]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
MFV r354378,r354379,r354386: 10499 Multi-modifier protection (MMP)
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>           /* for curproc, pageproc */
83 #include <sys/refcount.h>
84 #include <sys/socket.h>
85 #include <sys/resourcevar.h>
86 #include <sys/refcount.h>
87 #include <sys/rwlock.h>
88 #include <sys/user.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91 #include <sys/sx.h>
92
93 #include <vm/vm.h>
94 #include <vm/vm_param.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/swap_pager.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_radix.h>
107 #include <vm/vm_reserv.h>
108 #include <vm/uma.h>
109
110 static int old_msync;
111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112     "Use old (insecure) msync behavior");
113
114 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
115                     int pagerflags, int flags, boolean_t *allclean,
116                     boolean_t *eio);
117 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
118                     boolean_t *allclean);
119 static void     vm_object_qcollapse(vm_object_t object);
120 static void     vm_object_vndeallocate(vm_object_t object);
121
122 /*
123  *      Virtual memory objects maintain the actual data
124  *      associated with allocated virtual memory.  A given
125  *      page of memory exists within exactly one object.
126  *
127  *      An object is only deallocated when all "references"
128  *      are given up.  Only one "reference" to a given
129  *      region of an object should be writeable.
130  *
131  *      Associated with each object is a list of all resident
132  *      memory pages belonging to that object; this list is
133  *      maintained by the "vm_page" module, and locked by the object's
134  *      lock.
135  *
136  *      Each object also records a "pager" routine which is
137  *      used to retrieve (and store) pages to the proper backing
138  *      storage.  In addition, objects may be backed by other
139  *      objects from which they were virtual-copied.
140  *
141  *      The only items within the object structure which are
142  *      modified after time of creation are:
143  *              reference count         locked by object's lock
144  *              pager routine           locked by object's lock
145  *
146  */
147
148 struct object_q vm_object_list;
149 struct mtx vm_object_list_mtx;  /* lock for object list and count */
150
151 struct vm_object kernel_object_store;
152
153 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
154     "VM object stats");
155
156 static counter_u64_t object_collapses = EARLY_COUNTER;
157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
158     &object_collapses,
159     "VM object collapses");
160
161 static counter_u64_t object_bypasses = EARLY_COUNTER;
162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
163     &object_bypasses,
164     "VM object bypasses");
165
166 static void
167 counter_startup(void)
168 {
169
170         object_collapses = counter_u64_alloc(M_WAITOK);
171         object_bypasses = counter_u64_alloc(M_WAITOK);
172 }
173 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
174
175 static uma_zone_t obj_zone;
176
177 static int vm_object_zinit(void *mem, int size, int flags);
178
179 #ifdef INVARIANTS
180 static void vm_object_zdtor(void *mem, int size, void *arg);
181
182 static void
183 vm_object_zdtor(void *mem, int size, void *arg)
184 {
185         vm_object_t object;
186
187         object = (vm_object_t)mem;
188         KASSERT(object->ref_count == 0,
189             ("object %p ref_count = %d", object, object->ref_count));
190         KASSERT(TAILQ_EMPTY(&object->memq),
191             ("object %p has resident pages in its memq", object));
192         KASSERT(vm_radix_is_empty(&object->rtree),
193             ("object %p has resident pages in its trie", object));
194 #if VM_NRESERVLEVEL > 0
195         KASSERT(LIST_EMPTY(&object->rvq),
196             ("object %p has reservations",
197             object));
198 #endif
199         KASSERT(REFCOUNT_COUNT(object->paging_in_progress) == 0,
200             ("object %p paging_in_progress = %d",
201             object, REFCOUNT_COUNT(object->paging_in_progress)));
202         KASSERT(object->busy == 0,
203             ("object %p busy = %d",
204             object, object->busy));
205         KASSERT(object->resident_page_count == 0,
206             ("object %p resident_page_count = %d",
207             object, object->resident_page_count));
208         KASSERT(object->shadow_count == 0,
209             ("object %p shadow_count = %d",
210             object, object->shadow_count));
211         KASSERT(object->type == OBJT_DEAD,
212             ("object %p has non-dead type %d",
213             object, object->type));
214 }
215 #endif
216
217 static int
218 vm_object_zinit(void *mem, int size, int flags)
219 {
220         vm_object_t object;
221
222         object = (vm_object_t)mem;
223         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
224
225         /* These are true for any object that has been freed */
226         object->type = OBJT_DEAD;
227         vm_radix_init(&object->rtree);
228         refcount_init(&object->ref_count, 0);
229         refcount_init(&object->paging_in_progress, 0);
230         refcount_init(&object->busy, 0);
231         object->resident_page_count = 0;
232         object->shadow_count = 0;
233         object->flags = OBJ_DEAD;
234
235         mtx_lock(&vm_object_list_mtx);
236         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
237         mtx_unlock(&vm_object_list_mtx);
238         return (0);
239 }
240
241 static void
242 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
243 {
244
245         TAILQ_INIT(&object->memq);
246         LIST_INIT(&object->shadow_head);
247
248         object->type = type;
249         if (type == OBJT_SWAP)
250                 pctrie_init(&object->un_pager.swp.swp_blks);
251
252         /*
253          * Ensure that swap_pager_swapoff() iteration over object_list
254          * sees up to date type and pctrie head if it observed
255          * non-dead object.
256          */
257         atomic_thread_fence_rel();
258
259         switch (type) {
260         case OBJT_DEAD:
261                 panic("_vm_object_allocate: can't create OBJT_DEAD");
262         case OBJT_DEFAULT:
263         case OBJT_SWAP:
264                 object->flags = OBJ_ONEMAPPING;
265                 break;
266         case OBJT_DEVICE:
267         case OBJT_SG:
268                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
269                 break;
270         case OBJT_MGTDEVICE:
271                 object->flags = OBJ_FICTITIOUS;
272                 break;
273         case OBJT_PHYS:
274                 object->flags = OBJ_UNMANAGED;
275                 break;
276         case OBJT_VNODE:
277                 object->flags = 0;
278                 break;
279         default:
280                 panic("_vm_object_allocate: type %d is undefined", type);
281         }
282         object->size = size;
283         object->domain.dr_policy = NULL;
284         object->generation = 1;
285         object->cleangeneration = 1;
286         refcount_init(&object->ref_count, 1);
287         object->memattr = VM_MEMATTR_DEFAULT;
288         object->cred = NULL;
289         object->charge = 0;
290         object->handle = NULL;
291         object->backing_object = NULL;
292         object->backing_object_offset = (vm_ooffset_t) 0;
293 #if VM_NRESERVLEVEL > 0
294         LIST_INIT(&object->rvq);
295 #endif
296         umtx_shm_object_init(object);
297 }
298
299 /*
300  *      vm_object_init:
301  *
302  *      Initialize the VM objects module.
303  */
304 void
305 vm_object_init(void)
306 {
307         TAILQ_INIT(&vm_object_list);
308         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
309         
310         rw_init(&kernel_object->lock, "kernel vm object");
311         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
312             VM_MIN_KERNEL_ADDRESS), kernel_object);
313 #if VM_NRESERVLEVEL > 0
314         kernel_object->flags |= OBJ_COLORED;
315         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
316 #endif
317
318         /*
319          * The lock portion of struct vm_object must be type stable due
320          * to vm_pageout_fallback_object_lock locking a vm object
321          * without holding any references to it.
322          */
323         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
324 #ifdef INVARIANTS
325             vm_object_zdtor,
326 #else
327             NULL,
328 #endif
329             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
330
331         vm_radix_zinit();
332 }
333
334 void
335 vm_object_clear_flag(vm_object_t object, u_short bits)
336 {
337
338         VM_OBJECT_ASSERT_WLOCKED(object);
339         object->flags &= ~bits;
340 }
341
342 /*
343  *      Sets the default memory attribute for the specified object.  Pages
344  *      that are allocated to this object are by default assigned this memory
345  *      attribute.
346  *
347  *      Presently, this function must be called before any pages are allocated
348  *      to the object.  In the future, this requirement may be relaxed for
349  *      "default" and "swap" objects.
350  */
351 int
352 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
353 {
354
355         VM_OBJECT_ASSERT_WLOCKED(object);
356         switch (object->type) {
357         case OBJT_DEFAULT:
358         case OBJT_DEVICE:
359         case OBJT_MGTDEVICE:
360         case OBJT_PHYS:
361         case OBJT_SG:
362         case OBJT_SWAP:
363         case OBJT_VNODE:
364                 if (!TAILQ_EMPTY(&object->memq))
365                         return (KERN_FAILURE);
366                 break;
367         case OBJT_DEAD:
368                 return (KERN_INVALID_ARGUMENT);
369         default:
370                 panic("vm_object_set_memattr: object %p is of undefined type",
371                     object);
372         }
373         object->memattr = memattr;
374         return (KERN_SUCCESS);
375 }
376
377 void
378 vm_object_pip_add(vm_object_t object, short i)
379 {
380
381         refcount_acquiren(&object->paging_in_progress, i);
382 }
383
384 void
385 vm_object_pip_wakeup(vm_object_t object)
386 {
387
388         refcount_release(&object->paging_in_progress);
389 }
390
391 void
392 vm_object_pip_wakeupn(vm_object_t object, short i)
393 {
394
395         refcount_releasen(&object->paging_in_progress, i);
396 }
397
398 void
399 vm_object_pip_wait(vm_object_t object, char *waitid)
400 {
401
402         VM_OBJECT_ASSERT_WLOCKED(object);
403
404         while (REFCOUNT_COUNT(object->paging_in_progress) > 0) {
405                 VM_OBJECT_WUNLOCK(object);
406                 refcount_wait(&object->paging_in_progress, waitid, PVM);
407                 VM_OBJECT_WLOCK(object);
408         }
409 }
410
411 void
412 vm_object_pip_wait_unlocked(vm_object_t object, char *waitid)
413 {
414
415         VM_OBJECT_ASSERT_UNLOCKED(object);
416
417         while (REFCOUNT_COUNT(object->paging_in_progress) > 0)
418                 refcount_wait(&object->paging_in_progress, waitid, PVM);
419 }
420
421 /*
422  *      vm_object_allocate:
423  *
424  *      Returns a new object with the given size.
425  */
426 vm_object_t
427 vm_object_allocate(objtype_t type, vm_pindex_t size)
428 {
429         vm_object_t object;
430
431         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
432         _vm_object_allocate(type, size, object);
433         return (object);
434 }
435
436
437 /*
438  *      vm_object_reference:
439  *
440  *      Gets another reference to the given object.  Note: OBJ_DEAD
441  *      objects can be referenced during final cleaning.
442  */
443 void
444 vm_object_reference(vm_object_t object)
445 {
446         if (object == NULL)
447                 return;
448         VM_OBJECT_RLOCK(object);
449         vm_object_reference_locked(object);
450         VM_OBJECT_RUNLOCK(object);
451 }
452
453 /*
454  *      vm_object_reference_locked:
455  *
456  *      Gets another reference to the given object.
457  *
458  *      The object must be locked.
459  */
460 void
461 vm_object_reference_locked(vm_object_t object)
462 {
463         struct vnode *vp;
464
465         VM_OBJECT_ASSERT_LOCKED(object);
466         refcount_acquire(&object->ref_count);
467         if (object->type == OBJT_VNODE) {
468                 vp = object->handle;
469                 vref(vp);
470         }
471 }
472
473 /*
474  * Handle deallocating an object of type OBJT_VNODE.
475  */
476 static void
477 vm_object_vndeallocate(vm_object_t object)
478 {
479         struct vnode *vp = (struct vnode *) object->handle;
480
481         KASSERT(object->type == OBJT_VNODE,
482             ("vm_object_vndeallocate: not a vnode object"));
483         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
484
485         if (refcount_release(&object->ref_count) &&
486             !umtx_shm_vnobj_persistent)
487                 umtx_shm_object_terminated(object);
488
489         VM_OBJECT_RUNLOCK(object);
490         /* vrele may need the vnode lock. */
491         vrele(vp);
492 }
493
494 /*
495  *      vm_object_deallocate:
496  *
497  *      Release a reference to the specified object,
498  *      gained either through a vm_object_allocate
499  *      or a vm_object_reference call.  When all references
500  *      are gone, storage associated with this object
501  *      may be relinquished.
502  *
503  *      No object may be locked.
504  */
505 void
506 vm_object_deallocate(vm_object_t object)
507 {
508         vm_object_t temp;
509         bool released;
510
511         while (object != NULL) {
512                 VM_OBJECT_RLOCK(object);
513                 if (object->type == OBJT_VNODE) {
514                         vm_object_vndeallocate(object);
515                         return;
516                 }
517
518                 /*
519                  * If the reference count goes to 0 we start calling
520                  * vm_object_terminate() on the object chain.  A ref count
521                  * of 1 may be a special case depending on the shadow count
522                  * being 0 or 1.  These cases require a write lock on the
523                  * object.
524                  */
525                 released = refcount_release_if_gt(&object->ref_count, 2);
526                 VM_OBJECT_RUNLOCK(object);
527                 if (released)
528                         return;
529
530                 VM_OBJECT_WLOCK(object);
531                 KASSERT(object->ref_count != 0,
532                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
533
534                 refcount_release(&object->ref_count);
535                 if (object->ref_count > 1) {
536                         VM_OBJECT_WUNLOCK(object);
537                         return;
538                 } else if (object->ref_count == 1) {
539                         if (object->shadow_count == 0 &&
540                             object->handle == NULL &&
541                             (object->type == OBJT_DEFAULT ||
542                             (object->type == OBJT_SWAP &&
543                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
544                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
545                         } else if ((object->shadow_count == 1) &&
546                             (object->handle == NULL) &&
547                             (object->type == OBJT_DEFAULT ||
548                              object->type == OBJT_SWAP)) {
549                                 vm_object_t robject;
550
551                                 robject = LIST_FIRST(&object->shadow_head);
552                                 KASSERT(robject != NULL,
553                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
554                                          object->ref_count,
555                                          object->shadow_count));
556                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
557                                     ("shadowed tmpfs v_object %p", object));
558                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
559                                         /*
560                                          * Avoid a potential deadlock.
561                                          */
562                                         refcount_acquire(&object->ref_count);
563                                         VM_OBJECT_WUNLOCK(object);
564                                         /*
565                                          * More likely than not the thread
566                                          * holding robject's lock has lower
567                                          * priority than the current thread.
568                                          * Let the lower priority thread run.
569                                          */
570                                         pause("vmo_de", 1);
571                                         continue;
572                                 }
573                                 /*
574                                  * Collapse object into its shadow unless its
575                                  * shadow is dead.  In that case, object will
576                                  * be deallocated by the thread that is
577                                  * deallocating its shadow.
578                                  */
579                                 if ((robject->flags & OBJ_DEAD) == 0 &&
580                                     (robject->handle == NULL) &&
581                                     (robject->type == OBJT_DEFAULT ||
582                                      robject->type == OBJT_SWAP)) {
583
584                                         refcount_acquire(&robject->ref_count);
585 retry:
586                                         if (REFCOUNT_COUNT(robject->paging_in_progress) > 0) {
587                                                 VM_OBJECT_WUNLOCK(object);
588                                                 vm_object_pip_wait(robject,
589                                                     "objde1");
590                                                 temp = robject->backing_object;
591                                                 if (object == temp) {
592                                                         VM_OBJECT_WLOCK(object);
593                                                         goto retry;
594                                                 }
595                                         } else if (REFCOUNT_COUNT(object->paging_in_progress) > 0) {
596                                                 VM_OBJECT_WUNLOCK(robject);
597                                                 VM_OBJECT_WUNLOCK(object);
598                                                 refcount_wait(
599                                                     &object->paging_in_progress,
600                                                     "objde2", PVM);
601                                                 VM_OBJECT_WLOCK(robject);
602                                                 temp = robject->backing_object;
603                                                 if (object == temp) {
604                                                         VM_OBJECT_WLOCK(object);
605                                                         goto retry;
606                                                 }
607                                         } else
608                                                 VM_OBJECT_WUNLOCK(object);
609
610                                         if (robject->ref_count == 1) {
611                                                 robject->ref_count--;
612                                                 object = robject;
613                                                 goto doterm;
614                                         }
615                                         object = robject;
616                                         vm_object_collapse(object);
617                                         VM_OBJECT_WUNLOCK(object);
618                                         continue;
619                                 }
620                                 VM_OBJECT_WUNLOCK(robject);
621                         }
622                         VM_OBJECT_WUNLOCK(object);
623                         return;
624                 }
625 doterm:
626                 umtx_shm_object_terminated(object);
627                 temp = object->backing_object;
628                 if (temp != NULL) {
629                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
630                             ("shadowed tmpfs v_object 2 %p", object));
631                         VM_OBJECT_WLOCK(temp);
632                         LIST_REMOVE(object, shadow_list);
633                         temp->shadow_count--;
634                         VM_OBJECT_WUNLOCK(temp);
635                         object->backing_object = NULL;
636                 }
637                 /*
638                  * Don't double-terminate, we could be in a termination
639                  * recursion due to the terminate having to sync data
640                  * to disk.
641                  */
642                 if ((object->flags & OBJ_DEAD) == 0) {
643                         vm_object_set_flag(object, OBJ_DEAD);
644                         vm_object_terminate(object);
645                 } else
646                         VM_OBJECT_WUNLOCK(object);
647                 object = temp;
648         }
649 }
650
651 /*
652  *      vm_object_destroy removes the object from the global object list
653  *      and frees the space for the object.
654  */
655 void
656 vm_object_destroy(vm_object_t object)
657 {
658
659         /*
660          * Release the allocation charge.
661          */
662         if (object->cred != NULL) {
663                 swap_release_by_cred(object->charge, object->cred);
664                 object->charge = 0;
665                 crfree(object->cred);
666                 object->cred = NULL;
667         }
668
669         /*
670          * Free the space for the object.
671          */
672         uma_zfree(obj_zone, object);
673 }
674
675 /*
676  *      vm_object_terminate_pages removes any remaining pageable pages
677  *      from the object and resets the object to an empty state.
678  */
679 static void
680 vm_object_terminate_pages(vm_object_t object)
681 {
682         vm_page_t p, p_next;
683
684         VM_OBJECT_ASSERT_WLOCKED(object);
685
686         /*
687          * Free any remaining pageable pages.  This also removes them from the
688          * paging queues.  However, don't free wired pages, just remove them
689          * from the object.  Rather than incrementally removing each page from
690          * the object, the page and object are reset to any empty state. 
691          */
692         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
693                 vm_page_assert_unbusied(p);
694                 KASSERT(p->object == object &&
695                     (p->ref_count & VPRC_OBJREF) != 0,
696                     ("vm_object_terminate_pages: page %p is inconsistent", p));
697
698                 p->object = NULL;
699                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
700                         VM_CNT_INC(v_pfree);
701                         vm_page_free(p);
702                 }
703         }
704
705         /*
706          * If the object contained any pages, then reset it to an empty state.
707          * None of the object's fields, including "resident_page_count", were
708          * modified by the preceding loop.
709          */
710         if (object->resident_page_count != 0) {
711                 vm_radix_reclaim_allnodes(&object->rtree);
712                 TAILQ_INIT(&object->memq);
713                 object->resident_page_count = 0;
714                 if (object->type == OBJT_VNODE)
715                         vdrop(object->handle);
716         }
717 }
718
719 /*
720  *      vm_object_terminate actually destroys the specified object, freeing
721  *      up all previously used resources.
722  *
723  *      The object must be locked.
724  *      This routine may block.
725  */
726 void
727 vm_object_terminate(vm_object_t object)
728 {
729         VM_OBJECT_ASSERT_WLOCKED(object);
730         KASSERT((object->flags & OBJ_DEAD) != 0,
731             ("terminating non-dead obj %p", object));
732
733         /*
734          * wait for the pageout daemon to be done with the object
735          */
736         vm_object_pip_wait(object, "objtrm");
737
738         KASSERT(!REFCOUNT_COUNT(object->paging_in_progress),
739                 ("vm_object_terminate: pageout in progress"));
740
741         KASSERT(object->ref_count == 0, 
742                 ("vm_object_terminate: object with references, ref_count=%d",
743                 object->ref_count));
744
745         if ((object->flags & OBJ_PG_DTOR) == 0)
746                 vm_object_terminate_pages(object);
747
748 #if VM_NRESERVLEVEL > 0
749         if (__predict_false(!LIST_EMPTY(&object->rvq)))
750                 vm_reserv_break_all(object);
751 #endif
752
753         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
754             object->type == OBJT_SWAP,
755             ("%s: non-swap obj %p has cred", __func__, object));
756
757         /*
758          * Let the pager know object is dead.
759          */
760         vm_pager_deallocate(object);
761         VM_OBJECT_WUNLOCK(object);
762
763         vm_object_destroy(object);
764 }
765
766 /*
767  * Make the page read-only so that we can clear the object flags.  However, if
768  * this is a nosync mmap then the object is likely to stay dirty so do not
769  * mess with the page and do not clear the object flags.  Returns TRUE if the
770  * page should be flushed, and FALSE otherwise.
771  */
772 static boolean_t
773 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
774 {
775
776         vm_page_assert_busied(p);
777
778         /*
779          * If we have been asked to skip nosync pages and this is a
780          * nosync page, skip it.  Note that the object flags were not
781          * cleared in this case so we do not have to set them.
782          */
783         if ((flags & OBJPC_NOSYNC) != 0 && (p->aflags & PGA_NOSYNC) != 0) {
784                 *allclean = FALSE;
785                 return (FALSE);
786         } else {
787                 pmap_remove_write(p);
788                 return (p->dirty != 0);
789         }
790 }
791
792 /*
793  *      vm_object_page_clean
794  *
795  *      Clean all dirty pages in the specified range of object.  Leaves page 
796  *      on whatever queue it is currently on.   If NOSYNC is set then do not
797  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
798  *      leaving the object dirty.
799  *
800  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
801  *      synchronous clustering mode implementation.
802  *
803  *      Odd semantics: if start == end, we clean everything.
804  *
805  *      The object must be locked.
806  *
807  *      Returns FALSE if some page from the range was not written, as
808  *      reported by the pager, and TRUE otherwise.
809  */
810 boolean_t
811 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
812     int flags)
813 {
814         vm_page_t np, p;
815         vm_pindex_t pi, tend, tstart;
816         int curgeneration, n, pagerflags;
817         boolean_t eio, res, allclean;
818
819         VM_OBJECT_ASSERT_WLOCKED(object);
820
821         if (object->type != OBJT_VNODE || !vm_object_mightbedirty(object) ||
822             object->resident_page_count == 0)
823                 return (TRUE);
824
825         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
826             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
827         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
828
829         tstart = OFF_TO_IDX(start);
830         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
831         allclean = tstart == 0 && tend >= object->size;
832         res = TRUE;
833
834 rescan:
835         curgeneration = object->generation;
836
837         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
838                 pi = p->pindex;
839                 if (pi >= tend)
840                         break;
841                 np = TAILQ_NEXT(p, listq);
842                 if (vm_page_none_valid(p))
843                         continue;
844                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
845                         if (object->generation != curgeneration &&
846                             (flags & OBJPC_SYNC) != 0)
847                                 goto rescan;
848                         np = vm_page_find_least(object, pi);
849                         continue;
850                 }
851                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
852                         vm_page_xunbusy(p);
853                         continue;
854                 }
855
856                 n = vm_object_page_collect_flush(object, p, pagerflags,
857                     flags, &allclean, &eio);
858                 if (eio) {
859                         res = FALSE;
860                         allclean = FALSE;
861                 }
862                 if (object->generation != curgeneration &&
863                     (flags & OBJPC_SYNC) != 0)
864                         goto rescan;
865
866                 /*
867                  * If the VOP_PUTPAGES() did a truncated write, so
868                  * that even the first page of the run is not fully
869                  * written, vm_pageout_flush() returns 0 as the run
870                  * length.  Since the condition that caused truncated
871                  * write may be permanent, e.g. exhausted free space,
872                  * accepting n == 0 would cause an infinite loop.
873                  *
874                  * Forwarding the iterator leaves the unwritten page
875                  * behind, but there is not much we can do there if
876                  * filesystem refuses to write it.
877                  */
878                 if (n == 0) {
879                         n = 1;
880                         allclean = FALSE;
881                 }
882                 np = vm_page_find_least(object, pi + n);
883         }
884 #if 0
885         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
886 #endif
887
888         if (allclean)
889                 object->cleangeneration = curgeneration;
890         return (res);
891 }
892
893 static int
894 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
895     int flags, boolean_t *allclean, boolean_t *eio)
896 {
897         vm_page_t ma[vm_pageout_page_count], p_first, tp;
898         int count, i, mreq, runlen;
899
900         vm_page_lock_assert(p, MA_NOTOWNED);
901         vm_page_assert_xbusied(p);
902         VM_OBJECT_ASSERT_WLOCKED(object);
903
904         count = 1;
905         mreq = 0;
906
907         for (tp = p; count < vm_pageout_page_count; count++) {
908                 tp = vm_page_next(tp);
909                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
910                         break;
911                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
912                         vm_page_xunbusy(tp);
913                         break;
914                 }
915         }
916
917         for (p_first = p; count < vm_pageout_page_count; count++) {
918                 tp = vm_page_prev(p_first);
919                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
920                         break;
921                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
922                         vm_page_xunbusy(tp);
923                         break;
924                 }
925                 p_first = tp;
926                 mreq++;
927         }
928
929         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
930                 ma[i] = tp;
931
932         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
933         return (runlen);
934 }
935
936 /*
937  * Note that there is absolutely no sense in writing out
938  * anonymous objects, so we track down the vnode object
939  * to write out.
940  * We invalidate (remove) all pages from the address space
941  * for semantic correctness.
942  *
943  * If the backing object is a device object with unmanaged pages, then any
944  * mappings to the specified range of pages must be removed before this
945  * function is called.
946  *
947  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
948  * may start out with a NULL object.
949  */
950 boolean_t
951 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
952     boolean_t syncio, boolean_t invalidate)
953 {
954         vm_object_t backing_object;
955         struct vnode *vp;
956         struct mount *mp;
957         int error, flags, fsync_after;
958         boolean_t res;
959
960         if (object == NULL)
961                 return (TRUE);
962         res = TRUE;
963         error = 0;
964         VM_OBJECT_WLOCK(object);
965         while ((backing_object = object->backing_object) != NULL) {
966                 VM_OBJECT_WLOCK(backing_object);
967                 offset += object->backing_object_offset;
968                 VM_OBJECT_WUNLOCK(object);
969                 object = backing_object;
970                 if (object->size < OFF_TO_IDX(offset + size))
971                         size = IDX_TO_OFF(object->size) - offset;
972         }
973         /*
974          * Flush pages if writing is allowed, invalidate them
975          * if invalidation requested.  Pages undergoing I/O
976          * will be ignored by vm_object_page_remove().
977          *
978          * We cannot lock the vnode and then wait for paging
979          * to complete without deadlocking against vm_fault.
980          * Instead we simply call vm_object_page_remove() and
981          * allow it to block internally on a page-by-page
982          * basis when it encounters pages undergoing async
983          * I/O.
984          */
985         if (object->type == OBJT_VNODE &&
986             vm_object_mightbedirty(object) != 0 &&
987             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
988                 VM_OBJECT_WUNLOCK(object);
989                 (void) vn_start_write(vp, &mp, V_WAIT);
990                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
991                 if (syncio && !invalidate && offset == 0 &&
992                     atop(size) == object->size) {
993                         /*
994                          * If syncing the whole mapping of the file,
995                          * it is faster to schedule all the writes in
996                          * async mode, also allowing the clustering,
997                          * and then wait for i/o to complete.
998                          */
999                         flags = 0;
1000                         fsync_after = TRUE;
1001                 } else {
1002                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1003                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1004                         fsync_after = FALSE;
1005                 }
1006                 VM_OBJECT_WLOCK(object);
1007                 res = vm_object_page_clean(object, offset, offset + size,
1008                     flags);
1009                 VM_OBJECT_WUNLOCK(object);
1010                 if (fsync_after)
1011                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1012                 VOP_UNLOCK(vp, 0);
1013                 vn_finished_write(mp);
1014                 if (error != 0)
1015                         res = FALSE;
1016                 VM_OBJECT_WLOCK(object);
1017         }
1018         if ((object->type == OBJT_VNODE ||
1019              object->type == OBJT_DEVICE) && invalidate) {
1020                 if (object->type == OBJT_DEVICE)
1021                         /*
1022                          * The option OBJPR_NOTMAPPED must be passed here
1023                          * because vm_object_page_remove() cannot remove
1024                          * unmanaged mappings.
1025                          */
1026                         flags = OBJPR_NOTMAPPED;
1027                 else if (old_msync)
1028                         flags = 0;
1029                 else
1030                         flags = OBJPR_CLEANONLY;
1031                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1032                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1033         }
1034         VM_OBJECT_WUNLOCK(object);
1035         return (res);
1036 }
1037
1038 /*
1039  * Determine whether the given advice can be applied to the object.  Advice is
1040  * not applied to unmanaged pages since they never belong to page queues, and
1041  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1042  * have been mapped at most once.
1043  */
1044 static bool
1045 vm_object_advice_applies(vm_object_t object, int advice)
1046 {
1047
1048         if ((object->flags & OBJ_UNMANAGED) != 0)
1049                 return (false);
1050         if (advice != MADV_FREE)
1051                 return (true);
1052         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1053             (object->flags & OBJ_ONEMAPPING) != 0);
1054 }
1055
1056 static void
1057 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1058     vm_size_t size)
1059 {
1060
1061         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1062                 swap_pager_freespace(object, pindex, size);
1063 }
1064
1065 /*
1066  *      vm_object_madvise:
1067  *
1068  *      Implements the madvise function at the object/page level.
1069  *
1070  *      MADV_WILLNEED   (any object)
1071  *
1072  *          Activate the specified pages if they are resident.
1073  *
1074  *      MADV_DONTNEED   (any object)
1075  *
1076  *          Deactivate the specified pages if they are resident.
1077  *
1078  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1079  *                       OBJ_ONEMAPPING only)
1080  *
1081  *          Deactivate and clean the specified pages if they are
1082  *          resident.  This permits the process to reuse the pages
1083  *          without faulting or the kernel to reclaim the pages
1084  *          without I/O.
1085  */
1086 void
1087 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1088     int advice)
1089 {
1090         vm_pindex_t tpindex;
1091         vm_object_t backing_object, tobject;
1092         vm_page_t m, tm;
1093
1094         if (object == NULL)
1095                 return;
1096
1097 relookup:
1098         VM_OBJECT_WLOCK(object);
1099         if (!vm_object_advice_applies(object, advice)) {
1100                 VM_OBJECT_WUNLOCK(object);
1101                 return;
1102         }
1103         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1104                 tobject = object;
1105
1106                 /*
1107                  * If the next page isn't resident in the top-level object, we
1108                  * need to search the shadow chain.  When applying MADV_FREE, we
1109                  * take care to release any swap space used to store
1110                  * non-resident pages.
1111                  */
1112                 if (m == NULL || pindex < m->pindex) {
1113                         /*
1114                          * Optimize a common case: if the top-level object has
1115                          * no backing object, we can skip over the non-resident
1116                          * range in constant time.
1117                          */
1118                         if (object->backing_object == NULL) {
1119                                 tpindex = (m != NULL && m->pindex < end) ?
1120                                     m->pindex : end;
1121                                 vm_object_madvise_freespace(object, advice,
1122                                     pindex, tpindex - pindex);
1123                                 if ((pindex = tpindex) == end)
1124                                         break;
1125                                 goto next_page;
1126                         }
1127
1128                         tpindex = pindex;
1129                         do {
1130                                 vm_object_madvise_freespace(tobject, advice,
1131                                     tpindex, 1);
1132                                 /*
1133                                  * Prepare to search the next object in the
1134                                  * chain.
1135                                  */
1136                                 backing_object = tobject->backing_object;
1137                                 if (backing_object == NULL)
1138                                         goto next_pindex;
1139                                 VM_OBJECT_WLOCK(backing_object);
1140                                 tpindex +=
1141                                     OFF_TO_IDX(tobject->backing_object_offset);
1142                                 if (tobject != object)
1143                                         VM_OBJECT_WUNLOCK(tobject);
1144                                 tobject = backing_object;
1145                                 if (!vm_object_advice_applies(tobject, advice))
1146                                         goto next_pindex;
1147                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1148                             NULL);
1149                 } else {
1150 next_page:
1151                         tm = m;
1152                         m = TAILQ_NEXT(m, listq);
1153                 }
1154
1155                 /*
1156                  * If the page is not in a normal state, skip it.  The page
1157                  * can not be invalidated while the object lock is held.
1158                  */
1159                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1160                         goto next_pindex;
1161                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1162                     ("vm_object_madvise: page %p is fictitious", tm));
1163                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1164                     ("vm_object_madvise: page %p is not managed", tm));
1165                 if (vm_page_tryxbusy(tm) == 0) {
1166                         if (object != tobject)
1167                                 VM_OBJECT_WUNLOCK(object);
1168                         if (advice == MADV_WILLNEED) {
1169                                 /*
1170                                  * Reference the page before unlocking and
1171                                  * sleeping so that the page daemon is less
1172                                  * likely to reclaim it.
1173                                  */
1174                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1175                         }
1176                         vm_page_busy_sleep(tm, "madvpo", false);
1177                         goto relookup;
1178                 }
1179                 vm_page_lock(tm);
1180                 vm_page_advise(tm, advice);
1181                 vm_page_unlock(tm);
1182                 vm_page_xunbusy(tm);
1183                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1184 next_pindex:
1185                 if (tobject != object)
1186                         VM_OBJECT_WUNLOCK(tobject);
1187         }
1188         VM_OBJECT_WUNLOCK(object);
1189 }
1190
1191 /*
1192  *      vm_object_shadow:
1193  *
1194  *      Create a new object which is backed by the
1195  *      specified existing object range.  The source
1196  *      object reference is deallocated.
1197  *
1198  *      The new object and offset into that object
1199  *      are returned in the source parameters.
1200  */
1201 void
1202 vm_object_shadow(
1203         vm_object_t *object,    /* IN/OUT */
1204         vm_ooffset_t *offset,   /* IN/OUT */
1205         vm_size_t length)
1206 {
1207         vm_object_t source;
1208         vm_object_t result;
1209
1210         source = *object;
1211
1212         /*
1213          * Don't create the new object if the old object isn't shared.
1214          */
1215         if (source != NULL) {
1216                 VM_OBJECT_RLOCK(source);
1217                 if (source->ref_count == 1 &&
1218                     source->handle == NULL &&
1219                     (source->type == OBJT_DEFAULT ||
1220                      source->type == OBJT_SWAP)) {
1221                         VM_OBJECT_RUNLOCK(source);
1222                         return;
1223                 }
1224                 VM_OBJECT_RUNLOCK(source);
1225         }
1226
1227         /*
1228          * Allocate a new object with the given length.
1229          */
1230         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1231
1232         /*
1233          * The new object shadows the source object, adding a reference to it.
1234          * Our caller changes his reference to point to the new object,
1235          * removing a reference to the source object.  Net result: no change
1236          * of reference count.
1237          *
1238          * Try to optimize the result object's page color when shadowing
1239          * in order to maintain page coloring consistency in the combined 
1240          * shadowed object.
1241          */
1242         result->backing_object = source;
1243         /*
1244          * Store the offset into the source object, and fix up the offset into
1245          * the new object.
1246          */
1247         result->backing_object_offset = *offset;
1248         if (source != NULL) {
1249                 VM_OBJECT_WLOCK(source);
1250                 result->domain = source->domain;
1251                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1252                 source->shadow_count++;
1253 #if VM_NRESERVLEVEL > 0
1254                 result->flags |= source->flags & OBJ_COLORED;
1255                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1256                     ((1 << (VM_NFREEORDER - 1)) - 1);
1257 #endif
1258                 VM_OBJECT_WUNLOCK(source);
1259         }
1260
1261
1262         /*
1263          * Return the new things
1264          */
1265         *offset = 0;
1266         *object = result;
1267 }
1268
1269 /*
1270  *      vm_object_split:
1271  *
1272  * Split the pages in a map entry into a new object.  This affords
1273  * easier removal of unused pages, and keeps object inheritance from
1274  * being a negative impact on memory usage.
1275  */
1276 void
1277 vm_object_split(vm_map_entry_t entry)
1278 {
1279         vm_page_t m, m_next;
1280         vm_object_t orig_object, new_object, source;
1281         vm_pindex_t idx, offidxstart;
1282         vm_size_t size;
1283
1284         orig_object = entry->object.vm_object;
1285         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1286                 return;
1287         if (orig_object->ref_count <= 1)
1288                 return;
1289         VM_OBJECT_WUNLOCK(orig_object);
1290
1291         offidxstart = OFF_TO_IDX(entry->offset);
1292         size = atop(entry->end - entry->start);
1293
1294         /*
1295          * If swap_pager_copy() is later called, it will convert new_object
1296          * into a swap object.
1297          */
1298         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1299
1300         /*
1301          * At this point, the new object is still private, so the order in
1302          * which the original and new objects are locked does not matter.
1303          */
1304         VM_OBJECT_WLOCK(new_object);
1305         VM_OBJECT_WLOCK(orig_object);
1306         new_object->domain = orig_object->domain;
1307         source = orig_object->backing_object;
1308         if (source != NULL) {
1309                 VM_OBJECT_WLOCK(source);
1310                 if ((source->flags & OBJ_DEAD) != 0) {
1311                         VM_OBJECT_WUNLOCK(source);
1312                         VM_OBJECT_WUNLOCK(orig_object);
1313                         VM_OBJECT_WUNLOCK(new_object);
1314                         vm_object_deallocate(new_object);
1315                         VM_OBJECT_WLOCK(orig_object);
1316                         return;
1317                 }
1318                 LIST_INSERT_HEAD(&source->shadow_head,
1319                                   new_object, shadow_list);
1320                 source->shadow_count++;
1321                 vm_object_reference_locked(source);     /* for new_object */
1322                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1323                 VM_OBJECT_WUNLOCK(source);
1324                 new_object->backing_object_offset = 
1325                         orig_object->backing_object_offset + entry->offset;
1326                 new_object->backing_object = source;
1327         }
1328         if (orig_object->cred != NULL) {
1329                 new_object->cred = orig_object->cred;
1330                 crhold(orig_object->cred);
1331                 new_object->charge = ptoa(size);
1332                 KASSERT(orig_object->charge >= ptoa(size),
1333                     ("orig_object->charge < 0"));
1334                 orig_object->charge -= ptoa(size);
1335         }
1336 retry:
1337         m = vm_page_find_least(orig_object, offidxstart);
1338         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1339             m = m_next) {
1340                 m_next = TAILQ_NEXT(m, listq);
1341
1342                 /*
1343                  * We must wait for pending I/O to complete before we can
1344                  * rename the page.
1345                  *
1346                  * We do not have to VM_PROT_NONE the page as mappings should
1347                  * not be changed by this operation.
1348                  */
1349                 if (vm_page_tryxbusy(m) == 0) {
1350                         VM_OBJECT_WUNLOCK(new_object);
1351                         vm_page_sleep_if_busy(m, "spltwt");
1352                         VM_OBJECT_WLOCK(new_object);
1353                         goto retry;
1354                 }
1355
1356                 /* vm_page_rename() will dirty the page. */
1357                 if (vm_page_rename(m, new_object, idx)) {
1358                         vm_page_xunbusy(m);
1359                         VM_OBJECT_WUNLOCK(new_object);
1360                         VM_OBJECT_WUNLOCK(orig_object);
1361                         vm_radix_wait();
1362                         VM_OBJECT_WLOCK(orig_object);
1363                         VM_OBJECT_WLOCK(new_object);
1364                         goto retry;
1365                 }
1366
1367 #if VM_NRESERVLEVEL > 0
1368                 /*
1369                  * If some of the reservation's allocated pages remain with
1370                  * the original object, then transferring the reservation to
1371                  * the new object is neither particularly beneficial nor
1372                  * particularly harmful as compared to leaving the reservation
1373                  * with the original object.  If, however, all of the
1374                  * reservation's allocated pages are transferred to the new
1375                  * object, then transferring the reservation is typically
1376                  * beneficial.  Determining which of these two cases applies
1377                  * would be more costly than unconditionally renaming the
1378                  * reservation.
1379                  */
1380                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1381 #endif
1382                 if (orig_object->type != OBJT_SWAP)
1383                         vm_page_xunbusy(m);
1384         }
1385         if (orig_object->type == OBJT_SWAP) {
1386                 /*
1387                  * swap_pager_copy() can sleep, in which case the orig_object's
1388                  * and new_object's locks are released and reacquired. 
1389                  */
1390                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1391                 TAILQ_FOREACH(m, &new_object->memq, listq)
1392                         vm_page_xunbusy(m);
1393         }
1394         VM_OBJECT_WUNLOCK(orig_object);
1395         VM_OBJECT_WUNLOCK(new_object);
1396         entry->object.vm_object = new_object;
1397         entry->offset = 0LL;
1398         vm_object_deallocate(orig_object);
1399         VM_OBJECT_WLOCK(new_object);
1400 }
1401
1402 #define OBSC_COLLAPSE_NOWAIT    0x0002
1403 #define OBSC_COLLAPSE_WAIT      0x0004
1404
1405 static vm_page_t
1406 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1407     int op)
1408 {
1409         vm_object_t backing_object;
1410
1411         VM_OBJECT_ASSERT_WLOCKED(object);
1412         backing_object = object->backing_object;
1413         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1414
1415         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1416             ("invalid ownership %p %p %p", p, object, backing_object));
1417         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1418                 return (next);
1419         /* The page is only NULL when rename fails. */
1420         if (p == NULL) {
1421                 vm_radix_wait();
1422         } else {
1423                 if (p->object == object)
1424                         VM_OBJECT_WUNLOCK(backing_object);
1425                 else
1426                         VM_OBJECT_WUNLOCK(object);
1427                 vm_page_busy_sleep(p, "vmocol", false);
1428         }
1429         VM_OBJECT_WLOCK(object);
1430         VM_OBJECT_WLOCK(backing_object);
1431         return (TAILQ_FIRST(&backing_object->memq));
1432 }
1433
1434 static bool
1435 vm_object_scan_all_shadowed(vm_object_t object)
1436 {
1437         vm_object_t backing_object;
1438         vm_page_t p, pp;
1439         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1440
1441         VM_OBJECT_ASSERT_WLOCKED(object);
1442         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1443
1444         backing_object = object->backing_object;
1445
1446         if (backing_object->type != OBJT_DEFAULT &&
1447             backing_object->type != OBJT_SWAP)
1448                 return (false);
1449
1450         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1451         p = vm_page_find_least(backing_object, pi);
1452         ps = swap_pager_find_least(backing_object, pi);
1453
1454         /*
1455          * Only check pages inside the parent object's range and
1456          * inside the parent object's mapping of the backing object.
1457          */
1458         for (;; pi++) {
1459                 if (p != NULL && p->pindex < pi)
1460                         p = TAILQ_NEXT(p, listq);
1461                 if (ps < pi)
1462                         ps = swap_pager_find_least(backing_object, pi);
1463                 if (p == NULL && ps >= backing_object->size)
1464                         break;
1465                 else if (p == NULL)
1466                         pi = ps;
1467                 else
1468                         pi = MIN(p->pindex, ps);
1469
1470                 new_pindex = pi - backing_offset_index;
1471                 if (new_pindex >= object->size)
1472                         break;
1473
1474                 /*
1475                  * See if the parent has the page or if the parent's object
1476                  * pager has the page.  If the parent has the page but the page
1477                  * is not valid, the parent's object pager must have the page.
1478                  *
1479                  * If this fails, the parent does not completely shadow the
1480                  * object and we might as well give up now.
1481                  */
1482                 pp = vm_page_lookup(object, new_pindex);
1483                 /*
1484                  * The valid check here is stable due to object lock being
1485                  * required to clear valid and initiate paging.
1486                  */
1487                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1488                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1489                         return (false);
1490         }
1491         return (true);
1492 }
1493
1494 static bool
1495 vm_object_collapse_scan(vm_object_t object, int op)
1496 {
1497         vm_object_t backing_object;
1498         vm_page_t next, p, pp;
1499         vm_pindex_t backing_offset_index, new_pindex;
1500
1501         VM_OBJECT_ASSERT_WLOCKED(object);
1502         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1503
1504         backing_object = object->backing_object;
1505         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1506
1507         /*
1508          * Initial conditions
1509          */
1510         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1511                 vm_object_set_flag(backing_object, OBJ_DEAD);
1512
1513         /*
1514          * Our scan
1515          */
1516         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1517                 next = TAILQ_NEXT(p, listq);
1518                 new_pindex = p->pindex - backing_offset_index;
1519
1520                 /*
1521                  * Check for busy page
1522                  */
1523                 if (vm_page_tryxbusy(p) == 0) {
1524                         next = vm_object_collapse_scan_wait(object, p, next, op);
1525                         continue;
1526                 }
1527
1528                 KASSERT(p->object == backing_object,
1529                     ("vm_object_collapse_scan: object mismatch"));
1530
1531                 if (p->pindex < backing_offset_index ||
1532                     new_pindex >= object->size) {
1533                         if (backing_object->type == OBJT_SWAP)
1534                                 swap_pager_freespace(backing_object, p->pindex,
1535                                     1);
1536
1537                         KASSERT(!pmap_page_is_mapped(p),
1538                             ("freeing mapped page %p", p));
1539                         if (vm_page_remove(p))
1540                                 vm_page_free(p);
1541                         else
1542                                 vm_page_xunbusy(p);
1543                         continue;
1544                 }
1545
1546                 pp = vm_page_lookup(object, new_pindex);
1547                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1548                         vm_page_xunbusy(p);
1549                         /*
1550                          * The page in the parent is busy and possibly not
1551                          * (yet) valid.  Until its state is finalized by the
1552                          * busy bit owner, we can't tell whether it shadows the
1553                          * original page.  Therefore, we must either skip it
1554                          * and the original (backing_object) page or wait for
1555                          * its state to be finalized.
1556                          *
1557                          * This is due to a race with vm_fault() where we must
1558                          * unbusy the original (backing_obj) page before we can
1559                          * (re)lock the parent.  Hence we can get here.
1560                          */
1561                         next = vm_object_collapse_scan_wait(object, pp, next,
1562                             op);
1563                         continue;
1564                 }
1565
1566                 KASSERT(pp == NULL || !vm_page_none_valid(pp),
1567                     ("unbusy invalid page %p", pp));
1568
1569                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1570                         NULL)) {
1571                         /*
1572                          * The page already exists in the parent OR swap exists
1573                          * for this location in the parent.  Leave the parent's
1574                          * page alone.  Destroy the original page from the
1575                          * backing object.
1576                          */
1577                         if (backing_object->type == OBJT_SWAP)
1578                                 swap_pager_freespace(backing_object, p->pindex,
1579                                     1);
1580                         KASSERT(!pmap_page_is_mapped(p),
1581                             ("freeing mapped page %p", p));
1582                         if (vm_page_remove(p))
1583                                 vm_page_free(p);
1584                         else
1585                                 vm_page_xunbusy(p);
1586                         if (pp != NULL)
1587                                 vm_page_xunbusy(pp);
1588                         continue;
1589                 }
1590
1591                 /*
1592                  * Page does not exist in parent, rename the page from the
1593                  * backing object to the main object.
1594                  *
1595                  * If the page was mapped to a process, it can remain mapped
1596                  * through the rename.  vm_page_rename() will dirty the page.
1597                  */
1598                 if (vm_page_rename(p, object, new_pindex)) {
1599                         vm_page_xunbusy(p);
1600                         if (pp != NULL)
1601                                 vm_page_xunbusy(pp);
1602                         next = vm_object_collapse_scan_wait(object, NULL, next,
1603                             op);
1604                         continue;
1605                 }
1606
1607                 /* Use the old pindex to free the right page. */
1608                 if (backing_object->type == OBJT_SWAP)
1609                         swap_pager_freespace(backing_object,
1610                             new_pindex + backing_offset_index, 1);
1611
1612 #if VM_NRESERVLEVEL > 0
1613                 /*
1614                  * Rename the reservation.
1615                  */
1616                 vm_reserv_rename(p, object, backing_object,
1617                     backing_offset_index);
1618 #endif
1619                 vm_page_xunbusy(p);
1620         }
1621         return (true);
1622 }
1623
1624
1625 /*
1626  * this version of collapse allows the operation to occur earlier and
1627  * when paging_in_progress is true for an object...  This is not a complete
1628  * operation, but should plug 99.9% of the rest of the leaks.
1629  */
1630 static void
1631 vm_object_qcollapse(vm_object_t object)
1632 {
1633         vm_object_t backing_object = object->backing_object;
1634
1635         VM_OBJECT_ASSERT_WLOCKED(object);
1636         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1637
1638         if (backing_object->ref_count != 1)
1639                 return;
1640
1641         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1642 }
1643
1644 /*
1645  *      vm_object_collapse:
1646  *
1647  *      Collapse an object with the object backing it.
1648  *      Pages in the backing object are moved into the
1649  *      parent, and the backing object is deallocated.
1650  */
1651 void
1652 vm_object_collapse(vm_object_t object)
1653 {
1654         vm_object_t backing_object, new_backing_object;
1655
1656         VM_OBJECT_ASSERT_WLOCKED(object);
1657
1658         while (TRUE) {
1659                 /*
1660                  * Verify that the conditions are right for collapse:
1661                  *
1662                  * The object exists and the backing object exists.
1663                  */
1664                 if ((backing_object = object->backing_object) == NULL)
1665                         break;
1666
1667                 /*
1668                  * we check the backing object first, because it is most likely
1669                  * not collapsable.
1670                  */
1671                 VM_OBJECT_WLOCK(backing_object);
1672                 if (backing_object->handle != NULL ||
1673                     (backing_object->type != OBJT_DEFAULT &&
1674                     backing_object->type != OBJT_SWAP) ||
1675                     (backing_object->flags & (OBJ_DEAD | OBJ_NOSPLIT)) != 0 ||
1676                     object->handle != NULL ||
1677                     (object->type != OBJT_DEFAULT &&
1678                      object->type != OBJT_SWAP) ||
1679                     (object->flags & OBJ_DEAD)) {
1680                         VM_OBJECT_WUNLOCK(backing_object);
1681                         break;
1682                 }
1683
1684                 if (REFCOUNT_COUNT(object->paging_in_progress) > 0 ||
1685                     REFCOUNT_COUNT(backing_object->paging_in_progress) > 0) {
1686                         vm_object_qcollapse(object);
1687                         VM_OBJECT_WUNLOCK(backing_object);
1688                         break;
1689                 }
1690
1691                 /*
1692                  * We know that we can either collapse the backing object (if
1693                  * the parent is the only reference to it) or (perhaps) have
1694                  * the parent bypass the object if the parent happens to shadow
1695                  * all the resident pages in the entire backing object.
1696                  *
1697                  * This is ignoring pager-backed pages such as swap pages.
1698                  * vm_object_collapse_scan fails the shadowing test in this
1699                  * case.
1700                  */
1701                 if (backing_object->ref_count == 1) {
1702                         vm_object_pip_add(object, 1);
1703                         vm_object_pip_add(backing_object, 1);
1704
1705                         /*
1706                          * If there is exactly one reference to the backing
1707                          * object, we can collapse it into the parent.
1708                          */
1709                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1710
1711 #if VM_NRESERVLEVEL > 0
1712                         /*
1713                          * Break any reservations from backing_object.
1714                          */
1715                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1716                                 vm_reserv_break_all(backing_object);
1717 #endif
1718
1719                         /*
1720                          * Move the pager from backing_object to object.
1721                          */
1722                         if (backing_object->type == OBJT_SWAP) {
1723                                 /*
1724                                  * swap_pager_copy() can sleep, in which case
1725                                  * the backing_object's and object's locks are
1726                                  * released and reacquired.
1727                                  * Since swap_pager_copy() is being asked to
1728                                  * destroy the source, it will change the
1729                                  * backing_object's type to OBJT_DEFAULT.
1730                                  */
1731                                 swap_pager_copy(
1732                                     backing_object,
1733                                     object,
1734                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1735                         }
1736                         /*
1737                          * Object now shadows whatever backing_object did.
1738                          * Note that the reference to 
1739                          * backing_object->backing_object moves from within 
1740                          * backing_object to within object.
1741                          */
1742                         LIST_REMOVE(object, shadow_list);
1743                         backing_object->shadow_count--;
1744                         if (backing_object->backing_object) {
1745                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1746                                 LIST_REMOVE(backing_object, shadow_list);
1747                                 LIST_INSERT_HEAD(
1748                                     &backing_object->backing_object->shadow_head,
1749                                     object, shadow_list);
1750                                 /*
1751                                  * The shadow_count has not changed.
1752                                  */
1753                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1754                         }
1755                         object->backing_object = backing_object->backing_object;
1756                         object->backing_object_offset +=
1757                             backing_object->backing_object_offset;
1758
1759                         /*
1760                          * Discard backing_object.
1761                          *
1762                          * Since the backing object has no pages, no pager left,
1763                          * and no object references within it, all that is
1764                          * necessary is to dispose of it.
1765                          */
1766                         KASSERT(backing_object->ref_count == 1, (
1767 "backing_object %p was somehow re-referenced during collapse!",
1768                             backing_object));
1769                         vm_object_pip_wakeup(backing_object);
1770                         backing_object->type = OBJT_DEAD;
1771                         backing_object->ref_count = 0;
1772                         VM_OBJECT_WUNLOCK(backing_object);
1773                         vm_object_destroy(backing_object);
1774
1775                         vm_object_pip_wakeup(object);
1776                         counter_u64_add(object_collapses, 1);
1777                 } else {
1778                         /*
1779                          * If we do not entirely shadow the backing object,
1780                          * there is nothing we can do so we give up.
1781                          */
1782                         if (object->resident_page_count != object->size &&
1783                             !vm_object_scan_all_shadowed(object)) {
1784                                 VM_OBJECT_WUNLOCK(backing_object);
1785                                 break;
1786                         }
1787
1788                         /*
1789                          * Make the parent shadow the next object in the
1790                          * chain.  Deallocating backing_object will not remove
1791                          * it, since its reference count is at least 2.
1792                          */
1793                         LIST_REMOVE(object, shadow_list);
1794                         backing_object->shadow_count--;
1795
1796                         new_backing_object = backing_object->backing_object;
1797                         if ((object->backing_object = new_backing_object) != NULL) {
1798                                 VM_OBJECT_WLOCK(new_backing_object);
1799                                 LIST_INSERT_HEAD(
1800                                     &new_backing_object->shadow_head,
1801                                     object,
1802                                     shadow_list
1803                                 );
1804                                 new_backing_object->shadow_count++;
1805                                 vm_object_reference_locked(new_backing_object);
1806                                 VM_OBJECT_WUNLOCK(new_backing_object);
1807                                 object->backing_object_offset +=
1808                                         backing_object->backing_object_offset;
1809                         }
1810
1811                         /*
1812                          * Drop the reference count on backing_object. Since
1813                          * its ref_count was at least 2, it will not vanish.
1814                          */
1815                         refcount_release(&backing_object->ref_count);
1816                         VM_OBJECT_WUNLOCK(backing_object);
1817                         counter_u64_add(object_bypasses, 1);
1818                 }
1819
1820                 /*
1821                  * Try again with this object's new backing object.
1822                  */
1823         }
1824 }
1825
1826 /*
1827  *      vm_object_page_remove:
1828  *
1829  *      For the given object, either frees or invalidates each of the
1830  *      specified pages.  In general, a page is freed.  However, if a page is
1831  *      wired for any reason other than the existence of a managed, wired
1832  *      mapping, then it may be invalidated but not removed from the object.
1833  *      Pages are specified by the given range ["start", "end") and the option
1834  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1835  *      extends from "start" to the end of the object.  If the option
1836  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1837  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1838  *      specified, then the pages within the specified range must have no
1839  *      mappings.  Otherwise, if this option is not specified, any mappings to
1840  *      the specified pages are removed before the pages are freed or
1841  *      invalidated.
1842  *
1843  *      In general, this operation should only be performed on objects that
1844  *      contain managed pages.  There are, however, two exceptions.  First, it
1845  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1846  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1847  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1848  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1849  *
1850  *      The object must be locked.
1851  */
1852 void
1853 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1854     int options)
1855 {
1856         vm_page_t p, next;
1857
1858         VM_OBJECT_ASSERT_WLOCKED(object);
1859         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1860             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1861             ("vm_object_page_remove: illegal options for object %p", object));
1862         if (object->resident_page_count == 0)
1863                 return;
1864         vm_object_pip_add(object, 1);
1865 again:
1866         p = vm_page_find_least(object, start);
1867
1868         /*
1869          * Here, the variable "p" is either (1) the page with the least pindex
1870          * greater than or equal to the parameter "start" or (2) NULL. 
1871          */
1872         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1873                 next = TAILQ_NEXT(p, listq);
1874
1875                 /*
1876                  * If the page is wired for any reason besides the existence
1877                  * of managed, wired mappings, then it cannot be freed.  For
1878                  * example, fictitious pages, which represent device memory,
1879                  * are inherently wired and cannot be freed.  They can,
1880                  * however, be invalidated if the option OBJPR_CLEANONLY is
1881                  * not specified.
1882                  */
1883                 if (vm_page_tryxbusy(p) == 0) {
1884                         vm_page_sleep_if_busy(p, "vmopar");
1885                         goto again;
1886                 }
1887                 if (vm_page_wired(p)) {
1888 wired:
1889                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1890                             object->ref_count != 0)
1891                                 pmap_remove_all(p);
1892                         if ((options & OBJPR_CLEANONLY) == 0) {
1893                                 vm_page_invalid(p);
1894                                 vm_page_undirty(p);
1895                         }
1896                         vm_page_xunbusy(p);
1897                         continue;
1898                 }
1899                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1900                     ("vm_object_page_remove: page %p is fictitious", p));
1901                 if ((options & OBJPR_CLEANONLY) != 0 &&
1902                     !vm_page_none_valid(p)) {
1903                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1904                             object->ref_count != 0 &&
1905                             !vm_page_try_remove_write(p))
1906                                 goto wired;
1907                         if (p->dirty != 0) {
1908                                 vm_page_xunbusy(p);
1909                                 continue;
1910                         }
1911                 }
1912                 if ((options & OBJPR_NOTMAPPED) == 0 &&
1913                     object->ref_count != 0 && !vm_page_try_remove_all(p))
1914                         goto wired;
1915                 vm_page_free(p);
1916         }
1917         vm_object_pip_wakeup(object);
1918 }
1919
1920 /*
1921  *      vm_object_page_noreuse:
1922  *
1923  *      For the given object, attempt to move the specified pages to
1924  *      the head of the inactive queue.  This bypasses regular LRU
1925  *      operation and allows the pages to be reused quickly under memory
1926  *      pressure.  If a page is wired for any reason, then it will not
1927  *      be queued.  Pages are specified by the range ["start", "end").
1928  *      As a special case, if "end" is zero, then the range extends from
1929  *      "start" to the end of the object.
1930  *
1931  *      This operation should only be performed on objects that
1932  *      contain non-fictitious, managed pages.
1933  *
1934  *      The object must be locked.
1935  */
1936 void
1937 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1938 {
1939         struct mtx *mtx;
1940         vm_page_t p, next;
1941
1942         VM_OBJECT_ASSERT_LOCKED(object);
1943         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1944             ("vm_object_page_noreuse: illegal object %p", object));
1945         if (object->resident_page_count == 0)
1946                 return;
1947         p = vm_page_find_least(object, start);
1948
1949         /*
1950          * Here, the variable "p" is either (1) the page with the least pindex
1951          * greater than or equal to the parameter "start" or (2) NULL. 
1952          */
1953         mtx = NULL;
1954         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1955                 next = TAILQ_NEXT(p, listq);
1956                 vm_page_change_lock(p, &mtx);
1957                 vm_page_deactivate_noreuse(p);
1958         }
1959         if (mtx != NULL)
1960                 mtx_unlock(mtx);
1961 }
1962
1963 /*
1964  *      Populate the specified range of the object with valid pages.  Returns
1965  *      TRUE if the range is successfully populated and FALSE otherwise.
1966  *
1967  *      Note: This function should be optimized to pass a larger array of
1968  *      pages to vm_pager_get_pages() before it is applied to a non-
1969  *      OBJT_DEVICE object.
1970  *
1971  *      The object must be locked.
1972  */
1973 boolean_t
1974 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1975 {
1976         vm_page_t m;
1977         vm_pindex_t pindex;
1978         int rv;
1979
1980         VM_OBJECT_ASSERT_WLOCKED(object);
1981         for (pindex = start; pindex < end; pindex++) {
1982                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
1983                 if (rv != VM_PAGER_OK)
1984                         break;
1985
1986                 /*
1987                  * Keep "m" busy because a subsequent iteration may unlock
1988                  * the object.
1989                  */
1990         }
1991         if (pindex > start) {
1992                 m = vm_page_lookup(object, start);
1993                 while (m != NULL && m->pindex < pindex) {
1994                         vm_page_xunbusy(m);
1995                         m = TAILQ_NEXT(m, listq);
1996                 }
1997         }
1998         return (pindex == end);
1999 }
2000
2001 /*
2002  *      Routine:        vm_object_coalesce
2003  *      Function:       Coalesces two objects backing up adjoining
2004  *                      regions of memory into a single object.
2005  *
2006  *      returns TRUE if objects were combined.
2007  *
2008  *      NOTE:   Only works at the moment if the second object is NULL -
2009  *              if it's not, which object do we lock first?
2010  *
2011  *      Parameters:
2012  *              prev_object     First object to coalesce
2013  *              prev_offset     Offset into prev_object
2014  *              prev_size       Size of reference to prev_object
2015  *              next_size       Size of reference to the second object
2016  *              reserved        Indicator that extension region has
2017  *                              swap accounted for
2018  *
2019  *      Conditions:
2020  *      The object must *not* be locked.
2021  */
2022 boolean_t
2023 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2024     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2025 {
2026         vm_pindex_t next_pindex;
2027
2028         if (prev_object == NULL)
2029                 return (TRUE);
2030         VM_OBJECT_WLOCK(prev_object);
2031         if ((prev_object->type != OBJT_DEFAULT &&
2032             prev_object->type != OBJT_SWAP) ||
2033             (prev_object->flags & OBJ_NOSPLIT) != 0) {
2034                 VM_OBJECT_WUNLOCK(prev_object);
2035                 return (FALSE);
2036         }
2037
2038         /*
2039          * Try to collapse the object first
2040          */
2041         vm_object_collapse(prev_object);
2042
2043         /*
2044          * Can't coalesce if: . more than one reference . paged out . shadows
2045          * another object . has a copy elsewhere (any of which mean that the
2046          * pages not mapped to prev_entry may be in use anyway)
2047          */
2048         if (prev_object->backing_object != NULL) {
2049                 VM_OBJECT_WUNLOCK(prev_object);
2050                 return (FALSE);
2051         }
2052
2053         prev_size >>= PAGE_SHIFT;
2054         next_size >>= PAGE_SHIFT;
2055         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2056
2057         if (prev_object->ref_count > 1 &&
2058             prev_object->size != next_pindex &&
2059             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2060                 VM_OBJECT_WUNLOCK(prev_object);
2061                 return (FALSE);
2062         }
2063
2064         /*
2065          * Account for the charge.
2066          */
2067         if (prev_object->cred != NULL) {
2068
2069                 /*
2070                  * If prev_object was charged, then this mapping,
2071                  * although not charged now, may become writable
2072                  * later. Non-NULL cred in the object would prevent
2073                  * swap reservation during enabling of the write
2074                  * access, so reserve swap now. Failed reservation
2075                  * cause allocation of the separate object for the map
2076                  * entry, and swap reservation for this entry is
2077                  * managed in appropriate time.
2078                  */
2079                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2080                     prev_object->cred)) {
2081                         VM_OBJECT_WUNLOCK(prev_object);
2082                         return (FALSE);
2083                 }
2084                 prev_object->charge += ptoa(next_size);
2085         }
2086
2087         /*
2088          * Remove any pages that may still be in the object from a previous
2089          * deallocation.
2090          */
2091         if (next_pindex < prev_object->size) {
2092                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2093                     next_size, 0);
2094                 if (prev_object->type == OBJT_SWAP)
2095                         swap_pager_freespace(prev_object,
2096                                              next_pindex, next_size);
2097 #if 0
2098                 if (prev_object->cred != NULL) {
2099                         KASSERT(prev_object->charge >=
2100                             ptoa(prev_object->size - next_pindex),
2101                             ("object %p overcharged 1 %jx %jx", prev_object,
2102                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2103                         prev_object->charge -= ptoa(prev_object->size -
2104                             next_pindex);
2105                 }
2106 #endif
2107         }
2108
2109         /*
2110          * Extend the object if necessary.
2111          */
2112         if (next_pindex + next_size > prev_object->size)
2113                 prev_object->size = next_pindex + next_size;
2114
2115         VM_OBJECT_WUNLOCK(prev_object);
2116         return (TRUE);
2117 }
2118
2119 void
2120 vm_object_set_writeable_dirty(vm_object_t object)
2121 {
2122
2123         VM_OBJECT_ASSERT_LOCKED(object);
2124
2125         /* Only set for vnodes & tmpfs */
2126         if (object->type != OBJT_VNODE &&
2127             (object->flags & OBJ_TMPFS_NODE) == 0)
2128                 return;
2129         atomic_add_int(&object->generation, 1);
2130 }
2131
2132 /*
2133  *      vm_object_unwire:
2134  *
2135  *      For each page offset within the specified range of the given object,
2136  *      find the highest-level page in the shadow chain and unwire it.  A page
2137  *      must exist at every page offset, and the highest-level page must be
2138  *      wired.
2139  */
2140 void
2141 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2142     uint8_t queue)
2143 {
2144         vm_object_t tobject, t1object;
2145         vm_page_t m, tm;
2146         vm_pindex_t end_pindex, pindex, tpindex;
2147         int depth, locked_depth;
2148
2149         KASSERT((offset & PAGE_MASK) == 0,
2150             ("vm_object_unwire: offset is not page aligned"));
2151         KASSERT((length & PAGE_MASK) == 0,
2152             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2153         /* The wired count of a fictitious page never changes. */
2154         if ((object->flags & OBJ_FICTITIOUS) != 0)
2155                 return;
2156         pindex = OFF_TO_IDX(offset);
2157         end_pindex = pindex + atop(length);
2158 again:
2159         locked_depth = 1;
2160         VM_OBJECT_RLOCK(object);
2161         m = vm_page_find_least(object, pindex);
2162         while (pindex < end_pindex) {
2163                 if (m == NULL || pindex < m->pindex) {
2164                         /*
2165                          * The first object in the shadow chain doesn't
2166                          * contain a page at the current index.  Therefore,
2167                          * the page must exist in a backing object.
2168                          */
2169                         tobject = object;
2170                         tpindex = pindex;
2171                         depth = 0;
2172                         do {
2173                                 tpindex +=
2174                                     OFF_TO_IDX(tobject->backing_object_offset);
2175                                 tobject = tobject->backing_object;
2176                                 KASSERT(tobject != NULL,
2177                                     ("vm_object_unwire: missing page"));
2178                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2179                                         goto next_page;
2180                                 depth++;
2181                                 if (depth == locked_depth) {
2182                                         locked_depth++;
2183                                         VM_OBJECT_RLOCK(tobject);
2184                                 }
2185                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2186                             NULL);
2187                 } else {
2188                         tm = m;
2189                         m = TAILQ_NEXT(m, listq);
2190                 }
2191                 if (vm_page_trysbusy(tm) == 0) {
2192                         for (tobject = object; locked_depth >= 1;
2193                             locked_depth--) {
2194                                 t1object = tobject->backing_object;
2195                                 if (tm->object != tobject)
2196                                         VM_OBJECT_RUNLOCK(tobject);
2197                                 tobject = t1object;
2198                         }
2199                         vm_page_busy_sleep(tm, "unwbo", true);
2200                         goto again;
2201                 }
2202                 vm_page_unwire(tm, queue);
2203                 vm_page_sunbusy(tm);
2204 next_page:
2205                 pindex++;
2206         }
2207         /* Release the accumulated object locks. */
2208         for (tobject = object; locked_depth >= 1; locked_depth--) {
2209                 t1object = tobject->backing_object;
2210                 VM_OBJECT_RUNLOCK(tobject);
2211                 tobject = t1object;
2212         }
2213 }
2214
2215 /*
2216  * Return the vnode for the given object, or NULL if none exists.
2217  * For tmpfs objects, the function may return NULL if there is
2218  * no vnode allocated at the time of the call.
2219  */
2220 struct vnode *
2221 vm_object_vnode(vm_object_t object)
2222 {
2223         struct vnode *vp;
2224
2225         VM_OBJECT_ASSERT_LOCKED(object);
2226         if (object->type == OBJT_VNODE) {
2227                 vp = object->handle;
2228                 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2229         } else if (object->type == OBJT_SWAP &&
2230             (object->flags & OBJ_TMPFS) != 0) {
2231                 vp = object->un_pager.swp.swp_tmpfs;
2232                 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2233         } else {
2234                 vp = NULL;
2235         }
2236         return (vp);
2237 }
2238
2239
2240 /*
2241  * Busy the vm object.  This prevents new pages belonging to the object from
2242  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2243  * for checking page state before proceeding.
2244  */
2245 void
2246 vm_object_busy(vm_object_t obj)
2247 {
2248
2249         VM_OBJECT_ASSERT_LOCKED(obj);
2250
2251         refcount_acquire(&obj->busy);
2252         /* The fence is required to order loads of page busy. */
2253         atomic_thread_fence_acq_rel();
2254 }
2255
2256 void
2257 vm_object_unbusy(vm_object_t obj)
2258 {
2259
2260
2261         refcount_release(&obj->busy);
2262 }
2263
2264 void
2265 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2266 {
2267
2268         VM_OBJECT_ASSERT_UNLOCKED(obj);
2269
2270         if (obj->busy)
2271                 refcount_sleep(&obj->busy, wmesg, PVM);
2272 }
2273
2274 /*
2275  * Return the kvme type of the given object.
2276  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2277  */
2278 int
2279 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2280 {
2281
2282         VM_OBJECT_ASSERT_LOCKED(object);
2283         if (vpp != NULL)
2284                 *vpp = vm_object_vnode(object);
2285         switch (object->type) {
2286         case OBJT_DEFAULT:
2287                 return (KVME_TYPE_DEFAULT);
2288         case OBJT_VNODE:
2289                 return (KVME_TYPE_VNODE);
2290         case OBJT_SWAP:
2291                 if ((object->flags & OBJ_TMPFS_NODE) != 0)
2292                         return (KVME_TYPE_VNODE);
2293                 return (KVME_TYPE_SWAP);
2294         case OBJT_DEVICE:
2295                 return (KVME_TYPE_DEVICE);
2296         case OBJT_PHYS:
2297                 return (KVME_TYPE_PHYS);
2298         case OBJT_DEAD:
2299                 return (KVME_TYPE_DEAD);
2300         case OBJT_SG:
2301                 return (KVME_TYPE_SG);
2302         case OBJT_MGTDEVICE:
2303                 return (KVME_TYPE_MGTDEVICE);
2304         default:
2305                 return (KVME_TYPE_UNKNOWN);
2306         }
2307 }
2308
2309 static int
2310 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2311 {
2312         struct kinfo_vmobject *kvo;
2313         char *fullpath, *freepath;
2314         struct vnode *vp;
2315         struct vattr va;
2316         vm_object_t obj;
2317         vm_page_t m;
2318         int count, error;
2319
2320         if (req->oldptr == NULL) {
2321                 /*
2322                  * If an old buffer has not been provided, generate an
2323                  * estimate of the space needed for a subsequent call.
2324                  */
2325                 mtx_lock(&vm_object_list_mtx);
2326                 count = 0;
2327                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2328                         if (obj->type == OBJT_DEAD)
2329                                 continue;
2330                         count++;
2331                 }
2332                 mtx_unlock(&vm_object_list_mtx);
2333                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2334                     count * 11 / 10));
2335         }
2336
2337         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2338         error = 0;
2339
2340         /*
2341          * VM objects are type stable and are never removed from the
2342          * list once added.  This allows us to safely read obj->object_list
2343          * after reacquiring the VM object lock.
2344          */
2345         mtx_lock(&vm_object_list_mtx);
2346         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2347                 if (obj->type == OBJT_DEAD)
2348                         continue;
2349                 VM_OBJECT_RLOCK(obj);
2350                 if (obj->type == OBJT_DEAD) {
2351                         VM_OBJECT_RUNLOCK(obj);
2352                         continue;
2353                 }
2354                 mtx_unlock(&vm_object_list_mtx);
2355                 kvo->kvo_size = ptoa(obj->size);
2356                 kvo->kvo_resident = obj->resident_page_count;
2357                 kvo->kvo_ref_count = obj->ref_count;
2358                 kvo->kvo_shadow_count = obj->shadow_count;
2359                 kvo->kvo_memattr = obj->memattr;
2360                 kvo->kvo_active = 0;
2361                 kvo->kvo_inactive = 0;
2362                 TAILQ_FOREACH(m, &obj->memq, listq) {
2363                         /*
2364                          * A page may belong to the object but be
2365                          * dequeued and set to PQ_NONE while the
2366                          * object lock is not held.  This makes the
2367                          * reads of m->queue below racy, and we do not
2368                          * count pages set to PQ_NONE.  However, this
2369                          * sysctl is only meant to give an
2370                          * approximation of the system anyway.
2371                          */
2372                         if (m->queue == PQ_ACTIVE)
2373                                 kvo->kvo_active++;
2374                         else if (m->queue == PQ_INACTIVE)
2375                                 kvo->kvo_inactive++;
2376                 }
2377
2378                 kvo->kvo_vn_fileid = 0;
2379                 kvo->kvo_vn_fsid = 0;
2380                 kvo->kvo_vn_fsid_freebsd11 = 0;
2381                 freepath = NULL;
2382                 fullpath = "";
2383                 kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2384                 if (vp != NULL)
2385                         vref(vp);
2386                 VM_OBJECT_RUNLOCK(obj);
2387                 if (vp != NULL) {
2388                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2389                         vn_lock(vp, LK_SHARED | LK_RETRY);
2390                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2391                                 kvo->kvo_vn_fileid = va.va_fileid;
2392                                 kvo->kvo_vn_fsid = va.va_fsid;
2393                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2394                                                                 /* truncate */
2395                         }
2396                         vput(vp);
2397                 }
2398
2399                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2400                 if (freepath != NULL)
2401                         free(freepath, M_TEMP);
2402
2403                 /* Pack record size down */
2404                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2405                     + strlen(kvo->kvo_path) + 1;
2406                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2407                     sizeof(uint64_t));
2408                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2409                 mtx_lock(&vm_object_list_mtx);
2410                 if (error)
2411                         break;
2412         }
2413         mtx_unlock(&vm_object_list_mtx);
2414         free(kvo, M_TEMP);
2415         return (error);
2416 }
2417 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2418     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2419     "List of VM objects");
2420
2421 #include "opt_ddb.h"
2422 #ifdef DDB
2423 #include <sys/kernel.h>
2424
2425 #include <sys/cons.h>
2426
2427 #include <ddb/ddb.h>
2428
2429 static int
2430 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2431 {
2432         vm_map_t tmpm;
2433         vm_map_entry_t tmpe;
2434         vm_object_t obj;
2435
2436         if (map == 0)
2437                 return 0;
2438
2439         if (entry == 0) {
2440                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2441                         if (_vm_object_in_map(map, object, tmpe)) {
2442                                 return 1;
2443                         }
2444                 }
2445         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2446                 tmpm = entry->object.sub_map;
2447                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2448                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2449                                 return 1;
2450                         }
2451                 }
2452         } else if ((obj = entry->object.vm_object) != NULL) {
2453                 for (; obj; obj = obj->backing_object)
2454                         if (obj == object) {
2455                                 return 1;
2456                         }
2457         }
2458         return 0;
2459 }
2460
2461 static int
2462 vm_object_in_map(vm_object_t object)
2463 {
2464         struct proc *p;
2465
2466         /* sx_slock(&allproc_lock); */
2467         FOREACH_PROC_IN_SYSTEM(p) {
2468                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2469                         continue;
2470                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2471                         /* sx_sunlock(&allproc_lock); */
2472                         return 1;
2473                 }
2474         }
2475         /* sx_sunlock(&allproc_lock); */
2476         if (_vm_object_in_map(kernel_map, object, 0))
2477                 return 1;
2478         return 0;
2479 }
2480
2481 DB_SHOW_COMMAND(vmochk, vm_object_check)
2482 {
2483         vm_object_t object;
2484
2485         /*
2486          * make sure that internal objs are in a map somewhere
2487          * and none have zero ref counts.
2488          */
2489         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2490                 if (object->handle == NULL &&
2491                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2492                         if (object->ref_count == 0) {
2493                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2494                                         (long)object->size);
2495                         }
2496                         if (!vm_object_in_map(object)) {
2497                                 db_printf(
2498                         "vmochk: internal obj is not in a map: "
2499                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2500                                     object->ref_count, (u_long)object->size, 
2501                                     (u_long)object->size,
2502                                     (void *)object->backing_object);
2503                         }
2504                 }
2505         }
2506 }
2507
2508 /*
2509  *      vm_object_print:        [ debug ]
2510  */
2511 DB_SHOW_COMMAND(object, vm_object_print_static)
2512 {
2513         /* XXX convert args. */
2514         vm_object_t object = (vm_object_t)addr;
2515         boolean_t full = have_addr;
2516
2517         vm_page_t p;
2518
2519         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2520 #define count   was_count
2521
2522         int count;
2523
2524         if (object == NULL)
2525                 return;
2526
2527         db_iprintf(
2528             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2529             object, (int)object->type, (uintmax_t)object->size,
2530             object->resident_page_count, object->ref_count, object->flags,
2531             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2532         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2533             object->shadow_count, 
2534             object->backing_object ? object->backing_object->ref_count : 0,
2535             object->backing_object, (uintmax_t)object->backing_object_offset);
2536
2537         if (!full)
2538                 return;
2539
2540         db_indent += 2;
2541         count = 0;
2542         TAILQ_FOREACH(p, &object->memq, listq) {
2543                 if (count == 0)
2544                         db_iprintf("memory:=");
2545                 else if (count == 6) {
2546                         db_printf("\n");
2547                         db_iprintf(" ...");
2548                         count = 0;
2549                 } else
2550                         db_printf(",");
2551                 count++;
2552
2553                 db_printf("(off=0x%jx,page=0x%jx)",
2554                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2555         }
2556         if (count != 0)
2557                 db_printf("\n");
2558         db_indent -= 2;
2559 }
2560
2561 /* XXX. */
2562 #undef count
2563
2564 /* XXX need this non-static entry for calling from vm_map_print. */
2565 void
2566 vm_object_print(
2567         /* db_expr_t */ long addr,
2568         boolean_t have_addr,
2569         /* db_expr_t */ long count,
2570         char *modif)
2571 {
2572         vm_object_print_static(addr, have_addr, count, modif);
2573 }
2574
2575 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2576 {
2577         vm_object_t object;
2578         vm_pindex_t fidx;
2579         vm_paddr_t pa;
2580         vm_page_t m, prev_m;
2581         int rcount, nl, c;
2582
2583         nl = 0;
2584         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2585                 db_printf("new object: %p\n", (void *)object);
2586                 if (nl > 18) {
2587                         c = cngetc();
2588                         if (c != ' ')
2589                                 return;
2590                         nl = 0;
2591                 }
2592                 nl++;
2593                 rcount = 0;
2594                 fidx = 0;
2595                 pa = -1;
2596                 TAILQ_FOREACH(m, &object->memq, listq) {
2597                         if (m->pindex > 128)
2598                                 break;
2599                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2600                             prev_m->pindex + 1 != m->pindex) {
2601                                 if (rcount) {
2602                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2603                                                 (long)fidx, rcount, (long)pa);
2604                                         if (nl > 18) {
2605                                                 c = cngetc();
2606                                                 if (c != ' ')
2607                                                         return;
2608                                                 nl = 0;
2609                                         }
2610                                         nl++;
2611                                         rcount = 0;
2612                                 }
2613                         }                               
2614                         if (rcount &&
2615                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2616                                 ++rcount;
2617                                 continue;
2618                         }
2619                         if (rcount) {
2620                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2621                                         (long)fidx, rcount, (long)pa);
2622                                 if (nl > 18) {
2623                                         c = cngetc();
2624                                         if (c != ' ')
2625                                                 return;
2626                                         nl = 0;
2627                                 }
2628                                 nl++;
2629                         }
2630                         fidx = m->pindex;
2631                         pa = VM_PAGE_TO_PHYS(m);
2632                         rcount = 1;
2633                 }
2634                 if (rcount) {
2635                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2636                                 (long)fidx, rcount, (long)pa);
2637                         if (nl > 18) {
2638                                 c = cngetc();
2639                                 if (c != ' ')
2640                                         return;
2641                                 nl = 0;
2642                         }
2643                         nl++;
2644                 }
2645         }
2646 }
2647 #endif /* DDB */