]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Update ELF Tool Chain to upstream rev 3400
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104     "Use old (insecure) msync behavior");
105
106 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107                     int pagerflags, int flags, boolean_t *clearobjflags,
108                     boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110                     boolean_t *clearobjflags);
111 static void     vm_object_qcollapse(vm_object_t object);
112 static void     vm_object_vndeallocate(vm_object_t object);
113
114 /*
115  *      Virtual memory objects maintain the actual data
116  *      associated with allocated virtual memory.  A given
117  *      page of memory exists within exactly one object.
118  *
119  *      An object is only deallocated when all "references"
120  *      are given up.  Only one "reference" to a given
121  *      region of an object should be writeable.
122  *
123  *      Associated with each object is a list of all resident
124  *      memory pages belonging to that object; this list is
125  *      maintained by the "vm_page" module, and locked by the object's
126  *      lock.
127  *
128  *      Each object also records a "pager" routine which is
129  *      used to retrieve (and store) pages to the proper backing
130  *      storage.  In addition, objects may be backed by other
131  *      objects from which they were virtual-copied.
132  *
133  *      The only items within the object structure which are
134  *      modified after time of creation are:
135  *              reference count         locked by object's lock
136  *              pager routine           locked by object's lock
137  *
138  */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;  /* lock for object list and count */
142
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147     "VM object stats");
148
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156
157 static uma_zone_t obj_zone;
158
159 static int vm_object_zinit(void *mem, int size, int flags);
160
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167         vm_object_t object;
168
169         object = (vm_object_t)mem;
170         KASSERT(object->ref_count == 0,
171             ("object %p ref_count = %d", object, object->ref_count));
172         KASSERT(TAILQ_EMPTY(&object->memq),
173             ("object %p has resident pages in its memq", object));
174         KASSERT(vm_radix_is_empty(&object->rtree),
175             ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177         KASSERT(LIST_EMPTY(&object->rvq),
178             ("object %p has reservations",
179             object));
180 #endif
181         KASSERT(vm_object_cache_is_empty(object),
182             ("object %p has cached pages",
183             object));
184         KASSERT(object->paging_in_progress == 0,
185             ("object %p paging_in_progress = %d",
186             object, object->paging_in_progress));
187         KASSERT(object->resident_page_count == 0,
188             ("object %p resident_page_count = %d",
189             object, object->resident_page_count));
190         KASSERT(object->shadow_count == 0,
191             ("object %p shadow_count = %d",
192             object, object->shadow_count));
193         KASSERT(object->type == OBJT_DEAD,
194             ("object %p has non-dead type %d",
195             object, object->type));
196 }
197 #endif
198
199 static int
200 vm_object_zinit(void *mem, int size, int flags)
201 {
202         vm_object_t object;
203
204         object = (vm_object_t)mem;
205         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
206
207         /* These are true for any object that has been freed */
208         object->type = OBJT_DEAD;
209         object->ref_count = 0;
210         object->rtree.rt_root = 0;
211         object->rtree.rt_flags = 0;
212         object->paging_in_progress = 0;
213         object->resident_page_count = 0;
214         object->shadow_count = 0;
215         object->cache.rt_root = 0;
216         object->cache.rt_flags = 0;
217
218         mtx_lock(&vm_object_list_mtx);
219         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
220         mtx_unlock(&vm_object_list_mtx);
221         return (0);
222 }
223
224 static void
225 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
226 {
227
228         TAILQ_INIT(&object->memq);
229         LIST_INIT(&object->shadow_head);
230
231         object->type = type;
232         switch (type) {
233         case OBJT_DEAD:
234                 panic("_vm_object_allocate: can't create OBJT_DEAD");
235         case OBJT_DEFAULT:
236         case OBJT_SWAP:
237                 object->flags = OBJ_ONEMAPPING;
238                 break;
239         case OBJT_DEVICE:
240         case OBJT_SG:
241                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
242                 break;
243         case OBJT_MGTDEVICE:
244                 object->flags = OBJ_FICTITIOUS;
245                 break;
246         case OBJT_PHYS:
247                 object->flags = OBJ_UNMANAGED;
248                 break;
249         case OBJT_VNODE:
250                 object->flags = 0;
251                 break;
252         default:
253                 panic("_vm_object_allocate: type %d is undefined", type);
254         }
255         object->size = size;
256         object->generation = 1;
257         object->ref_count = 1;
258         object->memattr = VM_MEMATTR_DEFAULT;
259         object->cred = NULL;
260         object->charge = 0;
261         object->handle = NULL;
262         object->backing_object = NULL;
263         object->backing_object_offset = (vm_ooffset_t) 0;
264 #if VM_NRESERVLEVEL > 0
265         LIST_INIT(&object->rvq);
266 #endif
267 }
268
269 /*
270  *      vm_object_init:
271  *
272  *      Initialize the VM objects module.
273  */
274 void
275 vm_object_init(void)
276 {
277         TAILQ_INIT(&vm_object_list);
278         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
279         
280         rw_init(&kernel_object->lock, "kernel vm object");
281         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
282             kernel_object);
283 #if VM_NRESERVLEVEL > 0
284         kernel_object->flags |= OBJ_COLORED;
285         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
286 #endif
287
288         rw_init(&kmem_object->lock, "kmem vm object");
289         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
290             kmem_object);
291 #if VM_NRESERVLEVEL > 0
292         kmem_object->flags |= OBJ_COLORED;
293         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
294 #endif
295
296         /*
297          * The lock portion of struct vm_object must be type stable due
298          * to vm_pageout_fallback_object_lock locking a vm object
299          * without holding any references to it.
300          */
301         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
302 #ifdef INVARIANTS
303             vm_object_zdtor,
304 #else
305             NULL,
306 #endif
307             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
308
309         vm_radix_init();
310 }
311
312 void
313 vm_object_clear_flag(vm_object_t object, u_short bits)
314 {
315
316         VM_OBJECT_ASSERT_WLOCKED(object);
317         object->flags &= ~bits;
318 }
319
320 /*
321  *      Sets the default memory attribute for the specified object.  Pages
322  *      that are allocated to this object are by default assigned this memory
323  *      attribute.
324  *
325  *      Presently, this function must be called before any pages are allocated
326  *      to the object.  In the future, this requirement may be relaxed for
327  *      "default" and "swap" objects.
328  */
329 int
330 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
331 {
332
333         VM_OBJECT_ASSERT_WLOCKED(object);
334         switch (object->type) {
335         case OBJT_DEFAULT:
336         case OBJT_DEVICE:
337         case OBJT_MGTDEVICE:
338         case OBJT_PHYS:
339         case OBJT_SG:
340         case OBJT_SWAP:
341         case OBJT_VNODE:
342                 if (!TAILQ_EMPTY(&object->memq))
343                         return (KERN_FAILURE);
344                 break;
345         case OBJT_DEAD:
346                 return (KERN_INVALID_ARGUMENT);
347         default:
348                 panic("vm_object_set_memattr: object %p is of undefined type",
349                     object);
350         }
351         object->memattr = memattr;
352         return (KERN_SUCCESS);
353 }
354
355 void
356 vm_object_pip_add(vm_object_t object, short i)
357 {
358
359         VM_OBJECT_ASSERT_WLOCKED(object);
360         object->paging_in_progress += i;
361 }
362
363 void
364 vm_object_pip_subtract(vm_object_t object, short i)
365 {
366
367         VM_OBJECT_ASSERT_WLOCKED(object);
368         object->paging_in_progress -= i;
369 }
370
371 void
372 vm_object_pip_wakeup(vm_object_t object)
373 {
374
375         VM_OBJECT_ASSERT_WLOCKED(object);
376         object->paging_in_progress--;
377         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
378                 vm_object_clear_flag(object, OBJ_PIPWNT);
379                 wakeup(object);
380         }
381 }
382
383 void
384 vm_object_pip_wakeupn(vm_object_t object, short i)
385 {
386
387         VM_OBJECT_ASSERT_WLOCKED(object);
388         if (i)
389                 object->paging_in_progress -= i;
390         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
391                 vm_object_clear_flag(object, OBJ_PIPWNT);
392                 wakeup(object);
393         }
394 }
395
396 void
397 vm_object_pip_wait(vm_object_t object, char *waitid)
398 {
399
400         VM_OBJECT_ASSERT_WLOCKED(object);
401         while (object->paging_in_progress) {
402                 object->flags |= OBJ_PIPWNT;
403                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
404         }
405 }
406
407 /*
408  *      vm_object_allocate:
409  *
410  *      Returns a new object with the given size.
411  */
412 vm_object_t
413 vm_object_allocate(objtype_t type, vm_pindex_t size)
414 {
415         vm_object_t object;
416
417         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
418         _vm_object_allocate(type, size, object);
419         return (object);
420 }
421
422
423 /*
424  *      vm_object_reference:
425  *
426  *      Gets another reference to the given object.  Note: OBJ_DEAD
427  *      objects can be referenced during final cleaning.
428  */
429 void
430 vm_object_reference(vm_object_t object)
431 {
432         if (object == NULL)
433                 return;
434         VM_OBJECT_WLOCK(object);
435         vm_object_reference_locked(object);
436         VM_OBJECT_WUNLOCK(object);
437 }
438
439 /*
440  *      vm_object_reference_locked:
441  *
442  *      Gets another reference to the given object.
443  *
444  *      The object must be locked.
445  */
446 void
447 vm_object_reference_locked(vm_object_t object)
448 {
449         struct vnode *vp;
450
451         VM_OBJECT_ASSERT_WLOCKED(object);
452         object->ref_count++;
453         if (object->type == OBJT_VNODE) {
454                 vp = object->handle;
455                 vref(vp);
456         }
457 }
458
459 /*
460  * Handle deallocating an object of type OBJT_VNODE.
461  */
462 static void
463 vm_object_vndeallocate(vm_object_t object)
464 {
465         struct vnode *vp = (struct vnode *) object->handle;
466
467         VM_OBJECT_ASSERT_WLOCKED(object);
468         KASSERT(object->type == OBJT_VNODE,
469             ("vm_object_vndeallocate: not a vnode object"));
470         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
471 #ifdef INVARIANTS
472         if (object->ref_count == 0) {
473                 vprint("vm_object_vndeallocate", vp);
474                 panic("vm_object_vndeallocate: bad object reference count");
475         }
476 #endif
477
478         /*
479          * The test for text of vp vnode does not need a bypass to
480          * reach right VV_TEXT there, since it is obtained from
481          * object->handle.
482          */
483         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
484                 object->ref_count--;
485                 VM_OBJECT_WUNLOCK(object);
486                 /* vrele may need the vnode lock. */
487                 vrele(vp);
488         } else {
489                 vhold(vp);
490                 VM_OBJECT_WUNLOCK(object);
491                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
492                 vdrop(vp);
493                 VM_OBJECT_WLOCK(object);
494                 object->ref_count--;
495                 if (object->type == OBJT_DEAD) {
496                         VM_OBJECT_WUNLOCK(object);
497                         VOP_UNLOCK(vp, 0);
498                 } else {
499                         if (object->ref_count == 0)
500                                 VOP_UNSET_TEXT(vp);
501                         VM_OBJECT_WUNLOCK(object);
502                         vput(vp);
503                 }
504         }
505 }
506
507 /*
508  *      vm_object_deallocate:
509  *
510  *      Release a reference to the specified object,
511  *      gained either through a vm_object_allocate
512  *      or a vm_object_reference call.  When all references
513  *      are gone, storage associated with this object
514  *      may be relinquished.
515  *
516  *      No object may be locked.
517  */
518 void
519 vm_object_deallocate(vm_object_t object)
520 {
521         vm_object_t temp;
522         struct vnode *vp;
523
524         while (object != NULL) {
525                 VM_OBJECT_WLOCK(object);
526                 if (object->type == OBJT_VNODE) {
527                         vm_object_vndeallocate(object);
528                         return;
529                 }
530
531                 KASSERT(object->ref_count != 0,
532                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
533
534                 /*
535                  * If the reference count goes to 0 we start calling
536                  * vm_object_terminate() on the object chain.
537                  * A ref count of 1 may be a special case depending on the
538                  * shadow count being 0 or 1.
539                  */
540                 object->ref_count--;
541                 if (object->ref_count > 1) {
542                         VM_OBJECT_WUNLOCK(object);
543                         return;
544                 } else if (object->ref_count == 1) {
545                         if (object->type == OBJT_SWAP &&
546                             (object->flags & OBJ_TMPFS) != 0) {
547                                 vp = object->un_pager.swp.swp_tmpfs;
548                                 vhold(vp);
549                                 VM_OBJECT_WUNLOCK(object);
550                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
551                                 VM_OBJECT_WLOCK(object);
552                                 if (object->type == OBJT_DEAD ||
553                                     object->ref_count != 1) {
554                                         VM_OBJECT_WUNLOCK(object);
555                                         VOP_UNLOCK(vp, 0);
556                                         vdrop(vp);
557                                         return;
558                                 }
559                                 if ((object->flags & OBJ_TMPFS) != 0)
560                                         VOP_UNSET_TEXT(vp);
561                                 VOP_UNLOCK(vp, 0);
562                                 vdrop(vp);
563                         }
564                         if (object->shadow_count == 0 &&
565                             object->handle == NULL &&
566                             (object->type == OBJT_DEFAULT ||
567                             (object->type == OBJT_SWAP &&
568                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
569                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
570                         } else if ((object->shadow_count == 1) &&
571                             (object->handle == NULL) &&
572                             (object->type == OBJT_DEFAULT ||
573                              object->type == OBJT_SWAP)) {
574                                 vm_object_t robject;
575
576                                 robject = LIST_FIRST(&object->shadow_head);
577                                 KASSERT(robject != NULL,
578                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
579                                          object->ref_count,
580                                          object->shadow_count));
581                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
582                                     ("shadowed tmpfs v_object %p", object));
583                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
584                                         /*
585                                          * Avoid a potential deadlock.
586                                          */
587                                         object->ref_count++;
588                                         VM_OBJECT_WUNLOCK(object);
589                                         /*
590                                          * More likely than not the thread
591                                          * holding robject's lock has lower
592                                          * priority than the current thread.
593                                          * Let the lower priority thread run.
594                                          */
595                                         pause("vmo_de", 1);
596                                         continue;
597                                 }
598                                 /*
599                                  * Collapse object into its shadow unless its
600                                  * shadow is dead.  In that case, object will
601                                  * be deallocated by the thread that is
602                                  * deallocating its shadow.
603                                  */
604                                 if ((robject->flags & OBJ_DEAD) == 0 &&
605                                     (robject->handle == NULL) &&
606                                     (robject->type == OBJT_DEFAULT ||
607                                      robject->type == OBJT_SWAP)) {
608
609                                         robject->ref_count++;
610 retry:
611                                         if (robject->paging_in_progress) {
612                                                 VM_OBJECT_WUNLOCK(object);
613                                                 vm_object_pip_wait(robject,
614                                                     "objde1");
615                                                 temp = robject->backing_object;
616                                                 if (object == temp) {
617                                                         VM_OBJECT_WLOCK(object);
618                                                         goto retry;
619                                                 }
620                                         } else if (object->paging_in_progress) {
621                                                 VM_OBJECT_WUNLOCK(robject);
622                                                 object->flags |= OBJ_PIPWNT;
623                                                 VM_OBJECT_SLEEP(object, object,
624                                                     PDROP | PVM, "objde2", 0);
625                                                 VM_OBJECT_WLOCK(robject);
626                                                 temp = robject->backing_object;
627                                                 if (object == temp) {
628                                                         VM_OBJECT_WLOCK(object);
629                                                         goto retry;
630                                                 }
631                                         } else
632                                                 VM_OBJECT_WUNLOCK(object);
633
634                                         if (robject->ref_count == 1) {
635                                                 robject->ref_count--;
636                                                 object = robject;
637                                                 goto doterm;
638                                         }
639                                         object = robject;
640                                         vm_object_collapse(object);
641                                         VM_OBJECT_WUNLOCK(object);
642                                         continue;
643                                 }
644                                 VM_OBJECT_WUNLOCK(robject);
645                         }
646                         VM_OBJECT_WUNLOCK(object);
647                         return;
648                 }
649 doterm:
650                 temp = object->backing_object;
651                 if (temp != NULL) {
652                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
653                             ("shadowed tmpfs v_object 2 %p", object));
654                         VM_OBJECT_WLOCK(temp);
655                         LIST_REMOVE(object, shadow_list);
656                         temp->shadow_count--;
657                         VM_OBJECT_WUNLOCK(temp);
658                         object->backing_object = NULL;
659                 }
660                 /*
661                  * Don't double-terminate, we could be in a termination
662                  * recursion due to the terminate having to sync data
663                  * to disk.
664                  */
665                 if ((object->flags & OBJ_DEAD) == 0)
666                         vm_object_terminate(object);
667                 else
668                         VM_OBJECT_WUNLOCK(object);
669                 object = temp;
670         }
671 }
672
673 /*
674  *      vm_object_destroy removes the object from the global object list
675  *      and frees the space for the object.
676  */
677 void
678 vm_object_destroy(vm_object_t object)
679 {
680
681         /*
682          * Release the allocation charge.
683          */
684         if (object->cred != NULL) {
685                 swap_release_by_cred(object->charge, object->cred);
686                 object->charge = 0;
687                 crfree(object->cred);
688                 object->cred = NULL;
689         }
690
691         /*
692          * Free the space for the object.
693          */
694         uma_zfree(obj_zone, object);
695 }
696
697 /*
698  *      vm_object_terminate actually destroys the specified object, freeing
699  *      up all previously used resources.
700  *
701  *      The object must be locked.
702  *      This routine may block.
703  */
704 void
705 vm_object_terminate(vm_object_t object)
706 {
707         vm_page_t p, p_next;
708
709         VM_OBJECT_ASSERT_WLOCKED(object);
710
711         /*
712          * Make sure no one uses us.
713          */
714         vm_object_set_flag(object, OBJ_DEAD);
715
716         /*
717          * wait for the pageout daemon to be done with the object
718          */
719         vm_object_pip_wait(object, "objtrm");
720
721         KASSERT(!object->paging_in_progress,
722                 ("vm_object_terminate: pageout in progress"));
723
724         /*
725          * Clean and free the pages, as appropriate. All references to the
726          * object are gone, so we don't need to lock it.
727          */
728         if (object->type == OBJT_VNODE) {
729                 struct vnode *vp = (struct vnode *)object->handle;
730
731                 /*
732                  * Clean pages and flush buffers.
733                  */
734                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
735                 VM_OBJECT_WUNLOCK(object);
736
737                 vinvalbuf(vp, V_SAVE, 0, 0);
738
739                 VM_OBJECT_WLOCK(object);
740         }
741
742         KASSERT(object->ref_count == 0, 
743                 ("vm_object_terminate: object with references, ref_count=%d",
744                 object->ref_count));
745
746         /*
747          * Free any remaining pageable pages.  This also removes them from the
748          * paging queues.  However, don't free wired pages, just remove them
749          * from the object.  Rather than incrementally removing each page from
750          * the object, the page and object are reset to any empty state. 
751          */
752         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
753                 vm_page_assert_unbusied(p);
754                 vm_page_lock(p);
755                 /*
756                  * Optimize the page's removal from the object by resetting
757                  * its "object" field.  Specifically, if the page is not
758                  * wired, then the effect of this assignment is that
759                  * vm_page_free()'s call to vm_page_remove() will return
760                  * immediately without modifying the page or the object.
761                  */ 
762                 p->object = NULL;
763                 if (p->wire_count == 0) {
764                         vm_page_free(p);
765                         PCPU_INC(cnt.v_pfree);
766                 }
767                 vm_page_unlock(p);
768         }
769         /*
770          * If the object contained any pages, then reset it to an empty state.
771          * None of the object's fields, including "resident_page_count", were
772          * modified by the preceding loop.
773          */
774         if (object->resident_page_count != 0) {
775                 vm_radix_reclaim_allnodes(&object->rtree);
776                 TAILQ_INIT(&object->memq);
777                 object->resident_page_count = 0;
778                 if (object->type == OBJT_VNODE)
779                         vdrop(object->handle);
780         }
781
782 #if VM_NRESERVLEVEL > 0
783         if (__predict_false(!LIST_EMPTY(&object->rvq)))
784                 vm_reserv_break_all(object);
785 #endif
786         if (__predict_false(!vm_object_cache_is_empty(object)))
787                 vm_page_cache_free(object, 0, 0);
788
789         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
790             object->type == OBJT_SWAP,
791             ("%s: non-swap obj %p has cred", __func__, object));
792
793         /*
794          * Let the pager know object is dead.
795          */
796         vm_pager_deallocate(object);
797         VM_OBJECT_WUNLOCK(object);
798
799         vm_object_destroy(object);
800 }
801
802 /*
803  * Make the page read-only so that we can clear the object flags.  However, if
804  * this is a nosync mmap then the object is likely to stay dirty so do not
805  * mess with the page and do not clear the object flags.  Returns TRUE if the
806  * page should be flushed, and FALSE otherwise.
807  */
808 static boolean_t
809 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
810 {
811
812         /*
813          * If we have been asked to skip nosync pages and this is a
814          * nosync page, skip it.  Note that the object flags were not
815          * cleared in this case so we do not have to set them.
816          */
817         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
818                 *clearobjflags = FALSE;
819                 return (FALSE);
820         } else {
821                 pmap_remove_write(p);
822                 return (p->dirty != 0);
823         }
824 }
825
826 /*
827  *      vm_object_page_clean
828  *
829  *      Clean all dirty pages in the specified range of object.  Leaves page 
830  *      on whatever queue it is currently on.   If NOSYNC is set then do not
831  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
832  *      leaving the object dirty.
833  *
834  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
835  *      synchronous clustering mode implementation.
836  *
837  *      Odd semantics: if start == end, we clean everything.
838  *
839  *      The object must be locked.
840  *
841  *      Returns FALSE if some page from the range was not written, as
842  *      reported by the pager, and TRUE otherwise.
843  */
844 boolean_t
845 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
846     int flags)
847 {
848         vm_page_t np, p;
849         vm_pindex_t pi, tend, tstart;
850         int curgeneration, n, pagerflags;
851         boolean_t clearobjflags, eio, res;
852
853         VM_OBJECT_ASSERT_WLOCKED(object);
854
855         /*
856          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
857          * objects.  The check below prevents the function from
858          * operating on non-vnode objects.
859          */
860         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
861             object->resident_page_count == 0)
862                 return (TRUE);
863
864         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
865             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
866         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
867
868         tstart = OFF_TO_IDX(start);
869         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
870         clearobjflags = tstart == 0 && tend >= object->size;
871         res = TRUE;
872
873 rescan:
874         curgeneration = object->generation;
875
876         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
877                 pi = p->pindex;
878                 if (pi >= tend)
879                         break;
880                 np = TAILQ_NEXT(p, listq);
881                 if (p->valid == 0)
882                         continue;
883                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
884                         if (object->generation != curgeneration) {
885                                 if ((flags & OBJPC_SYNC) != 0)
886                                         goto rescan;
887                                 else
888                                         clearobjflags = FALSE;
889                         }
890                         np = vm_page_find_least(object, pi);
891                         continue;
892                 }
893                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
894                         continue;
895
896                 n = vm_object_page_collect_flush(object, p, pagerflags,
897                     flags, &clearobjflags, &eio);
898                 if (eio) {
899                         res = FALSE;
900                         clearobjflags = FALSE;
901                 }
902                 if (object->generation != curgeneration) {
903                         if ((flags & OBJPC_SYNC) != 0)
904                                 goto rescan;
905                         else
906                                 clearobjflags = FALSE;
907                 }
908
909                 /*
910                  * If the VOP_PUTPAGES() did a truncated write, so
911                  * that even the first page of the run is not fully
912                  * written, vm_pageout_flush() returns 0 as the run
913                  * length.  Since the condition that caused truncated
914                  * write may be permanent, e.g. exhausted free space,
915                  * accepting n == 0 would cause an infinite loop.
916                  *
917                  * Forwarding the iterator leaves the unwritten page
918                  * behind, but there is not much we can do there if
919                  * filesystem refuses to write it.
920                  */
921                 if (n == 0) {
922                         n = 1;
923                         clearobjflags = FALSE;
924                 }
925                 np = vm_page_find_least(object, pi + n);
926         }
927 #if 0
928         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
929 #endif
930
931         if (clearobjflags)
932                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
933         return (res);
934 }
935
936 static int
937 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
938     int flags, boolean_t *clearobjflags, boolean_t *eio)
939 {
940         vm_page_t ma[vm_pageout_page_count], p_first, tp;
941         int count, i, mreq, runlen;
942
943         vm_page_lock_assert(p, MA_NOTOWNED);
944         VM_OBJECT_ASSERT_WLOCKED(object);
945
946         count = 1;
947         mreq = 0;
948
949         for (tp = p; count < vm_pageout_page_count; count++) {
950                 tp = vm_page_next(tp);
951                 if (tp == NULL || vm_page_busied(tp))
952                         break;
953                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
954                         break;
955         }
956
957         for (p_first = p; count < vm_pageout_page_count; count++) {
958                 tp = vm_page_prev(p_first);
959                 if (tp == NULL || vm_page_busied(tp))
960                         break;
961                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
962                         break;
963                 p_first = tp;
964                 mreq++;
965         }
966
967         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
968                 ma[i] = tp;
969
970         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
971         return (runlen);
972 }
973
974 /*
975  * Note that there is absolutely no sense in writing out
976  * anonymous objects, so we track down the vnode object
977  * to write out.
978  * We invalidate (remove) all pages from the address space
979  * for semantic correctness.
980  *
981  * If the backing object is a device object with unmanaged pages, then any
982  * mappings to the specified range of pages must be removed before this
983  * function is called.
984  *
985  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
986  * may start out with a NULL object.
987  */
988 boolean_t
989 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
990     boolean_t syncio, boolean_t invalidate)
991 {
992         vm_object_t backing_object;
993         struct vnode *vp;
994         struct mount *mp;
995         int error, flags, fsync_after;
996         boolean_t res;
997
998         if (object == NULL)
999                 return (TRUE);
1000         res = TRUE;
1001         error = 0;
1002         VM_OBJECT_WLOCK(object);
1003         while ((backing_object = object->backing_object) != NULL) {
1004                 VM_OBJECT_WLOCK(backing_object);
1005                 offset += object->backing_object_offset;
1006                 VM_OBJECT_WUNLOCK(object);
1007                 object = backing_object;
1008                 if (object->size < OFF_TO_IDX(offset + size))
1009                         size = IDX_TO_OFF(object->size) - offset;
1010         }
1011         /*
1012          * Flush pages if writing is allowed, invalidate them
1013          * if invalidation requested.  Pages undergoing I/O
1014          * will be ignored by vm_object_page_remove().
1015          *
1016          * We cannot lock the vnode and then wait for paging
1017          * to complete without deadlocking against vm_fault.
1018          * Instead we simply call vm_object_page_remove() and
1019          * allow it to block internally on a page-by-page
1020          * basis when it encounters pages undergoing async
1021          * I/O.
1022          */
1023         if (object->type == OBJT_VNODE &&
1024             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1025                 vp = object->handle;
1026                 VM_OBJECT_WUNLOCK(object);
1027                 (void) vn_start_write(vp, &mp, V_WAIT);
1028                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1029                 if (syncio && !invalidate && offset == 0 &&
1030                     OFF_TO_IDX(size) == object->size) {
1031                         /*
1032                          * If syncing the whole mapping of the file,
1033                          * it is faster to schedule all the writes in
1034                          * async mode, also allowing the clustering,
1035                          * and then wait for i/o to complete.
1036                          */
1037                         flags = 0;
1038                         fsync_after = TRUE;
1039                 } else {
1040                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1041                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1042                         fsync_after = FALSE;
1043                 }
1044                 VM_OBJECT_WLOCK(object);
1045                 res = vm_object_page_clean(object, offset, offset + size,
1046                     flags);
1047                 VM_OBJECT_WUNLOCK(object);
1048                 if (fsync_after)
1049                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1050                 VOP_UNLOCK(vp, 0);
1051                 vn_finished_write(mp);
1052                 if (error != 0)
1053                         res = FALSE;
1054                 VM_OBJECT_WLOCK(object);
1055         }
1056         if ((object->type == OBJT_VNODE ||
1057              object->type == OBJT_DEVICE) && invalidate) {
1058                 if (object->type == OBJT_DEVICE)
1059                         /*
1060                          * The option OBJPR_NOTMAPPED must be passed here
1061                          * because vm_object_page_remove() cannot remove
1062                          * unmanaged mappings.
1063                          */
1064                         flags = OBJPR_NOTMAPPED;
1065                 else if (old_msync)
1066                         flags = 0;
1067                 else
1068                         flags = OBJPR_CLEANONLY;
1069                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1070                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1071         }
1072         VM_OBJECT_WUNLOCK(object);
1073         return (res);
1074 }
1075
1076 /*
1077  *      vm_object_madvise:
1078  *
1079  *      Implements the madvise function at the object/page level.
1080  *
1081  *      MADV_WILLNEED   (any object)
1082  *
1083  *          Activate the specified pages if they are resident.
1084  *
1085  *      MADV_DONTNEED   (any object)
1086  *
1087  *          Deactivate the specified pages if they are resident.
1088  *
1089  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1090  *                       OBJ_ONEMAPPING only)
1091  *
1092  *          Deactivate and clean the specified pages if they are
1093  *          resident.  This permits the process to reuse the pages
1094  *          without faulting or the kernel to reclaim the pages
1095  *          without I/O.
1096  */
1097 void
1098 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1099     int advise)
1100 {
1101         vm_pindex_t tpindex;
1102         vm_object_t backing_object, tobject;
1103         vm_page_t m;
1104
1105         if (object == NULL)
1106                 return;
1107         VM_OBJECT_WLOCK(object);
1108         /*
1109          * Locate and adjust resident pages
1110          */
1111         for (; pindex < end; pindex += 1) {
1112 relookup:
1113                 tobject = object;
1114                 tpindex = pindex;
1115 shadowlookup:
1116                 /*
1117                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1118                  * and those pages must be OBJ_ONEMAPPING.
1119                  */
1120                 if (advise == MADV_FREE) {
1121                         if ((tobject->type != OBJT_DEFAULT &&
1122                              tobject->type != OBJT_SWAP) ||
1123                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1124                                 goto unlock_tobject;
1125                         }
1126                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1127                         goto unlock_tobject;
1128                 m = vm_page_lookup(tobject, tpindex);
1129                 if (m == NULL && advise == MADV_WILLNEED) {
1130                         /*
1131                          * If the page is cached, reactivate it.
1132                          */
1133                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1134                             VM_ALLOC_NOBUSY);
1135                 }
1136                 if (m == NULL) {
1137                         /*
1138                          * There may be swap even if there is no backing page
1139                          */
1140                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1141                                 swap_pager_freespace(tobject, tpindex, 1);
1142                         /*
1143                          * next object
1144                          */
1145                         backing_object = tobject->backing_object;
1146                         if (backing_object == NULL)
1147                                 goto unlock_tobject;
1148                         VM_OBJECT_WLOCK(backing_object);
1149                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1150                         if (tobject != object)
1151                                 VM_OBJECT_WUNLOCK(tobject);
1152                         tobject = backing_object;
1153                         goto shadowlookup;
1154                 } else if (m->valid != VM_PAGE_BITS_ALL)
1155                         goto unlock_tobject;
1156                 /*
1157                  * If the page is not in a normal state, skip it.
1158                  */
1159                 vm_page_lock(m);
1160                 if (m->hold_count != 0 || m->wire_count != 0) {
1161                         vm_page_unlock(m);
1162                         goto unlock_tobject;
1163                 }
1164                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1165                     ("vm_object_madvise: page %p is fictitious", m));
1166                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1167                     ("vm_object_madvise: page %p is not managed", m));
1168                 if (vm_page_busied(m)) {
1169                         if (advise == MADV_WILLNEED) {
1170                                 /*
1171                                  * Reference the page before unlocking and
1172                                  * sleeping so that the page daemon is less
1173                                  * likely to reclaim it. 
1174                                  */
1175                                 vm_page_aflag_set(m, PGA_REFERENCED);
1176                         }
1177                         if (object != tobject)
1178                                 VM_OBJECT_WUNLOCK(object);
1179                         VM_OBJECT_WUNLOCK(tobject);
1180                         vm_page_busy_sleep(m, "madvpo");
1181                         VM_OBJECT_WLOCK(object);
1182                         goto relookup;
1183                 }
1184                 if (advise == MADV_WILLNEED) {
1185                         vm_page_activate(m);
1186                 } else {
1187                         vm_page_advise(m, advise);
1188                 }
1189                 vm_page_unlock(m);
1190                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1191                         swap_pager_freespace(tobject, tpindex, 1);
1192 unlock_tobject:
1193                 if (tobject != object)
1194                         VM_OBJECT_WUNLOCK(tobject);
1195         }       
1196         VM_OBJECT_WUNLOCK(object);
1197 }
1198
1199 /*
1200  *      vm_object_shadow:
1201  *
1202  *      Create a new object which is backed by the
1203  *      specified existing object range.  The source
1204  *      object reference is deallocated.
1205  *
1206  *      The new object and offset into that object
1207  *      are returned in the source parameters.
1208  */
1209 void
1210 vm_object_shadow(
1211         vm_object_t *object,    /* IN/OUT */
1212         vm_ooffset_t *offset,   /* IN/OUT */
1213         vm_size_t length)
1214 {
1215         vm_object_t source;
1216         vm_object_t result;
1217
1218         source = *object;
1219
1220         /*
1221          * Don't create the new object if the old object isn't shared.
1222          */
1223         if (source != NULL) {
1224                 VM_OBJECT_WLOCK(source);
1225                 if (source->ref_count == 1 &&
1226                     source->handle == NULL &&
1227                     (source->type == OBJT_DEFAULT ||
1228                      source->type == OBJT_SWAP)) {
1229                         VM_OBJECT_WUNLOCK(source);
1230                         return;
1231                 }
1232                 VM_OBJECT_WUNLOCK(source);
1233         }
1234
1235         /*
1236          * Allocate a new object with the given length.
1237          */
1238         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1239
1240         /*
1241          * The new object shadows the source object, adding a reference to it.
1242          * Our caller changes his reference to point to the new object,
1243          * removing a reference to the source object.  Net result: no change
1244          * of reference count.
1245          *
1246          * Try to optimize the result object's page color when shadowing
1247          * in order to maintain page coloring consistency in the combined 
1248          * shadowed object.
1249          */
1250         result->backing_object = source;
1251         /*
1252          * Store the offset into the source object, and fix up the offset into
1253          * the new object.
1254          */
1255         result->backing_object_offset = *offset;
1256         if (source != NULL) {
1257                 VM_OBJECT_WLOCK(source);
1258                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1259                 source->shadow_count++;
1260 #if VM_NRESERVLEVEL > 0
1261                 result->flags |= source->flags & OBJ_COLORED;
1262                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1263                     ((1 << (VM_NFREEORDER - 1)) - 1);
1264 #endif
1265                 VM_OBJECT_WUNLOCK(source);
1266         }
1267
1268
1269         /*
1270          * Return the new things
1271          */
1272         *offset = 0;
1273         *object = result;
1274 }
1275
1276 /*
1277  *      vm_object_split:
1278  *
1279  * Split the pages in a map entry into a new object.  This affords
1280  * easier removal of unused pages, and keeps object inheritance from
1281  * being a negative impact on memory usage.
1282  */
1283 void
1284 vm_object_split(vm_map_entry_t entry)
1285 {
1286         vm_page_t m, m_next;
1287         vm_object_t orig_object, new_object, source;
1288         vm_pindex_t idx, offidxstart;
1289         vm_size_t size;
1290
1291         orig_object = entry->object.vm_object;
1292         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1293                 return;
1294         if (orig_object->ref_count <= 1)
1295                 return;
1296         VM_OBJECT_WUNLOCK(orig_object);
1297
1298         offidxstart = OFF_TO_IDX(entry->offset);
1299         size = atop(entry->end - entry->start);
1300
1301         /*
1302          * If swap_pager_copy() is later called, it will convert new_object
1303          * into a swap object.
1304          */
1305         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1306
1307         /*
1308          * At this point, the new object is still private, so the order in
1309          * which the original and new objects are locked does not matter.
1310          */
1311         VM_OBJECT_WLOCK(new_object);
1312         VM_OBJECT_WLOCK(orig_object);
1313         source = orig_object->backing_object;
1314         if (source != NULL) {
1315                 VM_OBJECT_WLOCK(source);
1316                 if ((source->flags & OBJ_DEAD) != 0) {
1317                         VM_OBJECT_WUNLOCK(source);
1318                         VM_OBJECT_WUNLOCK(orig_object);
1319                         VM_OBJECT_WUNLOCK(new_object);
1320                         vm_object_deallocate(new_object);
1321                         VM_OBJECT_WLOCK(orig_object);
1322                         return;
1323                 }
1324                 LIST_INSERT_HEAD(&source->shadow_head,
1325                                   new_object, shadow_list);
1326                 source->shadow_count++;
1327                 vm_object_reference_locked(source);     /* for new_object */
1328                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1329                 VM_OBJECT_WUNLOCK(source);
1330                 new_object->backing_object_offset = 
1331                         orig_object->backing_object_offset + entry->offset;
1332                 new_object->backing_object = source;
1333         }
1334         if (orig_object->cred != NULL) {
1335                 new_object->cred = orig_object->cred;
1336                 crhold(orig_object->cred);
1337                 new_object->charge = ptoa(size);
1338                 KASSERT(orig_object->charge >= ptoa(size),
1339                     ("orig_object->charge < 0"));
1340                 orig_object->charge -= ptoa(size);
1341         }
1342 retry:
1343         m = vm_page_find_least(orig_object, offidxstart);
1344         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1345             m = m_next) {
1346                 m_next = TAILQ_NEXT(m, listq);
1347
1348                 /*
1349                  * We must wait for pending I/O to complete before we can
1350                  * rename the page.
1351                  *
1352                  * We do not have to VM_PROT_NONE the page as mappings should
1353                  * not be changed by this operation.
1354                  */
1355                 if (vm_page_busied(m)) {
1356                         VM_OBJECT_WUNLOCK(new_object);
1357                         vm_page_lock(m);
1358                         VM_OBJECT_WUNLOCK(orig_object);
1359                         vm_page_busy_sleep(m, "spltwt");
1360                         VM_OBJECT_WLOCK(orig_object);
1361                         VM_OBJECT_WLOCK(new_object);
1362                         goto retry;
1363                 }
1364
1365                 /* vm_page_rename() will handle dirty and cache. */
1366                 if (vm_page_rename(m, new_object, idx)) {
1367                         VM_OBJECT_WUNLOCK(new_object);
1368                         VM_OBJECT_WUNLOCK(orig_object);
1369                         VM_WAIT;
1370                         VM_OBJECT_WLOCK(orig_object);
1371                         VM_OBJECT_WLOCK(new_object);
1372                         goto retry;
1373                 }
1374 #if VM_NRESERVLEVEL > 0
1375                 /*
1376                  * If some of the reservation's allocated pages remain with
1377                  * the original object, then transferring the reservation to
1378                  * the new object is neither particularly beneficial nor
1379                  * particularly harmful as compared to leaving the reservation
1380                  * with the original object.  If, however, all of the
1381                  * reservation's allocated pages are transferred to the new
1382                  * object, then transferring the reservation is typically
1383                  * beneficial.  Determining which of these two cases applies
1384                  * would be more costly than unconditionally renaming the
1385                  * reservation.
1386                  */
1387                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1388 #endif
1389                 if (orig_object->type == OBJT_SWAP)
1390                         vm_page_xbusy(m);
1391         }
1392         if (orig_object->type == OBJT_SWAP) {
1393                 /*
1394                  * swap_pager_copy() can sleep, in which case the orig_object's
1395                  * and new_object's locks are released and reacquired. 
1396                  */
1397                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1398                 TAILQ_FOREACH(m, &new_object->memq, listq)
1399                         vm_page_xunbusy(m);
1400
1401                 /*
1402                  * Transfer any cached pages from orig_object to new_object.
1403                  * If swap_pager_copy() found swapped out pages within the
1404                  * specified range of orig_object, then it changed
1405                  * new_object's type to OBJT_SWAP when it transferred those
1406                  * pages to new_object.  Otherwise, new_object's type
1407                  * should still be OBJT_DEFAULT and orig_object should not
1408                  * contain any cached pages within the specified range.
1409                  */
1410                 if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1411                         vm_page_cache_transfer(orig_object, offidxstart,
1412                             new_object);
1413         }
1414         VM_OBJECT_WUNLOCK(orig_object);
1415         VM_OBJECT_WUNLOCK(new_object);
1416         entry->object.vm_object = new_object;
1417         entry->offset = 0LL;
1418         vm_object_deallocate(orig_object);
1419         VM_OBJECT_WLOCK(new_object);
1420 }
1421
1422 #define OBSC_COLLAPSE_NOWAIT    0x0002
1423 #define OBSC_COLLAPSE_WAIT      0x0004
1424
1425 static vm_page_t
1426 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1427     int op)
1428 {
1429         vm_object_t backing_object;
1430
1431         VM_OBJECT_ASSERT_WLOCKED(object);
1432         backing_object = object->backing_object;
1433         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1434
1435         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1436         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1437             ("invalid ownership %p %p %p", p, object, backing_object));
1438         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1439                 return (next);
1440         if (p != NULL)
1441                 vm_page_lock(p);
1442         VM_OBJECT_WUNLOCK(object);
1443         VM_OBJECT_WUNLOCK(backing_object);
1444         if (p == NULL)
1445                 VM_WAIT;
1446         else
1447                 vm_page_busy_sleep(p, "vmocol");
1448         VM_OBJECT_WLOCK(object);
1449         VM_OBJECT_WLOCK(backing_object);
1450         return (TAILQ_FIRST(&backing_object->memq));
1451 }
1452
1453 static bool
1454 vm_object_scan_all_shadowed(vm_object_t object)
1455 {
1456         vm_object_t backing_object;
1457         vm_page_t p, pp;
1458         vm_pindex_t backing_offset_index, new_pindex;
1459
1460         VM_OBJECT_ASSERT_WLOCKED(object);
1461         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1462
1463         backing_object = object->backing_object;
1464
1465         /*
1466          * Initial conditions:
1467          *
1468          * We do not want to have to test for the existence of cache or swap
1469          * pages in the backing object.  XXX but with the new swapper this
1470          * would be pretty easy to do.
1471          */
1472         if (backing_object->type != OBJT_DEFAULT)
1473                 return (false);
1474
1475         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1476
1477         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL;
1478             p = TAILQ_NEXT(p, listq)) {
1479                 new_pindex = p->pindex - backing_offset_index;
1480
1481                 /*
1482                  * Ignore pages outside the parent object's range and outside
1483                  * the parent object's mapping of the backing object.
1484                  */
1485                 if (p->pindex < backing_offset_index ||
1486                     new_pindex >= object->size)
1487                         continue;
1488
1489                 /*
1490                  * See if the parent has the page or if the parent's object
1491                  * pager has the page.  If the parent has the page but the page
1492                  * is not valid, the parent's object pager must have the page.
1493                  *
1494                  * If this fails, the parent does not completely shadow the
1495                  * object and we might as well give up now.
1496                  */
1497                 pp = vm_page_lookup(object, new_pindex);
1498                 if ((pp == NULL || pp->valid == 0) &&
1499                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1500                         return (false);
1501         }
1502         return (true);
1503 }
1504
1505 static bool
1506 vm_object_collapse_scan(vm_object_t object, int op)
1507 {
1508         vm_object_t backing_object;
1509         vm_page_t next, p, pp;
1510         vm_pindex_t backing_offset_index, new_pindex;
1511
1512         VM_OBJECT_ASSERT_WLOCKED(object);
1513         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1514
1515         backing_object = object->backing_object;
1516         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1517
1518         /*
1519          * Initial conditions
1520          */
1521         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1522                 vm_object_set_flag(backing_object, OBJ_DEAD);
1523
1524         /*
1525          * Our scan
1526          */
1527         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1528                 next = TAILQ_NEXT(p, listq);
1529                 new_pindex = p->pindex - backing_offset_index;
1530
1531                 /*
1532                  * Check for busy page
1533                  */
1534                 if (vm_page_busied(p)) {
1535                         next = vm_object_collapse_scan_wait(object, p, next, op);
1536                         continue;
1537                 }
1538
1539                 KASSERT(p->object == backing_object,
1540                     ("vm_object_collapse_scan: object mismatch"));
1541
1542                 if (p->pindex < backing_offset_index ||
1543                     new_pindex >= object->size) {
1544                         if (backing_object->type == OBJT_SWAP)
1545                                 swap_pager_freespace(backing_object, p->pindex,
1546                                     1);
1547
1548                         /*
1549                          * Page is out of the parent object's range, we can
1550                          * simply destroy it.
1551                          */
1552                         vm_page_lock(p);
1553                         KASSERT(!pmap_page_is_mapped(p),
1554                             ("freeing mapped page %p", p));
1555                         if (p->wire_count == 0)
1556                                 vm_page_free(p);
1557                         else
1558                                 vm_page_remove(p);
1559                         vm_page_unlock(p);
1560                         continue;
1561                 }
1562
1563                 pp = vm_page_lookup(object, new_pindex);
1564                 if (pp != NULL && vm_page_busied(pp)) {
1565                         /*
1566                          * The page in the parent is busy and possibly not
1567                          * (yet) valid.  Until its state is finalized by the
1568                          * busy bit owner, we can't tell whether it shadows the
1569                          * original page.  Therefore, we must either skip it
1570                          * and the original (backing_object) page or wait for
1571                          * its state to be finalized.
1572                          *
1573                          * This is due to a race with vm_fault() where we must
1574                          * unbusy the original (backing_obj) page before we can
1575                          * (re)lock the parent.  Hence we can get here.
1576                          */
1577                         next = vm_object_collapse_scan_wait(object, pp, next,
1578                             op);
1579                         continue;
1580                 }
1581
1582                 KASSERT(pp == NULL || pp->valid != 0,
1583                     ("unbusy invalid page %p", pp));
1584
1585                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1586                         NULL)) {
1587                         /*
1588                          * The page already exists in the parent OR swap exists
1589                          * for this location in the parent.  Leave the parent's
1590                          * page alone.  Destroy the original page from the
1591                          * backing object.
1592                          */
1593                         if (backing_object->type == OBJT_SWAP)
1594                                 swap_pager_freespace(backing_object, p->pindex,
1595                                     1);
1596                         vm_page_lock(p);
1597                         KASSERT(!pmap_page_is_mapped(p),
1598                             ("freeing mapped page %p", p));
1599                         if (p->wire_count == 0)
1600                                 vm_page_free(p);
1601                         else
1602                                 vm_page_remove(p);
1603                         vm_page_unlock(p);
1604                         continue;
1605                 }
1606
1607                 /*
1608                  * Page does not exist in parent, rename the page from the
1609                  * backing object to the main object.
1610                  *
1611                  * If the page was mapped to a process, it can remain mapped
1612                  * through the rename.  vm_page_rename() will handle dirty and
1613                  * cache.
1614                  */
1615                 if (vm_page_rename(p, object, new_pindex)) {
1616                         next = vm_object_collapse_scan_wait(object, NULL, next,
1617                             op);
1618                         continue;
1619                 }
1620
1621                 /* Use the old pindex to free the right page. */
1622                 if (backing_object->type == OBJT_SWAP)
1623                         swap_pager_freespace(backing_object,
1624                             new_pindex + backing_offset_index, 1);
1625
1626 #if VM_NRESERVLEVEL > 0
1627                 /*
1628                  * Rename the reservation.
1629                  */
1630                 vm_reserv_rename(p, object, backing_object,
1631                     backing_offset_index);
1632 #endif
1633         }
1634         return (true);
1635 }
1636
1637
1638 /*
1639  * this version of collapse allows the operation to occur earlier and
1640  * when paging_in_progress is true for an object...  This is not a complete
1641  * operation, but should plug 99.9% of the rest of the leaks.
1642  */
1643 static void
1644 vm_object_qcollapse(vm_object_t object)
1645 {
1646         vm_object_t backing_object = object->backing_object;
1647
1648         VM_OBJECT_ASSERT_WLOCKED(object);
1649         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1650
1651         if (backing_object->ref_count != 1)
1652                 return;
1653
1654         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1655 }
1656
1657 /*
1658  *      vm_object_collapse:
1659  *
1660  *      Collapse an object with the object backing it.
1661  *      Pages in the backing object are moved into the
1662  *      parent, and the backing object is deallocated.
1663  */
1664 void
1665 vm_object_collapse(vm_object_t object)
1666 {
1667         VM_OBJECT_ASSERT_WLOCKED(object);
1668         
1669         while (TRUE) {
1670                 vm_object_t backing_object;
1671
1672                 /*
1673                  * Verify that the conditions are right for collapse:
1674                  *
1675                  * The object exists and the backing object exists.
1676                  */
1677                 if ((backing_object = object->backing_object) == NULL)
1678                         break;
1679
1680                 /*
1681                  * we check the backing object first, because it is most likely
1682                  * not collapsable.
1683                  */
1684                 VM_OBJECT_WLOCK(backing_object);
1685                 if (backing_object->handle != NULL ||
1686                     (backing_object->type != OBJT_DEFAULT &&
1687                      backing_object->type != OBJT_SWAP) ||
1688                     (backing_object->flags & OBJ_DEAD) ||
1689                     object->handle != NULL ||
1690                     (object->type != OBJT_DEFAULT &&
1691                      object->type != OBJT_SWAP) ||
1692                     (object->flags & OBJ_DEAD)) {
1693                         VM_OBJECT_WUNLOCK(backing_object);
1694                         break;
1695                 }
1696
1697                 if (
1698                     object->paging_in_progress != 0 ||
1699                     backing_object->paging_in_progress != 0
1700                 ) {
1701                         vm_object_qcollapse(object);
1702                         VM_OBJECT_WUNLOCK(backing_object);
1703                         break;
1704                 }
1705                 /*
1706                  * We know that we can either collapse the backing object (if
1707                  * the parent is the only reference to it) or (perhaps) have
1708                  * the parent bypass the object if the parent happens to shadow
1709                  * all the resident pages in the entire backing object.
1710                  *
1711                  * This is ignoring pager-backed pages such as swap pages.
1712                  * vm_object_collapse_scan fails the shadowing test in this
1713                  * case.
1714                  */
1715                 if (backing_object->ref_count == 1) {
1716                         /*
1717                          * If there is exactly one reference to the backing
1718                          * object, we can collapse it into the parent.
1719                          */
1720                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1721
1722 #if VM_NRESERVLEVEL > 0
1723                         /*
1724                          * Break any reservations from backing_object.
1725                          */
1726                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1727                                 vm_reserv_break_all(backing_object);
1728 #endif
1729
1730                         /*
1731                          * Move the pager from backing_object to object.
1732                          */
1733                         if (backing_object->type == OBJT_SWAP) {
1734                                 /*
1735                                  * swap_pager_copy() can sleep, in which case
1736                                  * the backing_object's and object's locks are
1737                                  * released and reacquired.
1738                                  * Since swap_pager_copy() is being asked to
1739                                  * destroy the source, it will change the
1740                                  * backing_object's type to OBJT_DEFAULT.
1741                                  */
1742                                 swap_pager_copy(
1743                                     backing_object,
1744                                     object,
1745                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1746
1747                                 /*
1748                                  * Free any cached pages from backing_object.
1749                                  */
1750                                 if (__predict_false(
1751                                     !vm_object_cache_is_empty(backing_object)))
1752                                         vm_page_cache_free(backing_object, 0, 0);
1753                         }
1754                         /*
1755                          * Object now shadows whatever backing_object did.
1756                          * Note that the reference to 
1757                          * backing_object->backing_object moves from within 
1758                          * backing_object to within object.
1759                          */
1760                         LIST_REMOVE(object, shadow_list);
1761                         backing_object->shadow_count--;
1762                         if (backing_object->backing_object) {
1763                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1764                                 LIST_REMOVE(backing_object, shadow_list);
1765                                 LIST_INSERT_HEAD(
1766                                     &backing_object->backing_object->shadow_head,
1767                                     object, shadow_list);
1768                                 /*
1769                                  * The shadow_count has not changed.
1770                                  */
1771                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1772                         }
1773                         object->backing_object = backing_object->backing_object;
1774                         object->backing_object_offset +=
1775                             backing_object->backing_object_offset;
1776
1777                         /*
1778                          * Discard backing_object.
1779                          *
1780                          * Since the backing object has no pages, no pager left,
1781                          * and no object references within it, all that is
1782                          * necessary is to dispose of it.
1783                          */
1784                         KASSERT(backing_object->ref_count == 1, (
1785 "backing_object %p was somehow re-referenced during collapse!",
1786                             backing_object));
1787                         backing_object->type = OBJT_DEAD;
1788                         backing_object->ref_count = 0;
1789                         VM_OBJECT_WUNLOCK(backing_object);
1790                         vm_object_destroy(backing_object);
1791
1792                         object_collapses++;
1793                 } else {
1794                         vm_object_t new_backing_object;
1795
1796                         /*
1797                          * If we do not entirely shadow the backing object,
1798                          * there is nothing we can do so we give up.
1799                          */
1800                         if (object->resident_page_count != object->size &&
1801                             !vm_object_scan_all_shadowed(object)) {
1802                                 VM_OBJECT_WUNLOCK(backing_object);
1803                                 break;
1804                         }
1805
1806                         /*
1807                          * Make the parent shadow the next object in the
1808                          * chain.  Deallocating backing_object will not remove
1809                          * it, since its reference count is at least 2.
1810                          */
1811                         LIST_REMOVE(object, shadow_list);
1812                         backing_object->shadow_count--;
1813
1814                         new_backing_object = backing_object->backing_object;
1815                         if ((object->backing_object = new_backing_object) != NULL) {
1816                                 VM_OBJECT_WLOCK(new_backing_object);
1817                                 LIST_INSERT_HEAD(
1818                                     &new_backing_object->shadow_head,
1819                                     object,
1820                                     shadow_list
1821                                 );
1822                                 new_backing_object->shadow_count++;
1823                                 vm_object_reference_locked(new_backing_object);
1824                                 VM_OBJECT_WUNLOCK(new_backing_object);
1825                                 object->backing_object_offset +=
1826                                         backing_object->backing_object_offset;
1827                         }
1828
1829                         /*
1830                          * Drop the reference count on backing_object. Since
1831                          * its ref_count was at least 2, it will not vanish.
1832                          */
1833                         backing_object->ref_count--;
1834                         VM_OBJECT_WUNLOCK(backing_object);
1835                         object_bypasses++;
1836                 }
1837
1838                 /*
1839                  * Try again with this object's new backing object.
1840                  */
1841         }
1842 }
1843
1844 /*
1845  *      vm_object_page_remove:
1846  *
1847  *      For the given object, either frees or invalidates each of the
1848  *      specified pages.  In general, a page is freed.  However, if a page is
1849  *      wired for any reason other than the existence of a managed, wired
1850  *      mapping, then it may be invalidated but not removed from the object.
1851  *      Pages are specified by the given range ["start", "end") and the option
1852  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1853  *      extends from "start" to the end of the object.  If the option
1854  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1855  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1856  *      specified, then the pages within the specified range must have no
1857  *      mappings.  Otherwise, if this option is not specified, any mappings to
1858  *      the specified pages are removed before the pages are freed or
1859  *      invalidated.
1860  *
1861  *      In general, this operation should only be performed on objects that
1862  *      contain managed pages.  There are, however, two exceptions.  First, it
1863  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1864  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1865  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1866  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1867  *
1868  *      The object must be locked.
1869  */
1870 void
1871 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1872     int options)
1873 {
1874         vm_page_t p, next;
1875
1876         VM_OBJECT_ASSERT_WLOCKED(object);
1877         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1878             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1879             ("vm_object_page_remove: illegal options for object %p", object));
1880         if (object->resident_page_count == 0)
1881                 goto skipmemq;
1882         vm_object_pip_add(object, 1);
1883 again:
1884         p = vm_page_find_least(object, start);
1885
1886         /*
1887          * Here, the variable "p" is either (1) the page with the least pindex
1888          * greater than or equal to the parameter "start" or (2) NULL. 
1889          */
1890         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1891                 next = TAILQ_NEXT(p, listq);
1892
1893                 /*
1894                  * If the page is wired for any reason besides the existence
1895                  * of managed, wired mappings, then it cannot be freed.  For
1896                  * example, fictitious pages, which represent device memory,
1897                  * are inherently wired and cannot be freed.  They can,
1898                  * however, be invalidated if the option OBJPR_CLEANONLY is
1899                  * not specified.
1900                  */
1901                 vm_page_lock(p);
1902                 if (vm_page_xbusied(p)) {
1903                         VM_OBJECT_WUNLOCK(object);
1904                         vm_page_busy_sleep(p, "vmopax");
1905                         VM_OBJECT_WLOCK(object);
1906                         goto again;
1907                 }
1908                 if (p->wire_count != 0) {
1909                         if ((options & OBJPR_NOTMAPPED) == 0)
1910                                 pmap_remove_all(p);
1911                         if ((options & OBJPR_CLEANONLY) == 0) {
1912                                 p->valid = 0;
1913                                 vm_page_undirty(p);
1914                         }
1915                         goto next;
1916                 }
1917                 if (vm_page_busied(p)) {
1918                         VM_OBJECT_WUNLOCK(object);
1919                         vm_page_busy_sleep(p, "vmopar");
1920                         VM_OBJECT_WLOCK(object);
1921                         goto again;
1922                 }
1923                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1924                     ("vm_object_page_remove: page %p is fictitious", p));
1925                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1926                         if ((options & OBJPR_NOTMAPPED) == 0)
1927                                 pmap_remove_write(p);
1928                         if (p->dirty)
1929                                 goto next;
1930                 }
1931                 if ((options & OBJPR_NOTMAPPED) == 0)
1932                         pmap_remove_all(p);
1933                 vm_page_free(p);
1934 next:
1935                 vm_page_unlock(p);
1936         }
1937         vm_object_pip_wakeup(object);
1938 skipmemq:
1939         if (__predict_false(!vm_object_cache_is_empty(object)))
1940                 vm_page_cache_free(object, start, end);
1941 }
1942
1943 /*
1944  *      vm_object_page_noreuse:
1945  *
1946  *      For the given object, attempt to move the specified pages to
1947  *      the head of the inactive queue.  This bypasses regular LRU
1948  *      operation and allows the pages to be reused quickly under memory
1949  *      pressure.  If a page is wired for any reason, then it will not
1950  *      be queued.  Pages are specified by the range ["start", "end").
1951  *      As a special case, if "end" is zero, then the range extends from
1952  *      "start" to the end of the object.
1953  *
1954  *      This operation should only be performed on objects that
1955  *      contain non-fictitious, managed pages.
1956  *
1957  *      The object must be locked.
1958  */
1959 void
1960 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1961 {
1962         struct mtx *mtx, *new_mtx;
1963         vm_page_t p, next;
1964
1965         VM_OBJECT_ASSERT_WLOCKED(object);
1966         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1967             ("vm_object_page_noreuse: illegal object %p", object));
1968         if (object->resident_page_count == 0)
1969                 return;
1970         p = vm_page_find_least(object, start);
1971
1972         /*
1973          * Here, the variable "p" is either (1) the page with the least pindex
1974          * greater than or equal to the parameter "start" or (2) NULL. 
1975          */
1976         mtx = NULL;
1977         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1978                 next = TAILQ_NEXT(p, listq);
1979
1980                 /*
1981                  * Avoid releasing and reacquiring the same page lock.
1982                  */
1983                 new_mtx = vm_page_lockptr(p);
1984                 if (mtx != new_mtx) {
1985                         if (mtx != NULL)
1986                                 mtx_unlock(mtx);
1987                         mtx = new_mtx;
1988                         mtx_lock(mtx);
1989                 }
1990                 vm_page_deactivate_noreuse(p);
1991         }
1992         if (mtx != NULL)
1993                 mtx_unlock(mtx);
1994 }
1995
1996 /*
1997  *      Populate the specified range of the object with valid pages.  Returns
1998  *      TRUE if the range is successfully populated and FALSE otherwise.
1999  *
2000  *      Note: This function should be optimized to pass a larger array of
2001  *      pages to vm_pager_get_pages() before it is applied to a non-
2002  *      OBJT_DEVICE object.
2003  *
2004  *      The object must be locked.
2005  */
2006 boolean_t
2007 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2008 {
2009         vm_page_t m;
2010         vm_pindex_t pindex;
2011         int rv;
2012
2013         VM_OBJECT_ASSERT_WLOCKED(object);
2014         for (pindex = start; pindex < end; pindex++) {
2015                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2016                 if (m->valid != VM_PAGE_BITS_ALL) {
2017                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2018                         if (rv != VM_PAGER_OK) {
2019                                 vm_page_lock(m);
2020                                 vm_page_free(m);
2021                                 vm_page_unlock(m);
2022                                 break;
2023                         }
2024                 }
2025                 /*
2026                  * Keep "m" busy because a subsequent iteration may unlock
2027                  * the object.
2028                  */
2029         }
2030         if (pindex > start) {
2031                 m = vm_page_lookup(object, start);
2032                 while (m != NULL && m->pindex < pindex) {
2033                         vm_page_xunbusy(m);
2034                         m = TAILQ_NEXT(m, listq);
2035                 }
2036         }
2037         return (pindex == end);
2038 }
2039
2040 /*
2041  *      Routine:        vm_object_coalesce
2042  *      Function:       Coalesces two objects backing up adjoining
2043  *                      regions of memory into a single object.
2044  *
2045  *      returns TRUE if objects were combined.
2046  *
2047  *      NOTE:   Only works at the moment if the second object is NULL -
2048  *              if it's not, which object do we lock first?
2049  *
2050  *      Parameters:
2051  *              prev_object     First object to coalesce
2052  *              prev_offset     Offset into prev_object
2053  *              prev_size       Size of reference to prev_object
2054  *              next_size       Size of reference to the second object
2055  *              reserved        Indicator that extension region has
2056  *                              swap accounted for
2057  *
2058  *      Conditions:
2059  *      The object must *not* be locked.
2060  */
2061 boolean_t
2062 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2063     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2064 {
2065         vm_pindex_t next_pindex;
2066
2067         if (prev_object == NULL)
2068                 return (TRUE);
2069         VM_OBJECT_WLOCK(prev_object);
2070         if ((prev_object->type != OBJT_DEFAULT &&
2071             prev_object->type != OBJT_SWAP) ||
2072             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2073                 VM_OBJECT_WUNLOCK(prev_object);
2074                 return (FALSE);
2075         }
2076
2077         /*
2078          * Try to collapse the object first
2079          */
2080         vm_object_collapse(prev_object);
2081
2082         /*
2083          * Can't coalesce if: . more than one reference . paged out . shadows
2084          * another object . has a copy elsewhere (any of which mean that the
2085          * pages not mapped to prev_entry may be in use anyway)
2086          */
2087         if (prev_object->backing_object != NULL) {
2088                 VM_OBJECT_WUNLOCK(prev_object);
2089                 return (FALSE);
2090         }
2091
2092         prev_size >>= PAGE_SHIFT;
2093         next_size >>= PAGE_SHIFT;
2094         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2095
2096         if ((prev_object->ref_count > 1) &&
2097             (prev_object->size != next_pindex)) {
2098                 VM_OBJECT_WUNLOCK(prev_object);
2099                 return (FALSE);
2100         }
2101
2102         /*
2103          * Account for the charge.
2104          */
2105         if (prev_object->cred != NULL) {
2106
2107                 /*
2108                  * If prev_object was charged, then this mapping,
2109                  * althought not charged now, may become writable
2110                  * later. Non-NULL cred in the object would prevent
2111                  * swap reservation during enabling of the write
2112                  * access, so reserve swap now. Failed reservation
2113                  * cause allocation of the separate object for the map
2114                  * entry, and swap reservation for this entry is
2115                  * managed in appropriate time.
2116                  */
2117                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2118                     prev_object->cred)) {
2119                         return (FALSE);
2120                 }
2121                 prev_object->charge += ptoa(next_size);
2122         }
2123
2124         /*
2125          * Remove any pages that may still be in the object from a previous
2126          * deallocation.
2127          */
2128         if (next_pindex < prev_object->size) {
2129                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2130                     next_size, 0);
2131                 if (prev_object->type == OBJT_SWAP)
2132                         swap_pager_freespace(prev_object,
2133                                              next_pindex, next_size);
2134 #if 0
2135                 if (prev_object->cred != NULL) {
2136                         KASSERT(prev_object->charge >=
2137                             ptoa(prev_object->size - next_pindex),
2138                             ("object %p overcharged 1 %jx %jx", prev_object,
2139                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2140                         prev_object->charge -= ptoa(prev_object->size -
2141                             next_pindex);
2142                 }
2143 #endif
2144         }
2145
2146         /*
2147          * Extend the object if necessary.
2148          */
2149         if (next_pindex + next_size > prev_object->size)
2150                 prev_object->size = next_pindex + next_size;
2151
2152         VM_OBJECT_WUNLOCK(prev_object);
2153         return (TRUE);
2154 }
2155
2156 void
2157 vm_object_set_writeable_dirty(vm_object_t object)
2158 {
2159
2160         VM_OBJECT_ASSERT_WLOCKED(object);
2161         if (object->type != OBJT_VNODE) {
2162                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2163                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2164                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2165                 }
2166                 return;
2167         }
2168         object->generation++;
2169         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2170                 return;
2171         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2172 }
2173
2174 /*
2175  *      vm_object_unwire:
2176  *
2177  *      For each page offset within the specified range of the given object,
2178  *      find the highest-level page in the shadow chain and unwire it.  A page
2179  *      must exist at every page offset, and the highest-level page must be
2180  *      wired.
2181  */
2182 void
2183 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2184     uint8_t queue)
2185 {
2186         vm_object_t tobject;
2187         vm_page_t m, tm;
2188         vm_pindex_t end_pindex, pindex, tpindex;
2189         int depth, locked_depth;
2190
2191         KASSERT((offset & PAGE_MASK) == 0,
2192             ("vm_object_unwire: offset is not page aligned"));
2193         KASSERT((length & PAGE_MASK) == 0,
2194             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2195         /* The wired count of a fictitious page never changes. */
2196         if ((object->flags & OBJ_FICTITIOUS) != 0)
2197                 return;
2198         pindex = OFF_TO_IDX(offset);
2199         end_pindex = pindex + atop(length);
2200         locked_depth = 1;
2201         VM_OBJECT_RLOCK(object);
2202         m = vm_page_find_least(object, pindex);
2203         while (pindex < end_pindex) {
2204                 if (m == NULL || pindex < m->pindex) {
2205                         /*
2206                          * The first object in the shadow chain doesn't
2207                          * contain a page at the current index.  Therefore,
2208                          * the page must exist in a backing object.
2209                          */
2210                         tobject = object;
2211                         tpindex = pindex;
2212                         depth = 0;
2213                         do {
2214                                 tpindex +=
2215                                     OFF_TO_IDX(tobject->backing_object_offset);
2216                                 tobject = tobject->backing_object;
2217                                 KASSERT(tobject != NULL,
2218                                     ("vm_object_unwire: missing page"));
2219                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2220                                         goto next_page;
2221                                 depth++;
2222                                 if (depth == locked_depth) {
2223                                         locked_depth++;
2224                                         VM_OBJECT_RLOCK(tobject);
2225                                 }
2226                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2227                             NULL);
2228                 } else {
2229                         tm = m;
2230                         m = TAILQ_NEXT(m, listq);
2231                 }
2232                 vm_page_lock(tm);
2233                 vm_page_unwire(tm, queue);
2234                 vm_page_unlock(tm);
2235 next_page:
2236                 pindex++;
2237         }
2238         /* Release the accumulated object locks. */
2239         for (depth = 0; depth < locked_depth; depth++) {
2240                 tobject = object->backing_object;
2241                 VM_OBJECT_RUNLOCK(object);
2242                 object = tobject;
2243         }
2244 }
2245
2246 struct vnode *
2247 vm_object_vnode(vm_object_t object)
2248 {
2249
2250         VM_OBJECT_ASSERT_LOCKED(object);
2251         if (object->type == OBJT_VNODE)
2252                 return (object->handle);
2253         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2254                 return (object->un_pager.swp.swp_tmpfs);
2255         return (NULL);
2256 }
2257
2258 static int
2259 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2260 {
2261         struct kinfo_vmobject kvo;
2262         char *fullpath, *freepath;
2263         struct vnode *vp;
2264         struct vattr va;
2265         vm_object_t obj;
2266         vm_page_t m;
2267         int count, error;
2268
2269         if (req->oldptr == NULL) {
2270                 /*
2271                  * If an old buffer has not been provided, generate an
2272                  * estimate of the space needed for a subsequent call.
2273                  */
2274                 mtx_lock(&vm_object_list_mtx);
2275                 count = 0;
2276                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2277                         if (obj->type == OBJT_DEAD)
2278                                 continue;
2279                         count++;
2280                 }
2281                 mtx_unlock(&vm_object_list_mtx);
2282                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2283                     count * 11 / 10));
2284         }
2285
2286         error = 0;
2287
2288         /*
2289          * VM objects are type stable and are never removed from the
2290          * list once added.  This allows us to safely read obj->object_list
2291          * after reacquiring the VM object lock.
2292          */
2293         mtx_lock(&vm_object_list_mtx);
2294         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2295                 if (obj->type == OBJT_DEAD)
2296                         continue;
2297                 VM_OBJECT_RLOCK(obj);
2298                 if (obj->type == OBJT_DEAD) {
2299                         VM_OBJECT_RUNLOCK(obj);
2300                         continue;
2301                 }
2302                 mtx_unlock(&vm_object_list_mtx);
2303                 kvo.kvo_size = ptoa(obj->size);
2304                 kvo.kvo_resident = obj->resident_page_count;
2305                 kvo.kvo_ref_count = obj->ref_count;
2306                 kvo.kvo_shadow_count = obj->shadow_count;
2307                 kvo.kvo_memattr = obj->memattr;
2308                 kvo.kvo_active = 0;
2309                 kvo.kvo_inactive = 0;
2310                 TAILQ_FOREACH(m, &obj->memq, listq) {
2311                         /*
2312                          * A page may belong to the object but be
2313                          * dequeued and set to PQ_NONE while the
2314                          * object lock is not held.  This makes the
2315                          * reads of m->queue below racy, and we do not
2316                          * count pages set to PQ_NONE.  However, this
2317                          * sysctl is only meant to give an
2318                          * approximation of the system anyway.
2319                          */
2320                         if (m->queue == PQ_ACTIVE)
2321                                 kvo.kvo_active++;
2322                         else if (m->queue == PQ_INACTIVE)
2323                                 kvo.kvo_inactive++;
2324                 }
2325
2326                 kvo.kvo_vn_fileid = 0;
2327                 kvo.kvo_vn_fsid = 0;
2328                 freepath = NULL;
2329                 fullpath = "";
2330                 vp = NULL;
2331                 switch (obj->type) {
2332                 case OBJT_DEFAULT:
2333                         kvo.kvo_type = KVME_TYPE_DEFAULT;
2334                         break;
2335                 case OBJT_VNODE:
2336                         kvo.kvo_type = KVME_TYPE_VNODE;
2337                         vp = obj->handle;
2338                         vref(vp);
2339                         break;
2340                 case OBJT_SWAP:
2341                         kvo.kvo_type = KVME_TYPE_SWAP;
2342                         break;
2343                 case OBJT_DEVICE:
2344                         kvo.kvo_type = KVME_TYPE_DEVICE;
2345                         break;
2346                 case OBJT_PHYS:
2347                         kvo.kvo_type = KVME_TYPE_PHYS;
2348                         break;
2349                 case OBJT_DEAD:
2350                         kvo.kvo_type = KVME_TYPE_DEAD;
2351                         break;
2352                 case OBJT_SG:
2353                         kvo.kvo_type = KVME_TYPE_SG;
2354                         break;
2355                 case OBJT_MGTDEVICE:
2356                         kvo.kvo_type = KVME_TYPE_MGTDEVICE;
2357                         break;
2358                 default:
2359                         kvo.kvo_type = KVME_TYPE_UNKNOWN;
2360                         break;
2361                 }
2362                 VM_OBJECT_RUNLOCK(obj);
2363                 if (vp != NULL) {
2364                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2365                         vn_lock(vp, LK_SHARED | LK_RETRY);
2366                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2367                                 kvo.kvo_vn_fileid = va.va_fileid;
2368                                 kvo.kvo_vn_fsid = va.va_fsid;
2369                         }
2370                         vput(vp);
2371                 }
2372
2373                 strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
2374                 if (freepath != NULL)
2375                         free(freepath, M_TEMP);
2376
2377                 /* Pack record size down */
2378                 kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
2379                     strlen(kvo.kvo_path) + 1;
2380                 kvo.kvo_structsize = roundup(kvo.kvo_structsize,
2381                     sizeof(uint64_t));
2382                 error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
2383                 mtx_lock(&vm_object_list_mtx);
2384                 if (error)
2385                         break;
2386         }
2387         mtx_unlock(&vm_object_list_mtx);
2388         return (error);
2389 }
2390 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2391     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2392     "List of VM objects");
2393
2394 #include "opt_ddb.h"
2395 #ifdef DDB
2396 #include <sys/kernel.h>
2397
2398 #include <sys/cons.h>
2399
2400 #include <ddb/ddb.h>
2401
2402 static int
2403 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2404 {
2405         vm_map_t tmpm;
2406         vm_map_entry_t tmpe;
2407         vm_object_t obj;
2408         int entcount;
2409
2410         if (map == 0)
2411                 return 0;
2412
2413         if (entry == 0) {
2414                 tmpe = map->header.next;
2415                 entcount = map->nentries;
2416                 while (entcount-- && (tmpe != &map->header)) {
2417                         if (_vm_object_in_map(map, object, tmpe)) {
2418                                 return 1;
2419                         }
2420                         tmpe = tmpe->next;
2421                 }
2422         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2423                 tmpm = entry->object.sub_map;
2424                 tmpe = tmpm->header.next;
2425                 entcount = tmpm->nentries;
2426                 while (entcount-- && tmpe != &tmpm->header) {
2427                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2428                                 return 1;
2429                         }
2430                         tmpe = tmpe->next;
2431                 }
2432         } else if ((obj = entry->object.vm_object) != NULL) {
2433                 for (; obj; obj = obj->backing_object)
2434                         if (obj == object) {
2435                                 return 1;
2436                         }
2437         }
2438         return 0;
2439 }
2440
2441 static int
2442 vm_object_in_map(vm_object_t object)
2443 {
2444         struct proc *p;
2445
2446         /* sx_slock(&allproc_lock); */
2447         FOREACH_PROC_IN_SYSTEM(p) {
2448                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2449                         continue;
2450                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2451                         /* sx_sunlock(&allproc_lock); */
2452                         return 1;
2453                 }
2454         }
2455         /* sx_sunlock(&allproc_lock); */
2456         if (_vm_object_in_map(kernel_map, object, 0))
2457                 return 1;
2458         return 0;
2459 }
2460
2461 DB_SHOW_COMMAND(vmochk, vm_object_check)
2462 {
2463         vm_object_t object;
2464
2465         /*
2466          * make sure that internal objs are in a map somewhere
2467          * and none have zero ref counts.
2468          */
2469         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2470                 if (object->handle == NULL &&
2471                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2472                         if (object->ref_count == 0) {
2473                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2474                                         (long)object->size);
2475                         }
2476                         if (!vm_object_in_map(object)) {
2477                                 db_printf(
2478                         "vmochk: internal obj is not in a map: "
2479                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2480                                     object->ref_count, (u_long)object->size, 
2481                                     (u_long)object->size,
2482                                     (void *)object->backing_object);
2483                         }
2484                 }
2485         }
2486 }
2487
2488 /*
2489  *      vm_object_print:        [ debug ]
2490  */
2491 DB_SHOW_COMMAND(object, vm_object_print_static)
2492 {
2493         /* XXX convert args. */
2494         vm_object_t object = (vm_object_t)addr;
2495         boolean_t full = have_addr;
2496
2497         vm_page_t p;
2498
2499         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2500 #define count   was_count
2501
2502         int count;
2503
2504         if (object == NULL)
2505                 return;
2506
2507         db_iprintf(
2508             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2509             object, (int)object->type, (uintmax_t)object->size,
2510             object->resident_page_count, object->ref_count, object->flags,
2511             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2512         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2513             object->shadow_count, 
2514             object->backing_object ? object->backing_object->ref_count : 0,
2515             object->backing_object, (uintmax_t)object->backing_object_offset);
2516
2517         if (!full)
2518                 return;
2519
2520         db_indent += 2;
2521         count = 0;
2522         TAILQ_FOREACH(p, &object->memq, listq) {
2523                 if (count == 0)
2524                         db_iprintf("memory:=");
2525                 else if (count == 6) {
2526                         db_printf("\n");
2527                         db_iprintf(" ...");
2528                         count = 0;
2529                 } else
2530                         db_printf(",");
2531                 count++;
2532
2533                 db_printf("(off=0x%jx,page=0x%jx)",
2534                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2535         }
2536         if (count != 0)
2537                 db_printf("\n");
2538         db_indent -= 2;
2539 }
2540
2541 /* XXX. */
2542 #undef count
2543
2544 /* XXX need this non-static entry for calling from vm_map_print. */
2545 void
2546 vm_object_print(
2547         /* db_expr_t */ long addr,
2548         boolean_t have_addr,
2549         /* db_expr_t */ long count,
2550         char *modif)
2551 {
2552         vm_object_print_static(addr, have_addr, count, modif);
2553 }
2554
2555 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2556 {
2557         vm_object_t object;
2558         vm_pindex_t fidx;
2559         vm_paddr_t pa;
2560         vm_page_t m, prev_m;
2561         int rcount, nl, c;
2562
2563         nl = 0;
2564         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2565                 db_printf("new object: %p\n", (void *)object);
2566                 if (nl > 18) {
2567                         c = cngetc();
2568                         if (c != ' ')
2569                                 return;
2570                         nl = 0;
2571                 }
2572                 nl++;
2573                 rcount = 0;
2574                 fidx = 0;
2575                 pa = -1;
2576                 TAILQ_FOREACH(m, &object->memq, listq) {
2577                         if (m->pindex > 128)
2578                                 break;
2579                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2580                             prev_m->pindex + 1 != m->pindex) {
2581                                 if (rcount) {
2582                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2583                                                 (long)fidx, rcount, (long)pa);
2584                                         if (nl > 18) {
2585                                                 c = cngetc();
2586                                                 if (c != ' ')
2587                                                         return;
2588                                                 nl = 0;
2589                                         }
2590                                         nl++;
2591                                         rcount = 0;
2592                                 }
2593                         }                               
2594                         if (rcount &&
2595                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2596                                 ++rcount;
2597                                 continue;
2598                         }
2599                         if (rcount) {
2600                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2601                                         (long)fidx, rcount, (long)pa);
2602                                 if (nl > 18) {
2603                                         c = cngetc();
2604                                         if (c != ' ')
2605                                                 return;
2606                                         nl = 0;
2607                                 }
2608                                 nl++;
2609                         }
2610                         fidx = m->pindex;
2611                         pa = VM_PAGE_TO_PHYS(m);
2612                         rcount = 1;
2613                 }
2614                 if (rcount) {
2615                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2616                                 (long)fidx, rcount, (long)pa);
2617                         if (nl > 18) {
2618                                 c = cngetc();
2619                                 if (c != ' ')
2620                                         return;
2621                                 nl = 0;
2622                         }
2623                         nl++;
2624                 }
2625         }
2626 }
2627 #endif /* DDB */