]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Merge CK as of commit 255a47553aa5e8d0bb5f8eec63acac7f4c25a6d8, mostly
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104     "Use old (insecure) msync behavior");
105
106 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107                     int pagerflags, int flags, boolean_t *clearobjflags,
108                     boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110                     boolean_t *clearobjflags);
111 static void     vm_object_qcollapse(vm_object_t object);
112 static void     vm_object_vndeallocate(vm_object_t object);
113
114 /*
115  *      Virtual memory objects maintain the actual data
116  *      associated with allocated virtual memory.  A given
117  *      page of memory exists within exactly one object.
118  *
119  *      An object is only deallocated when all "references"
120  *      are given up.  Only one "reference" to a given
121  *      region of an object should be writeable.
122  *
123  *      Associated with each object is a list of all resident
124  *      memory pages belonging to that object; this list is
125  *      maintained by the "vm_page" module, and locked by the object's
126  *      lock.
127  *
128  *      Each object also records a "pager" routine which is
129  *      used to retrieve (and store) pages to the proper backing
130  *      storage.  In addition, objects may be backed by other
131  *      objects from which they were virtual-copied.
132  *
133  *      The only items within the object structure which are
134  *      modified after time of creation are:
135  *              reference count         locked by object's lock
136  *              pager routine           locked by object's lock
137  *
138  */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;  /* lock for object list and count */
142
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147     "VM object stats");
148
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156
157 static uma_zone_t obj_zone;
158
159 static int vm_object_zinit(void *mem, int size, int flags);
160
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167         vm_object_t object;
168
169         object = (vm_object_t)mem;
170         KASSERT(object->ref_count == 0,
171             ("object %p ref_count = %d", object, object->ref_count));
172         KASSERT(TAILQ_EMPTY(&object->memq),
173             ("object %p has resident pages in its memq", object));
174         KASSERT(vm_radix_is_empty(&object->rtree),
175             ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177         KASSERT(LIST_EMPTY(&object->rvq),
178             ("object %p has reservations",
179             object));
180 #endif
181         KASSERT(object->paging_in_progress == 0,
182             ("object %p paging_in_progress = %d",
183             object, object->paging_in_progress));
184         KASSERT(object->resident_page_count == 0,
185             ("object %p resident_page_count = %d",
186             object, object->resident_page_count));
187         KASSERT(object->shadow_count == 0,
188             ("object %p shadow_count = %d",
189             object, object->shadow_count));
190         KASSERT(object->type == OBJT_DEAD,
191             ("object %p has non-dead type %d",
192             object, object->type));
193 }
194 #endif
195
196 static int
197 vm_object_zinit(void *mem, int size, int flags)
198 {
199         vm_object_t object;
200
201         object = (vm_object_t)mem;
202         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
203
204         /* These are true for any object that has been freed */
205         object->type = OBJT_DEAD;
206         object->ref_count = 0;
207         object->rtree.rt_root = 0;
208         object->paging_in_progress = 0;
209         object->resident_page_count = 0;
210         object->shadow_count = 0;
211
212         mtx_lock(&vm_object_list_mtx);
213         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
214         mtx_unlock(&vm_object_list_mtx);
215         return (0);
216 }
217
218 static void
219 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
220 {
221
222         TAILQ_INIT(&object->memq);
223         LIST_INIT(&object->shadow_head);
224
225         object->type = type;
226         switch (type) {
227         case OBJT_DEAD:
228                 panic("_vm_object_allocate: can't create OBJT_DEAD");
229         case OBJT_DEFAULT:
230         case OBJT_SWAP:
231                 object->flags = OBJ_ONEMAPPING;
232                 break;
233         case OBJT_DEVICE:
234         case OBJT_SG:
235                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
236                 break;
237         case OBJT_MGTDEVICE:
238                 object->flags = OBJ_FICTITIOUS;
239                 break;
240         case OBJT_PHYS:
241                 object->flags = OBJ_UNMANAGED;
242                 break;
243         case OBJT_VNODE:
244                 object->flags = 0;
245                 break;
246         default:
247                 panic("_vm_object_allocate: type %d is undefined", type);
248         }
249         object->size = size;
250         object->generation = 1;
251         object->ref_count = 1;
252         object->memattr = VM_MEMATTR_DEFAULT;
253         object->cred = NULL;
254         object->charge = 0;
255         object->handle = NULL;
256         object->backing_object = NULL;
257         object->backing_object_offset = (vm_ooffset_t) 0;
258 #if VM_NRESERVLEVEL > 0
259         LIST_INIT(&object->rvq);
260 #endif
261         umtx_shm_object_init(object);
262 }
263
264 /*
265  *      vm_object_init:
266  *
267  *      Initialize the VM objects module.
268  */
269 void
270 vm_object_init(void)
271 {
272         TAILQ_INIT(&vm_object_list);
273         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
274         
275         rw_init(&kernel_object->lock, "kernel vm object");
276         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
277             kernel_object);
278 #if VM_NRESERVLEVEL > 0
279         kernel_object->flags |= OBJ_COLORED;
280         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
281 #endif
282
283         rw_init(&kmem_object->lock, "kmem vm object");
284         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
285             kmem_object);
286 #if VM_NRESERVLEVEL > 0
287         kmem_object->flags |= OBJ_COLORED;
288         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
289 #endif
290
291         /*
292          * The lock portion of struct vm_object must be type stable due
293          * to vm_pageout_fallback_object_lock locking a vm object
294          * without holding any references to it.
295          */
296         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
297 #ifdef INVARIANTS
298             vm_object_zdtor,
299 #else
300             NULL,
301 #endif
302             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
303
304         vm_radix_init();
305 }
306
307 void
308 vm_object_clear_flag(vm_object_t object, u_short bits)
309 {
310
311         VM_OBJECT_ASSERT_WLOCKED(object);
312         object->flags &= ~bits;
313 }
314
315 /*
316  *      Sets the default memory attribute for the specified object.  Pages
317  *      that are allocated to this object are by default assigned this memory
318  *      attribute.
319  *
320  *      Presently, this function must be called before any pages are allocated
321  *      to the object.  In the future, this requirement may be relaxed for
322  *      "default" and "swap" objects.
323  */
324 int
325 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
326 {
327
328         VM_OBJECT_ASSERT_WLOCKED(object);
329         switch (object->type) {
330         case OBJT_DEFAULT:
331         case OBJT_DEVICE:
332         case OBJT_MGTDEVICE:
333         case OBJT_PHYS:
334         case OBJT_SG:
335         case OBJT_SWAP:
336         case OBJT_VNODE:
337                 if (!TAILQ_EMPTY(&object->memq))
338                         return (KERN_FAILURE);
339                 break;
340         case OBJT_DEAD:
341                 return (KERN_INVALID_ARGUMENT);
342         default:
343                 panic("vm_object_set_memattr: object %p is of undefined type",
344                     object);
345         }
346         object->memattr = memattr;
347         return (KERN_SUCCESS);
348 }
349
350 void
351 vm_object_pip_add(vm_object_t object, short i)
352 {
353
354         VM_OBJECT_ASSERT_WLOCKED(object);
355         object->paging_in_progress += i;
356 }
357
358 void
359 vm_object_pip_subtract(vm_object_t object, short i)
360 {
361
362         VM_OBJECT_ASSERT_WLOCKED(object);
363         object->paging_in_progress -= i;
364 }
365
366 void
367 vm_object_pip_wakeup(vm_object_t object)
368 {
369
370         VM_OBJECT_ASSERT_WLOCKED(object);
371         object->paging_in_progress--;
372         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
373                 vm_object_clear_flag(object, OBJ_PIPWNT);
374                 wakeup(object);
375         }
376 }
377
378 void
379 vm_object_pip_wakeupn(vm_object_t object, short i)
380 {
381
382         VM_OBJECT_ASSERT_WLOCKED(object);
383         if (i)
384                 object->paging_in_progress -= i;
385         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
386                 vm_object_clear_flag(object, OBJ_PIPWNT);
387                 wakeup(object);
388         }
389 }
390
391 void
392 vm_object_pip_wait(vm_object_t object, char *waitid)
393 {
394
395         VM_OBJECT_ASSERT_WLOCKED(object);
396         while (object->paging_in_progress) {
397                 object->flags |= OBJ_PIPWNT;
398                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
399         }
400 }
401
402 /*
403  *      vm_object_allocate:
404  *
405  *      Returns a new object with the given size.
406  */
407 vm_object_t
408 vm_object_allocate(objtype_t type, vm_pindex_t size)
409 {
410         vm_object_t object;
411
412         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
413         _vm_object_allocate(type, size, object);
414         return (object);
415 }
416
417
418 /*
419  *      vm_object_reference:
420  *
421  *      Gets another reference to the given object.  Note: OBJ_DEAD
422  *      objects can be referenced during final cleaning.
423  */
424 void
425 vm_object_reference(vm_object_t object)
426 {
427         if (object == NULL)
428                 return;
429         VM_OBJECT_WLOCK(object);
430         vm_object_reference_locked(object);
431         VM_OBJECT_WUNLOCK(object);
432 }
433
434 /*
435  *      vm_object_reference_locked:
436  *
437  *      Gets another reference to the given object.
438  *
439  *      The object must be locked.
440  */
441 void
442 vm_object_reference_locked(vm_object_t object)
443 {
444         struct vnode *vp;
445
446         VM_OBJECT_ASSERT_WLOCKED(object);
447         object->ref_count++;
448         if (object->type == OBJT_VNODE) {
449                 vp = object->handle;
450                 vref(vp);
451         }
452 }
453
454 /*
455  * Handle deallocating an object of type OBJT_VNODE.
456  */
457 static void
458 vm_object_vndeallocate(vm_object_t object)
459 {
460         struct vnode *vp = (struct vnode *) object->handle;
461
462         VM_OBJECT_ASSERT_WLOCKED(object);
463         KASSERT(object->type == OBJT_VNODE,
464             ("vm_object_vndeallocate: not a vnode object"));
465         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
466 #ifdef INVARIANTS
467         if (object->ref_count == 0) {
468                 vn_printf(vp, "vm_object_vndeallocate ");
469                 panic("vm_object_vndeallocate: bad object reference count");
470         }
471 #endif
472
473         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
474                 umtx_shm_object_terminated(object);
475
476         /*
477          * The test for text of vp vnode does not need a bypass to
478          * reach right VV_TEXT there, since it is obtained from
479          * object->handle.
480          */
481         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
482                 object->ref_count--;
483                 VM_OBJECT_WUNLOCK(object);
484                 /* vrele may need the vnode lock. */
485                 vrele(vp);
486         } else {
487                 vhold(vp);
488                 VM_OBJECT_WUNLOCK(object);
489                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
490                 vdrop(vp);
491                 VM_OBJECT_WLOCK(object);
492                 object->ref_count--;
493                 if (object->type == OBJT_DEAD) {
494                         VM_OBJECT_WUNLOCK(object);
495                         VOP_UNLOCK(vp, 0);
496                 } else {
497                         if (object->ref_count == 0)
498                                 VOP_UNSET_TEXT(vp);
499                         VM_OBJECT_WUNLOCK(object);
500                         vput(vp);
501                 }
502         }
503 }
504
505 /*
506  *      vm_object_deallocate:
507  *
508  *      Release a reference to the specified object,
509  *      gained either through a vm_object_allocate
510  *      or a vm_object_reference call.  When all references
511  *      are gone, storage associated with this object
512  *      may be relinquished.
513  *
514  *      No object may be locked.
515  */
516 void
517 vm_object_deallocate(vm_object_t object)
518 {
519         vm_object_t temp;
520         struct vnode *vp;
521
522         while (object != NULL) {
523                 VM_OBJECT_WLOCK(object);
524                 if (object->type == OBJT_VNODE) {
525                         vm_object_vndeallocate(object);
526                         return;
527                 }
528
529                 KASSERT(object->ref_count != 0,
530                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
531
532                 /*
533                  * If the reference count goes to 0 we start calling
534                  * vm_object_terminate() on the object chain.
535                  * A ref count of 1 may be a special case depending on the
536                  * shadow count being 0 or 1.
537                  */
538                 object->ref_count--;
539                 if (object->ref_count > 1) {
540                         VM_OBJECT_WUNLOCK(object);
541                         return;
542                 } else if (object->ref_count == 1) {
543                         if (object->type == OBJT_SWAP &&
544                             (object->flags & OBJ_TMPFS) != 0) {
545                                 vp = object->un_pager.swp.swp_tmpfs;
546                                 vhold(vp);
547                                 VM_OBJECT_WUNLOCK(object);
548                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
549                                 VM_OBJECT_WLOCK(object);
550                                 if (object->type == OBJT_DEAD ||
551                                     object->ref_count != 1) {
552                                         VM_OBJECT_WUNLOCK(object);
553                                         VOP_UNLOCK(vp, 0);
554                                         vdrop(vp);
555                                         return;
556                                 }
557                                 if ((object->flags & OBJ_TMPFS) != 0)
558                                         VOP_UNSET_TEXT(vp);
559                                 VOP_UNLOCK(vp, 0);
560                                 vdrop(vp);
561                         }
562                         if (object->shadow_count == 0 &&
563                             object->handle == NULL &&
564                             (object->type == OBJT_DEFAULT ||
565                             (object->type == OBJT_SWAP &&
566                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
567                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
568                         } else if ((object->shadow_count == 1) &&
569                             (object->handle == NULL) &&
570                             (object->type == OBJT_DEFAULT ||
571                              object->type == OBJT_SWAP)) {
572                                 vm_object_t robject;
573
574                                 robject = LIST_FIRST(&object->shadow_head);
575                                 KASSERT(robject != NULL,
576                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
577                                          object->ref_count,
578                                          object->shadow_count));
579                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
580                                     ("shadowed tmpfs v_object %p", object));
581                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
582                                         /*
583                                          * Avoid a potential deadlock.
584                                          */
585                                         object->ref_count++;
586                                         VM_OBJECT_WUNLOCK(object);
587                                         /*
588                                          * More likely than not the thread
589                                          * holding robject's lock has lower
590                                          * priority than the current thread.
591                                          * Let the lower priority thread run.
592                                          */
593                                         pause("vmo_de", 1);
594                                         continue;
595                                 }
596                                 /*
597                                  * Collapse object into its shadow unless its
598                                  * shadow is dead.  In that case, object will
599                                  * be deallocated by the thread that is
600                                  * deallocating its shadow.
601                                  */
602                                 if ((robject->flags & OBJ_DEAD) == 0 &&
603                                     (robject->handle == NULL) &&
604                                     (robject->type == OBJT_DEFAULT ||
605                                      robject->type == OBJT_SWAP)) {
606
607                                         robject->ref_count++;
608 retry:
609                                         if (robject->paging_in_progress) {
610                                                 VM_OBJECT_WUNLOCK(object);
611                                                 vm_object_pip_wait(robject,
612                                                     "objde1");
613                                                 temp = robject->backing_object;
614                                                 if (object == temp) {
615                                                         VM_OBJECT_WLOCK(object);
616                                                         goto retry;
617                                                 }
618                                         } else if (object->paging_in_progress) {
619                                                 VM_OBJECT_WUNLOCK(robject);
620                                                 object->flags |= OBJ_PIPWNT;
621                                                 VM_OBJECT_SLEEP(object, object,
622                                                     PDROP | PVM, "objde2", 0);
623                                                 VM_OBJECT_WLOCK(robject);
624                                                 temp = robject->backing_object;
625                                                 if (object == temp) {
626                                                         VM_OBJECT_WLOCK(object);
627                                                         goto retry;
628                                                 }
629                                         } else
630                                                 VM_OBJECT_WUNLOCK(object);
631
632                                         if (robject->ref_count == 1) {
633                                                 robject->ref_count--;
634                                                 object = robject;
635                                                 goto doterm;
636                                         }
637                                         object = robject;
638                                         vm_object_collapse(object);
639                                         VM_OBJECT_WUNLOCK(object);
640                                         continue;
641                                 }
642                                 VM_OBJECT_WUNLOCK(robject);
643                         }
644                         VM_OBJECT_WUNLOCK(object);
645                         return;
646                 }
647 doterm:
648                 umtx_shm_object_terminated(object);
649                 temp = object->backing_object;
650                 if (temp != NULL) {
651                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
652                             ("shadowed tmpfs v_object 2 %p", object));
653                         VM_OBJECT_WLOCK(temp);
654                         LIST_REMOVE(object, shadow_list);
655                         temp->shadow_count--;
656                         VM_OBJECT_WUNLOCK(temp);
657                         object->backing_object = NULL;
658                 }
659                 /*
660                  * Don't double-terminate, we could be in a termination
661                  * recursion due to the terminate having to sync data
662                  * to disk.
663                  */
664                 if ((object->flags & OBJ_DEAD) == 0)
665                         vm_object_terminate(object);
666                 else
667                         VM_OBJECT_WUNLOCK(object);
668                 object = temp;
669         }
670 }
671
672 /*
673  *      vm_object_destroy removes the object from the global object list
674  *      and frees the space for the object.
675  */
676 void
677 vm_object_destroy(vm_object_t object)
678 {
679
680         /*
681          * Release the allocation charge.
682          */
683         if (object->cred != NULL) {
684                 swap_release_by_cred(object->charge, object->cred);
685                 object->charge = 0;
686                 crfree(object->cred);
687                 object->cred = NULL;
688         }
689
690         /*
691          * Free the space for the object.
692          */
693         uma_zfree(obj_zone, object);
694 }
695
696 /*
697  *      vm_object_terminate actually destroys the specified object, freeing
698  *      up all previously used resources.
699  *
700  *      The object must be locked.
701  *      This routine may block.
702  */
703 void
704 vm_object_terminate(vm_object_t object)
705 {
706         vm_page_t p, p_next;
707
708         VM_OBJECT_ASSERT_WLOCKED(object);
709
710         /*
711          * Make sure no one uses us.
712          */
713         vm_object_set_flag(object, OBJ_DEAD);
714
715         /*
716          * wait for the pageout daemon to be done with the object
717          */
718         vm_object_pip_wait(object, "objtrm");
719
720         KASSERT(!object->paging_in_progress,
721                 ("vm_object_terminate: pageout in progress"));
722
723         /*
724          * Clean and free the pages, as appropriate. All references to the
725          * object are gone, so we don't need to lock it.
726          */
727         if (object->type == OBJT_VNODE) {
728                 struct vnode *vp = (struct vnode *)object->handle;
729
730                 /*
731                  * Clean pages and flush buffers.
732                  */
733                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
734                 VM_OBJECT_WUNLOCK(object);
735
736                 vinvalbuf(vp, V_SAVE, 0, 0);
737
738                 BO_LOCK(&vp->v_bufobj);
739                 vp->v_bufobj.bo_flag |= BO_DEAD;
740                 BO_UNLOCK(&vp->v_bufobj);
741
742                 VM_OBJECT_WLOCK(object);
743         }
744
745         KASSERT(object->ref_count == 0, 
746                 ("vm_object_terminate: object with references, ref_count=%d",
747                 object->ref_count));
748
749         /*
750          * Free any remaining pageable pages.  This also removes them from the
751          * paging queues.  However, don't free wired pages, just remove them
752          * from the object.  Rather than incrementally removing each page from
753          * the object, the page and object are reset to any empty state. 
754          */
755         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
756                 vm_page_assert_unbusied(p);
757                 vm_page_lock(p);
758                 /*
759                  * Optimize the page's removal from the object by resetting
760                  * its "object" field.  Specifically, if the page is not
761                  * wired, then the effect of this assignment is that
762                  * vm_page_free()'s call to vm_page_remove() will return
763                  * immediately without modifying the page or the object.
764                  */ 
765                 p->object = NULL;
766                 if (p->wire_count == 0) {
767                         vm_page_free(p);
768                         PCPU_INC(cnt.v_pfree);
769                 }
770                 vm_page_unlock(p);
771         }
772         /*
773          * If the object contained any pages, then reset it to an empty state.
774          * None of the object's fields, including "resident_page_count", were
775          * modified by the preceding loop.
776          */
777         if (object->resident_page_count != 0) {
778                 vm_radix_reclaim_allnodes(&object->rtree);
779                 TAILQ_INIT(&object->memq);
780                 object->resident_page_count = 0;
781                 if (object->type == OBJT_VNODE)
782                         vdrop(object->handle);
783         }
784
785 #if VM_NRESERVLEVEL > 0
786         if (__predict_false(!LIST_EMPTY(&object->rvq)))
787                 vm_reserv_break_all(object);
788 #endif
789
790         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
791             object->type == OBJT_SWAP,
792             ("%s: non-swap obj %p has cred", __func__, object));
793
794         /*
795          * Let the pager know object is dead.
796          */
797         vm_pager_deallocate(object);
798         VM_OBJECT_WUNLOCK(object);
799
800         vm_object_destroy(object);
801 }
802
803 /*
804  * Make the page read-only so that we can clear the object flags.  However, if
805  * this is a nosync mmap then the object is likely to stay dirty so do not
806  * mess with the page and do not clear the object flags.  Returns TRUE if the
807  * page should be flushed, and FALSE otherwise.
808  */
809 static boolean_t
810 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
811 {
812
813         /*
814          * If we have been asked to skip nosync pages and this is a
815          * nosync page, skip it.  Note that the object flags were not
816          * cleared in this case so we do not have to set them.
817          */
818         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
819                 *clearobjflags = FALSE;
820                 return (FALSE);
821         } else {
822                 pmap_remove_write(p);
823                 return (p->dirty != 0);
824         }
825 }
826
827 /*
828  *      vm_object_page_clean
829  *
830  *      Clean all dirty pages in the specified range of object.  Leaves page 
831  *      on whatever queue it is currently on.   If NOSYNC is set then do not
832  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
833  *      leaving the object dirty.
834  *
835  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
836  *      synchronous clustering mode implementation.
837  *
838  *      Odd semantics: if start == end, we clean everything.
839  *
840  *      The object must be locked.
841  *
842  *      Returns FALSE if some page from the range was not written, as
843  *      reported by the pager, and TRUE otherwise.
844  */
845 boolean_t
846 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
847     int flags)
848 {
849         vm_page_t np, p;
850         vm_pindex_t pi, tend, tstart;
851         int curgeneration, n, pagerflags;
852         boolean_t clearobjflags, eio, res;
853
854         VM_OBJECT_ASSERT_WLOCKED(object);
855
856         /*
857          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
858          * objects.  The check below prevents the function from
859          * operating on non-vnode objects.
860          */
861         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
862             object->resident_page_count == 0)
863                 return (TRUE);
864
865         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
866             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
867         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
868
869         tstart = OFF_TO_IDX(start);
870         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
871         clearobjflags = tstart == 0 && tend >= object->size;
872         res = TRUE;
873
874 rescan:
875         curgeneration = object->generation;
876
877         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
878                 pi = p->pindex;
879                 if (pi >= tend)
880                         break;
881                 np = TAILQ_NEXT(p, listq);
882                 if (p->valid == 0)
883                         continue;
884                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
885                         if (object->generation != curgeneration) {
886                                 if ((flags & OBJPC_SYNC) != 0)
887                                         goto rescan;
888                                 else
889                                         clearobjflags = FALSE;
890                         }
891                         np = vm_page_find_least(object, pi);
892                         continue;
893                 }
894                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
895                         continue;
896
897                 n = vm_object_page_collect_flush(object, p, pagerflags,
898                     flags, &clearobjflags, &eio);
899                 if (eio) {
900                         res = FALSE;
901                         clearobjflags = FALSE;
902                 }
903                 if (object->generation != curgeneration) {
904                         if ((flags & OBJPC_SYNC) != 0)
905                                 goto rescan;
906                         else
907                                 clearobjflags = FALSE;
908                 }
909
910                 /*
911                  * If the VOP_PUTPAGES() did a truncated write, so
912                  * that even the first page of the run is not fully
913                  * written, vm_pageout_flush() returns 0 as the run
914                  * length.  Since the condition that caused truncated
915                  * write may be permanent, e.g. exhausted free space,
916                  * accepting n == 0 would cause an infinite loop.
917                  *
918                  * Forwarding the iterator leaves the unwritten page
919                  * behind, but there is not much we can do there if
920                  * filesystem refuses to write it.
921                  */
922                 if (n == 0) {
923                         n = 1;
924                         clearobjflags = FALSE;
925                 }
926                 np = vm_page_find_least(object, pi + n);
927         }
928 #if 0
929         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
930 #endif
931
932         if (clearobjflags)
933                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
934         return (res);
935 }
936
937 static int
938 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
939     int flags, boolean_t *clearobjflags, boolean_t *eio)
940 {
941         vm_page_t ma[vm_pageout_page_count], p_first, tp;
942         int count, i, mreq, runlen;
943
944         vm_page_lock_assert(p, MA_NOTOWNED);
945         VM_OBJECT_ASSERT_WLOCKED(object);
946
947         count = 1;
948         mreq = 0;
949
950         for (tp = p; count < vm_pageout_page_count; count++) {
951                 tp = vm_page_next(tp);
952                 if (tp == NULL || vm_page_busied(tp))
953                         break;
954                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
955                         break;
956         }
957
958         for (p_first = p; count < vm_pageout_page_count; count++) {
959                 tp = vm_page_prev(p_first);
960                 if (tp == NULL || vm_page_busied(tp))
961                         break;
962                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
963                         break;
964                 p_first = tp;
965                 mreq++;
966         }
967
968         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
969                 ma[i] = tp;
970
971         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
972         return (runlen);
973 }
974
975 /*
976  * Note that there is absolutely no sense in writing out
977  * anonymous objects, so we track down the vnode object
978  * to write out.
979  * We invalidate (remove) all pages from the address space
980  * for semantic correctness.
981  *
982  * If the backing object is a device object with unmanaged pages, then any
983  * mappings to the specified range of pages must be removed before this
984  * function is called.
985  *
986  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
987  * may start out with a NULL object.
988  */
989 boolean_t
990 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
991     boolean_t syncio, boolean_t invalidate)
992 {
993         vm_object_t backing_object;
994         struct vnode *vp;
995         struct mount *mp;
996         int error, flags, fsync_after;
997         boolean_t res;
998
999         if (object == NULL)
1000                 return (TRUE);
1001         res = TRUE;
1002         error = 0;
1003         VM_OBJECT_WLOCK(object);
1004         while ((backing_object = object->backing_object) != NULL) {
1005                 VM_OBJECT_WLOCK(backing_object);
1006                 offset += object->backing_object_offset;
1007                 VM_OBJECT_WUNLOCK(object);
1008                 object = backing_object;
1009                 if (object->size < OFF_TO_IDX(offset + size))
1010                         size = IDX_TO_OFF(object->size) - offset;
1011         }
1012         /*
1013          * Flush pages if writing is allowed, invalidate them
1014          * if invalidation requested.  Pages undergoing I/O
1015          * will be ignored by vm_object_page_remove().
1016          *
1017          * We cannot lock the vnode and then wait for paging
1018          * to complete without deadlocking against vm_fault.
1019          * Instead we simply call vm_object_page_remove() and
1020          * allow it to block internally on a page-by-page
1021          * basis when it encounters pages undergoing async
1022          * I/O.
1023          */
1024         if (object->type == OBJT_VNODE &&
1025             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1026                 vp = object->handle;
1027                 VM_OBJECT_WUNLOCK(object);
1028                 (void) vn_start_write(vp, &mp, V_WAIT);
1029                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1030                 if (syncio && !invalidate && offset == 0 &&
1031                     OFF_TO_IDX(size) == object->size) {
1032                         /*
1033                          * If syncing the whole mapping of the file,
1034                          * it is faster to schedule all the writes in
1035                          * async mode, also allowing the clustering,
1036                          * and then wait for i/o to complete.
1037                          */
1038                         flags = 0;
1039                         fsync_after = TRUE;
1040                 } else {
1041                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1042                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1043                         fsync_after = FALSE;
1044                 }
1045                 VM_OBJECT_WLOCK(object);
1046                 res = vm_object_page_clean(object, offset, offset + size,
1047                     flags);
1048                 VM_OBJECT_WUNLOCK(object);
1049                 if (fsync_after)
1050                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1051                 VOP_UNLOCK(vp, 0);
1052                 vn_finished_write(mp);
1053                 if (error != 0)
1054                         res = FALSE;
1055                 VM_OBJECT_WLOCK(object);
1056         }
1057         if ((object->type == OBJT_VNODE ||
1058              object->type == OBJT_DEVICE) && invalidate) {
1059                 if (object->type == OBJT_DEVICE)
1060                         /*
1061                          * The option OBJPR_NOTMAPPED must be passed here
1062                          * because vm_object_page_remove() cannot remove
1063                          * unmanaged mappings.
1064                          */
1065                         flags = OBJPR_NOTMAPPED;
1066                 else if (old_msync)
1067                         flags = 0;
1068                 else
1069                         flags = OBJPR_CLEANONLY;
1070                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1071                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1072         }
1073         VM_OBJECT_WUNLOCK(object);
1074         return (res);
1075 }
1076
1077 /*
1078  *      vm_object_madvise:
1079  *
1080  *      Implements the madvise function at the object/page level.
1081  *
1082  *      MADV_WILLNEED   (any object)
1083  *
1084  *          Activate the specified pages if they are resident.
1085  *
1086  *      MADV_DONTNEED   (any object)
1087  *
1088  *          Deactivate the specified pages if they are resident.
1089  *
1090  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1091  *                       OBJ_ONEMAPPING only)
1092  *
1093  *          Deactivate and clean the specified pages if they are
1094  *          resident.  This permits the process to reuse the pages
1095  *          without faulting or the kernel to reclaim the pages
1096  *          without I/O.
1097  */
1098 void
1099 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1100     int advise)
1101 {
1102         vm_pindex_t tpindex;
1103         vm_object_t backing_object, tobject;
1104         vm_page_t m;
1105
1106         if (object == NULL)
1107                 return;
1108         VM_OBJECT_WLOCK(object);
1109         /*
1110          * Locate and adjust resident pages
1111          */
1112         for (; pindex < end; pindex += 1) {
1113 relookup:
1114                 tobject = object;
1115                 tpindex = pindex;
1116 shadowlookup:
1117                 /*
1118                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1119                  * and those pages must be OBJ_ONEMAPPING.
1120                  */
1121                 if (advise == MADV_FREE) {
1122                         if ((tobject->type != OBJT_DEFAULT &&
1123                              tobject->type != OBJT_SWAP) ||
1124                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1125                                 goto unlock_tobject;
1126                         }
1127                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1128                         goto unlock_tobject;
1129                 m = vm_page_lookup(tobject, tpindex);
1130                 if (m == NULL) {
1131                         /*
1132                          * There may be swap even if there is no backing page
1133                          */
1134                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1135                                 swap_pager_freespace(tobject, tpindex, 1);
1136                         /*
1137                          * next object
1138                          */
1139                         backing_object = tobject->backing_object;
1140                         if (backing_object == NULL)
1141                                 goto unlock_tobject;
1142                         VM_OBJECT_WLOCK(backing_object);
1143                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1144                         if (tobject != object)
1145                                 VM_OBJECT_WUNLOCK(tobject);
1146                         tobject = backing_object;
1147                         goto shadowlookup;
1148                 } else if (m->valid != VM_PAGE_BITS_ALL)
1149                         goto unlock_tobject;
1150                 /*
1151                  * If the page is not in a normal state, skip it.
1152                  */
1153                 vm_page_lock(m);
1154                 if (m->hold_count != 0 || m->wire_count != 0) {
1155                         vm_page_unlock(m);
1156                         goto unlock_tobject;
1157                 }
1158                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1159                     ("vm_object_madvise: page %p is fictitious", m));
1160                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1161                     ("vm_object_madvise: page %p is not managed", m));
1162                 if (vm_page_busied(m)) {
1163                         if (advise == MADV_WILLNEED) {
1164                                 /*
1165                                  * Reference the page before unlocking and
1166                                  * sleeping so that the page daemon is less
1167                                  * likely to reclaim it. 
1168                                  */
1169                                 vm_page_aflag_set(m, PGA_REFERENCED);
1170                         }
1171                         if (object != tobject)
1172                                 VM_OBJECT_WUNLOCK(object);
1173                         VM_OBJECT_WUNLOCK(tobject);
1174                         vm_page_busy_sleep(m, "madvpo", false);
1175                         VM_OBJECT_WLOCK(object);
1176                         goto relookup;
1177                 }
1178                 if (advise == MADV_WILLNEED) {
1179                         vm_page_activate(m);
1180                 } else {
1181                         vm_page_advise(m, advise);
1182                 }
1183                 vm_page_unlock(m);
1184                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1185                         swap_pager_freespace(tobject, tpindex, 1);
1186 unlock_tobject:
1187                 if (tobject != object)
1188                         VM_OBJECT_WUNLOCK(tobject);
1189         }       
1190         VM_OBJECT_WUNLOCK(object);
1191 }
1192
1193 /*
1194  *      vm_object_shadow:
1195  *
1196  *      Create a new object which is backed by the
1197  *      specified existing object range.  The source
1198  *      object reference is deallocated.
1199  *
1200  *      The new object and offset into that object
1201  *      are returned in the source parameters.
1202  */
1203 void
1204 vm_object_shadow(
1205         vm_object_t *object,    /* IN/OUT */
1206         vm_ooffset_t *offset,   /* IN/OUT */
1207         vm_size_t length)
1208 {
1209         vm_object_t source;
1210         vm_object_t result;
1211
1212         source = *object;
1213
1214         /*
1215          * Don't create the new object if the old object isn't shared.
1216          */
1217         if (source != NULL) {
1218                 VM_OBJECT_WLOCK(source);
1219                 if (source->ref_count == 1 &&
1220                     source->handle == NULL &&
1221                     (source->type == OBJT_DEFAULT ||
1222                      source->type == OBJT_SWAP)) {
1223                         VM_OBJECT_WUNLOCK(source);
1224                         return;
1225                 }
1226                 VM_OBJECT_WUNLOCK(source);
1227         }
1228
1229         /*
1230          * Allocate a new object with the given length.
1231          */
1232         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1233
1234         /*
1235          * The new object shadows the source object, adding a reference to it.
1236          * Our caller changes his reference to point to the new object,
1237          * removing a reference to the source object.  Net result: no change
1238          * of reference count.
1239          *
1240          * Try to optimize the result object's page color when shadowing
1241          * in order to maintain page coloring consistency in the combined 
1242          * shadowed object.
1243          */
1244         result->backing_object = source;
1245         /*
1246          * Store the offset into the source object, and fix up the offset into
1247          * the new object.
1248          */
1249         result->backing_object_offset = *offset;
1250         if (source != NULL) {
1251                 VM_OBJECT_WLOCK(source);
1252                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1253                 source->shadow_count++;
1254 #if VM_NRESERVLEVEL > 0
1255                 result->flags |= source->flags & OBJ_COLORED;
1256                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1257                     ((1 << (VM_NFREEORDER - 1)) - 1);
1258 #endif
1259                 VM_OBJECT_WUNLOCK(source);
1260         }
1261
1262
1263         /*
1264          * Return the new things
1265          */
1266         *offset = 0;
1267         *object = result;
1268 }
1269
1270 /*
1271  *      vm_object_split:
1272  *
1273  * Split the pages in a map entry into a new object.  This affords
1274  * easier removal of unused pages, and keeps object inheritance from
1275  * being a negative impact on memory usage.
1276  */
1277 void
1278 vm_object_split(vm_map_entry_t entry)
1279 {
1280         vm_page_t m, m_next;
1281         vm_object_t orig_object, new_object, source;
1282         vm_pindex_t idx, offidxstart;
1283         vm_size_t size;
1284
1285         orig_object = entry->object.vm_object;
1286         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1287                 return;
1288         if (orig_object->ref_count <= 1)
1289                 return;
1290         VM_OBJECT_WUNLOCK(orig_object);
1291
1292         offidxstart = OFF_TO_IDX(entry->offset);
1293         size = atop(entry->end - entry->start);
1294
1295         /*
1296          * If swap_pager_copy() is later called, it will convert new_object
1297          * into a swap object.
1298          */
1299         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1300
1301         /*
1302          * At this point, the new object is still private, so the order in
1303          * which the original and new objects are locked does not matter.
1304          */
1305         VM_OBJECT_WLOCK(new_object);
1306         VM_OBJECT_WLOCK(orig_object);
1307         source = orig_object->backing_object;
1308         if (source != NULL) {
1309                 VM_OBJECT_WLOCK(source);
1310                 if ((source->flags & OBJ_DEAD) != 0) {
1311                         VM_OBJECT_WUNLOCK(source);
1312                         VM_OBJECT_WUNLOCK(orig_object);
1313                         VM_OBJECT_WUNLOCK(new_object);
1314                         vm_object_deallocate(new_object);
1315                         VM_OBJECT_WLOCK(orig_object);
1316                         return;
1317                 }
1318                 LIST_INSERT_HEAD(&source->shadow_head,
1319                                   new_object, shadow_list);
1320                 source->shadow_count++;
1321                 vm_object_reference_locked(source);     /* for new_object */
1322                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1323                 VM_OBJECT_WUNLOCK(source);
1324                 new_object->backing_object_offset = 
1325                         orig_object->backing_object_offset + entry->offset;
1326                 new_object->backing_object = source;
1327         }
1328         if (orig_object->cred != NULL) {
1329                 new_object->cred = orig_object->cred;
1330                 crhold(orig_object->cred);
1331                 new_object->charge = ptoa(size);
1332                 KASSERT(orig_object->charge >= ptoa(size),
1333                     ("orig_object->charge < 0"));
1334                 orig_object->charge -= ptoa(size);
1335         }
1336 retry:
1337         m = vm_page_find_least(orig_object, offidxstart);
1338         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1339             m = m_next) {
1340                 m_next = TAILQ_NEXT(m, listq);
1341
1342                 /*
1343                  * We must wait for pending I/O to complete before we can
1344                  * rename the page.
1345                  *
1346                  * We do not have to VM_PROT_NONE the page as mappings should
1347                  * not be changed by this operation.
1348                  */
1349                 if (vm_page_busied(m)) {
1350                         VM_OBJECT_WUNLOCK(new_object);
1351                         vm_page_lock(m);
1352                         VM_OBJECT_WUNLOCK(orig_object);
1353                         vm_page_busy_sleep(m, "spltwt", false);
1354                         VM_OBJECT_WLOCK(orig_object);
1355                         VM_OBJECT_WLOCK(new_object);
1356                         goto retry;
1357                 }
1358
1359                 /* vm_page_rename() will dirty the page. */
1360                 if (vm_page_rename(m, new_object, idx)) {
1361                         VM_OBJECT_WUNLOCK(new_object);
1362                         VM_OBJECT_WUNLOCK(orig_object);
1363                         VM_WAIT;
1364                         VM_OBJECT_WLOCK(orig_object);
1365                         VM_OBJECT_WLOCK(new_object);
1366                         goto retry;
1367                 }
1368 #if VM_NRESERVLEVEL > 0
1369                 /*
1370                  * If some of the reservation's allocated pages remain with
1371                  * the original object, then transferring the reservation to
1372                  * the new object is neither particularly beneficial nor
1373                  * particularly harmful as compared to leaving the reservation
1374                  * with the original object.  If, however, all of the
1375                  * reservation's allocated pages are transferred to the new
1376                  * object, then transferring the reservation is typically
1377                  * beneficial.  Determining which of these two cases applies
1378                  * would be more costly than unconditionally renaming the
1379                  * reservation.
1380                  */
1381                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1382 #endif
1383                 if (orig_object->type == OBJT_SWAP)
1384                         vm_page_xbusy(m);
1385         }
1386         if (orig_object->type == OBJT_SWAP) {
1387                 /*
1388                  * swap_pager_copy() can sleep, in which case the orig_object's
1389                  * and new_object's locks are released and reacquired. 
1390                  */
1391                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1392                 TAILQ_FOREACH(m, &new_object->memq, listq)
1393                         vm_page_xunbusy(m);
1394         }
1395         VM_OBJECT_WUNLOCK(orig_object);
1396         VM_OBJECT_WUNLOCK(new_object);
1397         entry->object.vm_object = new_object;
1398         entry->offset = 0LL;
1399         vm_object_deallocate(orig_object);
1400         VM_OBJECT_WLOCK(new_object);
1401 }
1402
1403 #define OBSC_COLLAPSE_NOWAIT    0x0002
1404 #define OBSC_COLLAPSE_WAIT      0x0004
1405
1406 static vm_page_t
1407 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1408     int op)
1409 {
1410         vm_object_t backing_object;
1411
1412         VM_OBJECT_ASSERT_WLOCKED(object);
1413         backing_object = object->backing_object;
1414         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1415
1416         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1417         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1418             ("invalid ownership %p %p %p", p, object, backing_object));
1419         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1420                 return (next);
1421         if (p != NULL)
1422                 vm_page_lock(p);
1423         VM_OBJECT_WUNLOCK(object);
1424         VM_OBJECT_WUNLOCK(backing_object);
1425         if (p == NULL)
1426                 VM_WAIT;
1427         else
1428                 vm_page_busy_sleep(p, "vmocol", false);
1429         VM_OBJECT_WLOCK(object);
1430         VM_OBJECT_WLOCK(backing_object);
1431         return (TAILQ_FIRST(&backing_object->memq));
1432 }
1433
1434 static bool
1435 vm_object_scan_all_shadowed(vm_object_t object)
1436 {
1437         vm_object_t backing_object;
1438         vm_page_t p, pp;
1439         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1440
1441         VM_OBJECT_ASSERT_WLOCKED(object);
1442         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1443
1444         backing_object = object->backing_object;
1445
1446         if (backing_object->type != OBJT_DEFAULT &&
1447             backing_object->type != OBJT_SWAP)
1448                 return (false);
1449
1450         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1451         p = vm_page_find_least(backing_object, pi);
1452         ps = swap_pager_find_least(backing_object, pi);
1453
1454         /*
1455          * Only check pages inside the parent object's range and
1456          * inside the parent object's mapping of the backing object.
1457          */
1458         for (;; pi++) {
1459                 if (p != NULL && p->pindex < pi)
1460                         p = TAILQ_NEXT(p, listq);
1461                 if (ps < pi)
1462                         ps = swap_pager_find_least(backing_object, pi);
1463                 if (p == NULL && ps >= backing_object->size)
1464                         break;
1465                 else if (p == NULL)
1466                         pi = ps;
1467                 else
1468                         pi = MIN(p->pindex, ps);
1469
1470                 new_pindex = pi - backing_offset_index;
1471                 if (new_pindex >= object->size)
1472                         break;
1473
1474                 /*
1475                  * See if the parent has the page or if the parent's object
1476                  * pager has the page.  If the parent has the page but the page
1477                  * is not valid, the parent's object pager must have the page.
1478                  *
1479                  * If this fails, the parent does not completely shadow the
1480                  * object and we might as well give up now.
1481                  */
1482                 pp = vm_page_lookup(object, new_pindex);
1483                 if ((pp == NULL || pp->valid == 0) &&
1484                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1485                         return (false);
1486         }
1487         return (true);
1488 }
1489
1490 static bool
1491 vm_object_collapse_scan(vm_object_t object, int op)
1492 {
1493         vm_object_t backing_object;
1494         vm_page_t next, p, pp;
1495         vm_pindex_t backing_offset_index, new_pindex;
1496
1497         VM_OBJECT_ASSERT_WLOCKED(object);
1498         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1499
1500         backing_object = object->backing_object;
1501         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1502
1503         /*
1504          * Initial conditions
1505          */
1506         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1507                 vm_object_set_flag(backing_object, OBJ_DEAD);
1508
1509         /*
1510          * Our scan
1511          */
1512         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1513                 next = TAILQ_NEXT(p, listq);
1514                 new_pindex = p->pindex - backing_offset_index;
1515
1516                 /*
1517                  * Check for busy page
1518                  */
1519                 if (vm_page_busied(p)) {
1520                         next = vm_object_collapse_scan_wait(object, p, next, op);
1521                         continue;
1522                 }
1523
1524                 KASSERT(p->object == backing_object,
1525                     ("vm_object_collapse_scan: object mismatch"));
1526
1527                 if (p->pindex < backing_offset_index ||
1528                     new_pindex >= object->size) {
1529                         if (backing_object->type == OBJT_SWAP)
1530                                 swap_pager_freespace(backing_object, p->pindex,
1531                                     1);
1532
1533                         /*
1534                          * Page is out of the parent object's range, we can
1535                          * simply destroy it.
1536                          */
1537                         vm_page_lock(p);
1538                         KASSERT(!pmap_page_is_mapped(p),
1539                             ("freeing mapped page %p", p));
1540                         if (p->wire_count == 0)
1541                                 vm_page_free(p);
1542                         else
1543                                 vm_page_remove(p);
1544                         vm_page_unlock(p);
1545                         continue;
1546                 }
1547
1548                 pp = vm_page_lookup(object, new_pindex);
1549                 if (pp != NULL && vm_page_busied(pp)) {
1550                         /*
1551                          * The page in the parent is busy and possibly not
1552                          * (yet) valid.  Until its state is finalized by the
1553                          * busy bit owner, we can't tell whether it shadows the
1554                          * original page.  Therefore, we must either skip it
1555                          * and the original (backing_object) page or wait for
1556                          * its state to be finalized.
1557                          *
1558                          * This is due to a race with vm_fault() where we must
1559                          * unbusy the original (backing_obj) page before we can
1560                          * (re)lock the parent.  Hence we can get here.
1561                          */
1562                         next = vm_object_collapse_scan_wait(object, pp, next,
1563                             op);
1564                         continue;
1565                 }
1566
1567                 KASSERT(pp == NULL || pp->valid != 0,
1568                     ("unbusy invalid page %p", pp));
1569
1570                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1571                         NULL)) {
1572                         /*
1573                          * The page already exists in the parent OR swap exists
1574                          * for this location in the parent.  Leave the parent's
1575                          * page alone.  Destroy the original page from the
1576                          * backing object.
1577                          */
1578                         if (backing_object->type == OBJT_SWAP)
1579                                 swap_pager_freespace(backing_object, p->pindex,
1580                                     1);
1581                         vm_page_lock(p);
1582                         KASSERT(!pmap_page_is_mapped(p),
1583                             ("freeing mapped page %p", p));
1584                         if (p->wire_count == 0)
1585                                 vm_page_free(p);
1586                         else
1587                                 vm_page_remove(p);
1588                         vm_page_unlock(p);
1589                         continue;
1590                 }
1591
1592                 /*
1593                  * Page does not exist in parent, rename the page from the
1594                  * backing object to the main object.
1595                  *
1596                  * If the page was mapped to a process, it can remain mapped
1597                  * through the rename.  vm_page_rename() will dirty the page.
1598                  */
1599                 if (vm_page_rename(p, object, new_pindex)) {
1600                         next = vm_object_collapse_scan_wait(object, NULL, next,
1601                             op);
1602                         continue;
1603                 }
1604
1605                 /* Use the old pindex to free the right page. */
1606                 if (backing_object->type == OBJT_SWAP)
1607                         swap_pager_freespace(backing_object,
1608                             new_pindex + backing_offset_index, 1);
1609
1610 #if VM_NRESERVLEVEL > 0
1611                 /*
1612                  * Rename the reservation.
1613                  */
1614                 vm_reserv_rename(p, object, backing_object,
1615                     backing_offset_index);
1616 #endif
1617         }
1618         return (true);
1619 }
1620
1621
1622 /*
1623  * this version of collapse allows the operation to occur earlier and
1624  * when paging_in_progress is true for an object...  This is not a complete
1625  * operation, but should plug 99.9% of the rest of the leaks.
1626  */
1627 static void
1628 vm_object_qcollapse(vm_object_t object)
1629 {
1630         vm_object_t backing_object = object->backing_object;
1631
1632         VM_OBJECT_ASSERT_WLOCKED(object);
1633         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1634
1635         if (backing_object->ref_count != 1)
1636                 return;
1637
1638         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1639 }
1640
1641 /*
1642  *      vm_object_collapse:
1643  *
1644  *      Collapse an object with the object backing it.
1645  *      Pages in the backing object are moved into the
1646  *      parent, and the backing object is deallocated.
1647  */
1648 void
1649 vm_object_collapse(vm_object_t object)
1650 {
1651         vm_object_t backing_object, new_backing_object;
1652
1653         VM_OBJECT_ASSERT_WLOCKED(object);
1654
1655         while (TRUE) {
1656                 /*
1657                  * Verify that the conditions are right for collapse:
1658                  *
1659                  * The object exists and the backing object exists.
1660                  */
1661                 if ((backing_object = object->backing_object) == NULL)
1662                         break;
1663
1664                 /*
1665                  * we check the backing object first, because it is most likely
1666                  * not collapsable.
1667                  */
1668                 VM_OBJECT_WLOCK(backing_object);
1669                 if (backing_object->handle != NULL ||
1670                     (backing_object->type != OBJT_DEFAULT &&
1671                      backing_object->type != OBJT_SWAP) ||
1672                     (backing_object->flags & OBJ_DEAD) ||
1673                     object->handle != NULL ||
1674                     (object->type != OBJT_DEFAULT &&
1675                      object->type != OBJT_SWAP) ||
1676                     (object->flags & OBJ_DEAD)) {
1677                         VM_OBJECT_WUNLOCK(backing_object);
1678                         break;
1679                 }
1680
1681                 if (object->paging_in_progress != 0 ||
1682                     backing_object->paging_in_progress != 0) {
1683                         vm_object_qcollapse(object);
1684                         VM_OBJECT_WUNLOCK(backing_object);
1685                         break;
1686                 }
1687
1688                 /*
1689                  * We know that we can either collapse the backing object (if
1690                  * the parent is the only reference to it) or (perhaps) have
1691                  * the parent bypass the object if the parent happens to shadow
1692                  * all the resident pages in the entire backing object.
1693                  *
1694                  * This is ignoring pager-backed pages such as swap pages.
1695                  * vm_object_collapse_scan fails the shadowing test in this
1696                  * case.
1697                  */
1698                 if (backing_object->ref_count == 1) {
1699                         vm_object_pip_add(object, 1);
1700                         vm_object_pip_add(backing_object, 1);
1701
1702                         /*
1703                          * If there is exactly one reference to the backing
1704                          * object, we can collapse it into the parent.
1705                          */
1706                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1707
1708 #if VM_NRESERVLEVEL > 0
1709                         /*
1710                          * Break any reservations from backing_object.
1711                          */
1712                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1713                                 vm_reserv_break_all(backing_object);
1714 #endif
1715
1716                         /*
1717                          * Move the pager from backing_object to object.
1718                          */
1719                         if (backing_object->type == OBJT_SWAP) {
1720                                 /*
1721                                  * swap_pager_copy() can sleep, in which case
1722                                  * the backing_object's and object's locks are
1723                                  * released and reacquired.
1724                                  * Since swap_pager_copy() is being asked to
1725                                  * destroy the source, it will change the
1726                                  * backing_object's type to OBJT_DEFAULT.
1727                                  */
1728                                 swap_pager_copy(
1729                                     backing_object,
1730                                     object,
1731                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1732                         }
1733                         /*
1734                          * Object now shadows whatever backing_object did.
1735                          * Note that the reference to 
1736                          * backing_object->backing_object moves from within 
1737                          * backing_object to within object.
1738                          */
1739                         LIST_REMOVE(object, shadow_list);
1740                         backing_object->shadow_count--;
1741                         if (backing_object->backing_object) {
1742                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1743                                 LIST_REMOVE(backing_object, shadow_list);
1744                                 LIST_INSERT_HEAD(
1745                                     &backing_object->backing_object->shadow_head,
1746                                     object, shadow_list);
1747                                 /*
1748                                  * The shadow_count has not changed.
1749                                  */
1750                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1751                         }
1752                         object->backing_object = backing_object->backing_object;
1753                         object->backing_object_offset +=
1754                             backing_object->backing_object_offset;
1755
1756                         /*
1757                          * Discard backing_object.
1758                          *
1759                          * Since the backing object has no pages, no pager left,
1760                          * and no object references within it, all that is
1761                          * necessary is to dispose of it.
1762                          */
1763                         KASSERT(backing_object->ref_count == 1, (
1764 "backing_object %p was somehow re-referenced during collapse!",
1765                             backing_object));
1766                         vm_object_pip_wakeup(backing_object);
1767                         backing_object->type = OBJT_DEAD;
1768                         backing_object->ref_count = 0;
1769                         VM_OBJECT_WUNLOCK(backing_object);
1770                         vm_object_destroy(backing_object);
1771
1772                         vm_object_pip_wakeup(object);
1773                         object_collapses++;
1774                 } else {
1775                         /*
1776                          * If we do not entirely shadow the backing object,
1777                          * there is nothing we can do so we give up.
1778                          */
1779                         if (object->resident_page_count != object->size &&
1780                             !vm_object_scan_all_shadowed(object)) {
1781                                 VM_OBJECT_WUNLOCK(backing_object);
1782                                 break;
1783                         }
1784
1785                         /*
1786                          * Make the parent shadow the next object in the
1787                          * chain.  Deallocating backing_object will not remove
1788                          * it, since its reference count is at least 2.
1789                          */
1790                         LIST_REMOVE(object, shadow_list);
1791                         backing_object->shadow_count--;
1792
1793                         new_backing_object = backing_object->backing_object;
1794                         if ((object->backing_object = new_backing_object) != NULL) {
1795                                 VM_OBJECT_WLOCK(new_backing_object);
1796                                 LIST_INSERT_HEAD(
1797                                     &new_backing_object->shadow_head,
1798                                     object,
1799                                     shadow_list
1800                                 );
1801                                 new_backing_object->shadow_count++;
1802                                 vm_object_reference_locked(new_backing_object);
1803                                 VM_OBJECT_WUNLOCK(new_backing_object);
1804                                 object->backing_object_offset +=
1805                                         backing_object->backing_object_offset;
1806                         }
1807
1808                         /*
1809                          * Drop the reference count on backing_object. Since
1810                          * its ref_count was at least 2, it will not vanish.
1811                          */
1812                         backing_object->ref_count--;
1813                         VM_OBJECT_WUNLOCK(backing_object);
1814                         object_bypasses++;
1815                 }
1816
1817                 /*
1818                  * Try again with this object's new backing object.
1819                  */
1820         }
1821 }
1822
1823 /*
1824  *      vm_object_page_remove:
1825  *
1826  *      For the given object, either frees or invalidates each of the
1827  *      specified pages.  In general, a page is freed.  However, if a page is
1828  *      wired for any reason other than the existence of a managed, wired
1829  *      mapping, then it may be invalidated but not removed from the object.
1830  *      Pages are specified by the given range ["start", "end") and the option
1831  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1832  *      extends from "start" to the end of the object.  If the option
1833  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1834  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1835  *      specified, then the pages within the specified range must have no
1836  *      mappings.  Otherwise, if this option is not specified, any mappings to
1837  *      the specified pages are removed before the pages are freed or
1838  *      invalidated.
1839  *
1840  *      In general, this operation should only be performed on objects that
1841  *      contain managed pages.  There are, however, two exceptions.  First, it
1842  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1843  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1844  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1845  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1846  *
1847  *      The object must be locked.
1848  */
1849 void
1850 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1851     int options)
1852 {
1853         vm_page_t p, next;
1854
1855         VM_OBJECT_ASSERT_WLOCKED(object);
1856         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1857             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1858             ("vm_object_page_remove: illegal options for object %p", object));
1859         if (object->resident_page_count == 0)
1860                 return;
1861         vm_object_pip_add(object, 1);
1862 again:
1863         p = vm_page_find_least(object, start);
1864
1865         /*
1866          * Here, the variable "p" is either (1) the page with the least pindex
1867          * greater than or equal to the parameter "start" or (2) NULL. 
1868          */
1869         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1870                 next = TAILQ_NEXT(p, listq);
1871
1872                 /*
1873                  * If the page is wired for any reason besides the existence
1874                  * of managed, wired mappings, then it cannot be freed.  For
1875                  * example, fictitious pages, which represent device memory,
1876                  * are inherently wired and cannot be freed.  They can,
1877                  * however, be invalidated if the option OBJPR_CLEANONLY is
1878                  * not specified.
1879                  */
1880                 vm_page_lock(p);
1881                 if (vm_page_xbusied(p)) {
1882                         VM_OBJECT_WUNLOCK(object);
1883                         vm_page_busy_sleep(p, "vmopax", true);
1884                         VM_OBJECT_WLOCK(object);
1885                         goto again;
1886                 }
1887                 if (p->wire_count != 0) {
1888                         if ((options & OBJPR_NOTMAPPED) == 0)
1889                                 pmap_remove_all(p);
1890                         if ((options & OBJPR_CLEANONLY) == 0) {
1891                                 p->valid = 0;
1892                                 vm_page_undirty(p);
1893                         }
1894                         goto next;
1895                 }
1896                 if (vm_page_busied(p)) {
1897                         VM_OBJECT_WUNLOCK(object);
1898                         vm_page_busy_sleep(p, "vmopar", false);
1899                         VM_OBJECT_WLOCK(object);
1900                         goto again;
1901                 }
1902                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1903                     ("vm_object_page_remove: page %p is fictitious", p));
1904                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1905                         if ((options & OBJPR_NOTMAPPED) == 0)
1906                                 pmap_remove_write(p);
1907                         if (p->dirty)
1908                                 goto next;
1909                 }
1910                 if ((options & OBJPR_NOTMAPPED) == 0)
1911                         pmap_remove_all(p);
1912                 vm_page_free(p);
1913 next:
1914                 vm_page_unlock(p);
1915         }
1916         vm_object_pip_wakeup(object);
1917 }
1918
1919 /*
1920  *      vm_object_page_noreuse:
1921  *
1922  *      For the given object, attempt to move the specified pages to
1923  *      the head of the inactive queue.  This bypasses regular LRU
1924  *      operation and allows the pages to be reused quickly under memory
1925  *      pressure.  If a page is wired for any reason, then it will not
1926  *      be queued.  Pages are specified by the range ["start", "end").
1927  *      As a special case, if "end" is zero, then the range extends from
1928  *      "start" to the end of the object.
1929  *
1930  *      This operation should only be performed on objects that
1931  *      contain non-fictitious, managed pages.
1932  *
1933  *      The object must be locked.
1934  */
1935 void
1936 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1937 {
1938         struct mtx *mtx, *new_mtx;
1939         vm_page_t p, next;
1940
1941         VM_OBJECT_ASSERT_WLOCKED(object);
1942         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1943             ("vm_object_page_noreuse: illegal object %p", object));
1944         if (object->resident_page_count == 0)
1945                 return;
1946         p = vm_page_find_least(object, start);
1947
1948         /*
1949          * Here, the variable "p" is either (1) the page with the least pindex
1950          * greater than or equal to the parameter "start" or (2) NULL. 
1951          */
1952         mtx = NULL;
1953         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1954                 next = TAILQ_NEXT(p, listq);
1955
1956                 /*
1957                  * Avoid releasing and reacquiring the same page lock.
1958                  */
1959                 new_mtx = vm_page_lockptr(p);
1960                 if (mtx != new_mtx) {
1961                         if (mtx != NULL)
1962                                 mtx_unlock(mtx);
1963                         mtx = new_mtx;
1964                         mtx_lock(mtx);
1965                 }
1966                 vm_page_deactivate_noreuse(p);
1967         }
1968         if (mtx != NULL)
1969                 mtx_unlock(mtx);
1970 }
1971
1972 /*
1973  *      Populate the specified range of the object with valid pages.  Returns
1974  *      TRUE if the range is successfully populated and FALSE otherwise.
1975  *
1976  *      Note: This function should be optimized to pass a larger array of
1977  *      pages to vm_pager_get_pages() before it is applied to a non-
1978  *      OBJT_DEVICE object.
1979  *
1980  *      The object must be locked.
1981  */
1982 boolean_t
1983 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1984 {
1985         vm_page_t m;
1986         vm_pindex_t pindex;
1987         int rv;
1988
1989         VM_OBJECT_ASSERT_WLOCKED(object);
1990         for (pindex = start; pindex < end; pindex++) {
1991                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1992                 if (m->valid != VM_PAGE_BITS_ALL) {
1993                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
1994                         if (rv != VM_PAGER_OK) {
1995                                 vm_page_lock(m);
1996                                 vm_page_free(m);
1997                                 vm_page_unlock(m);
1998                                 break;
1999                         }
2000                 }
2001                 /*
2002                  * Keep "m" busy because a subsequent iteration may unlock
2003                  * the object.
2004                  */
2005         }
2006         if (pindex > start) {
2007                 m = vm_page_lookup(object, start);
2008                 while (m != NULL && m->pindex < pindex) {
2009                         vm_page_xunbusy(m);
2010                         m = TAILQ_NEXT(m, listq);
2011                 }
2012         }
2013         return (pindex == end);
2014 }
2015
2016 /*
2017  *      Routine:        vm_object_coalesce
2018  *      Function:       Coalesces two objects backing up adjoining
2019  *                      regions of memory into a single object.
2020  *
2021  *      returns TRUE if objects were combined.
2022  *
2023  *      NOTE:   Only works at the moment if the second object is NULL -
2024  *              if it's not, which object do we lock first?
2025  *
2026  *      Parameters:
2027  *              prev_object     First object to coalesce
2028  *              prev_offset     Offset into prev_object
2029  *              prev_size       Size of reference to prev_object
2030  *              next_size       Size of reference to the second object
2031  *              reserved        Indicator that extension region has
2032  *                              swap accounted for
2033  *
2034  *      Conditions:
2035  *      The object must *not* be locked.
2036  */
2037 boolean_t
2038 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2039     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2040 {
2041         vm_pindex_t next_pindex;
2042
2043         if (prev_object == NULL)
2044                 return (TRUE);
2045         VM_OBJECT_WLOCK(prev_object);
2046         if ((prev_object->type != OBJT_DEFAULT &&
2047             prev_object->type != OBJT_SWAP) ||
2048             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2049                 VM_OBJECT_WUNLOCK(prev_object);
2050                 return (FALSE);
2051         }
2052
2053         /*
2054          * Try to collapse the object first
2055          */
2056         vm_object_collapse(prev_object);
2057
2058         /*
2059          * Can't coalesce if: . more than one reference . paged out . shadows
2060          * another object . has a copy elsewhere (any of which mean that the
2061          * pages not mapped to prev_entry may be in use anyway)
2062          */
2063         if (prev_object->backing_object != NULL) {
2064                 VM_OBJECT_WUNLOCK(prev_object);
2065                 return (FALSE);
2066         }
2067
2068         prev_size >>= PAGE_SHIFT;
2069         next_size >>= PAGE_SHIFT;
2070         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2071
2072         if ((prev_object->ref_count > 1) &&
2073             (prev_object->size != next_pindex)) {
2074                 VM_OBJECT_WUNLOCK(prev_object);
2075                 return (FALSE);
2076         }
2077
2078         /*
2079          * Account for the charge.
2080          */
2081         if (prev_object->cred != NULL) {
2082
2083                 /*
2084                  * If prev_object was charged, then this mapping,
2085                  * although not charged now, may become writable
2086                  * later. Non-NULL cred in the object would prevent
2087                  * swap reservation during enabling of the write
2088                  * access, so reserve swap now. Failed reservation
2089                  * cause allocation of the separate object for the map
2090                  * entry, and swap reservation for this entry is
2091                  * managed in appropriate time.
2092                  */
2093                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2094                     prev_object->cred)) {
2095                         VM_OBJECT_WUNLOCK(prev_object);
2096                         return (FALSE);
2097                 }
2098                 prev_object->charge += ptoa(next_size);
2099         }
2100
2101         /*
2102          * Remove any pages that may still be in the object from a previous
2103          * deallocation.
2104          */
2105         if (next_pindex < prev_object->size) {
2106                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2107                     next_size, 0);
2108                 if (prev_object->type == OBJT_SWAP)
2109                         swap_pager_freespace(prev_object,
2110                                              next_pindex, next_size);
2111 #if 0
2112                 if (prev_object->cred != NULL) {
2113                         KASSERT(prev_object->charge >=
2114                             ptoa(prev_object->size - next_pindex),
2115                             ("object %p overcharged 1 %jx %jx", prev_object,
2116                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2117                         prev_object->charge -= ptoa(prev_object->size -
2118                             next_pindex);
2119                 }
2120 #endif
2121         }
2122
2123         /*
2124          * Extend the object if necessary.
2125          */
2126         if (next_pindex + next_size > prev_object->size)
2127                 prev_object->size = next_pindex + next_size;
2128
2129         VM_OBJECT_WUNLOCK(prev_object);
2130         return (TRUE);
2131 }
2132
2133 void
2134 vm_object_set_writeable_dirty(vm_object_t object)
2135 {
2136
2137         VM_OBJECT_ASSERT_WLOCKED(object);
2138         if (object->type != OBJT_VNODE) {
2139                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2140                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2141                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2142                 }
2143                 return;
2144         }
2145         object->generation++;
2146         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2147                 return;
2148         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2149 }
2150
2151 /*
2152  *      vm_object_unwire:
2153  *
2154  *      For each page offset within the specified range of the given object,
2155  *      find the highest-level page in the shadow chain and unwire it.  A page
2156  *      must exist at every page offset, and the highest-level page must be
2157  *      wired.
2158  */
2159 void
2160 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2161     uint8_t queue)
2162 {
2163         vm_object_t tobject;
2164         vm_page_t m, tm;
2165         vm_pindex_t end_pindex, pindex, tpindex;
2166         int depth, locked_depth;
2167
2168         KASSERT((offset & PAGE_MASK) == 0,
2169             ("vm_object_unwire: offset is not page aligned"));
2170         KASSERT((length & PAGE_MASK) == 0,
2171             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2172         /* The wired count of a fictitious page never changes. */
2173         if ((object->flags & OBJ_FICTITIOUS) != 0)
2174                 return;
2175         pindex = OFF_TO_IDX(offset);
2176         end_pindex = pindex + atop(length);
2177         locked_depth = 1;
2178         VM_OBJECT_RLOCK(object);
2179         m = vm_page_find_least(object, pindex);
2180         while (pindex < end_pindex) {
2181                 if (m == NULL || pindex < m->pindex) {
2182                         /*
2183                          * The first object in the shadow chain doesn't
2184                          * contain a page at the current index.  Therefore,
2185                          * the page must exist in a backing object.
2186                          */
2187                         tobject = object;
2188                         tpindex = pindex;
2189                         depth = 0;
2190                         do {
2191                                 tpindex +=
2192                                     OFF_TO_IDX(tobject->backing_object_offset);
2193                                 tobject = tobject->backing_object;
2194                                 KASSERT(tobject != NULL,
2195                                     ("vm_object_unwire: missing page"));
2196                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2197                                         goto next_page;
2198                                 depth++;
2199                                 if (depth == locked_depth) {
2200                                         locked_depth++;
2201                                         VM_OBJECT_RLOCK(tobject);
2202                                 }
2203                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2204                             NULL);
2205                 } else {
2206                         tm = m;
2207                         m = TAILQ_NEXT(m, listq);
2208                 }
2209                 vm_page_lock(tm);
2210                 vm_page_unwire(tm, queue);
2211                 vm_page_unlock(tm);
2212 next_page:
2213                 pindex++;
2214         }
2215         /* Release the accumulated object locks. */
2216         for (depth = 0; depth < locked_depth; depth++) {
2217                 tobject = object->backing_object;
2218                 VM_OBJECT_RUNLOCK(object);
2219                 object = tobject;
2220         }
2221 }
2222
2223 struct vnode *
2224 vm_object_vnode(vm_object_t object)
2225 {
2226
2227         VM_OBJECT_ASSERT_LOCKED(object);
2228         if (object->type == OBJT_VNODE)
2229                 return (object->handle);
2230         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2231                 return (object->un_pager.swp.swp_tmpfs);
2232         return (NULL);
2233 }
2234
2235 static int
2236 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2237 {
2238         struct kinfo_vmobject kvo;
2239         char *fullpath, *freepath;
2240         struct vnode *vp;
2241         struct vattr va;
2242         vm_object_t obj;
2243         vm_page_t m;
2244         int count, error;
2245
2246         if (req->oldptr == NULL) {
2247                 /*
2248                  * If an old buffer has not been provided, generate an
2249                  * estimate of the space needed for a subsequent call.
2250                  */
2251                 mtx_lock(&vm_object_list_mtx);
2252                 count = 0;
2253                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2254                         if (obj->type == OBJT_DEAD)
2255                                 continue;
2256                         count++;
2257                 }
2258                 mtx_unlock(&vm_object_list_mtx);
2259                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2260                     count * 11 / 10));
2261         }
2262
2263         error = 0;
2264
2265         /*
2266          * VM objects are type stable and are never removed from the
2267          * list once added.  This allows us to safely read obj->object_list
2268          * after reacquiring the VM object lock.
2269          */
2270         mtx_lock(&vm_object_list_mtx);
2271         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2272                 if (obj->type == OBJT_DEAD)
2273                         continue;
2274                 VM_OBJECT_RLOCK(obj);
2275                 if (obj->type == OBJT_DEAD) {
2276                         VM_OBJECT_RUNLOCK(obj);
2277                         continue;
2278                 }
2279                 mtx_unlock(&vm_object_list_mtx);
2280                 kvo.kvo_size = ptoa(obj->size);
2281                 kvo.kvo_resident = obj->resident_page_count;
2282                 kvo.kvo_ref_count = obj->ref_count;
2283                 kvo.kvo_shadow_count = obj->shadow_count;
2284                 kvo.kvo_memattr = obj->memattr;
2285                 kvo.kvo_active = 0;
2286                 kvo.kvo_inactive = 0;
2287                 TAILQ_FOREACH(m, &obj->memq, listq) {
2288                         /*
2289                          * A page may belong to the object but be
2290                          * dequeued and set to PQ_NONE while the
2291                          * object lock is not held.  This makes the
2292                          * reads of m->queue below racy, and we do not
2293                          * count pages set to PQ_NONE.  However, this
2294                          * sysctl is only meant to give an
2295                          * approximation of the system anyway.
2296                          */
2297                         if (vm_page_active(m))
2298                                 kvo.kvo_active++;
2299                         else if (vm_page_inactive(m))
2300                                 kvo.kvo_inactive++;
2301                 }
2302
2303                 kvo.kvo_vn_fileid = 0;
2304                 kvo.kvo_vn_fsid = 0;
2305                 freepath = NULL;
2306                 fullpath = "";
2307                 vp = NULL;
2308                 switch (obj->type) {
2309                 case OBJT_DEFAULT:
2310                         kvo.kvo_type = KVME_TYPE_DEFAULT;
2311                         break;
2312                 case OBJT_VNODE:
2313                         kvo.kvo_type = KVME_TYPE_VNODE;
2314                         vp = obj->handle;
2315                         vref(vp);
2316                         break;
2317                 case OBJT_SWAP:
2318                         kvo.kvo_type = KVME_TYPE_SWAP;
2319                         break;
2320                 case OBJT_DEVICE:
2321                         kvo.kvo_type = KVME_TYPE_DEVICE;
2322                         break;
2323                 case OBJT_PHYS:
2324                         kvo.kvo_type = KVME_TYPE_PHYS;
2325                         break;
2326                 case OBJT_DEAD:
2327                         kvo.kvo_type = KVME_TYPE_DEAD;
2328                         break;
2329                 case OBJT_SG:
2330                         kvo.kvo_type = KVME_TYPE_SG;
2331                         break;
2332                 case OBJT_MGTDEVICE:
2333                         kvo.kvo_type = KVME_TYPE_MGTDEVICE;
2334                         break;
2335                 default:
2336                         kvo.kvo_type = KVME_TYPE_UNKNOWN;
2337                         break;
2338                 }
2339                 VM_OBJECT_RUNLOCK(obj);
2340                 if (vp != NULL) {
2341                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2342                         vn_lock(vp, LK_SHARED | LK_RETRY);
2343                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2344                                 kvo.kvo_vn_fileid = va.va_fileid;
2345                                 kvo.kvo_vn_fsid = va.va_fsid;
2346                         }
2347                         vput(vp);
2348                 }
2349
2350                 strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
2351                 if (freepath != NULL)
2352                         free(freepath, M_TEMP);
2353
2354                 /* Pack record size down */
2355                 kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
2356                     strlen(kvo.kvo_path) + 1;
2357                 kvo.kvo_structsize = roundup(kvo.kvo_structsize,
2358                     sizeof(uint64_t));
2359                 error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
2360                 mtx_lock(&vm_object_list_mtx);
2361                 if (error)
2362                         break;
2363         }
2364         mtx_unlock(&vm_object_list_mtx);
2365         return (error);
2366 }
2367 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2368     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2369     "List of VM objects");
2370
2371 #include "opt_ddb.h"
2372 #ifdef DDB
2373 #include <sys/kernel.h>
2374
2375 #include <sys/cons.h>
2376
2377 #include <ddb/ddb.h>
2378
2379 static int
2380 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2381 {
2382         vm_map_t tmpm;
2383         vm_map_entry_t tmpe;
2384         vm_object_t obj;
2385         int entcount;
2386
2387         if (map == 0)
2388                 return 0;
2389
2390         if (entry == 0) {
2391                 tmpe = map->header.next;
2392                 entcount = map->nentries;
2393                 while (entcount-- && (tmpe != &map->header)) {
2394                         if (_vm_object_in_map(map, object, tmpe)) {
2395                                 return 1;
2396                         }
2397                         tmpe = tmpe->next;
2398                 }
2399         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2400                 tmpm = entry->object.sub_map;
2401                 tmpe = tmpm->header.next;
2402                 entcount = tmpm->nentries;
2403                 while (entcount-- && tmpe != &tmpm->header) {
2404                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2405                                 return 1;
2406                         }
2407                         tmpe = tmpe->next;
2408                 }
2409         } else if ((obj = entry->object.vm_object) != NULL) {
2410                 for (; obj; obj = obj->backing_object)
2411                         if (obj == object) {
2412                                 return 1;
2413                         }
2414         }
2415         return 0;
2416 }
2417
2418 static int
2419 vm_object_in_map(vm_object_t object)
2420 {
2421         struct proc *p;
2422
2423         /* sx_slock(&allproc_lock); */
2424         FOREACH_PROC_IN_SYSTEM(p) {
2425                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2426                         continue;
2427                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2428                         /* sx_sunlock(&allproc_lock); */
2429                         return 1;
2430                 }
2431         }
2432         /* sx_sunlock(&allproc_lock); */
2433         if (_vm_object_in_map(kernel_map, object, 0))
2434                 return 1;
2435         return 0;
2436 }
2437
2438 DB_SHOW_COMMAND(vmochk, vm_object_check)
2439 {
2440         vm_object_t object;
2441
2442         /*
2443          * make sure that internal objs are in a map somewhere
2444          * and none have zero ref counts.
2445          */
2446         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2447                 if (object->handle == NULL &&
2448                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2449                         if (object->ref_count == 0) {
2450                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2451                                         (long)object->size);
2452                         }
2453                         if (!vm_object_in_map(object)) {
2454                                 db_printf(
2455                         "vmochk: internal obj is not in a map: "
2456                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2457                                     object->ref_count, (u_long)object->size, 
2458                                     (u_long)object->size,
2459                                     (void *)object->backing_object);
2460                         }
2461                 }
2462         }
2463 }
2464
2465 /*
2466  *      vm_object_print:        [ debug ]
2467  */
2468 DB_SHOW_COMMAND(object, vm_object_print_static)
2469 {
2470         /* XXX convert args. */
2471         vm_object_t object = (vm_object_t)addr;
2472         boolean_t full = have_addr;
2473
2474         vm_page_t p;
2475
2476         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2477 #define count   was_count
2478
2479         int count;
2480
2481         if (object == NULL)
2482                 return;
2483
2484         db_iprintf(
2485             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2486             object, (int)object->type, (uintmax_t)object->size,
2487             object->resident_page_count, object->ref_count, object->flags,
2488             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2489         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2490             object->shadow_count, 
2491             object->backing_object ? object->backing_object->ref_count : 0,
2492             object->backing_object, (uintmax_t)object->backing_object_offset);
2493
2494         if (!full)
2495                 return;
2496
2497         db_indent += 2;
2498         count = 0;
2499         TAILQ_FOREACH(p, &object->memq, listq) {
2500                 if (count == 0)
2501                         db_iprintf("memory:=");
2502                 else if (count == 6) {
2503                         db_printf("\n");
2504                         db_iprintf(" ...");
2505                         count = 0;
2506                 } else
2507                         db_printf(",");
2508                 count++;
2509
2510                 db_printf("(off=0x%jx,page=0x%jx)",
2511                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2512         }
2513         if (count != 0)
2514                 db_printf("\n");
2515         db_indent -= 2;
2516 }
2517
2518 /* XXX. */
2519 #undef count
2520
2521 /* XXX need this non-static entry for calling from vm_map_print. */
2522 void
2523 vm_object_print(
2524         /* db_expr_t */ long addr,
2525         boolean_t have_addr,
2526         /* db_expr_t */ long count,
2527         char *modif)
2528 {
2529         vm_object_print_static(addr, have_addr, count, modif);
2530 }
2531
2532 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2533 {
2534         vm_object_t object;
2535         vm_pindex_t fidx;
2536         vm_paddr_t pa;
2537         vm_page_t m, prev_m;
2538         int rcount, nl, c;
2539
2540         nl = 0;
2541         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2542                 db_printf("new object: %p\n", (void *)object);
2543                 if (nl > 18) {
2544                         c = cngetc();
2545                         if (c != ' ')
2546                                 return;
2547                         nl = 0;
2548                 }
2549                 nl++;
2550                 rcount = 0;
2551                 fidx = 0;
2552                 pa = -1;
2553                 TAILQ_FOREACH(m, &object->memq, listq) {
2554                         if (m->pindex > 128)
2555                                 break;
2556                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2557                             prev_m->pindex + 1 != m->pindex) {
2558                                 if (rcount) {
2559                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2560                                                 (long)fidx, rcount, (long)pa);
2561                                         if (nl > 18) {
2562                                                 c = cngetc();
2563                                                 if (c != ' ')
2564                                                         return;
2565                                                 nl = 0;
2566                                         }
2567                                         nl++;
2568                                         rcount = 0;
2569                                 }
2570                         }                               
2571                         if (rcount &&
2572                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2573                                 ++rcount;
2574                                 continue;
2575                         }
2576                         if (rcount) {
2577                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2578                                         (long)fidx, rcount, (long)pa);
2579                                 if (nl > 18) {
2580                                         c = cngetc();
2581                                         if (c != ' ')
2582                                                 return;
2583                                         nl = 0;
2584                                 }
2585                                 nl++;
2586                         }
2587                         fidx = m->pindex;
2588                         pa = VM_PAGE_TO_PHYS(m);
2589                         rcount = 1;
2590                 }
2591                 if (rcount) {
2592                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2593                                 (long)fidx, rcount, (long)pa);
2594                         if (nl > 18) {
2595                                 c = cngetc();
2596                                 if (c != ' ')
2597                                         return;
2598                                 nl = 0;
2599                         }
2600                         nl++;
2601                 }
2602         }
2603 }
2604 #endif /* DDB */