]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
MFC @248093
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_reserv.h>
98 #include <vm/uma.h>
99
100 static int old_msync;
101 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
102     "Use old (insecure) msync behavior");
103
104 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
105                     int pagerflags, int flags, boolean_t *clearobjflags,
106                     boolean_t *eio);
107 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
108                     boolean_t *clearobjflags);
109 static void     vm_object_qcollapse(vm_object_t object);
110 static void     vm_object_vndeallocate(vm_object_t object);
111
112 /*
113  *      Virtual memory objects maintain the actual data
114  *      associated with allocated virtual memory.  A given
115  *      page of memory exists within exactly one object.
116  *
117  *      An object is only deallocated when all "references"
118  *      are given up.  Only one "reference" to a given
119  *      region of an object should be writeable.
120  *
121  *      Associated with each object is a list of all resident
122  *      memory pages belonging to that object; this list is
123  *      maintained by the "vm_page" module, and locked by the object's
124  *      lock.
125  *
126  *      Each object also records a "pager" routine which is
127  *      used to retrieve (and store) pages to the proper backing
128  *      storage.  In addition, objects may be backed by other
129  *      objects from which they were virtual-copied.
130  *
131  *      The only items within the object structure which are
132  *      modified after time of creation are:
133  *              reference count         locked by object's lock
134  *              pager routine           locked by object's lock
135  *
136  */
137
138 struct object_q vm_object_list;
139 struct mtx vm_object_list_mtx;  /* lock for object list and count */
140
141 struct vm_object kernel_object_store;
142 struct vm_object kmem_object_store;
143
144 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
145     "VM object stats");
146
147 static long object_collapses;
148 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
149     &object_collapses, 0, "VM object collapses");
150
151 static long object_bypasses;
152 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
153     &object_bypasses, 0, "VM object bypasses");
154
155 static uma_zone_t obj_zone;
156
157 static int vm_object_zinit(void *mem, int size, int flags);
158
159 #ifdef INVARIANTS
160 static void vm_object_zdtor(void *mem, int size, void *arg);
161
162 static void
163 vm_object_zdtor(void *mem, int size, void *arg)
164 {
165         vm_object_t object;
166
167         object = (vm_object_t)mem;
168         KASSERT(TAILQ_EMPTY(&object->memq),
169             ("object %p has resident pages in its memq", object));
170         KASSERT(object->root == NULL,
171             ("object %p has resident pages in its tree", object));
172 #if VM_NRESERVLEVEL > 0
173         KASSERT(LIST_EMPTY(&object->rvq),
174             ("object %p has reservations",
175             object));
176 #endif
177         KASSERT(vm_object_cache_is_empty(object),
178             ("object %p has cached pages",
179             object));
180         KASSERT(object->paging_in_progress == 0,
181             ("object %p paging_in_progress = %d",
182             object, object->paging_in_progress));
183         KASSERT(object->resident_page_count == 0,
184             ("object %p resident_page_count = %d",
185             object, object->resident_page_count));
186         KASSERT(object->shadow_count == 0,
187             ("object %p shadow_count = %d",
188             object, object->shadow_count));
189 }
190 #endif
191
192 static int
193 vm_object_zinit(void *mem, int size, int flags)
194 {
195         vm_object_t object;
196
197         object = (vm_object_t)mem;
198         bzero(&object->lock, sizeof(object->lock));
199         rw_init_flags(&object->lock, "vm object", RW_DUPOK);
200
201         /* These are true for any object that has been freed */
202         object->root = NULL;
203         object->paging_in_progress = 0;
204         object->resident_page_count = 0;
205         object->shadow_count = 0;
206         object->cache = NULL;
207         return (0);
208 }
209
210 static void
211 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
212 {
213
214         TAILQ_INIT(&object->memq);
215         LIST_INIT(&object->shadow_head);
216
217         object->type = type;
218         switch (type) {
219         case OBJT_DEAD:
220                 panic("_vm_object_allocate: can't create OBJT_DEAD");
221         case OBJT_DEFAULT:
222         case OBJT_SWAP:
223                 object->flags = OBJ_ONEMAPPING;
224                 break;
225         case OBJT_DEVICE:
226         case OBJT_SG:
227                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
228                 break;
229         case OBJT_MGTDEVICE:
230                 object->flags = OBJ_FICTITIOUS;
231                 break;
232         case OBJT_PHYS:
233                 object->flags = OBJ_UNMANAGED;
234                 break;
235         case OBJT_VNODE:
236                 object->flags = 0;
237                 break;
238         default:
239                 panic("_vm_object_allocate: type %d is undefined", type);
240         }
241         object->size = size;
242         object->generation = 1;
243         object->ref_count = 1;
244         object->memattr = VM_MEMATTR_DEFAULT;
245         object->cred = NULL;
246         object->charge = 0;
247         object->handle = NULL;
248         object->backing_object = NULL;
249         object->backing_object_offset = (vm_ooffset_t) 0;
250 #if VM_NRESERVLEVEL > 0
251         LIST_INIT(&object->rvq);
252 #endif
253
254         mtx_lock(&vm_object_list_mtx);
255         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
256         mtx_unlock(&vm_object_list_mtx);
257 }
258
259 /*
260  *      vm_object_init:
261  *
262  *      Initialize the VM objects module.
263  */
264 void
265 vm_object_init(void)
266 {
267         TAILQ_INIT(&vm_object_list);
268         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
269         
270         rw_init(&kernel_object->lock, "kernel vm object");
271         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
272             kernel_object);
273 #if VM_NRESERVLEVEL > 0
274         kernel_object->flags |= OBJ_COLORED;
275         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
276 #endif
277
278         rw_init(&kmem_object->lock, "kmem vm object");
279         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
280             kmem_object);
281 #if VM_NRESERVLEVEL > 0
282         kmem_object->flags |= OBJ_COLORED;
283         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
284 #endif
285
286         /*
287          * The lock portion of struct vm_object must be type stable due
288          * to vm_pageout_fallback_object_lock locking a vm object
289          * without holding any references to it.
290          */
291         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
292 #ifdef INVARIANTS
293             vm_object_zdtor,
294 #else
295             NULL,
296 #endif
297             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
298 }
299
300 void
301 vm_object_clear_flag(vm_object_t object, u_short bits)
302 {
303
304         VM_OBJECT_ASSERT_WLOCKED(object);
305         object->flags &= ~bits;
306 }
307
308 /*
309  *      Sets the default memory attribute for the specified object.  Pages
310  *      that are allocated to this object are by default assigned this memory
311  *      attribute.
312  *
313  *      Presently, this function must be called before any pages are allocated
314  *      to the object.  In the future, this requirement may be relaxed for
315  *      "default" and "swap" objects.
316  */
317 int
318 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
319 {
320
321         VM_OBJECT_ASSERT_WLOCKED(object);
322         switch (object->type) {
323         case OBJT_DEFAULT:
324         case OBJT_DEVICE:
325         case OBJT_MGTDEVICE:
326         case OBJT_PHYS:
327         case OBJT_SG:
328         case OBJT_SWAP:
329         case OBJT_VNODE:
330                 if (!TAILQ_EMPTY(&object->memq))
331                         return (KERN_FAILURE);
332                 break;
333         case OBJT_DEAD:
334                 return (KERN_INVALID_ARGUMENT);
335         default:
336                 panic("vm_object_set_memattr: object %p is of undefined type",
337                     object);
338         }
339         object->memattr = memattr;
340         return (KERN_SUCCESS);
341 }
342
343 void
344 vm_object_pip_add(vm_object_t object, short i)
345 {
346
347         VM_OBJECT_ASSERT_WLOCKED(object);
348         object->paging_in_progress += i;
349 }
350
351 void
352 vm_object_pip_subtract(vm_object_t object, short i)
353 {
354
355         VM_OBJECT_ASSERT_WLOCKED(object);
356         object->paging_in_progress -= i;
357 }
358
359 void
360 vm_object_pip_wakeup(vm_object_t object)
361 {
362
363         VM_OBJECT_ASSERT_WLOCKED(object);
364         object->paging_in_progress--;
365         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
366                 vm_object_clear_flag(object, OBJ_PIPWNT);
367                 wakeup(object);
368         }
369 }
370
371 void
372 vm_object_pip_wakeupn(vm_object_t object, short i)
373 {
374
375         VM_OBJECT_ASSERT_WLOCKED(object);
376         if (i)
377                 object->paging_in_progress -= i;
378         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
379                 vm_object_clear_flag(object, OBJ_PIPWNT);
380                 wakeup(object);
381         }
382 }
383
384 void
385 vm_object_pip_wait(vm_object_t object, char *waitid)
386 {
387
388         VM_OBJECT_ASSERT_WLOCKED(object);
389         while (object->paging_in_progress) {
390                 object->flags |= OBJ_PIPWNT;
391                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
392         }
393 }
394
395 /*
396  *      vm_object_allocate:
397  *
398  *      Returns a new object with the given size.
399  */
400 vm_object_t
401 vm_object_allocate(objtype_t type, vm_pindex_t size)
402 {
403         vm_object_t object;
404
405         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
406         _vm_object_allocate(type, size, object);
407         return (object);
408 }
409
410
411 /*
412  *      vm_object_reference:
413  *
414  *      Gets another reference to the given object.  Note: OBJ_DEAD
415  *      objects can be referenced during final cleaning.
416  */
417 void
418 vm_object_reference(vm_object_t object)
419 {
420         if (object == NULL)
421                 return;
422         VM_OBJECT_WLOCK(object);
423         vm_object_reference_locked(object);
424         VM_OBJECT_WUNLOCK(object);
425 }
426
427 /*
428  *      vm_object_reference_locked:
429  *
430  *      Gets another reference to the given object.
431  *
432  *      The object must be locked.
433  */
434 void
435 vm_object_reference_locked(vm_object_t object)
436 {
437         struct vnode *vp;
438
439         VM_OBJECT_ASSERT_WLOCKED(object);
440         object->ref_count++;
441         if (object->type == OBJT_VNODE) {
442                 vp = object->handle;
443                 vref(vp);
444         }
445 }
446
447 /*
448  * Handle deallocating an object of type OBJT_VNODE.
449  */
450 static void
451 vm_object_vndeallocate(vm_object_t object)
452 {
453         struct vnode *vp = (struct vnode *) object->handle;
454
455         VM_OBJECT_ASSERT_WLOCKED(object);
456         KASSERT(object->type == OBJT_VNODE,
457             ("vm_object_vndeallocate: not a vnode object"));
458         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
459 #ifdef INVARIANTS
460         if (object->ref_count == 0) {
461                 vprint("vm_object_vndeallocate", vp);
462                 panic("vm_object_vndeallocate: bad object reference count");
463         }
464 #endif
465
466         if (object->ref_count > 1) {
467                 object->ref_count--;
468                 VM_OBJECT_WUNLOCK(object);
469                 /* vrele may need the vnode lock. */
470                 vrele(vp);
471         } else {
472                 vhold(vp);
473                 VM_OBJECT_WUNLOCK(object);
474                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
475                 vdrop(vp);
476                 VM_OBJECT_WLOCK(object);
477                 object->ref_count--;
478                 if (object->type == OBJT_DEAD) {
479                         VM_OBJECT_WUNLOCK(object);
480                         VOP_UNLOCK(vp, 0);
481                 } else {
482                         if (object->ref_count == 0)
483                                 VOP_UNSET_TEXT(vp);
484                         VM_OBJECT_WUNLOCK(object);
485                         vput(vp);
486                 }
487         }
488 }
489
490 /*
491  *      vm_object_deallocate:
492  *
493  *      Release a reference to the specified object,
494  *      gained either through a vm_object_allocate
495  *      or a vm_object_reference call.  When all references
496  *      are gone, storage associated with this object
497  *      may be relinquished.
498  *
499  *      No object may be locked.
500  */
501 void
502 vm_object_deallocate(vm_object_t object)
503 {
504         vm_object_t temp;
505
506         while (object != NULL) {
507                 VM_OBJECT_WLOCK(object);
508                 if (object->type == OBJT_VNODE) {
509                         vm_object_vndeallocate(object);
510                         return;
511                 }
512
513                 KASSERT(object->ref_count != 0,
514                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
515
516                 /*
517                  * If the reference count goes to 0 we start calling
518                  * vm_object_terminate() on the object chain.
519                  * A ref count of 1 may be a special case depending on the
520                  * shadow count being 0 or 1.
521                  */
522                 object->ref_count--;
523                 if (object->ref_count > 1) {
524                         VM_OBJECT_WUNLOCK(object);
525                         return;
526                 } else if (object->ref_count == 1) {
527                         if (object->shadow_count == 0 &&
528                             object->handle == NULL &&
529                             (object->type == OBJT_DEFAULT ||
530                              object->type == OBJT_SWAP)) {
531                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
532                         } else if ((object->shadow_count == 1) &&
533                             (object->handle == NULL) &&
534                             (object->type == OBJT_DEFAULT ||
535                              object->type == OBJT_SWAP)) {
536                                 vm_object_t robject;
537
538                                 robject = LIST_FIRST(&object->shadow_head);
539                                 KASSERT(robject != NULL,
540                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
541                                          object->ref_count,
542                                          object->shadow_count));
543                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
544                                         /*
545                                          * Avoid a potential deadlock.
546                                          */
547                                         object->ref_count++;
548                                         VM_OBJECT_WUNLOCK(object);
549                                         /*
550                                          * More likely than not the thread
551                                          * holding robject's lock has lower
552                                          * priority than the current thread.
553                                          * Let the lower priority thread run.
554                                          */
555                                         pause("vmo_de", 1);
556                                         continue;
557                                 }
558                                 /*
559                                  * Collapse object into its shadow unless its
560                                  * shadow is dead.  In that case, object will
561                                  * be deallocated by the thread that is
562                                  * deallocating its shadow.
563                                  */
564                                 if ((robject->flags & OBJ_DEAD) == 0 &&
565                                     (robject->handle == NULL) &&
566                                     (robject->type == OBJT_DEFAULT ||
567                                      robject->type == OBJT_SWAP)) {
568
569                                         robject->ref_count++;
570 retry:
571                                         if (robject->paging_in_progress) {
572                                                 VM_OBJECT_WUNLOCK(object);
573                                                 vm_object_pip_wait(robject,
574                                                     "objde1");
575                                                 temp = robject->backing_object;
576                                                 if (object == temp) {
577                                                         VM_OBJECT_WLOCK(object);
578                                                         goto retry;
579                                                 }
580                                         } else if (object->paging_in_progress) {
581                                                 VM_OBJECT_WUNLOCK(robject);
582                                                 object->flags |= OBJ_PIPWNT;
583                                                 VM_OBJECT_SLEEP(object, object,
584                                                     PDROP | PVM, "objde2", 0);
585                                                 VM_OBJECT_WLOCK(robject);
586                                                 temp = robject->backing_object;
587                                                 if (object == temp) {
588                                                         VM_OBJECT_WLOCK(object);
589                                                         goto retry;
590                                                 }
591                                         } else
592                                                 VM_OBJECT_WUNLOCK(object);
593
594                                         if (robject->ref_count == 1) {
595                                                 robject->ref_count--;
596                                                 object = robject;
597                                                 goto doterm;
598                                         }
599                                         object = robject;
600                                         vm_object_collapse(object);
601                                         VM_OBJECT_WUNLOCK(object);
602                                         continue;
603                                 }
604                                 VM_OBJECT_WUNLOCK(robject);
605                         }
606                         VM_OBJECT_WUNLOCK(object);
607                         return;
608                 }
609 doterm:
610                 temp = object->backing_object;
611                 if (temp != NULL) {
612                         VM_OBJECT_WLOCK(temp);
613                         LIST_REMOVE(object, shadow_list);
614                         temp->shadow_count--;
615                         VM_OBJECT_WUNLOCK(temp);
616                         object->backing_object = NULL;
617                 }
618                 /*
619                  * Don't double-terminate, we could be in a termination
620                  * recursion due to the terminate having to sync data
621                  * to disk.
622                  */
623                 if ((object->flags & OBJ_DEAD) == 0)
624                         vm_object_terminate(object);
625                 else
626                         VM_OBJECT_WUNLOCK(object);
627                 object = temp;
628         }
629 }
630
631 /*
632  *      vm_object_destroy removes the object from the global object list
633  *      and frees the space for the object.
634  */
635 void
636 vm_object_destroy(vm_object_t object)
637 {
638
639         /*
640          * Remove the object from the global object list.
641          */
642         mtx_lock(&vm_object_list_mtx);
643         TAILQ_REMOVE(&vm_object_list, object, object_list);
644         mtx_unlock(&vm_object_list_mtx);
645
646         /*
647          * Release the allocation charge.
648          */
649         if (object->cred != NULL) {
650                 KASSERT(object->type == OBJT_DEFAULT ||
651                     object->type == OBJT_SWAP,
652                     ("vm_object_terminate: non-swap obj %p has cred",
653                      object));
654                 swap_release_by_cred(object->charge, object->cred);
655                 object->charge = 0;
656                 crfree(object->cred);
657                 object->cred = NULL;
658         }
659
660         /*
661          * Free the space for the object.
662          */
663         uma_zfree(obj_zone, object);
664 }
665
666 /*
667  *      vm_object_terminate actually destroys the specified object, freeing
668  *      up all previously used resources.
669  *
670  *      The object must be locked.
671  *      This routine may block.
672  */
673 void
674 vm_object_terminate(vm_object_t object)
675 {
676         vm_page_t p, p_next;
677
678         VM_OBJECT_ASSERT_WLOCKED(object);
679
680         /*
681          * Make sure no one uses us.
682          */
683         vm_object_set_flag(object, OBJ_DEAD);
684
685         /*
686          * wait for the pageout daemon to be done with the object
687          */
688         vm_object_pip_wait(object, "objtrm");
689
690         KASSERT(!object->paging_in_progress,
691                 ("vm_object_terminate: pageout in progress"));
692
693         /*
694          * Clean and free the pages, as appropriate. All references to the
695          * object are gone, so we don't need to lock it.
696          */
697         if (object->type == OBJT_VNODE) {
698                 struct vnode *vp = (struct vnode *)object->handle;
699
700                 /*
701                  * Clean pages and flush buffers.
702                  */
703                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
704                 VM_OBJECT_WUNLOCK(object);
705
706                 vinvalbuf(vp, V_SAVE, 0, 0);
707
708                 VM_OBJECT_WLOCK(object);
709         }
710
711         KASSERT(object->ref_count == 0, 
712                 ("vm_object_terminate: object with references, ref_count=%d",
713                 object->ref_count));
714
715         /*
716          * Free any remaining pageable pages.  This also removes them from the
717          * paging queues.  However, don't free wired pages, just remove them
718          * from the object.  Rather than incrementally removing each page from
719          * the object, the page and object are reset to any empty state. 
720          */
721         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
722                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
723                     ("vm_object_terminate: freeing busy page %p", p));
724                 vm_page_lock(p);
725                 /*
726                  * Optimize the page's removal from the object by resetting
727                  * its "object" field.  Specifically, if the page is not
728                  * wired, then the effect of this assignment is that
729                  * vm_page_free()'s call to vm_page_remove() will return
730                  * immediately without modifying the page or the object.
731                  */ 
732                 p->object = NULL;
733                 if (p->wire_count == 0) {
734                         vm_page_free(p);
735                         PCPU_INC(cnt.v_pfree);
736                 }
737                 vm_page_unlock(p);
738         }
739         /*
740          * If the object contained any pages, then reset it to an empty state.
741          * None of the object's fields, including "resident_page_count", were
742          * modified by the preceding loop.
743          */
744         if (object->resident_page_count != 0) {
745                 object->root = NULL;
746                 TAILQ_INIT(&object->memq);
747                 object->resident_page_count = 0;
748                 if (object->type == OBJT_VNODE)
749                         vdrop(object->handle);
750         }
751
752 #if VM_NRESERVLEVEL > 0
753         if (__predict_false(!LIST_EMPTY(&object->rvq)))
754                 vm_reserv_break_all(object);
755 #endif
756         if (__predict_false(!vm_object_cache_is_empty(object)))
757                 vm_page_cache_free(object, 0, 0);
758
759         /*
760          * Let the pager know object is dead.
761          */
762         vm_pager_deallocate(object);
763         VM_OBJECT_WUNLOCK(object);
764
765         vm_object_destroy(object);
766 }
767
768 /*
769  * Make the page read-only so that we can clear the object flags.  However, if
770  * this is a nosync mmap then the object is likely to stay dirty so do not
771  * mess with the page and do not clear the object flags.  Returns TRUE if the
772  * page should be flushed, and FALSE otherwise.
773  */
774 static boolean_t
775 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
776 {
777
778         /*
779          * If we have been asked to skip nosync pages and this is a
780          * nosync page, skip it.  Note that the object flags were not
781          * cleared in this case so we do not have to set them.
782          */
783         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
784                 *clearobjflags = FALSE;
785                 return (FALSE);
786         } else {
787                 pmap_remove_write(p);
788                 return (p->dirty != 0);
789         }
790 }
791
792 /*
793  *      vm_object_page_clean
794  *
795  *      Clean all dirty pages in the specified range of object.  Leaves page 
796  *      on whatever queue it is currently on.   If NOSYNC is set then do not
797  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
798  *      leaving the object dirty.
799  *
800  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
801  *      synchronous clustering mode implementation.
802  *
803  *      Odd semantics: if start == end, we clean everything.
804  *
805  *      The object must be locked.
806  *
807  *      Returns FALSE if some page from the range was not written, as
808  *      reported by the pager, and TRUE otherwise.
809  */
810 boolean_t
811 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
812     int flags)
813 {
814         vm_page_t np, p;
815         vm_pindex_t pi, tend, tstart;
816         int curgeneration, n, pagerflags;
817         boolean_t clearobjflags, eio, res;
818
819         VM_OBJECT_ASSERT_WLOCKED(object);
820         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
821         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
822             object->resident_page_count == 0)
823                 return (TRUE);
824
825         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
826             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
827         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
828
829         tstart = OFF_TO_IDX(start);
830         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
831         clearobjflags = tstart == 0 && tend >= object->size;
832         res = TRUE;
833
834 rescan:
835         curgeneration = object->generation;
836
837         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
838                 pi = p->pindex;
839                 if (pi >= tend)
840                         break;
841                 np = TAILQ_NEXT(p, listq);
842                 if (p->valid == 0)
843                         continue;
844                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
845                         if (object->generation != curgeneration) {
846                                 if ((flags & OBJPC_SYNC) != 0)
847                                         goto rescan;
848                                 else
849                                         clearobjflags = FALSE;
850                         }
851                         np = vm_page_find_least(object, pi);
852                         continue;
853                 }
854                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
855                         continue;
856
857                 n = vm_object_page_collect_flush(object, p, pagerflags,
858                     flags, &clearobjflags, &eio);
859                 if (eio) {
860                         res = FALSE;
861                         clearobjflags = FALSE;
862                 }
863                 if (object->generation != curgeneration) {
864                         if ((flags & OBJPC_SYNC) != 0)
865                                 goto rescan;
866                         else
867                                 clearobjflags = FALSE;
868                 }
869
870                 /*
871                  * If the VOP_PUTPAGES() did a truncated write, so
872                  * that even the first page of the run is not fully
873                  * written, vm_pageout_flush() returns 0 as the run
874                  * length.  Since the condition that caused truncated
875                  * write may be permanent, e.g. exhausted free space,
876                  * accepting n == 0 would cause an infinite loop.
877                  *
878                  * Forwarding the iterator leaves the unwritten page
879                  * behind, but there is not much we can do there if
880                  * filesystem refuses to write it.
881                  */
882                 if (n == 0) {
883                         n = 1;
884                         clearobjflags = FALSE;
885                 }
886                 np = vm_page_find_least(object, pi + n);
887         }
888 #if 0
889         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
890 #endif
891
892         if (clearobjflags)
893                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
894         return (res);
895 }
896
897 static int
898 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
899     int flags, boolean_t *clearobjflags, boolean_t *eio)
900 {
901         vm_page_t ma[vm_pageout_page_count], p_first, tp;
902         int count, i, mreq, runlen;
903
904         vm_page_lock_assert(p, MA_NOTOWNED);
905         VM_OBJECT_ASSERT_WLOCKED(object);
906
907         count = 1;
908         mreq = 0;
909
910         for (tp = p; count < vm_pageout_page_count; count++) {
911                 tp = vm_page_next(tp);
912                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
913                         break;
914                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
915                         break;
916         }
917
918         for (p_first = p; count < vm_pageout_page_count; count++) {
919                 tp = vm_page_prev(p_first);
920                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
921                         break;
922                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
923                         break;
924                 p_first = tp;
925                 mreq++;
926         }
927
928         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
929                 ma[i] = tp;
930
931         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
932         return (runlen);
933 }
934
935 /*
936  * Note that there is absolutely no sense in writing out
937  * anonymous objects, so we track down the vnode object
938  * to write out.
939  * We invalidate (remove) all pages from the address space
940  * for semantic correctness.
941  *
942  * If the backing object is a device object with unmanaged pages, then any
943  * mappings to the specified range of pages must be removed before this
944  * function is called.
945  *
946  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
947  * may start out with a NULL object.
948  */
949 boolean_t
950 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
951     boolean_t syncio, boolean_t invalidate)
952 {
953         vm_object_t backing_object;
954         struct vnode *vp;
955         struct mount *mp;
956         int error, flags, fsync_after;
957         boolean_t res;
958
959         if (object == NULL)
960                 return (TRUE);
961         res = TRUE;
962         error = 0;
963         VM_OBJECT_WLOCK(object);
964         while ((backing_object = object->backing_object) != NULL) {
965                 VM_OBJECT_WLOCK(backing_object);
966                 offset += object->backing_object_offset;
967                 VM_OBJECT_WUNLOCK(object);
968                 object = backing_object;
969                 if (object->size < OFF_TO_IDX(offset + size))
970                         size = IDX_TO_OFF(object->size) - offset;
971         }
972         /*
973          * Flush pages if writing is allowed, invalidate them
974          * if invalidation requested.  Pages undergoing I/O
975          * will be ignored by vm_object_page_remove().
976          *
977          * We cannot lock the vnode and then wait for paging
978          * to complete without deadlocking against vm_fault.
979          * Instead we simply call vm_object_page_remove() and
980          * allow it to block internally on a page-by-page
981          * basis when it encounters pages undergoing async
982          * I/O.
983          */
984         if (object->type == OBJT_VNODE &&
985             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
986                 vp = object->handle;
987                 VM_OBJECT_WUNLOCK(object);
988                 (void) vn_start_write(vp, &mp, V_WAIT);
989                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
990                 if (syncio && !invalidate && offset == 0 &&
991                     OFF_TO_IDX(size) == object->size) {
992                         /*
993                          * If syncing the whole mapping of the file,
994                          * it is faster to schedule all the writes in
995                          * async mode, also allowing the clustering,
996                          * and then wait for i/o to complete.
997                          */
998                         flags = 0;
999                         fsync_after = TRUE;
1000                 } else {
1001                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1002                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1003                         fsync_after = FALSE;
1004                 }
1005                 VM_OBJECT_WLOCK(object);
1006                 res = vm_object_page_clean(object, offset, offset + size,
1007                     flags);
1008                 VM_OBJECT_WUNLOCK(object);
1009                 if (fsync_after)
1010                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1011                 VOP_UNLOCK(vp, 0);
1012                 vn_finished_write(mp);
1013                 if (error != 0)
1014                         res = FALSE;
1015                 VM_OBJECT_WLOCK(object);
1016         }
1017         if ((object->type == OBJT_VNODE ||
1018              object->type == OBJT_DEVICE) && invalidate) {
1019                 if (object->type == OBJT_DEVICE)
1020                         /*
1021                          * The option OBJPR_NOTMAPPED must be passed here
1022                          * because vm_object_page_remove() cannot remove
1023                          * unmanaged mappings.
1024                          */
1025                         flags = OBJPR_NOTMAPPED;
1026                 else if (old_msync)
1027                         flags = 0;
1028                 else
1029                         flags = OBJPR_CLEANONLY;
1030                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1031                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1032         }
1033         VM_OBJECT_WUNLOCK(object);
1034         return (res);
1035 }
1036
1037 /*
1038  *      vm_object_madvise:
1039  *
1040  *      Implements the madvise function at the object/page level.
1041  *
1042  *      MADV_WILLNEED   (any object)
1043  *
1044  *          Activate the specified pages if they are resident.
1045  *
1046  *      MADV_DONTNEED   (any object)
1047  *
1048  *          Deactivate the specified pages if they are resident.
1049  *
1050  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1051  *                       OBJ_ONEMAPPING only)
1052  *
1053  *          Deactivate and clean the specified pages if they are
1054  *          resident.  This permits the process to reuse the pages
1055  *          without faulting or the kernel to reclaim the pages
1056  *          without I/O.
1057  */
1058 void
1059 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1060     int advise)
1061 {
1062         vm_pindex_t tpindex;
1063         vm_object_t backing_object, tobject;
1064         vm_page_t m;
1065
1066         if (object == NULL)
1067                 return;
1068         VM_OBJECT_WLOCK(object);
1069         /*
1070          * Locate and adjust resident pages
1071          */
1072         for (; pindex < end; pindex += 1) {
1073 relookup:
1074                 tobject = object;
1075                 tpindex = pindex;
1076 shadowlookup:
1077                 /*
1078                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1079                  * and those pages must be OBJ_ONEMAPPING.
1080                  */
1081                 if (advise == MADV_FREE) {
1082                         if ((tobject->type != OBJT_DEFAULT &&
1083                              tobject->type != OBJT_SWAP) ||
1084                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1085                                 goto unlock_tobject;
1086                         }
1087                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1088                         goto unlock_tobject;
1089                 m = vm_page_lookup(tobject, tpindex);
1090                 if (m == NULL && advise == MADV_WILLNEED) {
1091                         /*
1092                          * If the page is cached, reactivate it.
1093                          */
1094                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1095                             VM_ALLOC_NOBUSY);
1096                 }
1097                 if (m == NULL) {
1098                         /*
1099                          * There may be swap even if there is no backing page
1100                          */
1101                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1102                                 swap_pager_freespace(tobject, tpindex, 1);
1103                         /*
1104                          * next object
1105                          */
1106                         backing_object = tobject->backing_object;
1107                         if (backing_object == NULL)
1108                                 goto unlock_tobject;
1109                         VM_OBJECT_WLOCK(backing_object);
1110                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1111                         if (tobject != object)
1112                                 VM_OBJECT_WUNLOCK(tobject);
1113                         tobject = backing_object;
1114                         goto shadowlookup;
1115                 } else if (m->valid != VM_PAGE_BITS_ALL)
1116                         goto unlock_tobject;
1117                 /*
1118                  * If the page is not in a normal state, skip it.
1119                  */
1120                 vm_page_lock(m);
1121                 if (m->hold_count != 0 || m->wire_count != 0) {
1122                         vm_page_unlock(m);
1123                         goto unlock_tobject;
1124                 }
1125                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1126                     ("vm_object_madvise: page %p is fictitious", m));
1127                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1128                     ("vm_object_madvise: page %p is not managed", m));
1129                 if ((m->oflags & VPO_BUSY) || m->busy) {
1130                         if (advise == MADV_WILLNEED) {
1131                                 /*
1132                                  * Reference the page before unlocking and
1133                                  * sleeping so that the page daemon is less
1134                                  * likely to reclaim it. 
1135                                  */
1136                                 vm_page_aflag_set(m, PGA_REFERENCED);
1137                         }
1138                         vm_page_unlock(m);
1139                         if (object != tobject)
1140                                 VM_OBJECT_WUNLOCK(object);
1141                         m->oflags |= VPO_WANTED;
1142                         VM_OBJECT_SLEEP(tobject, m, PDROP | PVM, "madvpo", 0);
1143                         VM_OBJECT_WLOCK(object);
1144                         goto relookup;
1145                 }
1146                 if (advise == MADV_WILLNEED) {
1147                         vm_page_activate(m);
1148                 } else if (advise == MADV_DONTNEED) {
1149                         vm_page_dontneed(m);
1150                 } else if (advise == MADV_FREE) {
1151                         /*
1152                          * Mark the page clean.  This will allow the page
1153                          * to be freed up by the system.  However, such pages
1154                          * are often reused quickly by malloc()/free()
1155                          * so we do not do anything that would cause
1156                          * a page fault if we can help it.
1157                          *
1158                          * Specifically, we do not try to actually free
1159                          * the page now nor do we try to put it in the
1160                          * cache (which would cause a page fault on reuse).
1161                          *
1162                          * But we do make the page is freeable as we
1163                          * can without actually taking the step of unmapping
1164                          * it.
1165                          */
1166                         pmap_clear_modify(m);
1167                         m->dirty = 0;
1168                         m->act_count = 0;
1169                         vm_page_dontneed(m);
1170                 }
1171                 vm_page_unlock(m);
1172                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1173                         swap_pager_freespace(tobject, tpindex, 1);
1174 unlock_tobject:
1175                 if (tobject != object)
1176                         VM_OBJECT_WUNLOCK(tobject);
1177         }       
1178         VM_OBJECT_WUNLOCK(object);
1179 }
1180
1181 /*
1182  *      vm_object_shadow:
1183  *
1184  *      Create a new object which is backed by the
1185  *      specified existing object range.  The source
1186  *      object reference is deallocated.
1187  *
1188  *      The new object and offset into that object
1189  *      are returned in the source parameters.
1190  */
1191 void
1192 vm_object_shadow(
1193         vm_object_t *object,    /* IN/OUT */
1194         vm_ooffset_t *offset,   /* IN/OUT */
1195         vm_size_t length)
1196 {
1197         vm_object_t source;
1198         vm_object_t result;
1199
1200         source = *object;
1201
1202         /*
1203          * Don't create the new object if the old object isn't shared.
1204          */
1205         if (source != NULL) {
1206                 VM_OBJECT_WLOCK(source);
1207                 if (source->ref_count == 1 &&
1208                     source->handle == NULL &&
1209                     (source->type == OBJT_DEFAULT ||
1210                      source->type == OBJT_SWAP)) {
1211                         VM_OBJECT_WUNLOCK(source);
1212                         return;
1213                 }
1214                 VM_OBJECT_WUNLOCK(source);
1215         }
1216
1217         /*
1218          * Allocate a new object with the given length.
1219          */
1220         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1221
1222         /*
1223          * The new object shadows the source object, adding a reference to it.
1224          * Our caller changes his reference to point to the new object,
1225          * removing a reference to the source object.  Net result: no change
1226          * of reference count.
1227          *
1228          * Try to optimize the result object's page color when shadowing
1229          * in order to maintain page coloring consistency in the combined 
1230          * shadowed object.
1231          */
1232         result->backing_object = source;
1233         /*
1234          * Store the offset into the source object, and fix up the offset into
1235          * the new object.
1236          */
1237         result->backing_object_offset = *offset;
1238         if (source != NULL) {
1239                 VM_OBJECT_WLOCK(source);
1240                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1241                 source->shadow_count++;
1242 #if VM_NRESERVLEVEL > 0
1243                 result->flags |= source->flags & OBJ_COLORED;
1244                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1245                     ((1 << (VM_NFREEORDER - 1)) - 1);
1246 #endif
1247                 VM_OBJECT_WUNLOCK(source);
1248         }
1249
1250
1251         /*
1252          * Return the new things
1253          */
1254         *offset = 0;
1255         *object = result;
1256 }
1257
1258 /*
1259  *      vm_object_split:
1260  *
1261  * Split the pages in a map entry into a new object.  This affords
1262  * easier removal of unused pages, and keeps object inheritance from
1263  * being a negative impact on memory usage.
1264  */
1265 void
1266 vm_object_split(vm_map_entry_t entry)
1267 {
1268         vm_page_t m, m_next;
1269         vm_object_t orig_object, new_object, source;
1270         vm_pindex_t idx, offidxstart;
1271         vm_size_t size;
1272
1273         orig_object = entry->object.vm_object;
1274         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1275                 return;
1276         if (orig_object->ref_count <= 1)
1277                 return;
1278         VM_OBJECT_WUNLOCK(orig_object);
1279
1280         offidxstart = OFF_TO_IDX(entry->offset);
1281         size = atop(entry->end - entry->start);
1282
1283         /*
1284          * If swap_pager_copy() is later called, it will convert new_object
1285          * into a swap object.
1286          */
1287         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1288
1289         /*
1290          * At this point, the new object is still private, so the order in
1291          * which the original and new objects are locked does not matter.
1292          */
1293         VM_OBJECT_WLOCK(new_object);
1294         VM_OBJECT_WLOCK(orig_object);
1295         source = orig_object->backing_object;
1296         if (source != NULL) {
1297                 VM_OBJECT_WLOCK(source);
1298                 if ((source->flags & OBJ_DEAD) != 0) {
1299                         VM_OBJECT_WUNLOCK(source);
1300                         VM_OBJECT_WUNLOCK(orig_object);
1301                         VM_OBJECT_WUNLOCK(new_object);
1302                         vm_object_deallocate(new_object);
1303                         VM_OBJECT_WLOCK(orig_object);
1304                         return;
1305                 }
1306                 LIST_INSERT_HEAD(&source->shadow_head,
1307                                   new_object, shadow_list);
1308                 source->shadow_count++;
1309                 vm_object_reference_locked(source);     /* for new_object */
1310                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1311                 VM_OBJECT_WUNLOCK(source);
1312                 new_object->backing_object_offset = 
1313                         orig_object->backing_object_offset + entry->offset;
1314                 new_object->backing_object = source;
1315         }
1316         if (orig_object->cred != NULL) {
1317                 new_object->cred = orig_object->cred;
1318                 crhold(orig_object->cred);
1319                 new_object->charge = ptoa(size);
1320                 KASSERT(orig_object->charge >= ptoa(size),
1321                     ("orig_object->charge < 0"));
1322                 orig_object->charge -= ptoa(size);
1323         }
1324 retry:
1325         m = vm_page_find_least(orig_object, offidxstart);
1326         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1327             m = m_next) {
1328                 m_next = TAILQ_NEXT(m, listq);
1329
1330                 /*
1331                  * We must wait for pending I/O to complete before we can
1332                  * rename the page.
1333                  *
1334                  * We do not have to VM_PROT_NONE the page as mappings should
1335                  * not be changed by this operation.
1336                  */
1337                 if ((m->oflags & VPO_BUSY) || m->busy) {
1338                         VM_OBJECT_WUNLOCK(new_object);
1339                         m->oflags |= VPO_WANTED;
1340                         VM_OBJECT_SLEEP(orig_object, m, PVM, "spltwt", 0);
1341                         VM_OBJECT_WLOCK(new_object);
1342                         goto retry;
1343                 }
1344 #if VM_NRESERVLEVEL > 0
1345                 /*
1346                  * If some of the reservation's allocated pages remain with
1347                  * the original object, then transferring the reservation to
1348                  * the new object is neither particularly beneficial nor
1349                  * particularly harmful as compared to leaving the reservation
1350                  * with the original object.  If, however, all of the
1351                  * reservation's allocated pages are transferred to the new
1352                  * object, then transferring the reservation is typically
1353                  * beneficial.  Determining which of these two cases applies
1354                  * would be more costly than unconditionally renaming the
1355                  * reservation.
1356                  */
1357                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1358 #endif
1359                 vm_page_lock(m);
1360                 vm_page_rename(m, new_object, idx);
1361                 vm_page_unlock(m);
1362                 /* page automatically made dirty by rename and cache handled */
1363                 vm_page_busy(m);
1364         }
1365         if (orig_object->type == OBJT_SWAP) {
1366                 /*
1367                  * swap_pager_copy() can sleep, in which case the orig_object's
1368                  * and new_object's locks are released and reacquired. 
1369                  */
1370                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1371
1372                 /*
1373                  * Transfer any cached pages from orig_object to new_object.
1374                  * If swap_pager_copy() found swapped out pages within the
1375                  * specified range of orig_object, then it changed
1376                  * new_object's type to OBJT_SWAP when it transferred those
1377                  * pages to new_object.  Otherwise, new_object's type
1378                  * should still be OBJT_DEFAULT and orig_object should not
1379                  * contain any cached pages within the specified range.
1380                  */
1381                 if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1382                         vm_page_cache_transfer(orig_object, offidxstart,
1383                             new_object);
1384         }
1385         VM_OBJECT_WUNLOCK(orig_object);
1386         TAILQ_FOREACH(m, &new_object->memq, listq)
1387                 vm_page_wakeup(m);
1388         VM_OBJECT_WUNLOCK(new_object);
1389         entry->object.vm_object = new_object;
1390         entry->offset = 0LL;
1391         vm_object_deallocate(orig_object);
1392         VM_OBJECT_WLOCK(new_object);
1393 }
1394
1395 #define OBSC_TEST_ALL_SHADOWED  0x0001
1396 #define OBSC_COLLAPSE_NOWAIT    0x0002
1397 #define OBSC_COLLAPSE_WAIT      0x0004
1398
1399 static int
1400 vm_object_backing_scan(vm_object_t object, int op)
1401 {
1402         int r = 1;
1403         vm_page_t p;
1404         vm_object_t backing_object;
1405         vm_pindex_t backing_offset_index;
1406
1407         VM_OBJECT_ASSERT_WLOCKED(object);
1408         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1409
1410         backing_object = object->backing_object;
1411         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1412
1413         /*
1414          * Initial conditions
1415          */
1416         if (op & OBSC_TEST_ALL_SHADOWED) {
1417                 /*
1418                  * We do not want to have to test for the existence of cache
1419                  * or swap pages in the backing object.  XXX but with the
1420                  * new swapper this would be pretty easy to do.
1421                  *
1422                  * XXX what about anonymous MAP_SHARED memory that hasn't
1423                  * been ZFOD faulted yet?  If we do not test for this, the
1424                  * shadow test may succeed! XXX
1425                  */
1426                 if (backing_object->type != OBJT_DEFAULT) {
1427                         return (0);
1428                 }
1429         }
1430         if (op & OBSC_COLLAPSE_WAIT) {
1431                 vm_object_set_flag(backing_object, OBJ_DEAD);
1432         }
1433
1434         /*
1435          * Our scan
1436          */
1437         p = TAILQ_FIRST(&backing_object->memq);
1438         while (p) {
1439                 vm_page_t next = TAILQ_NEXT(p, listq);
1440                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1441
1442                 if (op & OBSC_TEST_ALL_SHADOWED) {
1443                         vm_page_t pp;
1444
1445                         /*
1446                          * Ignore pages outside the parent object's range
1447                          * and outside the parent object's mapping of the 
1448                          * backing object.
1449                          *
1450                          * note that we do not busy the backing object's
1451                          * page.
1452                          */
1453                         if (
1454                             p->pindex < backing_offset_index ||
1455                             new_pindex >= object->size
1456                         ) {
1457                                 p = next;
1458                                 continue;
1459                         }
1460
1461                         /*
1462                          * See if the parent has the page or if the parent's
1463                          * object pager has the page.  If the parent has the
1464                          * page but the page is not valid, the parent's
1465                          * object pager must have the page.
1466                          *
1467                          * If this fails, the parent does not completely shadow
1468                          * the object and we might as well give up now.
1469                          */
1470
1471                         pp = vm_page_lookup(object, new_pindex);
1472                         if (
1473                             (pp == NULL || pp->valid == 0) &&
1474                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1475                         ) {
1476                                 r = 0;
1477                                 break;
1478                         }
1479                 }
1480
1481                 /*
1482                  * Check for busy page
1483                  */
1484                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1485                         vm_page_t pp;
1486
1487                         if (op & OBSC_COLLAPSE_NOWAIT) {
1488                                 if ((p->oflags & VPO_BUSY) ||
1489                                     !p->valid || 
1490                                     p->busy) {
1491                                         p = next;
1492                                         continue;
1493                                 }
1494                         } else if (op & OBSC_COLLAPSE_WAIT) {
1495                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1496                                         VM_OBJECT_WUNLOCK(object);
1497                                         p->oflags |= VPO_WANTED;
1498                                         VM_OBJECT_SLEEP(backing_object, p,
1499                                             PDROP | PVM, "vmocol", 0);
1500                                         VM_OBJECT_WLOCK(object);
1501                                         VM_OBJECT_WLOCK(backing_object);
1502                                         /*
1503                                          * If we slept, anything could have
1504                                          * happened.  Since the object is
1505                                          * marked dead, the backing offset
1506                                          * should not have changed so we
1507                                          * just restart our scan.
1508                                          */
1509                                         p = TAILQ_FIRST(&backing_object->memq);
1510                                         continue;
1511                                 }
1512                         }
1513
1514                         KASSERT(
1515                             p->object == backing_object,
1516                             ("vm_object_backing_scan: object mismatch")
1517                         );
1518
1519                         /*
1520                          * Destroy any associated swap
1521                          */
1522                         if (backing_object->type == OBJT_SWAP) {
1523                                 swap_pager_freespace(
1524                                     backing_object, 
1525                                     p->pindex,
1526                                     1
1527                                 );
1528                         }
1529
1530                         if (
1531                             p->pindex < backing_offset_index ||
1532                             new_pindex >= object->size
1533                         ) {
1534                                 /*
1535                                  * Page is out of the parent object's range, we 
1536                                  * can simply destroy it. 
1537                                  */
1538                                 vm_page_lock(p);
1539                                 KASSERT(!pmap_page_is_mapped(p),
1540                                     ("freeing mapped page %p", p));
1541                                 if (p->wire_count == 0)
1542                                         vm_page_free(p);
1543                                 else
1544                                         vm_page_remove(p);
1545                                 vm_page_unlock(p);
1546                                 p = next;
1547                                 continue;
1548                         }
1549
1550                         pp = vm_page_lookup(object, new_pindex);
1551                         if (
1552                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1553                             (pp != NULL && pp->valid == 0)
1554                         ) {
1555                                 /*
1556                                  * The page in the parent is not (yet) valid.
1557                                  * We don't know anything about the state of
1558                                  * the original page.  It might be mapped,
1559                                  * so we must avoid the next if here.
1560                                  *
1561                                  * This is due to a race in vm_fault() where
1562                                  * we must unbusy the original (backing_obj)
1563                                  * page before we can (re)lock the parent.
1564                                  * Hence we can get here.
1565                                  */
1566                                 p = next;
1567                                 continue;
1568                         }
1569                         if (
1570                             pp != NULL ||
1571                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1572                         ) {
1573                                 /*
1574                                  * page already exists in parent OR swap exists
1575                                  * for this location in the parent.  Destroy 
1576                                  * the original page from the backing object.
1577                                  *
1578                                  * Leave the parent's page alone
1579                                  */
1580                                 vm_page_lock(p);
1581                                 KASSERT(!pmap_page_is_mapped(p),
1582                                     ("freeing mapped page %p", p));
1583                                 if (p->wire_count == 0)
1584                                         vm_page_free(p);
1585                                 else
1586                                         vm_page_remove(p);
1587                                 vm_page_unlock(p);
1588                                 p = next;
1589                                 continue;
1590                         }
1591
1592 #if VM_NRESERVLEVEL > 0
1593                         /*
1594                          * Rename the reservation.
1595                          */
1596                         vm_reserv_rename(p, object, backing_object,
1597                             backing_offset_index);
1598 #endif
1599
1600                         /*
1601                          * Page does not exist in parent, rename the
1602                          * page from the backing object to the main object. 
1603                          *
1604                          * If the page was mapped to a process, it can remain 
1605                          * mapped through the rename.
1606                          */
1607                         vm_page_lock(p);
1608                         vm_page_rename(p, object, new_pindex);
1609                         vm_page_unlock(p);
1610                         /* page automatically made dirty by rename */
1611                 }
1612                 p = next;
1613         }
1614         return (r);
1615 }
1616
1617
1618 /*
1619  * this version of collapse allows the operation to occur earlier and
1620  * when paging_in_progress is true for an object...  This is not a complete
1621  * operation, but should plug 99.9% of the rest of the leaks.
1622  */
1623 static void
1624 vm_object_qcollapse(vm_object_t object)
1625 {
1626         vm_object_t backing_object = object->backing_object;
1627
1628         VM_OBJECT_ASSERT_WLOCKED(object);
1629         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1630
1631         if (backing_object->ref_count != 1)
1632                 return;
1633
1634         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1635 }
1636
1637 /*
1638  *      vm_object_collapse:
1639  *
1640  *      Collapse an object with the object backing it.
1641  *      Pages in the backing object are moved into the
1642  *      parent, and the backing object is deallocated.
1643  */
1644 void
1645 vm_object_collapse(vm_object_t object)
1646 {
1647         VM_OBJECT_ASSERT_WLOCKED(object);
1648         
1649         while (TRUE) {
1650                 vm_object_t backing_object;
1651
1652                 /*
1653                  * Verify that the conditions are right for collapse:
1654                  *
1655                  * The object exists and the backing object exists.
1656                  */
1657                 if ((backing_object = object->backing_object) == NULL)
1658                         break;
1659
1660                 /*
1661                  * we check the backing object first, because it is most likely
1662                  * not collapsable.
1663                  */
1664                 VM_OBJECT_WLOCK(backing_object);
1665                 if (backing_object->handle != NULL ||
1666                     (backing_object->type != OBJT_DEFAULT &&
1667                      backing_object->type != OBJT_SWAP) ||
1668                     (backing_object->flags & OBJ_DEAD) ||
1669                     object->handle != NULL ||
1670                     (object->type != OBJT_DEFAULT &&
1671                      object->type != OBJT_SWAP) ||
1672                     (object->flags & OBJ_DEAD)) {
1673                         VM_OBJECT_WUNLOCK(backing_object);
1674                         break;
1675                 }
1676
1677                 if (
1678                     object->paging_in_progress != 0 ||
1679                     backing_object->paging_in_progress != 0
1680                 ) {
1681                         vm_object_qcollapse(object);
1682                         VM_OBJECT_WUNLOCK(backing_object);
1683                         break;
1684                 }
1685                 /*
1686                  * We know that we can either collapse the backing object (if
1687                  * the parent is the only reference to it) or (perhaps) have
1688                  * the parent bypass the object if the parent happens to shadow
1689                  * all the resident pages in the entire backing object.
1690                  *
1691                  * This is ignoring pager-backed pages such as swap pages.
1692                  * vm_object_backing_scan fails the shadowing test in this
1693                  * case.
1694                  */
1695                 if (backing_object->ref_count == 1) {
1696                         /*
1697                          * If there is exactly one reference to the backing
1698                          * object, we can collapse it into the parent.  
1699                          */
1700                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1701
1702 #if VM_NRESERVLEVEL > 0
1703                         /*
1704                          * Break any reservations from backing_object.
1705                          */
1706                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1707                                 vm_reserv_break_all(backing_object);
1708 #endif
1709
1710                         /*
1711                          * Move the pager from backing_object to object.
1712                          */
1713                         if (backing_object->type == OBJT_SWAP) {
1714                                 /*
1715                                  * swap_pager_copy() can sleep, in which case
1716                                  * the backing_object's and object's locks are
1717                                  * released and reacquired.
1718                                  * Since swap_pager_copy() is being asked to
1719                                  * destroy the source, it will change the
1720                                  * backing_object's type to OBJT_DEFAULT.
1721                                  */
1722                                 swap_pager_copy(
1723                                     backing_object,
1724                                     object,
1725                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1726
1727                                 /*
1728                                  * Free any cached pages from backing_object.
1729                                  */
1730                                 if (__predict_false(
1731                                     !vm_object_cache_is_empty(backing_object)))
1732                                         vm_page_cache_free(backing_object, 0, 0);
1733                         }
1734                         /*
1735                          * Object now shadows whatever backing_object did.
1736                          * Note that the reference to 
1737                          * backing_object->backing_object moves from within 
1738                          * backing_object to within object.
1739                          */
1740                         LIST_REMOVE(object, shadow_list);
1741                         backing_object->shadow_count--;
1742                         if (backing_object->backing_object) {
1743                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1744                                 LIST_REMOVE(backing_object, shadow_list);
1745                                 LIST_INSERT_HEAD(
1746                                     &backing_object->backing_object->shadow_head,
1747                                     object, shadow_list);
1748                                 /*
1749                                  * The shadow_count has not changed.
1750                                  */
1751                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1752                         }
1753                         object->backing_object = backing_object->backing_object;
1754                         object->backing_object_offset +=
1755                             backing_object->backing_object_offset;
1756
1757                         /*
1758                          * Discard backing_object.
1759                          *
1760                          * Since the backing object has no pages, no pager left,
1761                          * and no object references within it, all that is
1762                          * necessary is to dispose of it.
1763                          */
1764                         KASSERT(backing_object->ref_count == 1, (
1765 "backing_object %p was somehow re-referenced during collapse!",
1766                             backing_object));
1767                         VM_OBJECT_WUNLOCK(backing_object);
1768                         vm_object_destroy(backing_object);
1769
1770                         object_collapses++;
1771                 } else {
1772                         vm_object_t new_backing_object;
1773
1774                         /*
1775                          * If we do not entirely shadow the backing object,
1776                          * there is nothing we can do so we give up.
1777                          */
1778                         if (object->resident_page_count != object->size &&
1779                             vm_object_backing_scan(object,
1780                             OBSC_TEST_ALL_SHADOWED) == 0) {
1781                                 VM_OBJECT_WUNLOCK(backing_object);
1782                                 break;
1783                         }
1784
1785                         /*
1786                          * Make the parent shadow the next object in the
1787                          * chain.  Deallocating backing_object will not remove
1788                          * it, since its reference count is at least 2.
1789                          */
1790                         LIST_REMOVE(object, shadow_list);
1791                         backing_object->shadow_count--;
1792
1793                         new_backing_object = backing_object->backing_object;
1794                         if ((object->backing_object = new_backing_object) != NULL) {
1795                                 VM_OBJECT_WLOCK(new_backing_object);
1796                                 LIST_INSERT_HEAD(
1797                                     &new_backing_object->shadow_head,
1798                                     object,
1799                                     shadow_list
1800                                 );
1801                                 new_backing_object->shadow_count++;
1802                                 vm_object_reference_locked(new_backing_object);
1803                                 VM_OBJECT_WUNLOCK(new_backing_object);
1804                                 object->backing_object_offset +=
1805                                         backing_object->backing_object_offset;
1806                         }
1807
1808                         /*
1809                          * Drop the reference count on backing_object. Since
1810                          * its ref_count was at least 2, it will not vanish.
1811                          */
1812                         backing_object->ref_count--;
1813                         VM_OBJECT_WUNLOCK(backing_object);
1814                         object_bypasses++;
1815                 }
1816
1817                 /*
1818                  * Try again with this object's new backing object.
1819                  */
1820         }
1821 }
1822
1823 /*
1824  *      vm_object_page_remove:
1825  *
1826  *      For the given object, either frees or invalidates each of the
1827  *      specified pages.  In general, a page is freed.  However, if a page is
1828  *      wired for any reason other than the existence of a managed, wired
1829  *      mapping, then it may be invalidated but not removed from the object.
1830  *      Pages are specified by the given range ["start", "end") and the option
1831  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1832  *      extends from "start" to the end of the object.  If the option
1833  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1834  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1835  *      specified, then the pages within the specified range must have no
1836  *      mappings.  Otherwise, if this option is not specified, any mappings to
1837  *      the specified pages are removed before the pages are freed or
1838  *      invalidated.
1839  *
1840  *      In general, this operation should only be performed on objects that
1841  *      contain managed pages.  There are, however, two exceptions.  First, it
1842  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1843  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1844  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1845  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1846  *
1847  *      The object must be locked.
1848  */
1849 void
1850 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1851     int options)
1852 {
1853         vm_page_t p, next;
1854         int wirings;
1855
1856         VM_OBJECT_ASSERT_WLOCKED(object);
1857         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1858             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1859             ("vm_object_page_remove: illegal options for object %p", object));
1860         if (object->resident_page_count == 0)
1861                 goto skipmemq;
1862         vm_object_pip_add(object, 1);
1863 again:
1864         p = vm_page_find_least(object, start);
1865
1866         /*
1867          * Here, the variable "p" is either (1) the page with the least pindex
1868          * greater than or equal to the parameter "start" or (2) NULL. 
1869          */
1870         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1871                 next = TAILQ_NEXT(p, listq);
1872
1873                 /*
1874                  * If the page is wired for any reason besides the existence
1875                  * of managed, wired mappings, then it cannot be freed.  For
1876                  * example, fictitious pages, which represent device memory,
1877                  * are inherently wired and cannot be freed.  They can,
1878                  * however, be invalidated if the option OBJPR_CLEANONLY is
1879                  * not specified.
1880                  */
1881                 vm_page_lock(p);
1882                 if ((wirings = p->wire_count) != 0 &&
1883                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1884                         if ((options & OBJPR_NOTMAPPED) == 0) {
1885                                 pmap_remove_all(p);
1886                                 /* Account for removal of wired mappings. */
1887                                 if (wirings != 0)
1888                                         p->wire_count -= wirings;
1889                         }
1890                         if ((options & OBJPR_CLEANONLY) == 0) {
1891                                 p->valid = 0;
1892                                 vm_page_undirty(p);
1893                         }
1894                         vm_page_unlock(p);
1895                         continue;
1896                 }
1897                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1898                         goto again;
1899                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1900                     ("vm_object_page_remove: page %p is fictitious", p));
1901                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1902                         if ((options & OBJPR_NOTMAPPED) == 0)
1903                                 pmap_remove_write(p);
1904                         if (p->dirty) {
1905                                 vm_page_unlock(p);
1906                                 continue;
1907                         }
1908                 }
1909                 if ((options & OBJPR_NOTMAPPED) == 0) {
1910                         pmap_remove_all(p);
1911                         /* Account for removal of wired mappings. */
1912                         if (wirings != 0) {
1913                                 KASSERT(p->wire_count == wirings,
1914                                     ("inconsistent wire count %d %d %p",
1915                                     p->wire_count, wirings, p));
1916                                 p->wire_count = 0;
1917                                 atomic_subtract_int(&cnt.v_wire_count, 1);
1918                         }
1919                 }
1920                 vm_page_free(p);
1921                 vm_page_unlock(p);
1922         }
1923         vm_object_pip_wakeup(object);
1924 skipmemq:
1925         if (__predict_false(!vm_object_cache_is_empty(object)))
1926                 vm_page_cache_free(object, start, end);
1927 }
1928
1929 /*
1930  *      vm_object_page_cache:
1931  *
1932  *      For the given object, attempt to move the specified clean
1933  *      pages to the cache queue.  If a page is wired for any reason,
1934  *      then it will not be changed.  Pages are specified by the given
1935  *      range ["start", "end").  As a special case, if "end" is zero,
1936  *      then the range extends from "start" to the end of the object.
1937  *      Any mappings to the specified pages are removed before the
1938  *      pages are moved to the cache queue.
1939  *
1940  *      This operation should only be performed on objects that
1941  *      contain non-fictitious, managed pages.
1942  *
1943  *      The object must be locked.
1944  */
1945 void
1946 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1947 {
1948         struct mtx *mtx, *new_mtx;
1949         vm_page_t p, next;
1950
1951         VM_OBJECT_ASSERT_WLOCKED(object);
1952         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1953             ("vm_object_page_cache: illegal object %p", object));
1954         if (object->resident_page_count == 0)
1955                 return;
1956         p = vm_page_find_least(object, start);
1957
1958         /*
1959          * Here, the variable "p" is either (1) the page with the least pindex
1960          * greater than or equal to the parameter "start" or (2) NULL. 
1961          */
1962         mtx = NULL;
1963         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1964                 next = TAILQ_NEXT(p, listq);
1965
1966                 /*
1967                  * Avoid releasing and reacquiring the same page lock.
1968                  */
1969                 new_mtx = vm_page_lockptr(p);
1970                 if (mtx != new_mtx) {
1971                         if (mtx != NULL)
1972                                 mtx_unlock(mtx);
1973                         mtx = new_mtx;
1974                         mtx_lock(mtx);
1975                 }
1976                 vm_page_try_to_cache(p);
1977         }
1978         if (mtx != NULL)
1979                 mtx_unlock(mtx);
1980 }
1981
1982 /*
1983  *      Populate the specified range of the object with valid pages.  Returns
1984  *      TRUE if the range is successfully populated and FALSE otherwise.
1985  *
1986  *      Note: This function should be optimized to pass a larger array of
1987  *      pages to vm_pager_get_pages() before it is applied to a non-
1988  *      OBJT_DEVICE object.
1989  *
1990  *      The object must be locked.
1991  */
1992 boolean_t
1993 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1994 {
1995         vm_page_t m, ma[1];
1996         vm_pindex_t pindex;
1997         int rv;
1998
1999         VM_OBJECT_ASSERT_WLOCKED(object);
2000         for (pindex = start; pindex < end; pindex++) {
2001                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
2002                     VM_ALLOC_RETRY);
2003                 if (m->valid != VM_PAGE_BITS_ALL) {
2004                         ma[0] = m;
2005                         rv = vm_pager_get_pages(object, ma, 1, 0);
2006                         m = vm_page_lookup(object, pindex);
2007                         if (m == NULL)
2008                                 break;
2009                         if (rv != VM_PAGER_OK) {
2010                                 vm_page_lock(m);
2011                                 vm_page_free(m);
2012                                 vm_page_unlock(m);
2013                                 break;
2014                         }
2015                 }
2016                 /*
2017                  * Keep "m" busy because a subsequent iteration may unlock
2018                  * the object.
2019                  */
2020         }
2021         if (pindex > start) {
2022                 m = vm_page_lookup(object, start);
2023                 while (m != NULL && m->pindex < pindex) {
2024                         vm_page_wakeup(m);
2025                         m = TAILQ_NEXT(m, listq);
2026                 }
2027         }
2028         return (pindex == end);
2029 }
2030
2031 /*
2032  *      Routine:        vm_object_coalesce
2033  *      Function:       Coalesces two objects backing up adjoining
2034  *                      regions of memory into a single object.
2035  *
2036  *      returns TRUE if objects were combined.
2037  *
2038  *      NOTE:   Only works at the moment if the second object is NULL -
2039  *              if it's not, which object do we lock first?
2040  *
2041  *      Parameters:
2042  *              prev_object     First object to coalesce
2043  *              prev_offset     Offset into prev_object
2044  *              prev_size       Size of reference to prev_object
2045  *              next_size       Size of reference to the second object
2046  *              reserved        Indicator that extension region has
2047  *                              swap accounted for
2048  *
2049  *      Conditions:
2050  *      The object must *not* be locked.
2051  */
2052 boolean_t
2053 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2054     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2055 {
2056         vm_pindex_t next_pindex;
2057
2058         if (prev_object == NULL)
2059                 return (TRUE);
2060         VM_OBJECT_WLOCK(prev_object);
2061         if (prev_object->type != OBJT_DEFAULT &&
2062             prev_object->type != OBJT_SWAP) {
2063                 VM_OBJECT_WUNLOCK(prev_object);
2064                 return (FALSE);
2065         }
2066
2067         /*
2068          * Try to collapse the object first
2069          */
2070         vm_object_collapse(prev_object);
2071
2072         /*
2073          * Can't coalesce if: . more than one reference . paged out . shadows
2074          * another object . has a copy elsewhere (any of which mean that the
2075          * pages not mapped to prev_entry may be in use anyway)
2076          */
2077         if (prev_object->backing_object != NULL) {
2078                 VM_OBJECT_WUNLOCK(prev_object);
2079                 return (FALSE);
2080         }
2081
2082         prev_size >>= PAGE_SHIFT;
2083         next_size >>= PAGE_SHIFT;
2084         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2085
2086         if ((prev_object->ref_count > 1) &&
2087             (prev_object->size != next_pindex)) {
2088                 VM_OBJECT_WUNLOCK(prev_object);
2089                 return (FALSE);
2090         }
2091
2092         /*
2093          * Account for the charge.
2094          */
2095         if (prev_object->cred != NULL) {
2096
2097                 /*
2098                  * If prev_object was charged, then this mapping,
2099                  * althought not charged now, may become writable
2100                  * later. Non-NULL cred in the object would prevent
2101                  * swap reservation during enabling of the write
2102                  * access, so reserve swap now. Failed reservation
2103                  * cause allocation of the separate object for the map
2104                  * entry, and swap reservation for this entry is
2105                  * managed in appropriate time.
2106                  */
2107                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2108                     prev_object->cred)) {
2109                         return (FALSE);
2110                 }
2111                 prev_object->charge += ptoa(next_size);
2112         }
2113
2114         /*
2115          * Remove any pages that may still be in the object from a previous
2116          * deallocation.
2117          */
2118         if (next_pindex < prev_object->size) {
2119                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2120                     next_size, 0);
2121                 if (prev_object->type == OBJT_SWAP)
2122                         swap_pager_freespace(prev_object,
2123                                              next_pindex, next_size);
2124 #if 0
2125                 if (prev_object->cred != NULL) {
2126                         KASSERT(prev_object->charge >=
2127                             ptoa(prev_object->size - next_pindex),
2128                             ("object %p overcharged 1 %jx %jx", prev_object,
2129                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2130                         prev_object->charge -= ptoa(prev_object->size -
2131                             next_pindex);
2132                 }
2133 #endif
2134         }
2135
2136         /*
2137          * Extend the object if necessary.
2138          */
2139         if (next_pindex + next_size > prev_object->size)
2140                 prev_object->size = next_pindex + next_size;
2141
2142         VM_OBJECT_WUNLOCK(prev_object);
2143         return (TRUE);
2144 }
2145
2146 void
2147 vm_object_set_writeable_dirty(vm_object_t object)
2148 {
2149
2150         VM_OBJECT_ASSERT_WLOCKED(object);
2151         if (object->type != OBJT_VNODE)
2152                 return;
2153         object->generation++;
2154         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2155                 return;
2156         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2157 }
2158
2159 #include "opt_ddb.h"
2160 #ifdef DDB
2161 #include <sys/kernel.h>
2162
2163 #include <sys/cons.h>
2164
2165 #include <ddb/ddb.h>
2166
2167 static int
2168 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2169 {
2170         vm_map_t tmpm;
2171         vm_map_entry_t tmpe;
2172         vm_object_t obj;
2173         int entcount;
2174
2175         if (map == 0)
2176                 return 0;
2177
2178         if (entry == 0) {
2179                 tmpe = map->header.next;
2180                 entcount = map->nentries;
2181                 while (entcount-- && (tmpe != &map->header)) {
2182                         if (_vm_object_in_map(map, object, tmpe)) {
2183                                 return 1;
2184                         }
2185                         tmpe = tmpe->next;
2186                 }
2187         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2188                 tmpm = entry->object.sub_map;
2189                 tmpe = tmpm->header.next;
2190                 entcount = tmpm->nentries;
2191                 while (entcount-- && tmpe != &tmpm->header) {
2192                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2193                                 return 1;
2194                         }
2195                         tmpe = tmpe->next;
2196                 }
2197         } else if ((obj = entry->object.vm_object) != NULL) {
2198                 for (; obj; obj = obj->backing_object)
2199                         if (obj == object) {
2200                                 return 1;
2201                         }
2202         }
2203         return 0;
2204 }
2205
2206 static int
2207 vm_object_in_map(vm_object_t object)
2208 {
2209         struct proc *p;
2210
2211         /* sx_slock(&allproc_lock); */
2212         FOREACH_PROC_IN_SYSTEM(p) {
2213                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2214                         continue;
2215                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2216                         /* sx_sunlock(&allproc_lock); */
2217                         return 1;
2218                 }
2219         }
2220         /* sx_sunlock(&allproc_lock); */
2221         if (_vm_object_in_map(kernel_map, object, 0))
2222                 return 1;
2223         if (_vm_object_in_map(kmem_map, object, 0))
2224                 return 1;
2225         if (_vm_object_in_map(pager_map, object, 0))
2226                 return 1;
2227         if (_vm_object_in_map(buffer_map, object, 0))
2228                 return 1;
2229         return 0;
2230 }
2231
2232 DB_SHOW_COMMAND(vmochk, vm_object_check)
2233 {
2234         vm_object_t object;
2235
2236         /*
2237          * make sure that internal objs are in a map somewhere
2238          * and none have zero ref counts.
2239          */
2240         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2241                 if (object->handle == NULL &&
2242                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2243                         if (object->ref_count == 0) {
2244                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2245                                         (long)object->size);
2246                         }
2247                         if (!vm_object_in_map(object)) {
2248                                 db_printf(
2249                         "vmochk: internal obj is not in a map: "
2250                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2251                                     object->ref_count, (u_long)object->size, 
2252                                     (u_long)object->size,
2253                                     (void *)object->backing_object);
2254                         }
2255                 }
2256         }
2257 }
2258
2259 /*
2260  *      vm_object_print:        [ debug ]
2261  */
2262 DB_SHOW_COMMAND(object, vm_object_print_static)
2263 {
2264         /* XXX convert args. */
2265         vm_object_t object = (vm_object_t)addr;
2266         boolean_t full = have_addr;
2267
2268         vm_page_t p;
2269
2270         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2271 #define count   was_count
2272
2273         int count;
2274
2275         if (object == NULL)
2276                 return;
2277
2278         db_iprintf(
2279             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2280             object, (int)object->type, (uintmax_t)object->size,
2281             object->resident_page_count, object->ref_count, object->flags,
2282             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2283         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2284             object->shadow_count, 
2285             object->backing_object ? object->backing_object->ref_count : 0,
2286             object->backing_object, (uintmax_t)object->backing_object_offset);
2287
2288         if (!full)
2289                 return;
2290
2291         db_indent += 2;
2292         count = 0;
2293         TAILQ_FOREACH(p, &object->memq, listq) {
2294                 if (count == 0)
2295                         db_iprintf("memory:=");
2296                 else if (count == 6) {
2297                         db_printf("\n");
2298                         db_iprintf(" ...");
2299                         count = 0;
2300                 } else
2301                         db_printf(",");
2302                 count++;
2303
2304                 db_printf("(off=0x%jx,page=0x%jx)",
2305                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2306         }
2307         if (count != 0)
2308                 db_printf("\n");
2309         db_indent -= 2;
2310 }
2311
2312 /* XXX. */
2313 #undef count
2314
2315 /* XXX need this non-static entry for calling from vm_map_print. */
2316 void
2317 vm_object_print(
2318         /* db_expr_t */ long addr,
2319         boolean_t have_addr,
2320         /* db_expr_t */ long count,
2321         char *modif)
2322 {
2323         vm_object_print_static(addr, have_addr, count, modif);
2324 }
2325
2326 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2327 {
2328         vm_object_t object;
2329         vm_pindex_t fidx;
2330         vm_paddr_t pa;
2331         vm_page_t m, prev_m;
2332         int rcount, nl, c;
2333
2334         nl = 0;
2335         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2336                 db_printf("new object: %p\n", (void *)object);
2337                 if (nl > 18) {
2338                         c = cngetc();
2339                         if (c != ' ')
2340                                 return;
2341                         nl = 0;
2342                 }
2343                 nl++;
2344                 rcount = 0;
2345                 fidx = 0;
2346                 pa = -1;
2347                 TAILQ_FOREACH(m, &object->memq, listq) {
2348                         if (m->pindex > 128)
2349                                 break;
2350                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2351                             prev_m->pindex + 1 != m->pindex) {
2352                                 if (rcount) {
2353                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2354                                                 (long)fidx, rcount, (long)pa);
2355                                         if (nl > 18) {
2356                                                 c = cngetc();
2357                                                 if (c != ' ')
2358                                                         return;
2359                                                 nl = 0;
2360                                         }
2361                                         nl++;
2362                                         rcount = 0;
2363                                 }
2364                         }                               
2365                         if (rcount &&
2366                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2367                                 ++rcount;
2368                                 continue;
2369                         }
2370                         if (rcount) {
2371                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2372                                         (long)fidx, rcount, (long)pa);
2373                                 if (nl > 18) {
2374                                         c = cngetc();
2375                                         if (c != ' ')
2376                                                 return;
2377                                         nl = 0;
2378                                 }
2379                                 nl++;
2380                         }
2381                         fidx = m->pindex;
2382                         pa = VM_PAGE_TO_PHYS(m);
2383                         rcount = 1;
2384                 }
2385                 if (rcount) {
2386                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2387                                 (long)fidx, rcount, (long)pa);
2388                         if (nl > 18) {
2389                                 c = cngetc();
2390                                 if (c != ' ')
2391                                         return;
2392                                 nl = 0;
2393                         }
2394                         nl++;
2395                 }
2396         }
2397 }
2398 #endif /* DDB */