]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Update nvi to 2.1.3 which fixes the data corruption when locale conversion
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_radix.h>
98 #include <vm/vm_reserv.h>
99 #include <vm/uma.h>
100
101 static int old_msync;
102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103     "Use old (insecure) msync behavior");
104
105 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106                     int pagerflags, int flags, boolean_t *clearobjflags,
107                     boolean_t *eio);
108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109                     boolean_t *clearobjflags);
110 static void     vm_object_qcollapse(vm_object_t object);
111 static void     vm_object_vndeallocate(vm_object_t object);
112
113 /*
114  *      Virtual memory objects maintain the actual data
115  *      associated with allocated virtual memory.  A given
116  *      page of memory exists within exactly one object.
117  *
118  *      An object is only deallocated when all "references"
119  *      are given up.  Only one "reference" to a given
120  *      region of an object should be writeable.
121  *
122  *      Associated with each object is a list of all resident
123  *      memory pages belonging to that object; this list is
124  *      maintained by the "vm_page" module, and locked by the object's
125  *      lock.
126  *
127  *      Each object also records a "pager" routine which is
128  *      used to retrieve (and store) pages to the proper backing
129  *      storage.  In addition, objects may be backed by other
130  *      objects from which they were virtual-copied.
131  *
132  *      The only items within the object structure which are
133  *      modified after time of creation are:
134  *              reference count         locked by object's lock
135  *              pager routine           locked by object's lock
136  *
137  */
138
139 struct object_q vm_object_list;
140 struct mtx vm_object_list_mtx;  /* lock for object list and count */
141
142 struct vm_object kernel_object_store;
143 struct vm_object kmem_object_store;
144
145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146     "VM object stats");
147
148 static long object_collapses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150     &object_collapses, 0, "VM object collapses");
151
152 static long object_bypasses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154     &object_bypasses, 0, "VM object bypasses");
155
156 static uma_zone_t obj_zone;
157
158 static int vm_object_zinit(void *mem, int size, int flags);
159
160 #ifdef INVARIANTS
161 static void vm_object_zdtor(void *mem, int size, void *arg);
162
163 static void
164 vm_object_zdtor(void *mem, int size, void *arg)
165 {
166         vm_object_t object;
167
168         object = (vm_object_t)mem;
169         KASSERT(TAILQ_EMPTY(&object->memq),
170             ("object %p has resident pages in its memq", object));
171         KASSERT(vm_radix_is_empty(&object->rtree),
172             ("object %p has resident pages in its trie", object));
173 #if VM_NRESERVLEVEL > 0
174         KASSERT(LIST_EMPTY(&object->rvq),
175             ("object %p has reservations",
176             object));
177 #endif
178         KASSERT(vm_object_cache_is_empty(object),
179             ("object %p has cached pages",
180             object));
181         KASSERT(object->paging_in_progress == 0,
182             ("object %p paging_in_progress = %d",
183             object, object->paging_in_progress));
184         KASSERT(object->resident_page_count == 0,
185             ("object %p resident_page_count = %d",
186             object, object->resident_page_count));
187         KASSERT(object->shadow_count == 0,
188             ("object %p shadow_count = %d",
189             object, object->shadow_count));
190 }
191 #endif
192
193 static int
194 vm_object_zinit(void *mem, int size, int flags)
195 {
196         vm_object_t object;
197
198         object = (vm_object_t)mem;
199         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
200
201         /* These are true for any object that has been freed */
202         object->rtree.rt_root = 0;
203         object->rtree.rt_flags = 0;
204         object->paging_in_progress = 0;
205         object->resident_page_count = 0;
206         object->shadow_count = 0;
207         object->cache.rt_root = 0;
208         object->cache.rt_flags = 0;
209         return (0);
210 }
211
212 static void
213 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
214 {
215
216         TAILQ_INIT(&object->memq);
217         LIST_INIT(&object->shadow_head);
218
219         object->type = type;
220         switch (type) {
221         case OBJT_DEAD:
222                 panic("_vm_object_allocate: can't create OBJT_DEAD");
223         case OBJT_DEFAULT:
224         case OBJT_SWAP:
225                 object->flags = OBJ_ONEMAPPING;
226                 break;
227         case OBJT_DEVICE:
228         case OBJT_SG:
229                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
230                 break;
231         case OBJT_MGTDEVICE:
232                 object->flags = OBJ_FICTITIOUS;
233                 break;
234         case OBJT_PHYS:
235                 object->flags = OBJ_UNMANAGED;
236                 break;
237         case OBJT_VNODE:
238                 object->flags = 0;
239                 break;
240         default:
241                 panic("_vm_object_allocate: type %d is undefined", type);
242         }
243         object->size = size;
244         object->generation = 1;
245         object->ref_count = 1;
246         object->memattr = VM_MEMATTR_DEFAULT;
247         object->cred = NULL;
248         object->charge = 0;
249         object->handle = NULL;
250         object->backing_object = NULL;
251         object->backing_object_offset = (vm_ooffset_t) 0;
252 #if VM_NRESERVLEVEL > 0
253         LIST_INIT(&object->rvq);
254 #endif
255
256         mtx_lock(&vm_object_list_mtx);
257         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
258         mtx_unlock(&vm_object_list_mtx);
259 }
260
261 /*
262  *      vm_object_init:
263  *
264  *      Initialize the VM objects module.
265  */
266 void
267 vm_object_init(void)
268 {
269         TAILQ_INIT(&vm_object_list);
270         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
271         
272         rw_init(&kernel_object->lock, "kernel vm object");
273         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
274             kernel_object);
275 #if VM_NRESERVLEVEL > 0
276         kernel_object->flags |= OBJ_COLORED;
277         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
278 #endif
279
280         rw_init(&kmem_object->lock, "kmem vm object");
281         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
282             kmem_object);
283 #if VM_NRESERVLEVEL > 0
284         kmem_object->flags |= OBJ_COLORED;
285         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
286 #endif
287
288         /*
289          * The lock portion of struct vm_object must be type stable due
290          * to vm_pageout_fallback_object_lock locking a vm object
291          * without holding any references to it.
292          */
293         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
294 #ifdef INVARIANTS
295             vm_object_zdtor,
296 #else
297             NULL,
298 #endif
299             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
300
301         vm_radix_init();
302 }
303
304 void
305 vm_object_clear_flag(vm_object_t object, u_short bits)
306 {
307
308         VM_OBJECT_ASSERT_WLOCKED(object);
309         object->flags &= ~bits;
310 }
311
312 /*
313  *      Sets the default memory attribute for the specified object.  Pages
314  *      that are allocated to this object are by default assigned this memory
315  *      attribute.
316  *
317  *      Presently, this function must be called before any pages are allocated
318  *      to the object.  In the future, this requirement may be relaxed for
319  *      "default" and "swap" objects.
320  */
321 int
322 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
323 {
324
325         VM_OBJECT_ASSERT_WLOCKED(object);
326         switch (object->type) {
327         case OBJT_DEFAULT:
328         case OBJT_DEVICE:
329         case OBJT_MGTDEVICE:
330         case OBJT_PHYS:
331         case OBJT_SG:
332         case OBJT_SWAP:
333         case OBJT_VNODE:
334                 if (!TAILQ_EMPTY(&object->memq))
335                         return (KERN_FAILURE);
336                 break;
337         case OBJT_DEAD:
338                 return (KERN_INVALID_ARGUMENT);
339         default:
340                 panic("vm_object_set_memattr: object %p is of undefined type",
341                     object);
342         }
343         object->memattr = memattr;
344         return (KERN_SUCCESS);
345 }
346
347 void
348 vm_object_pip_add(vm_object_t object, short i)
349 {
350
351         VM_OBJECT_ASSERT_WLOCKED(object);
352         object->paging_in_progress += i;
353 }
354
355 void
356 vm_object_pip_subtract(vm_object_t object, short i)
357 {
358
359         VM_OBJECT_ASSERT_WLOCKED(object);
360         object->paging_in_progress -= i;
361 }
362
363 void
364 vm_object_pip_wakeup(vm_object_t object)
365 {
366
367         VM_OBJECT_ASSERT_WLOCKED(object);
368         object->paging_in_progress--;
369         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
370                 vm_object_clear_flag(object, OBJ_PIPWNT);
371                 wakeup(object);
372         }
373 }
374
375 void
376 vm_object_pip_wakeupn(vm_object_t object, short i)
377 {
378
379         VM_OBJECT_ASSERT_WLOCKED(object);
380         if (i)
381                 object->paging_in_progress -= i;
382         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
383                 vm_object_clear_flag(object, OBJ_PIPWNT);
384                 wakeup(object);
385         }
386 }
387
388 void
389 vm_object_pip_wait(vm_object_t object, char *waitid)
390 {
391
392         VM_OBJECT_ASSERT_WLOCKED(object);
393         while (object->paging_in_progress) {
394                 object->flags |= OBJ_PIPWNT;
395                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
396         }
397 }
398
399 /*
400  *      vm_object_allocate:
401  *
402  *      Returns a new object with the given size.
403  */
404 vm_object_t
405 vm_object_allocate(objtype_t type, vm_pindex_t size)
406 {
407         vm_object_t object;
408
409         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
410         _vm_object_allocate(type, size, object);
411         return (object);
412 }
413
414
415 /*
416  *      vm_object_reference:
417  *
418  *      Gets another reference to the given object.  Note: OBJ_DEAD
419  *      objects can be referenced during final cleaning.
420  */
421 void
422 vm_object_reference(vm_object_t object)
423 {
424         if (object == NULL)
425                 return;
426         VM_OBJECT_WLOCK(object);
427         vm_object_reference_locked(object);
428         VM_OBJECT_WUNLOCK(object);
429 }
430
431 /*
432  *      vm_object_reference_locked:
433  *
434  *      Gets another reference to the given object.
435  *
436  *      The object must be locked.
437  */
438 void
439 vm_object_reference_locked(vm_object_t object)
440 {
441         struct vnode *vp;
442
443         VM_OBJECT_ASSERT_WLOCKED(object);
444         object->ref_count++;
445         if (object->type == OBJT_VNODE) {
446                 vp = object->handle;
447                 vref(vp);
448         }
449 }
450
451 /*
452  * Handle deallocating an object of type OBJT_VNODE.
453  */
454 static void
455 vm_object_vndeallocate(vm_object_t object)
456 {
457         struct vnode *vp = (struct vnode *) object->handle;
458
459         VM_OBJECT_ASSERT_WLOCKED(object);
460         KASSERT(object->type == OBJT_VNODE,
461             ("vm_object_vndeallocate: not a vnode object"));
462         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
463 #ifdef INVARIANTS
464         if (object->ref_count == 0) {
465                 vprint("vm_object_vndeallocate", vp);
466                 panic("vm_object_vndeallocate: bad object reference count");
467         }
468 #endif
469
470         /*
471          * The test for text of vp vnode does not need a bypass to
472          * reach right VV_TEXT there, since it is obtained from
473          * object->handle.
474          */
475         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
476                 object->ref_count--;
477                 VM_OBJECT_WUNLOCK(object);
478                 /* vrele may need the vnode lock. */
479                 vrele(vp);
480         } else {
481                 vhold(vp);
482                 VM_OBJECT_WUNLOCK(object);
483                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
484                 vdrop(vp);
485                 VM_OBJECT_WLOCK(object);
486                 object->ref_count--;
487                 if (object->type == OBJT_DEAD) {
488                         VM_OBJECT_WUNLOCK(object);
489                         VOP_UNLOCK(vp, 0);
490                 } else {
491                         if (object->ref_count == 0)
492                                 VOP_UNSET_TEXT(vp);
493                         VM_OBJECT_WUNLOCK(object);
494                         vput(vp);
495                 }
496         }
497 }
498
499 /*
500  *      vm_object_deallocate:
501  *
502  *      Release a reference to the specified object,
503  *      gained either through a vm_object_allocate
504  *      or a vm_object_reference call.  When all references
505  *      are gone, storage associated with this object
506  *      may be relinquished.
507  *
508  *      No object may be locked.
509  */
510 void
511 vm_object_deallocate(vm_object_t object)
512 {
513         vm_object_t temp;
514         struct vnode *vp;
515
516         while (object != NULL) {
517                 VM_OBJECT_WLOCK(object);
518                 if (object->type == OBJT_VNODE) {
519                         vm_object_vndeallocate(object);
520                         return;
521                 }
522
523                 KASSERT(object->ref_count != 0,
524                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
525
526                 /*
527                  * If the reference count goes to 0 we start calling
528                  * vm_object_terminate() on the object chain.
529                  * A ref count of 1 may be a special case depending on the
530                  * shadow count being 0 or 1.
531                  */
532                 object->ref_count--;
533                 if (object->ref_count > 1) {
534                         VM_OBJECT_WUNLOCK(object);
535                         return;
536                 } else if (object->ref_count == 1) {
537                         if (object->type == OBJT_SWAP &&
538                             (object->flags & OBJ_TMPFS) != 0) {
539                                 vp = object->un_pager.swp.swp_tmpfs;
540                                 vhold(vp);
541                                 VM_OBJECT_WUNLOCK(object);
542                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
543                                 VM_OBJECT_WLOCK(object);
544                                 if (object->type == OBJT_DEAD ||
545                                     object->ref_count != 1) {
546                                         VM_OBJECT_WUNLOCK(object);
547                                         VOP_UNLOCK(vp, 0);
548                                         vdrop(vp);
549                                         return;
550                                 }
551                                 if ((object->flags & OBJ_TMPFS) != 0)
552                                         VOP_UNSET_TEXT(vp);
553                                 VOP_UNLOCK(vp, 0);
554                                 vdrop(vp);
555                         }
556                         if (object->shadow_count == 0 &&
557                             object->handle == NULL &&
558                             (object->type == OBJT_DEFAULT ||
559                             (object->type == OBJT_SWAP &&
560                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
561                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
562                         } else if ((object->shadow_count == 1) &&
563                             (object->handle == NULL) &&
564                             (object->type == OBJT_DEFAULT ||
565                              object->type == OBJT_SWAP)) {
566                                 vm_object_t robject;
567
568                                 robject = LIST_FIRST(&object->shadow_head);
569                                 KASSERT(robject != NULL,
570                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
571                                          object->ref_count,
572                                          object->shadow_count));
573                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
574                                     ("shadowed tmpfs v_object %p", object));
575                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
576                                         /*
577                                          * Avoid a potential deadlock.
578                                          */
579                                         object->ref_count++;
580                                         VM_OBJECT_WUNLOCK(object);
581                                         /*
582                                          * More likely than not the thread
583                                          * holding robject's lock has lower
584                                          * priority than the current thread.
585                                          * Let the lower priority thread run.
586                                          */
587                                         pause("vmo_de", 1);
588                                         continue;
589                                 }
590                                 /*
591                                  * Collapse object into its shadow unless its
592                                  * shadow is dead.  In that case, object will
593                                  * be deallocated by the thread that is
594                                  * deallocating its shadow.
595                                  */
596                                 if ((robject->flags & OBJ_DEAD) == 0 &&
597                                     (robject->handle == NULL) &&
598                                     (robject->type == OBJT_DEFAULT ||
599                                      robject->type == OBJT_SWAP)) {
600
601                                         robject->ref_count++;
602 retry:
603                                         if (robject->paging_in_progress) {
604                                                 VM_OBJECT_WUNLOCK(object);
605                                                 vm_object_pip_wait(robject,
606                                                     "objde1");
607                                                 temp = robject->backing_object;
608                                                 if (object == temp) {
609                                                         VM_OBJECT_WLOCK(object);
610                                                         goto retry;
611                                                 }
612                                         } else if (object->paging_in_progress) {
613                                                 VM_OBJECT_WUNLOCK(robject);
614                                                 object->flags |= OBJ_PIPWNT;
615                                                 VM_OBJECT_SLEEP(object, object,
616                                                     PDROP | PVM, "objde2", 0);
617                                                 VM_OBJECT_WLOCK(robject);
618                                                 temp = robject->backing_object;
619                                                 if (object == temp) {
620                                                         VM_OBJECT_WLOCK(object);
621                                                         goto retry;
622                                                 }
623                                         } else
624                                                 VM_OBJECT_WUNLOCK(object);
625
626                                         if (robject->ref_count == 1) {
627                                                 robject->ref_count--;
628                                                 object = robject;
629                                                 goto doterm;
630                                         }
631                                         object = robject;
632                                         vm_object_collapse(object);
633                                         VM_OBJECT_WUNLOCK(object);
634                                         continue;
635                                 }
636                                 VM_OBJECT_WUNLOCK(robject);
637                         }
638                         VM_OBJECT_WUNLOCK(object);
639                         return;
640                 }
641 doterm:
642                 temp = object->backing_object;
643                 if (temp != NULL) {
644                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
645                             ("shadowed tmpfs v_object 2 %p", object));
646                         VM_OBJECT_WLOCK(temp);
647                         LIST_REMOVE(object, shadow_list);
648                         temp->shadow_count--;
649                         VM_OBJECT_WUNLOCK(temp);
650                         object->backing_object = NULL;
651                 }
652                 /*
653                  * Don't double-terminate, we could be in a termination
654                  * recursion due to the terminate having to sync data
655                  * to disk.
656                  */
657                 if ((object->flags & OBJ_DEAD) == 0)
658                         vm_object_terminate(object);
659                 else
660                         VM_OBJECT_WUNLOCK(object);
661                 object = temp;
662         }
663 }
664
665 /*
666  *      vm_object_destroy removes the object from the global object list
667  *      and frees the space for the object.
668  */
669 void
670 vm_object_destroy(vm_object_t object)
671 {
672
673         /*
674          * Remove the object from the global object list.
675          */
676         mtx_lock(&vm_object_list_mtx);
677         TAILQ_REMOVE(&vm_object_list, object, object_list);
678         mtx_unlock(&vm_object_list_mtx);
679
680         /*
681          * Release the allocation charge.
682          */
683         if (object->cred != NULL) {
684                 KASSERT(object->type == OBJT_DEFAULT ||
685                     object->type == OBJT_SWAP,
686                     ("%s: non-swap obj %p has cred", __func__, object));
687                 swap_release_by_cred(object->charge, object->cred);
688                 object->charge = 0;
689                 crfree(object->cred);
690                 object->cred = NULL;
691         }
692
693         /*
694          * Free the space for the object.
695          */
696         uma_zfree(obj_zone, object);
697 }
698
699 /*
700  *      vm_object_terminate actually destroys the specified object, freeing
701  *      up all previously used resources.
702  *
703  *      The object must be locked.
704  *      This routine may block.
705  */
706 void
707 vm_object_terminate(vm_object_t object)
708 {
709         vm_page_t p, p_next;
710
711         VM_OBJECT_ASSERT_WLOCKED(object);
712
713         /*
714          * Make sure no one uses us.
715          */
716         vm_object_set_flag(object, OBJ_DEAD);
717
718         /*
719          * wait for the pageout daemon to be done with the object
720          */
721         vm_object_pip_wait(object, "objtrm");
722
723         KASSERT(!object->paging_in_progress,
724                 ("vm_object_terminate: pageout in progress"));
725
726         /*
727          * Clean and free the pages, as appropriate. All references to the
728          * object are gone, so we don't need to lock it.
729          */
730         if (object->type == OBJT_VNODE) {
731                 struct vnode *vp = (struct vnode *)object->handle;
732
733                 /*
734                  * Clean pages and flush buffers.
735                  */
736                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
737                 VM_OBJECT_WUNLOCK(object);
738
739                 vinvalbuf(vp, V_SAVE, 0, 0);
740
741                 VM_OBJECT_WLOCK(object);
742         }
743
744         KASSERT(object->ref_count == 0, 
745                 ("vm_object_terminate: object with references, ref_count=%d",
746                 object->ref_count));
747
748         /*
749          * Free any remaining pageable pages.  This also removes them from the
750          * paging queues.  However, don't free wired pages, just remove them
751          * from the object.  Rather than incrementally removing each page from
752          * the object, the page and object are reset to any empty state. 
753          */
754         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
755                 vm_page_assert_unbusied(p);
756                 vm_page_lock(p);
757                 /*
758                  * Optimize the page's removal from the object by resetting
759                  * its "object" field.  Specifically, if the page is not
760                  * wired, then the effect of this assignment is that
761                  * vm_page_free()'s call to vm_page_remove() will return
762                  * immediately without modifying the page or the object.
763                  */ 
764                 p->object = NULL;
765                 if (p->wire_count == 0) {
766                         vm_page_free(p);
767                         PCPU_INC(cnt.v_pfree);
768                 }
769                 vm_page_unlock(p);
770         }
771         /*
772          * If the object contained any pages, then reset it to an empty state.
773          * None of the object's fields, including "resident_page_count", were
774          * modified by the preceding loop.
775          */
776         if (object->resident_page_count != 0) {
777                 vm_radix_reclaim_allnodes(&object->rtree);
778                 TAILQ_INIT(&object->memq);
779                 object->resident_page_count = 0;
780                 if (object->type == OBJT_VNODE)
781                         vdrop(object->handle);
782         }
783
784 #if VM_NRESERVLEVEL > 0
785         if (__predict_false(!LIST_EMPTY(&object->rvq)))
786                 vm_reserv_break_all(object);
787 #endif
788         if (__predict_false(!vm_object_cache_is_empty(object)))
789                 vm_page_cache_free(object, 0, 0);
790
791         /*
792          * Let the pager know object is dead.
793          */
794         vm_pager_deallocate(object);
795         VM_OBJECT_WUNLOCK(object);
796
797         vm_object_destroy(object);
798 }
799
800 /*
801  * Make the page read-only so that we can clear the object flags.  However, if
802  * this is a nosync mmap then the object is likely to stay dirty so do not
803  * mess with the page and do not clear the object flags.  Returns TRUE if the
804  * page should be flushed, and FALSE otherwise.
805  */
806 static boolean_t
807 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
808 {
809
810         /*
811          * If we have been asked to skip nosync pages and this is a
812          * nosync page, skip it.  Note that the object flags were not
813          * cleared in this case so we do not have to set them.
814          */
815         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
816                 *clearobjflags = FALSE;
817                 return (FALSE);
818         } else {
819                 pmap_remove_write(p);
820                 return (p->dirty != 0);
821         }
822 }
823
824 /*
825  *      vm_object_page_clean
826  *
827  *      Clean all dirty pages in the specified range of object.  Leaves page 
828  *      on whatever queue it is currently on.   If NOSYNC is set then do not
829  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
830  *      leaving the object dirty.
831  *
832  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
833  *      synchronous clustering mode implementation.
834  *
835  *      Odd semantics: if start == end, we clean everything.
836  *
837  *      The object must be locked.
838  *
839  *      Returns FALSE if some page from the range was not written, as
840  *      reported by the pager, and TRUE otherwise.
841  */
842 boolean_t
843 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
844     int flags)
845 {
846         vm_page_t np, p;
847         vm_pindex_t pi, tend, tstart;
848         int curgeneration, n, pagerflags;
849         boolean_t clearobjflags, eio, res;
850
851         VM_OBJECT_ASSERT_WLOCKED(object);
852
853         /*
854          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
855          * objects.  The check below prevents the function from
856          * operating on non-vnode objects.
857          */
858         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
859             object->resident_page_count == 0)
860                 return (TRUE);
861
862         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
863             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
864         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
865
866         tstart = OFF_TO_IDX(start);
867         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
868         clearobjflags = tstart == 0 && tend >= object->size;
869         res = TRUE;
870
871 rescan:
872         curgeneration = object->generation;
873
874         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
875                 pi = p->pindex;
876                 if (pi >= tend)
877                         break;
878                 np = TAILQ_NEXT(p, listq);
879                 if (p->valid == 0)
880                         continue;
881                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
882                         if (object->generation != curgeneration) {
883                                 if ((flags & OBJPC_SYNC) != 0)
884                                         goto rescan;
885                                 else
886                                         clearobjflags = FALSE;
887                         }
888                         np = vm_page_find_least(object, pi);
889                         continue;
890                 }
891                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
892                         continue;
893
894                 n = vm_object_page_collect_flush(object, p, pagerflags,
895                     flags, &clearobjflags, &eio);
896                 if (eio) {
897                         res = FALSE;
898                         clearobjflags = FALSE;
899                 }
900                 if (object->generation != curgeneration) {
901                         if ((flags & OBJPC_SYNC) != 0)
902                                 goto rescan;
903                         else
904                                 clearobjflags = FALSE;
905                 }
906
907                 /*
908                  * If the VOP_PUTPAGES() did a truncated write, so
909                  * that even the first page of the run is not fully
910                  * written, vm_pageout_flush() returns 0 as the run
911                  * length.  Since the condition that caused truncated
912                  * write may be permanent, e.g. exhausted free space,
913                  * accepting n == 0 would cause an infinite loop.
914                  *
915                  * Forwarding the iterator leaves the unwritten page
916                  * behind, but there is not much we can do there if
917                  * filesystem refuses to write it.
918                  */
919                 if (n == 0) {
920                         n = 1;
921                         clearobjflags = FALSE;
922                 }
923                 np = vm_page_find_least(object, pi + n);
924         }
925 #if 0
926         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
927 #endif
928
929         if (clearobjflags)
930                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
931         return (res);
932 }
933
934 static int
935 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
936     int flags, boolean_t *clearobjflags, boolean_t *eio)
937 {
938         vm_page_t ma[vm_pageout_page_count], p_first, tp;
939         int count, i, mreq, runlen;
940
941         vm_page_lock_assert(p, MA_NOTOWNED);
942         VM_OBJECT_ASSERT_WLOCKED(object);
943
944         count = 1;
945         mreq = 0;
946
947         for (tp = p; count < vm_pageout_page_count; count++) {
948                 tp = vm_page_next(tp);
949                 if (tp == NULL || vm_page_busied(tp))
950                         break;
951                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
952                         break;
953         }
954
955         for (p_first = p; count < vm_pageout_page_count; count++) {
956                 tp = vm_page_prev(p_first);
957                 if (tp == NULL || vm_page_busied(tp))
958                         break;
959                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
960                         break;
961                 p_first = tp;
962                 mreq++;
963         }
964
965         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
966                 ma[i] = tp;
967
968         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
969         return (runlen);
970 }
971
972 /*
973  * Note that there is absolutely no sense in writing out
974  * anonymous objects, so we track down the vnode object
975  * to write out.
976  * We invalidate (remove) all pages from the address space
977  * for semantic correctness.
978  *
979  * If the backing object is a device object with unmanaged pages, then any
980  * mappings to the specified range of pages must be removed before this
981  * function is called.
982  *
983  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
984  * may start out with a NULL object.
985  */
986 boolean_t
987 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
988     boolean_t syncio, boolean_t invalidate)
989 {
990         vm_object_t backing_object;
991         struct vnode *vp;
992         struct mount *mp;
993         int error, flags, fsync_after;
994         boolean_t res;
995
996         if (object == NULL)
997                 return (TRUE);
998         res = TRUE;
999         error = 0;
1000         VM_OBJECT_WLOCK(object);
1001         while ((backing_object = object->backing_object) != NULL) {
1002                 VM_OBJECT_WLOCK(backing_object);
1003                 offset += object->backing_object_offset;
1004                 VM_OBJECT_WUNLOCK(object);
1005                 object = backing_object;
1006                 if (object->size < OFF_TO_IDX(offset + size))
1007                         size = IDX_TO_OFF(object->size) - offset;
1008         }
1009         /*
1010          * Flush pages if writing is allowed, invalidate them
1011          * if invalidation requested.  Pages undergoing I/O
1012          * will be ignored by vm_object_page_remove().
1013          *
1014          * We cannot lock the vnode and then wait for paging
1015          * to complete without deadlocking against vm_fault.
1016          * Instead we simply call vm_object_page_remove() and
1017          * allow it to block internally on a page-by-page
1018          * basis when it encounters pages undergoing async
1019          * I/O.
1020          */
1021         if (object->type == OBJT_VNODE &&
1022             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1023                 vp = object->handle;
1024                 VM_OBJECT_WUNLOCK(object);
1025                 (void) vn_start_write(vp, &mp, V_WAIT);
1026                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1027                 if (syncio && !invalidate && offset == 0 &&
1028                     OFF_TO_IDX(size) == object->size) {
1029                         /*
1030                          * If syncing the whole mapping of the file,
1031                          * it is faster to schedule all the writes in
1032                          * async mode, also allowing the clustering,
1033                          * and then wait for i/o to complete.
1034                          */
1035                         flags = 0;
1036                         fsync_after = TRUE;
1037                 } else {
1038                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1039                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1040                         fsync_after = FALSE;
1041                 }
1042                 VM_OBJECT_WLOCK(object);
1043                 res = vm_object_page_clean(object, offset, offset + size,
1044                     flags);
1045                 VM_OBJECT_WUNLOCK(object);
1046                 if (fsync_after)
1047                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1048                 VOP_UNLOCK(vp, 0);
1049                 vn_finished_write(mp);
1050                 if (error != 0)
1051                         res = FALSE;
1052                 VM_OBJECT_WLOCK(object);
1053         }
1054         if ((object->type == OBJT_VNODE ||
1055              object->type == OBJT_DEVICE) && invalidate) {
1056                 if (object->type == OBJT_DEVICE)
1057                         /*
1058                          * The option OBJPR_NOTMAPPED must be passed here
1059                          * because vm_object_page_remove() cannot remove
1060                          * unmanaged mappings.
1061                          */
1062                         flags = OBJPR_NOTMAPPED;
1063                 else if (old_msync)
1064                         flags = OBJPR_NOTWIRED;
1065                 else
1066                         flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
1067                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1068                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1069         }
1070         VM_OBJECT_WUNLOCK(object);
1071         return (res);
1072 }
1073
1074 /*
1075  *      vm_object_madvise:
1076  *
1077  *      Implements the madvise function at the object/page level.
1078  *
1079  *      MADV_WILLNEED   (any object)
1080  *
1081  *          Activate the specified pages if they are resident.
1082  *
1083  *      MADV_DONTNEED   (any object)
1084  *
1085  *          Deactivate the specified pages if they are resident.
1086  *
1087  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1088  *                       OBJ_ONEMAPPING only)
1089  *
1090  *          Deactivate and clean the specified pages if they are
1091  *          resident.  This permits the process to reuse the pages
1092  *          without faulting or the kernel to reclaim the pages
1093  *          without I/O.
1094  */
1095 void
1096 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1097     int advise)
1098 {
1099         vm_pindex_t tpindex;
1100         vm_object_t backing_object, tobject;
1101         vm_page_t m;
1102
1103         if (object == NULL)
1104                 return;
1105         VM_OBJECT_WLOCK(object);
1106         /*
1107          * Locate and adjust resident pages
1108          */
1109         for (; pindex < end; pindex += 1) {
1110 relookup:
1111                 tobject = object;
1112                 tpindex = pindex;
1113 shadowlookup:
1114                 /*
1115                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1116                  * and those pages must be OBJ_ONEMAPPING.
1117                  */
1118                 if (advise == MADV_FREE) {
1119                         if ((tobject->type != OBJT_DEFAULT &&
1120                              tobject->type != OBJT_SWAP) ||
1121                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1122                                 goto unlock_tobject;
1123                         }
1124                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1125                         goto unlock_tobject;
1126                 m = vm_page_lookup(tobject, tpindex);
1127                 if (m == NULL && advise == MADV_WILLNEED) {
1128                         /*
1129                          * If the page is cached, reactivate it.
1130                          */
1131                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1132                             VM_ALLOC_NOBUSY);
1133                 }
1134                 if (m == NULL) {
1135                         /*
1136                          * There may be swap even if there is no backing page
1137                          */
1138                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1139                                 swap_pager_freespace(tobject, tpindex, 1);
1140                         /*
1141                          * next object
1142                          */
1143                         backing_object = tobject->backing_object;
1144                         if (backing_object == NULL)
1145                                 goto unlock_tobject;
1146                         VM_OBJECT_WLOCK(backing_object);
1147                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1148                         if (tobject != object)
1149                                 VM_OBJECT_WUNLOCK(tobject);
1150                         tobject = backing_object;
1151                         goto shadowlookup;
1152                 } else if (m->valid != VM_PAGE_BITS_ALL)
1153                         goto unlock_tobject;
1154                 /*
1155                  * If the page is not in a normal state, skip it.
1156                  */
1157                 vm_page_lock(m);
1158                 if (m->hold_count != 0 || m->wire_count != 0) {
1159                         vm_page_unlock(m);
1160                         goto unlock_tobject;
1161                 }
1162                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1163                     ("vm_object_madvise: page %p is fictitious", m));
1164                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1165                     ("vm_object_madvise: page %p is not managed", m));
1166                 if (vm_page_busied(m)) {
1167                         if (advise == MADV_WILLNEED) {
1168                                 /*
1169                                  * Reference the page before unlocking and
1170                                  * sleeping so that the page daemon is less
1171                                  * likely to reclaim it. 
1172                                  */
1173                                 vm_page_aflag_set(m, PGA_REFERENCED);
1174                         }
1175                         if (object != tobject)
1176                                 VM_OBJECT_WUNLOCK(object);
1177                         VM_OBJECT_WUNLOCK(tobject);
1178                         vm_page_busy_sleep(m, "madvpo");
1179                         VM_OBJECT_WLOCK(object);
1180                         goto relookup;
1181                 }
1182                 if (advise == MADV_WILLNEED) {
1183                         vm_page_activate(m);
1184                 } else {
1185                         vm_page_advise(m, advise);
1186                 }
1187                 vm_page_unlock(m);
1188                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1189                         swap_pager_freespace(tobject, tpindex, 1);
1190 unlock_tobject:
1191                 if (tobject != object)
1192                         VM_OBJECT_WUNLOCK(tobject);
1193         }       
1194         VM_OBJECT_WUNLOCK(object);
1195 }
1196
1197 /*
1198  *      vm_object_shadow:
1199  *
1200  *      Create a new object which is backed by the
1201  *      specified existing object range.  The source
1202  *      object reference is deallocated.
1203  *
1204  *      The new object and offset into that object
1205  *      are returned in the source parameters.
1206  */
1207 void
1208 vm_object_shadow(
1209         vm_object_t *object,    /* IN/OUT */
1210         vm_ooffset_t *offset,   /* IN/OUT */
1211         vm_size_t length)
1212 {
1213         vm_object_t source;
1214         vm_object_t result;
1215
1216         source = *object;
1217
1218         /*
1219          * Don't create the new object if the old object isn't shared.
1220          */
1221         if (source != NULL) {
1222                 VM_OBJECT_WLOCK(source);
1223                 if (source->ref_count == 1 &&
1224                     source->handle == NULL &&
1225                     (source->type == OBJT_DEFAULT ||
1226                      source->type == OBJT_SWAP)) {
1227                         VM_OBJECT_WUNLOCK(source);
1228                         return;
1229                 }
1230                 VM_OBJECT_WUNLOCK(source);
1231         }
1232
1233         /*
1234          * Allocate a new object with the given length.
1235          */
1236         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1237
1238         /*
1239          * The new object shadows the source object, adding a reference to it.
1240          * Our caller changes his reference to point to the new object,
1241          * removing a reference to the source object.  Net result: no change
1242          * of reference count.
1243          *
1244          * Try to optimize the result object's page color when shadowing
1245          * in order to maintain page coloring consistency in the combined 
1246          * shadowed object.
1247          */
1248         result->backing_object = source;
1249         /*
1250          * Store the offset into the source object, and fix up the offset into
1251          * the new object.
1252          */
1253         result->backing_object_offset = *offset;
1254         if (source != NULL) {
1255                 VM_OBJECT_WLOCK(source);
1256                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1257                 source->shadow_count++;
1258 #if VM_NRESERVLEVEL > 0
1259                 result->flags |= source->flags & OBJ_COLORED;
1260                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1261                     ((1 << (VM_NFREEORDER - 1)) - 1);
1262 #endif
1263                 VM_OBJECT_WUNLOCK(source);
1264         }
1265
1266
1267         /*
1268          * Return the new things
1269          */
1270         *offset = 0;
1271         *object = result;
1272 }
1273
1274 /*
1275  *      vm_object_split:
1276  *
1277  * Split the pages in a map entry into a new object.  This affords
1278  * easier removal of unused pages, and keeps object inheritance from
1279  * being a negative impact on memory usage.
1280  */
1281 void
1282 vm_object_split(vm_map_entry_t entry)
1283 {
1284         vm_page_t m, m_next;
1285         vm_object_t orig_object, new_object, source;
1286         vm_pindex_t idx, offidxstart;
1287         vm_size_t size;
1288
1289         orig_object = entry->object.vm_object;
1290         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1291                 return;
1292         if (orig_object->ref_count <= 1)
1293                 return;
1294         VM_OBJECT_WUNLOCK(orig_object);
1295
1296         offidxstart = OFF_TO_IDX(entry->offset);
1297         size = atop(entry->end - entry->start);
1298
1299         /*
1300          * If swap_pager_copy() is later called, it will convert new_object
1301          * into a swap object.
1302          */
1303         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1304
1305         /*
1306          * At this point, the new object is still private, so the order in
1307          * which the original and new objects are locked does not matter.
1308          */
1309         VM_OBJECT_WLOCK(new_object);
1310         VM_OBJECT_WLOCK(orig_object);
1311         source = orig_object->backing_object;
1312         if (source != NULL) {
1313                 VM_OBJECT_WLOCK(source);
1314                 if ((source->flags & OBJ_DEAD) != 0) {
1315                         VM_OBJECT_WUNLOCK(source);
1316                         VM_OBJECT_WUNLOCK(orig_object);
1317                         VM_OBJECT_WUNLOCK(new_object);
1318                         vm_object_deallocate(new_object);
1319                         VM_OBJECT_WLOCK(orig_object);
1320                         return;
1321                 }
1322                 LIST_INSERT_HEAD(&source->shadow_head,
1323                                   new_object, shadow_list);
1324                 source->shadow_count++;
1325                 vm_object_reference_locked(source);     /* for new_object */
1326                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1327                 VM_OBJECT_WUNLOCK(source);
1328                 new_object->backing_object_offset = 
1329                         orig_object->backing_object_offset + entry->offset;
1330                 new_object->backing_object = source;
1331         }
1332         if (orig_object->cred != NULL) {
1333                 new_object->cred = orig_object->cred;
1334                 crhold(orig_object->cred);
1335                 new_object->charge = ptoa(size);
1336                 KASSERT(orig_object->charge >= ptoa(size),
1337                     ("orig_object->charge < 0"));
1338                 orig_object->charge -= ptoa(size);
1339         }
1340 retry:
1341         m = vm_page_find_least(orig_object, offidxstart);
1342         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1343             m = m_next) {
1344                 m_next = TAILQ_NEXT(m, listq);
1345
1346                 /*
1347                  * We must wait for pending I/O to complete before we can
1348                  * rename the page.
1349                  *
1350                  * We do not have to VM_PROT_NONE the page as mappings should
1351                  * not be changed by this operation.
1352                  */
1353                 if (vm_page_busied(m)) {
1354                         VM_OBJECT_WUNLOCK(new_object);
1355                         vm_page_lock(m);
1356                         VM_OBJECT_WUNLOCK(orig_object);
1357                         vm_page_busy_sleep(m, "spltwt");
1358                         VM_OBJECT_WLOCK(orig_object);
1359                         VM_OBJECT_WLOCK(new_object);
1360                         goto retry;
1361                 }
1362
1363                 /* vm_page_rename() will handle dirty and cache. */
1364                 if (vm_page_rename(m, new_object, idx)) {
1365                         VM_OBJECT_WUNLOCK(new_object);
1366                         VM_OBJECT_WUNLOCK(orig_object);
1367                         VM_WAIT;
1368                         VM_OBJECT_WLOCK(orig_object);
1369                         VM_OBJECT_WLOCK(new_object);
1370                         goto retry;
1371                 }
1372 #if VM_NRESERVLEVEL > 0
1373                 /*
1374                  * If some of the reservation's allocated pages remain with
1375                  * the original object, then transferring the reservation to
1376                  * the new object is neither particularly beneficial nor
1377                  * particularly harmful as compared to leaving the reservation
1378                  * with the original object.  If, however, all of the
1379                  * reservation's allocated pages are transferred to the new
1380                  * object, then transferring the reservation is typically
1381                  * beneficial.  Determining which of these two cases applies
1382                  * would be more costly than unconditionally renaming the
1383                  * reservation.
1384                  */
1385                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1386 #endif
1387                 if (orig_object->type == OBJT_SWAP)
1388                         vm_page_xbusy(m);
1389         }
1390         if (orig_object->type == OBJT_SWAP) {
1391                 /*
1392                  * swap_pager_copy() can sleep, in which case the orig_object's
1393                  * and new_object's locks are released and reacquired. 
1394                  */
1395                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1396                 TAILQ_FOREACH(m, &new_object->memq, listq)
1397                         vm_page_xunbusy(m);
1398
1399                 /*
1400                  * Transfer any cached pages from orig_object to new_object.
1401                  * If swap_pager_copy() found swapped out pages within the
1402                  * specified range of orig_object, then it changed
1403                  * new_object's type to OBJT_SWAP when it transferred those
1404                  * pages to new_object.  Otherwise, new_object's type
1405                  * should still be OBJT_DEFAULT and orig_object should not
1406                  * contain any cached pages within the specified range.
1407                  */
1408                 if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1409                         vm_page_cache_transfer(orig_object, offidxstart,
1410                             new_object);
1411         }
1412         VM_OBJECT_WUNLOCK(orig_object);
1413         VM_OBJECT_WUNLOCK(new_object);
1414         entry->object.vm_object = new_object;
1415         entry->offset = 0LL;
1416         vm_object_deallocate(orig_object);
1417         VM_OBJECT_WLOCK(new_object);
1418 }
1419
1420 #define OBSC_TEST_ALL_SHADOWED  0x0001
1421 #define OBSC_COLLAPSE_NOWAIT    0x0002
1422 #define OBSC_COLLAPSE_WAIT      0x0004
1423
1424 static int
1425 vm_object_backing_scan(vm_object_t object, int op)
1426 {
1427         int r = 1;
1428         vm_page_t p;
1429         vm_object_t backing_object;
1430         vm_pindex_t backing_offset_index;
1431
1432         VM_OBJECT_ASSERT_WLOCKED(object);
1433         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1434
1435         backing_object = object->backing_object;
1436         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1437
1438         /*
1439          * Initial conditions
1440          */
1441         if (op & OBSC_TEST_ALL_SHADOWED) {
1442                 /*
1443                  * We do not want to have to test for the existence of cache
1444                  * or swap pages in the backing object.  XXX but with the
1445                  * new swapper this would be pretty easy to do.
1446                  *
1447                  * XXX what about anonymous MAP_SHARED memory that hasn't
1448                  * been ZFOD faulted yet?  If we do not test for this, the
1449                  * shadow test may succeed! XXX
1450                  */
1451                 if (backing_object->type != OBJT_DEFAULT) {
1452                         return (0);
1453                 }
1454         }
1455         if (op & OBSC_COLLAPSE_WAIT) {
1456                 vm_object_set_flag(backing_object, OBJ_DEAD);
1457         }
1458
1459         /*
1460          * Our scan
1461          */
1462         p = TAILQ_FIRST(&backing_object->memq);
1463         while (p) {
1464                 vm_page_t next = TAILQ_NEXT(p, listq);
1465                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1466
1467                 if (op & OBSC_TEST_ALL_SHADOWED) {
1468                         vm_page_t pp;
1469
1470                         /*
1471                          * Ignore pages outside the parent object's range
1472                          * and outside the parent object's mapping of the 
1473                          * backing object.
1474                          *
1475                          * note that we do not busy the backing object's
1476                          * page.
1477                          */
1478                         if (
1479                             p->pindex < backing_offset_index ||
1480                             new_pindex >= object->size
1481                         ) {
1482                                 p = next;
1483                                 continue;
1484                         }
1485
1486                         /*
1487                          * See if the parent has the page or if the parent's
1488                          * object pager has the page.  If the parent has the
1489                          * page but the page is not valid, the parent's
1490                          * object pager must have the page.
1491                          *
1492                          * If this fails, the parent does not completely shadow
1493                          * the object and we might as well give up now.
1494                          */
1495
1496                         pp = vm_page_lookup(object, new_pindex);
1497                         if (
1498                             (pp == NULL || pp->valid == 0) &&
1499                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1500                         ) {
1501                                 r = 0;
1502                                 break;
1503                         }
1504                 }
1505
1506                 /*
1507                  * Check for busy page
1508                  */
1509                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1510                         vm_page_t pp;
1511
1512                         if (op & OBSC_COLLAPSE_NOWAIT) {
1513                                 if (!p->valid || vm_page_busied(p)) {
1514                                         p = next;
1515                                         continue;
1516                                 }
1517                         } else if (op & OBSC_COLLAPSE_WAIT) {
1518                                 if (vm_page_busied(p)) {
1519                                         VM_OBJECT_WUNLOCK(object);
1520                                         vm_page_lock(p);
1521                                         VM_OBJECT_WUNLOCK(backing_object);
1522                                         vm_page_busy_sleep(p, "vmocol");
1523                                         VM_OBJECT_WLOCK(object);
1524                                         VM_OBJECT_WLOCK(backing_object);
1525                                         /*
1526                                          * If we slept, anything could have
1527                                          * happened.  Since the object is
1528                                          * marked dead, the backing offset
1529                                          * should not have changed so we
1530                                          * just restart our scan.
1531                                          */
1532                                         p = TAILQ_FIRST(&backing_object->memq);
1533                                         continue;
1534                                 }
1535                         }
1536
1537                         KASSERT(
1538                             p->object == backing_object,
1539                             ("vm_object_backing_scan: object mismatch")
1540                         );
1541
1542                         if (
1543                             p->pindex < backing_offset_index ||
1544                             new_pindex >= object->size
1545                         ) {
1546                                 if (backing_object->type == OBJT_SWAP)
1547                                         swap_pager_freespace(backing_object, 
1548                                             p->pindex, 1);
1549
1550                                 /*
1551                                  * Page is out of the parent object's range, we 
1552                                  * can simply destroy it. 
1553                                  */
1554                                 vm_page_lock(p);
1555                                 KASSERT(!pmap_page_is_mapped(p),
1556                                     ("freeing mapped page %p", p));
1557                                 if (p->wire_count == 0)
1558                                         vm_page_free(p);
1559                                 else
1560                                         vm_page_remove(p);
1561                                 vm_page_unlock(p);
1562                                 p = next;
1563                                 continue;
1564                         }
1565
1566                         pp = vm_page_lookup(object, new_pindex);
1567                         if (
1568                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1569                             (pp != NULL && pp->valid == 0)
1570                         ) {
1571                                 if (backing_object->type == OBJT_SWAP)
1572                                         swap_pager_freespace(backing_object, 
1573                                             p->pindex, 1);
1574
1575                                 /*
1576                                  * The page in the parent is not (yet) valid.
1577                                  * We don't know anything about the state of
1578                                  * the original page.  It might be mapped,
1579                                  * so we must avoid the next if here.
1580                                  *
1581                                  * This is due to a race in vm_fault() where
1582                                  * we must unbusy the original (backing_obj)
1583                                  * page before we can (re)lock the parent.
1584                                  * Hence we can get here.
1585                                  */
1586                                 p = next;
1587                                 continue;
1588                         }
1589                         if (
1590                             pp != NULL ||
1591                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1592                         ) {
1593                                 if (backing_object->type == OBJT_SWAP)
1594                                         swap_pager_freespace(backing_object, 
1595                                             p->pindex, 1);
1596
1597                                 /*
1598                                  * page already exists in parent OR swap exists
1599                                  * for this location in the parent.  Destroy 
1600                                  * the original page from the backing object.
1601                                  *
1602                                  * Leave the parent's page alone
1603                                  */
1604                                 vm_page_lock(p);
1605                                 KASSERT(!pmap_page_is_mapped(p),
1606                                     ("freeing mapped page %p", p));
1607                                 if (p->wire_count == 0)
1608                                         vm_page_free(p);
1609                                 else
1610                                         vm_page_remove(p);
1611                                 vm_page_unlock(p);
1612                                 p = next;
1613                                 continue;
1614                         }
1615
1616                         /*
1617                          * Page does not exist in parent, rename the
1618                          * page from the backing object to the main object. 
1619                          *
1620                          * If the page was mapped to a process, it can remain 
1621                          * mapped through the rename.
1622                          * vm_page_rename() will handle dirty and cache.
1623                          */
1624                         if (vm_page_rename(p, object, new_pindex)) {
1625                                 if (op & OBSC_COLLAPSE_NOWAIT) {
1626                                         p = next;
1627                                         continue;
1628                                 }
1629                                 VM_OBJECT_WUNLOCK(backing_object);
1630                                 VM_OBJECT_WUNLOCK(object);
1631                                 VM_WAIT;
1632                                 VM_OBJECT_WLOCK(object);
1633                                 VM_OBJECT_WLOCK(backing_object);
1634                                 p = TAILQ_FIRST(&backing_object->memq);
1635                                 continue;
1636                         }
1637
1638                         /* Use the old pindex to free the right page. */
1639                         if (backing_object->type == OBJT_SWAP)
1640                                 swap_pager_freespace(backing_object,
1641                                     new_pindex + backing_offset_index, 1);
1642
1643 #if VM_NRESERVLEVEL > 0
1644                         /*
1645                          * Rename the reservation.
1646                          */
1647                         vm_reserv_rename(p, object, backing_object,
1648                             backing_offset_index);
1649 #endif
1650                 }
1651                 p = next;
1652         }
1653         return (r);
1654 }
1655
1656
1657 /*
1658  * this version of collapse allows the operation to occur earlier and
1659  * when paging_in_progress is true for an object...  This is not a complete
1660  * operation, but should plug 99.9% of the rest of the leaks.
1661  */
1662 static void
1663 vm_object_qcollapse(vm_object_t object)
1664 {
1665         vm_object_t backing_object = object->backing_object;
1666
1667         VM_OBJECT_ASSERT_WLOCKED(object);
1668         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1669
1670         if (backing_object->ref_count != 1)
1671                 return;
1672
1673         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1674 }
1675
1676 /*
1677  *      vm_object_collapse:
1678  *
1679  *      Collapse an object with the object backing it.
1680  *      Pages in the backing object are moved into the
1681  *      parent, and the backing object is deallocated.
1682  */
1683 void
1684 vm_object_collapse(vm_object_t object)
1685 {
1686         VM_OBJECT_ASSERT_WLOCKED(object);
1687         
1688         while (TRUE) {
1689                 vm_object_t backing_object;
1690
1691                 /*
1692                  * Verify that the conditions are right for collapse:
1693                  *
1694                  * The object exists and the backing object exists.
1695                  */
1696                 if ((backing_object = object->backing_object) == NULL)
1697                         break;
1698
1699                 /*
1700                  * we check the backing object first, because it is most likely
1701                  * not collapsable.
1702                  */
1703                 VM_OBJECT_WLOCK(backing_object);
1704                 if (backing_object->handle != NULL ||
1705                     (backing_object->type != OBJT_DEFAULT &&
1706                      backing_object->type != OBJT_SWAP) ||
1707                     (backing_object->flags & OBJ_DEAD) ||
1708                     object->handle != NULL ||
1709                     (object->type != OBJT_DEFAULT &&
1710                      object->type != OBJT_SWAP) ||
1711                     (object->flags & OBJ_DEAD)) {
1712                         VM_OBJECT_WUNLOCK(backing_object);
1713                         break;
1714                 }
1715
1716                 if (
1717                     object->paging_in_progress != 0 ||
1718                     backing_object->paging_in_progress != 0
1719                 ) {
1720                         vm_object_qcollapse(object);
1721                         VM_OBJECT_WUNLOCK(backing_object);
1722                         break;
1723                 }
1724                 /*
1725                  * We know that we can either collapse the backing object (if
1726                  * the parent is the only reference to it) or (perhaps) have
1727                  * the parent bypass the object if the parent happens to shadow
1728                  * all the resident pages in the entire backing object.
1729                  *
1730                  * This is ignoring pager-backed pages such as swap pages.
1731                  * vm_object_backing_scan fails the shadowing test in this
1732                  * case.
1733                  */
1734                 if (backing_object->ref_count == 1) {
1735                         /*
1736                          * If there is exactly one reference to the backing
1737                          * object, we can collapse it into the parent.  
1738                          */
1739                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1740
1741 #if VM_NRESERVLEVEL > 0
1742                         /*
1743                          * Break any reservations from backing_object.
1744                          */
1745                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1746                                 vm_reserv_break_all(backing_object);
1747 #endif
1748
1749                         /*
1750                          * Move the pager from backing_object to object.
1751                          */
1752                         if (backing_object->type == OBJT_SWAP) {
1753                                 /*
1754                                  * swap_pager_copy() can sleep, in which case
1755                                  * the backing_object's and object's locks are
1756                                  * released and reacquired.
1757                                  * Since swap_pager_copy() is being asked to
1758                                  * destroy the source, it will change the
1759                                  * backing_object's type to OBJT_DEFAULT.
1760                                  */
1761                                 swap_pager_copy(
1762                                     backing_object,
1763                                     object,
1764                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1765
1766                                 /*
1767                                  * Free any cached pages from backing_object.
1768                                  */
1769                                 if (__predict_false(
1770                                     !vm_object_cache_is_empty(backing_object)))
1771                                         vm_page_cache_free(backing_object, 0, 0);
1772                         }
1773                         /*
1774                          * Object now shadows whatever backing_object did.
1775                          * Note that the reference to 
1776                          * backing_object->backing_object moves from within 
1777                          * backing_object to within object.
1778                          */
1779                         LIST_REMOVE(object, shadow_list);
1780                         backing_object->shadow_count--;
1781                         if (backing_object->backing_object) {
1782                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1783                                 LIST_REMOVE(backing_object, shadow_list);
1784                                 LIST_INSERT_HEAD(
1785                                     &backing_object->backing_object->shadow_head,
1786                                     object, shadow_list);
1787                                 /*
1788                                  * The shadow_count has not changed.
1789                                  */
1790                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1791                         }
1792                         object->backing_object = backing_object->backing_object;
1793                         object->backing_object_offset +=
1794                             backing_object->backing_object_offset;
1795
1796                         /*
1797                          * Discard backing_object.
1798                          *
1799                          * Since the backing object has no pages, no pager left,
1800                          * and no object references within it, all that is
1801                          * necessary is to dispose of it.
1802                          */
1803                         KASSERT(backing_object->ref_count == 1, (
1804 "backing_object %p was somehow re-referenced during collapse!",
1805                             backing_object));
1806                         VM_OBJECT_WUNLOCK(backing_object);
1807                         vm_object_destroy(backing_object);
1808
1809                         object_collapses++;
1810                 } else {
1811                         vm_object_t new_backing_object;
1812
1813                         /*
1814                          * If we do not entirely shadow the backing object,
1815                          * there is nothing we can do so we give up.
1816                          */
1817                         if (object->resident_page_count != object->size &&
1818                             vm_object_backing_scan(object,
1819                             OBSC_TEST_ALL_SHADOWED) == 0) {
1820                                 VM_OBJECT_WUNLOCK(backing_object);
1821                                 break;
1822                         }
1823
1824                         /*
1825                          * Make the parent shadow the next object in the
1826                          * chain.  Deallocating backing_object will not remove
1827                          * it, since its reference count is at least 2.
1828                          */
1829                         LIST_REMOVE(object, shadow_list);
1830                         backing_object->shadow_count--;
1831
1832                         new_backing_object = backing_object->backing_object;
1833                         if ((object->backing_object = new_backing_object) != NULL) {
1834                                 VM_OBJECT_WLOCK(new_backing_object);
1835                                 LIST_INSERT_HEAD(
1836                                     &new_backing_object->shadow_head,
1837                                     object,
1838                                     shadow_list
1839                                 );
1840                                 new_backing_object->shadow_count++;
1841                                 vm_object_reference_locked(new_backing_object);
1842                                 VM_OBJECT_WUNLOCK(new_backing_object);
1843                                 object->backing_object_offset +=
1844                                         backing_object->backing_object_offset;
1845                         }
1846
1847                         /*
1848                          * Drop the reference count on backing_object. Since
1849                          * its ref_count was at least 2, it will not vanish.
1850                          */
1851                         backing_object->ref_count--;
1852                         VM_OBJECT_WUNLOCK(backing_object);
1853                         object_bypasses++;
1854                 }
1855
1856                 /*
1857                  * Try again with this object's new backing object.
1858                  */
1859         }
1860 }
1861
1862 /*
1863  *      vm_object_page_remove:
1864  *
1865  *      For the given object, either frees or invalidates each of the
1866  *      specified pages.  In general, a page is freed.  However, if a page is
1867  *      wired for any reason other than the existence of a managed, wired
1868  *      mapping, then it may be invalidated but not removed from the object.
1869  *      Pages are specified by the given range ["start", "end") and the option
1870  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1871  *      extends from "start" to the end of the object.  If the option
1872  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1873  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1874  *      specified, then the pages within the specified range must have no
1875  *      mappings.  Otherwise, if this option is not specified, any mappings to
1876  *      the specified pages are removed before the pages are freed or
1877  *      invalidated.
1878  *
1879  *      In general, this operation should only be performed on objects that
1880  *      contain managed pages.  There are, however, two exceptions.  First, it
1881  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1882  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1883  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1884  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1885  *
1886  *      The object must be locked.
1887  */
1888 void
1889 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1890     int options)
1891 {
1892         vm_page_t p, next;
1893         int wirings;
1894
1895         VM_OBJECT_ASSERT_WLOCKED(object);
1896         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1897             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1898             ("vm_object_page_remove: illegal options for object %p", object));
1899         if (object->resident_page_count == 0)
1900                 goto skipmemq;
1901         vm_object_pip_add(object, 1);
1902 again:
1903         p = vm_page_find_least(object, start);
1904
1905         /*
1906          * Here, the variable "p" is either (1) the page with the least pindex
1907          * greater than or equal to the parameter "start" or (2) NULL. 
1908          */
1909         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1910                 next = TAILQ_NEXT(p, listq);
1911
1912                 /*
1913                  * If the page is wired for any reason besides the existence
1914                  * of managed, wired mappings, then it cannot be freed.  For
1915                  * example, fictitious pages, which represent device memory,
1916                  * are inherently wired and cannot be freed.  They can,
1917                  * however, be invalidated if the option OBJPR_CLEANONLY is
1918                  * not specified.
1919                  */
1920                 vm_page_lock(p);
1921                 if (vm_page_xbusied(p)) {
1922                         VM_OBJECT_WUNLOCK(object);
1923                         vm_page_busy_sleep(p, "vmopax");
1924                         VM_OBJECT_WLOCK(object);
1925                         goto again;
1926                 }
1927                 if ((wirings = p->wire_count) != 0 &&
1928                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1929                         if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
1930                             0) {
1931                                 pmap_remove_all(p);
1932                                 /* Account for removal of wired mappings. */
1933                                 if (wirings != 0)
1934                                         p->wire_count -= wirings;
1935                         }
1936                         if ((options & OBJPR_CLEANONLY) == 0) {
1937                                 p->valid = 0;
1938                                 vm_page_undirty(p);
1939                         }
1940                         goto next;
1941                 }
1942                 if (vm_page_busied(p)) {
1943                         VM_OBJECT_WUNLOCK(object);
1944                         vm_page_busy_sleep(p, "vmopar");
1945                         VM_OBJECT_WLOCK(object);
1946                         goto again;
1947                 }
1948                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1949                     ("vm_object_page_remove: page %p is fictitious", p));
1950                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1951                         if ((options & OBJPR_NOTMAPPED) == 0)
1952                                 pmap_remove_write(p);
1953                         if (p->dirty)
1954                                 goto next;
1955                 }
1956                 if ((options & OBJPR_NOTMAPPED) == 0) {
1957                         if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
1958                                 goto next;
1959                         pmap_remove_all(p);
1960                         /* Account for removal of wired mappings. */
1961                         if (wirings != 0) {
1962                                 KASSERT(p->wire_count == wirings,
1963                                     ("inconsistent wire count %d %d %p",
1964                                     p->wire_count, wirings, p));
1965                                 p->wire_count = 0;
1966                                 atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1967                         }
1968                 }
1969                 vm_page_free(p);
1970 next:
1971                 vm_page_unlock(p);
1972         }
1973         vm_object_pip_wakeup(object);
1974 skipmemq:
1975         if (__predict_false(!vm_object_cache_is_empty(object)))
1976                 vm_page_cache_free(object, start, end);
1977 }
1978
1979 /*
1980  *      vm_object_page_cache:
1981  *
1982  *      For the given object, attempt to move the specified clean
1983  *      pages to the cache queue.  If a page is wired for any reason,
1984  *      then it will not be changed.  Pages are specified by the given
1985  *      range ["start", "end").  As a special case, if "end" is zero,
1986  *      then the range extends from "start" to the end of the object.
1987  *      Any mappings to the specified pages are removed before the
1988  *      pages are moved to the cache queue.
1989  *
1990  *      This operation should only be performed on objects that
1991  *      contain non-fictitious, managed pages.
1992  *
1993  *      The object must be locked.
1994  */
1995 void
1996 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1997 {
1998         struct mtx *mtx, *new_mtx;
1999         vm_page_t p, next;
2000
2001         VM_OBJECT_ASSERT_WLOCKED(object);
2002         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2003             ("vm_object_page_cache: illegal object %p", object));
2004         if (object->resident_page_count == 0)
2005                 return;
2006         p = vm_page_find_least(object, start);
2007
2008         /*
2009          * Here, the variable "p" is either (1) the page with the least pindex
2010          * greater than or equal to the parameter "start" or (2) NULL. 
2011          */
2012         mtx = NULL;
2013         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2014                 next = TAILQ_NEXT(p, listq);
2015
2016                 /*
2017                  * Avoid releasing and reacquiring the same page lock.
2018                  */
2019                 new_mtx = vm_page_lockptr(p);
2020                 if (mtx != new_mtx) {
2021                         if (mtx != NULL)
2022                                 mtx_unlock(mtx);
2023                         mtx = new_mtx;
2024                         mtx_lock(mtx);
2025                 }
2026                 vm_page_try_to_cache(p);
2027         }
2028         if (mtx != NULL)
2029                 mtx_unlock(mtx);
2030 }
2031
2032 /*
2033  *      Populate the specified range of the object with valid pages.  Returns
2034  *      TRUE if the range is successfully populated and FALSE otherwise.
2035  *
2036  *      Note: This function should be optimized to pass a larger array of
2037  *      pages to vm_pager_get_pages() before it is applied to a non-
2038  *      OBJT_DEVICE object.
2039  *
2040  *      The object must be locked.
2041  */
2042 boolean_t
2043 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2044 {
2045         vm_page_t m, ma[1];
2046         vm_pindex_t pindex;
2047         int rv;
2048
2049         VM_OBJECT_ASSERT_WLOCKED(object);
2050         for (pindex = start; pindex < end; pindex++) {
2051                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2052                 if (m->valid != VM_PAGE_BITS_ALL) {
2053                         ma[0] = m;
2054                         rv = vm_pager_get_pages(object, ma, 1, 0);
2055                         m = vm_page_lookup(object, pindex);
2056                         if (m == NULL)
2057                                 break;
2058                         if (rv != VM_PAGER_OK) {
2059                                 vm_page_lock(m);
2060                                 vm_page_free(m);
2061                                 vm_page_unlock(m);
2062                                 break;
2063                         }
2064                 }
2065                 /*
2066                  * Keep "m" busy because a subsequent iteration may unlock
2067                  * the object.
2068                  */
2069         }
2070         if (pindex > start) {
2071                 m = vm_page_lookup(object, start);
2072                 while (m != NULL && m->pindex < pindex) {
2073                         vm_page_xunbusy(m);
2074                         m = TAILQ_NEXT(m, listq);
2075                 }
2076         }
2077         return (pindex == end);
2078 }
2079
2080 /*
2081  *      Routine:        vm_object_coalesce
2082  *      Function:       Coalesces two objects backing up adjoining
2083  *                      regions of memory into a single object.
2084  *
2085  *      returns TRUE if objects were combined.
2086  *
2087  *      NOTE:   Only works at the moment if the second object is NULL -
2088  *              if it's not, which object do we lock first?
2089  *
2090  *      Parameters:
2091  *              prev_object     First object to coalesce
2092  *              prev_offset     Offset into prev_object
2093  *              prev_size       Size of reference to prev_object
2094  *              next_size       Size of reference to the second object
2095  *              reserved        Indicator that extension region has
2096  *                              swap accounted for
2097  *
2098  *      Conditions:
2099  *      The object must *not* be locked.
2100  */
2101 boolean_t
2102 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2103     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2104 {
2105         vm_pindex_t next_pindex;
2106
2107         if (prev_object == NULL)
2108                 return (TRUE);
2109         VM_OBJECT_WLOCK(prev_object);
2110         if ((prev_object->type != OBJT_DEFAULT &&
2111             prev_object->type != OBJT_SWAP) ||
2112             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2113                 VM_OBJECT_WUNLOCK(prev_object);
2114                 return (FALSE);
2115         }
2116
2117         /*
2118          * Try to collapse the object first
2119          */
2120         vm_object_collapse(prev_object);
2121
2122         /*
2123          * Can't coalesce if: . more than one reference . paged out . shadows
2124          * another object . has a copy elsewhere (any of which mean that the
2125          * pages not mapped to prev_entry may be in use anyway)
2126          */
2127         if (prev_object->backing_object != NULL) {
2128                 VM_OBJECT_WUNLOCK(prev_object);
2129                 return (FALSE);
2130         }
2131
2132         prev_size >>= PAGE_SHIFT;
2133         next_size >>= PAGE_SHIFT;
2134         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2135
2136         if ((prev_object->ref_count > 1) &&
2137             (prev_object->size != next_pindex)) {
2138                 VM_OBJECT_WUNLOCK(prev_object);
2139                 return (FALSE);
2140         }
2141
2142         /*
2143          * Account for the charge.
2144          */
2145         if (prev_object->cred != NULL) {
2146
2147                 /*
2148                  * If prev_object was charged, then this mapping,
2149                  * althought not charged now, may become writable
2150                  * later. Non-NULL cred in the object would prevent
2151                  * swap reservation during enabling of the write
2152                  * access, so reserve swap now. Failed reservation
2153                  * cause allocation of the separate object for the map
2154                  * entry, and swap reservation for this entry is
2155                  * managed in appropriate time.
2156                  */
2157                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2158                     prev_object->cred)) {
2159                         return (FALSE);
2160                 }
2161                 prev_object->charge += ptoa(next_size);
2162         }
2163
2164         /*
2165          * Remove any pages that may still be in the object from a previous
2166          * deallocation.
2167          */
2168         if (next_pindex < prev_object->size) {
2169                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2170                     next_size, 0);
2171                 if (prev_object->type == OBJT_SWAP)
2172                         swap_pager_freespace(prev_object,
2173                                              next_pindex, next_size);
2174 #if 0
2175                 if (prev_object->cred != NULL) {
2176                         KASSERT(prev_object->charge >=
2177                             ptoa(prev_object->size - next_pindex),
2178                             ("object %p overcharged 1 %jx %jx", prev_object,
2179                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2180                         prev_object->charge -= ptoa(prev_object->size -
2181                             next_pindex);
2182                 }
2183 #endif
2184         }
2185
2186         /*
2187          * Extend the object if necessary.
2188          */
2189         if (next_pindex + next_size > prev_object->size)
2190                 prev_object->size = next_pindex + next_size;
2191
2192         VM_OBJECT_WUNLOCK(prev_object);
2193         return (TRUE);
2194 }
2195
2196 void
2197 vm_object_set_writeable_dirty(vm_object_t object)
2198 {
2199
2200         VM_OBJECT_ASSERT_WLOCKED(object);
2201         if (object->type != OBJT_VNODE) {
2202                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2203                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2204                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2205                 }
2206                 return;
2207         }
2208         object->generation++;
2209         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2210                 return;
2211         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2212 }
2213
2214 /*
2215  *      vm_object_unwire:
2216  *
2217  *      For each page offset within the specified range of the given object,
2218  *      find the highest-level page in the shadow chain and unwire it.  A page
2219  *      must exist at every page offset, and the highest-level page must be
2220  *      wired.
2221  */
2222 void
2223 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2224     uint8_t queue)
2225 {
2226         vm_object_t tobject;
2227         vm_page_t m, tm;
2228         vm_pindex_t end_pindex, pindex, tpindex;
2229         int depth, locked_depth;
2230
2231         KASSERT((offset & PAGE_MASK) == 0,
2232             ("vm_object_unwire: offset is not page aligned"));
2233         KASSERT((length & PAGE_MASK) == 0,
2234             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2235         /* The wired count of a fictitious page never changes. */
2236         if ((object->flags & OBJ_FICTITIOUS) != 0)
2237                 return;
2238         pindex = OFF_TO_IDX(offset);
2239         end_pindex = pindex + atop(length);
2240         locked_depth = 1;
2241         VM_OBJECT_RLOCK(object);
2242         m = vm_page_find_least(object, pindex);
2243         while (pindex < end_pindex) {
2244                 if (m == NULL || pindex < m->pindex) {
2245                         /*
2246                          * The first object in the shadow chain doesn't
2247                          * contain a page at the current index.  Therefore,
2248                          * the page must exist in a backing object.
2249                          */
2250                         tobject = object;
2251                         tpindex = pindex;
2252                         depth = 0;
2253                         do {
2254                                 tpindex +=
2255                                     OFF_TO_IDX(tobject->backing_object_offset);
2256                                 tobject = tobject->backing_object;
2257                                 KASSERT(tobject != NULL,
2258                                     ("vm_object_unwire: missing page"));
2259                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2260                                         goto next_page;
2261                                 depth++;
2262                                 if (depth == locked_depth) {
2263                                         locked_depth++;
2264                                         VM_OBJECT_RLOCK(tobject);
2265                                 }
2266                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2267                             NULL);
2268                 } else {
2269                         tm = m;
2270                         m = TAILQ_NEXT(m, listq);
2271                 }
2272                 vm_page_lock(tm);
2273                 vm_page_unwire(tm, queue);
2274                 vm_page_unlock(tm);
2275 next_page:
2276                 pindex++;
2277         }
2278         /* Release the accumulated object locks. */
2279         for (depth = 0; depth < locked_depth; depth++) {
2280                 tobject = object->backing_object;
2281                 VM_OBJECT_RUNLOCK(object);
2282                 object = tobject;
2283         }
2284 }
2285
2286 #include "opt_ddb.h"
2287 #ifdef DDB
2288 #include <sys/kernel.h>
2289
2290 #include <sys/cons.h>
2291
2292 #include <ddb/ddb.h>
2293
2294 static int
2295 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2296 {
2297         vm_map_t tmpm;
2298         vm_map_entry_t tmpe;
2299         vm_object_t obj;
2300         int entcount;
2301
2302         if (map == 0)
2303                 return 0;
2304
2305         if (entry == 0) {
2306                 tmpe = map->header.next;
2307                 entcount = map->nentries;
2308                 while (entcount-- && (tmpe != &map->header)) {
2309                         if (_vm_object_in_map(map, object, tmpe)) {
2310                                 return 1;
2311                         }
2312                         tmpe = tmpe->next;
2313                 }
2314         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2315                 tmpm = entry->object.sub_map;
2316                 tmpe = tmpm->header.next;
2317                 entcount = tmpm->nentries;
2318                 while (entcount-- && tmpe != &tmpm->header) {
2319                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2320                                 return 1;
2321                         }
2322                         tmpe = tmpe->next;
2323                 }
2324         } else if ((obj = entry->object.vm_object) != NULL) {
2325                 for (; obj; obj = obj->backing_object)
2326                         if (obj == object) {
2327                                 return 1;
2328                         }
2329         }
2330         return 0;
2331 }
2332
2333 static int
2334 vm_object_in_map(vm_object_t object)
2335 {
2336         struct proc *p;
2337
2338         /* sx_slock(&allproc_lock); */
2339         FOREACH_PROC_IN_SYSTEM(p) {
2340                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2341                         continue;
2342                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2343                         /* sx_sunlock(&allproc_lock); */
2344                         return 1;
2345                 }
2346         }
2347         /* sx_sunlock(&allproc_lock); */
2348         if (_vm_object_in_map(kernel_map, object, 0))
2349                 return 1;
2350         return 0;
2351 }
2352
2353 DB_SHOW_COMMAND(vmochk, vm_object_check)
2354 {
2355         vm_object_t object;
2356
2357         /*
2358          * make sure that internal objs are in a map somewhere
2359          * and none have zero ref counts.
2360          */
2361         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2362                 if (object->handle == NULL &&
2363                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2364                         if (object->ref_count == 0) {
2365                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2366                                         (long)object->size);
2367                         }
2368                         if (!vm_object_in_map(object)) {
2369                                 db_printf(
2370                         "vmochk: internal obj is not in a map: "
2371                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2372                                     object->ref_count, (u_long)object->size, 
2373                                     (u_long)object->size,
2374                                     (void *)object->backing_object);
2375                         }
2376                 }
2377         }
2378 }
2379
2380 /*
2381  *      vm_object_print:        [ debug ]
2382  */
2383 DB_SHOW_COMMAND(object, vm_object_print_static)
2384 {
2385         /* XXX convert args. */
2386         vm_object_t object = (vm_object_t)addr;
2387         boolean_t full = have_addr;
2388
2389         vm_page_t p;
2390
2391         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2392 #define count   was_count
2393
2394         int count;
2395
2396         if (object == NULL)
2397                 return;
2398
2399         db_iprintf(
2400             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2401             object, (int)object->type, (uintmax_t)object->size,
2402             object->resident_page_count, object->ref_count, object->flags,
2403             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2404         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2405             object->shadow_count, 
2406             object->backing_object ? object->backing_object->ref_count : 0,
2407             object->backing_object, (uintmax_t)object->backing_object_offset);
2408
2409         if (!full)
2410                 return;
2411
2412         db_indent += 2;
2413         count = 0;
2414         TAILQ_FOREACH(p, &object->memq, listq) {
2415                 if (count == 0)
2416                         db_iprintf("memory:=");
2417                 else if (count == 6) {
2418                         db_printf("\n");
2419                         db_iprintf(" ...");
2420                         count = 0;
2421                 } else
2422                         db_printf(",");
2423                 count++;
2424
2425                 db_printf("(off=0x%jx,page=0x%jx)",
2426                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2427         }
2428         if (count != 0)
2429                 db_printf("\n");
2430         db_indent -= 2;
2431 }
2432
2433 /* XXX. */
2434 #undef count
2435
2436 /* XXX need this non-static entry for calling from vm_map_print. */
2437 void
2438 vm_object_print(
2439         /* db_expr_t */ long addr,
2440         boolean_t have_addr,
2441         /* db_expr_t */ long count,
2442         char *modif)
2443 {
2444         vm_object_print_static(addr, have_addr, count, modif);
2445 }
2446
2447 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2448 {
2449         vm_object_t object;
2450         vm_pindex_t fidx;
2451         vm_paddr_t pa;
2452         vm_page_t m, prev_m;
2453         int rcount, nl, c;
2454
2455         nl = 0;
2456         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2457                 db_printf("new object: %p\n", (void *)object);
2458                 if (nl > 18) {
2459                         c = cngetc();
2460                         if (c != ' ')
2461                                 return;
2462                         nl = 0;
2463                 }
2464                 nl++;
2465                 rcount = 0;
2466                 fidx = 0;
2467                 pa = -1;
2468                 TAILQ_FOREACH(m, &object->memq, listq) {
2469                         if (m->pindex > 128)
2470                                 break;
2471                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2472                             prev_m->pindex + 1 != m->pindex) {
2473                                 if (rcount) {
2474                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2475                                                 (long)fidx, rcount, (long)pa);
2476                                         if (nl > 18) {
2477                                                 c = cngetc();
2478                                                 if (c != ' ')
2479                                                         return;
2480                                                 nl = 0;
2481                                         }
2482                                         nl++;
2483                                         rcount = 0;
2484                                 }
2485                         }                               
2486                         if (rcount &&
2487                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2488                                 ++rcount;
2489                                 continue;
2490                         }
2491                         if (rcount) {
2492                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2493                                         (long)fidx, rcount, (long)pa);
2494                                 if (nl > 18) {
2495                                         c = cngetc();
2496                                         if (c != ' ')
2497                                                 return;
2498                                         nl = 0;
2499                                 }
2500                                 nl++;
2501                         }
2502                         fidx = m->pindex;
2503                         pa = VM_PAGE_TO_PHYS(m);
2504                         rcount = 1;
2505                 }
2506                 if (rcount) {
2507                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2508                                 (long)fidx, rcount, (long)pa);
2509                         if (nl > 18) {
2510                                 c = cngetc();
2511                                 if (c != ' ')
2512                                         return;
2513                                 nl = 0;
2514                         }
2515                         nl++;
2516                 }
2517         }
2518 }
2519 #endif /* DDB */