]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Import Intel Processor Trace decoder library from
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>           /* for curproc, pageproc */
83 #include <sys/socket.h>
84 #include <sys/resourcevar.h>
85 #include <sys/rwlock.h>
86 #include <sys/user.h>
87 #include <sys/vnode.h>
88 #include <sys/vmmeter.h>
89 #include <sys/sx.h>
90
91 #include <vm/vm.h>
92 #include <vm/vm_param.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pageout.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_phys.h>
100 #include <vm/vm_pagequeue.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_extern.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/uma.h>
107
108 static int old_msync;
109 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
110     "Use old (insecure) msync behavior");
111
112 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
113                     int pagerflags, int flags, boolean_t *clearobjflags,
114                     boolean_t *eio);
115 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
116                     boolean_t *clearobjflags);
117 static void     vm_object_qcollapse(vm_object_t object);
118 static void     vm_object_vndeallocate(vm_object_t object);
119
120 /*
121  *      Virtual memory objects maintain the actual data
122  *      associated with allocated virtual memory.  A given
123  *      page of memory exists within exactly one object.
124  *
125  *      An object is only deallocated when all "references"
126  *      are given up.  Only one "reference" to a given
127  *      region of an object should be writeable.
128  *
129  *      Associated with each object is a list of all resident
130  *      memory pages belonging to that object; this list is
131  *      maintained by the "vm_page" module, and locked by the object's
132  *      lock.
133  *
134  *      Each object also records a "pager" routine which is
135  *      used to retrieve (and store) pages to the proper backing
136  *      storage.  In addition, objects may be backed by other
137  *      objects from which they were virtual-copied.
138  *
139  *      The only items within the object structure which are
140  *      modified after time of creation are:
141  *              reference count         locked by object's lock
142  *              pager routine           locked by object's lock
143  *
144  */
145
146 struct object_q vm_object_list;
147 struct mtx vm_object_list_mtx;  /* lock for object list and count */
148
149 struct vm_object kernel_object_store;
150
151 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
152     "VM object stats");
153
154 static counter_u64_t object_collapses = EARLY_COUNTER;
155 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
156     &object_collapses,
157     "VM object collapses");
158
159 static counter_u64_t object_bypasses = EARLY_COUNTER;
160 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
161     &object_bypasses,
162     "VM object bypasses");
163
164 static void
165 counter_startup(void)
166 {
167
168         object_collapses = counter_u64_alloc(M_WAITOK);
169         object_bypasses = counter_u64_alloc(M_WAITOK);
170 }
171 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
172
173 static uma_zone_t obj_zone;
174
175 static int vm_object_zinit(void *mem, int size, int flags);
176
177 #ifdef INVARIANTS
178 static void vm_object_zdtor(void *mem, int size, void *arg);
179
180 static void
181 vm_object_zdtor(void *mem, int size, void *arg)
182 {
183         vm_object_t object;
184
185         object = (vm_object_t)mem;
186         KASSERT(object->ref_count == 0,
187             ("object %p ref_count = %d", object, object->ref_count));
188         KASSERT(TAILQ_EMPTY(&object->memq),
189             ("object %p has resident pages in its memq", object));
190         KASSERT(vm_radix_is_empty(&object->rtree),
191             ("object %p has resident pages in its trie", object));
192 #if VM_NRESERVLEVEL > 0
193         KASSERT(LIST_EMPTY(&object->rvq),
194             ("object %p has reservations",
195             object));
196 #endif
197         KASSERT(object->paging_in_progress == 0,
198             ("object %p paging_in_progress = %d",
199             object, object->paging_in_progress));
200         KASSERT(object->resident_page_count == 0,
201             ("object %p resident_page_count = %d",
202             object, object->resident_page_count));
203         KASSERT(object->shadow_count == 0,
204             ("object %p shadow_count = %d",
205             object, object->shadow_count));
206         KASSERT(object->type == OBJT_DEAD,
207             ("object %p has non-dead type %d",
208             object, object->type));
209 }
210 #endif
211
212 static int
213 vm_object_zinit(void *mem, int size, int flags)
214 {
215         vm_object_t object;
216
217         object = (vm_object_t)mem;
218         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
219
220         /* These are true for any object that has been freed */
221         object->type = OBJT_DEAD;
222         object->ref_count = 0;
223         vm_radix_init(&object->rtree);
224         object->paging_in_progress = 0;
225         object->resident_page_count = 0;
226         object->shadow_count = 0;
227         object->flags = OBJ_DEAD;
228
229         mtx_lock(&vm_object_list_mtx);
230         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231         mtx_unlock(&vm_object_list_mtx);
232         return (0);
233 }
234
235 static void
236 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
237 {
238
239         TAILQ_INIT(&object->memq);
240         LIST_INIT(&object->shadow_head);
241
242         object->type = type;
243         if (type == OBJT_SWAP)
244                 pctrie_init(&object->un_pager.swp.swp_blks);
245
246         /*
247          * Ensure that swap_pager_swapoff() iteration over object_list
248          * sees up to date type and pctrie head if it observed
249          * non-dead object.
250          */
251         atomic_thread_fence_rel();
252
253         switch (type) {
254         case OBJT_DEAD:
255                 panic("_vm_object_allocate: can't create OBJT_DEAD");
256         case OBJT_DEFAULT:
257         case OBJT_SWAP:
258                 object->flags = OBJ_ONEMAPPING;
259                 break;
260         case OBJT_DEVICE:
261         case OBJT_SG:
262                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
263                 break;
264         case OBJT_MGTDEVICE:
265                 object->flags = OBJ_FICTITIOUS;
266                 break;
267         case OBJT_PHYS:
268                 object->flags = OBJ_UNMANAGED;
269                 break;
270         case OBJT_VNODE:
271                 object->flags = 0;
272                 break;
273         default:
274                 panic("_vm_object_allocate: type %d is undefined", type);
275         }
276         object->size = size;
277         object->generation = 1;
278         object->ref_count = 1;
279         object->memattr = VM_MEMATTR_DEFAULT;
280         object->cred = NULL;
281         object->charge = 0;
282         object->handle = NULL;
283         object->backing_object = NULL;
284         object->backing_object_offset = (vm_ooffset_t) 0;
285 #if VM_NRESERVLEVEL > 0
286         LIST_INIT(&object->rvq);
287 #endif
288         umtx_shm_object_init(object);
289 }
290
291 /*
292  *      vm_object_init:
293  *
294  *      Initialize the VM objects module.
295  */
296 void
297 vm_object_init(void)
298 {
299         TAILQ_INIT(&vm_object_list);
300         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
301         
302         rw_init(&kernel_object->lock, "kernel vm object");
303         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
304             VM_MIN_KERNEL_ADDRESS), kernel_object);
305 #if VM_NRESERVLEVEL > 0
306         kernel_object->flags |= OBJ_COLORED;
307         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
308 #endif
309
310         /*
311          * The lock portion of struct vm_object must be type stable due
312          * to vm_pageout_fallback_object_lock locking a vm object
313          * without holding any references to it.
314          */
315         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
316 #ifdef INVARIANTS
317             vm_object_zdtor,
318 #else
319             NULL,
320 #endif
321             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
322
323         vm_radix_zinit();
324 }
325
326 void
327 vm_object_clear_flag(vm_object_t object, u_short bits)
328 {
329
330         VM_OBJECT_ASSERT_WLOCKED(object);
331         object->flags &= ~bits;
332 }
333
334 /*
335  *      Sets the default memory attribute for the specified object.  Pages
336  *      that are allocated to this object are by default assigned this memory
337  *      attribute.
338  *
339  *      Presently, this function must be called before any pages are allocated
340  *      to the object.  In the future, this requirement may be relaxed for
341  *      "default" and "swap" objects.
342  */
343 int
344 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
345 {
346
347         VM_OBJECT_ASSERT_WLOCKED(object);
348         switch (object->type) {
349         case OBJT_DEFAULT:
350         case OBJT_DEVICE:
351         case OBJT_MGTDEVICE:
352         case OBJT_PHYS:
353         case OBJT_SG:
354         case OBJT_SWAP:
355         case OBJT_VNODE:
356                 if (!TAILQ_EMPTY(&object->memq))
357                         return (KERN_FAILURE);
358                 break;
359         case OBJT_DEAD:
360                 return (KERN_INVALID_ARGUMENT);
361         default:
362                 panic("vm_object_set_memattr: object %p is of undefined type",
363                     object);
364         }
365         object->memattr = memattr;
366         return (KERN_SUCCESS);
367 }
368
369 void
370 vm_object_pip_add(vm_object_t object, short i)
371 {
372
373         VM_OBJECT_ASSERT_WLOCKED(object);
374         object->paging_in_progress += i;
375 }
376
377 void
378 vm_object_pip_subtract(vm_object_t object, short i)
379 {
380
381         VM_OBJECT_ASSERT_WLOCKED(object);
382         object->paging_in_progress -= i;
383 }
384
385 void
386 vm_object_pip_wakeup(vm_object_t object)
387 {
388
389         VM_OBJECT_ASSERT_WLOCKED(object);
390         object->paging_in_progress--;
391         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
392                 vm_object_clear_flag(object, OBJ_PIPWNT);
393                 wakeup(object);
394         }
395 }
396
397 void
398 vm_object_pip_wakeupn(vm_object_t object, short i)
399 {
400
401         VM_OBJECT_ASSERT_WLOCKED(object);
402         if (i)
403                 object->paging_in_progress -= i;
404         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
405                 vm_object_clear_flag(object, OBJ_PIPWNT);
406                 wakeup(object);
407         }
408 }
409
410 void
411 vm_object_pip_wait(vm_object_t object, char *waitid)
412 {
413
414         VM_OBJECT_ASSERT_WLOCKED(object);
415         while (object->paging_in_progress) {
416                 object->flags |= OBJ_PIPWNT;
417                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
418         }
419 }
420
421 /*
422  *      vm_object_allocate:
423  *
424  *      Returns a new object with the given size.
425  */
426 vm_object_t
427 vm_object_allocate(objtype_t type, vm_pindex_t size)
428 {
429         vm_object_t object;
430
431         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
432         _vm_object_allocate(type, size, object);
433         return (object);
434 }
435
436
437 /*
438  *      vm_object_reference:
439  *
440  *      Gets another reference to the given object.  Note: OBJ_DEAD
441  *      objects can be referenced during final cleaning.
442  */
443 void
444 vm_object_reference(vm_object_t object)
445 {
446         if (object == NULL)
447                 return;
448         VM_OBJECT_WLOCK(object);
449         vm_object_reference_locked(object);
450         VM_OBJECT_WUNLOCK(object);
451 }
452
453 /*
454  *      vm_object_reference_locked:
455  *
456  *      Gets another reference to the given object.
457  *
458  *      The object must be locked.
459  */
460 void
461 vm_object_reference_locked(vm_object_t object)
462 {
463         struct vnode *vp;
464
465         VM_OBJECT_ASSERT_WLOCKED(object);
466         object->ref_count++;
467         if (object->type == OBJT_VNODE) {
468                 vp = object->handle;
469                 vref(vp);
470         }
471 }
472
473 /*
474  * Handle deallocating an object of type OBJT_VNODE.
475  */
476 static void
477 vm_object_vndeallocate(vm_object_t object)
478 {
479         struct vnode *vp = (struct vnode *) object->handle;
480
481         VM_OBJECT_ASSERT_WLOCKED(object);
482         KASSERT(object->type == OBJT_VNODE,
483             ("vm_object_vndeallocate: not a vnode object"));
484         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
485 #ifdef INVARIANTS
486         if (object->ref_count == 0) {
487                 vn_printf(vp, "vm_object_vndeallocate ");
488                 panic("vm_object_vndeallocate: bad object reference count");
489         }
490 #endif
491
492         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
493                 umtx_shm_object_terminated(object);
494
495         /*
496          * The test for text of vp vnode does not need a bypass to
497          * reach right VV_TEXT there, since it is obtained from
498          * object->handle.
499          */
500         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
501                 object->ref_count--;
502                 VM_OBJECT_WUNLOCK(object);
503                 /* vrele may need the vnode lock. */
504                 vrele(vp);
505         } else {
506                 vhold(vp);
507                 VM_OBJECT_WUNLOCK(object);
508                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
509                 vdrop(vp);
510                 VM_OBJECT_WLOCK(object);
511                 object->ref_count--;
512                 if (object->type == OBJT_DEAD) {
513                         VM_OBJECT_WUNLOCK(object);
514                         VOP_UNLOCK(vp, 0);
515                 } else {
516                         if (object->ref_count == 0)
517                                 VOP_UNSET_TEXT(vp);
518                         VM_OBJECT_WUNLOCK(object);
519                         vput(vp);
520                 }
521         }
522 }
523
524 /*
525  *      vm_object_deallocate:
526  *
527  *      Release a reference to the specified object,
528  *      gained either through a vm_object_allocate
529  *      or a vm_object_reference call.  When all references
530  *      are gone, storage associated with this object
531  *      may be relinquished.
532  *
533  *      No object may be locked.
534  */
535 void
536 vm_object_deallocate(vm_object_t object)
537 {
538         vm_object_t temp;
539         struct vnode *vp;
540
541         while (object != NULL) {
542                 VM_OBJECT_WLOCK(object);
543                 if (object->type == OBJT_VNODE) {
544                         vm_object_vndeallocate(object);
545                         return;
546                 }
547
548                 KASSERT(object->ref_count != 0,
549                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
550
551                 /*
552                  * If the reference count goes to 0 we start calling
553                  * vm_object_terminate() on the object chain.
554                  * A ref count of 1 may be a special case depending on the
555                  * shadow count being 0 or 1.
556                  */
557                 object->ref_count--;
558                 if (object->ref_count > 1) {
559                         VM_OBJECT_WUNLOCK(object);
560                         return;
561                 } else if (object->ref_count == 1) {
562                         if (object->type == OBJT_SWAP &&
563                             (object->flags & OBJ_TMPFS) != 0) {
564                                 vp = object->un_pager.swp.swp_tmpfs;
565                                 vhold(vp);
566                                 VM_OBJECT_WUNLOCK(object);
567                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
568                                 VM_OBJECT_WLOCK(object);
569                                 if (object->type == OBJT_DEAD ||
570                                     object->ref_count != 1) {
571                                         VM_OBJECT_WUNLOCK(object);
572                                         VOP_UNLOCK(vp, 0);
573                                         vdrop(vp);
574                                         return;
575                                 }
576                                 if ((object->flags & OBJ_TMPFS) != 0)
577                                         VOP_UNSET_TEXT(vp);
578                                 VOP_UNLOCK(vp, 0);
579                                 vdrop(vp);
580                         }
581                         if (object->shadow_count == 0 &&
582                             object->handle == NULL &&
583                             (object->type == OBJT_DEFAULT ||
584                             (object->type == OBJT_SWAP &&
585                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
586                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
587                         } else if ((object->shadow_count == 1) &&
588                             (object->handle == NULL) &&
589                             (object->type == OBJT_DEFAULT ||
590                              object->type == OBJT_SWAP)) {
591                                 vm_object_t robject;
592
593                                 robject = LIST_FIRST(&object->shadow_head);
594                                 KASSERT(robject != NULL,
595                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
596                                          object->ref_count,
597                                          object->shadow_count));
598                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
599                                     ("shadowed tmpfs v_object %p", object));
600                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
601                                         /*
602                                          * Avoid a potential deadlock.
603                                          */
604                                         object->ref_count++;
605                                         VM_OBJECT_WUNLOCK(object);
606                                         /*
607                                          * More likely than not the thread
608                                          * holding robject's lock has lower
609                                          * priority than the current thread.
610                                          * Let the lower priority thread run.
611                                          */
612                                         pause("vmo_de", 1);
613                                         continue;
614                                 }
615                                 /*
616                                  * Collapse object into its shadow unless its
617                                  * shadow is dead.  In that case, object will
618                                  * be deallocated by the thread that is
619                                  * deallocating its shadow.
620                                  */
621                                 if ((robject->flags & OBJ_DEAD) == 0 &&
622                                     (robject->handle == NULL) &&
623                                     (robject->type == OBJT_DEFAULT ||
624                                      robject->type == OBJT_SWAP)) {
625
626                                         robject->ref_count++;
627 retry:
628                                         if (robject->paging_in_progress) {
629                                                 VM_OBJECT_WUNLOCK(object);
630                                                 vm_object_pip_wait(robject,
631                                                     "objde1");
632                                                 temp = robject->backing_object;
633                                                 if (object == temp) {
634                                                         VM_OBJECT_WLOCK(object);
635                                                         goto retry;
636                                                 }
637                                         } else if (object->paging_in_progress) {
638                                                 VM_OBJECT_WUNLOCK(robject);
639                                                 object->flags |= OBJ_PIPWNT;
640                                                 VM_OBJECT_SLEEP(object, object,
641                                                     PDROP | PVM, "objde2", 0);
642                                                 VM_OBJECT_WLOCK(robject);
643                                                 temp = robject->backing_object;
644                                                 if (object == temp) {
645                                                         VM_OBJECT_WLOCK(object);
646                                                         goto retry;
647                                                 }
648                                         } else
649                                                 VM_OBJECT_WUNLOCK(object);
650
651                                         if (robject->ref_count == 1) {
652                                                 robject->ref_count--;
653                                                 object = robject;
654                                                 goto doterm;
655                                         }
656                                         object = robject;
657                                         vm_object_collapse(object);
658                                         VM_OBJECT_WUNLOCK(object);
659                                         continue;
660                                 }
661                                 VM_OBJECT_WUNLOCK(robject);
662                         }
663                         VM_OBJECT_WUNLOCK(object);
664                         return;
665                 }
666 doterm:
667                 umtx_shm_object_terminated(object);
668                 temp = object->backing_object;
669                 if (temp != NULL) {
670                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
671                             ("shadowed tmpfs v_object 2 %p", object));
672                         VM_OBJECT_WLOCK(temp);
673                         LIST_REMOVE(object, shadow_list);
674                         temp->shadow_count--;
675                         VM_OBJECT_WUNLOCK(temp);
676                         object->backing_object = NULL;
677                 }
678                 /*
679                  * Don't double-terminate, we could be in a termination
680                  * recursion due to the terminate having to sync data
681                  * to disk.
682                  */
683                 if ((object->flags & OBJ_DEAD) == 0)
684                         vm_object_terminate(object);
685                 else
686                         VM_OBJECT_WUNLOCK(object);
687                 object = temp;
688         }
689 }
690
691 /*
692  *      vm_object_destroy removes the object from the global object list
693  *      and frees the space for the object.
694  */
695 void
696 vm_object_destroy(vm_object_t object)
697 {
698
699         /*
700          * Release the allocation charge.
701          */
702         if (object->cred != NULL) {
703                 swap_release_by_cred(object->charge, object->cred);
704                 object->charge = 0;
705                 crfree(object->cred);
706                 object->cred = NULL;
707         }
708
709         /*
710          * Free the space for the object.
711          */
712         uma_zfree(obj_zone, object);
713 }
714
715 /*
716  *      vm_object_terminate_pages removes any remaining pageable pages
717  *      from the object and resets the object to an empty state.
718  */
719 static void
720 vm_object_terminate_pages(vm_object_t object)
721 {
722         vm_page_t p, p_next;
723         struct mtx *mtx, *mtx1;
724         struct vm_pagequeue *pq, *pq1;
725         int dequeued;
726
727         VM_OBJECT_ASSERT_WLOCKED(object);
728
729         mtx = NULL;
730         pq = NULL;
731
732         /*
733          * Free any remaining pageable pages.  This also removes them from the
734          * paging queues.  However, don't free wired pages, just remove them
735          * from the object.  Rather than incrementally removing each page from
736          * the object, the page and object are reset to any empty state. 
737          */
738         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
739                 vm_page_assert_unbusied(p);
740                 if ((object->flags & OBJ_UNMANAGED) == 0) {
741                         /*
742                          * vm_page_free_prep() only needs the page
743                          * lock for managed pages.
744                          */
745                         mtx1 = vm_page_lockptr(p);
746                         if (mtx1 != mtx) {
747                                 if (mtx != NULL)
748                                         mtx_unlock(mtx);
749                                 if (pq != NULL) {
750                                         vm_pagequeue_cnt_add(pq, dequeued);
751                                         vm_pagequeue_unlock(pq);
752                                         pq = NULL;
753                                 }
754                                 mtx = mtx1;
755                                 mtx_lock(mtx);
756                         }
757                 }
758                 p->object = NULL;
759                 if (p->wire_count != 0)
760                         goto unlist;
761                 VM_CNT_INC(v_pfree);
762                 p->flags &= ~PG_ZERO;
763                 if (p->queue != PQ_NONE) {
764                         KASSERT(p->queue < PQ_COUNT, ("vm_object_terminate: "
765                             "page %p is not queued", p));
766                         pq1 = vm_page_pagequeue(p);
767                         if (pq != pq1) {
768                                 if (pq != NULL) {
769                                         vm_pagequeue_cnt_add(pq, dequeued);
770                                         vm_pagequeue_unlock(pq);
771                                 }
772                                 pq = pq1;
773                                 vm_pagequeue_lock(pq);
774                                 dequeued = 0;
775                         }
776                         p->queue = PQ_NONE;
777                         TAILQ_REMOVE(&pq->pq_pl, p, plinks.q);
778                         dequeued--;
779                 }
780                 if (vm_page_free_prep(p, true))
781                         continue;
782 unlist:
783                 TAILQ_REMOVE(&object->memq, p, listq);
784         }
785         if (pq != NULL) {
786                 vm_pagequeue_cnt_add(pq, dequeued);
787                 vm_pagequeue_unlock(pq);
788         }
789         if (mtx != NULL)
790                 mtx_unlock(mtx);
791
792         vm_page_free_phys_pglist(&object->memq);
793
794         /*
795          * If the object contained any pages, then reset it to an empty state.
796          * None of the object's fields, including "resident_page_count", were
797          * modified by the preceding loop.
798          */
799         if (object->resident_page_count != 0) {
800                 vm_radix_reclaim_allnodes(&object->rtree);
801                 TAILQ_INIT(&object->memq);
802                 object->resident_page_count = 0;
803                 if (object->type == OBJT_VNODE)
804                         vdrop(object->handle);
805         }
806 }
807
808 /*
809  *      vm_object_terminate actually destroys the specified object, freeing
810  *      up all previously used resources.
811  *
812  *      The object must be locked.
813  *      This routine may block.
814  */
815 void
816 vm_object_terminate(vm_object_t object)
817 {
818
819         VM_OBJECT_ASSERT_WLOCKED(object);
820
821         /*
822          * Make sure no one uses us.
823          */
824         vm_object_set_flag(object, OBJ_DEAD);
825
826         /*
827          * wait for the pageout daemon to be done with the object
828          */
829         vm_object_pip_wait(object, "objtrm");
830
831         KASSERT(!object->paging_in_progress,
832                 ("vm_object_terminate: pageout in progress"));
833
834         /*
835          * Clean and free the pages, as appropriate. All references to the
836          * object are gone, so we don't need to lock it.
837          */
838         if (object->type == OBJT_VNODE) {
839                 struct vnode *vp = (struct vnode *)object->handle;
840
841                 /*
842                  * Clean pages and flush buffers.
843                  */
844                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
845                 VM_OBJECT_WUNLOCK(object);
846
847                 vinvalbuf(vp, V_SAVE, 0, 0);
848
849                 BO_LOCK(&vp->v_bufobj);
850                 vp->v_bufobj.bo_flag |= BO_DEAD;
851                 BO_UNLOCK(&vp->v_bufobj);
852
853                 VM_OBJECT_WLOCK(object);
854         }
855
856         KASSERT(object->ref_count == 0, 
857                 ("vm_object_terminate: object with references, ref_count=%d",
858                 object->ref_count));
859
860         if ((object->flags & OBJ_PG_DTOR) == 0)
861                 vm_object_terminate_pages(object);
862
863 #if VM_NRESERVLEVEL > 0
864         if (__predict_false(!LIST_EMPTY(&object->rvq)))
865                 vm_reserv_break_all(object);
866 #endif
867
868         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
869             object->type == OBJT_SWAP,
870             ("%s: non-swap obj %p has cred", __func__, object));
871
872         /*
873          * Let the pager know object is dead.
874          */
875         vm_pager_deallocate(object);
876         VM_OBJECT_WUNLOCK(object);
877
878         vm_object_destroy(object);
879 }
880
881 /*
882  * Make the page read-only so that we can clear the object flags.  However, if
883  * this is a nosync mmap then the object is likely to stay dirty so do not
884  * mess with the page and do not clear the object flags.  Returns TRUE if the
885  * page should be flushed, and FALSE otherwise.
886  */
887 static boolean_t
888 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
889 {
890
891         /*
892          * If we have been asked to skip nosync pages and this is a
893          * nosync page, skip it.  Note that the object flags were not
894          * cleared in this case so we do not have to set them.
895          */
896         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
897                 *clearobjflags = FALSE;
898                 return (FALSE);
899         } else {
900                 pmap_remove_write(p);
901                 return (p->dirty != 0);
902         }
903 }
904
905 /*
906  *      vm_object_page_clean
907  *
908  *      Clean all dirty pages in the specified range of object.  Leaves page 
909  *      on whatever queue it is currently on.   If NOSYNC is set then do not
910  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
911  *      leaving the object dirty.
912  *
913  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
914  *      synchronous clustering mode implementation.
915  *
916  *      Odd semantics: if start == end, we clean everything.
917  *
918  *      The object must be locked.
919  *
920  *      Returns FALSE if some page from the range was not written, as
921  *      reported by the pager, and TRUE otherwise.
922  */
923 boolean_t
924 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
925     int flags)
926 {
927         vm_page_t np, p;
928         vm_pindex_t pi, tend, tstart;
929         int curgeneration, n, pagerflags;
930         boolean_t clearobjflags, eio, res;
931
932         VM_OBJECT_ASSERT_WLOCKED(object);
933
934         /*
935          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
936          * objects.  The check below prevents the function from
937          * operating on non-vnode objects.
938          */
939         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
940             object->resident_page_count == 0)
941                 return (TRUE);
942
943         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
944             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
945         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
946
947         tstart = OFF_TO_IDX(start);
948         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
949         clearobjflags = tstart == 0 && tend >= object->size;
950         res = TRUE;
951
952 rescan:
953         curgeneration = object->generation;
954
955         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
956                 pi = p->pindex;
957                 if (pi >= tend)
958                         break;
959                 np = TAILQ_NEXT(p, listq);
960                 if (p->valid == 0)
961                         continue;
962                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
963                         if (object->generation != curgeneration) {
964                                 if ((flags & OBJPC_SYNC) != 0)
965                                         goto rescan;
966                                 else
967                                         clearobjflags = FALSE;
968                         }
969                         np = vm_page_find_least(object, pi);
970                         continue;
971                 }
972                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
973                         continue;
974
975                 n = vm_object_page_collect_flush(object, p, pagerflags,
976                     flags, &clearobjflags, &eio);
977                 if (eio) {
978                         res = FALSE;
979                         clearobjflags = FALSE;
980                 }
981                 if (object->generation != curgeneration) {
982                         if ((flags & OBJPC_SYNC) != 0)
983                                 goto rescan;
984                         else
985                                 clearobjflags = FALSE;
986                 }
987
988                 /*
989                  * If the VOP_PUTPAGES() did a truncated write, so
990                  * that even the first page of the run is not fully
991                  * written, vm_pageout_flush() returns 0 as the run
992                  * length.  Since the condition that caused truncated
993                  * write may be permanent, e.g. exhausted free space,
994                  * accepting n == 0 would cause an infinite loop.
995                  *
996                  * Forwarding the iterator leaves the unwritten page
997                  * behind, but there is not much we can do there if
998                  * filesystem refuses to write it.
999                  */
1000                 if (n == 0) {
1001                         n = 1;
1002                         clearobjflags = FALSE;
1003                 }
1004                 np = vm_page_find_least(object, pi + n);
1005         }
1006 #if 0
1007         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1008 #endif
1009
1010         if (clearobjflags)
1011                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
1012         return (res);
1013 }
1014
1015 static int
1016 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1017     int flags, boolean_t *clearobjflags, boolean_t *eio)
1018 {
1019         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1020         int count, i, mreq, runlen;
1021
1022         vm_page_lock_assert(p, MA_NOTOWNED);
1023         VM_OBJECT_ASSERT_WLOCKED(object);
1024
1025         count = 1;
1026         mreq = 0;
1027
1028         for (tp = p; count < vm_pageout_page_count; count++) {
1029                 tp = vm_page_next(tp);
1030                 if (tp == NULL || vm_page_busied(tp))
1031                         break;
1032                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1033                         break;
1034         }
1035
1036         for (p_first = p; count < vm_pageout_page_count; count++) {
1037                 tp = vm_page_prev(p_first);
1038                 if (tp == NULL || vm_page_busied(tp))
1039                         break;
1040                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1041                         break;
1042                 p_first = tp;
1043                 mreq++;
1044         }
1045
1046         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1047                 ma[i] = tp;
1048
1049         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1050         return (runlen);
1051 }
1052
1053 /*
1054  * Note that there is absolutely no sense in writing out
1055  * anonymous objects, so we track down the vnode object
1056  * to write out.
1057  * We invalidate (remove) all pages from the address space
1058  * for semantic correctness.
1059  *
1060  * If the backing object is a device object with unmanaged pages, then any
1061  * mappings to the specified range of pages must be removed before this
1062  * function is called.
1063  *
1064  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1065  * may start out with a NULL object.
1066  */
1067 boolean_t
1068 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1069     boolean_t syncio, boolean_t invalidate)
1070 {
1071         vm_object_t backing_object;
1072         struct vnode *vp;
1073         struct mount *mp;
1074         int error, flags, fsync_after;
1075         boolean_t res;
1076
1077         if (object == NULL)
1078                 return (TRUE);
1079         res = TRUE;
1080         error = 0;
1081         VM_OBJECT_WLOCK(object);
1082         while ((backing_object = object->backing_object) != NULL) {
1083                 VM_OBJECT_WLOCK(backing_object);
1084                 offset += object->backing_object_offset;
1085                 VM_OBJECT_WUNLOCK(object);
1086                 object = backing_object;
1087                 if (object->size < OFF_TO_IDX(offset + size))
1088                         size = IDX_TO_OFF(object->size) - offset;
1089         }
1090         /*
1091          * Flush pages if writing is allowed, invalidate them
1092          * if invalidation requested.  Pages undergoing I/O
1093          * will be ignored by vm_object_page_remove().
1094          *
1095          * We cannot lock the vnode and then wait for paging
1096          * to complete without deadlocking against vm_fault.
1097          * Instead we simply call vm_object_page_remove() and
1098          * allow it to block internally on a page-by-page
1099          * basis when it encounters pages undergoing async
1100          * I/O.
1101          */
1102         if (object->type == OBJT_VNODE &&
1103             (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1104             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1105                 VM_OBJECT_WUNLOCK(object);
1106                 (void) vn_start_write(vp, &mp, V_WAIT);
1107                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1108                 if (syncio && !invalidate && offset == 0 &&
1109                     atop(size) == object->size) {
1110                         /*
1111                          * If syncing the whole mapping of the file,
1112                          * it is faster to schedule all the writes in
1113                          * async mode, also allowing the clustering,
1114                          * and then wait for i/o to complete.
1115                          */
1116                         flags = 0;
1117                         fsync_after = TRUE;
1118                 } else {
1119                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1120                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1121                         fsync_after = FALSE;
1122                 }
1123                 VM_OBJECT_WLOCK(object);
1124                 res = vm_object_page_clean(object, offset, offset + size,
1125                     flags);
1126                 VM_OBJECT_WUNLOCK(object);
1127                 if (fsync_after)
1128                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1129                 VOP_UNLOCK(vp, 0);
1130                 vn_finished_write(mp);
1131                 if (error != 0)
1132                         res = FALSE;
1133                 VM_OBJECT_WLOCK(object);
1134         }
1135         if ((object->type == OBJT_VNODE ||
1136              object->type == OBJT_DEVICE) && invalidate) {
1137                 if (object->type == OBJT_DEVICE)
1138                         /*
1139                          * The option OBJPR_NOTMAPPED must be passed here
1140                          * because vm_object_page_remove() cannot remove
1141                          * unmanaged mappings.
1142                          */
1143                         flags = OBJPR_NOTMAPPED;
1144                 else if (old_msync)
1145                         flags = 0;
1146                 else
1147                         flags = OBJPR_CLEANONLY;
1148                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1149                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1150         }
1151         VM_OBJECT_WUNLOCK(object);
1152         return (res);
1153 }
1154
1155 /*
1156  * Determine whether the given advice can be applied to the object.  Advice is
1157  * not applied to unmanaged pages since they never belong to page queues, and
1158  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1159  * have been mapped at most once.
1160  */
1161 static bool
1162 vm_object_advice_applies(vm_object_t object, int advice)
1163 {
1164
1165         if ((object->flags & OBJ_UNMANAGED) != 0)
1166                 return (false);
1167         if (advice != MADV_FREE)
1168                 return (true);
1169         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1170             (object->flags & OBJ_ONEMAPPING) != 0);
1171 }
1172
1173 static void
1174 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1175     vm_size_t size)
1176 {
1177
1178         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1179                 swap_pager_freespace(object, pindex, size);
1180 }
1181
1182 /*
1183  *      vm_object_madvise:
1184  *
1185  *      Implements the madvise function at the object/page level.
1186  *
1187  *      MADV_WILLNEED   (any object)
1188  *
1189  *          Activate the specified pages if they are resident.
1190  *
1191  *      MADV_DONTNEED   (any object)
1192  *
1193  *          Deactivate the specified pages if they are resident.
1194  *
1195  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1196  *                       OBJ_ONEMAPPING only)
1197  *
1198  *          Deactivate and clean the specified pages if they are
1199  *          resident.  This permits the process to reuse the pages
1200  *          without faulting or the kernel to reclaim the pages
1201  *          without I/O.
1202  */
1203 void
1204 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1205     int advice)
1206 {
1207         vm_pindex_t tpindex;
1208         vm_object_t backing_object, tobject;
1209         vm_page_t m, tm;
1210
1211         if (object == NULL)
1212                 return;
1213
1214 relookup:
1215         VM_OBJECT_WLOCK(object);
1216         if (!vm_object_advice_applies(object, advice)) {
1217                 VM_OBJECT_WUNLOCK(object);
1218                 return;
1219         }
1220         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1221                 tobject = object;
1222
1223                 /*
1224                  * If the next page isn't resident in the top-level object, we
1225                  * need to search the shadow chain.  When applying MADV_FREE, we
1226                  * take care to release any swap space used to store
1227                  * non-resident pages.
1228                  */
1229                 if (m == NULL || pindex < m->pindex) {
1230                         /*
1231                          * Optimize a common case: if the top-level object has
1232                          * no backing object, we can skip over the non-resident
1233                          * range in constant time.
1234                          */
1235                         if (object->backing_object == NULL) {
1236                                 tpindex = (m != NULL && m->pindex < end) ?
1237                                     m->pindex : end;
1238                                 vm_object_madvise_freespace(object, advice,
1239                                     pindex, tpindex - pindex);
1240                                 if ((pindex = tpindex) == end)
1241                                         break;
1242                                 goto next_page;
1243                         }
1244
1245                         tpindex = pindex;
1246                         do {
1247                                 vm_object_madvise_freespace(tobject, advice,
1248                                     tpindex, 1);
1249                                 /*
1250                                  * Prepare to search the next object in the
1251                                  * chain.
1252                                  */
1253                                 backing_object = tobject->backing_object;
1254                                 if (backing_object == NULL)
1255                                         goto next_pindex;
1256                                 VM_OBJECT_WLOCK(backing_object);
1257                                 tpindex +=
1258                                     OFF_TO_IDX(tobject->backing_object_offset);
1259                                 if (tobject != object)
1260                                         VM_OBJECT_WUNLOCK(tobject);
1261                                 tobject = backing_object;
1262                                 if (!vm_object_advice_applies(tobject, advice))
1263                                         goto next_pindex;
1264                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1265                             NULL);
1266                 } else {
1267 next_page:
1268                         tm = m;
1269                         m = TAILQ_NEXT(m, listq);
1270                 }
1271
1272                 /*
1273                  * If the page is not in a normal state, skip it.
1274                  */
1275                 if (tm->valid != VM_PAGE_BITS_ALL)
1276                         goto next_pindex;
1277                 vm_page_lock(tm);
1278                 if (vm_page_held(tm)) {
1279                         vm_page_unlock(tm);
1280                         goto next_pindex;
1281                 }
1282                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1283                     ("vm_object_madvise: page %p is fictitious", tm));
1284                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1285                     ("vm_object_madvise: page %p is not managed", tm));
1286                 if (vm_page_busied(tm)) {
1287                         if (object != tobject)
1288                                 VM_OBJECT_WUNLOCK(tobject);
1289                         VM_OBJECT_WUNLOCK(object);
1290                         if (advice == MADV_WILLNEED) {
1291                                 /*
1292                                  * Reference the page before unlocking and
1293                                  * sleeping so that the page daemon is less
1294                                  * likely to reclaim it.
1295                                  */
1296                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1297                         }
1298                         vm_page_busy_sleep(tm, "madvpo", false);
1299                         goto relookup;
1300                 }
1301                 vm_page_advise(tm, advice);
1302                 vm_page_unlock(tm);
1303                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1304 next_pindex:
1305                 if (tobject != object)
1306                         VM_OBJECT_WUNLOCK(tobject);
1307         }
1308         VM_OBJECT_WUNLOCK(object);
1309 }
1310
1311 /*
1312  *      vm_object_shadow:
1313  *
1314  *      Create a new object which is backed by the
1315  *      specified existing object range.  The source
1316  *      object reference is deallocated.
1317  *
1318  *      The new object and offset into that object
1319  *      are returned in the source parameters.
1320  */
1321 void
1322 vm_object_shadow(
1323         vm_object_t *object,    /* IN/OUT */
1324         vm_ooffset_t *offset,   /* IN/OUT */
1325         vm_size_t length)
1326 {
1327         vm_object_t source;
1328         vm_object_t result;
1329
1330         source = *object;
1331
1332         /*
1333          * Don't create the new object if the old object isn't shared.
1334          */
1335         if (source != NULL) {
1336                 VM_OBJECT_WLOCK(source);
1337                 if (source->ref_count == 1 &&
1338                     source->handle == NULL &&
1339                     (source->type == OBJT_DEFAULT ||
1340                      source->type == OBJT_SWAP)) {
1341                         VM_OBJECT_WUNLOCK(source);
1342                         return;
1343                 }
1344                 VM_OBJECT_WUNLOCK(source);
1345         }
1346
1347         /*
1348          * Allocate a new object with the given length.
1349          */
1350         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1351
1352         /*
1353          * The new object shadows the source object, adding a reference to it.
1354          * Our caller changes his reference to point to the new object,
1355          * removing a reference to the source object.  Net result: no change
1356          * of reference count.
1357          *
1358          * Try to optimize the result object's page color when shadowing
1359          * in order to maintain page coloring consistency in the combined 
1360          * shadowed object.
1361          */
1362         result->backing_object = source;
1363         /*
1364          * Store the offset into the source object, and fix up the offset into
1365          * the new object.
1366          */
1367         result->backing_object_offset = *offset;
1368         if (source != NULL) {
1369                 VM_OBJECT_WLOCK(source);
1370                 result->domain = source->domain;
1371                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1372                 source->shadow_count++;
1373 #if VM_NRESERVLEVEL > 0
1374                 result->flags |= source->flags & OBJ_COLORED;
1375                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1376                     ((1 << (VM_NFREEORDER - 1)) - 1);
1377 #endif
1378                 VM_OBJECT_WUNLOCK(source);
1379         }
1380
1381
1382         /*
1383          * Return the new things
1384          */
1385         *offset = 0;
1386         *object = result;
1387 }
1388
1389 /*
1390  *      vm_object_split:
1391  *
1392  * Split the pages in a map entry into a new object.  This affords
1393  * easier removal of unused pages, and keeps object inheritance from
1394  * being a negative impact on memory usage.
1395  */
1396 void
1397 vm_object_split(vm_map_entry_t entry)
1398 {
1399         vm_page_t m, m_next;
1400         vm_object_t orig_object, new_object, source;
1401         vm_pindex_t idx, offidxstart;
1402         vm_size_t size;
1403
1404         orig_object = entry->object.vm_object;
1405         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1406                 return;
1407         if (orig_object->ref_count <= 1)
1408                 return;
1409         VM_OBJECT_WUNLOCK(orig_object);
1410
1411         offidxstart = OFF_TO_IDX(entry->offset);
1412         size = atop(entry->end - entry->start);
1413
1414         /*
1415          * If swap_pager_copy() is later called, it will convert new_object
1416          * into a swap object.
1417          */
1418         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1419
1420         /*
1421          * At this point, the new object is still private, so the order in
1422          * which the original and new objects are locked does not matter.
1423          */
1424         VM_OBJECT_WLOCK(new_object);
1425         VM_OBJECT_WLOCK(orig_object);
1426         new_object->domain = orig_object->domain;
1427         source = orig_object->backing_object;
1428         if (source != NULL) {
1429                 VM_OBJECT_WLOCK(source);
1430                 if ((source->flags & OBJ_DEAD) != 0) {
1431                         VM_OBJECT_WUNLOCK(source);
1432                         VM_OBJECT_WUNLOCK(orig_object);
1433                         VM_OBJECT_WUNLOCK(new_object);
1434                         vm_object_deallocate(new_object);
1435                         VM_OBJECT_WLOCK(orig_object);
1436                         return;
1437                 }
1438                 LIST_INSERT_HEAD(&source->shadow_head,
1439                                   new_object, shadow_list);
1440                 source->shadow_count++;
1441                 vm_object_reference_locked(source);     /* for new_object */
1442                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1443                 VM_OBJECT_WUNLOCK(source);
1444                 new_object->backing_object_offset = 
1445                         orig_object->backing_object_offset + entry->offset;
1446                 new_object->backing_object = source;
1447         }
1448         if (orig_object->cred != NULL) {
1449                 new_object->cred = orig_object->cred;
1450                 crhold(orig_object->cred);
1451                 new_object->charge = ptoa(size);
1452                 KASSERT(orig_object->charge >= ptoa(size),
1453                     ("orig_object->charge < 0"));
1454                 orig_object->charge -= ptoa(size);
1455         }
1456 retry:
1457         m = vm_page_find_least(orig_object, offidxstart);
1458         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1459             m = m_next) {
1460                 m_next = TAILQ_NEXT(m, listq);
1461
1462                 /*
1463                  * We must wait for pending I/O to complete before we can
1464                  * rename the page.
1465                  *
1466                  * We do not have to VM_PROT_NONE the page as mappings should
1467                  * not be changed by this operation.
1468                  */
1469                 if (vm_page_busied(m)) {
1470                         VM_OBJECT_WUNLOCK(new_object);
1471                         vm_page_lock(m);
1472                         VM_OBJECT_WUNLOCK(orig_object);
1473                         vm_page_busy_sleep(m, "spltwt", false);
1474                         VM_OBJECT_WLOCK(orig_object);
1475                         VM_OBJECT_WLOCK(new_object);
1476                         goto retry;
1477                 }
1478
1479                 /* vm_page_rename() will dirty the page. */
1480                 if (vm_page_rename(m, new_object, idx)) {
1481                         VM_OBJECT_WUNLOCK(new_object);
1482                         VM_OBJECT_WUNLOCK(orig_object);
1483                         vm_radix_wait();
1484                         VM_OBJECT_WLOCK(orig_object);
1485                         VM_OBJECT_WLOCK(new_object);
1486                         goto retry;
1487                 }
1488 #if VM_NRESERVLEVEL > 0
1489                 /*
1490                  * If some of the reservation's allocated pages remain with
1491                  * the original object, then transferring the reservation to
1492                  * the new object is neither particularly beneficial nor
1493                  * particularly harmful as compared to leaving the reservation
1494                  * with the original object.  If, however, all of the
1495                  * reservation's allocated pages are transferred to the new
1496                  * object, then transferring the reservation is typically
1497                  * beneficial.  Determining which of these two cases applies
1498                  * would be more costly than unconditionally renaming the
1499                  * reservation.
1500                  */
1501                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1502 #endif
1503                 if (orig_object->type == OBJT_SWAP)
1504                         vm_page_xbusy(m);
1505         }
1506         if (orig_object->type == OBJT_SWAP) {
1507                 /*
1508                  * swap_pager_copy() can sleep, in which case the orig_object's
1509                  * and new_object's locks are released and reacquired. 
1510                  */
1511                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1512                 TAILQ_FOREACH(m, &new_object->memq, listq)
1513                         vm_page_xunbusy(m);
1514         }
1515         VM_OBJECT_WUNLOCK(orig_object);
1516         VM_OBJECT_WUNLOCK(new_object);
1517         entry->object.vm_object = new_object;
1518         entry->offset = 0LL;
1519         vm_object_deallocate(orig_object);
1520         VM_OBJECT_WLOCK(new_object);
1521 }
1522
1523 #define OBSC_COLLAPSE_NOWAIT    0x0002
1524 #define OBSC_COLLAPSE_WAIT      0x0004
1525
1526 static vm_page_t
1527 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1528     int op)
1529 {
1530         vm_object_t backing_object;
1531
1532         VM_OBJECT_ASSERT_WLOCKED(object);
1533         backing_object = object->backing_object;
1534         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1535
1536         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1537         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1538             ("invalid ownership %p %p %p", p, object, backing_object));
1539         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1540                 return (next);
1541         if (p != NULL)
1542                 vm_page_lock(p);
1543         VM_OBJECT_WUNLOCK(object);
1544         VM_OBJECT_WUNLOCK(backing_object);
1545         /* The page is only NULL when rename fails. */
1546         if (p == NULL)
1547                 vm_radix_wait();
1548         else
1549                 vm_page_busy_sleep(p, "vmocol", false);
1550         VM_OBJECT_WLOCK(object);
1551         VM_OBJECT_WLOCK(backing_object);
1552         return (TAILQ_FIRST(&backing_object->memq));
1553 }
1554
1555 static bool
1556 vm_object_scan_all_shadowed(vm_object_t object)
1557 {
1558         vm_object_t backing_object;
1559         vm_page_t p, pp;
1560         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1561
1562         VM_OBJECT_ASSERT_WLOCKED(object);
1563         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1564
1565         backing_object = object->backing_object;
1566
1567         if (backing_object->type != OBJT_DEFAULT &&
1568             backing_object->type != OBJT_SWAP)
1569                 return (false);
1570
1571         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1572         p = vm_page_find_least(backing_object, pi);
1573         ps = swap_pager_find_least(backing_object, pi);
1574
1575         /*
1576          * Only check pages inside the parent object's range and
1577          * inside the parent object's mapping of the backing object.
1578          */
1579         for (;; pi++) {
1580                 if (p != NULL && p->pindex < pi)
1581                         p = TAILQ_NEXT(p, listq);
1582                 if (ps < pi)
1583                         ps = swap_pager_find_least(backing_object, pi);
1584                 if (p == NULL && ps >= backing_object->size)
1585                         break;
1586                 else if (p == NULL)
1587                         pi = ps;
1588                 else
1589                         pi = MIN(p->pindex, ps);
1590
1591                 new_pindex = pi - backing_offset_index;
1592                 if (new_pindex >= object->size)
1593                         break;
1594
1595                 /*
1596                  * See if the parent has the page or if the parent's object
1597                  * pager has the page.  If the parent has the page but the page
1598                  * is not valid, the parent's object pager must have the page.
1599                  *
1600                  * If this fails, the parent does not completely shadow the
1601                  * object and we might as well give up now.
1602                  */
1603                 pp = vm_page_lookup(object, new_pindex);
1604                 if ((pp == NULL || pp->valid == 0) &&
1605                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1606                         return (false);
1607         }
1608         return (true);
1609 }
1610
1611 static bool
1612 vm_object_collapse_scan(vm_object_t object, int op)
1613 {
1614         vm_object_t backing_object;
1615         vm_page_t next, p, pp;
1616         vm_pindex_t backing_offset_index, new_pindex;
1617
1618         VM_OBJECT_ASSERT_WLOCKED(object);
1619         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1620
1621         backing_object = object->backing_object;
1622         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1623
1624         /*
1625          * Initial conditions
1626          */
1627         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1628                 vm_object_set_flag(backing_object, OBJ_DEAD);
1629
1630         /*
1631          * Our scan
1632          */
1633         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1634                 next = TAILQ_NEXT(p, listq);
1635                 new_pindex = p->pindex - backing_offset_index;
1636
1637                 /*
1638                  * Check for busy page
1639                  */
1640                 if (vm_page_busied(p)) {
1641                         next = vm_object_collapse_scan_wait(object, p, next, op);
1642                         continue;
1643                 }
1644
1645                 KASSERT(p->object == backing_object,
1646                     ("vm_object_collapse_scan: object mismatch"));
1647
1648                 if (p->pindex < backing_offset_index ||
1649                     new_pindex >= object->size) {
1650                         if (backing_object->type == OBJT_SWAP)
1651                                 swap_pager_freespace(backing_object, p->pindex,
1652                                     1);
1653
1654                         /*
1655                          * Page is out of the parent object's range, we can
1656                          * simply destroy it.
1657                          */
1658                         vm_page_lock(p);
1659                         KASSERT(!pmap_page_is_mapped(p),
1660                             ("freeing mapped page %p", p));
1661                         if (p->wire_count == 0)
1662                                 vm_page_free(p);
1663                         else
1664                                 vm_page_remove(p);
1665                         vm_page_unlock(p);
1666                         continue;
1667                 }
1668
1669                 pp = vm_page_lookup(object, new_pindex);
1670                 if (pp != NULL && vm_page_busied(pp)) {
1671                         /*
1672                          * The page in the parent is busy and possibly not
1673                          * (yet) valid.  Until its state is finalized by the
1674                          * busy bit owner, we can't tell whether it shadows the
1675                          * original page.  Therefore, we must either skip it
1676                          * and the original (backing_object) page or wait for
1677                          * its state to be finalized.
1678                          *
1679                          * This is due to a race with vm_fault() where we must
1680                          * unbusy the original (backing_obj) page before we can
1681                          * (re)lock the parent.  Hence we can get here.
1682                          */
1683                         next = vm_object_collapse_scan_wait(object, pp, next,
1684                             op);
1685                         continue;
1686                 }
1687
1688                 KASSERT(pp == NULL || pp->valid != 0,
1689                     ("unbusy invalid page %p", pp));
1690
1691                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1692                         NULL)) {
1693                         /*
1694                          * The page already exists in the parent OR swap exists
1695                          * for this location in the parent.  Leave the parent's
1696                          * page alone.  Destroy the original page from the
1697                          * backing object.
1698                          */
1699                         if (backing_object->type == OBJT_SWAP)
1700                                 swap_pager_freespace(backing_object, p->pindex,
1701                                     1);
1702                         vm_page_lock(p);
1703                         KASSERT(!pmap_page_is_mapped(p),
1704                             ("freeing mapped page %p", p));
1705                         if (p->wire_count == 0)
1706                                 vm_page_free(p);
1707                         else
1708                                 vm_page_remove(p);
1709                         vm_page_unlock(p);
1710                         continue;
1711                 }
1712
1713                 /*
1714                  * Page does not exist in parent, rename the page from the
1715                  * backing object to the main object.
1716                  *
1717                  * If the page was mapped to a process, it can remain mapped
1718                  * through the rename.  vm_page_rename() will dirty the page.
1719                  */
1720                 if (vm_page_rename(p, object, new_pindex)) {
1721                         next = vm_object_collapse_scan_wait(object, NULL, next,
1722                             op);
1723                         continue;
1724                 }
1725
1726                 /* Use the old pindex to free the right page. */
1727                 if (backing_object->type == OBJT_SWAP)
1728                         swap_pager_freespace(backing_object,
1729                             new_pindex + backing_offset_index, 1);
1730
1731 #if VM_NRESERVLEVEL > 0
1732                 /*
1733                  * Rename the reservation.
1734                  */
1735                 vm_reserv_rename(p, object, backing_object,
1736                     backing_offset_index);
1737 #endif
1738         }
1739         return (true);
1740 }
1741
1742
1743 /*
1744  * this version of collapse allows the operation to occur earlier and
1745  * when paging_in_progress is true for an object...  This is not a complete
1746  * operation, but should plug 99.9% of the rest of the leaks.
1747  */
1748 static void
1749 vm_object_qcollapse(vm_object_t object)
1750 {
1751         vm_object_t backing_object = object->backing_object;
1752
1753         VM_OBJECT_ASSERT_WLOCKED(object);
1754         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1755
1756         if (backing_object->ref_count != 1)
1757                 return;
1758
1759         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1760 }
1761
1762 /*
1763  *      vm_object_collapse:
1764  *
1765  *      Collapse an object with the object backing it.
1766  *      Pages in the backing object are moved into the
1767  *      parent, and the backing object is deallocated.
1768  */
1769 void
1770 vm_object_collapse(vm_object_t object)
1771 {
1772         vm_object_t backing_object, new_backing_object;
1773
1774         VM_OBJECT_ASSERT_WLOCKED(object);
1775
1776         while (TRUE) {
1777                 /*
1778                  * Verify that the conditions are right for collapse:
1779                  *
1780                  * The object exists and the backing object exists.
1781                  */
1782                 if ((backing_object = object->backing_object) == NULL)
1783                         break;
1784
1785                 /*
1786                  * we check the backing object first, because it is most likely
1787                  * not collapsable.
1788                  */
1789                 VM_OBJECT_WLOCK(backing_object);
1790                 if (backing_object->handle != NULL ||
1791                     (backing_object->type != OBJT_DEFAULT &&
1792                      backing_object->type != OBJT_SWAP) ||
1793                     (backing_object->flags & OBJ_DEAD) ||
1794                     object->handle != NULL ||
1795                     (object->type != OBJT_DEFAULT &&
1796                      object->type != OBJT_SWAP) ||
1797                     (object->flags & OBJ_DEAD)) {
1798                         VM_OBJECT_WUNLOCK(backing_object);
1799                         break;
1800                 }
1801
1802                 if (object->paging_in_progress != 0 ||
1803                     backing_object->paging_in_progress != 0) {
1804                         vm_object_qcollapse(object);
1805                         VM_OBJECT_WUNLOCK(backing_object);
1806                         break;
1807                 }
1808
1809                 /*
1810                  * We know that we can either collapse the backing object (if
1811                  * the parent is the only reference to it) or (perhaps) have
1812                  * the parent bypass the object if the parent happens to shadow
1813                  * all the resident pages in the entire backing object.
1814                  *
1815                  * This is ignoring pager-backed pages such as swap pages.
1816                  * vm_object_collapse_scan fails the shadowing test in this
1817                  * case.
1818                  */
1819                 if (backing_object->ref_count == 1) {
1820                         vm_object_pip_add(object, 1);
1821                         vm_object_pip_add(backing_object, 1);
1822
1823                         /*
1824                          * If there is exactly one reference to the backing
1825                          * object, we can collapse it into the parent.
1826                          */
1827                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1828
1829 #if VM_NRESERVLEVEL > 0
1830                         /*
1831                          * Break any reservations from backing_object.
1832                          */
1833                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1834                                 vm_reserv_break_all(backing_object);
1835 #endif
1836
1837                         /*
1838                          * Move the pager from backing_object to object.
1839                          */
1840                         if (backing_object->type == OBJT_SWAP) {
1841                                 /*
1842                                  * swap_pager_copy() can sleep, in which case
1843                                  * the backing_object's and object's locks are
1844                                  * released and reacquired.
1845                                  * Since swap_pager_copy() is being asked to
1846                                  * destroy the source, it will change the
1847                                  * backing_object's type to OBJT_DEFAULT.
1848                                  */
1849                                 swap_pager_copy(
1850                                     backing_object,
1851                                     object,
1852                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1853                         }
1854                         /*
1855                          * Object now shadows whatever backing_object did.
1856                          * Note that the reference to 
1857                          * backing_object->backing_object moves from within 
1858                          * backing_object to within object.
1859                          */
1860                         LIST_REMOVE(object, shadow_list);
1861                         backing_object->shadow_count--;
1862                         if (backing_object->backing_object) {
1863                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1864                                 LIST_REMOVE(backing_object, shadow_list);
1865                                 LIST_INSERT_HEAD(
1866                                     &backing_object->backing_object->shadow_head,
1867                                     object, shadow_list);
1868                                 /*
1869                                  * The shadow_count has not changed.
1870                                  */
1871                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1872                         }
1873                         object->backing_object = backing_object->backing_object;
1874                         object->backing_object_offset +=
1875                             backing_object->backing_object_offset;
1876
1877                         /*
1878                          * Discard backing_object.
1879                          *
1880                          * Since the backing object has no pages, no pager left,
1881                          * and no object references within it, all that is
1882                          * necessary is to dispose of it.
1883                          */
1884                         KASSERT(backing_object->ref_count == 1, (
1885 "backing_object %p was somehow re-referenced during collapse!",
1886                             backing_object));
1887                         vm_object_pip_wakeup(backing_object);
1888                         backing_object->type = OBJT_DEAD;
1889                         backing_object->ref_count = 0;
1890                         VM_OBJECT_WUNLOCK(backing_object);
1891                         vm_object_destroy(backing_object);
1892
1893                         vm_object_pip_wakeup(object);
1894                         counter_u64_add(object_collapses, 1);
1895                 } else {
1896                         /*
1897                          * If we do not entirely shadow the backing object,
1898                          * there is nothing we can do so we give up.
1899                          */
1900                         if (object->resident_page_count != object->size &&
1901                             !vm_object_scan_all_shadowed(object)) {
1902                                 VM_OBJECT_WUNLOCK(backing_object);
1903                                 break;
1904                         }
1905
1906                         /*
1907                          * Make the parent shadow the next object in the
1908                          * chain.  Deallocating backing_object will not remove
1909                          * it, since its reference count is at least 2.
1910                          */
1911                         LIST_REMOVE(object, shadow_list);
1912                         backing_object->shadow_count--;
1913
1914                         new_backing_object = backing_object->backing_object;
1915                         if ((object->backing_object = new_backing_object) != NULL) {
1916                                 VM_OBJECT_WLOCK(new_backing_object);
1917                                 LIST_INSERT_HEAD(
1918                                     &new_backing_object->shadow_head,
1919                                     object,
1920                                     shadow_list
1921                                 );
1922                                 new_backing_object->shadow_count++;
1923                                 vm_object_reference_locked(new_backing_object);
1924                                 VM_OBJECT_WUNLOCK(new_backing_object);
1925                                 object->backing_object_offset +=
1926                                         backing_object->backing_object_offset;
1927                         }
1928
1929                         /*
1930                          * Drop the reference count on backing_object. Since
1931                          * its ref_count was at least 2, it will not vanish.
1932                          */
1933                         backing_object->ref_count--;
1934                         VM_OBJECT_WUNLOCK(backing_object);
1935                         counter_u64_add(object_bypasses, 1);
1936                 }
1937
1938                 /*
1939                  * Try again with this object's new backing object.
1940                  */
1941         }
1942 }
1943
1944 /*
1945  *      vm_object_page_remove:
1946  *
1947  *      For the given object, either frees or invalidates each of the
1948  *      specified pages.  In general, a page is freed.  However, if a page is
1949  *      wired for any reason other than the existence of a managed, wired
1950  *      mapping, then it may be invalidated but not removed from the object.
1951  *      Pages are specified by the given range ["start", "end") and the option
1952  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1953  *      extends from "start" to the end of the object.  If the option
1954  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1955  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1956  *      specified, then the pages within the specified range must have no
1957  *      mappings.  Otherwise, if this option is not specified, any mappings to
1958  *      the specified pages are removed before the pages are freed or
1959  *      invalidated.
1960  *
1961  *      In general, this operation should only be performed on objects that
1962  *      contain managed pages.  There are, however, two exceptions.  First, it
1963  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1964  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1965  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1966  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1967  *
1968  *      The object must be locked.
1969  */
1970 void
1971 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1972     int options)
1973 {
1974         vm_page_t p, next;
1975         struct mtx *mtx;
1976         struct pglist pgl;
1977
1978         VM_OBJECT_ASSERT_WLOCKED(object);
1979         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1980             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1981             ("vm_object_page_remove: illegal options for object %p", object));
1982         if (object->resident_page_count == 0)
1983                 return;
1984         vm_object_pip_add(object, 1);
1985         TAILQ_INIT(&pgl);
1986 again:
1987         p = vm_page_find_least(object, start);
1988         mtx = NULL;
1989
1990         /*
1991          * Here, the variable "p" is either (1) the page with the least pindex
1992          * greater than or equal to the parameter "start" or (2) NULL. 
1993          */
1994         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1995                 next = TAILQ_NEXT(p, listq);
1996
1997                 /*
1998                  * If the page is wired for any reason besides the existence
1999                  * of managed, wired mappings, then it cannot be freed.  For
2000                  * example, fictitious pages, which represent device memory,
2001                  * are inherently wired and cannot be freed.  They can,
2002                  * however, be invalidated if the option OBJPR_CLEANONLY is
2003                  * not specified.
2004                  */
2005                 vm_page_change_lock(p, &mtx);
2006                 if (vm_page_xbusied(p)) {
2007                         VM_OBJECT_WUNLOCK(object);
2008                         vm_page_busy_sleep(p, "vmopax", true);
2009                         VM_OBJECT_WLOCK(object);
2010                         goto again;
2011                 }
2012                 if (p->wire_count != 0) {
2013                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2014                             object->ref_count != 0)
2015                                 pmap_remove_all(p);
2016                         if ((options & OBJPR_CLEANONLY) == 0) {
2017                                 p->valid = 0;
2018                                 vm_page_undirty(p);
2019                         }
2020                         continue;
2021                 }
2022                 if (vm_page_busied(p)) {
2023                         VM_OBJECT_WUNLOCK(object);
2024                         vm_page_busy_sleep(p, "vmopar", false);
2025                         VM_OBJECT_WLOCK(object);
2026                         goto again;
2027                 }
2028                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2029                     ("vm_object_page_remove: page %p is fictitious", p));
2030                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
2031                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2032                             object->ref_count != 0)
2033                                 pmap_remove_write(p);
2034                         if (p->dirty != 0)
2035                                 continue;
2036                 }
2037                 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
2038                         pmap_remove_all(p);
2039                 p->flags &= ~PG_ZERO;
2040                 if (vm_page_free_prep(p, false))
2041                         TAILQ_INSERT_TAIL(&pgl, p, listq);
2042         }
2043         if (mtx != NULL)
2044                 mtx_unlock(mtx);
2045         vm_page_free_phys_pglist(&pgl);
2046         vm_object_pip_wakeup(object);
2047 }
2048
2049 /*
2050  *      vm_object_page_noreuse:
2051  *
2052  *      For the given object, attempt to move the specified pages to
2053  *      the head of the inactive queue.  This bypasses regular LRU
2054  *      operation and allows the pages to be reused quickly under memory
2055  *      pressure.  If a page is wired for any reason, then it will not
2056  *      be queued.  Pages are specified by the range ["start", "end").
2057  *      As a special case, if "end" is zero, then the range extends from
2058  *      "start" to the end of the object.
2059  *
2060  *      This operation should only be performed on objects that
2061  *      contain non-fictitious, managed pages.
2062  *
2063  *      The object must be locked.
2064  */
2065 void
2066 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2067 {
2068         struct mtx *mtx;
2069         vm_page_t p, next;
2070
2071         VM_OBJECT_ASSERT_LOCKED(object);
2072         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2073             ("vm_object_page_noreuse: illegal object %p", object));
2074         if (object->resident_page_count == 0)
2075                 return;
2076         p = vm_page_find_least(object, start);
2077
2078         /*
2079          * Here, the variable "p" is either (1) the page with the least pindex
2080          * greater than or equal to the parameter "start" or (2) NULL. 
2081          */
2082         mtx = NULL;
2083         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2084                 next = TAILQ_NEXT(p, listq);
2085                 vm_page_change_lock(p, &mtx);
2086                 vm_page_deactivate_noreuse(p);
2087         }
2088         if (mtx != NULL)
2089                 mtx_unlock(mtx);
2090 }
2091
2092 /*
2093  *      Populate the specified range of the object with valid pages.  Returns
2094  *      TRUE if the range is successfully populated and FALSE otherwise.
2095  *
2096  *      Note: This function should be optimized to pass a larger array of
2097  *      pages to vm_pager_get_pages() before it is applied to a non-
2098  *      OBJT_DEVICE object.
2099  *
2100  *      The object must be locked.
2101  */
2102 boolean_t
2103 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2104 {
2105         vm_page_t m;
2106         vm_pindex_t pindex;
2107         int rv;
2108
2109         VM_OBJECT_ASSERT_WLOCKED(object);
2110         for (pindex = start; pindex < end; pindex++) {
2111                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2112                 if (m->valid != VM_PAGE_BITS_ALL) {
2113                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2114                         if (rv != VM_PAGER_OK) {
2115                                 vm_page_lock(m);
2116                                 vm_page_free(m);
2117                                 vm_page_unlock(m);
2118                                 break;
2119                         }
2120                 }
2121                 /*
2122                  * Keep "m" busy because a subsequent iteration may unlock
2123                  * the object.
2124                  */
2125         }
2126         if (pindex > start) {
2127                 m = vm_page_lookup(object, start);
2128                 while (m != NULL && m->pindex < pindex) {
2129                         vm_page_xunbusy(m);
2130                         m = TAILQ_NEXT(m, listq);
2131                 }
2132         }
2133         return (pindex == end);
2134 }
2135
2136 /*
2137  *      Routine:        vm_object_coalesce
2138  *      Function:       Coalesces two objects backing up adjoining
2139  *                      regions of memory into a single object.
2140  *
2141  *      returns TRUE if objects were combined.
2142  *
2143  *      NOTE:   Only works at the moment if the second object is NULL -
2144  *              if it's not, which object do we lock first?
2145  *
2146  *      Parameters:
2147  *              prev_object     First object to coalesce
2148  *              prev_offset     Offset into prev_object
2149  *              prev_size       Size of reference to prev_object
2150  *              next_size       Size of reference to the second object
2151  *              reserved        Indicator that extension region has
2152  *                              swap accounted for
2153  *
2154  *      Conditions:
2155  *      The object must *not* be locked.
2156  */
2157 boolean_t
2158 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2159     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2160 {
2161         vm_pindex_t next_pindex;
2162
2163         if (prev_object == NULL)
2164                 return (TRUE);
2165         VM_OBJECT_WLOCK(prev_object);
2166         if ((prev_object->type != OBJT_DEFAULT &&
2167             prev_object->type != OBJT_SWAP) ||
2168             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2169                 VM_OBJECT_WUNLOCK(prev_object);
2170                 return (FALSE);
2171         }
2172
2173         /*
2174          * Try to collapse the object first
2175          */
2176         vm_object_collapse(prev_object);
2177
2178         /*
2179          * Can't coalesce if: . more than one reference . paged out . shadows
2180          * another object . has a copy elsewhere (any of which mean that the
2181          * pages not mapped to prev_entry may be in use anyway)
2182          */
2183         if (prev_object->backing_object != NULL) {
2184                 VM_OBJECT_WUNLOCK(prev_object);
2185                 return (FALSE);
2186         }
2187
2188         prev_size >>= PAGE_SHIFT;
2189         next_size >>= PAGE_SHIFT;
2190         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2191
2192         if ((prev_object->ref_count > 1) &&
2193             (prev_object->size != next_pindex)) {
2194                 VM_OBJECT_WUNLOCK(prev_object);
2195                 return (FALSE);
2196         }
2197
2198         /*
2199          * Account for the charge.
2200          */
2201         if (prev_object->cred != NULL) {
2202
2203                 /*
2204                  * If prev_object was charged, then this mapping,
2205                  * although not charged now, may become writable
2206                  * later. Non-NULL cred in the object would prevent
2207                  * swap reservation during enabling of the write
2208                  * access, so reserve swap now. Failed reservation
2209                  * cause allocation of the separate object for the map
2210                  * entry, and swap reservation for this entry is
2211                  * managed in appropriate time.
2212                  */
2213                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2214                     prev_object->cred)) {
2215                         VM_OBJECT_WUNLOCK(prev_object);
2216                         return (FALSE);
2217                 }
2218                 prev_object->charge += ptoa(next_size);
2219         }
2220
2221         /*
2222          * Remove any pages that may still be in the object from a previous
2223          * deallocation.
2224          */
2225         if (next_pindex < prev_object->size) {
2226                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2227                     next_size, 0);
2228                 if (prev_object->type == OBJT_SWAP)
2229                         swap_pager_freespace(prev_object,
2230                                              next_pindex, next_size);
2231 #if 0
2232                 if (prev_object->cred != NULL) {
2233                         KASSERT(prev_object->charge >=
2234                             ptoa(prev_object->size - next_pindex),
2235                             ("object %p overcharged 1 %jx %jx", prev_object,
2236                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2237                         prev_object->charge -= ptoa(prev_object->size -
2238                             next_pindex);
2239                 }
2240 #endif
2241         }
2242
2243         /*
2244          * Extend the object if necessary.
2245          */
2246         if (next_pindex + next_size > prev_object->size)
2247                 prev_object->size = next_pindex + next_size;
2248
2249         VM_OBJECT_WUNLOCK(prev_object);
2250         return (TRUE);
2251 }
2252
2253 void
2254 vm_object_set_writeable_dirty(vm_object_t object)
2255 {
2256
2257         VM_OBJECT_ASSERT_WLOCKED(object);
2258         if (object->type != OBJT_VNODE) {
2259                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2260                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2261                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2262                 }
2263                 return;
2264         }
2265         object->generation++;
2266         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2267                 return;
2268         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2269 }
2270
2271 /*
2272  *      vm_object_unwire:
2273  *
2274  *      For each page offset within the specified range of the given object,
2275  *      find the highest-level page in the shadow chain and unwire it.  A page
2276  *      must exist at every page offset, and the highest-level page must be
2277  *      wired.
2278  */
2279 void
2280 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2281     uint8_t queue)
2282 {
2283         vm_object_t tobject, t1object;
2284         vm_page_t m, tm;
2285         vm_pindex_t end_pindex, pindex, tpindex;
2286         int depth, locked_depth;
2287
2288         KASSERT((offset & PAGE_MASK) == 0,
2289             ("vm_object_unwire: offset is not page aligned"));
2290         KASSERT((length & PAGE_MASK) == 0,
2291             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2292         /* The wired count of a fictitious page never changes. */
2293         if ((object->flags & OBJ_FICTITIOUS) != 0)
2294                 return;
2295         pindex = OFF_TO_IDX(offset);
2296         end_pindex = pindex + atop(length);
2297 again:
2298         locked_depth = 1;
2299         VM_OBJECT_RLOCK(object);
2300         m = vm_page_find_least(object, pindex);
2301         while (pindex < end_pindex) {
2302                 if (m == NULL || pindex < m->pindex) {
2303                         /*
2304                          * The first object in the shadow chain doesn't
2305                          * contain a page at the current index.  Therefore,
2306                          * the page must exist in a backing object.
2307                          */
2308                         tobject = object;
2309                         tpindex = pindex;
2310                         depth = 0;
2311                         do {
2312                                 tpindex +=
2313                                     OFF_TO_IDX(tobject->backing_object_offset);
2314                                 tobject = tobject->backing_object;
2315                                 KASSERT(tobject != NULL,
2316                                     ("vm_object_unwire: missing page"));
2317                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2318                                         goto next_page;
2319                                 depth++;
2320                                 if (depth == locked_depth) {
2321                                         locked_depth++;
2322                                         VM_OBJECT_RLOCK(tobject);
2323                                 }
2324                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2325                             NULL);
2326                 } else {
2327                         tm = m;
2328                         m = TAILQ_NEXT(m, listq);
2329                 }
2330                 vm_page_lock(tm);
2331                 if (vm_page_xbusied(tm)) {
2332                         for (tobject = object; locked_depth >= 1;
2333                             locked_depth--) {
2334                                 t1object = tobject->backing_object;
2335                                 VM_OBJECT_RUNLOCK(tobject);
2336                                 tobject = t1object;
2337                         }
2338                         vm_page_busy_sleep(tm, "unwbo", true);
2339                         goto again;
2340                 }
2341                 vm_page_unwire(tm, queue);
2342                 vm_page_unlock(tm);
2343 next_page:
2344                 pindex++;
2345         }
2346         /* Release the accumulated object locks. */
2347         for (tobject = object; locked_depth >= 1; locked_depth--) {
2348                 t1object = tobject->backing_object;
2349                 VM_OBJECT_RUNLOCK(tobject);
2350                 tobject = t1object;
2351         }
2352 }
2353
2354 struct vnode *
2355 vm_object_vnode(vm_object_t object)
2356 {
2357
2358         VM_OBJECT_ASSERT_LOCKED(object);
2359         if (object->type == OBJT_VNODE)
2360                 return (object->handle);
2361         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2362                 return (object->un_pager.swp.swp_tmpfs);
2363         return (NULL);
2364 }
2365
2366 static int
2367 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2368 {
2369         struct kinfo_vmobject *kvo;
2370         char *fullpath, *freepath;
2371         struct vnode *vp;
2372         struct vattr va;
2373         vm_object_t obj;
2374         vm_page_t m;
2375         int count, error;
2376
2377         if (req->oldptr == NULL) {
2378                 /*
2379                  * If an old buffer has not been provided, generate an
2380                  * estimate of the space needed for a subsequent call.
2381                  */
2382                 mtx_lock(&vm_object_list_mtx);
2383                 count = 0;
2384                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2385                         if (obj->type == OBJT_DEAD)
2386                                 continue;
2387                         count++;
2388                 }
2389                 mtx_unlock(&vm_object_list_mtx);
2390                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2391                     count * 11 / 10));
2392         }
2393
2394         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2395         error = 0;
2396
2397         /*
2398          * VM objects are type stable and are never removed from the
2399          * list once added.  This allows us to safely read obj->object_list
2400          * after reacquiring the VM object lock.
2401          */
2402         mtx_lock(&vm_object_list_mtx);
2403         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2404                 if (obj->type == OBJT_DEAD)
2405                         continue;
2406                 VM_OBJECT_RLOCK(obj);
2407                 if (obj->type == OBJT_DEAD) {
2408                         VM_OBJECT_RUNLOCK(obj);
2409                         continue;
2410                 }
2411                 mtx_unlock(&vm_object_list_mtx);
2412                 kvo->kvo_size = ptoa(obj->size);
2413                 kvo->kvo_resident = obj->resident_page_count;
2414                 kvo->kvo_ref_count = obj->ref_count;
2415                 kvo->kvo_shadow_count = obj->shadow_count;
2416                 kvo->kvo_memattr = obj->memattr;
2417                 kvo->kvo_active = 0;
2418                 kvo->kvo_inactive = 0;
2419                 TAILQ_FOREACH(m, &obj->memq, listq) {
2420                         /*
2421                          * A page may belong to the object but be
2422                          * dequeued and set to PQ_NONE while the
2423                          * object lock is not held.  This makes the
2424                          * reads of m->queue below racy, and we do not
2425                          * count pages set to PQ_NONE.  However, this
2426                          * sysctl is only meant to give an
2427                          * approximation of the system anyway.
2428                          */
2429                         if (vm_page_active(m))
2430                                 kvo->kvo_active++;
2431                         else if (vm_page_inactive(m))
2432                                 kvo->kvo_inactive++;
2433                 }
2434
2435                 kvo->kvo_vn_fileid = 0;
2436                 kvo->kvo_vn_fsid = 0;
2437                 kvo->kvo_vn_fsid_freebsd11 = 0;
2438                 freepath = NULL;
2439                 fullpath = "";
2440                 vp = NULL;
2441                 switch (obj->type) {
2442                 case OBJT_DEFAULT:
2443                         kvo->kvo_type = KVME_TYPE_DEFAULT;
2444                         break;
2445                 case OBJT_VNODE:
2446                         kvo->kvo_type = KVME_TYPE_VNODE;
2447                         vp = obj->handle;
2448                         vref(vp);
2449                         break;
2450                 case OBJT_SWAP:
2451                         kvo->kvo_type = KVME_TYPE_SWAP;
2452                         break;
2453                 case OBJT_DEVICE:
2454                         kvo->kvo_type = KVME_TYPE_DEVICE;
2455                         break;
2456                 case OBJT_PHYS:
2457                         kvo->kvo_type = KVME_TYPE_PHYS;
2458                         break;
2459                 case OBJT_DEAD:
2460                         kvo->kvo_type = KVME_TYPE_DEAD;
2461                         break;
2462                 case OBJT_SG:
2463                         kvo->kvo_type = KVME_TYPE_SG;
2464                         break;
2465                 case OBJT_MGTDEVICE:
2466                         kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2467                         break;
2468                 default:
2469                         kvo->kvo_type = KVME_TYPE_UNKNOWN;
2470                         break;
2471                 }
2472                 VM_OBJECT_RUNLOCK(obj);
2473                 if (vp != NULL) {
2474                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2475                         vn_lock(vp, LK_SHARED | LK_RETRY);
2476                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2477                                 kvo->kvo_vn_fileid = va.va_fileid;
2478                                 kvo->kvo_vn_fsid = va.va_fsid;
2479                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2480                                                                 /* truncate */
2481                         }
2482                         vput(vp);
2483                 }
2484
2485                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2486                 if (freepath != NULL)
2487                         free(freepath, M_TEMP);
2488
2489                 /* Pack record size down */
2490                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2491                     + strlen(kvo->kvo_path) + 1;
2492                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2493                     sizeof(uint64_t));
2494                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2495                 mtx_lock(&vm_object_list_mtx);
2496                 if (error)
2497                         break;
2498         }
2499         mtx_unlock(&vm_object_list_mtx);
2500         free(kvo, M_TEMP);
2501         return (error);
2502 }
2503 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2504     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2505     "List of VM objects");
2506
2507 #include "opt_ddb.h"
2508 #ifdef DDB
2509 #include <sys/kernel.h>
2510
2511 #include <sys/cons.h>
2512
2513 #include <ddb/ddb.h>
2514
2515 static int
2516 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2517 {
2518         vm_map_t tmpm;
2519         vm_map_entry_t tmpe;
2520         vm_object_t obj;
2521         int entcount;
2522
2523         if (map == 0)
2524                 return 0;
2525
2526         if (entry == 0) {
2527                 tmpe = map->header.next;
2528                 entcount = map->nentries;
2529                 while (entcount-- && (tmpe != &map->header)) {
2530                         if (_vm_object_in_map(map, object, tmpe)) {
2531                                 return 1;
2532                         }
2533                         tmpe = tmpe->next;
2534                 }
2535         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2536                 tmpm = entry->object.sub_map;
2537                 tmpe = tmpm->header.next;
2538                 entcount = tmpm->nentries;
2539                 while (entcount-- && tmpe != &tmpm->header) {
2540                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2541                                 return 1;
2542                         }
2543                         tmpe = tmpe->next;
2544                 }
2545         } else if ((obj = entry->object.vm_object) != NULL) {
2546                 for (; obj; obj = obj->backing_object)
2547                         if (obj == object) {
2548                                 return 1;
2549                         }
2550         }
2551         return 0;
2552 }
2553
2554 static int
2555 vm_object_in_map(vm_object_t object)
2556 {
2557         struct proc *p;
2558
2559         /* sx_slock(&allproc_lock); */
2560         FOREACH_PROC_IN_SYSTEM(p) {
2561                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2562                         continue;
2563                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2564                         /* sx_sunlock(&allproc_lock); */
2565                         return 1;
2566                 }
2567         }
2568         /* sx_sunlock(&allproc_lock); */
2569         if (_vm_object_in_map(kernel_map, object, 0))
2570                 return 1;
2571         return 0;
2572 }
2573
2574 DB_SHOW_COMMAND(vmochk, vm_object_check)
2575 {
2576         vm_object_t object;
2577
2578         /*
2579          * make sure that internal objs are in a map somewhere
2580          * and none have zero ref counts.
2581          */
2582         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2583                 if (object->handle == NULL &&
2584                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2585                         if (object->ref_count == 0) {
2586                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2587                                         (long)object->size);
2588                         }
2589                         if (!vm_object_in_map(object)) {
2590                                 db_printf(
2591                         "vmochk: internal obj is not in a map: "
2592                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2593                                     object->ref_count, (u_long)object->size, 
2594                                     (u_long)object->size,
2595                                     (void *)object->backing_object);
2596                         }
2597                 }
2598         }
2599 }
2600
2601 /*
2602  *      vm_object_print:        [ debug ]
2603  */
2604 DB_SHOW_COMMAND(object, vm_object_print_static)
2605 {
2606         /* XXX convert args. */
2607         vm_object_t object = (vm_object_t)addr;
2608         boolean_t full = have_addr;
2609
2610         vm_page_t p;
2611
2612         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2613 #define count   was_count
2614
2615         int count;
2616
2617         if (object == NULL)
2618                 return;
2619
2620         db_iprintf(
2621             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2622             object, (int)object->type, (uintmax_t)object->size,
2623             object->resident_page_count, object->ref_count, object->flags,
2624             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2625         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2626             object->shadow_count, 
2627             object->backing_object ? object->backing_object->ref_count : 0,
2628             object->backing_object, (uintmax_t)object->backing_object_offset);
2629
2630         if (!full)
2631                 return;
2632
2633         db_indent += 2;
2634         count = 0;
2635         TAILQ_FOREACH(p, &object->memq, listq) {
2636                 if (count == 0)
2637                         db_iprintf("memory:=");
2638                 else if (count == 6) {
2639                         db_printf("\n");
2640                         db_iprintf(" ...");
2641                         count = 0;
2642                 } else
2643                         db_printf(",");
2644                 count++;
2645
2646                 db_printf("(off=0x%jx,page=0x%jx)",
2647                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2648         }
2649         if (count != 0)
2650                 db_printf("\n");
2651         db_indent -= 2;
2652 }
2653
2654 /* XXX. */
2655 #undef count
2656
2657 /* XXX need this non-static entry for calling from vm_map_print. */
2658 void
2659 vm_object_print(
2660         /* db_expr_t */ long addr,
2661         boolean_t have_addr,
2662         /* db_expr_t */ long count,
2663         char *modif)
2664 {
2665         vm_object_print_static(addr, have_addr, count, modif);
2666 }
2667
2668 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2669 {
2670         vm_object_t object;
2671         vm_pindex_t fidx;
2672         vm_paddr_t pa;
2673         vm_page_t m, prev_m;
2674         int rcount, nl, c;
2675
2676         nl = 0;
2677         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2678                 db_printf("new object: %p\n", (void *)object);
2679                 if (nl > 18) {
2680                         c = cngetc();
2681                         if (c != ' ')
2682                                 return;
2683                         nl = 0;
2684                 }
2685                 nl++;
2686                 rcount = 0;
2687                 fidx = 0;
2688                 pa = -1;
2689                 TAILQ_FOREACH(m, &object->memq, listq) {
2690                         if (m->pindex > 128)
2691                                 break;
2692                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2693                             prev_m->pindex + 1 != m->pindex) {
2694                                 if (rcount) {
2695                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2696                                                 (long)fidx, rcount, (long)pa);
2697                                         if (nl > 18) {
2698                                                 c = cngetc();
2699                                                 if (c != ' ')
2700                                                         return;
2701                                                 nl = 0;
2702                                         }
2703                                         nl++;
2704                                         rcount = 0;
2705                                 }
2706                         }                               
2707                         if (rcount &&
2708                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2709                                 ++rcount;
2710                                 continue;
2711                         }
2712                         if (rcount) {
2713                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2714                                         (long)fidx, rcount, (long)pa);
2715                                 if (nl > 18) {
2716                                         c = cngetc();
2717                                         if (c != ' ')
2718                                                 return;
2719                                         nl = 0;
2720                                 }
2721                                 nl++;
2722                         }
2723                         fidx = m->pindex;
2724                         pa = VM_PAGE_TO_PHYS(m);
2725                         rcount = 1;
2726                 }
2727                 if (rcount) {
2728                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2729                                 (long)fidx, rcount, (long)pa);
2730                         if (nl > 18) {
2731                                 c = cngetc();
2732                                 if (c != ' ')
2733                                         return;
2734                                 nl = 0;
2735                         }
2736                         nl++;
2737                 }
2738         }
2739 }
2740 #endif /* DDB */