]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
MFhead@r322675
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104     "Use old (insecure) msync behavior");
105
106 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107                     int pagerflags, int flags, boolean_t *clearobjflags,
108                     boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110                     boolean_t *clearobjflags);
111 static void     vm_object_qcollapse(vm_object_t object);
112 static void     vm_object_vndeallocate(vm_object_t object);
113
114 /*
115  *      Virtual memory objects maintain the actual data
116  *      associated with allocated virtual memory.  A given
117  *      page of memory exists within exactly one object.
118  *
119  *      An object is only deallocated when all "references"
120  *      are given up.  Only one "reference" to a given
121  *      region of an object should be writeable.
122  *
123  *      Associated with each object is a list of all resident
124  *      memory pages belonging to that object; this list is
125  *      maintained by the "vm_page" module, and locked by the object's
126  *      lock.
127  *
128  *      Each object also records a "pager" routine which is
129  *      used to retrieve (and store) pages to the proper backing
130  *      storage.  In addition, objects may be backed by other
131  *      objects from which they were virtual-copied.
132  *
133  *      The only items within the object structure which are
134  *      modified after time of creation are:
135  *              reference count         locked by object's lock
136  *              pager routine           locked by object's lock
137  *
138  */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;  /* lock for object list and count */
142
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147     "VM object stats");
148
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156
157 static uma_zone_t obj_zone;
158
159 static int vm_object_zinit(void *mem, int size, int flags);
160
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167         vm_object_t object;
168
169         object = (vm_object_t)mem;
170         KASSERT(object->ref_count == 0,
171             ("object %p ref_count = %d", object, object->ref_count));
172         KASSERT(TAILQ_EMPTY(&object->memq),
173             ("object %p has resident pages in its memq", object));
174         KASSERT(vm_radix_is_empty(&object->rtree),
175             ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177         KASSERT(LIST_EMPTY(&object->rvq),
178             ("object %p has reservations",
179             object));
180 #endif
181         KASSERT(object->paging_in_progress == 0,
182             ("object %p paging_in_progress = %d",
183             object, object->paging_in_progress));
184         KASSERT(object->resident_page_count == 0,
185             ("object %p resident_page_count = %d",
186             object, object->resident_page_count));
187         KASSERT(object->shadow_count == 0,
188             ("object %p shadow_count = %d",
189             object, object->shadow_count));
190         KASSERT(object->type == OBJT_DEAD,
191             ("object %p has non-dead type %d",
192             object, object->type));
193 }
194 #endif
195
196 static int
197 vm_object_zinit(void *mem, int size, int flags)
198 {
199         vm_object_t object;
200
201         object = (vm_object_t)mem;
202         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
203
204         /* These are true for any object that has been freed */
205         object->type = OBJT_DEAD;
206         object->ref_count = 0;
207         vm_radix_init(&object->rtree);
208         object->paging_in_progress = 0;
209         object->resident_page_count = 0;
210         object->shadow_count = 0;
211
212         mtx_lock(&vm_object_list_mtx);
213         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
214         mtx_unlock(&vm_object_list_mtx);
215         return (0);
216 }
217
218 static void
219 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
220 {
221
222         TAILQ_INIT(&object->memq);
223         LIST_INIT(&object->shadow_head);
224
225         object->type = type;
226         switch (type) {
227         case OBJT_DEAD:
228                 panic("_vm_object_allocate: can't create OBJT_DEAD");
229         case OBJT_DEFAULT:
230         case OBJT_SWAP:
231                 object->flags = OBJ_ONEMAPPING;
232                 break;
233         case OBJT_DEVICE:
234         case OBJT_SG:
235                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
236                 break;
237         case OBJT_MGTDEVICE:
238                 object->flags = OBJ_FICTITIOUS;
239                 break;
240         case OBJT_PHYS:
241                 object->flags = OBJ_UNMANAGED;
242                 break;
243         case OBJT_VNODE:
244                 object->flags = 0;
245                 break;
246         default:
247                 panic("_vm_object_allocate: type %d is undefined", type);
248         }
249         object->size = size;
250         object->generation = 1;
251         object->ref_count = 1;
252         object->memattr = VM_MEMATTR_DEFAULT;
253         object->cred = NULL;
254         object->charge = 0;
255         object->handle = NULL;
256         object->backing_object = NULL;
257         object->backing_object_offset = (vm_ooffset_t) 0;
258 #if VM_NRESERVLEVEL > 0
259         LIST_INIT(&object->rvq);
260 #endif
261         umtx_shm_object_init(object);
262 }
263
264 /*
265  *      vm_object_init:
266  *
267  *      Initialize the VM objects module.
268  */
269 void
270 vm_object_init(void)
271 {
272         TAILQ_INIT(&vm_object_list);
273         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
274         
275         rw_init(&kernel_object->lock, "kernel vm object");
276         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
277             VM_MIN_KERNEL_ADDRESS), kernel_object);
278 #if VM_NRESERVLEVEL > 0
279         kernel_object->flags |= OBJ_COLORED;
280         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
281 #endif
282
283         rw_init(&kmem_object->lock, "kmem vm object");
284         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
285             VM_MIN_KERNEL_ADDRESS), kmem_object);
286 #if VM_NRESERVLEVEL > 0
287         kmem_object->flags |= OBJ_COLORED;
288         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
289 #endif
290
291         /*
292          * The lock portion of struct vm_object must be type stable due
293          * to vm_pageout_fallback_object_lock locking a vm object
294          * without holding any references to it.
295          */
296         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
297 #ifdef INVARIANTS
298             vm_object_zdtor,
299 #else
300             NULL,
301 #endif
302             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
303
304         vm_radix_zinit();
305 }
306
307 void
308 vm_object_clear_flag(vm_object_t object, u_short bits)
309 {
310
311         VM_OBJECT_ASSERT_WLOCKED(object);
312         object->flags &= ~bits;
313 }
314
315 /*
316  *      Sets the default memory attribute for the specified object.  Pages
317  *      that are allocated to this object are by default assigned this memory
318  *      attribute.
319  *
320  *      Presently, this function must be called before any pages are allocated
321  *      to the object.  In the future, this requirement may be relaxed for
322  *      "default" and "swap" objects.
323  */
324 int
325 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
326 {
327
328         VM_OBJECT_ASSERT_WLOCKED(object);
329         switch (object->type) {
330         case OBJT_DEFAULT:
331         case OBJT_DEVICE:
332         case OBJT_MGTDEVICE:
333         case OBJT_PHYS:
334         case OBJT_SG:
335         case OBJT_SWAP:
336         case OBJT_VNODE:
337                 if (!TAILQ_EMPTY(&object->memq))
338                         return (KERN_FAILURE);
339                 break;
340         case OBJT_DEAD:
341                 return (KERN_INVALID_ARGUMENT);
342         default:
343                 panic("vm_object_set_memattr: object %p is of undefined type",
344                     object);
345         }
346         object->memattr = memattr;
347         return (KERN_SUCCESS);
348 }
349
350 void
351 vm_object_pip_add(vm_object_t object, short i)
352 {
353
354         VM_OBJECT_ASSERT_WLOCKED(object);
355         object->paging_in_progress += i;
356 }
357
358 void
359 vm_object_pip_subtract(vm_object_t object, short i)
360 {
361
362         VM_OBJECT_ASSERT_WLOCKED(object);
363         object->paging_in_progress -= i;
364 }
365
366 void
367 vm_object_pip_wakeup(vm_object_t object)
368 {
369
370         VM_OBJECT_ASSERT_WLOCKED(object);
371         object->paging_in_progress--;
372         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
373                 vm_object_clear_flag(object, OBJ_PIPWNT);
374                 wakeup(object);
375         }
376 }
377
378 void
379 vm_object_pip_wakeupn(vm_object_t object, short i)
380 {
381
382         VM_OBJECT_ASSERT_WLOCKED(object);
383         if (i)
384                 object->paging_in_progress -= i;
385         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
386                 vm_object_clear_flag(object, OBJ_PIPWNT);
387                 wakeup(object);
388         }
389 }
390
391 void
392 vm_object_pip_wait(vm_object_t object, char *waitid)
393 {
394
395         VM_OBJECT_ASSERT_WLOCKED(object);
396         while (object->paging_in_progress) {
397                 object->flags |= OBJ_PIPWNT;
398                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
399         }
400 }
401
402 /*
403  *      vm_object_allocate:
404  *
405  *      Returns a new object with the given size.
406  */
407 vm_object_t
408 vm_object_allocate(objtype_t type, vm_pindex_t size)
409 {
410         vm_object_t object;
411
412         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
413         _vm_object_allocate(type, size, object);
414         return (object);
415 }
416
417
418 /*
419  *      vm_object_reference:
420  *
421  *      Gets another reference to the given object.  Note: OBJ_DEAD
422  *      objects can be referenced during final cleaning.
423  */
424 void
425 vm_object_reference(vm_object_t object)
426 {
427         if (object == NULL)
428                 return;
429         VM_OBJECT_WLOCK(object);
430         vm_object_reference_locked(object);
431         VM_OBJECT_WUNLOCK(object);
432 }
433
434 /*
435  *      vm_object_reference_locked:
436  *
437  *      Gets another reference to the given object.
438  *
439  *      The object must be locked.
440  */
441 void
442 vm_object_reference_locked(vm_object_t object)
443 {
444         struct vnode *vp;
445
446         VM_OBJECT_ASSERT_WLOCKED(object);
447         object->ref_count++;
448         if (object->type == OBJT_VNODE) {
449                 vp = object->handle;
450                 vref(vp);
451         }
452 }
453
454 /*
455  * Handle deallocating an object of type OBJT_VNODE.
456  */
457 static void
458 vm_object_vndeallocate(vm_object_t object)
459 {
460         struct vnode *vp = (struct vnode *) object->handle;
461
462         VM_OBJECT_ASSERT_WLOCKED(object);
463         KASSERT(object->type == OBJT_VNODE,
464             ("vm_object_vndeallocate: not a vnode object"));
465         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
466 #ifdef INVARIANTS
467         if (object->ref_count == 0) {
468                 vn_printf(vp, "vm_object_vndeallocate ");
469                 panic("vm_object_vndeallocate: bad object reference count");
470         }
471 #endif
472
473         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
474                 umtx_shm_object_terminated(object);
475
476         /*
477          * The test for text of vp vnode does not need a bypass to
478          * reach right VV_TEXT there, since it is obtained from
479          * object->handle.
480          */
481         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
482                 object->ref_count--;
483                 VM_OBJECT_WUNLOCK(object);
484                 /* vrele may need the vnode lock. */
485                 vrele(vp);
486         } else {
487                 vhold(vp);
488                 VM_OBJECT_WUNLOCK(object);
489                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
490                 vdrop(vp);
491                 VM_OBJECT_WLOCK(object);
492                 object->ref_count--;
493                 if (object->type == OBJT_DEAD) {
494                         VM_OBJECT_WUNLOCK(object);
495                         VOP_UNLOCK(vp, 0);
496                 } else {
497                         if (object->ref_count == 0)
498                                 VOP_UNSET_TEXT(vp);
499                         VM_OBJECT_WUNLOCK(object);
500                         vput(vp);
501                 }
502         }
503 }
504
505 /*
506  *      vm_object_deallocate:
507  *
508  *      Release a reference to the specified object,
509  *      gained either through a vm_object_allocate
510  *      or a vm_object_reference call.  When all references
511  *      are gone, storage associated with this object
512  *      may be relinquished.
513  *
514  *      No object may be locked.
515  */
516 void
517 vm_object_deallocate(vm_object_t object)
518 {
519         vm_object_t temp;
520         struct vnode *vp;
521
522         while (object != NULL) {
523                 VM_OBJECT_WLOCK(object);
524                 if (object->type == OBJT_VNODE) {
525                         vm_object_vndeallocate(object);
526                         return;
527                 }
528
529                 KASSERT(object->ref_count != 0,
530                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
531
532                 /*
533                  * If the reference count goes to 0 we start calling
534                  * vm_object_terminate() on the object chain.
535                  * A ref count of 1 may be a special case depending on the
536                  * shadow count being 0 or 1.
537                  */
538                 object->ref_count--;
539                 if (object->ref_count > 1) {
540                         VM_OBJECT_WUNLOCK(object);
541                         return;
542                 } else if (object->ref_count == 1) {
543                         if (object->type == OBJT_SWAP &&
544                             (object->flags & OBJ_TMPFS) != 0) {
545                                 vp = object->un_pager.swp.swp_tmpfs;
546                                 vhold(vp);
547                                 VM_OBJECT_WUNLOCK(object);
548                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
549                                 VM_OBJECT_WLOCK(object);
550                                 if (object->type == OBJT_DEAD ||
551                                     object->ref_count != 1) {
552                                         VM_OBJECT_WUNLOCK(object);
553                                         VOP_UNLOCK(vp, 0);
554                                         vdrop(vp);
555                                         return;
556                                 }
557                                 if ((object->flags & OBJ_TMPFS) != 0)
558                                         VOP_UNSET_TEXT(vp);
559                                 VOP_UNLOCK(vp, 0);
560                                 vdrop(vp);
561                         }
562                         if (object->shadow_count == 0 &&
563                             object->handle == NULL &&
564                             (object->type == OBJT_DEFAULT ||
565                             (object->type == OBJT_SWAP &&
566                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
567                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
568                         } else if ((object->shadow_count == 1) &&
569                             (object->handle == NULL) &&
570                             (object->type == OBJT_DEFAULT ||
571                              object->type == OBJT_SWAP)) {
572                                 vm_object_t robject;
573
574                                 robject = LIST_FIRST(&object->shadow_head);
575                                 KASSERT(robject != NULL,
576                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
577                                          object->ref_count,
578                                          object->shadow_count));
579                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
580                                     ("shadowed tmpfs v_object %p", object));
581                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
582                                         /*
583                                          * Avoid a potential deadlock.
584                                          */
585                                         object->ref_count++;
586                                         VM_OBJECT_WUNLOCK(object);
587                                         /*
588                                          * More likely than not the thread
589                                          * holding robject's lock has lower
590                                          * priority than the current thread.
591                                          * Let the lower priority thread run.
592                                          */
593                                         pause("vmo_de", 1);
594                                         continue;
595                                 }
596                                 /*
597                                  * Collapse object into its shadow unless its
598                                  * shadow is dead.  In that case, object will
599                                  * be deallocated by the thread that is
600                                  * deallocating its shadow.
601                                  */
602                                 if ((robject->flags & OBJ_DEAD) == 0 &&
603                                     (robject->handle == NULL) &&
604                                     (robject->type == OBJT_DEFAULT ||
605                                      robject->type == OBJT_SWAP)) {
606
607                                         robject->ref_count++;
608 retry:
609                                         if (robject->paging_in_progress) {
610                                                 VM_OBJECT_WUNLOCK(object);
611                                                 vm_object_pip_wait(robject,
612                                                     "objde1");
613                                                 temp = robject->backing_object;
614                                                 if (object == temp) {
615                                                         VM_OBJECT_WLOCK(object);
616                                                         goto retry;
617                                                 }
618                                         } else if (object->paging_in_progress) {
619                                                 VM_OBJECT_WUNLOCK(robject);
620                                                 object->flags |= OBJ_PIPWNT;
621                                                 VM_OBJECT_SLEEP(object, object,
622                                                     PDROP | PVM, "objde2", 0);
623                                                 VM_OBJECT_WLOCK(robject);
624                                                 temp = robject->backing_object;
625                                                 if (object == temp) {
626                                                         VM_OBJECT_WLOCK(object);
627                                                         goto retry;
628                                                 }
629                                         } else
630                                                 VM_OBJECT_WUNLOCK(object);
631
632                                         if (robject->ref_count == 1) {
633                                                 robject->ref_count--;
634                                                 object = robject;
635                                                 goto doterm;
636                                         }
637                                         object = robject;
638                                         vm_object_collapse(object);
639                                         VM_OBJECT_WUNLOCK(object);
640                                         continue;
641                                 }
642                                 VM_OBJECT_WUNLOCK(robject);
643                         }
644                         VM_OBJECT_WUNLOCK(object);
645                         return;
646                 }
647 doterm:
648                 umtx_shm_object_terminated(object);
649                 temp = object->backing_object;
650                 if (temp != NULL) {
651                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
652                             ("shadowed tmpfs v_object 2 %p", object));
653                         VM_OBJECT_WLOCK(temp);
654                         LIST_REMOVE(object, shadow_list);
655                         temp->shadow_count--;
656                         VM_OBJECT_WUNLOCK(temp);
657                         object->backing_object = NULL;
658                 }
659                 /*
660                  * Don't double-terminate, we could be in a termination
661                  * recursion due to the terminate having to sync data
662                  * to disk.
663                  */
664                 if ((object->flags & OBJ_DEAD) == 0)
665                         vm_object_terminate(object);
666                 else
667                         VM_OBJECT_WUNLOCK(object);
668                 object = temp;
669         }
670 }
671
672 /*
673  *      vm_object_destroy removes the object from the global object list
674  *      and frees the space for the object.
675  */
676 void
677 vm_object_destroy(vm_object_t object)
678 {
679
680         /*
681          * Release the allocation charge.
682          */
683         if (object->cred != NULL) {
684                 swap_release_by_cred(object->charge, object->cred);
685                 object->charge = 0;
686                 crfree(object->cred);
687                 object->cred = NULL;
688         }
689
690         /*
691          * Free the space for the object.
692          */
693         uma_zfree(obj_zone, object);
694 }
695
696 /*
697  *      vm_object_terminate_pages removes any remaining pageable pages
698  *      from the object and resets the object to an empty state.
699  */
700 static void
701 vm_object_terminate_pages(vm_object_t object)
702 {
703         vm_page_t p, p_next;
704
705         VM_OBJECT_ASSERT_WLOCKED(object);
706
707         /*
708          * Free any remaining pageable pages.  This also removes them from the
709          * paging queues.  However, don't free wired pages, just remove them
710          * from the object.  Rather than incrementally removing each page from
711          * the object, the page and object are reset to any empty state. 
712          */
713         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
714                 vm_page_assert_unbusied(p);
715                 vm_page_lock(p);
716                 /*
717                  * Optimize the page's removal from the object by resetting
718                  * its "object" field.  Specifically, if the page is not
719                  * wired, then the effect of this assignment is that
720                  * vm_page_free()'s call to vm_page_remove() will return
721                  * immediately without modifying the page or the object.
722                  */ 
723                 p->object = NULL;
724                 if (p->wire_count == 0) {
725                         vm_page_free(p);
726                         VM_CNT_INC(v_pfree);
727                 }
728                 vm_page_unlock(p);
729         }
730         /*
731          * If the object contained any pages, then reset it to an empty state.
732          * None of the object's fields, including "resident_page_count", were
733          * modified by the preceding loop.
734          */
735         if (object->resident_page_count != 0) {
736                 vm_radix_reclaim_allnodes(&object->rtree);
737                 TAILQ_INIT(&object->memq);
738                 object->resident_page_count = 0;
739                 if (object->type == OBJT_VNODE)
740                         vdrop(object->handle);
741         }
742 }
743
744 /*
745  *      vm_object_terminate actually destroys the specified object, freeing
746  *      up all previously used resources.
747  *
748  *      The object must be locked.
749  *      This routine may block.
750  */
751 void
752 vm_object_terminate(vm_object_t object)
753 {
754
755         VM_OBJECT_ASSERT_WLOCKED(object);
756
757         /*
758          * Make sure no one uses us.
759          */
760         vm_object_set_flag(object, OBJ_DEAD);
761
762         /*
763          * wait for the pageout daemon to be done with the object
764          */
765         vm_object_pip_wait(object, "objtrm");
766
767         KASSERT(!object->paging_in_progress,
768                 ("vm_object_terminate: pageout in progress"));
769
770         /*
771          * Clean and free the pages, as appropriate. All references to the
772          * object are gone, so we don't need to lock it.
773          */
774         if (object->type == OBJT_VNODE) {
775                 struct vnode *vp = (struct vnode *)object->handle;
776
777                 /*
778                  * Clean pages and flush buffers.
779                  */
780                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
781                 VM_OBJECT_WUNLOCK(object);
782
783                 vinvalbuf(vp, V_SAVE, 0, 0);
784
785                 BO_LOCK(&vp->v_bufobj);
786                 vp->v_bufobj.bo_flag |= BO_DEAD;
787                 BO_UNLOCK(&vp->v_bufobj);
788
789                 VM_OBJECT_WLOCK(object);
790         }
791
792         KASSERT(object->ref_count == 0, 
793                 ("vm_object_terminate: object with references, ref_count=%d",
794                 object->ref_count));
795
796         if ((object->flags & OBJ_PG_DTOR) == 0)
797                 vm_object_terminate_pages(object);
798
799 #if VM_NRESERVLEVEL > 0
800         if (__predict_false(!LIST_EMPTY(&object->rvq)))
801                 vm_reserv_break_all(object);
802 #endif
803
804         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
805             object->type == OBJT_SWAP,
806             ("%s: non-swap obj %p has cred", __func__, object));
807
808         /*
809          * Let the pager know object is dead.
810          */
811         vm_pager_deallocate(object);
812         VM_OBJECT_WUNLOCK(object);
813
814         vm_object_destroy(object);
815 }
816
817 /*
818  * Make the page read-only so that we can clear the object flags.  However, if
819  * this is a nosync mmap then the object is likely to stay dirty so do not
820  * mess with the page and do not clear the object flags.  Returns TRUE if the
821  * page should be flushed, and FALSE otherwise.
822  */
823 static boolean_t
824 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
825 {
826
827         /*
828          * If we have been asked to skip nosync pages and this is a
829          * nosync page, skip it.  Note that the object flags were not
830          * cleared in this case so we do not have to set them.
831          */
832         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
833                 *clearobjflags = FALSE;
834                 return (FALSE);
835         } else {
836                 pmap_remove_write(p);
837                 return (p->dirty != 0);
838         }
839 }
840
841 /*
842  *      vm_object_page_clean
843  *
844  *      Clean all dirty pages in the specified range of object.  Leaves page 
845  *      on whatever queue it is currently on.   If NOSYNC is set then do not
846  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
847  *      leaving the object dirty.
848  *
849  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
850  *      synchronous clustering mode implementation.
851  *
852  *      Odd semantics: if start == end, we clean everything.
853  *
854  *      The object must be locked.
855  *
856  *      Returns FALSE if some page from the range was not written, as
857  *      reported by the pager, and TRUE otherwise.
858  */
859 boolean_t
860 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
861     int flags)
862 {
863         vm_page_t np, p;
864         vm_pindex_t pi, tend, tstart;
865         int curgeneration, n, pagerflags;
866         boolean_t clearobjflags, eio, res;
867
868         VM_OBJECT_ASSERT_WLOCKED(object);
869
870         /*
871          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
872          * objects.  The check below prevents the function from
873          * operating on non-vnode objects.
874          */
875         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
876             object->resident_page_count == 0)
877                 return (TRUE);
878
879         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
880             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
881         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
882
883         tstart = OFF_TO_IDX(start);
884         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
885         clearobjflags = tstart == 0 && tend >= object->size;
886         res = TRUE;
887
888 rescan:
889         curgeneration = object->generation;
890
891         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
892                 pi = p->pindex;
893                 if (pi >= tend)
894                         break;
895                 np = TAILQ_NEXT(p, listq);
896                 if (p->valid == 0)
897                         continue;
898                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
899                         if (object->generation != curgeneration) {
900                                 if ((flags & OBJPC_SYNC) != 0)
901                                         goto rescan;
902                                 else
903                                         clearobjflags = FALSE;
904                         }
905                         np = vm_page_find_least(object, pi);
906                         continue;
907                 }
908                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
909                         continue;
910
911                 n = vm_object_page_collect_flush(object, p, pagerflags,
912                     flags, &clearobjflags, &eio);
913                 if (eio) {
914                         res = FALSE;
915                         clearobjflags = FALSE;
916                 }
917                 if (object->generation != curgeneration) {
918                         if ((flags & OBJPC_SYNC) != 0)
919                                 goto rescan;
920                         else
921                                 clearobjflags = FALSE;
922                 }
923
924                 /*
925                  * If the VOP_PUTPAGES() did a truncated write, so
926                  * that even the first page of the run is not fully
927                  * written, vm_pageout_flush() returns 0 as the run
928                  * length.  Since the condition that caused truncated
929                  * write may be permanent, e.g. exhausted free space,
930                  * accepting n == 0 would cause an infinite loop.
931                  *
932                  * Forwarding the iterator leaves the unwritten page
933                  * behind, but there is not much we can do there if
934                  * filesystem refuses to write it.
935                  */
936                 if (n == 0) {
937                         n = 1;
938                         clearobjflags = FALSE;
939                 }
940                 np = vm_page_find_least(object, pi + n);
941         }
942 #if 0
943         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
944 #endif
945
946         if (clearobjflags)
947                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
948         return (res);
949 }
950
951 static int
952 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
953     int flags, boolean_t *clearobjflags, boolean_t *eio)
954 {
955         vm_page_t ma[vm_pageout_page_count], p_first, tp;
956         int count, i, mreq, runlen;
957
958         vm_page_lock_assert(p, MA_NOTOWNED);
959         VM_OBJECT_ASSERT_WLOCKED(object);
960
961         count = 1;
962         mreq = 0;
963
964         for (tp = p; count < vm_pageout_page_count; count++) {
965                 tp = vm_page_next(tp);
966                 if (tp == NULL || vm_page_busied(tp))
967                         break;
968                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
969                         break;
970         }
971
972         for (p_first = p; count < vm_pageout_page_count; count++) {
973                 tp = vm_page_prev(p_first);
974                 if (tp == NULL || vm_page_busied(tp))
975                         break;
976                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
977                         break;
978                 p_first = tp;
979                 mreq++;
980         }
981
982         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
983                 ma[i] = tp;
984
985         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
986         return (runlen);
987 }
988
989 /*
990  * Note that there is absolutely no sense in writing out
991  * anonymous objects, so we track down the vnode object
992  * to write out.
993  * We invalidate (remove) all pages from the address space
994  * for semantic correctness.
995  *
996  * If the backing object is a device object with unmanaged pages, then any
997  * mappings to the specified range of pages must be removed before this
998  * function is called.
999  *
1000  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1001  * may start out with a NULL object.
1002  */
1003 boolean_t
1004 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1005     boolean_t syncio, boolean_t invalidate)
1006 {
1007         vm_object_t backing_object;
1008         struct vnode *vp;
1009         struct mount *mp;
1010         int error, flags, fsync_after;
1011         boolean_t res;
1012
1013         if (object == NULL)
1014                 return (TRUE);
1015         res = TRUE;
1016         error = 0;
1017         VM_OBJECT_WLOCK(object);
1018         while ((backing_object = object->backing_object) != NULL) {
1019                 VM_OBJECT_WLOCK(backing_object);
1020                 offset += object->backing_object_offset;
1021                 VM_OBJECT_WUNLOCK(object);
1022                 object = backing_object;
1023                 if (object->size < OFF_TO_IDX(offset + size))
1024                         size = IDX_TO_OFF(object->size) - offset;
1025         }
1026         /*
1027          * Flush pages if writing is allowed, invalidate them
1028          * if invalidation requested.  Pages undergoing I/O
1029          * will be ignored by vm_object_page_remove().
1030          *
1031          * We cannot lock the vnode and then wait for paging
1032          * to complete without deadlocking against vm_fault.
1033          * Instead we simply call vm_object_page_remove() and
1034          * allow it to block internally on a page-by-page
1035          * basis when it encounters pages undergoing async
1036          * I/O.
1037          */
1038         if (object->type == OBJT_VNODE &&
1039             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1040                 vp = object->handle;
1041                 VM_OBJECT_WUNLOCK(object);
1042                 (void) vn_start_write(vp, &mp, V_WAIT);
1043                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1044                 if (syncio && !invalidate && offset == 0 &&
1045                     atop(size) == object->size) {
1046                         /*
1047                          * If syncing the whole mapping of the file,
1048                          * it is faster to schedule all the writes in
1049                          * async mode, also allowing the clustering,
1050                          * and then wait for i/o to complete.
1051                          */
1052                         flags = 0;
1053                         fsync_after = TRUE;
1054                 } else {
1055                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1056                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1057                         fsync_after = FALSE;
1058                 }
1059                 VM_OBJECT_WLOCK(object);
1060                 res = vm_object_page_clean(object, offset, offset + size,
1061                     flags);
1062                 VM_OBJECT_WUNLOCK(object);
1063                 if (fsync_after)
1064                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1065                 VOP_UNLOCK(vp, 0);
1066                 vn_finished_write(mp);
1067                 if (error != 0)
1068                         res = FALSE;
1069                 VM_OBJECT_WLOCK(object);
1070         }
1071         if ((object->type == OBJT_VNODE ||
1072              object->type == OBJT_DEVICE) && invalidate) {
1073                 if (object->type == OBJT_DEVICE)
1074                         /*
1075                          * The option OBJPR_NOTMAPPED must be passed here
1076                          * because vm_object_page_remove() cannot remove
1077                          * unmanaged mappings.
1078                          */
1079                         flags = OBJPR_NOTMAPPED;
1080                 else if (old_msync)
1081                         flags = 0;
1082                 else
1083                         flags = OBJPR_CLEANONLY;
1084                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1085                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1086         }
1087         VM_OBJECT_WUNLOCK(object);
1088         return (res);
1089 }
1090
1091 /*
1092  * Determine whether the given advice can be applied to the object.  Advice is
1093  * not applied to unmanaged pages since they never belong to page queues, and
1094  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1095  * have been mapped at most once.
1096  */
1097 static bool
1098 vm_object_advice_applies(vm_object_t object, int advice)
1099 {
1100
1101         if ((object->flags & OBJ_UNMANAGED) != 0)
1102                 return (false);
1103         if (advice != MADV_FREE)
1104                 return (true);
1105         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1106             (object->flags & OBJ_ONEMAPPING) != 0);
1107 }
1108
1109 static void
1110 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1111     vm_size_t size)
1112 {
1113
1114         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1115                 swap_pager_freespace(object, pindex, size);
1116 }
1117
1118 /*
1119  *      vm_object_madvise:
1120  *
1121  *      Implements the madvise function at the object/page level.
1122  *
1123  *      MADV_WILLNEED   (any object)
1124  *
1125  *          Activate the specified pages if they are resident.
1126  *
1127  *      MADV_DONTNEED   (any object)
1128  *
1129  *          Deactivate the specified pages if they are resident.
1130  *
1131  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1132  *                       OBJ_ONEMAPPING only)
1133  *
1134  *          Deactivate and clean the specified pages if they are
1135  *          resident.  This permits the process to reuse the pages
1136  *          without faulting or the kernel to reclaim the pages
1137  *          without I/O.
1138  */
1139 void
1140 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1141     int advice)
1142 {
1143         vm_pindex_t tpindex;
1144         vm_object_t backing_object, tobject;
1145         vm_page_t m, tm;
1146
1147         if (object == NULL)
1148                 return;
1149
1150 relookup:
1151         VM_OBJECT_WLOCK(object);
1152         if (!vm_object_advice_applies(object, advice)) {
1153                 VM_OBJECT_WUNLOCK(object);
1154                 return;
1155         }
1156         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1157                 tobject = object;
1158
1159                 /*
1160                  * If the next page isn't resident in the top-level object, we
1161                  * need to search the shadow chain.  When applying MADV_FREE, we
1162                  * take care to release any swap space used to store
1163                  * non-resident pages.
1164                  */
1165                 if (m == NULL || pindex < m->pindex) {
1166                         /*
1167                          * Optimize a common case: if the top-level object has
1168                          * no backing object, we can skip over the non-resident
1169                          * range in constant time.
1170                          */
1171                         if (object->backing_object == NULL) {
1172                                 tpindex = (m != NULL && m->pindex < end) ?
1173                                     m->pindex : end;
1174                                 vm_object_madvise_freespace(object, advice,
1175                                     pindex, tpindex - pindex);
1176                                 if ((pindex = tpindex) == end)
1177                                         break;
1178                                 goto next_page;
1179                         }
1180
1181                         tpindex = pindex;
1182                         do {
1183                                 vm_object_madvise_freespace(tobject, advice,
1184                                     tpindex, 1);
1185                                 /*
1186                                  * Prepare to search the next object in the
1187                                  * chain.
1188                                  */
1189                                 backing_object = tobject->backing_object;
1190                                 if (backing_object == NULL)
1191                                         goto next_pindex;
1192                                 VM_OBJECT_WLOCK(backing_object);
1193                                 tpindex +=
1194                                     OFF_TO_IDX(tobject->backing_object_offset);
1195                                 if (tobject != object)
1196                                         VM_OBJECT_WUNLOCK(tobject);
1197                                 tobject = backing_object;
1198                                 if (!vm_object_advice_applies(tobject, advice))
1199                                         goto next_pindex;
1200                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1201                             NULL);
1202                 } else {
1203 next_page:
1204                         tm = m;
1205                         m = TAILQ_NEXT(m, listq);
1206                 }
1207
1208                 /*
1209                  * If the page is not in a normal state, skip it.
1210                  */
1211                 if (tm->valid != VM_PAGE_BITS_ALL)
1212                         goto next_pindex;
1213                 vm_page_lock(tm);
1214                 if (tm->hold_count != 0 || tm->wire_count != 0) {
1215                         vm_page_unlock(tm);
1216                         goto next_pindex;
1217                 }
1218                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1219                     ("vm_object_madvise: page %p is fictitious", tm));
1220                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1221                     ("vm_object_madvise: page %p is not managed", tm));
1222                 if (vm_page_busied(tm)) {
1223                         if (object != tobject)
1224                                 VM_OBJECT_WUNLOCK(tobject);
1225                         VM_OBJECT_WUNLOCK(object);
1226                         if (advice == MADV_WILLNEED) {
1227                                 /*
1228                                  * Reference the page before unlocking and
1229                                  * sleeping so that the page daemon is less
1230                                  * likely to reclaim it.
1231                                  */
1232                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1233                         }
1234                         vm_page_busy_sleep(tm, "madvpo", false);
1235                         goto relookup;
1236                 }
1237                 vm_page_advise(tm, advice);
1238                 vm_page_unlock(tm);
1239                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1240 next_pindex:
1241                 if (tobject != object)
1242                         VM_OBJECT_WUNLOCK(tobject);
1243         }
1244         VM_OBJECT_WUNLOCK(object);
1245 }
1246
1247 /*
1248  *      vm_object_shadow:
1249  *
1250  *      Create a new object which is backed by the
1251  *      specified existing object range.  The source
1252  *      object reference is deallocated.
1253  *
1254  *      The new object and offset into that object
1255  *      are returned in the source parameters.
1256  */
1257 void
1258 vm_object_shadow(
1259         vm_object_t *object,    /* IN/OUT */
1260         vm_ooffset_t *offset,   /* IN/OUT */
1261         vm_size_t length)
1262 {
1263         vm_object_t source;
1264         vm_object_t result;
1265
1266         source = *object;
1267
1268         /*
1269          * Don't create the new object if the old object isn't shared.
1270          */
1271         if (source != NULL) {
1272                 VM_OBJECT_WLOCK(source);
1273                 if (source->ref_count == 1 &&
1274                     source->handle == NULL &&
1275                     (source->type == OBJT_DEFAULT ||
1276                      source->type == OBJT_SWAP)) {
1277                         VM_OBJECT_WUNLOCK(source);
1278                         return;
1279                 }
1280                 VM_OBJECT_WUNLOCK(source);
1281         }
1282
1283         /*
1284          * Allocate a new object with the given length.
1285          */
1286         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1287
1288         /*
1289          * The new object shadows the source object, adding a reference to it.
1290          * Our caller changes his reference to point to the new object,
1291          * removing a reference to the source object.  Net result: no change
1292          * of reference count.
1293          *
1294          * Try to optimize the result object's page color when shadowing
1295          * in order to maintain page coloring consistency in the combined 
1296          * shadowed object.
1297          */
1298         result->backing_object = source;
1299         /*
1300          * Store the offset into the source object, and fix up the offset into
1301          * the new object.
1302          */
1303         result->backing_object_offset = *offset;
1304         if (source != NULL) {
1305                 VM_OBJECT_WLOCK(source);
1306                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1307                 source->shadow_count++;
1308 #if VM_NRESERVLEVEL > 0
1309                 result->flags |= source->flags & OBJ_COLORED;
1310                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1311                     ((1 << (VM_NFREEORDER - 1)) - 1);
1312 #endif
1313                 VM_OBJECT_WUNLOCK(source);
1314         }
1315
1316
1317         /*
1318          * Return the new things
1319          */
1320         *offset = 0;
1321         *object = result;
1322 }
1323
1324 /*
1325  *      vm_object_split:
1326  *
1327  * Split the pages in a map entry into a new object.  This affords
1328  * easier removal of unused pages, and keeps object inheritance from
1329  * being a negative impact on memory usage.
1330  */
1331 void
1332 vm_object_split(vm_map_entry_t entry)
1333 {
1334         vm_page_t m, m_next;
1335         vm_object_t orig_object, new_object, source;
1336         vm_pindex_t idx, offidxstart;
1337         vm_size_t size;
1338
1339         orig_object = entry->object.vm_object;
1340         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1341                 return;
1342         if (orig_object->ref_count <= 1)
1343                 return;
1344         VM_OBJECT_WUNLOCK(orig_object);
1345
1346         offidxstart = OFF_TO_IDX(entry->offset);
1347         size = atop(entry->end - entry->start);
1348
1349         /*
1350          * If swap_pager_copy() is later called, it will convert new_object
1351          * into a swap object.
1352          */
1353         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1354
1355         /*
1356          * At this point, the new object is still private, so the order in
1357          * which the original and new objects are locked does not matter.
1358          */
1359         VM_OBJECT_WLOCK(new_object);
1360         VM_OBJECT_WLOCK(orig_object);
1361         source = orig_object->backing_object;
1362         if (source != NULL) {
1363                 VM_OBJECT_WLOCK(source);
1364                 if ((source->flags & OBJ_DEAD) != 0) {
1365                         VM_OBJECT_WUNLOCK(source);
1366                         VM_OBJECT_WUNLOCK(orig_object);
1367                         VM_OBJECT_WUNLOCK(new_object);
1368                         vm_object_deallocate(new_object);
1369                         VM_OBJECT_WLOCK(orig_object);
1370                         return;
1371                 }
1372                 LIST_INSERT_HEAD(&source->shadow_head,
1373                                   new_object, shadow_list);
1374                 source->shadow_count++;
1375                 vm_object_reference_locked(source);     /* for new_object */
1376                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1377                 VM_OBJECT_WUNLOCK(source);
1378                 new_object->backing_object_offset = 
1379                         orig_object->backing_object_offset + entry->offset;
1380                 new_object->backing_object = source;
1381         }
1382         if (orig_object->cred != NULL) {
1383                 new_object->cred = orig_object->cred;
1384                 crhold(orig_object->cred);
1385                 new_object->charge = ptoa(size);
1386                 KASSERT(orig_object->charge >= ptoa(size),
1387                     ("orig_object->charge < 0"));
1388                 orig_object->charge -= ptoa(size);
1389         }
1390 retry:
1391         m = vm_page_find_least(orig_object, offidxstart);
1392         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1393             m = m_next) {
1394                 m_next = TAILQ_NEXT(m, listq);
1395
1396                 /*
1397                  * We must wait for pending I/O to complete before we can
1398                  * rename the page.
1399                  *
1400                  * We do not have to VM_PROT_NONE the page as mappings should
1401                  * not be changed by this operation.
1402                  */
1403                 if (vm_page_busied(m)) {
1404                         VM_OBJECT_WUNLOCK(new_object);
1405                         vm_page_lock(m);
1406                         VM_OBJECT_WUNLOCK(orig_object);
1407                         vm_page_busy_sleep(m, "spltwt", false);
1408                         VM_OBJECT_WLOCK(orig_object);
1409                         VM_OBJECT_WLOCK(new_object);
1410                         goto retry;
1411                 }
1412
1413                 /* vm_page_rename() will dirty the page. */
1414                 if (vm_page_rename(m, new_object, idx)) {
1415                         VM_OBJECT_WUNLOCK(new_object);
1416                         VM_OBJECT_WUNLOCK(orig_object);
1417                         VM_WAIT;
1418                         VM_OBJECT_WLOCK(orig_object);
1419                         VM_OBJECT_WLOCK(new_object);
1420                         goto retry;
1421                 }
1422 #if VM_NRESERVLEVEL > 0
1423                 /*
1424                  * If some of the reservation's allocated pages remain with
1425                  * the original object, then transferring the reservation to
1426                  * the new object is neither particularly beneficial nor
1427                  * particularly harmful as compared to leaving the reservation
1428                  * with the original object.  If, however, all of the
1429                  * reservation's allocated pages are transferred to the new
1430                  * object, then transferring the reservation is typically
1431                  * beneficial.  Determining which of these two cases applies
1432                  * would be more costly than unconditionally renaming the
1433                  * reservation.
1434                  */
1435                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1436 #endif
1437                 if (orig_object->type == OBJT_SWAP)
1438                         vm_page_xbusy(m);
1439         }
1440         if (orig_object->type == OBJT_SWAP) {
1441                 /*
1442                  * swap_pager_copy() can sleep, in which case the orig_object's
1443                  * and new_object's locks are released and reacquired. 
1444                  */
1445                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1446                 TAILQ_FOREACH(m, &new_object->memq, listq)
1447                         vm_page_xunbusy(m);
1448         }
1449         VM_OBJECT_WUNLOCK(orig_object);
1450         VM_OBJECT_WUNLOCK(new_object);
1451         entry->object.vm_object = new_object;
1452         entry->offset = 0LL;
1453         vm_object_deallocate(orig_object);
1454         VM_OBJECT_WLOCK(new_object);
1455 }
1456
1457 #define OBSC_COLLAPSE_NOWAIT    0x0002
1458 #define OBSC_COLLAPSE_WAIT      0x0004
1459
1460 static vm_page_t
1461 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1462     int op)
1463 {
1464         vm_object_t backing_object;
1465
1466         VM_OBJECT_ASSERT_WLOCKED(object);
1467         backing_object = object->backing_object;
1468         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1469
1470         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1471         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1472             ("invalid ownership %p %p %p", p, object, backing_object));
1473         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1474                 return (next);
1475         if (p != NULL)
1476                 vm_page_lock(p);
1477         VM_OBJECT_WUNLOCK(object);
1478         VM_OBJECT_WUNLOCK(backing_object);
1479         if (p == NULL)
1480                 VM_WAIT;
1481         else
1482                 vm_page_busy_sleep(p, "vmocol", false);
1483         VM_OBJECT_WLOCK(object);
1484         VM_OBJECT_WLOCK(backing_object);
1485         return (TAILQ_FIRST(&backing_object->memq));
1486 }
1487
1488 static bool
1489 vm_object_scan_all_shadowed(vm_object_t object)
1490 {
1491         vm_object_t backing_object;
1492         vm_page_t p, pp;
1493         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1494
1495         VM_OBJECT_ASSERT_WLOCKED(object);
1496         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1497
1498         backing_object = object->backing_object;
1499
1500         if (backing_object->type != OBJT_DEFAULT &&
1501             backing_object->type != OBJT_SWAP)
1502                 return (false);
1503
1504         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1505         p = vm_page_find_least(backing_object, pi);
1506         ps = swap_pager_find_least(backing_object, pi);
1507
1508         /*
1509          * Only check pages inside the parent object's range and
1510          * inside the parent object's mapping of the backing object.
1511          */
1512         for (;; pi++) {
1513                 if (p != NULL && p->pindex < pi)
1514                         p = TAILQ_NEXT(p, listq);
1515                 if (ps < pi)
1516                         ps = swap_pager_find_least(backing_object, pi);
1517                 if (p == NULL && ps >= backing_object->size)
1518                         break;
1519                 else if (p == NULL)
1520                         pi = ps;
1521                 else
1522                         pi = MIN(p->pindex, ps);
1523
1524                 new_pindex = pi - backing_offset_index;
1525                 if (new_pindex >= object->size)
1526                         break;
1527
1528                 /*
1529                  * See if the parent has the page or if the parent's object
1530                  * pager has the page.  If the parent has the page but the page
1531                  * is not valid, the parent's object pager must have the page.
1532                  *
1533                  * If this fails, the parent does not completely shadow the
1534                  * object and we might as well give up now.
1535                  */
1536                 pp = vm_page_lookup(object, new_pindex);
1537                 if ((pp == NULL || pp->valid == 0) &&
1538                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1539                         return (false);
1540         }
1541         return (true);
1542 }
1543
1544 static bool
1545 vm_object_collapse_scan(vm_object_t object, int op)
1546 {
1547         vm_object_t backing_object;
1548         vm_page_t next, p, pp;
1549         vm_pindex_t backing_offset_index, new_pindex;
1550
1551         VM_OBJECT_ASSERT_WLOCKED(object);
1552         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1553
1554         backing_object = object->backing_object;
1555         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1556
1557         /*
1558          * Initial conditions
1559          */
1560         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1561                 vm_object_set_flag(backing_object, OBJ_DEAD);
1562
1563         /*
1564          * Our scan
1565          */
1566         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1567                 next = TAILQ_NEXT(p, listq);
1568                 new_pindex = p->pindex - backing_offset_index;
1569
1570                 /*
1571                  * Check for busy page
1572                  */
1573                 if (vm_page_busied(p)) {
1574                         next = vm_object_collapse_scan_wait(object, p, next, op);
1575                         continue;
1576                 }
1577
1578                 KASSERT(p->object == backing_object,
1579                     ("vm_object_collapse_scan: object mismatch"));
1580
1581                 if (p->pindex < backing_offset_index ||
1582                     new_pindex >= object->size) {
1583                         if (backing_object->type == OBJT_SWAP)
1584                                 swap_pager_freespace(backing_object, p->pindex,
1585                                     1);
1586
1587                         /*
1588                          * Page is out of the parent object's range, we can
1589                          * simply destroy it.
1590                          */
1591                         vm_page_lock(p);
1592                         KASSERT(!pmap_page_is_mapped(p),
1593                             ("freeing mapped page %p", p));
1594                         if (p->wire_count == 0)
1595                                 vm_page_free(p);
1596                         else
1597                                 vm_page_remove(p);
1598                         vm_page_unlock(p);
1599                         continue;
1600                 }
1601
1602                 pp = vm_page_lookup(object, new_pindex);
1603                 if (pp != NULL && vm_page_busied(pp)) {
1604                         /*
1605                          * The page in the parent is busy and possibly not
1606                          * (yet) valid.  Until its state is finalized by the
1607                          * busy bit owner, we can't tell whether it shadows the
1608                          * original page.  Therefore, we must either skip it
1609                          * and the original (backing_object) page or wait for
1610                          * its state to be finalized.
1611                          *
1612                          * This is due to a race with vm_fault() where we must
1613                          * unbusy the original (backing_obj) page before we can
1614                          * (re)lock the parent.  Hence we can get here.
1615                          */
1616                         next = vm_object_collapse_scan_wait(object, pp, next,
1617                             op);
1618                         continue;
1619                 }
1620
1621                 KASSERT(pp == NULL || pp->valid != 0,
1622                     ("unbusy invalid page %p", pp));
1623
1624                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1625                         NULL)) {
1626                         /*
1627                          * The page already exists in the parent OR swap exists
1628                          * for this location in the parent.  Leave the parent's
1629                          * page alone.  Destroy the original page from the
1630                          * backing object.
1631                          */
1632                         if (backing_object->type == OBJT_SWAP)
1633                                 swap_pager_freespace(backing_object, p->pindex,
1634                                     1);
1635                         vm_page_lock(p);
1636                         KASSERT(!pmap_page_is_mapped(p),
1637                             ("freeing mapped page %p", p));
1638                         if (p->wire_count == 0)
1639                                 vm_page_free(p);
1640                         else
1641                                 vm_page_remove(p);
1642                         vm_page_unlock(p);
1643                         continue;
1644                 }
1645
1646                 /*
1647                  * Page does not exist in parent, rename the page from the
1648                  * backing object to the main object.
1649                  *
1650                  * If the page was mapped to a process, it can remain mapped
1651                  * through the rename.  vm_page_rename() will dirty the page.
1652                  */
1653                 if (vm_page_rename(p, object, new_pindex)) {
1654                         next = vm_object_collapse_scan_wait(object, NULL, next,
1655                             op);
1656                         continue;
1657                 }
1658
1659                 /* Use the old pindex to free the right page. */
1660                 if (backing_object->type == OBJT_SWAP)
1661                         swap_pager_freespace(backing_object,
1662                             new_pindex + backing_offset_index, 1);
1663
1664 #if VM_NRESERVLEVEL > 0
1665                 /*
1666                  * Rename the reservation.
1667                  */
1668                 vm_reserv_rename(p, object, backing_object,
1669                     backing_offset_index);
1670 #endif
1671         }
1672         return (true);
1673 }
1674
1675
1676 /*
1677  * this version of collapse allows the operation to occur earlier and
1678  * when paging_in_progress is true for an object...  This is not a complete
1679  * operation, but should plug 99.9% of the rest of the leaks.
1680  */
1681 static void
1682 vm_object_qcollapse(vm_object_t object)
1683 {
1684         vm_object_t backing_object = object->backing_object;
1685
1686         VM_OBJECT_ASSERT_WLOCKED(object);
1687         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1688
1689         if (backing_object->ref_count != 1)
1690                 return;
1691
1692         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1693 }
1694
1695 /*
1696  *      vm_object_collapse:
1697  *
1698  *      Collapse an object with the object backing it.
1699  *      Pages in the backing object are moved into the
1700  *      parent, and the backing object is deallocated.
1701  */
1702 void
1703 vm_object_collapse(vm_object_t object)
1704 {
1705         vm_object_t backing_object, new_backing_object;
1706
1707         VM_OBJECT_ASSERT_WLOCKED(object);
1708
1709         while (TRUE) {
1710                 /*
1711                  * Verify that the conditions are right for collapse:
1712                  *
1713                  * The object exists and the backing object exists.
1714                  */
1715                 if ((backing_object = object->backing_object) == NULL)
1716                         break;
1717
1718                 /*
1719                  * we check the backing object first, because it is most likely
1720                  * not collapsable.
1721                  */
1722                 VM_OBJECT_WLOCK(backing_object);
1723                 if (backing_object->handle != NULL ||
1724                     (backing_object->type != OBJT_DEFAULT &&
1725                      backing_object->type != OBJT_SWAP) ||
1726                     (backing_object->flags & OBJ_DEAD) ||
1727                     object->handle != NULL ||
1728                     (object->type != OBJT_DEFAULT &&
1729                      object->type != OBJT_SWAP) ||
1730                     (object->flags & OBJ_DEAD)) {
1731                         VM_OBJECT_WUNLOCK(backing_object);
1732                         break;
1733                 }
1734
1735                 if (object->paging_in_progress != 0 ||
1736                     backing_object->paging_in_progress != 0) {
1737                         vm_object_qcollapse(object);
1738                         VM_OBJECT_WUNLOCK(backing_object);
1739                         break;
1740                 }
1741
1742                 /*
1743                  * We know that we can either collapse the backing object (if
1744                  * the parent is the only reference to it) or (perhaps) have
1745                  * the parent bypass the object if the parent happens to shadow
1746                  * all the resident pages in the entire backing object.
1747                  *
1748                  * This is ignoring pager-backed pages such as swap pages.
1749                  * vm_object_collapse_scan fails the shadowing test in this
1750                  * case.
1751                  */
1752                 if (backing_object->ref_count == 1) {
1753                         vm_object_pip_add(object, 1);
1754                         vm_object_pip_add(backing_object, 1);
1755
1756                         /*
1757                          * If there is exactly one reference to the backing
1758                          * object, we can collapse it into the parent.
1759                          */
1760                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1761
1762 #if VM_NRESERVLEVEL > 0
1763                         /*
1764                          * Break any reservations from backing_object.
1765                          */
1766                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1767                                 vm_reserv_break_all(backing_object);
1768 #endif
1769
1770                         /*
1771                          * Move the pager from backing_object to object.
1772                          */
1773                         if (backing_object->type == OBJT_SWAP) {
1774                                 /*
1775                                  * swap_pager_copy() can sleep, in which case
1776                                  * the backing_object's and object's locks are
1777                                  * released and reacquired.
1778                                  * Since swap_pager_copy() is being asked to
1779                                  * destroy the source, it will change the
1780                                  * backing_object's type to OBJT_DEFAULT.
1781                                  */
1782                                 swap_pager_copy(
1783                                     backing_object,
1784                                     object,
1785                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1786                         }
1787                         /*
1788                          * Object now shadows whatever backing_object did.
1789                          * Note that the reference to 
1790                          * backing_object->backing_object moves from within 
1791                          * backing_object to within object.
1792                          */
1793                         LIST_REMOVE(object, shadow_list);
1794                         backing_object->shadow_count--;
1795                         if (backing_object->backing_object) {
1796                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1797                                 LIST_REMOVE(backing_object, shadow_list);
1798                                 LIST_INSERT_HEAD(
1799                                     &backing_object->backing_object->shadow_head,
1800                                     object, shadow_list);
1801                                 /*
1802                                  * The shadow_count has not changed.
1803                                  */
1804                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1805                         }
1806                         object->backing_object = backing_object->backing_object;
1807                         object->backing_object_offset +=
1808                             backing_object->backing_object_offset;
1809
1810                         /*
1811                          * Discard backing_object.
1812                          *
1813                          * Since the backing object has no pages, no pager left,
1814                          * and no object references within it, all that is
1815                          * necessary is to dispose of it.
1816                          */
1817                         KASSERT(backing_object->ref_count == 1, (
1818 "backing_object %p was somehow re-referenced during collapse!",
1819                             backing_object));
1820                         vm_object_pip_wakeup(backing_object);
1821                         backing_object->type = OBJT_DEAD;
1822                         backing_object->ref_count = 0;
1823                         VM_OBJECT_WUNLOCK(backing_object);
1824                         vm_object_destroy(backing_object);
1825
1826                         vm_object_pip_wakeup(object);
1827                         object_collapses++;
1828                 } else {
1829                         /*
1830                          * If we do not entirely shadow the backing object,
1831                          * there is nothing we can do so we give up.
1832                          */
1833                         if (object->resident_page_count != object->size &&
1834                             !vm_object_scan_all_shadowed(object)) {
1835                                 VM_OBJECT_WUNLOCK(backing_object);
1836                                 break;
1837                         }
1838
1839                         /*
1840                          * Make the parent shadow the next object in the
1841                          * chain.  Deallocating backing_object will not remove
1842                          * it, since its reference count is at least 2.
1843                          */
1844                         LIST_REMOVE(object, shadow_list);
1845                         backing_object->shadow_count--;
1846
1847                         new_backing_object = backing_object->backing_object;
1848                         if ((object->backing_object = new_backing_object) != NULL) {
1849                                 VM_OBJECT_WLOCK(new_backing_object);
1850                                 LIST_INSERT_HEAD(
1851                                     &new_backing_object->shadow_head,
1852                                     object,
1853                                     shadow_list
1854                                 );
1855                                 new_backing_object->shadow_count++;
1856                                 vm_object_reference_locked(new_backing_object);
1857                                 VM_OBJECT_WUNLOCK(new_backing_object);
1858                                 object->backing_object_offset +=
1859                                         backing_object->backing_object_offset;
1860                         }
1861
1862                         /*
1863                          * Drop the reference count on backing_object. Since
1864                          * its ref_count was at least 2, it will not vanish.
1865                          */
1866                         backing_object->ref_count--;
1867                         VM_OBJECT_WUNLOCK(backing_object);
1868                         object_bypasses++;
1869                 }
1870
1871                 /*
1872                  * Try again with this object's new backing object.
1873                  */
1874         }
1875 }
1876
1877 /*
1878  *      vm_object_page_remove:
1879  *
1880  *      For the given object, either frees or invalidates each of the
1881  *      specified pages.  In general, a page is freed.  However, if a page is
1882  *      wired for any reason other than the existence of a managed, wired
1883  *      mapping, then it may be invalidated but not removed from the object.
1884  *      Pages are specified by the given range ["start", "end") and the option
1885  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1886  *      extends from "start" to the end of the object.  If the option
1887  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1888  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1889  *      specified, then the pages within the specified range must have no
1890  *      mappings.  Otherwise, if this option is not specified, any mappings to
1891  *      the specified pages are removed before the pages are freed or
1892  *      invalidated.
1893  *
1894  *      In general, this operation should only be performed on objects that
1895  *      contain managed pages.  There are, however, two exceptions.  First, it
1896  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1897  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1898  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1899  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1900  *
1901  *      The object must be locked.
1902  */
1903 void
1904 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1905     int options)
1906 {
1907         vm_page_t p, next;
1908
1909         VM_OBJECT_ASSERT_WLOCKED(object);
1910         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1911             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1912             ("vm_object_page_remove: illegal options for object %p", object));
1913         if (object->resident_page_count == 0)
1914                 return;
1915         vm_object_pip_add(object, 1);
1916 again:
1917         p = vm_page_find_least(object, start);
1918
1919         /*
1920          * Here, the variable "p" is either (1) the page with the least pindex
1921          * greater than or equal to the parameter "start" or (2) NULL. 
1922          */
1923         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1924                 next = TAILQ_NEXT(p, listq);
1925
1926                 /*
1927                  * If the page is wired for any reason besides the existence
1928                  * of managed, wired mappings, then it cannot be freed.  For
1929                  * example, fictitious pages, which represent device memory,
1930                  * are inherently wired and cannot be freed.  They can,
1931                  * however, be invalidated if the option OBJPR_CLEANONLY is
1932                  * not specified.
1933                  */
1934                 vm_page_lock(p);
1935                 if (vm_page_xbusied(p)) {
1936                         VM_OBJECT_WUNLOCK(object);
1937                         vm_page_busy_sleep(p, "vmopax", true);
1938                         VM_OBJECT_WLOCK(object);
1939                         goto again;
1940                 }
1941                 if (p->wire_count != 0) {
1942                         if ((options & OBJPR_NOTMAPPED) == 0)
1943                                 pmap_remove_all(p);
1944                         if ((options & OBJPR_CLEANONLY) == 0) {
1945                                 p->valid = 0;
1946                                 vm_page_undirty(p);
1947                         }
1948                         goto next;
1949                 }
1950                 if (vm_page_busied(p)) {
1951                         VM_OBJECT_WUNLOCK(object);
1952                         vm_page_busy_sleep(p, "vmopar", false);
1953                         VM_OBJECT_WLOCK(object);
1954                         goto again;
1955                 }
1956                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1957                     ("vm_object_page_remove: page %p is fictitious", p));
1958                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1959                         if ((options & OBJPR_NOTMAPPED) == 0)
1960                                 pmap_remove_write(p);
1961                         if (p->dirty)
1962                                 goto next;
1963                 }
1964                 if ((options & OBJPR_NOTMAPPED) == 0)
1965                         pmap_remove_all(p);
1966                 vm_page_free(p);
1967 next:
1968                 vm_page_unlock(p);
1969         }
1970         vm_object_pip_wakeup(object);
1971 }
1972
1973 /*
1974  *      vm_object_page_noreuse:
1975  *
1976  *      For the given object, attempt to move the specified pages to
1977  *      the head of the inactive queue.  This bypasses regular LRU
1978  *      operation and allows the pages to be reused quickly under memory
1979  *      pressure.  If a page is wired for any reason, then it will not
1980  *      be queued.  Pages are specified by the range ["start", "end").
1981  *      As a special case, if "end" is zero, then the range extends from
1982  *      "start" to the end of the object.
1983  *
1984  *      This operation should only be performed on objects that
1985  *      contain non-fictitious, managed pages.
1986  *
1987  *      The object must be locked.
1988  */
1989 void
1990 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1991 {
1992         struct mtx *mtx, *new_mtx;
1993         vm_page_t p, next;
1994
1995         VM_OBJECT_ASSERT_LOCKED(object);
1996         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1997             ("vm_object_page_noreuse: illegal object %p", object));
1998         if (object->resident_page_count == 0)
1999                 return;
2000         p = vm_page_find_least(object, start);
2001
2002         /*
2003          * Here, the variable "p" is either (1) the page with the least pindex
2004          * greater than or equal to the parameter "start" or (2) NULL. 
2005          */
2006         mtx = NULL;
2007         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2008                 next = TAILQ_NEXT(p, listq);
2009
2010                 /*
2011                  * Avoid releasing and reacquiring the same page lock.
2012                  */
2013                 new_mtx = vm_page_lockptr(p);
2014                 if (mtx != new_mtx) {
2015                         if (mtx != NULL)
2016                                 mtx_unlock(mtx);
2017                         mtx = new_mtx;
2018                         mtx_lock(mtx);
2019                 }
2020                 vm_page_deactivate_noreuse(p);
2021         }
2022         if (mtx != NULL)
2023                 mtx_unlock(mtx);
2024 }
2025
2026 /*
2027  *      Populate the specified range of the object with valid pages.  Returns
2028  *      TRUE if the range is successfully populated and FALSE otherwise.
2029  *
2030  *      Note: This function should be optimized to pass a larger array of
2031  *      pages to vm_pager_get_pages() before it is applied to a non-
2032  *      OBJT_DEVICE object.
2033  *
2034  *      The object must be locked.
2035  */
2036 boolean_t
2037 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2038 {
2039         vm_page_t m;
2040         vm_pindex_t pindex;
2041         int rv;
2042
2043         VM_OBJECT_ASSERT_WLOCKED(object);
2044         for (pindex = start; pindex < end; pindex++) {
2045                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2046                 if (m->valid != VM_PAGE_BITS_ALL) {
2047                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2048                         if (rv != VM_PAGER_OK) {
2049                                 vm_page_lock(m);
2050                                 vm_page_free(m);
2051                                 vm_page_unlock(m);
2052                                 break;
2053                         }
2054                 }
2055                 /*
2056                  * Keep "m" busy because a subsequent iteration may unlock
2057                  * the object.
2058                  */
2059         }
2060         if (pindex > start) {
2061                 m = vm_page_lookup(object, start);
2062                 while (m != NULL && m->pindex < pindex) {
2063                         vm_page_xunbusy(m);
2064                         m = TAILQ_NEXT(m, listq);
2065                 }
2066         }
2067         return (pindex == end);
2068 }
2069
2070 /*
2071  *      Routine:        vm_object_coalesce
2072  *      Function:       Coalesces two objects backing up adjoining
2073  *                      regions of memory into a single object.
2074  *
2075  *      returns TRUE if objects were combined.
2076  *
2077  *      NOTE:   Only works at the moment if the second object is NULL -
2078  *              if it's not, which object do we lock first?
2079  *
2080  *      Parameters:
2081  *              prev_object     First object to coalesce
2082  *              prev_offset     Offset into prev_object
2083  *              prev_size       Size of reference to prev_object
2084  *              next_size       Size of reference to the second object
2085  *              reserved        Indicator that extension region has
2086  *                              swap accounted for
2087  *
2088  *      Conditions:
2089  *      The object must *not* be locked.
2090  */
2091 boolean_t
2092 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2093     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2094 {
2095         vm_pindex_t next_pindex;
2096
2097         if (prev_object == NULL)
2098                 return (TRUE);
2099         VM_OBJECT_WLOCK(prev_object);
2100         if ((prev_object->type != OBJT_DEFAULT &&
2101             prev_object->type != OBJT_SWAP) ||
2102             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2103                 VM_OBJECT_WUNLOCK(prev_object);
2104                 return (FALSE);
2105         }
2106
2107         /*
2108          * Try to collapse the object first
2109          */
2110         vm_object_collapse(prev_object);
2111
2112         /*
2113          * Can't coalesce if: . more than one reference . paged out . shadows
2114          * another object . has a copy elsewhere (any of which mean that the
2115          * pages not mapped to prev_entry may be in use anyway)
2116          */
2117         if (prev_object->backing_object != NULL) {
2118                 VM_OBJECT_WUNLOCK(prev_object);
2119                 return (FALSE);
2120         }
2121
2122         prev_size >>= PAGE_SHIFT;
2123         next_size >>= PAGE_SHIFT;
2124         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2125
2126         if ((prev_object->ref_count > 1) &&
2127             (prev_object->size != next_pindex)) {
2128                 VM_OBJECT_WUNLOCK(prev_object);
2129                 return (FALSE);
2130         }
2131
2132         /*
2133          * Account for the charge.
2134          */
2135         if (prev_object->cred != NULL) {
2136
2137                 /*
2138                  * If prev_object was charged, then this mapping,
2139                  * although not charged now, may become writable
2140                  * later. Non-NULL cred in the object would prevent
2141                  * swap reservation during enabling of the write
2142                  * access, so reserve swap now. Failed reservation
2143                  * cause allocation of the separate object for the map
2144                  * entry, and swap reservation for this entry is
2145                  * managed in appropriate time.
2146                  */
2147                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2148                     prev_object->cred)) {
2149                         VM_OBJECT_WUNLOCK(prev_object);
2150                         return (FALSE);
2151                 }
2152                 prev_object->charge += ptoa(next_size);
2153         }
2154
2155         /*
2156          * Remove any pages that may still be in the object from a previous
2157          * deallocation.
2158          */
2159         if (next_pindex < prev_object->size) {
2160                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2161                     next_size, 0);
2162                 if (prev_object->type == OBJT_SWAP)
2163                         swap_pager_freespace(prev_object,
2164                                              next_pindex, next_size);
2165 #if 0
2166                 if (prev_object->cred != NULL) {
2167                         KASSERT(prev_object->charge >=
2168                             ptoa(prev_object->size - next_pindex),
2169                             ("object %p overcharged 1 %jx %jx", prev_object,
2170                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2171                         prev_object->charge -= ptoa(prev_object->size -
2172                             next_pindex);
2173                 }
2174 #endif
2175         }
2176
2177         /*
2178          * Extend the object if necessary.
2179          */
2180         if (next_pindex + next_size > prev_object->size)
2181                 prev_object->size = next_pindex + next_size;
2182
2183         VM_OBJECT_WUNLOCK(prev_object);
2184         return (TRUE);
2185 }
2186
2187 void
2188 vm_object_set_writeable_dirty(vm_object_t object)
2189 {
2190
2191         VM_OBJECT_ASSERT_WLOCKED(object);
2192         if (object->type != OBJT_VNODE) {
2193                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2194                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2195                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2196                 }
2197                 return;
2198         }
2199         object->generation++;
2200         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2201                 return;
2202         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2203 }
2204
2205 /*
2206  *      vm_object_unwire:
2207  *
2208  *      For each page offset within the specified range of the given object,
2209  *      find the highest-level page in the shadow chain and unwire it.  A page
2210  *      must exist at every page offset, and the highest-level page must be
2211  *      wired.
2212  */
2213 void
2214 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2215     uint8_t queue)
2216 {
2217         vm_object_t tobject;
2218         vm_page_t m, tm;
2219         vm_pindex_t end_pindex, pindex, tpindex;
2220         int depth, locked_depth;
2221
2222         KASSERT((offset & PAGE_MASK) == 0,
2223             ("vm_object_unwire: offset is not page aligned"));
2224         KASSERT((length & PAGE_MASK) == 0,
2225             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2226         /* The wired count of a fictitious page never changes. */
2227         if ((object->flags & OBJ_FICTITIOUS) != 0)
2228                 return;
2229         pindex = OFF_TO_IDX(offset);
2230         end_pindex = pindex + atop(length);
2231         locked_depth = 1;
2232         VM_OBJECT_RLOCK(object);
2233         m = vm_page_find_least(object, pindex);
2234         while (pindex < end_pindex) {
2235                 if (m == NULL || pindex < m->pindex) {
2236                         /*
2237                          * The first object in the shadow chain doesn't
2238                          * contain a page at the current index.  Therefore,
2239                          * the page must exist in a backing object.
2240                          */
2241                         tobject = object;
2242                         tpindex = pindex;
2243                         depth = 0;
2244                         do {
2245                                 tpindex +=
2246                                     OFF_TO_IDX(tobject->backing_object_offset);
2247                                 tobject = tobject->backing_object;
2248                                 KASSERT(tobject != NULL,
2249                                     ("vm_object_unwire: missing page"));
2250                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2251                                         goto next_page;
2252                                 depth++;
2253                                 if (depth == locked_depth) {
2254                                         locked_depth++;
2255                                         VM_OBJECT_RLOCK(tobject);
2256                                 }
2257                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2258                             NULL);
2259                 } else {
2260                         tm = m;
2261                         m = TAILQ_NEXT(m, listq);
2262                 }
2263                 vm_page_lock(tm);
2264                 vm_page_unwire(tm, queue);
2265                 vm_page_unlock(tm);
2266 next_page:
2267                 pindex++;
2268         }
2269         /* Release the accumulated object locks. */
2270         for (depth = 0; depth < locked_depth; depth++) {
2271                 tobject = object->backing_object;
2272                 VM_OBJECT_RUNLOCK(object);
2273                 object = tobject;
2274         }
2275 }
2276
2277 struct vnode *
2278 vm_object_vnode(vm_object_t object)
2279 {
2280
2281         VM_OBJECT_ASSERT_LOCKED(object);
2282         if (object->type == OBJT_VNODE)
2283                 return (object->handle);
2284         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2285                 return (object->un_pager.swp.swp_tmpfs);
2286         return (NULL);
2287 }
2288
2289 static int
2290 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2291 {
2292         struct kinfo_vmobject *kvo;
2293         char *fullpath, *freepath;
2294         struct vnode *vp;
2295         struct vattr va;
2296         vm_object_t obj;
2297         vm_page_t m;
2298         int count, error;
2299
2300         if (req->oldptr == NULL) {
2301                 /*
2302                  * If an old buffer has not been provided, generate an
2303                  * estimate of the space needed for a subsequent call.
2304                  */
2305                 mtx_lock(&vm_object_list_mtx);
2306                 count = 0;
2307                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2308                         if (obj->type == OBJT_DEAD)
2309                                 continue;
2310                         count++;
2311                 }
2312                 mtx_unlock(&vm_object_list_mtx);
2313                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2314                     count * 11 / 10));
2315         }
2316
2317         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2318         error = 0;
2319
2320         /*
2321          * VM objects are type stable and are never removed from the
2322          * list once added.  This allows us to safely read obj->object_list
2323          * after reacquiring the VM object lock.
2324          */
2325         mtx_lock(&vm_object_list_mtx);
2326         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2327                 if (obj->type == OBJT_DEAD)
2328                         continue;
2329                 VM_OBJECT_RLOCK(obj);
2330                 if (obj->type == OBJT_DEAD) {
2331                         VM_OBJECT_RUNLOCK(obj);
2332                         continue;
2333                 }
2334                 mtx_unlock(&vm_object_list_mtx);
2335                 kvo->kvo_size = ptoa(obj->size);
2336                 kvo->kvo_resident = obj->resident_page_count;
2337                 kvo->kvo_ref_count = obj->ref_count;
2338                 kvo->kvo_shadow_count = obj->shadow_count;
2339                 kvo->kvo_memattr = obj->memattr;
2340                 kvo->kvo_active = 0;
2341                 kvo->kvo_inactive = 0;
2342                 TAILQ_FOREACH(m, &obj->memq, listq) {
2343                         /*
2344                          * A page may belong to the object but be
2345                          * dequeued and set to PQ_NONE while the
2346                          * object lock is not held.  This makes the
2347                          * reads of m->queue below racy, and we do not
2348                          * count pages set to PQ_NONE.  However, this
2349                          * sysctl is only meant to give an
2350                          * approximation of the system anyway.
2351                          */
2352                         if (vm_page_active(m))
2353                                 kvo->kvo_active++;
2354                         else if (vm_page_inactive(m))
2355                                 kvo->kvo_inactive++;
2356                 }
2357
2358                 kvo->kvo_vn_fileid = 0;
2359                 kvo->kvo_vn_fsid = 0;
2360                 kvo->kvo_vn_fsid_freebsd11 = 0;
2361                 freepath = NULL;
2362                 fullpath = "";
2363                 vp = NULL;
2364                 switch (obj->type) {
2365                 case OBJT_DEFAULT:
2366                         kvo->kvo_type = KVME_TYPE_DEFAULT;
2367                         break;
2368                 case OBJT_VNODE:
2369                         kvo->kvo_type = KVME_TYPE_VNODE;
2370                         vp = obj->handle;
2371                         vref(vp);
2372                         break;
2373                 case OBJT_SWAP:
2374                         kvo->kvo_type = KVME_TYPE_SWAP;
2375                         break;
2376                 case OBJT_DEVICE:
2377                         kvo->kvo_type = KVME_TYPE_DEVICE;
2378                         break;
2379                 case OBJT_PHYS:
2380                         kvo->kvo_type = KVME_TYPE_PHYS;
2381                         break;
2382                 case OBJT_DEAD:
2383                         kvo->kvo_type = KVME_TYPE_DEAD;
2384                         break;
2385                 case OBJT_SG:
2386                         kvo->kvo_type = KVME_TYPE_SG;
2387                         break;
2388                 case OBJT_MGTDEVICE:
2389                         kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2390                         break;
2391                 default:
2392                         kvo->kvo_type = KVME_TYPE_UNKNOWN;
2393                         break;
2394                 }
2395                 VM_OBJECT_RUNLOCK(obj);
2396                 if (vp != NULL) {
2397                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2398                         vn_lock(vp, LK_SHARED | LK_RETRY);
2399                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2400                                 kvo->kvo_vn_fileid = va.va_fileid;
2401                                 kvo->kvo_vn_fsid = va.va_fsid;
2402                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2403                                                                 /* truncate */
2404                         }
2405                         vput(vp);
2406                 }
2407
2408                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2409                 if (freepath != NULL)
2410                         free(freepath, M_TEMP);
2411
2412                 /* Pack record size down */
2413                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2414                     + strlen(kvo->kvo_path) + 1;
2415                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2416                     sizeof(uint64_t));
2417                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2418                 mtx_lock(&vm_object_list_mtx);
2419                 if (error)
2420                         break;
2421         }
2422         mtx_unlock(&vm_object_list_mtx);
2423         free(kvo, M_TEMP);
2424         return (error);
2425 }
2426 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2427     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2428     "List of VM objects");
2429
2430 #include "opt_ddb.h"
2431 #ifdef DDB
2432 #include <sys/kernel.h>
2433
2434 #include <sys/cons.h>
2435
2436 #include <ddb/ddb.h>
2437
2438 static int
2439 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2440 {
2441         vm_map_t tmpm;
2442         vm_map_entry_t tmpe;
2443         vm_object_t obj;
2444         int entcount;
2445
2446         if (map == 0)
2447                 return 0;
2448
2449         if (entry == 0) {
2450                 tmpe = map->header.next;
2451                 entcount = map->nentries;
2452                 while (entcount-- && (tmpe != &map->header)) {
2453                         if (_vm_object_in_map(map, object, tmpe)) {
2454                                 return 1;
2455                         }
2456                         tmpe = tmpe->next;
2457                 }
2458         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2459                 tmpm = entry->object.sub_map;
2460                 tmpe = tmpm->header.next;
2461                 entcount = tmpm->nentries;
2462                 while (entcount-- && tmpe != &tmpm->header) {
2463                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2464                                 return 1;
2465                         }
2466                         tmpe = tmpe->next;
2467                 }
2468         } else if ((obj = entry->object.vm_object) != NULL) {
2469                 for (; obj; obj = obj->backing_object)
2470                         if (obj == object) {
2471                                 return 1;
2472                         }
2473         }
2474         return 0;
2475 }
2476
2477 static int
2478 vm_object_in_map(vm_object_t object)
2479 {
2480         struct proc *p;
2481
2482         /* sx_slock(&allproc_lock); */
2483         FOREACH_PROC_IN_SYSTEM(p) {
2484                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2485                         continue;
2486                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2487                         /* sx_sunlock(&allproc_lock); */
2488                         return 1;
2489                 }
2490         }
2491         /* sx_sunlock(&allproc_lock); */
2492         if (_vm_object_in_map(kernel_map, object, 0))
2493                 return 1;
2494         return 0;
2495 }
2496
2497 DB_SHOW_COMMAND(vmochk, vm_object_check)
2498 {
2499         vm_object_t object;
2500
2501         /*
2502          * make sure that internal objs are in a map somewhere
2503          * and none have zero ref counts.
2504          */
2505         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2506                 if (object->handle == NULL &&
2507                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2508                         if (object->ref_count == 0) {
2509                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2510                                         (long)object->size);
2511                         }
2512                         if (!vm_object_in_map(object)) {
2513                                 db_printf(
2514                         "vmochk: internal obj is not in a map: "
2515                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2516                                     object->ref_count, (u_long)object->size, 
2517                                     (u_long)object->size,
2518                                     (void *)object->backing_object);
2519                         }
2520                 }
2521         }
2522 }
2523
2524 /*
2525  *      vm_object_print:        [ debug ]
2526  */
2527 DB_SHOW_COMMAND(object, vm_object_print_static)
2528 {
2529         /* XXX convert args. */
2530         vm_object_t object = (vm_object_t)addr;
2531         boolean_t full = have_addr;
2532
2533         vm_page_t p;
2534
2535         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2536 #define count   was_count
2537
2538         int count;
2539
2540         if (object == NULL)
2541                 return;
2542
2543         db_iprintf(
2544             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2545             object, (int)object->type, (uintmax_t)object->size,
2546             object->resident_page_count, object->ref_count, object->flags,
2547             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2548         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2549             object->shadow_count, 
2550             object->backing_object ? object->backing_object->ref_count : 0,
2551             object->backing_object, (uintmax_t)object->backing_object_offset);
2552
2553         if (!full)
2554                 return;
2555
2556         db_indent += 2;
2557         count = 0;
2558         TAILQ_FOREACH(p, &object->memq, listq) {
2559                 if (count == 0)
2560                         db_iprintf("memory:=");
2561                 else if (count == 6) {
2562                         db_printf("\n");
2563                         db_iprintf(" ...");
2564                         count = 0;
2565                 } else
2566                         db_printf(",");
2567                 count++;
2568
2569                 db_printf("(off=0x%jx,page=0x%jx)",
2570                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2571         }
2572         if (count != 0)
2573                 db_printf("\n");
2574         db_indent -= 2;
2575 }
2576
2577 /* XXX. */
2578 #undef count
2579
2580 /* XXX need this non-static entry for calling from vm_map_print. */
2581 void
2582 vm_object_print(
2583         /* db_expr_t */ long addr,
2584         boolean_t have_addr,
2585         /* db_expr_t */ long count,
2586         char *modif)
2587 {
2588         vm_object_print_static(addr, have_addr, count, modif);
2589 }
2590
2591 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2592 {
2593         vm_object_t object;
2594         vm_pindex_t fidx;
2595         vm_paddr_t pa;
2596         vm_page_t m, prev_m;
2597         int rcount, nl, c;
2598
2599         nl = 0;
2600         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2601                 db_printf("new object: %p\n", (void *)object);
2602                 if (nl > 18) {
2603                         c = cngetc();
2604                         if (c != ' ')
2605                                 return;
2606                         nl = 0;
2607                 }
2608                 nl++;
2609                 rcount = 0;
2610                 fidx = 0;
2611                 pa = -1;
2612                 TAILQ_FOREACH(m, &object->memq, listq) {
2613                         if (m->pindex > 128)
2614                                 break;
2615                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2616                             prev_m->pindex + 1 != m->pindex) {
2617                                 if (rcount) {
2618                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2619                                                 (long)fidx, rcount, (long)pa);
2620                                         if (nl > 18) {
2621                                                 c = cngetc();
2622                                                 if (c != ' ')
2623                                                         return;
2624                                                 nl = 0;
2625                                         }
2626                                         nl++;
2627                                         rcount = 0;
2628                                 }
2629                         }                               
2630                         if (rcount &&
2631                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2632                                 ++rcount;
2633                                 continue;
2634                         }
2635                         if (rcount) {
2636                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2637                                         (long)fidx, rcount, (long)pa);
2638                                 if (nl > 18) {
2639                                         c = cngetc();
2640                                         if (c != ' ')
2641                                                 return;
2642                                         nl = 0;
2643                                 }
2644                                 nl++;
2645                         }
2646                         fidx = m->pindex;
2647                         pa = VM_PAGE_TO_PHYS(m);
2648                         rcount = 1;
2649                 }
2650                 if (rcount) {
2651                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2652                                 (long)fidx, rcount, (long)pa);
2653                         if (nl > 18) {
2654                                 c = cngetc();
2655                                 if (c != ' ')
2656                                         return;
2657                                 nl = 0;
2658                         }
2659                         nl++;
2660                 }
2661         }
2662 }
2663 #endif /* DDB */