]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
MFC
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98
99 static int old_msync;
100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
101     "Use old (insecure) msync behavior");
102
103 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
104                     int pagerflags, int flags, boolean_t *clearobjflags,
105                     boolean_t *eio);
106 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
107                     boolean_t *clearobjflags);
108 static void     vm_object_qcollapse(vm_object_t object);
109 static void     vm_object_vndeallocate(vm_object_t object);
110
111 /*
112  *      Virtual memory objects maintain the actual data
113  *      associated with allocated virtual memory.  A given
114  *      page of memory exists within exactly one object.
115  *
116  *      An object is only deallocated when all "references"
117  *      are given up.  Only one "reference" to a given
118  *      region of an object should be writeable.
119  *
120  *      Associated with each object is a list of all resident
121  *      memory pages belonging to that object; this list is
122  *      maintained by the "vm_page" module, and locked by the object's
123  *      lock.
124  *
125  *      Each object also records a "pager" routine which is
126  *      used to retrieve (and store) pages to the proper backing
127  *      storage.  In addition, objects may be backed by other
128  *      objects from which they were virtual-copied.
129  *
130  *      The only items within the object structure which are
131  *      modified after time of creation are:
132  *              reference count         locked by object's lock
133  *              pager routine           locked by object's lock
134  *
135  */
136
137 struct object_q vm_object_list;
138 struct mtx vm_object_list_mtx;  /* lock for object list and count */
139
140 struct vm_object kernel_object_store;
141 struct vm_object kmem_object_store;
142
143 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
144     "VM object stats");
145
146 static long object_collapses;
147 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
148     &object_collapses, 0, "VM object collapses");
149
150 static long object_bypasses;
151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
152     &object_bypasses, 0, "VM object bypasses");
153
154 static uma_zone_t obj_zone;
155
156 static int vm_object_zinit(void *mem, int size, int flags);
157
158 #ifdef INVARIANTS
159 static void vm_object_zdtor(void *mem, int size, void *arg);
160
161 static void
162 vm_object_zdtor(void *mem, int size, void *arg)
163 {
164         vm_object_t object;
165
166         object = (vm_object_t)mem;
167         KASSERT(object->resident_page_count == 0,
168             ("object %p resident_page_count = %d",
169             object, object->resident_page_count));
170         KASSERT(TAILQ_EMPTY(&object->memq),
171             ("object %p has resident pages",
172             object));
173 #if VM_NRESERVLEVEL > 0
174         KASSERT(LIST_EMPTY(&object->rvq),
175             ("object %p has reservations",
176             object));
177 #endif
178         KASSERT(object->cached_page_count == 0,
179             ("object %p has cached pages",
180             object));
181         KASSERT(object->paging_in_progress == 0,
182             ("object %p paging_in_progress = %d",
183             object, object->paging_in_progress));
184         KASSERT(object->shadow_count == 0,
185             ("object %p shadow_count = %d",
186             object, object->shadow_count));
187 }
188 #endif
189
190 static int
191 vm_object_zinit(void *mem, int size, int flags)
192 {
193         vm_object_t object;
194
195         object = (vm_object_t)mem;
196         bzero(&object->mtx, sizeof(object->mtx));
197         mtx_init(&object->mtx, "vm object", NULL, MTX_DEF | MTX_DUPOK);
198
199         /* These are true for any object that has been freed */
200         object->paging_in_progress = 0;
201         object->resident_page_count = 0;
202         object->shadow_count = 0;
203         return (0);
204 }
205
206 static void
207 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
208 {
209
210         TAILQ_INIT(&object->memq);
211         LIST_INIT(&object->shadow_head);
212
213         object->rtree.rt_root = 0;
214         object->type = type;
215         switch (type) {
216         case OBJT_DEAD:
217                 panic("_vm_object_allocate: can't create OBJT_DEAD");
218         case OBJT_DEFAULT:
219         case OBJT_SWAP:
220                 object->flags = OBJ_ONEMAPPING;
221                 break;
222         case OBJT_DEVICE:
223         case OBJT_SG:
224                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
225                 break;
226         case OBJT_MGTDEVICE:
227                 object->flags = OBJ_FICTITIOUS;
228                 break;
229         case OBJT_PHYS:
230                 object->flags = OBJ_UNMANAGED;
231                 break;
232         case OBJT_VNODE:
233                 object->flags = 0;
234                 break;
235         default:
236                 panic("_vm_object_allocate: type %d is undefined", type);
237         }
238         object->size = size;
239         object->generation = 1;
240         object->ref_count = 1;
241         object->memattr = VM_MEMATTR_DEFAULT;
242         object->cred = NULL;
243         object->charge = 0;
244         object->pg_color = 0;
245         object->handle = NULL;
246         object->backing_object = NULL;
247         object->backing_object_offset = (vm_ooffset_t) 0;
248 #if VM_NRESERVLEVEL > 0
249         LIST_INIT(&object->rvq);
250 #endif
251
252         mtx_lock(&vm_object_list_mtx);
253         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
254         mtx_unlock(&vm_object_list_mtx);
255 }
256
257 /*
258  *      vm_object_init:
259  *
260  *      Initialize the VM objects module.
261  */
262 void
263 vm_object_init(void)
264 {
265         TAILQ_INIT(&vm_object_list);
266         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
267         
268         mtx_init(&kernel_object->mtx, "vm object", "kernel object", MTX_DEF);
269         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
270             kernel_object);
271 #if VM_NRESERVLEVEL > 0
272         kernel_object->flags |= OBJ_COLORED;
273         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
274 #endif
275
276         mtx_init(&kmem_object->mtx, "vm object", "kmem object", MTX_DEF);
277         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
278             kmem_object);
279 #if VM_NRESERVLEVEL > 0
280         kmem_object->flags |= OBJ_COLORED;
281         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
282 #endif
283
284         /*
285          * The lock portion of struct vm_object must be type stable due
286          * to vm_pageout_fallback_object_lock locking a vm object
287          * without holding any references to it.
288          */
289         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
290 #ifdef INVARIANTS
291             vm_object_zdtor,
292 #else
293             NULL,
294 #endif
295             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
296 }
297
298 void
299 vm_object_clear_flag(vm_object_t object, u_short bits)
300 {
301
302         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
303         object->flags &= ~bits;
304 }
305
306 /*
307  *      Sets the default memory attribute for the specified object.  Pages
308  *      that are allocated to this object are by default assigned this memory
309  *      attribute.
310  *
311  *      Presently, this function must be called before any pages are allocated
312  *      to the object.  In the future, this requirement may be relaxed for
313  *      "default" and "swap" objects.
314  */
315 int
316 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
317 {
318
319         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
320         switch (object->type) {
321         case OBJT_DEFAULT:
322         case OBJT_DEVICE:
323         case OBJT_MGTDEVICE:
324         case OBJT_PHYS:
325         case OBJT_SG:
326         case OBJT_SWAP:
327         case OBJT_VNODE:
328                 if (object->resident_page_count == 0)
329                         return (KERN_FAILURE);
330                 break;
331         case OBJT_DEAD:
332                 return (KERN_INVALID_ARGUMENT);
333         default:
334                 panic("vm_object_set_memattr: object %p is of undefined type",
335                     object);
336         }
337         object->memattr = memattr;
338         return (KERN_SUCCESS);
339 }
340
341 void
342 vm_object_pip_add(vm_object_t object, short i)
343 {
344
345         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
346         object->paging_in_progress += i;
347 }
348
349 void
350 vm_object_pip_subtract(vm_object_t object, short i)
351 {
352
353         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
354         object->paging_in_progress -= i;
355 }
356
357 void
358 vm_object_pip_wakeup(vm_object_t object)
359 {
360
361         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
362         object->paging_in_progress--;
363         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
364                 vm_object_clear_flag(object, OBJ_PIPWNT);
365                 wakeup(object);
366         }
367 }
368
369 void
370 vm_object_pip_wakeupn(vm_object_t object, short i)
371 {
372
373         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
374         if (i)
375                 object->paging_in_progress -= i;
376         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
377                 vm_object_clear_flag(object, OBJ_PIPWNT);
378                 wakeup(object);
379         }
380 }
381
382 void
383 vm_object_pip_wait(vm_object_t object, char *waitid)
384 {
385
386         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
387         while (object->paging_in_progress) {
388                 object->flags |= OBJ_PIPWNT;
389                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
390         }
391 }
392
393 /*
394  *      vm_object_allocate:
395  *
396  *      Returns a new object with the given size.
397  */
398 vm_object_t
399 vm_object_allocate(objtype_t type, vm_pindex_t size)
400 {
401         vm_object_t object;
402
403         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
404         _vm_object_allocate(type, size, object);
405         return (object);
406 }
407
408
409 /*
410  *      vm_object_reference:
411  *
412  *      Gets another reference to the given object.  Note: OBJ_DEAD
413  *      objects can be referenced during final cleaning.
414  */
415 void
416 vm_object_reference(vm_object_t object)
417 {
418         if (object == NULL)
419                 return;
420         VM_OBJECT_LOCK(object);
421         vm_object_reference_locked(object);
422         VM_OBJECT_UNLOCK(object);
423 }
424
425 /*
426  *      vm_object_reference_locked:
427  *
428  *      Gets another reference to the given object.
429  *
430  *      The object must be locked.
431  */
432 void
433 vm_object_reference_locked(vm_object_t object)
434 {
435         struct vnode *vp;
436
437         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
438         object->ref_count++;
439         if (object->type == OBJT_VNODE) {
440                 vp = object->handle;
441                 vref(vp);
442         }
443 }
444
445 /*
446  * Handle deallocating an object of type OBJT_VNODE.
447  */
448 static void
449 vm_object_vndeallocate(vm_object_t object)
450 {
451         struct vnode *vp = (struct vnode *) object->handle;
452
453         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
454         KASSERT(object->type == OBJT_VNODE,
455             ("vm_object_vndeallocate: not a vnode object"));
456         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
457 #ifdef INVARIANTS
458         if (object->ref_count == 0) {
459                 vprint("vm_object_vndeallocate", vp);
460                 panic("vm_object_vndeallocate: bad object reference count");
461         }
462 #endif
463
464         if (object->ref_count > 1) {
465                 object->ref_count--;
466                 VM_OBJECT_UNLOCK(object);
467                 /* vrele may need the vnode lock. */
468                 vrele(vp);
469         } else {
470                 vhold(vp);
471                 VM_OBJECT_UNLOCK(object);
472                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
473                 vdrop(vp);
474                 VM_OBJECT_LOCK(object);
475                 object->ref_count--;
476                 if (object->type == OBJT_DEAD) {
477                         VM_OBJECT_UNLOCK(object);
478                         VOP_UNLOCK(vp, 0);
479                 } else {
480                         if (object->ref_count == 0)
481                                 VOP_UNSET_TEXT(vp);
482                         VM_OBJECT_UNLOCK(object);
483                         vput(vp);
484                 }
485         }
486 }
487
488 /*
489  *      vm_object_deallocate:
490  *
491  *      Release a reference to the specified object,
492  *      gained either through a vm_object_allocate
493  *      or a vm_object_reference call.  When all references
494  *      are gone, storage associated with this object
495  *      may be relinquished.
496  *
497  *      No object may be locked.
498  */
499 void
500 vm_object_deallocate(vm_object_t object)
501 {
502         vm_object_t temp;
503
504         while (object != NULL) {
505                 VM_OBJECT_LOCK(object);
506                 if (object->type == OBJT_VNODE) {
507                         vm_object_vndeallocate(object);
508                         return;
509                 }
510
511                 KASSERT(object->ref_count != 0,
512                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
513
514                 /*
515                  * If the reference count goes to 0 we start calling
516                  * vm_object_terminate() on the object chain.
517                  * A ref count of 1 may be a special case depending on the
518                  * shadow count being 0 or 1.
519                  */
520                 object->ref_count--;
521                 if (object->ref_count > 1) {
522                         VM_OBJECT_UNLOCK(object);
523                         return;
524                 } else if (object->ref_count == 1) {
525                         if (object->shadow_count == 0 &&
526                             object->handle == NULL &&
527                             (object->type == OBJT_DEFAULT ||
528                              object->type == OBJT_SWAP)) {
529                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
530                         } else if ((object->shadow_count == 1) &&
531                             (object->handle == NULL) &&
532                             (object->type == OBJT_DEFAULT ||
533                              object->type == OBJT_SWAP)) {
534                                 vm_object_t robject;
535
536                                 robject = LIST_FIRST(&object->shadow_head);
537                                 KASSERT(robject != NULL,
538                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
539                                          object->ref_count,
540                                          object->shadow_count));
541                                 if (!VM_OBJECT_TRYLOCK(robject)) {
542                                         /*
543                                          * Avoid a potential deadlock.
544                                          */
545                                         object->ref_count++;
546                                         VM_OBJECT_UNLOCK(object);
547                                         /*
548                                          * More likely than not the thread
549                                          * holding robject's lock has lower
550                                          * priority than the current thread.
551                                          * Let the lower priority thread run.
552                                          */
553                                         pause("vmo_de", 1);
554                                         continue;
555                                 }
556                                 /*
557                                  * Collapse object into its shadow unless its
558                                  * shadow is dead.  In that case, object will
559                                  * be deallocated by the thread that is
560                                  * deallocating its shadow.
561                                  */
562                                 if ((robject->flags & OBJ_DEAD) == 0 &&
563                                     (robject->handle == NULL) &&
564                                     (robject->type == OBJT_DEFAULT ||
565                                      robject->type == OBJT_SWAP)) {
566
567                                         robject->ref_count++;
568 retry:
569                                         if (robject->paging_in_progress) {
570                                                 VM_OBJECT_UNLOCK(object);
571                                                 vm_object_pip_wait(robject,
572                                                     "objde1");
573                                                 temp = robject->backing_object;
574                                                 if (object == temp) {
575                                                         VM_OBJECT_LOCK(object);
576                                                         goto retry;
577                                                 }
578                                         } else if (object->paging_in_progress) {
579                                                 VM_OBJECT_UNLOCK(robject);
580                                                 object->flags |= OBJ_PIPWNT;
581                                                 VM_OBJECT_SLEEP(object, object,
582                                                     PDROP | PVM, "objde2", 0);
583                                                 VM_OBJECT_LOCK(robject);
584                                                 temp = robject->backing_object;
585                                                 if (object == temp) {
586                                                         VM_OBJECT_LOCK(object);
587                                                         goto retry;
588                                                 }
589                                         } else
590                                                 VM_OBJECT_UNLOCK(object);
591
592                                         if (robject->ref_count == 1) {
593                                                 robject->ref_count--;
594                                                 object = robject;
595                                                 goto doterm;
596                                         }
597                                         object = robject;
598                                         vm_object_collapse(object);
599                                         VM_OBJECT_UNLOCK(object);
600                                         continue;
601                                 }
602                                 VM_OBJECT_UNLOCK(robject);
603                         }
604                         VM_OBJECT_UNLOCK(object);
605                         return;
606                 }
607 doterm:
608                 temp = object->backing_object;
609                 if (temp != NULL) {
610                         VM_OBJECT_LOCK(temp);
611                         LIST_REMOVE(object, shadow_list);
612                         temp->shadow_count--;
613                         VM_OBJECT_UNLOCK(temp);
614                         object->backing_object = NULL;
615                 }
616                 /*
617                  * Don't double-terminate, we could be in a termination
618                  * recursion due to the terminate having to sync data
619                  * to disk.
620                  */
621                 if ((object->flags & OBJ_DEAD) == 0)
622                         vm_object_terminate(object);
623                 else
624                         VM_OBJECT_UNLOCK(object);
625                 object = temp;
626         }
627 }
628
629 /*
630  *      vm_object_destroy removes the object from the global object list
631  *      and frees the space for the object.
632  */
633 void
634 vm_object_destroy(vm_object_t object)
635 {
636
637         /*
638          * Remove the object from the global object list.
639          */
640         mtx_lock(&vm_object_list_mtx);
641         TAILQ_REMOVE(&vm_object_list, object, object_list);
642         mtx_unlock(&vm_object_list_mtx);
643
644         /*
645          * Release the allocation charge.
646          */
647         if (object->cred != NULL) {
648                 KASSERT(object->type == OBJT_DEFAULT ||
649                     object->type == OBJT_SWAP,
650                     ("vm_object_terminate: non-swap obj %p has cred",
651                      object));
652                 swap_release_by_cred(object->charge, object->cred);
653                 object->charge = 0;
654                 crfree(object->cred);
655                 object->cred = NULL;
656         }
657
658         /*
659          * Free the space for the object.
660          */
661         uma_zfree(obj_zone, object);
662 }
663
664 /*
665  *      vm_object_terminate actually destroys the specified object, freeing
666  *      up all previously used resources.
667  *
668  *      The object must be locked.
669  *      This routine may block.
670  */
671 void
672 vm_object_terminate(vm_object_t object)
673 {
674         vm_page_t pa[VM_RADIX_STACK];
675         vm_page_t p;
676         vm_pindex_t start;
677         u_int exhausted;
678         int n, i;
679
680         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
681
682         /*
683          * Make sure no one uses us.
684          */
685         vm_object_set_flag(object, OBJ_DEAD);
686
687         /*
688          * wait for the pageout daemon to be done with the object
689          */
690         vm_object_pip_wait(object, "objtrm");
691
692         KASSERT(!object->paging_in_progress,
693                 ("vm_object_terminate: pageout in progress"));
694
695         /*
696          * Clean and free the pages, as appropriate. All references to the
697          * object are gone, so we don't need to lock it.
698          */
699         if (object->type == OBJT_VNODE) {
700                 struct vnode *vp = (struct vnode *)object->handle;
701
702                 /*
703                  * Clean pages and flush buffers.
704                  */
705                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
706                 VM_OBJECT_UNLOCK(object);
707
708                 vinvalbuf(vp, V_SAVE, 0, 0);
709
710                 VM_OBJECT_LOCK(object);
711         }
712
713         KASSERT(object->ref_count == 0, 
714                 ("vm_object_terminate: object with references, ref_count=%d",
715                 object->ref_count));
716
717         /*
718          * Free any remaining pageable pages.  This also removes them from the
719          * paging queues.  However, don't free wired pages, just remove them
720          * from the object.  Rather than incrementally removing each page from
721          * the object, the page and object are reset to any empty state. 
722          */
723         start = 0;
724         exhausted = 0;
725         while (exhausted == 0 && (n = vm_radix_lookupn(&object->rtree, start,
726             0, VM_RADIX_ANY, (void **)pa, VM_RADIX_STACK, &start,
727             &exhausted)) != 0) {
728                 for (i = 0; i < n; i++) {
729                         p = pa[i];
730                         /*
731                          * Another thread may allocate this cached page from
732                          * the queue before we acquire the page queue free
733                          * mtx.
734                          */
735                         if (p->flags & PG_CACHED) {
736                                 mtx_lock(&vm_page_queue_free_mtx);
737                                 if (p->object == object) {
738                                         p->object = NULL;
739                                         p->valid = 0;
740                                         /* Clear PG_CACHED and set PG_FREE. */
741                                         p->flags ^= PG_CACHED | PG_FREE;
742                                         cnt.v_cache_count--;
743                                         cnt.v_free_count++;
744                                 }
745                                 mtx_unlock(&vm_page_queue_free_mtx);
746                                 continue;
747                         } else if (p->object != object)
748                                 continue;
749                         KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
750                             ("vm_object_terminate: freeing busy page %p", p));
751                         vm_page_lock(p);
752                         /*
753                          * Optimize the page's removal from the object by
754                          * resetting its "object" field.  Specifically, if
755                          * the page is not wired, then the effect of this
756                          * assignment is that vm_page_free()'s call to
757                          * vm_page_remove() will return immediately without
758                          * modifying the page or the object.
759                          * Anyway, the radix tree cannot be accessed anymore
760                          * from within the object, thus all the nodes need
761                          * to be reclaimed later on.
762                          */ 
763                         p->object = NULL;
764                         if (p->wire_count == 0) {
765                                 vm_page_free(p);
766                                 PCPU_INC(cnt.v_pfree);
767                         }
768                         vm_page_unlock(p);
769                 }
770                 if (n < VM_RADIX_STACK)
771                         break;
772         }
773         vm_radix_reclaim_allnodes(&object->rtree);
774         /*
775          * If the object contained any pages, then reset it to an empty state.
776          * None of the object's fields, including "resident_page_count", were
777          * modified by the preceding loop.
778          */
779         if (object->resident_page_count != 0) {
780                 TAILQ_INIT(&object->memq);
781                 object->resident_page_count = 0;
782                 if (object->type == OBJT_VNODE)
783                         vdrop(object->handle);
784         }
785         if (object->cached_page_count != 0) {
786                 object->cached_page_count = 0;
787                 if (object->type == OBJT_VNODE)
788                         vdrop(object->handle);
789         }
790
791 #if VM_NRESERVLEVEL > 0
792         if (__predict_false(!LIST_EMPTY(&object->rvq)))
793                 vm_reserv_break_all(object);
794 #endif
795
796         /*
797          * Let the pager know object is dead.
798          */
799         vm_pager_deallocate(object);
800         VM_OBJECT_UNLOCK(object);
801
802         vm_object_destroy(object);
803 }
804
805 /*
806  * Make the page read-only so that we can clear the object flags.  However, if
807  * this is a nosync mmap then the object is likely to stay dirty so do not
808  * mess with the page and do not clear the object flags.  Returns TRUE if the
809  * page should be flushed, and FALSE otherwise.
810  */
811 static boolean_t
812 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
813 {
814
815         /*
816          * If we have been asked to skip nosync pages and this is a
817          * nosync page, skip it.  Note that the object flags were not
818          * cleared in this case so we do not have to set them.
819          */
820         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
821                 *clearobjflags = FALSE;
822                 return (FALSE);
823         } else {
824                 pmap_remove_write(p);
825                 return (p->dirty != 0);
826         }
827 }
828
829 /*
830  *      vm_object_page_clean
831  *
832  *      Clean all dirty pages in the specified range of object.  Leaves page 
833  *      on whatever queue it is currently on.   If NOSYNC is set then do not
834  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
835  *      leaving the object dirty.
836  *
837  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
838  *      synchronous clustering mode implementation.
839  *
840  *      Odd semantics: if start == end, we clean everything.
841  *
842  *      The object must be locked.
843  *
844  *      Returns FALSE if some page from the range was not written, as
845  *      reported by the pager, and TRUE otherwise.
846  */
847 boolean_t
848 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
849     int flags)
850 {
851         vm_page_t np, p;
852         vm_pindex_t pi, tend, tstart;
853         int curgeneration, n, pagerflags;
854         boolean_t clearobjflags, eio, res;
855
856         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
857         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
858         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
859             object->resident_page_count == 0)
860                 return (TRUE);
861
862         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
863             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
864         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
865
866         tstart = OFF_TO_IDX(start);
867         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
868         clearobjflags = tstart == 0 && tend >= object->size;
869         res = TRUE;
870
871 rescan:
872         curgeneration = object->generation;
873
874         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
875                 pi = p->pindex;
876                 if (pi >= tend)
877                         break;
878                 np = TAILQ_NEXT(p, listq);
879                 if (p->valid == 0)
880                         continue;
881                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
882                         if (object->generation != curgeneration) {
883                                 if ((flags & OBJPC_SYNC) != 0)
884                                         goto rescan;
885                                 else
886                                         clearobjflags = FALSE;
887                         }
888                         np = vm_page_find_least(object, pi);
889                         continue;
890                 }
891                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
892                         continue;
893
894                 n = vm_object_page_collect_flush(object, p, pagerflags,
895                     flags, &clearobjflags, &eio);
896                 if (eio) {
897                         res = FALSE;
898                         clearobjflags = FALSE;
899                 }
900                 if (object->generation != curgeneration) {
901                         if ((flags & OBJPC_SYNC) != 0)
902                                 goto rescan;
903                         else
904                                 clearobjflags = FALSE;
905                 }
906
907                 /*
908                  * If the VOP_PUTPAGES() did a truncated write, so
909                  * that even the first page of the run is not fully
910                  * written, vm_pageout_flush() returns 0 as the run
911                  * length.  Since the condition that caused truncated
912                  * write may be permanent, e.g. exhausted free space,
913                  * accepting n == 0 would cause an infinite loop.
914                  *
915                  * Forwarding the iterator leaves the unwritten page
916                  * behind, but there is not much we can do there if
917                  * filesystem refuses to write it.
918                  */
919                 if (n == 0) {
920                         n = 1;
921                         clearobjflags = FALSE;
922                 }
923                 np = vm_page_find_least(object, pi + n);
924         }
925 #if 0
926         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
927 #endif
928
929         if (clearobjflags)
930                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
931         return (res);
932 }
933
934 static int
935 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
936     int flags, boolean_t *clearobjflags, boolean_t *eio)
937 {
938         vm_page_t ma[vm_pageout_page_count], p_first, tp;
939         int count, i, mreq, runlen;
940
941         vm_page_lock_assert(p, MA_NOTOWNED);
942         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
943
944         count = 1;
945         mreq = 0;
946
947         for (tp = p; count < vm_pageout_page_count; count++) {
948                 tp = vm_page_next(tp);
949                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
950                         break;
951                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
952                         break;
953         }
954
955         for (p_first = p; count < vm_pageout_page_count; count++) {
956                 tp = vm_page_prev(p_first);
957                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
958                         break;
959                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
960                         break;
961                 p_first = tp;
962                 mreq++;
963         }
964
965         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
966                 ma[i] = tp;
967
968         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
969         return (runlen);
970 }
971
972 /*
973  * Note that there is absolutely no sense in writing out
974  * anonymous objects, so we track down the vnode object
975  * to write out.
976  * We invalidate (remove) all pages from the address space
977  * for semantic correctness.
978  *
979  * If the backing object is a device object with unmanaged pages, then any
980  * mappings to the specified range of pages must be removed before this
981  * function is called.
982  *
983  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
984  * may start out with a NULL object.
985  */
986 boolean_t
987 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
988     boolean_t syncio, boolean_t invalidate)
989 {
990         vm_object_t backing_object;
991         struct vnode *vp;
992         struct mount *mp;
993         int error, flags, fsync_after;
994         boolean_t res;
995
996         if (object == NULL)
997                 return (TRUE);
998         res = TRUE;
999         error = 0;
1000         VM_OBJECT_LOCK(object);
1001         while ((backing_object = object->backing_object) != NULL) {
1002                 VM_OBJECT_LOCK(backing_object);
1003                 offset += object->backing_object_offset;
1004                 VM_OBJECT_UNLOCK(object);
1005                 object = backing_object;
1006                 if (object->size < OFF_TO_IDX(offset + size))
1007                         size = IDX_TO_OFF(object->size) - offset;
1008         }
1009         /*
1010          * Flush pages if writing is allowed, invalidate them
1011          * if invalidation requested.  Pages undergoing I/O
1012          * will be ignored by vm_object_page_remove().
1013          *
1014          * We cannot lock the vnode and then wait for paging
1015          * to complete without deadlocking against vm_fault.
1016          * Instead we simply call vm_object_page_remove() and
1017          * allow it to block internally on a page-by-page
1018          * basis when it encounters pages undergoing async
1019          * I/O.
1020          */
1021         if (object->type == OBJT_VNODE &&
1022             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1023                 vp = object->handle;
1024                 VM_OBJECT_UNLOCK(object);
1025                 (void) vn_start_write(vp, &mp, V_WAIT);
1026                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1027                 if (syncio && !invalidate && offset == 0 &&
1028                     OFF_TO_IDX(size) == object->size) {
1029                         /*
1030                          * If syncing the whole mapping of the file,
1031                          * it is faster to schedule all the writes in
1032                          * async mode, also allowing the clustering,
1033                          * and then wait for i/o to complete.
1034                          */
1035                         flags = 0;
1036                         fsync_after = TRUE;
1037                 } else {
1038                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1039                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1040                         fsync_after = FALSE;
1041                 }
1042                 VM_OBJECT_LOCK(object);
1043                 res = vm_object_page_clean(object, offset, offset + size,
1044                     flags);
1045                 VM_OBJECT_UNLOCK(object);
1046                 if (fsync_after)
1047                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1048                 VOP_UNLOCK(vp, 0);
1049                 vn_finished_write(mp);
1050                 if (error != 0)
1051                         res = FALSE;
1052                 VM_OBJECT_LOCK(object);
1053         }
1054         if ((object->type == OBJT_VNODE ||
1055              object->type == OBJT_DEVICE) && invalidate) {
1056                 if (object->type == OBJT_DEVICE)
1057                         /*
1058                          * The option OBJPR_NOTMAPPED must be passed here
1059                          * because vm_object_page_remove() cannot remove
1060                          * unmanaged mappings.
1061                          */
1062                         flags = OBJPR_NOTMAPPED;
1063                 else if (old_msync)
1064                         flags = 0;
1065                 else
1066                         flags = OBJPR_CLEANONLY;
1067                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1068                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1069         }
1070         VM_OBJECT_UNLOCK(object);
1071         return (res);
1072 }
1073
1074 /*
1075  *      vm_object_madvise:
1076  *
1077  *      Implements the madvise function at the object/page level.
1078  *
1079  *      MADV_WILLNEED   (any object)
1080  *
1081  *          Activate the specified pages if they are resident.
1082  *
1083  *      MADV_DONTNEED   (any object)
1084  *
1085  *          Deactivate the specified pages if they are resident.
1086  *
1087  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1088  *                       OBJ_ONEMAPPING only)
1089  *
1090  *          Deactivate and clean the specified pages if they are
1091  *          resident.  This permits the process to reuse the pages
1092  *          without faulting or the kernel to reclaim the pages
1093  *          without I/O.
1094  */
1095 void
1096 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1097     int advise)
1098 {
1099         vm_pindex_t tpindex;
1100         vm_object_t backing_object, tobject;
1101         vm_page_t m;
1102
1103         if (object == NULL)
1104                 return;
1105         VM_OBJECT_LOCK(object);
1106         /*
1107          * Locate and adjust resident pages
1108          */
1109         for (; pindex < end; pindex += 1) {
1110 relookup:
1111                 tobject = object;
1112                 tpindex = pindex;
1113 shadowlookup:
1114                 /*
1115                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1116                  * and those pages must be OBJ_ONEMAPPING.
1117                  */
1118                 if (advise == MADV_FREE) {
1119                         if ((tobject->type != OBJT_DEFAULT &&
1120                              tobject->type != OBJT_SWAP) ||
1121                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1122                                 goto unlock_tobject;
1123                         }
1124                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1125                         goto unlock_tobject;
1126                 m = vm_page_lookup(tobject, tpindex);
1127                 if (m == NULL && advise == MADV_WILLNEED) {
1128                         /*
1129                          * If the page is cached, reactivate it.
1130                          */
1131                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1132                             VM_ALLOC_NOBUSY);
1133                 }
1134                 if (m == NULL) {
1135                         /*
1136                          * There may be swap even if there is no backing page
1137                          */
1138                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1139                                 swap_pager_freespace(tobject, tpindex, 1);
1140                         /*
1141                          * next object
1142                          */
1143                         backing_object = tobject->backing_object;
1144                         if (backing_object == NULL)
1145                                 goto unlock_tobject;
1146                         VM_OBJECT_LOCK(backing_object);
1147                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1148                         if (tobject != object)
1149                                 VM_OBJECT_UNLOCK(tobject);
1150                         tobject = backing_object;
1151                         goto shadowlookup;
1152                 } else if (m->valid != VM_PAGE_BITS_ALL)
1153                         goto unlock_tobject;
1154                 /*
1155                  * If the page is not in a normal state, skip it.
1156                  */
1157                 vm_page_lock(m);
1158                 if (m->hold_count != 0 || m->wire_count != 0) {
1159                         vm_page_unlock(m);
1160                         goto unlock_tobject;
1161                 }
1162                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1163                     ("vm_object_madvise: page %p is fictitious", m));
1164                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1165                     ("vm_object_madvise: page %p is not managed", m));
1166                 if ((m->oflags & VPO_BUSY) || m->busy) {
1167                         if (advise == MADV_WILLNEED) {
1168                                 /*
1169                                  * Reference the page before unlocking and
1170                                  * sleeping so that the page daemon is less
1171                                  * likely to reclaim it. 
1172                                  */
1173                                 vm_page_aflag_set(m, PGA_REFERENCED);
1174                         }
1175                         vm_page_unlock(m);
1176                         if (object != tobject)
1177                                 VM_OBJECT_UNLOCK(object);
1178                         m->oflags |= VPO_WANTED;
1179                         VM_OBJECT_SLEEP(tobject, m, PDROP | PVM, "madvpo", 0);
1180                         VM_OBJECT_LOCK(object);
1181                         goto relookup;
1182                 }
1183                 if (advise == MADV_WILLNEED) {
1184                         vm_page_activate(m);
1185                 } else if (advise == MADV_DONTNEED) {
1186                         vm_page_dontneed(m);
1187                 } else if (advise == MADV_FREE) {
1188                         /*
1189                          * Mark the page clean.  This will allow the page
1190                          * to be freed up by the system.  However, such pages
1191                          * are often reused quickly by malloc()/free()
1192                          * so we do not do anything that would cause
1193                          * a page fault if we can help it.
1194                          *
1195                          * Specifically, we do not try to actually free
1196                          * the page now nor do we try to put it in the
1197                          * cache (which would cause a page fault on reuse).
1198                          *
1199                          * But we do make the page is freeable as we
1200                          * can without actually taking the step of unmapping
1201                          * it.
1202                          */
1203                         pmap_clear_modify(m);
1204                         m->dirty = 0;
1205                         m->act_count = 0;
1206                         vm_page_dontneed(m);
1207                 }
1208                 vm_page_unlock(m);
1209                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1210                         swap_pager_freespace(tobject, tpindex, 1);
1211 unlock_tobject:
1212                 if (tobject != object)
1213                         VM_OBJECT_UNLOCK(tobject);
1214         }       
1215         VM_OBJECT_UNLOCK(object);
1216 }
1217
1218 /*
1219  *      vm_object_shadow:
1220  *
1221  *      Create a new object which is backed by the
1222  *      specified existing object range.  The source
1223  *      object reference is deallocated.
1224  *
1225  *      The new object and offset into that object
1226  *      are returned in the source parameters.
1227  */
1228 void
1229 vm_object_shadow(
1230         vm_object_t *object,    /* IN/OUT */
1231         vm_ooffset_t *offset,   /* IN/OUT */
1232         vm_size_t length)
1233 {
1234         vm_object_t source;
1235         vm_object_t result;
1236
1237         source = *object;
1238
1239         /*
1240          * Don't create the new object if the old object isn't shared.
1241          */
1242         if (source != NULL) {
1243                 VM_OBJECT_LOCK(source);
1244                 if (source->ref_count == 1 &&
1245                     source->handle == NULL &&
1246                     (source->type == OBJT_DEFAULT ||
1247                      source->type == OBJT_SWAP)) {
1248                         VM_OBJECT_UNLOCK(source);
1249                         return;
1250                 }
1251                 VM_OBJECT_UNLOCK(source);
1252         }
1253
1254         /*
1255          * Allocate a new object with the given length.
1256          */
1257         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1258
1259         /*
1260          * The new object shadows the source object, adding a reference to it.
1261          * Our caller changes his reference to point to the new object,
1262          * removing a reference to the source object.  Net result: no change
1263          * of reference count.
1264          *
1265          * Try to optimize the result object's page color when shadowing
1266          * in order to maintain page coloring consistency in the combined 
1267          * shadowed object.
1268          */
1269         result->backing_object = source;
1270         /*
1271          * Store the offset into the source object, and fix up the offset into
1272          * the new object.
1273          */
1274         result->backing_object_offset = *offset;
1275         if (source != NULL) {
1276                 VM_OBJECT_LOCK(source);
1277                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1278                 source->shadow_count++;
1279 #if VM_NRESERVLEVEL > 0
1280                 result->flags |= source->flags & OBJ_COLORED;
1281                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1282                     ((1 << (VM_NFREEORDER - 1)) - 1);
1283 #endif
1284                 VM_OBJECT_UNLOCK(source);
1285         }
1286
1287
1288         /*
1289          * Return the new things
1290          */
1291         *offset = 0;
1292         *object = result;
1293 }
1294
1295 /*
1296  *      vm_object_split:
1297  *
1298  * Split the pages in a map entry into a new object.  This affords
1299  * easier removal of unused pages, and keeps object inheritance from
1300  * being a negative impact on memory usage.
1301  */
1302 void
1303 vm_object_split(vm_map_entry_t entry)
1304 {
1305         vm_page_t ma[VM_RADIX_STACK];
1306         vm_page_t m;
1307         vm_object_t orig_object, new_object, source;
1308         vm_pindex_t idx, offidxstart, start;
1309         vm_size_t size;
1310         u_int exhausted;
1311         int i, n;
1312
1313         orig_object = entry->object.vm_object;
1314         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1315                 return;
1316         if (orig_object->ref_count <= 1)
1317                 return;
1318         VM_OBJECT_UNLOCK(orig_object);
1319
1320         offidxstart = OFF_TO_IDX(entry->offset);
1321         size = atop(entry->end - entry->start);
1322
1323         /*
1324          * If swap_pager_copy() is later called, it will convert new_object
1325          * into a swap object.
1326          */
1327         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1328
1329         /*
1330          * At this point, the new object is still private, so the order in
1331          * which the original and new objects are locked does not matter.
1332          */
1333         VM_OBJECT_LOCK(new_object);
1334         VM_OBJECT_LOCK(orig_object);
1335         source = orig_object->backing_object;
1336         if (source != NULL) {
1337                 VM_OBJECT_LOCK(source);
1338                 if ((source->flags & OBJ_DEAD) != 0) {
1339                         VM_OBJECT_UNLOCK(source);
1340                         VM_OBJECT_UNLOCK(orig_object);
1341                         VM_OBJECT_UNLOCK(new_object);
1342                         vm_object_deallocate(new_object);
1343                         VM_OBJECT_LOCK(orig_object);
1344                         return;
1345                 }
1346                 LIST_INSERT_HEAD(&source->shadow_head,
1347                                   new_object, shadow_list);
1348                 source->shadow_count++;
1349                 vm_object_reference_locked(source);     /* for new_object */
1350                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1351                 VM_OBJECT_UNLOCK(source);
1352                 new_object->backing_object_offset = 
1353                         orig_object->backing_object_offset + entry->offset;
1354                 new_object->backing_object = source;
1355         }
1356         if (orig_object->cred != NULL) {
1357                 new_object->cred = orig_object->cred;
1358                 crhold(orig_object->cred);
1359                 new_object->charge = ptoa(size);
1360                 KASSERT(orig_object->charge >= ptoa(size),
1361                     ("orig_object->charge < 0"));
1362                 orig_object->charge -= ptoa(size);
1363         }
1364         start = offidxstart;
1365 retry:
1366         exhausted = 0;
1367         while (exhausted == 0 && (n = vm_radix_lookupn(&orig_object->rtree,
1368             start, offidxstart + size, VM_RADIX_ANY, (void **)ma,
1369             VM_RADIX_STACK, &start, &exhausted)) != 0) {
1370                 for (i = 0; i < n; i++) {
1371                         m = ma[i];
1372                         idx = m->pindex - offidxstart;
1373                         if (m->flags & PG_CACHED) {
1374                                 mtx_lock(&vm_page_queue_free_mtx);
1375                                 if (m->object == orig_object)
1376                                         vm_page_cache_rename(m, new_object,
1377                                             idx);
1378                                 mtx_unlock(&vm_page_queue_free_mtx);
1379                                 continue;
1380                         } else if (m->object != orig_object)
1381                                 continue;
1382                         /*
1383                          * We must wait for pending I/O to complete before
1384                          * we can rename the page.
1385                          *
1386                          * We do not have to VM_PROT_NONE the page as mappings
1387                          * should not be changed by this operation.
1388                          */
1389                         if ((m->oflags & VPO_BUSY) || m->busy) {
1390                                 start = m->pindex;
1391                                 VM_OBJECT_UNLOCK(new_object);
1392                                 m->oflags |= VPO_WANTED;
1393                                 VM_OBJECT_SLEEP(orig_object, m, PVM, "spltwt", 0);
1394                                 VM_OBJECT_LOCK(new_object);
1395                                 goto retry;
1396                         }
1397 #if VM_NRESERVLEVEL > 0
1398                         /*
1399                          * If some of the reservation's allocated pages remain
1400                          * with the original object, then transferring the
1401                          * reservation to the new object is neither
1402                          * particularly beneficial nor particularly harmful as
1403                          * compared to leaving the reservation with the
1404                          * original object.  If, however, all of the
1405                          * reservation's allocated pages are transferred to
1406                          * the new object, then transferring the reservation
1407                          * is typically beneficial.  Determining which of
1408                          * these two cases applies would be more costly than
1409                          * unconditionally renaming the reservation.
1410                          */
1411                         vm_reserv_rename(m, new_object, orig_object,
1412                             offidxstart);
1413 #endif
1414                         vm_page_rename(m, new_object, idx);
1415                         /*
1416                          * page automatically made dirty by rename and
1417                          * cache handled
1418                          */
1419                         vm_page_busy(m);
1420                 }
1421                 if (n < VM_RADIX_STACK)
1422                         break;
1423         }
1424         if (orig_object->type == OBJT_SWAP) {
1425                 /*
1426                  * swap_pager_copy() can sleep, in which case the orig_object's
1427                  * and new_object's locks are released and reacquired. 
1428                  */
1429                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1430         }
1431         VM_OBJECT_UNLOCK(orig_object);
1432         TAILQ_FOREACH(m, &new_object->memq, listq)
1433                 vm_page_wakeup(m);
1434         VM_OBJECT_UNLOCK(new_object);
1435         entry->object.vm_object = new_object;
1436         entry->offset = 0LL;
1437         vm_object_deallocate(orig_object);
1438         VM_OBJECT_LOCK(new_object);
1439 }
1440
1441 #define OBSC_TEST_ALL_SHADOWED  0x0001
1442 #define OBSC_COLLAPSE_NOWAIT    0x0002
1443 #define OBSC_COLLAPSE_WAIT      0x0004
1444
1445 static int
1446 vm_object_backing_scan(vm_object_t object, int op)
1447 {
1448         vm_page_t pa[VM_RADIX_STACK];
1449         vm_page_t p;
1450         vm_object_t backing_object;
1451         vm_pindex_t backing_offset_index, new_pindex;
1452         vm_pindex_t start;
1453         u_int exhausted;
1454         int color, i, n;
1455         int r = 1;
1456
1457         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1458         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1459
1460         backing_object = object->backing_object;
1461         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1462
1463         /*
1464          * Initial conditions
1465          */
1466         if (op & OBSC_TEST_ALL_SHADOWED) {
1467                 /*
1468                  * We do not want to have to test for the existence of cache
1469                  * or swap pages in the backing object.  XXX but with the
1470                  * new swapper this would be pretty easy to do.
1471                  *
1472                  * XXX what about anonymous MAP_SHARED memory that hasn't
1473                  * been ZFOD faulted yet?  If we do not test for this, the
1474                  * shadow test may succeed! XXX
1475                  */
1476                 if (backing_object->type != OBJT_DEFAULT) {
1477                         return (0);
1478                 }
1479         }
1480         if (op & OBSC_COLLAPSE_WAIT) {
1481                 vm_object_set_flag(backing_object, OBJ_DEAD);
1482         }
1483         color = VM_RADIX_BLACK;
1484         if (op & OBSC_COLLAPSE_WAIT)
1485                 color |= VM_RADIX_RED;
1486         /*
1487          * Our scan
1488          */
1489 restart:
1490         start = 0;
1491         i = n = VM_RADIX_STACK;
1492         exhausted = 0;
1493         for (;;) {
1494                 if (i == n) {
1495                         if (n < VM_RADIX_STACK)
1496                                 break;
1497                         if (exhausted != 0 ||
1498                             (n = vm_radix_lookupn(&backing_object->rtree,
1499                             start, 0, color, (void **)pa, VM_RADIX_STACK,
1500                             &start, &exhausted)) == 0)
1501                                 break;
1502                         i = 0;
1503                 }
1504                 p = pa[i++];
1505                 /*
1506                  * Free cached pages.  XXX Why?  Emulating old behavior here.
1507                  */
1508                 if (p->flags & PG_CACHED) {
1509                         mtx_lock(&vm_page_queue_free_mtx);
1510                         if (p->object == backing_object)
1511                                 vm_page_cache_free(p);
1512                         mtx_unlock(&vm_page_queue_free_mtx);
1513                         continue;
1514                 } else if (p->object != backing_object)
1515                         continue;
1516
1517                 new_pindex = p->pindex - backing_offset_index;
1518                 if (op & OBSC_TEST_ALL_SHADOWED) {
1519                         vm_page_t pp;
1520
1521                         /*
1522                          * Ignore pages outside the parent object's range
1523                          * and outside the parent object's mapping of the 
1524                          * backing object.
1525                          *
1526                          * note that we do not busy the backing object's
1527                          * page.
1528                          */
1529                         if (p->pindex < backing_offset_index ||
1530                             new_pindex >= object->size)
1531                                 continue;
1532
1533                         /*
1534                          * See if the parent has the page or if the parent's
1535                          * object pager has the page.  If the parent has the
1536                          * page but the page is not valid, the parent's
1537                          * object pager must have the page.
1538                          *
1539                          * If this fails, the parent does not completely shadow
1540                          * the object and we might as well give up now.
1541                          */
1542
1543                         pp = vm_page_lookup(object, new_pindex);
1544                         if (
1545                             (pp == NULL || pp->valid == 0) &&
1546                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1547                         ) {
1548                                 r = 0;
1549                                 break;
1550                         }
1551                 }
1552
1553                 /*
1554                  * Check for busy page
1555                  */
1556                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1557                         vm_page_t pp;
1558
1559                         if (op & OBSC_COLLAPSE_NOWAIT) {
1560                                 if ((p->oflags & VPO_BUSY) || !p->valid || 
1561                                     p->busy)
1562                                         continue;
1563                         } else if (op & OBSC_COLLAPSE_WAIT) {
1564                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1565                                         VM_OBJECT_UNLOCK(object);
1566                                         p->oflags |= VPO_WANTED;
1567                                         VM_OBJECT_SLEEP(backing_object, p,
1568                                             PDROP | PVM, "vmocol", 0);
1569                                         VM_OBJECT_LOCK(object);
1570                                         VM_OBJECT_LOCK(backing_object);
1571                                         /*
1572                                          * If we slept, anything could have
1573                                          * happened.  Since the object is
1574                                          * marked dead, the backing offset
1575                                          * should not have changed so we
1576                                          * just restart our scan.
1577                                          */
1578                                         goto restart;
1579                                 }
1580                         }
1581
1582                         KASSERT(
1583                             p->object == backing_object,
1584                             ("vm_object_backing_scan: object mismatch")
1585                         );
1586
1587                         /*
1588                          * Destroy any associated swap
1589                          */
1590                         if (backing_object->type == OBJT_SWAP) {
1591                                 swap_pager_freespace(
1592                                     backing_object, 
1593                                     p->pindex,
1594                                     1
1595                                 );
1596                         }
1597
1598                         if (
1599                             p->pindex < backing_offset_index ||
1600                             new_pindex >= object->size
1601                         ) {
1602                                 /*
1603                                  * Page is out of the parent object's range, we 
1604                                  * can simply destroy it. 
1605                                  */
1606                                 vm_page_lock(p);
1607                                 KASSERT(!pmap_page_is_mapped(p),
1608                                     ("freeing mapped page %p", p));
1609                                 if (p->wire_count == 0)
1610                                         vm_page_free(p);
1611                                 else
1612                                         vm_page_remove(p);
1613                                 vm_page_unlock(p);
1614                                 continue;
1615                         }
1616
1617                         pp = vm_page_lookup(object, new_pindex);
1618                         if (
1619                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1620                             (pp != NULL && pp->valid == 0)
1621                         ) {
1622                                 /*
1623                                  * The page in the parent is not (yet) valid.
1624                                  * We don't know anything about the state of
1625                                  * the original page.  It might be mapped,
1626                                  * so we must avoid the next if here.
1627                                  *
1628                                  * This is due to a race in vm_fault() where
1629                                  * we must unbusy the original (backing_obj)
1630                                  * page before we can (re)lock the parent.
1631                                  * Hence we can get here.
1632                                  */
1633                                 continue;
1634                         }
1635                         if (
1636                             pp != NULL ||
1637                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1638                         ) {
1639                                 /*
1640                                  * page already exists in parent OR swap exists
1641                                  * for this location in the parent.  Destroy 
1642                                  * the original page from the backing object.
1643                                  *
1644                                  * Leave the parent's page alone
1645                                  */
1646                                 vm_page_lock(p);
1647                                 KASSERT(!pmap_page_is_mapped(p),
1648                                     ("freeing mapped page %p", p));
1649                                 if (p->wire_count == 0)
1650                                         vm_page_free(p);
1651                                 else
1652                                         vm_page_remove(p);
1653                                 vm_page_unlock(p);
1654                                 continue;
1655                         }
1656
1657 #if VM_NRESERVLEVEL > 0
1658                         /*
1659                          * Rename the reservation.
1660                          */
1661                         vm_reserv_rename(p, object, backing_object,
1662                             backing_offset_index);
1663 #endif
1664
1665                         /*
1666                          * Page does not exist in parent, rename the
1667                          * page from the backing object to the main object. 
1668                          *
1669                          * If the page was mapped to a process, it can remain 
1670                          * mapped through the rename.
1671                          */
1672                         vm_page_rename(p, object, new_pindex);
1673                         /* page automatically made dirty by rename */
1674                 }
1675         }
1676         return (r);
1677 }
1678
1679
1680 /*
1681  * this version of collapse allows the operation to occur earlier and
1682  * when paging_in_progress is true for an object...  This is not a complete
1683  * operation, but should plug 99.9% of the rest of the leaks.
1684  */
1685 static void
1686 vm_object_qcollapse(vm_object_t object)
1687 {
1688         vm_object_t backing_object = object->backing_object;
1689
1690         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1691         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1692
1693         if (backing_object->ref_count != 1)
1694                 return;
1695
1696         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1697 }
1698
1699 /*
1700  *      vm_object_collapse:
1701  *
1702  *      Collapse an object with the object backing it.
1703  *      Pages in the backing object are moved into the
1704  *      parent, and the backing object is deallocated.
1705  */
1706 void
1707 vm_object_collapse(vm_object_t object)
1708 {
1709         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1710         
1711         while (TRUE) {
1712                 vm_object_t backing_object;
1713
1714                 /*
1715                  * Verify that the conditions are right for collapse:
1716                  *
1717                  * The object exists and the backing object exists.
1718                  */
1719                 if ((backing_object = object->backing_object) == NULL)
1720                         break;
1721
1722                 /*
1723                  * we check the backing object first, because it is most likely
1724                  * not collapsable.
1725                  */
1726                 VM_OBJECT_LOCK(backing_object);
1727                 if (backing_object->handle != NULL ||
1728                     (backing_object->type != OBJT_DEFAULT &&
1729                      backing_object->type != OBJT_SWAP) ||
1730                     (backing_object->flags & OBJ_DEAD) ||
1731                     object->handle != NULL ||
1732                     (object->type != OBJT_DEFAULT &&
1733                      object->type != OBJT_SWAP) ||
1734                     (object->flags & OBJ_DEAD)) {
1735                         VM_OBJECT_UNLOCK(backing_object);
1736                         break;
1737                 }
1738
1739                 if (
1740                     object->paging_in_progress != 0 ||
1741                     backing_object->paging_in_progress != 0
1742                 ) {
1743                         vm_object_qcollapse(object);
1744                         VM_OBJECT_UNLOCK(backing_object);
1745                         break;
1746                 }
1747                 /*
1748                  * We know that we can either collapse the backing object (if
1749                  * the parent is the only reference to it) or (perhaps) have
1750                  * the parent bypass the object if the parent happens to shadow
1751                  * all the resident pages in the entire backing object.
1752                  *
1753                  * This is ignoring pager-backed pages such as swap pages.
1754                  * vm_object_backing_scan fails the shadowing test in this
1755                  * case.
1756                  */
1757                 if (backing_object->ref_count == 1) {
1758                         /*
1759                          * If there is exactly one reference to the backing
1760                          * object, we can collapse it into the parent.  
1761                          */
1762                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1763
1764 #if VM_NRESERVLEVEL > 0
1765                         /*
1766                          * Break any reservations from backing_object.
1767                          */
1768                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1769                                 vm_reserv_break_all(backing_object);
1770 #endif
1771
1772                         /*
1773                          * Move the pager from backing_object to object.
1774                          */
1775                         if (backing_object->type == OBJT_SWAP) {
1776                                 /*
1777                                  * swap_pager_copy() can sleep, in which case
1778                                  * the backing_object's and object's locks are
1779                                  * released and reacquired.
1780                                  * Since swap_pager_copy() is being asked to
1781                                  * destroy the source, it will change the
1782                                  * backing_object's type to OBJT_DEFAULT.
1783                                  */
1784                                 swap_pager_copy(
1785                                     backing_object,
1786                                     object,
1787                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1788                         }
1789                         /*
1790                          * Object now shadows whatever backing_object did.
1791                          * Note that the reference to 
1792                          * backing_object->backing_object moves from within 
1793                          * backing_object to within object.
1794                          */
1795                         LIST_REMOVE(object, shadow_list);
1796                         backing_object->shadow_count--;
1797                         if (backing_object->backing_object) {
1798                                 VM_OBJECT_LOCK(backing_object->backing_object);
1799                                 LIST_REMOVE(backing_object, shadow_list);
1800                                 LIST_INSERT_HEAD(
1801                                     &backing_object->backing_object->shadow_head,
1802                                     object, shadow_list);
1803                                 /*
1804                                  * The shadow_count has not changed.
1805                                  */
1806                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1807                         }
1808                         object->backing_object = backing_object->backing_object;
1809                         object->backing_object_offset +=
1810                             backing_object->backing_object_offset;
1811
1812                         /*
1813                          * Discard backing_object.
1814                          *
1815                          * Since the backing object has no pages, no pager left,
1816                          * and no object references within it, all that is
1817                          * necessary is to dispose of it.
1818                          */
1819                         KASSERT(backing_object->ref_count == 1, (
1820 "backing_object %p was somehow re-referenced during collapse!",
1821                             backing_object));
1822                         VM_OBJECT_UNLOCK(backing_object);
1823                         vm_object_destroy(backing_object);
1824
1825                         object_collapses++;
1826                 } else {
1827                         vm_object_t new_backing_object;
1828
1829                         /*
1830                          * If we do not entirely shadow the backing object,
1831                          * there is nothing we can do so we give up.
1832                          */
1833                         if (object->resident_page_count != object->size &&
1834                             vm_object_backing_scan(object,
1835                             OBSC_TEST_ALL_SHADOWED) == 0) {
1836                                 VM_OBJECT_UNLOCK(backing_object);
1837                                 break;
1838                         }
1839
1840                         /*
1841                          * Make the parent shadow the next object in the
1842                          * chain.  Deallocating backing_object will not remove
1843                          * it, since its reference count is at least 2.
1844                          */
1845                         LIST_REMOVE(object, shadow_list);
1846                         backing_object->shadow_count--;
1847
1848                         new_backing_object = backing_object->backing_object;
1849                         if ((object->backing_object = new_backing_object) != NULL) {
1850                                 VM_OBJECT_LOCK(new_backing_object);
1851                                 LIST_INSERT_HEAD(
1852                                     &new_backing_object->shadow_head,
1853                                     object,
1854                                     shadow_list
1855                                 );
1856                                 new_backing_object->shadow_count++;
1857                                 vm_object_reference_locked(new_backing_object);
1858                                 VM_OBJECT_UNLOCK(new_backing_object);
1859                                 object->backing_object_offset +=
1860                                         backing_object->backing_object_offset;
1861                         }
1862
1863                         /*
1864                          * Drop the reference count on backing_object. Since
1865                          * its ref_count was at least 2, it will not vanish.
1866                          */
1867                         backing_object->ref_count--;
1868                         VM_OBJECT_UNLOCK(backing_object);
1869                         object_bypasses++;
1870                 }
1871
1872                 /*
1873                  * Try again with this object's new backing object.
1874                  */
1875         }
1876 }
1877
1878 /*
1879  *      vm_object_page_remove:
1880  *
1881  *      For the given object, either frees or invalidates each of the
1882  *      specified pages.  In general, a page is freed.  However, if a page is
1883  *      wired for any reason other than the existence of a managed, wired
1884  *      mapping, then it may be invalidated but not removed from the object.
1885  *      Pages are specified by the given range ["start", "end") and the option
1886  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1887  *      extends from "start" to the end of the object.  If the option
1888  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1889  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1890  *      specified, then the pages within the specified range must have no
1891  *      mappings.  Otherwise, if this option is not specified, any mappings to
1892  *      the specified pages are removed before the pages are freed or
1893  *      invalidated.
1894  *
1895  *      In general, this operation should only be performed on objects that
1896  *      contain managed pages.  There are, however, two exceptions.  First, it
1897  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1898  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1899  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1900  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1901  *
1902  *      The object must be locked.
1903  */
1904 void
1905 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1906     int options)
1907 {
1908         struct vnode *vp;
1909         vm_page_t pa[VM_RADIX_STACK];
1910         vm_page_t p;
1911         u_int exhausted;
1912         int i, n;
1913         int wirings;
1914
1915         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1916         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1917             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1918             ("vm_object_page_remove: illegal options for object %p", object));
1919         if (object->resident_page_count == 0 && object->cached_page_count == 0)
1920                 return;
1921         vp = NULL;
1922         vm_object_pip_add(object, 1);
1923 restart:
1924         exhausted = 0;
1925         while (exhausted == 0 && (n = vm_radix_lookupn(&object->rtree, start,
1926             end, VM_RADIX_ANY, (void **)pa, VM_RADIX_STACK, &start,
1927             &exhausted)) != 0) {
1928                 for (i = 0; i < n; i++) {
1929                         p = pa[i];
1930                         /*
1931                          * Another thread may allocate this cached page from
1932                          * the queue before we acquire the page queue free
1933                          * mtx.
1934                          */
1935                         if (p->flags & PG_CACHED) {
1936                                 mtx_lock(&vm_page_queue_free_mtx);
1937                                 if (p->object == object) {
1938                                         vm_page_cache_free(p);
1939                                         if (object->type == OBJT_VNODE &&
1940                                             object->cached_page_count == 0)
1941                                                 vp = object->handle;
1942                                 }
1943                                 mtx_unlock(&vm_page_queue_free_mtx);
1944                                 continue;
1945                         } else if (p->object != object)
1946                                 continue;
1947                         /*
1948                          * If the page is wired for any reason besides
1949                          * the existence of managed, wired mappings, then
1950                          * it cannot be freed.  For example, fictitious
1951                          * pages, which represent device memory, are
1952                          * inherently wired and cannot be freed.  They can,
1953                          * however, be invalidated if the option
1954                          * OBJPR_CLEANONLY is not specified.
1955                          */
1956                         vm_page_lock(p);
1957                         if ((wirings = p->wire_count) != 0 &&
1958                             (wirings = pmap_page_wired_mappings(p)) !=
1959                             p->wire_count) {
1960                                 if ((options & OBJPR_NOTMAPPED) == 0) {
1961                                         pmap_remove_all(p);
1962                                         /*
1963                                          * Account for removal of wired
1964                                          * mappings.
1965                                          */
1966                                         if (wirings != 0)
1967                                                 p->wire_count -= wirings;
1968                                 }
1969                                 if ((options & OBJPR_CLEANONLY) == 0) {
1970                                         p->valid = 0;
1971                                         vm_page_undirty(p);
1972                                 }
1973                                 vm_page_unlock(p);
1974                                 continue;
1975                         }
1976                         if (vm_page_sleep_if_busy(p, TRUE, "vmopar")) {
1977                                 start = p->pindex;
1978                                 goto restart;
1979                         }
1980                         KASSERT((p->flags & PG_FICTITIOUS) == 0,
1981                             ("vm_object_page_remove: page %p is fictitious",
1982                             p));
1983                         if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1984                                 if ((options & OBJPR_NOTMAPPED) == 0)
1985                                         pmap_remove_write(p);
1986                                 if (p->dirty) {
1987                                         vm_page_unlock(p);
1988                                         continue;
1989                                 }
1990                         }
1991                         if ((options & OBJPR_NOTMAPPED) == 0) {
1992                                 pmap_remove_all(p);
1993                                 /* Account for removal of wired mappings. */
1994                                 if (wirings != 0) {
1995                                         KASSERT(p->wire_count == wirings,
1996                                             ("inconsistent wire count %d %d %p",
1997                                             p->wire_count, wirings, p));
1998                                         p->wire_count = 0;
1999                                         atomic_subtract_int(&cnt.v_wire_count,
2000                                             1);
2001                                 }
2002                                 if (wirings != 0)
2003                                         p->wire_count -= wirings;
2004                         }
2005                         vm_page_free(p);
2006                         vm_page_unlock(p);
2007                 }
2008                 if (n < VM_RADIX_STACK)
2009                         break;
2010         }
2011         vm_object_pip_wakeup(object);
2012         if (vp)
2013                 vdrop(vp);
2014 }
2015
2016 /*
2017  *      vm_object_page_cache:
2018  *
2019  *      For the given object, attempt to move the specified clean
2020  *      pages to the cache queue.  If a page is wired for any reason,
2021  *      then it will not be changed.  Pages are specified by the given
2022  *      range ["start", "end").  As a special case, if "end" is zero,
2023  *      then the range extends from "start" to the end of the object.
2024  *      Any mappings to the specified pages are removed before the
2025  *      pages are moved to the cache queue.
2026  *
2027  *      This operation should only be performed on objects that
2028  *      contain non-fictitious, managed pages.
2029  *
2030  *      The object must be locked.
2031  */
2032 void
2033 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2034 {
2035         struct mtx *mtx, *new_mtx;
2036         vm_page_t p, next;
2037
2038         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2039         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2040             ("vm_object_page_cache: illegal object %p", object));
2041         if (object->resident_page_count == 0)
2042                 return;
2043         p = vm_page_find_least(object, start);
2044
2045         /*
2046          * Here, the variable "p" is either (1) the page with the least pindex
2047          * greater than or equal to the parameter "start" or (2) NULL. 
2048          */
2049         mtx = NULL;
2050         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2051                 next = TAILQ_NEXT(p, listq);
2052
2053                 /*
2054                  * Avoid releasing and reacquiring the same page lock.
2055                  */
2056                 new_mtx = vm_page_lockptr(p);
2057                 if (mtx != new_mtx) {
2058                         if (mtx != NULL)
2059                                 mtx_unlock(mtx);
2060                         mtx = new_mtx;
2061                         mtx_lock(mtx);
2062                 }
2063                 vm_page_try_to_cache(p);
2064         }
2065         if (mtx != NULL)
2066                 mtx_unlock(mtx);
2067 }
2068
2069 /*
2070  *      Populate the specified range of the object with valid pages.  Returns
2071  *      TRUE if the range is successfully populated and FALSE otherwise.
2072  *
2073  *      Note: This function should be optimized to pass a larger array of
2074  *      pages to vm_pager_get_pages() before it is applied to a non-
2075  *      OBJT_DEVICE object.
2076  *
2077  *      The object must be locked.
2078  */
2079 boolean_t
2080 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2081 {
2082         vm_page_t m, ma[1];
2083         vm_pindex_t pindex;
2084         int rv;
2085
2086         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2087         for (pindex = start; pindex < end; pindex++) {
2088                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
2089                     VM_ALLOC_RETRY);
2090                 if (m->valid != VM_PAGE_BITS_ALL) {
2091                         ma[0] = m;
2092                         rv = vm_pager_get_pages(object, ma, 1, 0);
2093                         m = vm_page_lookup(object, pindex);
2094                         if (m == NULL)
2095                                 break;
2096                         if (rv != VM_PAGER_OK) {
2097                                 vm_page_lock(m);
2098                                 vm_page_free(m);
2099                                 vm_page_unlock(m);
2100                                 break;
2101                         }
2102                 }
2103                 /*
2104                  * Keep "m" busy because a subsequent iteration may unlock
2105                  * the object.
2106                  */
2107         }
2108         if (pindex > start) {
2109                 m = vm_page_lookup(object, start);
2110                 while (m != NULL && m->pindex < pindex) {
2111                         vm_page_wakeup(m);
2112                         m = TAILQ_NEXT(m, listq);
2113                 }
2114         }
2115         return (pindex == end);
2116 }
2117
2118 /*
2119  *      Routine:        vm_object_coalesce
2120  *      Function:       Coalesces two objects backing up adjoining
2121  *                      regions of memory into a single object.
2122  *
2123  *      returns TRUE if objects were combined.
2124  *
2125  *      NOTE:   Only works at the moment if the second object is NULL -
2126  *              if it's not, which object do we lock first?
2127  *
2128  *      Parameters:
2129  *              prev_object     First object to coalesce
2130  *              prev_offset     Offset into prev_object
2131  *              prev_size       Size of reference to prev_object
2132  *              next_size       Size of reference to the second object
2133  *              reserved        Indicator that extension region has
2134  *                              swap accounted for
2135  *
2136  *      Conditions:
2137  *      The object must *not* be locked.
2138  */
2139 boolean_t
2140 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2141     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2142 {
2143         vm_pindex_t next_pindex;
2144
2145         if (prev_object == NULL)
2146                 return (TRUE);
2147         VM_OBJECT_LOCK(prev_object);
2148         if (prev_object->type != OBJT_DEFAULT &&
2149             prev_object->type != OBJT_SWAP) {
2150                 VM_OBJECT_UNLOCK(prev_object);
2151                 return (FALSE);
2152         }
2153
2154         /*
2155          * Try to collapse the object first
2156          */
2157         vm_object_collapse(prev_object);
2158
2159         /*
2160          * Can't coalesce if: . more than one reference . paged out . shadows
2161          * another object . has a copy elsewhere (any of which mean that the
2162          * pages not mapped to prev_entry may be in use anyway)
2163          */
2164         if (prev_object->backing_object != NULL) {
2165                 VM_OBJECT_UNLOCK(prev_object);
2166                 return (FALSE);
2167         }
2168
2169         prev_size >>= PAGE_SHIFT;
2170         next_size >>= PAGE_SHIFT;
2171         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2172
2173         if ((prev_object->ref_count > 1) &&
2174             (prev_object->size != next_pindex)) {
2175                 VM_OBJECT_UNLOCK(prev_object);
2176                 return (FALSE);
2177         }
2178
2179         /*
2180          * Account for the charge.
2181          */
2182         if (prev_object->cred != NULL) {
2183
2184                 /*
2185                  * If prev_object was charged, then this mapping,
2186                  * althought not charged now, may become writable
2187                  * later. Non-NULL cred in the object would prevent
2188                  * swap reservation during enabling of the write
2189                  * access, so reserve swap now. Failed reservation
2190                  * cause allocation of the separate object for the map
2191                  * entry, and swap reservation for this entry is
2192                  * managed in appropriate time.
2193                  */
2194                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2195                     prev_object->cred)) {
2196                         return (FALSE);
2197                 }
2198                 prev_object->charge += ptoa(next_size);
2199         }
2200
2201         /*
2202          * Remove any pages that may still be in the object from a previous
2203          * deallocation.
2204          */
2205         if (next_pindex < prev_object->size) {
2206                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2207                     next_size, 0);
2208                 if (prev_object->type == OBJT_SWAP)
2209                         swap_pager_freespace(prev_object,
2210                                              next_pindex, next_size);
2211 #if 0
2212                 if (prev_object->cred != NULL) {
2213                         KASSERT(prev_object->charge >=
2214                             ptoa(prev_object->size - next_pindex),
2215                             ("object %p overcharged 1 %jx %jx", prev_object,
2216                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2217                         prev_object->charge -= ptoa(prev_object->size -
2218                             next_pindex);
2219                 }
2220 #endif
2221         }
2222
2223         /*
2224          * Extend the object if necessary.
2225          */
2226         if (next_pindex + next_size > prev_object->size)
2227                 prev_object->size = next_pindex + next_size;
2228
2229         VM_OBJECT_UNLOCK(prev_object);
2230         return (TRUE);
2231 }
2232
2233 void
2234 vm_object_set_writeable_dirty(vm_object_t object)
2235 {
2236
2237         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2238         if (object->type != OBJT_VNODE)
2239                 return;
2240         object->generation++;
2241         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2242                 return;
2243         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2244 }
2245
2246 #include "opt_ddb.h"
2247 #ifdef DDB
2248 #include <sys/kernel.h>
2249
2250 #include <sys/cons.h>
2251
2252 #include <ddb/ddb.h>
2253
2254 static int
2255 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2256 {
2257         vm_map_t tmpm;
2258         vm_map_entry_t tmpe;
2259         vm_object_t obj;
2260         int entcount;
2261
2262         if (map == 0)
2263                 return 0;
2264
2265         if (entry == 0) {
2266                 tmpe = map->header.next;
2267                 entcount = map->nentries;
2268                 while (entcount-- && (tmpe != &map->header)) {
2269                         if (_vm_object_in_map(map, object, tmpe)) {
2270                                 return 1;
2271                         }
2272                         tmpe = tmpe->next;
2273                 }
2274         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2275                 tmpm = entry->object.sub_map;
2276                 tmpe = tmpm->header.next;
2277                 entcount = tmpm->nentries;
2278                 while (entcount-- && tmpe != &tmpm->header) {
2279                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2280                                 return 1;
2281                         }
2282                         tmpe = tmpe->next;
2283                 }
2284         } else if ((obj = entry->object.vm_object) != NULL) {
2285                 for (; obj; obj = obj->backing_object)
2286                         if (obj == object) {
2287                                 return 1;
2288                         }
2289         }
2290         return 0;
2291 }
2292
2293 static int
2294 vm_object_in_map(vm_object_t object)
2295 {
2296         struct proc *p;
2297
2298         /* sx_slock(&allproc_lock); */
2299         FOREACH_PROC_IN_SYSTEM(p) {
2300                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2301                         continue;
2302                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2303                         /* sx_sunlock(&allproc_lock); */
2304                         return 1;
2305                 }
2306         }
2307         /* sx_sunlock(&allproc_lock); */
2308         if (_vm_object_in_map(kernel_map, object, 0))
2309                 return 1;
2310         if (_vm_object_in_map(kmem_map, object, 0))
2311                 return 1;
2312         if (_vm_object_in_map(pager_map, object, 0))
2313                 return 1;
2314         if (_vm_object_in_map(buffer_map, object, 0))
2315                 return 1;
2316         return 0;
2317 }
2318
2319 DB_SHOW_COMMAND(vmochk, vm_object_check)
2320 {
2321         vm_object_t object;
2322
2323         /*
2324          * make sure that internal objs are in a map somewhere
2325          * and none have zero ref counts.
2326          */
2327         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2328                 if (object->handle == NULL &&
2329                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2330                         if (object->ref_count == 0) {
2331                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2332                                         (long)object->size);
2333                         }
2334                         if (!vm_object_in_map(object)) {
2335                                 db_printf(
2336                         "vmochk: internal obj is not in a map: "
2337                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2338                                     object->ref_count, (u_long)object->size, 
2339                                     (u_long)object->size,
2340                                     (void *)object->backing_object);
2341                         }
2342                 }
2343         }
2344 }
2345
2346 /*
2347  *      vm_object_print:        [ debug ]
2348  */
2349 DB_SHOW_COMMAND(object, vm_object_print_static)
2350 {
2351         /* XXX convert args. */
2352         vm_object_t object = (vm_object_t)addr;
2353         boolean_t full = have_addr;
2354
2355         vm_page_t p;
2356
2357         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2358 #define count   was_count
2359
2360         int count;
2361
2362         if (object == NULL)
2363                 return;
2364
2365         db_iprintf(
2366             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2367             object, (int)object->type, (uintmax_t)object->size,
2368             object->resident_page_count, object->ref_count, object->flags,
2369             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2370         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2371             object->shadow_count, 
2372             object->backing_object ? object->backing_object->ref_count : 0,
2373             object->backing_object, (uintmax_t)object->backing_object_offset);
2374
2375         if (!full)
2376                 return;
2377
2378         db_indent += 2;
2379         count = 0;
2380         TAILQ_FOREACH(p, &object->memq, listq) {
2381                 if (count == 0)
2382                         db_iprintf("memory:=");
2383                 else if (count == 6) {
2384                         db_printf("\n");
2385                         db_iprintf(" ...");
2386                         count = 0;
2387                 } else
2388                         db_printf(",");
2389                 count++;
2390
2391                 db_printf("(off=0x%jx,page=0x%jx,obj=%p,flags=0x%X)",
2392                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p),
2393                     p->object, p->flags);
2394         }
2395         if (count != 0)
2396                 db_printf("\n");
2397         db_indent -= 2;
2398 }
2399
2400 /* XXX. */
2401 #undef count
2402
2403 /* XXX need this non-static entry for calling from vm_map_print. */
2404 void
2405 vm_object_print(
2406         /* db_expr_t */ long addr,
2407         boolean_t have_addr,
2408         /* db_expr_t */ long count,
2409         char *modif)
2410 {
2411         vm_object_print_static(addr, have_addr, count, modif);
2412 }
2413
2414 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2415 {
2416         vm_object_t object;
2417         vm_pindex_t fidx;
2418         vm_paddr_t pa;
2419         vm_page_t m, prev_m;
2420         int rcount, nl, c;
2421
2422         nl = 0;
2423         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2424                 db_printf("new object: %p\n", (void *)object);
2425                 if (nl > 18) {
2426                         c = cngetc();
2427                         if (c != ' ')
2428                                 return;
2429                         nl = 0;
2430                 }
2431                 nl++;
2432                 rcount = 0;
2433                 fidx = 0;
2434                 pa = -1;
2435                 TAILQ_FOREACH(m, &object->memq, listq) {
2436                         if (m->pindex > 128)
2437                                 break;
2438                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2439                             prev_m->pindex + 1 != m->pindex) {
2440                                 if (rcount) {
2441                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2442                                                 (long)fidx, rcount, (long)pa);
2443                                         if (nl > 18) {
2444                                                 c = cngetc();
2445                                                 if (c != ' ')
2446                                                         return;
2447                                                 nl = 0;
2448                                         }
2449                                         nl++;
2450                                         rcount = 0;
2451                                 }
2452                         }                               
2453                         if (rcount &&
2454                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2455                                 ++rcount;
2456                                 continue;
2457                         }
2458                         if (rcount) {
2459                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2460                                         (long)fidx, rcount, (long)pa);
2461                                 if (nl > 18) {
2462                                         c = cngetc();
2463                                         if (c != ' ')
2464                                                 return;
2465                                         nl = 0;
2466                                 }
2467                                 nl++;
2468                         }
2469                         fidx = m->pindex;
2470                         pa = VM_PAGE_TO_PHYS(m);
2471                         rcount = 1;
2472                 }
2473                 if (rcount) {
2474                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2475                                 (long)fidx, rcount, (long)pa);
2476                         if (nl > 18) {
2477                                 c = cngetc();
2478                                 if (c != ' ')
2479                                         return;
2480                                 nl = 0;
2481                         }
2482                         nl++;
2483                 }
2484         }
2485 }
2486 #endif /* DDB */