(
2564                         "vmochk: internal obj is not in a map: "
2565                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2566                                     object->ref_count, (u_long)object->size, 
2567                                     (u_long)object->size,
2568                                     (void *)object->backing_object);
2569                         }
2570                 }
2571         }
2572 }
2573
2574 /*
2575  *      vm_object_print:        [ debug ]
2576  */
2577 DB_SHOW_COMMAND(object, vm_object_print_static)
2578 {
2579         /* XXX convert args. */
2580         vm_object_t object = (vm_object_t)addr;
2581         boolean_t full = have_addr;
2582
2583         vm_page_t p;
2584
2585         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2586 #define count   was_count
2587
2588         int count;
2589
2590         if (object == NULL)
2591                 return;
2592
2593         db_iprintf(
2594             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2595             object, (int)object->type, (uintmax_t)object->size,
2596             object->resident_page_count, object->ref_count, object->flags,
2597             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2598         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2599             object->shadow_count, 
2600             object->backing_object ? object->backing_object->ref_count : 0,
2601             object->backing_object, (uintmax_t)object->backing_object_offset);
2602
2603         if (!full)
2604                 return;
2605
2606         db_indent += 2;
2607         count = 0;
2608         TAILQ_FOREACH(p, &object->memq, listq) {
2609                 if (count == 0)
2610                         db_iprintf("memory:=");
2611                 else if (count == 6) {
2612                         db_printf("\n");
2613                         db_iprintf(" ...");
2614                         count = 0;
2615                 } else
2616                         db_printf(",");
2617                 count++;
2618
2619                 db_printf("(off=0x%jx,page=0x%jx)",
2620                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2621         }
2622         if (count != 0)
2623                 db_printf("\n");
2624         db_indent -= 2;
2625 }
2626
2627 /* XXX. */
2628 #undef count
2629
2630 /* XXX need this non-static entry for calling from vm_map_print. */
2631 void
2632 vm_object_print(
2633         /* db_expr_t */ long addr,
2634         boolean_t have_addr,
2635         /* db_expr_t */ long count,
2636         char *modif)
2637 {
2638         vm_object_print_static(addr, have_addr, count, modif);
2639 }
2640
2641 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2642 {
2643         vm_object_t object;
2644         vm_pindex_t fidx;
2645         vm_paddr_t pa;
2646         vm_page_t m, prev_m;
2647         int rcount, nl, c;
2648
2649         nl = 0;
2650         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2651                 db_printf("new object: %p\n", (void *)object);
2652                 if (nl > 18) {
2653                         c = cngetc();
2654                         if (c != ' ')
2655                                 return;
2656                         nl = 0;
2657                 }
2658                 nl++;
2659                 rcount = 0;
2660                 fidx = 0;
2661                 pa = -1;
2662                 TAILQ_FOREACH(m, &object->memq, listq) {
2663                         if (m->pindex > 128)
2664                                 break;
2665                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2666                             prev_m->pindex + 1 != m->pindex) {
2667                                 if (rcount) {
2668                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2669                                                 (long)fidx, rcount, (long)pa);
2670                                         if (nl > 18) {
2671                                                 c = cngetc();
2672                                                 if (c != ' ')
2673                                                         return;
2674                                                 nl = 0;
2675                                         }
2676                                         nl++;
2677                                         rcount = 0;
2678                                 }
2679                         }                               
2680                         if (rcount &&
2681                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2682                                 ++rcount;
2683                                 continue;
2684                         }
2685                         if (rcount) {
2686                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2687                                         (long)fidx, rcount, (long)pa);
2688                                 if (nl > 18) {
2689                                         c = cngetc();
2690                                         if (c != ' ')
2691                                                 return;
2692                                         nl = 0;
2693                                 }
2694                                 nl++;
2695                         }
2696                         fidx = m->pindex;
2697                         pa = VM_PAGE_TO_PHYS(m);
2698                         rcount = 1;
2699                 }
2700                 if (rcount) {
2701                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2702                                 (long)fidx, rcount, (long)pa);
2703                         if (nl > 18) {
2704                                 c = cngetc();
2705                                 if (c != ' ')
2706                                         return;
2707                                 nl = 0;
2708                         }
2709                         nl++;
2710                 }
2711         }
2712 }
2713 #endif /* DDB */