]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
MFV r328247: 8959 Add notifications when a scrub is paused or resumed
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>           /* for curproc, pageproc */
83 #include <sys/socket.h>
84 #include <sys/resourcevar.h>
85 #include <sys/rwlock.h>
86 #include <sys/user.h>
87 #include <sys/vnode.h>
88 #include <sys/vmmeter.h>
89 #include <sys/sx.h>
90
91 #include <vm/vm.h>
92 #include <vm/vm_param.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pageout.h>
98 #include <vm/vm_pager.h>
99 #include <vm/swap_pager.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_extern.h>
102 #include <vm/vm_radix.h>
103 #include <vm/vm_reserv.h>
104 #include <vm/uma.h>
105
106 static int old_msync;
107 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
108     "Use old (insecure) msync behavior");
109
110 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
111                     int pagerflags, int flags, boolean_t *clearobjflags,
112                     boolean_t *eio);
113 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
114                     boolean_t *clearobjflags);
115 static void     vm_object_qcollapse(vm_object_t object);
116 static void     vm_object_vndeallocate(vm_object_t object);
117
118 /*
119  *      Virtual memory objects maintain the actual data
120  *      associated with allocated virtual memory.  A given
121  *      page of memory exists within exactly one object.
122  *
123  *      An object is only deallocated when all "references"
124  *      are given up.  Only one "reference" to a given
125  *      region of an object should be writeable.
126  *
127  *      Associated with each object is a list of all resident
128  *      memory pages belonging to that object; this list is
129  *      maintained by the "vm_page" module, and locked by the object's
130  *      lock.
131  *
132  *      Each object also records a "pager" routine which is
133  *      used to retrieve (and store) pages to the proper backing
134  *      storage.  In addition, objects may be backed by other
135  *      objects from which they were virtual-copied.
136  *
137  *      The only items within the object structure which are
138  *      modified after time of creation are:
139  *              reference count         locked by object's lock
140  *              pager routine           locked by object's lock
141  *
142  */
143
144 struct object_q vm_object_list;
145 struct mtx vm_object_list_mtx;  /* lock for object list and count */
146
147 struct vm_object kernel_object_store;
148
149 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
150     "VM object stats");
151
152 static counter_u64_t object_collapses = EARLY_COUNTER;
153 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
154     &object_collapses,
155     "VM object collapses");
156
157 static counter_u64_t object_bypasses = EARLY_COUNTER;
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
159     &object_bypasses,
160     "VM object bypasses");
161
162 static void
163 counter_startup(void)
164 {
165
166         object_collapses = counter_u64_alloc(M_WAITOK);
167         object_bypasses = counter_u64_alloc(M_WAITOK);
168 }
169 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
170
171 static uma_zone_t obj_zone;
172
173 static int vm_object_zinit(void *mem, int size, int flags);
174
175 #ifdef INVARIANTS
176 static void vm_object_zdtor(void *mem, int size, void *arg);
177
178 static void
179 vm_object_zdtor(void *mem, int size, void *arg)
180 {
181         vm_object_t object;
182
183         object = (vm_object_t)mem;
184         KASSERT(object->ref_count == 0,
185             ("object %p ref_count = %d", object, object->ref_count));
186         KASSERT(TAILQ_EMPTY(&object->memq),
187             ("object %p has resident pages in its memq", object));
188         KASSERT(vm_radix_is_empty(&object->rtree),
189             ("object %p has resident pages in its trie", object));
190 #if VM_NRESERVLEVEL > 0
191         KASSERT(LIST_EMPTY(&object->rvq),
192             ("object %p has reservations",
193             object));
194 #endif
195         KASSERT(object->paging_in_progress == 0,
196             ("object %p paging_in_progress = %d",
197             object, object->paging_in_progress));
198         KASSERT(object->resident_page_count == 0,
199             ("object %p resident_page_count = %d",
200             object, object->resident_page_count));
201         KASSERT(object->shadow_count == 0,
202             ("object %p shadow_count = %d",
203             object, object->shadow_count));
204         KASSERT(object->type == OBJT_DEAD,
205             ("object %p has non-dead type %d",
206             object, object->type));
207 }
208 #endif
209
210 static int
211 vm_object_zinit(void *mem, int size, int flags)
212 {
213         vm_object_t object;
214
215         object = (vm_object_t)mem;
216         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
217
218         /* These are true for any object that has been freed */
219         object->type = OBJT_DEAD;
220         object->ref_count = 0;
221         vm_radix_init(&object->rtree);
222         object->paging_in_progress = 0;
223         object->resident_page_count = 0;
224         object->shadow_count = 0;
225         object->flags = OBJ_DEAD;
226
227         mtx_lock(&vm_object_list_mtx);
228         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
229         mtx_unlock(&vm_object_list_mtx);
230         return (0);
231 }
232
233 static void
234 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
235 {
236
237         TAILQ_INIT(&object->memq);
238         LIST_INIT(&object->shadow_head);
239
240         object->type = type;
241         if (type == OBJT_SWAP)
242                 pctrie_init(&object->un_pager.swp.swp_blks);
243
244         /*
245          * Ensure that swap_pager_swapoff() iteration over object_list
246          * sees up to date type and pctrie head if it observed
247          * non-dead object.
248          */
249         atomic_thread_fence_rel();
250
251         switch (type) {
252         case OBJT_DEAD:
253                 panic("_vm_object_allocate: can't create OBJT_DEAD");
254         case OBJT_DEFAULT:
255         case OBJT_SWAP:
256                 object->flags = OBJ_ONEMAPPING;
257                 break;
258         case OBJT_DEVICE:
259         case OBJT_SG:
260                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
261                 break;
262         case OBJT_MGTDEVICE:
263                 object->flags = OBJ_FICTITIOUS;
264                 break;
265         case OBJT_PHYS:
266                 object->flags = OBJ_UNMANAGED;
267                 break;
268         case OBJT_VNODE:
269                 object->flags = 0;
270                 break;
271         default:
272                 panic("_vm_object_allocate: type %d is undefined", type);
273         }
274         object->size = size;
275         object->generation = 1;
276         object->ref_count = 1;
277         object->memattr = VM_MEMATTR_DEFAULT;
278         object->cred = NULL;
279         object->charge = 0;
280         object->handle = NULL;
281         object->backing_object = NULL;
282         object->backing_object_offset = (vm_ooffset_t) 0;
283 #if VM_NRESERVLEVEL > 0
284         LIST_INIT(&object->rvq);
285 #endif
286         umtx_shm_object_init(object);
287 }
288
289 /*
290  *      vm_object_init:
291  *
292  *      Initialize the VM objects module.
293  */
294 void
295 vm_object_init(void)
296 {
297         TAILQ_INIT(&vm_object_list);
298         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
299         
300         rw_init(&kernel_object->lock, "kernel vm object");
301         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
302             VM_MIN_KERNEL_ADDRESS), kernel_object);
303 #if VM_NRESERVLEVEL > 0
304         kernel_object->flags |= OBJ_COLORED;
305         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
306 #endif
307
308         /*
309          * The lock portion of struct vm_object must be type stable due
310          * to vm_pageout_fallback_object_lock locking a vm object
311          * without holding any references to it.
312          */
313         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
314 #ifdef INVARIANTS
315             vm_object_zdtor,
316 #else
317             NULL,
318 #endif
319             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
320
321         vm_radix_zinit();
322 }
323
324 void
325 vm_object_clear_flag(vm_object_t object, u_short bits)
326 {
327
328         VM_OBJECT_ASSERT_WLOCKED(object);
329         object->flags &= ~bits;
330 }
331
332 /*
333  *      Sets the default memory attribute for the specified object.  Pages
334  *      that are allocated to this object are by default assigned this memory
335  *      attribute.
336  *
337  *      Presently, this function must be called before any pages are allocated
338  *      to the object.  In the future, this requirement may be relaxed for
339  *      "default" and "swap" objects.
340  */
341 int
342 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
343 {
344
345         VM_OBJECT_ASSERT_WLOCKED(object);
346         switch (object->type) {
347         case OBJT_DEFAULT:
348         case OBJT_DEVICE:
349         case OBJT_MGTDEVICE:
350         case OBJT_PHYS:
351         case OBJT_SG:
352         case OBJT_SWAP:
353         case OBJT_VNODE:
354                 if (!TAILQ_EMPTY(&object->memq))
355                         return (KERN_FAILURE);
356                 break;
357         case OBJT_DEAD:
358                 return (KERN_INVALID_ARGUMENT);
359         default:
360                 panic("vm_object_set_memattr: object %p is of undefined type",
361                     object);
362         }
363         object->memattr = memattr;
364         return (KERN_SUCCESS);
365 }
366
367 void
368 vm_object_pip_add(vm_object_t object, short i)
369 {
370
371         VM_OBJECT_ASSERT_WLOCKED(object);
372         object->paging_in_progress += i;
373 }
374
375 void
376 vm_object_pip_subtract(vm_object_t object, short i)
377 {
378
379         VM_OBJECT_ASSERT_WLOCKED(object);
380         object->paging_in_progress -= i;
381 }
382
383 void
384 vm_object_pip_wakeup(vm_object_t object)
385 {
386
387         VM_OBJECT_ASSERT_WLOCKED(object);
388         object->paging_in_progress--;
389         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
390                 vm_object_clear_flag(object, OBJ_PIPWNT);
391                 wakeup(object);
392         }
393 }
394
395 void
396 vm_object_pip_wakeupn(vm_object_t object, short i)
397 {
398
399         VM_OBJECT_ASSERT_WLOCKED(object);
400         if (i)
401                 object->paging_in_progress -= i;
402         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
403                 vm_object_clear_flag(object, OBJ_PIPWNT);
404                 wakeup(object);
405         }
406 }
407
408 void
409 vm_object_pip_wait(vm_object_t object, char *waitid)
410 {
411
412         VM_OBJECT_ASSERT_WLOCKED(object);
413         while (object->paging_in_progress) {
414                 object->flags |= OBJ_PIPWNT;
415                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
416         }
417 }
418
419 /*
420  *      vm_object_allocate:
421  *
422  *      Returns a new object with the given size.
423  */
424 vm_object_t
425 vm_object_allocate(objtype_t type, vm_pindex_t size)
426 {
427         vm_object_t object;
428
429         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
430         _vm_object_allocate(type, size, object);
431         return (object);
432 }
433
434
435 /*
436  *      vm_object_reference:
437  *
438  *      Gets another reference to the given object.  Note: OBJ_DEAD
439  *      objects can be referenced during final cleaning.
440  */
441 void
442 vm_object_reference(vm_object_t object)
443 {
444         if (object == NULL)
445                 return;
446         VM_OBJECT_WLOCK(object);
447         vm_object_reference_locked(object);
448         VM_OBJECT_WUNLOCK(object);
449 }
450
451 /*
452  *      vm_object_reference_locked:
453  *
454  *      Gets another reference to the given object.
455  *
456  *      The object must be locked.
457  */
458 void
459 vm_object_reference_locked(vm_object_t object)
460 {
461         struct vnode *vp;
462
463         VM_OBJECT_ASSERT_WLOCKED(object);
464         object->ref_count++;
465         if (object->type == OBJT_VNODE) {
466                 vp = object->handle;
467                 vref(vp);
468         }
469 }
470
471 /*
472  * Handle deallocating an object of type OBJT_VNODE.
473  */
474 static void
475 vm_object_vndeallocate(vm_object_t object)
476 {
477         struct vnode *vp = (struct vnode *) object->handle;
478
479         VM_OBJECT_ASSERT_WLOCKED(object);
480         KASSERT(object->type == OBJT_VNODE,
481             ("vm_object_vndeallocate: not a vnode object"));
482         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
483 #ifdef INVARIANTS
484         if (object->ref_count == 0) {
485                 vn_printf(vp, "vm_object_vndeallocate ");
486                 panic("vm_object_vndeallocate: bad object reference count");
487         }
488 #endif
489
490         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
491                 umtx_shm_object_terminated(object);
492
493         /*
494          * The test for text of vp vnode does not need a bypass to
495          * reach right VV_TEXT there, since it is obtained from
496          * object->handle.
497          */
498         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
499                 object->ref_count--;
500                 VM_OBJECT_WUNLOCK(object);
501                 /* vrele may need the vnode lock. */
502                 vrele(vp);
503         } else {
504                 vhold(vp);
505                 VM_OBJECT_WUNLOCK(object);
506                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
507                 vdrop(vp);
508                 VM_OBJECT_WLOCK(object);
509                 object->ref_count--;
510                 if (object->type == OBJT_DEAD) {
511                         VM_OBJECT_WUNLOCK(object);
512                         VOP_UNLOCK(vp, 0);
513                 } else {
514                         if (object->ref_count == 0)
515                                 VOP_UNSET_TEXT(vp);
516                         VM_OBJECT_WUNLOCK(object);
517                         vput(vp);
518                 }
519         }
520 }
521
522 /*
523  *      vm_object_deallocate:
524  *
525  *      Release a reference to the specified object,
526  *      gained either through a vm_object_allocate
527  *      or a vm_object_reference call.  When all references
528  *      are gone, storage associated with this object
529  *      may be relinquished.
530  *
531  *      No object may be locked.
532  */
533 void
534 vm_object_deallocate(vm_object_t object)
535 {
536         vm_object_t temp;
537         struct vnode *vp;
538
539         while (object != NULL) {
540                 VM_OBJECT_WLOCK(object);
541                 if (object->type == OBJT_VNODE) {
542                         vm_object_vndeallocate(object);
543                         return;
544                 }
545
546                 KASSERT(object->ref_count != 0,
547                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
548
549                 /*
550                  * If the reference count goes to 0 we start calling
551                  * vm_object_terminate() on the object chain.
552                  * A ref count of 1 may be a special case depending on the
553                  * shadow count being 0 or 1.
554                  */
555                 object->ref_count--;
556                 if (object->ref_count > 1) {
557                         VM_OBJECT_WUNLOCK(object);
558                         return;
559                 } else if (object->ref_count == 1) {
560                         if (object->type == OBJT_SWAP &&
561                             (object->flags & OBJ_TMPFS) != 0) {
562                                 vp = object->un_pager.swp.swp_tmpfs;
563                                 vhold(vp);
564                                 VM_OBJECT_WUNLOCK(object);
565                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
566                                 VM_OBJECT_WLOCK(object);
567                                 if (object->type == OBJT_DEAD ||
568                                     object->ref_count != 1) {
569                                         VM_OBJECT_WUNLOCK(object);
570                                         VOP_UNLOCK(vp, 0);
571                                         vdrop(vp);
572                                         return;
573                                 }
574                                 if ((object->flags & OBJ_TMPFS) != 0)
575                                         VOP_UNSET_TEXT(vp);
576                                 VOP_UNLOCK(vp, 0);
577                                 vdrop(vp);
578                         }
579                         if (object->shadow_count == 0 &&
580                             object->handle == NULL &&
581                             (object->type == OBJT_DEFAULT ||
582                             (object->type == OBJT_SWAP &&
583                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
584                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
585                         } else if ((object->shadow_count == 1) &&
586                             (object->handle == NULL) &&
587                             (object->type == OBJT_DEFAULT ||
588                              object->type == OBJT_SWAP)) {
589                                 vm_object_t robject;
590
591                                 robject = LIST_FIRST(&object->shadow_head);
592                                 KASSERT(robject != NULL,
593                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
594                                          object->ref_count,
595                                          object->shadow_count));
596                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
597                                     ("shadowed tmpfs v_object %p", object));
598                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
599                                         /*
600                                          * Avoid a potential deadlock.
601                                          */
602                                         object->ref_count++;
603                                         VM_OBJECT_WUNLOCK(object);
604                                         /*
605                                          * More likely than not the thread
606                                          * holding robject's lock has lower
607                                          * priority than the current thread.
608                                          * Let the lower priority thread run.
609                                          */
610                                         pause("vmo_de", 1);
611                                         continue;
612                                 }
613                                 /*
614                                  * Collapse object into its shadow unless its
615                                  * shadow is dead.  In that case, object will
616                                  * be deallocated by the thread that is
617                                  * deallocating its shadow.
618                                  */
619                                 if ((robject->flags & OBJ_DEAD) == 0 &&
620                                     (robject->handle == NULL) &&
621                                     (robject->type == OBJT_DEFAULT ||
622                                      robject->type == OBJT_SWAP)) {
623
624                                         robject->ref_count++;
625 retry:
626                                         if (robject->paging_in_progress) {
627                                                 VM_OBJECT_WUNLOCK(object);
628                                                 vm_object_pip_wait(robject,
629                                                     "objde1");
630                                                 temp = robject->backing_object;
631                                                 if (object == temp) {
632                                                         VM_OBJECT_WLOCK(object);
633                                                         goto retry;
634                                                 }
635                                         } else if (object->paging_in_progress) {
636                                                 VM_OBJECT_WUNLOCK(robject);
637                                                 object->flags |= OBJ_PIPWNT;
638                                                 VM_OBJECT_SLEEP(object, object,
639                                                     PDROP | PVM, "objde2", 0);
640                                                 VM_OBJECT_WLOCK(robject);
641                                                 temp = robject->backing_object;
642                                                 if (object == temp) {
643                                                         VM_OBJECT_WLOCK(object);
644                                                         goto retry;
645                                                 }
646                                         } else
647                                                 VM_OBJECT_WUNLOCK(object);
648
649                                         if (robject->ref_count == 1) {
650                                                 robject->ref_count--;
651                                                 object = robject;
652                                                 goto doterm;
653                                         }
654                                         object = robject;
655                                         vm_object_collapse(object);
656                                         VM_OBJECT_WUNLOCK(object);
657                                         continue;
658                                 }
659                                 VM_OBJECT_WUNLOCK(robject);
660                         }
661                         VM_OBJECT_WUNLOCK(object);
662                         return;
663                 }
664 doterm:
665                 umtx_shm_object_terminated(object);
666                 temp = object->backing_object;
667                 if (temp != NULL) {
668                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
669                             ("shadowed tmpfs v_object 2 %p", object));
670                         VM_OBJECT_WLOCK(temp);
671                         LIST_REMOVE(object, shadow_list);
672                         temp->shadow_count--;
673                         VM_OBJECT_WUNLOCK(temp);
674                         object->backing_object = NULL;
675                 }
676                 /*
677                  * Don't double-terminate, we could be in a termination
678                  * recursion due to the terminate having to sync data
679                  * to disk.
680                  */
681                 if ((object->flags & OBJ_DEAD) == 0)
682                         vm_object_terminate(object);
683                 else
684                         VM_OBJECT_WUNLOCK(object);
685                 object = temp;
686         }
687 }
688
689 /*
690  *      vm_object_destroy removes the object from the global object list
691  *      and frees the space for the object.
692  */
693 void
694 vm_object_destroy(vm_object_t object)
695 {
696
697         /*
698          * Release the allocation charge.
699          */
700         if (object->cred != NULL) {
701                 swap_release_by_cred(object->charge, object->cred);
702                 object->charge = 0;
703                 crfree(object->cred);
704                 object->cred = NULL;
705         }
706
707         /*
708          * Free the space for the object.
709          */
710         uma_zfree(obj_zone, object);
711 }
712
713 /*
714  *      vm_object_terminate_pages removes any remaining pageable pages
715  *      from the object and resets the object to an empty state.
716  */
717 static void
718 vm_object_terminate_pages(vm_object_t object)
719 {
720         vm_page_t p, p_next;
721         struct mtx *mtx, *mtx1;
722         struct vm_pagequeue *pq, *pq1;
723         int dequeued;
724
725         VM_OBJECT_ASSERT_WLOCKED(object);
726
727         mtx = NULL;
728         pq = NULL;
729
730         /*
731          * Free any remaining pageable pages.  This also removes them from the
732          * paging queues.  However, don't free wired pages, just remove them
733          * from the object.  Rather than incrementally removing each page from
734          * the object, the page and object are reset to any empty state. 
735          */
736         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
737                 vm_page_assert_unbusied(p);
738                 if ((object->flags & OBJ_UNMANAGED) == 0) {
739                         /*
740                          * vm_page_free_prep() only needs the page
741                          * lock for managed pages.
742                          */
743                         mtx1 = vm_page_lockptr(p);
744                         if (mtx1 != mtx) {
745                                 if (mtx != NULL)
746                                         mtx_unlock(mtx);
747                                 if (pq != NULL) {
748                                         vm_pagequeue_cnt_add(pq, dequeued);
749                                         vm_pagequeue_unlock(pq);
750                                         pq = NULL;
751                                 }
752                                 mtx = mtx1;
753                                 mtx_lock(mtx);
754                         }
755                 }
756                 p->object = NULL;
757                 if (p->wire_count != 0)
758                         goto unlist;
759                 VM_CNT_INC(v_pfree);
760                 p->flags &= ~PG_ZERO;
761                 if (p->queue != PQ_NONE) {
762                         KASSERT(p->queue < PQ_COUNT, ("vm_object_terminate: "
763                             "page %p is not queued", p));
764                         pq1 = vm_page_pagequeue(p);
765                         if (pq != pq1) {
766                                 if (pq != NULL) {
767                                         vm_pagequeue_cnt_add(pq, dequeued);
768                                         vm_pagequeue_unlock(pq);
769                                 }
770                                 pq = pq1;
771                                 vm_pagequeue_lock(pq);
772                                 dequeued = 0;
773                         }
774                         p->queue = PQ_NONE;
775                         TAILQ_REMOVE(&pq->pq_pl, p, plinks.q);
776                         dequeued--;
777                 }
778                 if (vm_page_free_prep(p, true))
779                         continue;
780 unlist:
781                 TAILQ_REMOVE(&object->memq, p, listq);
782         }
783         if (pq != NULL) {
784                 vm_pagequeue_cnt_add(pq, dequeued);
785                 vm_pagequeue_unlock(pq);
786         }
787         if (mtx != NULL)
788                 mtx_unlock(mtx);
789
790         vm_page_free_phys_pglist(&object->memq);
791
792         /*
793          * If the object contained any pages, then reset it to an empty state.
794          * None of the object's fields, including "resident_page_count", were
795          * modified by the preceding loop.
796          */
797         if (object->resident_page_count != 0) {
798                 vm_radix_reclaim_allnodes(&object->rtree);
799                 TAILQ_INIT(&object->memq);
800                 object->resident_page_count = 0;
801                 if (object->type == OBJT_VNODE)
802                         vdrop(object->handle);
803         }
804 }
805
806 /*
807  *      vm_object_terminate actually destroys the specified object, freeing
808  *      up all previously used resources.
809  *
810  *      The object must be locked.
811  *      This routine may block.
812  */
813 void
814 vm_object_terminate(vm_object_t object)
815 {
816
817         VM_OBJECT_ASSERT_WLOCKED(object);
818
819         /*
820          * Make sure no one uses us.
821          */
822         vm_object_set_flag(object, OBJ_DEAD);
823
824         /*
825          * wait for the pageout daemon to be done with the object
826          */
827         vm_object_pip_wait(object, "objtrm");
828
829         KASSERT(!object->paging_in_progress,
830                 ("vm_object_terminate: pageout in progress"));
831
832         /*
833          * Clean and free the pages, as appropriate. All references to the
834          * object are gone, so we don't need to lock it.
835          */
836         if (object->type == OBJT_VNODE) {
837                 struct vnode *vp = (struct vnode *)object->handle;
838
839                 /*
840                  * Clean pages and flush buffers.
841                  */
842                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
843                 VM_OBJECT_WUNLOCK(object);
844
845                 vinvalbuf(vp, V_SAVE, 0, 0);
846
847                 BO_LOCK(&vp->v_bufobj);
848                 vp->v_bufobj.bo_flag |= BO_DEAD;
849                 BO_UNLOCK(&vp->v_bufobj);
850
851                 VM_OBJECT_WLOCK(object);
852         }
853
854         KASSERT(object->ref_count == 0, 
855                 ("vm_object_terminate: object with references, ref_count=%d",
856                 object->ref_count));
857
858         if ((object->flags & OBJ_PG_DTOR) == 0)
859                 vm_object_terminate_pages(object);
860
861 #if VM_NRESERVLEVEL > 0
862         if (__predict_false(!LIST_EMPTY(&object->rvq)))
863                 vm_reserv_break_all(object);
864 #endif
865
866         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
867             object->type == OBJT_SWAP,
868             ("%s: non-swap obj %p has cred", __func__, object));
869
870         /*
871          * Let the pager know object is dead.
872          */
873         vm_pager_deallocate(object);
874         VM_OBJECT_WUNLOCK(object);
875
876         vm_object_destroy(object);
877 }
878
879 /*
880  * Make the page read-only so that we can clear the object flags.  However, if
881  * this is a nosync mmap then the object is likely to stay dirty so do not
882  * mess with the page and do not clear the object flags.  Returns TRUE if the
883  * page should be flushed, and FALSE otherwise.
884  */
885 static boolean_t
886 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
887 {
888
889         /*
890          * If we have been asked to skip nosync pages and this is a
891          * nosync page, skip it.  Note that the object flags were not
892          * cleared in this case so we do not have to set them.
893          */
894         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
895                 *clearobjflags = FALSE;
896                 return (FALSE);
897         } else {
898                 pmap_remove_write(p);
899                 return (p->dirty != 0);
900         }
901 }
902
903 /*
904  *      vm_object_page_clean
905  *
906  *      Clean all dirty pages in the specified range of object.  Leaves page 
907  *      on whatever queue it is currently on.   If NOSYNC is set then do not
908  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
909  *      leaving the object dirty.
910  *
911  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
912  *      synchronous clustering mode implementation.
913  *
914  *      Odd semantics: if start == end, we clean everything.
915  *
916  *      The object must be locked.
917  *
918  *      Returns FALSE if some page from the range was not written, as
919  *      reported by the pager, and TRUE otherwise.
920  */
921 boolean_t
922 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
923     int flags)
924 {
925         vm_page_t np, p;
926         vm_pindex_t pi, tend, tstart;
927         int curgeneration, n, pagerflags;
928         boolean_t clearobjflags, eio, res;
929
930         VM_OBJECT_ASSERT_WLOCKED(object);
931
932         /*
933          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
934          * objects.  The check below prevents the function from
935          * operating on non-vnode objects.
936          */
937         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
938             object->resident_page_count == 0)
939                 return (TRUE);
940
941         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
942             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
943         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
944
945         tstart = OFF_TO_IDX(start);
946         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
947         clearobjflags = tstart == 0 && tend >= object->size;
948         res = TRUE;
949
950 rescan:
951         curgeneration = object->generation;
952
953         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
954                 pi = p->pindex;
955                 if (pi >= tend)
956                         break;
957                 np = TAILQ_NEXT(p, listq);
958                 if (p->valid == 0)
959                         continue;
960                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
961                         if (object->generation != curgeneration) {
962                                 if ((flags & OBJPC_SYNC) != 0)
963                                         goto rescan;
964                                 else
965                                         clearobjflags = FALSE;
966                         }
967                         np = vm_page_find_least(object, pi);
968                         continue;
969                 }
970                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
971                         continue;
972
973                 n = vm_object_page_collect_flush(object, p, pagerflags,
974                     flags, &clearobjflags, &eio);
975                 if (eio) {
976                         res = FALSE;
977                         clearobjflags = FALSE;
978                 }
979                 if (object->generation != curgeneration) {
980                         if ((flags & OBJPC_SYNC) != 0)
981                                 goto rescan;
982                         else
983                                 clearobjflags = FALSE;
984                 }
985
986                 /*
987                  * If the VOP_PUTPAGES() did a truncated write, so
988                  * that even the first page of the run is not fully
989                  * written, vm_pageout_flush() returns 0 as the run
990                  * length.  Since the condition that caused truncated
991                  * write may be permanent, e.g. exhausted free space,
992                  * accepting n == 0 would cause an infinite loop.
993                  *
994                  * Forwarding the iterator leaves the unwritten page
995                  * behind, but there is not much we can do there if
996                  * filesystem refuses to write it.
997                  */
998                 if (n == 0) {
999                         n = 1;
1000                         clearobjflags = FALSE;
1001                 }
1002                 np = vm_page_find_least(object, pi + n);
1003         }
1004 #if 0
1005         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1006 #endif
1007
1008         if (clearobjflags)
1009                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
1010         return (res);
1011 }
1012
1013 static int
1014 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1015     int flags, boolean_t *clearobjflags, boolean_t *eio)
1016 {
1017         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1018         int count, i, mreq, runlen;
1019
1020         vm_page_lock_assert(p, MA_NOTOWNED);
1021         VM_OBJECT_ASSERT_WLOCKED(object);
1022
1023         count = 1;
1024         mreq = 0;
1025
1026         for (tp = p; count < vm_pageout_page_count; count++) {
1027                 tp = vm_page_next(tp);
1028                 if (tp == NULL || vm_page_busied(tp))
1029                         break;
1030                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1031                         break;
1032         }
1033
1034         for (p_first = p; count < vm_pageout_page_count; count++) {
1035                 tp = vm_page_prev(p_first);
1036                 if (tp == NULL || vm_page_busied(tp))
1037                         break;
1038                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1039                         break;
1040                 p_first = tp;
1041                 mreq++;
1042         }
1043
1044         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1045                 ma[i] = tp;
1046
1047         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1048         return (runlen);
1049 }
1050
1051 /*
1052  * Note that there is absolutely no sense in writing out
1053  * anonymous objects, so we track down the vnode object
1054  * to write out.
1055  * We invalidate (remove) all pages from the address space
1056  * for semantic correctness.
1057  *
1058  * If the backing object is a device object with unmanaged pages, then any
1059  * mappings to the specified range of pages must be removed before this
1060  * function is called.
1061  *
1062  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1063  * may start out with a NULL object.
1064  */
1065 boolean_t
1066 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1067     boolean_t syncio, boolean_t invalidate)
1068 {
1069         vm_object_t backing_object;
1070         struct vnode *vp;
1071         struct mount *mp;
1072         int error, flags, fsync_after;
1073         boolean_t res;
1074
1075         if (object == NULL)
1076                 return (TRUE);
1077         res = TRUE;
1078         error = 0;
1079         VM_OBJECT_WLOCK(object);
1080         while ((backing_object = object->backing_object) != NULL) {
1081                 VM_OBJECT_WLOCK(backing_object);
1082                 offset += object->backing_object_offset;
1083                 VM_OBJECT_WUNLOCK(object);
1084                 object = backing_object;
1085                 if (object->size < OFF_TO_IDX(offset + size))
1086                         size = IDX_TO_OFF(object->size) - offset;
1087         }
1088         /*
1089          * Flush pages if writing is allowed, invalidate them
1090          * if invalidation requested.  Pages undergoing I/O
1091          * will be ignored by vm_object_page_remove().
1092          *
1093          * We cannot lock the vnode and then wait for paging
1094          * to complete without deadlocking against vm_fault.
1095          * Instead we simply call vm_object_page_remove() and
1096          * allow it to block internally on a page-by-page
1097          * basis when it encounters pages undergoing async
1098          * I/O.
1099          */
1100         if (object->type == OBJT_VNODE &&
1101             (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1102             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1103                 VM_OBJECT_WUNLOCK(object);
1104                 (void) vn_start_write(vp, &mp, V_WAIT);
1105                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1106                 if (syncio && !invalidate && offset == 0 &&
1107                     atop(size) == object->size) {
1108                         /*
1109                          * If syncing the whole mapping of the file,
1110                          * it is faster to schedule all the writes in
1111                          * async mode, also allowing the clustering,
1112                          * and then wait for i/o to complete.
1113                          */
1114                         flags = 0;
1115                         fsync_after = TRUE;
1116                 } else {
1117                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1118                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1119                         fsync_after = FALSE;
1120                 }
1121                 VM_OBJECT_WLOCK(object);
1122                 res = vm_object_page_clean(object, offset, offset + size,
1123                     flags);
1124                 VM_OBJECT_WUNLOCK(object);
1125                 if (fsync_after)
1126                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1127                 VOP_UNLOCK(vp, 0);
1128                 vn_finished_write(mp);
1129                 if (error != 0)
1130                         res = FALSE;
1131                 VM_OBJECT_WLOCK(object);
1132         }
1133         if ((object->type == OBJT_VNODE ||
1134              object->type == OBJT_DEVICE) && invalidate) {
1135                 if (object->type == OBJT_DEVICE)
1136                         /*
1137                          * The option OBJPR_NOTMAPPED must be passed here
1138                          * because vm_object_page_remove() cannot remove
1139                          * unmanaged mappings.
1140                          */
1141                         flags = OBJPR_NOTMAPPED;
1142                 else if (old_msync)
1143                         flags = 0;
1144                 else
1145                         flags = OBJPR_CLEANONLY;
1146                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1147                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1148         }
1149         VM_OBJECT_WUNLOCK(object);
1150         return (res);
1151 }
1152
1153 /*
1154  * Determine whether the given advice can be applied to the object.  Advice is
1155  * not applied to unmanaged pages since they never belong to page queues, and
1156  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1157  * have been mapped at most once.
1158  */
1159 static bool
1160 vm_object_advice_applies(vm_object_t object, int advice)
1161 {
1162
1163         if ((object->flags & OBJ_UNMANAGED) != 0)
1164                 return (false);
1165         if (advice != MADV_FREE)
1166                 return (true);
1167         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1168             (object->flags & OBJ_ONEMAPPING) != 0);
1169 }
1170
1171 static void
1172 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1173     vm_size_t size)
1174 {
1175
1176         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1177                 swap_pager_freespace(object, pindex, size);
1178 }
1179
1180 /*
1181  *      vm_object_madvise:
1182  *
1183  *      Implements the madvise function at the object/page level.
1184  *
1185  *      MADV_WILLNEED   (any object)
1186  *
1187  *          Activate the specified pages if they are resident.
1188  *
1189  *      MADV_DONTNEED   (any object)
1190  *
1191  *          Deactivate the specified pages if they are resident.
1192  *
1193  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1194  *                       OBJ_ONEMAPPING only)
1195  *
1196  *          Deactivate and clean the specified pages if they are
1197  *          resident.  This permits the process to reuse the pages
1198  *          without faulting or the kernel to reclaim the pages
1199  *          without I/O.
1200  */
1201 void
1202 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1203     int advice)
1204 {
1205         vm_pindex_t tpindex;
1206         vm_object_t backing_object, tobject;
1207         vm_page_t m, tm;
1208
1209         if (object == NULL)
1210                 return;
1211
1212 relookup:
1213         VM_OBJECT_WLOCK(object);
1214         if (!vm_object_advice_applies(object, advice)) {
1215                 VM_OBJECT_WUNLOCK(object);
1216                 return;
1217         }
1218         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1219                 tobject = object;
1220
1221                 /*
1222                  * If the next page isn't resident in the top-level object, we
1223                  * need to search the shadow chain.  When applying MADV_FREE, we
1224                  * take care to release any swap space used to store
1225                  * non-resident pages.
1226                  */
1227                 if (m == NULL || pindex < m->pindex) {
1228                         /*
1229                          * Optimize a common case: if the top-level object has
1230                          * no backing object, we can skip over the non-resident
1231                          * range in constant time.
1232                          */
1233                         if (object->backing_object == NULL) {
1234                                 tpindex = (m != NULL && m->pindex < end) ?
1235                                     m->pindex : end;
1236                                 vm_object_madvise_freespace(object, advice,
1237                                     pindex, tpindex - pindex);
1238                                 if ((pindex = tpindex) == end)
1239                                         break;
1240                                 goto next_page;
1241                         }
1242
1243                         tpindex = pindex;
1244                         do {
1245                                 vm_object_madvise_freespace(tobject, advice,
1246                                     tpindex, 1);
1247                                 /*
1248                                  * Prepare to search the next object in the
1249                                  * chain.
1250                                  */
1251                                 backing_object = tobject->backing_object;
1252                                 if (backing_object == NULL)
1253                                         goto next_pindex;
1254                                 VM_OBJECT_WLOCK(backing_object);
1255                                 tpindex +=
1256                                     OFF_TO_IDX(tobject->backing_object_offset);
1257                                 if (tobject != object)
1258                                         VM_OBJECT_WUNLOCK(tobject);
1259                                 tobject = backing_object;
1260                                 if (!vm_object_advice_applies(tobject, advice))
1261                                         goto next_pindex;
1262                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1263                             NULL);
1264                 } else {
1265 next_page:
1266                         tm = m;
1267                         m = TAILQ_NEXT(m, listq);
1268                 }
1269
1270                 /*
1271                  * If the page is not in a normal state, skip it.
1272                  */
1273                 if (tm->valid != VM_PAGE_BITS_ALL)
1274                         goto next_pindex;
1275                 vm_page_lock(tm);
1276                 if (tm->hold_count != 0 || tm->wire_count != 0) {
1277                         vm_page_unlock(tm);
1278                         goto next_pindex;
1279                 }
1280                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1281                     ("vm_object_madvise: page %p is fictitious", tm));
1282                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1283                     ("vm_object_madvise: page %p is not managed", tm));
1284                 if (vm_page_busied(tm)) {
1285                         if (object != tobject)
1286                                 VM_OBJECT_WUNLOCK(tobject);
1287                         VM_OBJECT_WUNLOCK(object);
1288                         if (advice == MADV_WILLNEED) {
1289                                 /*
1290                                  * Reference the page before unlocking and
1291                                  * sleeping so that the page daemon is less
1292                                  * likely to reclaim it.
1293                                  */
1294                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1295                         }
1296                         vm_page_busy_sleep(tm, "madvpo", false);
1297                         goto relookup;
1298                 }
1299                 vm_page_advise(tm, advice);
1300                 vm_page_unlock(tm);
1301                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1302 next_pindex:
1303                 if (tobject != object)
1304                         VM_OBJECT_WUNLOCK(tobject);
1305         }
1306         VM_OBJECT_WUNLOCK(object);
1307 }
1308
1309 /*
1310  *      vm_object_shadow:
1311  *
1312  *      Create a new object which is backed by the
1313  *      specified existing object range.  The source
1314  *      object reference is deallocated.
1315  *
1316  *      The new object and offset into that object
1317  *      are returned in the source parameters.
1318  */
1319 void
1320 vm_object_shadow(
1321         vm_object_t *object,    /* IN/OUT */
1322         vm_ooffset_t *offset,   /* IN/OUT */
1323         vm_size_t length)
1324 {
1325         vm_object_t source;
1326         vm_object_t result;
1327
1328         source = *object;
1329
1330         /*
1331          * Don't create the new object if the old object isn't shared.
1332          */
1333         if (source != NULL) {
1334                 VM_OBJECT_WLOCK(source);
1335                 if (source->ref_count == 1 &&
1336                     source->handle == NULL &&
1337                     (source->type == OBJT_DEFAULT ||
1338                      source->type == OBJT_SWAP)) {
1339                         VM_OBJECT_WUNLOCK(source);
1340                         return;
1341                 }
1342                 VM_OBJECT_WUNLOCK(source);
1343         }
1344
1345         /*
1346          * Allocate a new object with the given length.
1347          */
1348         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1349
1350         /*
1351          * The new object shadows the source object, adding a reference to it.
1352          * Our caller changes his reference to point to the new object,
1353          * removing a reference to the source object.  Net result: no change
1354          * of reference count.
1355          *
1356          * Try to optimize the result object's page color when shadowing
1357          * in order to maintain page coloring consistency in the combined 
1358          * shadowed object.
1359          */
1360         result->backing_object = source;
1361         /*
1362          * Store the offset into the source object, and fix up the offset into
1363          * the new object.
1364          */
1365         result->backing_object_offset = *offset;
1366         if (source != NULL) {
1367                 VM_OBJECT_WLOCK(source);
1368                 result->domain = source->domain;
1369                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1370                 source->shadow_count++;
1371 #if VM_NRESERVLEVEL > 0
1372                 result->flags |= source->flags & OBJ_COLORED;
1373                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1374                     ((1 << (VM_NFREEORDER - 1)) - 1);
1375 #endif
1376                 VM_OBJECT_WUNLOCK(source);
1377         }
1378
1379
1380         /*
1381          * Return the new things
1382          */
1383         *offset = 0;
1384         *object = result;
1385 }
1386
1387 /*
1388  *      vm_object_split:
1389  *
1390  * Split the pages in a map entry into a new object.  This affords
1391  * easier removal of unused pages, and keeps object inheritance from
1392  * being a negative impact on memory usage.
1393  */
1394 void
1395 vm_object_split(vm_map_entry_t entry)
1396 {
1397         vm_page_t m, m_next;
1398         vm_object_t orig_object, new_object, source;
1399         vm_pindex_t idx, offidxstart;
1400         vm_size_t size;
1401
1402         orig_object = entry->object.vm_object;
1403         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1404                 return;
1405         if (orig_object->ref_count <= 1)
1406                 return;
1407         VM_OBJECT_WUNLOCK(orig_object);
1408
1409         offidxstart = OFF_TO_IDX(entry->offset);
1410         size = atop(entry->end - entry->start);
1411
1412         /*
1413          * If swap_pager_copy() is later called, it will convert new_object
1414          * into a swap object.
1415          */
1416         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1417
1418         /*
1419          * At this point, the new object is still private, so the order in
1420          * which the original and new objects are locked does not matter.
1421          */
1422         VM_OBJECT_WLOCK(new_object);
1423         VM_OBJECT_WLOCK(orig_object);
1424         new_object->domain = orig_object->domain;
1425         source = orig_object->backing_object;
1426         if (source != NULL) {
1427                 VM_OBJECT_WLOCK(source);
1428                 if ((source->flags & OBJ_DEAD) != 0) {
1429                         VM_OBJECT_WUNLOCK(source);
1430                         VM_OBJECT_WUNLOCK(orig_object);
1431                         VM_OBJECT_WUNLOCK(new_object);
1432                         vm_object_deallocate(new_object);
1433                         VM_OBJECT_WLOCK(orig_object);
1434                         return;
1435                 }
1436                 LIST_INSERT_HEAD(&source->shadow_head,
1437                                   new_object, shadow_list);
1438                 source->shadow_count++;
1439                 vm_object_reference_locked(source);     /* for new_object */
1440                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1441                 VM_OBJECT_WUNLOCK(source);
1442                 new_object->backing_object_offset = 
1443                         orig_object->backing_object_offset + entry->offset;
1444                 new_object->backing_object = source;
1445         }
1446         if (orig_object->cred != NULL) {
1447                 new_object->cred = orig_object->cred;
1448                 crhold(orig_object->cred);
1449                 new_object->charge = ptoa(size);
1450                 KASSERT(orig_object->charge >= ptoa(size),
1451                     ("orig_object->charge < 0"));
1452                 orig_object->charge -= ptoa(size);
1453         }
1454 retry:
1455         m = vm_page_find_least(orig_object, offidxstart);
1456         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1457             m = m_next) {
1458                 m_next = TAILQ_NEXT(m, listq);
1459
1460                 /*
1461                  * We must wait for pending I/O to complete before we can
1462                  * rename the page.
1463                  *
1464                  * We do not have to VM_PROT_NONE the page as mappings should
1465                  * not be changed by this operation.
1466                  */
1467                 if (vm_page_busied(m)) {
1468                         VM_OBJECT_WUNLOCK(new_object);
1469                         vm_page_lock(m);
1470                         VM_OBJECT_WUNLOCK(orig_object);
1471                         vm_page_busy_sleep(m, "spltwt", false);
1472                         VM_OBJECT_WLOCK(orig_object);
1473                         VM_OBJECT_WLOCK(new_object);
1474                         goto retry;
1475                 }
1476
1477                 /* vm_page_rename() will dirty the page. */
1478                 if (vm_page_rename(m, new_object, idx)) {
1479                         VM_OBJECT_WUNLOCK(new_object);
1480                         VM_OBJECT_WUNLOCK(orig_object);
1481                         vm_radix_wait();
1482                         VM_OBJECT_WLOCK(orig_object);
1483                         VM_OBJECT_WLOCK(new_object);
1484                         goto retry;
1485                 }
1486 #if VM_NRESERVLEVEL > 0
1487                 /*
1488                  * If some of the reservation's allocated pages remain with
1489                  * the original object, then transferring the reservation to
1490                  * the new object is neither particularly beneficial nor
1491                  * particularly harmful as compared to leaving the reservation
1492                  * with the original object.  If, however, all of the
1493                  * reservation's allocated pages are transferred to the new
1494                  * object, then transferring the reservation is typically
1495                  * beneficial.  Determining which of these two cases applies
1496                  * would be more costly than unconditionally renaming the
1497                  * reservation.
1498                  */
1499                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1500 #endif
1501                 if (orig_object->type == OBJT_SWAP)
1502                         vm_page_xbusy(m);
1503         }
1504         if (orig_object->type == OBJT_SWAP) {
1505                 /*
1506                  * swap_pager_copy() can sleep, in which case the orig_object's
1507                  * and new_object's locks are released and reacquired. 
1508                  */
1509                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1510                 TAILQ_FOREACH(m, &new_object->memq, listq)
1511                         vm_page_xunbusy(m);
1512         }
1513         VM_OBJECT_WUNLOCK(orig_object);
1514         VM_OBJECT_WUNLOCK(new_object);
1515         entry->object.vm_object = new_object;
1516         entry->offset = 0LL;
1517         vm_object_deallocate(orig_object);
1518         VM_OBJECT_WLOCK(new_object);
1519 }
1520
1521 #define OBSC_COLLAPSE_NOWAIT    0x0002
1522 #define OBSC_COLLAPSE_WAIT      0x0004
1523
1524 static vm_page_t
1525 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1526     int op)
1527 {
1528         vm_object_t backing_object;
1529
1530         VM_OBJECT_ASSERT_WLOCKED(object);
1531         backing_object = object->backing_object;
1532         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1533
1534         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1535         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1536             ("invalid ownership %p %p %p", p, object, backing_object));
1537         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1538                 return (next);
1539         if (p != NULL)
1540                 vm_page_lock(p);
1541         VM_OBJECT_WUNLOCK(object);
1542         VM_OBJECT_WUNLOCK(backing_object);
1543         /* The page is only NULL when rename fails. */
1544         if (p == NULL)
1545                 vm_radix_wait();
1546         else
1547                 vm_page_busy_sleep(p, "vmocol", false);
1548         VM_OBJECT_WLOCK(object);
1549         VM_OBJECT_WLOCK(backing_object);
1550         return (TAILQ_FIRST(&backing_object->memq));
1551 }
1552
1553 static bool
1554 vm_object_scan_all_shadowed(vm_object_t object)
1555 {
1556         vm_object_t backing_object;
1557         vm_page_t p, pp;
1558         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1559
1560         VM_OBJECT_ASSERT_WLOCKED(object);
1561         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1562
1563         backing_object = object->backing_object;
1564
1565         if (backing_object->type != OBJT_DEFAULT &&
1566             backing_object->type != OBJT_SWAP)
1567                 return (false);
1568
1569         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1570         p = vm_page_find_least(backing_object, pi);
1571         ps = swap_pager_find_least(backing_object, pi);
1572
1573         /*
1574          * Only check pages inside the parent object's range and
1575          * inside the parent object's mapping of the backing object.
1576          */
1577         for (;; pi++) {
1578                 if (p != NULL && p->pindex < pi)
1579                         p = TAILQ_NEXT(p, listq);
1580                 if (ps < pi)
1581                         ps = swap_pager_find_least(backing_object, pi);
1582                 if (p == NULL && ps >= backing_object->size)
1583                         break;
1584                 else if (p == NULL)
1585                         pi = ps;
1586                 else
1587                         pi = MIN(p->pindex, ps);
1588
1589                 new_pindex = pi - backing_offset_index;
1590                 if (new_pindex >= object->size)
1591                         break;
1592
1593                 /*
1594                  * See if the parent has the page or if the parent's object
1595                  * pager has the page.  If the parent has the page but the page
1596                  * is not valid, the parent's object pager must have the page.
1597                  *
1598                  * If this fails, the parent does not completely shadow the
1599                  * object and we might as well give up now.
1600                  */
1601                 pp = vm_page_lookup(object, new_pindex);
1602                 if ((pp == NULL || pp->valid == 0) &&
1603                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1604                         return (false);
1605         }
1606         return (true);
1607 }
1608
1609 static bool
1610 vm_object_collapse_scan(vm_object_t object, int op)
1611 {
1612         vm_object_t backing_object;
1613         vm_page_t next, p, pp;
1614         vm_pindex_t backing_offset_index, new_pindex;
1615
1616         VM_OBJECT_ASSERT_WLOCKED(object);
1617         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1618
1619         backing_object = object->backing_object;
1620         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1621
1622         /*
1623          * Initial conditions
1624          */
1625         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1626                 vm_object_set_flag(backing_object, OBJ_DEAD);
1627
1628         /*
1629          * Our scan
1630          */
1631         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1632                 next = TAILQ_NEXT(p, listq);
1633                 new_pindex = p->pindex - backing_offset_index;
1634
1635                 /*
1636                  * Check for busy page
1637                  */
1638                 if (vm_page_busied(p)) {
1639                         next = vm_object_collapse_scan_wait(object, p, next, op);
1640                         continue;
1641                 }
1642
1643                 KASSERT(p->object == backing_object,
1644                     ("vm_object_collapse_scan: object mismatch"));
1645
1646                 if (p->pindex < backing_offset_index ||
1647                     new_pindex >= object->size) {
1648                         if (backing_object->type == OBJT_SWAP)
1649                                 swap_pager_freespace(backing_object, p->pindex,
1650                                     1);
1651
1652                         /*
1653                          * Page is out of the parent object's range, we can
1654                          * simply destroy it.
1655                          */
1656                         vm_page_lock(p);
1657                         KASSERT(!pmap_page_is_mapped(p),
1658                             ("freeing mapped page %p", p));
1659                         if (p->wire_count == 0)
1660                                 vm_page_free(p);
1661                         else
1662                                 vm_page_remove(p);
1663                         vm_page_unlock(p);
1664                         continue;
1665                 }
1666
1667                 pp = vm_page_lookup(object, new_pindex);
1668                 if (pp != NULL && vm_page_busied(pp)) {
1669                         /*
1670                          * The page in the parent is busy and possibly not
1671                          * (yet) valid.  Until its state is finalized by the
1672                          * busy bit owner, we can't tell whether it shadows the
1673                          * original page.  Therefore, we must either skip it
1674                          * and the original (backing_object) page or wait for
1675                          * its state to be finalized.
1676                          *
1677                          * This is due to a race with vm_fault() where we must
1678                          * unbusy the original (backing_obj) page before we can
1679                          * (re)lock the parent.  Hence we can get here.
1680                          */
1681                         next = vm_object_collapse_scan_wait(object, pp, next,
1682                             op);
1683                         continue;
1684                 }
1685
1686                 KASSERT(pp == NULL || pp->valid != 0,
1687                     ("unbusy invalid page %p", pp));
1688
1689                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1690                         NULL)) {
1691                         /*
1692                          * The page already exists in the parent OR swap exists
1693                          * for this location in the parent.  Leave the parent's
1694                          * page alone.  Destroy the original page from the
1695                          * backing object.
1696                          */
1697                         if (backing_object->type == OBJT_SWAP)
1698                                 swap_pager_freespace(backing_object, p->pindex,
1699                                     1);
1700                         vm_page_lock(p);
1701                         KASSERT(!pmap_page_is_mapped(p),
1702                             ("freeing mapped page %p", p));
1703                         if (p->wire_count == 0)
1704                                 vm_page_free(p);
1705                         else
1706                                 vm_page_remove(p);
1707                         vm_page_unlock(p);
1708                         continue;
1709                 }
1710
1711                 /*
1712                  * Page does not exist in parent, rename the page from the
1713                  * backing object to the main object.
1714                  *
1715                  * If the page was mapped to a process, it can remain mapped
1716                  * through the rename.  vm_page_rename() will dirty the page.
1717                  */
1718                 if (vm_page_rename(p, object, new_pindex)) {
1719                         next = vm_object_collapse_scan_wait(object, NULL, next,
1720                             op);
1721                         continue;
1722                 }
1723
1724                 /* Use the old pindex to free the right page. */
1725                 if (backing_object->type == OBJT_SWAP)
1726                         swap_pager_freespace(backing_object,
1727                             new_pindex + backing_offset_index, 1);
1728
1729 #if VM_NRESERVLEVEL > 0
1730                 /*
1731                  * Rename the reservation.
1732                  */
1733                 vm_reserv_rename(p, object, backing_object,
1734                     backing_offset_index);
1735 #endif
1736         }
1737         return (true);
1738 }
1739
1740
1741 /*
1742  * this version of collapse allows the operation to occur earlier and
1743  * when paging_in_progress is true for an object...  This is not a complete
1744  * operation, but should plug 99.9% of the rest of the leaks.
1745  */
1746 static void
1747 vm_object_qcollapse(vm_object_t object)
1748 {
1749         vm_object_t backing_object = object->backing_object;
1750
1751         VM_OBJECT_ASSERT_WLOCKED(object);
1752         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1753
1754         if (backing_object->ref_count != 1)
1755                 return;
1756
1757         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1758 }
1759
1760 /*
1761  *      vm_object_collapse:
1762  *
1763  *      Collapse an object with the object backing it.
1764  *      Pages in the backing object are moved into the
1765  *      parent, and the backing object is deallocated.
1766  */
1767 void
1768 vm_object_collapse(vm_object_t object)
1769 {
1770         vm_object_t backing_object, new_backing_object;
1771
1772         VM_OBJECT_ASSERT_WLOCKED(object);
1773
1774         while (TRUE) {
1775                 /*
1776                  * Verify that the conditions are right for collapse:
1777                  *
1778                  * The object exists and the backing object exists.
1779                  */
1780                 if ((backing_object = object->backing_object) == NULL)
1781                         break;
1782
1783                 /*
1784                  * we check the backing object first, because it is most likely
1785                  * not collapsable.
1786                  */
1787                 VM_OBJECT_WLOCK(backing_object);
1788                 if (backing_object->handle != NULL ||
1789                     (backing_object->type != OBJT_DEFAULT &&
1790                      backing_object->type != OBJT_SWAP) ||
1791                     (backing_object->flags & OBJ_DEAD) ||
1792                     object->handle != NULL ||
1793                     (object->type != OBJT_DEFAULT &&
1794                      object->type != OBJT_SWAP) ||
1795                     (object->flags & OBJ_DEAD)) {
1796                         VM_OBJECT_WUNLOCK(backing_object);
1797                         break;
1798                 }
1799
1800                 if (object->paging_in_progress != 0 ||
1801                     backing_object->paging_in_progress != 0) {
1802                         vm_object_qcollapse(object);
1803                         VM_OBJECT_WUNLOCK(backing_object);
1804                         break;
1805                 }
1806
1807                 /*
1808                  * We know that we can either collapse the backing object (if
1809                  * the parent is the only reference to it) or (perhaps) have
1810                  * the parent bypass the object if the parent happens to shadow
1811                  * all the resident pages in the entire backing object.
1812                  *
1813                  * This is ignoring pager-backed pages such as swap pages.
1814                  * vm_object_collapse_scan fails the shadowing test in this
1815                  * case.
1816                  */
1817                 if (backing_object->ref_count == 1) {
1818                         vm_object_pip_add(object, 1);
1819                         vm_object_pip_add(backing_object, 1);
1820
1821                         /*
1822                          * If there is exactly one reference to the backing
1823                          * object, we can collapse it into the parent.
1824                          */
1825                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1826
1827 #if VM_NRESERVLEVEL > 0
1828                         /*
1829                          * Break any reservations from backing_object.
1830                          */
1831                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1832                                 vm_reserv_break_all(backing_object);
1833 #endif
1834
1835                         /*
1836                          * Move the pager from backing_object to object.
1837                          */
1838                         if (backing_object->type == OBJT_SWAP) {
1839                                 /*
1840                                  * swap_pager_copy() can sleep, in which case
1841                                  * the backing_object's and object's locks are
1842                                  * released and reacquired.
1843                                  * Since swap_pager_copy() is being asked to
1844                                  * destroy the source, it will change the
1845                                  * backing_object's type to OBJT_DEFAULT.
1846                                  */
1847                                 swap_pager_copy(
1848                                     backing_object,
1849                                     object,
1850                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1851                         }
1852                         /*
1853                          * Object now shadows whatever backing_object did.
1854                          * Note that the reference to 
1855                          * backing_object->backing_object moves from within 
1856                          * backing_object to within object.
1857                          */
1858                         LIST_REMOVE(object, shadow_list);
1859                         backing_object->shadow_count--;
1860                         if (backing_object->backing_object) {
1861                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1862                                 LIST_REMOVE(backing_object, shadow_list);
1863                                 LIST_INSERT_HEAD(
1864                                     &backing_object->backing_object->shadow_head,
1865                                     object, shadow_list);
1866                                 /*
1867                                  * The shadow_count has not changed.
1868                                  */
1869                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1870                         }
1871                         object->backing_object = backing_object->backing_object;
1872                         object->backing_object_offset +=
1873                             backing_object->backing_object_offset;
1874
1875                         /*
1876                          * Discard backing_object.
1877                          *
1878                          * Since the backing object has no pages, no pager left,
1879                          * and no object references within it, all that is
1880                          * necessary is to dispose of it.
1881                          */
1882                         KASSERT(backing_object->ref_count == 1, (
1883 "backing_object %p was somehow re-referenced during collapse!",
1884                             backing_object));
1885                         vm_object_pip_wakeup(backing_object);
1886                         backing_object->type = OBJT_DEAD;
1887                         backing_object->ref_count = 0;
1888                         VM_OBJECT_WUNLOCK(backing_object);
1889                         vm_object_destroy(backing_object);
1890
1891                         vm_object_pip_wakeup(object);
1892                         counter_u64_add(object_collapses, 1);
1893                 } else {
1894                         /*
1895                          * If we do not entirely shadow the backing object,
1896                          * there is nothing we can do so we give up.
1897                          */
1898                         if (object->resident_page_count != object->size &&
1899                             !vm_object_scan_all_shadowed(object)) {
1900                                 VM_OBJECT_WUNLOCK(backing_object);
1901                                 break;
1902                         }
1903
1904                         /*
1905                          * Make the parent shadow the next object in the
1906                          * chain.  Deallocating backing_object will not remove
1907                          * it, since its reference count is at least 2.
1908                          */
1909                         LIST_REMOVE(object, shadow_list);
1910                         backing_object->shadow_count--;
1911
1912                         new_backing_object = backing_object->backing_object;
1913                         if ((object->backing_object = new_backing_object) != NULL) {
1914                                 VM_OBJECT_WLOCK(new_backing_object);
1915                                 LIST_INSERT_HEAD(
1916                                     &new_backing_object->shadow_head,
1917                                     object,
1918                                     shadow_list
1919                                 );
1920                                 new_backing_object->shadow_count++;
1921                                 vm_object_reference_locked(new_backing_object);
1922                                 VM_OBJECT_WUNLOCK(new_backing_object);
1923                                 object->backing_object_offset +=
1924                                         backing_object->backing_object_offset;
1925                         }
1926
1927                         /*
1928                          * Drop the reference count on backing_object. Since
1929                          * its ref_count was at least 2, it will not vanish.
1930                          */
1931                         backing_object->ref_count--;
1932                         VM_OBJECT_WUNLOCK(backing_object);
1933                         counter_u64_add(object_bypasses, 1);
1934                 }
1935
1936                 /*
1937                  * Try again with this object's new backing object.
1938                  */
1939         }
1940 }
1941
1942 /*
1943  *      vm_object_page_remove:
1944  *
1945  *      For the given object, either frees or invalidates each of the
1946  *      specified pages.  In general, a page is freed.  However, if a page is
1947  *      wired for any reason other than the existence of a managed, wired
1948  *      mapping, then it may be invalidated but not removed from the object.
1949  *      Pages are specified by the given range ["start", "end") and the option
1950  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1951  *      extends from "start" to the end of the object.  If the option
1952  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1953  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1954  *      specified, then the pages within the specified range must have no
1955  *      mappings.  Otherwise, if this option is not specified, any mappings to
1956  *      the specified pages are removed before the pages are freed or
1957  *      invalidated.
1958  *
1959  *      In general, this operation should only be performed on objects that
1960  *      contain managed pages.  There are, however, two exceptions.  First, it
1961  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1962  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1963  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1964  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1965  *
1966  *      The object must be locked.
1967  */
1968 void
1969 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1970     int options)
1971 {
1972         vm_page_t p, next;
1973         struct mtx *mtx;
1974         struct pglist pgl;
1975
1976         VM_OBJECT_ASSERT_WLOCKED(object);
1977         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1978             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1979             ("vm_object_page_remove: illegal options for object %p", object));
1980         if (object->resident_page_count == 0)
1981                 return;
1982         vm_object_pip_add(object, 1);
1983         TAILQ_INIT(&pgl);
1984 again:
1985         p = vm_page_find_least(object, start);
1986         mtx = NULL;
1987
1988         /*
1989          * Here, the variable "p" is either (1) the page with the least pindex
1990          * greater than or equal to the parameter "start" or (2) NULL. 
1991          */
1992         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1993                 next = TAILQ_NEXT(p, listq);
1994
1995                 /*
1996                  * If the page is wired for any reason besides the existence
1997                  * of managed, wired mappings, then it cannot be freed.  For
1998                  * example, fictitious pages, which represent device memory,
1999                  * are inherently wired and cannot be freed.  They can,
2000                  * however, be invalidated if the option OBJPR_CLEANONLY is
2001                  * not specified.
2002                  */
2003                 vm_page_change_lock(p, &mtx);
2004                 if (vm_page_xbusied(p)) {
2005                         VM_OBJECT_WUNLOCK(object);
2006                         vm_page_busy_sleep(p, "vmopax", true);
2007                         VM_OBJECT_WLOCK(object);
2008                         goto again;
2009                 }
2010                 if (p->wire_count != 0) {
2011                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2012                             object->ref_count != 0)
2013                                 pmap_remove_all(p);
2014                         if ((options & OBJPR_CLEANONLY) == 0) {
2015                                 p->valid = 0;
2016                                 vm_page_undirty(p);
2017                         }
2018                         continue;
2019                 }
2020                 if (vm_page_busied(p)) {
2021                         VM_OBJECT_WUNLOCK(object);
2022                         vm_page_busy_sleep(p, "vmopar", false);
2023                         VM_OBJECT_WLOCK(object);
2024                         goto again;
2025                 }
2026                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2027                     ("vm_object_page_remove: page %p is fictitious", p));
2028                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
2029                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2030                             object->ref_count != 0)
2031                                 pmap_remove_write(p);
2032                         if (p->dirty != 0)
2033                                 continue;
2034                 }
2035                 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
2036                         pmap_remove_all(p);
2037                 p->flags &= ~PG_ZERO;
2038                 if (vm_page_free_prep(p, false))
2039                         TAILQ_INSERT_TAIL(&pgl, p, listq);
2040         }
2041         if (mtx != NULL)
2042                 mtx_unlock(mtx);
2043         vm_page_free_phys_pglist(&pgl);
2044         vm_object_pip_wakeup(object);
2045 }
2046
2047 /*
2048  *      vm_object_page_noreuse:
2049  *
2050  *      For the given object, attempt to move the specified pages to
2051  *      the head of the inactive queue.  This bypasses regular LRU
2052  *      operation and allows the pages to be reused quickly under memory
2053  *      pressure.  If a page is wired for any reason, then it will not
2054  *      be queued.  Pages are specified by the range ["start", "end").
2055  *      As a special case, if "end" is zero, then the range extends from
2056  *      "start" to the end of the object.
2057  *
2058  *      This operation should only be performed on objects that
2059  *      contain non-fictitious, managed pages.
2060  *
2061  *      The object must be locked.
2062  */
2063 void
2064 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2065 {
2066         struct mtx *mtx;
2067         vm_page_t p, next;
2068
2069         VM_OBJECT_ASSERT_LOCKED(object);
2070         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2071             ("vm_object_page_noreuse: illegal object %p", object));
2072         if (object->resident_page_count == 0)
2073                 return;
2074         p = vm_page_find_least(object, start);
2075
2076         /*
2077          * Here, the variable "p" is either (1) the page with the least pindex
2078          * greater than or equal to the parameter "start" or (2) NULL. 
2079          */
2080         mtx = NULL;
2081         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2082                 next = TAILQ_NEXT(p, listq);
2083                 vm_page_change_lock(p, &mtx);
2084                 vm_page_deactivate_noreuse(p);
2085         }
2086         if (mtx != NULL)
2087                 mtx_unlock(mtx);
2088 }
2089
2090 /*
2091  *      Populate the specified range of the object with valid pages.  Returns
2092  *      TRUE if the range is successfully populated and FALSE otherwise.
2093  *
2094  *      Note: This function should be optimized to pass a larger array of
2095  *      pages to vm_pager_get_pages() before it is applied to a non-
2096  *      OBJT_DEVICE object.
2097  *
2098  *      The object must be locked.
2099  */
2100 boolean_t
2101 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2102 {
2103         vm_page_t m;
2104         vm_pindex_t pindex;
2105         int rv;
2106
2107         VM_OBJECT_ASSERT_WLOCKED(object);
2108         for (pindex = start; pindex < end; pindex++) {
2109                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2110                 if (m->valid != VM_PAGE_BITS_ALL) {
2111                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2112                         if (rv != VM_PAGER_OK) {
2113                                 vm_page_lock(m);
2114                                 vm_page_free(m);
2115                                 vm_page_unlock(m);
2116                                 break;
2117                         }
2118                 }
2119                 /*
2120                  * Keep "m" busy because a subsequent iteration may unlock
2121                  * the object.
2122                  */
2123         }
2124         if (pindex > start) {
2125                 m = vm_page_lookup(object, start);
2126                 while (m != NULL && m->pindex < pindex) {
2127                         vm_page_xunbusy(m);
2128                         m = TAILQ_NEXT(m, listq);
2129                 }
2130         }
2131         return (pindex == end);
2132 }
2133
2134 /*
2135  *      Routine:        vm_object_coalesce
2136  *      Function:       Coalesces two objects backing up adjoining
2137  *                      regions of memory into a single object.
2138  *
2139  *      returns TRUE if objects were combined.
2140  *
2141  *      NOTE:   Only works at the moment if the second object is NULL -
2142  *              if it's not, which object do we lock first?
2143  *
2144  *      Parameters:
2145  *              prev_object     First object to coalesce
2146  *              prev_offset     Offset into prev_object
2147  *              prev_size       Size of reference to prev_object
2148  *              next_size       Size of reference to the second object
2149  *              reserved        Indicator that extension region has
2150  *                              swap accounted for
2151  *
2152  *      Conditions:
2153  *      The object must *not* be locked.
2154  */
2155 boolean_t
2156 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2157     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2158 {
2159         vm_pindex_t next_pindex;
2160
2161         if (prev_object == NULL)
2162                 return (TRUE);
2163         VM_OBJECT_WLOCK(prev_object);
2164         if ((prev_object->type != OBJT_DEFAULT &&
2165             prev_object->type != OBJT_SWAP) ||
2166             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2167                 VM_OBJECT_WUNLOCK(prev_object);
2168                 return (FALSE);
2169         }
2170
2171         /*
2172          * Try to collapse the object first
2173          */
2174         vm_object_collapse(prev_object);
2175
2176         /*
2177          * Can't coalesce if: . more than one reference . paged out . shadows
2178          * another object . has a copy elsewhere (any of which mean that the
2179          * pages not mapped to prev_entry may be in use anyway)
2180          */
2181         if (prev_object->backing_object != NULL) {
2182                 VM_OBJECT_WUNLOCK(prev_object);
2183                 return (FALSE);
2184         }
2185
2186         prev_size >>= PAGE_SHIFT;
2187         next_size >>= PAGE_SHIFT;
2188         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2189
2190         if ((prev_object->ref_count > 1) &&
2191             (prev_object->size != next_pindex)) {
2192                 VM_OBJECT_WUNLOCK(prev_object);
2193                 return (FALSE);
2194         }
2195
2196         /*
2197          * Account for the charge.
2198          */
2199         if (prev_object->cred != NULL) {
2200
2201                 /*
2202                  * If prev_object was charged, then this mapping,
2203                  * although not charged now, may become writable
2204                  * later. Non-NULL cred in the object would prevent
2205                  * swap reservation during enabling of the write
2206                  * access, so reserve swap now. Failed reservation
2207                  * cause allocation of the separate object for the map
2208                  * entry, and swap reservation for this entry is
2209                  * managed in appropriate time.
2210                  */
2211                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2212                     prev_object->cred)) {
2213                         VM_OBJECT_WUNLOCK(prev_object);
2214                         return (FALSE);
2215                 }
2216                 prev_object->charge += ptoa(next_size);
2217         }
2218
2219         /*
2220          * Remove any pages that may still be in the object from a previous
2221          * deallocation.
2222          */
2223         if (next_pindex < prev_object->size) {
2224                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2225                     next_size, 0);
2226                 if (prev_object->type == OBJT_SWAP)
2227                         swap_pager_freespace(prev_object,
2228                                              next_pindex, next_size);
2229 #if 0
2230                 if (prev_object->cred != NULL) {
2231                         KASSERT(prev_object->charge >=
2232                             ptoa(prev_object->size - next_pindex),
2233                             ("object %p overcharged 1 %jx %jx", prev_object,
2234                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2235                         prev_object->charge -= ptoa(prev_object->size -
2236                             next_pindex);
2237                 }
2238 #endif
2239         }
2240
2241         /*
2242          * Extend the object if necessary.
2243          */
2244         if (next_pindex + next_size > prev_object->size)
2245                 prev_object->size = next_pindex + next_size;
2246
2247         VM_OBJECT_WUNLOCK(prev_object);
2248         return (TRUE);
2249 }
2250
2251 void
2252 vm_object_set_writeable_dirty(vm_object_t object)
2253 {
2254
2255         VM_OBJECT_ASSERT_WLOCKED(object);
2256         if (object->type != OBJT_VNODE) {
2257                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2258                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2259                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2260                 }
2261                 return;
2262         }
2263         object->generation++;
2264         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2265                 return;
2266         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2267 }
2268
2269 /*
2270  *      vm_object_unwire:
2271  *
2272  *      For each page offset within the specified range of the given object,
2273  *      find the highest-level page in the shadow chain and unwire it.  A page
2274  *      must exist at every page offset, and the highest-level page must be
2275  *      wired.
2276  */
2277 void
2278 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2279     uint8_t queue)
2280 {
2281         vm_object_t tobject;
2282         vm_page_t m, tm;
2283         vm_pindex_t end_pindex, pindex, tpindex;
2284         int depth, locked_depth;
2285
2286         KASSERT((offset & PAGE_MASK) == 0,
2287             ("vm_object_unwire: offset is not page aligned"));
2288         KASSERT((length & PAGE_MASK) == 0,
2289             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2290         /* The wired count of a fictitious page never changes. */
2291         if ((object->flags & OBJ_FICTITIOUS) != 0)
2292                 return;
2293         pindex = OFF_TO_IDX(offset);
2294         end_pindex = pindex + atop(length);
2295         locked_depth = 1;
2296         VM_OBJECT_RLOCK(object);
2297         m = vm_page_find_least(object, pindex);
2298         while (pindex < end_pindex) {
2299                 if (m == NULL || pindex < m->pindex) {
2300                         /*
2301                          * The first object in the shadow chain doesn't
2302                          * contain a page at the current index.  Therefore,
2303                          * the page must exist in a backing object.
2304                          */
2305                         tobject = object;
2306                         tpindex = pindex;
2307                         depth = 0;
2308                         do {
2309                                 tpindex +=
2310                                     OFF_TO_IDX(tobject->backing_object_offset);
2311                                 tobject = tobject->backing_object;
2312                                 KASSERT(tobject != NULL,
2313                                     ("vm_object_unwire: missing page"));
2314                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2315                                         goto next_page;
2316                                 depth++;
2317                                 if (depth == locked_depth) {
2318                                         locked_depth++;
2319                                         VM_OBJECT_RLOCK(tobject);
2320                                 }
2321                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2322                             NULL);
2323                 } else {
2324                         tm = m;
2325                         m = TAILQ_NEXT(m, listq);
2326                 }
2327                 vm_page_lock(tm);
2328                 vm_page_unwire(tm, queue);
2329                 vm_page_unlock(tm);
2330 next_page:
2331                 pindex++;
2332         }
2333         /* Release the accumulated object locks. */
2334         for (depth = 0; depth < locked_depth; depth++) {
2335                 tobject = object->backing_object;
2336                 VM_OBJECT_RUNLOCK(object);
2337                 object = tobject;
2338         }
2339 }
2340
2341 struct vnode *
2342 vm_object_vnode(vm_object_t object)
2343 {
2344
2345         VM_OBJECT_ASSERT_LOCKED(object);
2346         if (object->type == OBJT_VNODE)
2347                 return (object->handle);
2348         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2349                 return (object->un_pager.swp.swp_tmpfs);
2350         return (NULL);
2351 }
2352
2353 static int
2354 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2355 {
2356         struct kinfo_vmobject *kvo;
2357         char *fullpath, *freepath;
2358         struct vnode *vp;
2359         struct vattr va;
2360         vm_object_t obj;
2361         vm_page_t m;
2362         int count, error;
2363
2364         if (req->oldptr == NULL) {
2365                 /*
2366                  * If an old buffer has not been provided, generate an
2367                  * estimate of the space needed for a subsequent call.
2368                  */
2369                 mtx_lock(&vm_object_list_mtx);
2370                 count = 0;
2371                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2372                         if (obj->type == OBJT_DEAD)
2373                                 continue;
2374                         count++;
2375                 }
2376                 mtx_unlock(&vm_object_list_mtx);
2377                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2378                     count * 11 / 10));
2379         }
2380
2381         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2382         error = 0;
2383
2384         /*
2385          * VM objects are type stable and are never removed from the
2386          * list once added.  This allows us to safely read obj->object_list
2387          * after reacquiring the VM object lock.
2388          */
2389         mtx_lock(&vm_object_list_mtx);
2390         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2391                 if (obj->type == OBJT_DEAD)
2392                         continue;
2393                 VM_OBJECT_RLOCK(obj);
2394                 if (obj->type == OBJT_DEAD) {
2395                         VM_OBJECT_RUNLOCK(obj);
2396                         continue;
2397                 }
2398                 mtx_unlock(&vm_object_list_mtx);
2399                 kvo->kvo_size = ptoa(obj->size);
2400                 kvo->kvo_resident = obj->resident_page_count;
2401                 kvo->kvo_ref_count = obj->ref_count;
2402                 kvo->kvo_shadow_count = obj->shadow_count;
2403                 kvo->kvo_memattr = obj->memattr;
2404                 kvo->kvo_active = 0;
2405                 kvo->kvo_inactive = 0;
2406                 TAILQ_FOREACH(m, &obj->memq, listq) {
2407                         /*
2408                          * A page may belong to the object but be
2409                          * dequeued and set to PQ_NONE while the
2410                          * object lock is not held.  This makes the
2411                          * reads of m->queue below racy, and we do not
2412                          * count pages set to PQ_NONE.  However, this
2413                          * sysctl is only meant to give an
2414                          * approximation of the system anyway.
2415                          */
2416                         if (vm_page_active(m))
2417                                 kvo->kvo_active++;
2418                         else if (vm_page_inactive(m))
2419                                 kvo->kvo_inactive++;
2420                 }
2421
2422                 kvo->kvo_vn_fileid = 0;
2423                 kvo->kvo_vn_fsid = 0;
2424                 kvo->kvo_vn_fsid_freebsd11 = 0;
2425                 freepath = NULL;
2426                 fullpath = "";
2427                 vp = NULL;
2428                 switch (obj->type) {
2429                 case OBJT_DEFAULT:
2430                         kvo->kvo_type = KVME_TYPE_DEFAULT;
2431                         break;
2432                 case OBJT_VNODE:
2433                         kvo->kvo_type = KVME_TYPE_VNODE;
2434                         vp = obj->handle;
2435                         vref(vp);
2436                         break;
2437                 case OBJT_SWAP:
2438                         kvo->kvo_type = KVME_TYPE_SWAP;
2439                         break;
2440                 case OBJT_DEVICE:
2441                         kvo->kvo_type = KVME_TYPE_DEVICE;
2442                         break;
2443                 case OBJT_PHYS:
2444                         kvo->kvo_type = KVME_TYPE_PHYS;
2445                         break;
2446                 case OBJT_DEAD:
2447                         kvo->kvo_type = KVME_TYPE_DEAD;
2448                         break;
2449                 case OBJT_SG:
2450                         kvo->kvo_type = KVME_TYPE_SG;
2451                         break;
2452                 case OBJT_MGTDEVICE:
2453                         kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2454                         break;
2455                 default:
2456                         kvo->kvo_type = KVME_TYPE_UNKNOWN;
2457                         break;
2458                 }
2459                 VM_OBJECT_RUNLOCK(obj);
2460                 if (vp != NULL) {
2461                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2462                         vn_lock(vp, LK_SHARED | LK_RETRY);
2463                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2464                                 kvo->kvo_vn_fileid = va.va_fileid;
2465                                 kvo->kvo_vn_fsid = va.va_fsid;
2466                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2467                                                                 /* truncate */
2468                         }
2469                         vput(vp);
2470                 }
2471
2472                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2473                 if (freepath != NULL)
2474                         free(freepath, M_TEMP);
2475
2476                 /* Pack record size down */
2477                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2478                     + strlen(kvo->kvo_path) + 1;
2479                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2480                     sizeof(uint64_t));
2481                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2482                 mtx_lock(&vm_object_list_mtx);
2483                 if (error)
2484                         break;
2485         }
2486         mtx_unlock(&vm_object_list_mtx);
2487         free(kvo, M_TEMP);
2488         return (error);
2489 }
2490 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2491     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2492     "List of VM objects");
2493
2494 #include "opt_ddb.h"
2495 #ifdef DDB
2496 #include <sys/kernel.h>
2497
2498 #include <sys/cons.h>
2499
2500 #include <ddb/ddb.h>
2501
2502 static int
2503 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2504 {
2505         vm_map_t tmpm;
2506         vm_map_entry_t tmpe;
2507         vm_object_t obj;
2508         int entcount;
2509
2510         if (map == 0)
2511                 return 0;
2512
2513         if (entry == 0) {
2514                 tmpe = map->header.next;
2515                 entcount = map->nentries;
2516                 while (entcount-- && (tmpe != &map->header)) {
2517                         if (_vm_object_in_map(map, object, tmpe)) {
2518                                 return 1;
2519                         }
2520                         tmpe = tmpe->next;
2521                 }
2522         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2523                 tmpm = entry->object.sub_map;
2524                 tmpe = tmpm->header.next;
2525                 entcount = tmpm->nentries;
2526                 while (entcount-- && tmpe != &tmpm->header) {
2527                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2528                                 return 1;
2529                         }
2530                         tmpe = tmpe->next;
2531                 }
2532         } else if ((obj = entry->object.vm_object) != NULL) {
2533                 for (; obj; obj = obj->backing_object)
2534                         if (obj == object) {
2535                                 return 1;
2536                         }
2537         }
2538         return 0;
2539 }
2540
2541 static int
2542 vm_object_in_map(vm_object_t object)
2543 {
2544         struct proc *p;
2545
2546         /* sx_slock(&allproc_lock); */
2547         FOREACH_PROC_IN_SYSTEM(p) {
2548                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2549                         continue;
2550                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2551                         /* sx_sunlock(&allproc_lock); */
2552                         return 1;
2553                 }
2554         }
2555         /* sx_sunlock(&allproc_lock); */
2556         if (_vm_object_in_map(kernel_map, object, 0))
2557                 return 1;
2558         return 0;
2559 }
2560
2561 DB_SHOW_COMMAND(vmochk, vm_object_check)
2562 {
2563         vm_object_t object;
2564
2565         /*
2566          * make sure that internal objs are in a map somewhere
2567          * and none have zero ref counts.
2568          */
2569         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2570                 if (object->handle == NULL &&
2571                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2572                         if (object->ref_count == 0) {
2573                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2574                                         (long)object->size);
2575                         }
2576                         if (!vm_object_in_map(object)) {
2577                                 db_printf(
2578                         "vmochk: internal obj is not in a map: "
2579                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2580                                     object->ref_count, (u_long)object->size, 
2581                                     (u_long)object->size,
2582                                     (void *)object->backing_object);
2583                         }
2584                 }
2585         }
2586 }
2587
2588 /*
2589  *      vm_object_print:        [ debug ]
2590  */
2591 DB_SHOW_COMMAND(object, vm_object_print_static)
2592 {
2593         /* XXX convert args. */
2594         vm_object_t object = (vm_object_t)addr;
2595         boolean_t full = have_addr;
2596
2597         vm_page_t p;
2598
2599         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2600 #define count   was_count
2601
2602         int count;
2603
2604         if (object == NULL)
2605                 return;
2606
2607         db_iprintf(
2608             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2609             object, (int)object->type, (uintmax_t)object->size,
2610             object->resident_page_count, object->ref_count, object->flags,
2611             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2612         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2613             object->shadow_count, 
2614             object->backing_object ? object->backing_object->ref_count : 0,
2615             object->backing_object, (uintmax_t)object->backing_object_offset);
2616
2617         if (!full)
2618                 return;
2619
2620         db_indent += 2;
2621         count = 0;
2622         TAILQ_FOREACH(p, &object->memq, listq) {
2623                 if (count == 0)
2624                         db_iprintf("memory:=");
2625                 else if (count == 6) {
2626                         db_printf("\n");
2627                         db_iprintf(" ...");
2628                         count = 0;
2629                 } else
2630                         db_printf(",");
2631                 count++;
2632
2633                 db_printf("(off=0x%jx,page=0x%jx)",
2634                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2635         }
2636         if (count != 0)
2637                 db_printf("\n");
2638         db_indent -= 2;
2639 }
2640
2641 /* XXX. */
2642 #undef count
2643
2644 /* XXX need this non-static entry for calling from vm_map_print. */
2645 void
2646 vm_object_print(
2647         /* db_expr_t */ long addr,
2648         boolean_t have_addr,
2649         /* db_expr_t */ long count,
2650         char *modif)
2651 {
2652         vm_object_print_static(addr, have_addr, count, modif);
2653 }
2654
2655 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2656 {
2657         vm_object_t object;
2658         vm_pindex_t fidx;
2659         vm_paddr_t pa;
2660         vm_page_t m, prev_m;
2661         int rcount, nl, c;
2662
2663         nl = 0;
2664         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2665                 db_printf("new object: %p\n", (void *)object);
2666                 if (nl > 18) {
2667                         c = cngetc();
2668                         if (c != ' ')
2669                                 return;
2670                         nl = 0;
2671                 }
2672                 nl++;
2673                 rcount = 0;
2674                 fidx = 0;
2675                 pa = -1;
2676                 TAILQ_FOREACH(m, &object->memq, listq) {
2677                         if (m->pindex > 128)
2678                                 break;
2679                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2680                             prev_m->pindex + 1 != m->pindex) {
2681                                 if (rcount) {
2682                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2683                                                 (long)fidx, rcount, (long)pa);
2684                                         if (nl > 18) {
2685                                                 c = cngetc();
2686                                                 if (c != ' ')
2687                                                         return;
2688                                                 nl = 0;
2689                                         }
2690                                         nl++;
2691                                         rcount = 0;
2692                                 }
2693                         }                               
2694                         if (rcount &&
2695                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2696                                 ++rcount;
2697                                 continue;
2698                         }
2699                         if (rcount) {
2700                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2701                                         (long)fidx, rcount, (long)pa);
2702                                 if (nl > 18) {
2703                                         c = cngetc();
2704                                         if (c != ' ')
2705                                                 return;
2706                                         nl = 0;
2707                                 }
2708                                 nl++;
2709                         }
2710                         fidx = m->pindex;
2711                         pa = VM_PAGE_TO_PHYS(m);
2712                         rcount = 1;
2713                 }
2714                 if (rcount) {
2715                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2716                                 (long)fidx, rcount, (long)pa);
2717                         if (nl > 18) {
2718                                 c = cngetc();
2719                                 if (c != ' ')
2720                                         return;
2721                                 nl = 0;
2722                         }
2723                         nl++;
2724                 }
2725         }
2726 }
2727 #endif /* DDB */