]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
For consistency, use kernel_object instead of &kernel_object_store
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98
99 static int old_msync;
100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
101     "Use old (insecure) msync behavior");
102
103 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
104                     int pagerflags, int flags, int *clearobjflags);
105 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
106                     int *clearobjflags);
107 static void     vm_object_qcollapse(vm_object_t object);
108 static void     vm_object_vndeallocate(vm_object_t object);
109
110 /*
111  *      Virtual memory objects maintain the actual data
112  *      associated with allocated virtual memory.  A given
113  *      page of memory exists within exactly one object.
114  *
115  *      An object is only deallocated when all "references"
116  *      are given up.  Only one "reference" to a given
117  *      region of an object should be writeable.
118  *
119  *      Associated with each object is a list of all resident
120  *      memory pages belonging to that object; this list is
121  *      maintained by the "vm_page" module, and locked by the object's
122  *      lock.
123  *
124  *      Each object also records a "pager" routine which is
125  *      used to retrieve (and store) pages to the proper backing
126  *      storage.  In addition, objects may be backed by other
127  *      objects from which they were virtual-copied.
128  *
129  *      The only items within the object structure which are
130  *      modified after time of creation are:
131  *              reference count         locked by object's lock
132  *              pager routine           locked by object's lock
133  *
134  */
135
136 struct object_q vm_object_list;
137 struct mtx vm_object_list_mtx;  /* lock for object list and count */
138
139 struct vm_object kernel_object_store;
140 struct vm_object kmem_object_store;
141
142 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
143
144 static long object_collapses;
145 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
146     &object_collapses, 0, "VM object collapses");
147
148 static long object_bypasses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
150     &object_bypasses, 0, "VM object bypasses");
151
152 static uma_zone_t obj_zone;
153
154 static int vm_object_zinit(void *mem, int size, int flags);
155
156 #ifdef INVARIANTS
157 static void vm_object_zdtor(void *mem, int size, void *arg);
158
159 static void
160 vm_object_zdtor(void *mem, int size, void *arg)
161 {
162         vm_object_t object;
163
164         object = (vm_object_t)mem;
165         KASSERT(TAILQ_EMPTY(&object->memq),
166             ("object %p has resident pages",
167             object));
168 #if VM_NRESERVLEVEL > 0
169         KASSERT(LIST_EMPTY(&object->rvq),
170             ("object %p has reservations",
171             object));
172 #endif
173         KASSERT(object->cache == NULL,
174             ("object %p has cached pages",
175             object));
176         KASSERT(object->paging_in_progress == 0,
177             ("object %p paging_in_progress = %d",
178             object, object->paging_in_progress));
179         KASSERT(object->resident_page_count == 0,
180             ("object %p resident_page_count = %d",
181             object, object->resident_page_count));
182         KASSERT(object->shadow_count == 0,
183             ("object %p shadow_count = %d",
184             object, object->shadow_count));
185 }
186 #endif
187
188 static int
189 vm_object_zinit(void *mem, int size, int flags)
190 {
191         vm_object_t object;
192
193         object = (vm_object_t)mem;
194         bzero(&object->mtx, sizeof(object->mtx));
195         VM_OBJECT_LOCK_INIT(object, "standard object");
196
197         /* These are true for any object that has been freed */
198         object->paging_in_progress = 0;
199         object->resident_page_count = 0;
200         object->shadow_count = 0;
201         return (0);
202 }
203
204 void
205 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
206 {
207
208         TAILQ_INIT(&object->memq);
209         LIST_INIT(&object->shadow_head);
210
211         object->root = NULL;
212         object->type = type;
213         object->size = size;
214         object->generation = 1;
215         object->ref_count = 1;
216         object->memattr = VM_MEMATTR_DEFAULT;
217         object->flags = 0;
218         object->cred = NULL;
219         object->charge = 0;
220         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
221                 object->flags = OBJ_ONEMAPPING;
222         object->pg_color = 0;
223         object->handle = NULL;
224         object->backing_object = NULL;
225         object->backing_object_offset = (vm_ooffset_t) 0;
226 #if VM_NRESERVLEVEL > 0
227         LIST_INIT(&object->rvq);
228 #endif
229         object->cache = NULL;
230
231         mtx_lock(&vm_object_list_mtx);
232         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
233         mtx_unlock(&vm_object_list_mtx);
234 }
235
236 /*
237  *      vm_object_init:
238  *
239  *      Initialize the VM objects module.
240  */
241 void
242 vm_object_init(void)
243 {
244         TAILQ_INIT(&vm_object_list);
245         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
246         
247         VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
248         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
249             kernel_object);
250 #if VM_NRESERVLEVEL > 0
251         kernel_object->flags |= OBJ_COLORED;
252         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
253 #endif
254
255         VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
256         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
257             kmem_object);
258 #if VM_NRESERVLEVEL > 0
259         kmem_object->flags |= OBJ_COLORED;
260         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
261 #endif
262
263         /*
264          * The lock portion of struct vm_object must be type stable due
265          * to vm_pageout_fallback_object_lock locking a vm object
266          * without holding any references to it.
267          */
268         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
269 #ifdef INVARIANTS
270             vm_object_zdtor,
271 #else
272             NULL,
273 #endif
274             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
275 }
276
277 void
278 vm_object_clear_flag(vm_object_t object, u_short bits)
279 {
280
281         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
282         object->flags &= ~bits;
283 }
284
285 /*
286  *      Sets the default memory attribute for the specified object.  Pages
287  *      that are allocated to this object are by default assigned this memory
288  *      attribute.
289  *
290  *      Presently, this function must be called before any pages are allocated
291  *      to the object.  In the future, this requirement may be relaxed for
292  *      "default" and "swap" objects.
293  */
294 int
295 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
296 {
297
298         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
299         switch (object->type) {
300         case OBJT_DEFAULT:
301         case OBJT_DEVICE:
302         case OBJT_PHYS:
303         case OBJT_SG:
304         case OBJT_SWAP:
305         case OBJT_VNODE:
306                 if (!TAILQ_EMPTY(&object->memq))
307                         return (KERN_FAILURE);
308                 break;
309         case OBJT_DEAD:
310                 return (KERN_INVALID_ARGUMENT);
311         }
312         object->memattr = memattr;
313         return (KERN_SUCCESS);
314 }
315
316 void
317 vm_object_pip_add(vm_object_t object, short i)
318 {
319
320         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
321         object->paging_in_progress += i;
322 }
323
324 void
325 vm_object_pip_subtract(vm_object_t object, short i)
326 {
327
328         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
329         object->paging_in_progress -= i;
330 }
331
332 void
333 vm_object_pip_wakeup(vm_object_t object)
334 {
335
336         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
337         object->paging_in_progress--;
338         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
339                 vm_object_clear_flag(object, OBJ_PIPWNT);
340                 wakeup(object);
341         }
342 }
343
344 void
345 vm_object_pip_wakeupn(vm_object_t object, short i)
346 {
347
348         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
349         if (i)
350                 object->paging_in_progress -= i;
351         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
352                 vm_object_clear_flag(object, OBJ_PIPWNT);
353                 wakeup(object);
354         }
355 }
356
357 void
358 vm_object_pip_wait(vm_object_t object, char *waitid)
359 {
360
361         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
362         while (object->paging_in_progress) {
363                 object->flags |= OBJ_PIPWNT;
364                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
365         }
366 }
367
368 /*
369  *      vm_object_allocate:
370  *
371  *      Returns a new object with the given size.
372  */
373 vm_object_t
374 vm_object_allocate(objtype_t type, vm_pindex_t size)
375 {
376         vm_object_t object;
377
378         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
379         _vm_object_allocate(type, size, object);
380         return (object);
381 }
382
383
384 /*
385  *      vm_object_reference:
386  *
387  *      Gets another reference to the given object.  Note: OBJ_DEAD
388  *      objects can be referenced during final cleaning.
389  */
390 void
391 vm_object_reference(vm_object_t object)
392 {
393         if (object == NULL)
394                 return;
395         VM_OBJECT_LOCK(object);
396         vm_object_reference_locked(object);
397         VM_OBJECT_UNLOCK(object);
398 }
399
400 /*
401  *      vm_object_reference_locked:
402  *
403  *      Gets another reference to the given object.
404  *
405  *      The object must be locked.
406  */
407 void
408 vm_object_reference_locked(vm_object_t object)
409 {
410         struct vnode *vp;
411
412         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
413         object->ref_count++;
414         if (object->type == OBJT_VNODE) {
415                 vp = object->handle;
416                 vref(vp);
417         }
418 }
419
420 /*
421  * Handle deallocating an object of type OBJT_VNODE.
422  */
423 static void
424 vm_object_vndeallocate(vm_object_t object)
425 {
426         struct vnode *vp = (struct vnode *) object->handle;
427
428         VFS_ASSERT_GIANT(vp->v_mount);
429         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
430         KASSERT(object->type == OBJT_VNODE,
431             ("vm_object_vndeallocate: not a vnode object"));
432         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
433 #ifdef INVARIANTS
434         if (object->ref_count == 0) {
435                 vprint("vm_object_vndeallocate", vp);
436                 panic("vm_object_vndeallocate: bad object reference count");
437         }
438 #endif
439
440         object->ref_count--;
441         if (object->ref_count == 0) {
442                 mp_fixme("Unlocked vflag access.");
443                 vp->v_vflag &= ~VV_TEXT;
444         }
445         VM_OBJECT_UNLOCK(object);
446         /*
447          * vrele may need a vop lock
448          */
449         vrele(vp);
450 }
451
452 /*
453  *      vm_object_deallocate:
454  *
455  *      Release a reference to the specified object,
456  *      gained either through a vm_object_allocate
457  *      or a vm_object_reference call.  When all references
458  *      are gone, storage associated with this object
459  *      may be relinquished.
460  *
461  *      No object may be locked.
462  */
463 void
464 vm_object_deallocate(vm_object_t object)
465 {
466         vm_object_t temp;
467
468         while (object != NULL) {
469                 int vfslocked;
470
471                 vfslocked = 0;
472         restart:
473                 VM_OBJECT_LOCK(object);
474                 if (object->type == OBJT_VNODE) {
475                         struct vnode *vp = (struct vnode *) object->handle;
476
477                         /*
478                          * Conditionally acquire Giant for a vnode-backed
479                          * object.  We have to be careful since the type of
480                          * a vnode object can change while the object is
481                          * unlocked.
482                          */
483                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
484                                 vfslocked = 1;
485                                 if (!mtx_trylock(&Giant)) {
486                                         VM_OBJECT_UNLOCK(object);
487                                         mtx_lock(&Giant);
488                                         goto restart;
489                                 }
490                         }
491                         vm_object_vndeallocate(object);
492                         VFS_UNLOCK_GIANT(vfslocked);
493                         return;
494                 } else
495                         /*
496                          * This is to handle the case that the object
497                          * changed type while we dropped its lock to
498                          * obtain Giant.
499                          */
500                         VFS_UNLOCK_GIANT(vfslocked);
501
502                 KASSERT(object->ref_count != 0,
503                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
504
505                 /*
506                  * If the reference count goes to 0 we start calling
507                  * vm_object_terminate() on the object chain.
508                  * A ref count of 1 may be a special case depending on the
509                  * shadow count being 0 or 1.
510                  */
511                 object->ref_count--;
512                 if (object->ref_count > 1) {
513                         VM_OBJECT_UNLOCK(object);
514                         return;
515                 } else if (object->ref_count == 1) {
516                         if (object->shadow_count == 0 &&
517                             object->handle == NULL &&
518                             (object->type == OBJT_DEFAULT ||
519                              object->type == OBJT_SWAP)) {
520                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
521                         } else if ((object->shadow_count == 1) &&
522                             (object->handle == NULL) &&
523                             (object->type == OBJT_DEFAULT ||
524                              object->type == OBJT_SWAP)) {
525                                 vm_object_t robject;
526
527                                 robject = LIST_FIRST(&object->shadow_head);
528                                 KASSERT(robject != NULL,
529                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
530                                          object->ref_count,
531                                          object->shadow_count));
532                                 if (!VM_OBJECT_TRYLOCK(robject)) {
533                                         /*
534                                          * Avoid a potential deadlock.
535                                          */
536                                         object->ref_count++;
537                                         VM_OBJECT_UNLOCK(object);
538                                         /*
539                                          * More likely than not the thread
540                                          * holding robject's lock has lower
541                                          * priority than the current thread.
542                                          * Let the lower priority thread run.
543                                          */
544                                         pause("vmo_de", 1);
545                                         continue;
546                                 }
547                                 /*
548                                  * Collapse object into its shadow unless its
549                                  * shadow is dead.  In that case, object will
550                                  * be deallocated by the thread that is
551                                  * deallocating its shadow.
552                                  */
553                                 if ((robject->flags & OBJ_DEAD) == 0 &&
554                                     (robject->handle == NULL) &&
555                                     (robject->type == OBJT_DEFAULT ||
556                                      robject->type == OBJT_SWAP)) {
557
558                                         robject->ref_count++;
559 retry:
560                                         if (robject->paging_in_progress) {
561                                                 VM_OBJECT_UNLOCK(object);
562                                                 vm_object_pip_wait(robject,
563                                                     "objde1");
564                                                 temp = robject->backing_object;
565                                                 if (object == temp) {
566                                                         VM_OBJECT_LOCK(object);
567                                                         goto retry;
568                                                 }
569                                         } else if (object->paging_in_progress) {
570                                                 VM_OBJECT_UNLOCK(robject);
571                                                 object->flags |= OBJ_PIPWNT;
572                                                 msleep(object,
573                                                     VM_OBJECT_MTX(object),
574                                                     PDROP | PVM, "objde2", 0);
575                                                 VM_OBJECT_LOCK(robject);
576                                                 temp = robject->backing_object;
577                                                 if (object == temp) {
578                                                         VM_OBJECT_LOCK(object);
579                                                         goto retry;
580                                                 }
581                                         } else
582                                                 VM_OBJECT_UNLOCK(object);
583
584                                         if (robject->ref_count == 1) {
585                                                 robject->ref_count--;
586                                                 object = robject;
587                                                 goto doterm;
588                                         }
589                                         object = robject;
590                                         vm_object_collapse(object);
591                                         VM_OBJECT_UNLOCK(object);
592                                         continue;
593                                 }
594                                 VM_OBJECT_UNLOCK(robject);
595                         }
596                         VM_OBJECT_UNLOCK(object);
597                         return;
598                 }
599 doterm:
600                 temp = object->backing_object;
601                 if (temp != NULL) {
602                         VM_OBJECT_LOCK(temp);
603                         LIST_REMOVE(object, shadow_list);
604                         temp->shadow_count--;
605                         VM_OBJECT_UNLOCK(temp);
606                         object->backing_object = NULL;
607                 }
608                 /*
609                  * Don't double-terminate, we could be in a termination
610                  * recursion due to the terminate having to sync data
611                  * to disk.
612                  */
613                 if ((object->flags & OBJ_DEAD) == 0)
614                         vm_object_terminate(object);
615                 else
616                         VM_OBJECT_UNLOCK(object);
617                 object = temp;
618         }
619 }
620
621 /*
622  *      vm_object_destroy removes the object from the global object list
623  *      and frees the space for the object.
624  */
625 void
626 vm_object_destroy(vm_object_t object)
627 {
628
629         /*
630          * Remove the object from the global object list.
631          */
632         mtx_lock(&vm_object_list_mtx);
633         TAILQ_REMOVE(&vm_object_list, object, object_list);
634         mtx_unlock(&vm_object_list_mtx);
635
636         /*
637          * Release the allocation charge.
638          */
639         if (object->cred != NULL) {
640                 KASSERT(object->type == OBJT_DEFAULT ||
641                     object->type == OBJT_SWAP,
642                     ("vm_object_terminate: non-swap obj %p has cred",
643                      object));
644                 swap_release_by_cred(object->charge, object->cred);
645                 object->charge = 0;
646                 crfree(object->cred);
647                 object->cred = NULL;
648         }
649
650         /*
651          * Free the space for the object.
652          */
653         uma_zfree(obj_zone, object);
654 }
655
656 /*
657  *      vm_object_terminate actually destroys the specified object, freeing
658  *      up all previously used resources.
659  *
660  *      The object must be locked.
661  *      This routine may block.
662  */
663 void
664 vm_object_terminate(vm_object_t object)
665 {
666         vm_page_t p, p_next;
667
668         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
669
670         /*
671          * Make sure no one uses us.
672          */
673         vm_object_set_flag(object, OBJ_DEAD);
674
675         /*
676          * wait for the pageout daemon to be done with the object
677          */
678         vm_object_pip_wait(object, "objtrm");
679
680         KASSERT(!object->paging_in_progress,
681                 ("vm_object_terminate: pageout in progress"));
682
683         /*
684          * Clean and free the pages, as appropriate. All references to the
685          * object are gone, so we don't need to lock it.
686          */
687         if (object->type == OBJT_VNODE) {
688                 struct vnode *vp = (struct vnode *)object->handle;
689
690                 /*
691                  * Clean pages and flush buffers.
692                  */
693                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
694                 VM_OBJECT_UNLOCK(object);
695
696                 vinvalbuf(vp, V_SAVE, 0, 0);
697
698                 VM_OBJECT_LOCK(object);
699         }
700
701         KASSERT(object->ref_count == 0, 
702                 ("vm_object_terminate: object with references, ref_count=%d",
703                 object->ref_count));
704
705         /*
706          * Free any remaining pageable pages.  This also removes them from the
707          * paging queues.  However, don't free wired pages, just remove them
708          * from the object.  Rather than incrementally removing each page from
709          * the object, the page and object are reset to any empty state. 
710          */
711         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
712                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
713                     ("vm_object_terminate: freeing busy page %p", p));
714                 vm_page_lock(p);
715                 /*
716                  * Optimize the page's removal from the object by resetting
717                  * its "object" field.  Specifically, if the page is not
718                  * wired, then the effect of this assignment is that
719                  * vm_page_free()'s call to vm_page_remove() will return
720                  * immediately without modifying the page or the object.
721                  */ 
722                 p->object = NULL;
723                 if (p->wire_count == 0) {
724                         vm_page_free(p);
725                         PCPU_INC(cnt.v_pfree);
726                 }
727                 vm_page_unlock(p);
728         }
729         /*
730          * If the object contained any pages, then reset it to an empty state.
731          * None of the object's fields, including "resident_page_count", were
732          * modified by the preceding loop.
733          */
734         if (object->resident_page_count != 0) {
735                 object->root = NULL;
736                 TAILQ_INIT(&object->memq);
737                 object->resident_page_count = 0;
738                 if (object->type == OBJT_VNODE)
739                         vdrop(object->handle);
740         }
741
742 #if VM_NRESERVLEVEL > 0
743         if (__predict_false(!LIST_EMPTY(&object->rvq)))
744                 vm_reserv_break_all(object);
745 #endif
746         if (__predict_false(object->cache != NULL))
747                 vm_page_cache_free(object, 0, 0);
748
749         /*
750          * Let the pager know object is dead.
751          */
752         vm_pager_deallocate(object);
753         VM_OBJECT_UNLOCK(object);
754
755         vm_object_destroy(object);
756 }
757
758 /*
759  * Make the page read-only so that we can clear the object flags.  However, if
760  * this is a nosync mmap then the object is likely to stay dirty so do not
761  * mess with the page and do not clear the object flags.  Returns TRUE if the
762  * page should be flushed, and FALSE otherwise.
763  */
764 static boolean_t
765 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags)
766 {
767
768         /*
769          * If we have been asked to skip nosync pages and this is a
770          * nosync page, skip it.  Note that the object flags were not
771          * cleared in this case so we do not have to set them.
772          */
773         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
774                 *clearobjflags = 0;
775                 return (FALSE);
776         } else {
777                 pmap_remove_write(p);
778                 return (p->dirty != 0);
779         }
780 }
781
782 /*
783  *      vm_object_page_clean
784  *
785  *      Clean all dirty pages in the specified range of object.  Leaves page 
786  *      on whatever queue it is currently on.   If NOSYNC is set then do not
787  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
788  *      leaving the object dirty.
789  *
790  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
791  *      synchronous clustering mode implementation.
792  *
793  *      Odd semantics: if start == end, we clean everything.
794  *
795  *      The object must be locked.
796  */
797 void
798 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
799     int flags)
800 {
801         vm_page_t np, p;
802         vm_pindex_t pi, tend;
803         int clearobjflags, curgeneration, n, pagerflags;
804
805         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
806         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
807         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
808         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
809             object->resident_page_count == 0)
810                 return;
811
812         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
813             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
814         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
815
816         tend = (end == 0) ? object->size : end;
817         clearobjflags = start == 0 && tend == object->size;
818
819 rescan:
820         curgeneration = object->generation;
821
822         for (p = vm_page_find_least(object, start); p != NULL; p = np) {
823                 pi = p->pindex;
824                 if (pi >= tend)
825                         break;
826                 np = TAILQ_NEXT(p, listq);
827                 if (p->valid == 0)
828                         continue;
829                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
830                         if (object->generation != curgeneration)
831                                 goto rescan;
832                         np = vm_page_find_least(object, pi);
833                         continue;
834                 }
835                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
836                         continue;
837
838                 n = vm_object_page_collect_flush(object, p, pagerflags,
839                     flags, &clearobjflags);
840                 if (object->generation != curgeneration)
841                         goto rescan;
842                 np = vm_page_find_least(object, pi + n);
843         }
844 #if 0
845         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
846 #endif
847
848         if (clearobjflags)
849                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
850 }
851
852 static int
853 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
854     int flags, int *clearobjflags)
855 {
856         vm_page_t ma[vm_pageout_page_count], p_first, tp;
857         int count, i, mreq, runlen;
858
859         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
860         vm_page_lock_assert(p, MA_NOTOWNED);
861         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
862
863         count = 1;
864         mreq = 0;
865
866         for (tp = p; count < vm_pageout_page_count; count++) {
867                 tp = vm_page_next(tp);
868                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
869                         break;
870                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
871                         break;
872         }
873
874         for (p_first = p; count < vm_pageout_page_count; count++) {
875                 tp = vm_page_prev(p_first);
876                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
877                         break;
878                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
879                         break;
880                 p_first = tp;
881                 mreq++;
882         }
883
884         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
885                 ma[i] = tp;
886
887         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen);
888         return (runlen);
889 }
890
891 /*
892  * Note that there is absolutely no sense in writing out
893  * anonymous objects, so we track down the vnode object
894  * to write out.
895  * We invalidate (remove) all pages from the address space
896  * for semantic correctness.
897  *
898  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
899  * may start out with a NULL object.
900  */
901 void
902 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
903     boolean_t syncio, boolean_t invalidate)
904 {
905         vm_object_t backing_object;
906         struct vnode *vp;
907         struct mount *mp;
908         int flags;
909
910         if (object == NULL)
911                 return;
912         VM_OBJECT_LOCK(object);
913         while ((backing_object = object->backing_object) != NULL) {
914                 VM_OBJECT_LOCK(backing_object);
915                 offset += object->backing_object_offset;
916                 VM_OBJECT_UNLOCK(object);
917                 object = backing_object;
918                 if (object->size < OFF_TO_IDX(offset + size))
919                         size = IDX_TO_OFF(object->size) - offset;
920         }
921         /*
922          * Flush pages if writing is allowed, invalidate them
923          * if invalidation requested.  Pages undergoing I/O
924          * will be ignored by vm_object_page_remove().
925          *
926          * We cannot lock the vnode and then wait for paging
927          * to complete without deadlocking against vm_fault.
928          * Instead we simply call vm_object_page_remove() and
929          * allow it to block internally on a page-by-page
930          * basis when it encounters pages undergoing async
931          * I/O.
932          */
933         if (object->type == OBJT_VNODE &&
934             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
935                 int vfslocked;
936                 vp = object->handle;
937                 VM_OBJECT_UNLOCK(object);
938                 (void) vn_start_write(vp, &mp, V_WAIT);
939                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
940                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
941                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
942                 flags |= invalidate ? OBJPC_INVAL : 0;
943                 VM_OBJECT_LOCK(object);
944                 vm_object_page_clean(object,
945                     OFF_TO_IDX(offset),
946                     OFF_TO_IDX(offset + size + PAGE_MASK),
947                     flags);
948                 VM_OBJECT_UNLOCK(object);
949                 VOP_UNLOCK(vp, 0);
950                 VFS_UNLOCK_GIANT(vfslocked);
951                 vn_finished_write(mp);
952                 VM_OBJECT_LOCK(object);
953         }
954         if ((object->type == OBJT_VNODE ||
955              object->type == OBJT_DEVICE) && invalidate) {
956                 boolean_t purge;
957                 purge = old_msync || (object->type == OBJT_DEVICE);
958                 vm_object_page_remove(object,
959                     OFF_TO_IDX(offset),
960                     OFF_TO_IDX(offset + size + PAGE_MASK),
961                     purge ? FALSE : TRUE);
962         }
963         VM_OBJECT_UNLOCK(object);
964 }
965
966 /*
967  *      vm_object_madvise:
968  *
969  *      Implements the madvise function at the object/page level.
970  *
971  *      MADV_WILLNEED   (any object)
972  *
973  *          Activate the specified pages if they are resident.
974  *
975  *      MADV_DONTNEED   (any object)
976  *
977  *          Deactivate the specified pages if they are resident.
978  *
979  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
980  *                       OBJ_ONEMAPPING only)
981  *
982  *          Deactivate and clean the specified pages if they are
983  *          resident.  This permits the process to reuse the pages
984  *          without faulting or the kernel to reclaim the pages
985  *          without I/O.
986  */
987 void
988 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
989 {
990         vm_pindex_t end, tpindex;
991         vm_object_t backing_object, tobject;
992         vm_page_t m;
993
994         if (object == NULL)
995                 return;
996         VM_OBJECT_LOCK(object);
997         end = pindex + count;
998         /*
999          * Locate and adjust resident pages
1000          */
1001         for (; pindex < end; pindex += 1) {
1002 relookup:
1003                 tobject = object;
1004                 tpindex = pindex;
1005 shadowlookup:
1006                 /*
1007                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1008                  * and those pages must be OBJ_ONEMAPPING.
1009                  */
1010                 if (advise == MADV_FREE) {
1011                         if ((tobject->type != OBJT_DEFAULT &&
1012                              tobject->type != OBJT_SWAP) ||
1013                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1014                                 goto unlock_tobject;
1015                         }
1016                 } else if (tobject->type == OBJT_PHYS)
1017                         goto unlock_tobject;
1018                 m = vm_page_lookup(tobject, tpindex);
1019                 if (m == NULL && advise == MADV_WILLNEED) {
1020                         /*
1021                          * If the page is cached, reactivate it.
1022                          */
1023                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1024                             VM_ALLOC_NOBUSY);
1025                 }
1026                 if (m == NULL) {
1027                         /*
1028                          * There may be swap even if there is no backing page
1029                          */
1030                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1031                                 swap_pager_freespace(tobject, tpindex, 1);
1032                         /*
1033                          * next object
1034                          */
1035                         backing_object = tobject->backing_object;
1036                         if (backing_object == NULL)
1037                                 goto unlock_tobject;
1038                         VM_OBJECT_LOCK(backing_object);
1039                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1040                         if (tobject != object)
1041                                 VM_OBJECT_UNLOCK(tobject);
1042                         tobject = backing_object;
1043                         goto shadowlookup;
1044                 } else if (m->valid != VM_PAGE_BITS_ALL)
1045                         goto unlock_tobject;
1046                 /*
1047                  * If the page is not in a normal state, skip it.
1048                  */
1049                 vm_page_lock(m);
1050                 if (m->hold_count != 0 || m->wire_count != 0) {
1051                         vm_page_unlock(m);
1052                         goto unlock_tobject;
1053                 }
1054                 KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1055                     ("vm_object_madvise: page %p is not managed", m));
1056                 if ((m->oflags & VPO_BUSY) || m->busy) {
1057                         if (advise == MADV_WILLNEED) {
1058                                 /*
1059                                  * Reference the page before unlocking and
1060                                  * sleeping so that the page daemon is less
1061                                  * likely to reclaim it. 
1062                                  */
1063                                 vm_page_lock_queues();
1064                                 vm_page_flag_set(m, PG_REFERENCED);
1065                                 vm_page_unlock_queues();
1066                         }
1067                         vm_page_unlock(m);
1068                         if (object != tobject)
1069                                 VM_OBJECT_UNLOCK(object);
1070                         m->oflags |= VPO_WANTED;
1071                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1072                             0);
1073                         VM_OBJECT_LOCK(object);
1074                         goto relookup;
1075                 }
1076                 if (advise == MADV_WILLNEED) {
1077                         vm_page_activate(m);
1078                 } else if (advise == MADV_DONTNEED) {
1079                         vm_page_dontneed(m);
1080                 } else if (advise == MADV_FREE) {
1081                         /*
1082                          * Mark the page clean.  This will allow the page
1083                          * to be freed up by the system.  However, such pages
1084                          * are often reused quickly by malloc()/free()
1085                          * so we do not do anything that would cause
1086                          * a page fault if we can help it.
1087                          *
1088                          * Specifically, we do not try to actually free
1089                          * the page now nor do we try to put it in the
1090                          * cache (which would cause a page fault on reuse).
1091                          *
1092                          * But we do make the page is freeable as we
1093                          * can without actually taking the step of unmapping
1094                          * it.
1095                          */
1096                         pmap_clear_modify(m);
1097                         m->dirty = 0;
1098                         m->act_count = 0;
1099                         vm_page_dontneed(m);
1100                 }
1101                 vm_page_unlock(m);
1102                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1103                         swap_pager_freespace(tobject, tpindex, 1);
1104 unlock_tobject:
1105                 if (tobject != object)
1106                         VM_OBJECT_UNLOCK(tobject);
1107         }       
1108         VM_OBJECT_UNLOCK(object);
1109 }
1110
1111 /*
1112  *      vm_object_shadow:
1113  *
1114  *      Create a new object which is backed by the
1115  *      specified existing object range.  The source
1116  *      object reference is deallocated.
1117  *
1118  *      The new object and offset into that object
1119  *      are returned in the source parameters.
1120  */
1121 void
1122 vm_object_shadow(
1123         vm_object_t *object,    /* IN/OUT */
1124         vm_ooffset_t *offset,   /* IN/OUT */
1125         vm_size_t length)
1126 {
1127         vm_object_t source;
1128         vm_object_t result;
1129
1130         source = *object;
1131
1132         /*
1133          * Don't create the new object if the old object isn't shared.
1134          */
1135         if (source != NULL) {
1136                 VM_OBJECT_LOCK(source);
1137                 if (source->ref_count == 1 &&
1138                     source->handle == NULL &&
1139                     (source->type == OBJT_DEFAULT ||
1140                      source->type == OBJT_SWAP)) {
1141                         VM_OBJECT_UNLOCK(source);
1142                         return;
1143                 }
1144                 VM_OBJECT_UNLOCK(source);
1145         }
1146
1147         /*
1148          * Allocate a new object with the given length.
1149          */
1150         result = vm_object_allocate(OBJT_DEFAULT, length);
1151
1152         /*
1153          * The new object shadows the source object, adding a reference to it.
1154          * Our caller changes his reference to point to the new object,
1155          * removing a reference to the source object.  Net result: no change
1156          * of reference count.
1157          *
1158          * Try to optimize the result object's page color when shadowing
1159          * in order to maintain page coloring consistency in the combined 
1160          * shadowed object.
1161          */
1162         result->backing_object = source;
1163         /*
1164          * Store the offset into the source object, and fix up the offset into
1165          * the new object.
1166          */
1167         result->backing_object_offset = *offset;
1168         if (source != NULL) {
1169                 VM_OBJECT_LOCK(source);
1170                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1171                 source->shadow_count++;
1172 #if VM_NRESERVLEVEL > 0
1173                 result->flags |= source->flags & OBJ_COLORED;
1174                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1175                     ((1 << (VM_NFREEORDER - 1)) - 1);
1176 #endif
1177                 VM_OBJECT_UNLOCK(source);
1178         }
1179
1180
1181         /*
1182          * Return the new things
1183          */
1184         *offset = 0;
1185         *object = result;
1186 }
1187
1188 /*
1189  *      vm_object_split:
1190  *
1191  * Split the pages in a map entry into a new object.  This affords
1192  * easier removal of unused pages, and keeps object inheritance from
1193  * being a negative impact on memory usage.
1194  */
1195 void
1196 vm_object_split(vm_map_entry_t entry)
1197 {
1198         vm_page_t m, m_next;
1199         vm_object_t orig_object, new_object, source;
1200         vm_pindex_t idx, offidxstart;
1201         vm_size_t size;
1202
1203         orig_object = entry->object.vm_object;
1204         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1205                 return;
1206         if (orig_object->ref_count <= 1)
1207                 return;
1208         VM_OBJECT_UNLOCK(orig_object);
1209
1210         offidxstart = OFF_TO_IDX(entry->offset);
1211         size = atop(entry->end - entry->start);
1212
1213         /*
1214          * If swap_pager_copy() is later called, it will convert new_object
1215          * into a swap object.
1216          */
1217         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1218
1219         /*
1220          * At this point, the new object is still private, so the order in
1221          * which the original and new objects are locked does not matter.
1222          */
1223         VM_OBJECT_LOCK(new_object);
1224         VM_OBJECT_LOCK(orig_object);
1225         source = orig_object->backing_object;
1226         if (source != NULL) {
1227                 VM_OBJECT_LOCK(source);
1228                 if ((source->flags & OBJ_DEAD) != 0) {
1229                         VM_OBJECT_UNLOCK(source);
1230                         VM_OBJECT_UNLOCK(orig_object);
1231                         VM_OBJECT_UNLOCK(new_object);
1232                         vm_object_deallocate(new_object);
1233                         VM_OBJECT_LOCK(orig_object);
1234                         return;
1235                 }
1236                 LIST_INSERT_HEAD(&source->shadow_head,
1237                                   new_object, shadow_list);
1238                 source->shadow_count++;
1239                 vm_object_reference_locked(source);     /* for new_object */
1240                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1241                 VM_OBJECT_UNLOCK(source);
1242                 new_object->backing_object_offset = 
1243                         orig_object->backing_object_offset + entry->offset;
1244                 new_object->backing_object = source;
1245         }
1246         if (orig_object->cred != NULL) {
1247                 new_object->cred = orig_object->cred;
1248                 crhold(orig_object->cred);
1249                 new_object->charge = ptoa(size);
1250                 KASSERT(orig_object->charge >= ptoa(size),
1251                     ("orig_object->charge < 0"));
1252                 orig_object->charge -= ptoa(size);
1253         }
1254 retry:
1255         m = vm_page_find_least(orig_object, offidxstart);
1256         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1257             m = m_next) {
1258                 m_next = TAILQ_NEXT(m, listq);
1259
1260                 /*
1261                  * We must wait for pending I/O to complete before we can
1262                  * rename the page.
1263                  *
1264                  * We do not have to VM_PROT_NONE the page as mappings should
1265                  * not be changed by this operation.
1266                  */
1267                 if ((m->oflags & VPO_BUSY) || m->busy) {
1268                         VM_OBJECT_UNLOCK(new_object);
1269                         m->oflags |= VPO_WANTED;
1270                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1271                         VM_OBJECT_LOCK(new_object);
1272                         goto retry;
1273                 }
1274                 vm_page_lock(m);
1275                 vm_page_rename(m, new_object, idx);
1276                 vm_page_unlock(m);
1277                 /* page automatically made dirty by rename and cache handled */
1278                 vm_page_busy(m);
1279         }
1280         if (orig_object->type == OBJT_SWAP) {
1281                 /*
1282                  * swap_pager_copy() can sleep, in which case the orig_object's
1283                  * and new_object's locks are released and reacquired. 
1284                  */
1285                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1286
1287                 /*
1288                  * Transfer any cached pages from orig_object to new_object.
1289                  */
1290                 if (__predict_false(orig_object->cache != NULL))
1291                         vm_page_cache_transfer(orig_object, offidxstart,
1292                             new_object);
1293         }
1294         VM_OBJECT_UNLOCK(orig_object);
1295         TAILQ_FOREACH(m, &new_object->memq, listq)
1296                 vm_page_wakeup(m);
1297         VM_OBJECT_UNLOCK(new_object);
1298         entry->object.vm_object = new_object;
1299         entry->offset = 0LL;
1300         vm_object_deallocate(orig_object);
1301         VM_OBJECT_LOCK(new_object);
1302 }
1303
1304 #define OBSC_TEST_ALL_SHADOWED  0x0001
1305 #define OBSC_COLLAPSE_NOWAIT    0x0002
1306 #define OBSC_COLLAPSE_WAIT      0x0004
1307
1308 static int
1309 vm_object_backing_scan(vm_object_t object, int op)
1310 {
1311         int r = 1;
1312         vm_page_t p;
1313         vm_object_t backing_object;
1314         vm_pindex_t backing_offset_index;
1315
1316         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1317         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1318
1319         backing_object = object->backing_object;
1320         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1321
1322         /*
1323          * Initial conditions
1324          */
1325         if (op & OBSC_TEST_ALL_SHADOWED) {
1326                 /*
1327                  * We do not want to have to test for the existence of cache
1328                  * or swap pages in the backing object.  XXX but with the
1329                  * new swapper this would be pretty easy to do.
1330                  *
1331                  * XXX what about anonymous MAP_SHARED memory that hasn't
1332                  * been ZFOD faulted yet?  If we do not test for this, the
1333                  * shadow test may succeed! XXX
1334                  */
1335                 if (backing_object->type != OBJT_DEFAULT) {
1336                         return (0);
1337                 }
1338         }
1339         if (op & OBSC_COLLAPSE_WAIT) {
1340                 vm_object_set_flag(backing_object, OBJ_DEAD);
1341         }
1342
1343         /*
1344          * Our scan
1345          */
1346         p = TAILQ_FIRST(&backing_object->memq);
1347         while (p) {
1348                 vm_page_t next = TAILQ_NEXT(p, listq);
1349                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1350
1351                 if (op & OBSC_TEST_ALL_SHADOWED) {
1352                         vm_page_t pp;
1353
1354                         /*
1355                          * Ignore pages outside the parent object's range
1356                          * and outside the parent object's mapping of the 
1357                          * backing object.
1358                          *
1359                          * note that we do not busy the backing object's
1360                          * page.
1361                          */
1362                         if (
1363                             p->pindex < backing_offset_index ||
1364                             new_pindex >= object->size
1365                         ) {
1366                                 p = next;
1367                                 continue;
1368                         }
1369
1370                         /*
1371                          * See if the parent has the page or if the parent's
1372                          * object pager has the page.  If the parent has the
1373                          * page but the page is not valid, the parent's
1374                          * object pager must have the page.
1375                          *
1376                          * If this fails, the parent does not completely shadow
1377                          * the object and we might as well give up now.
1378                          */
1379
1380                         pp = vm_page_lookup(object, new_pindex);
1381                         if (
1382                             (pp == NULL || pp->valid == 0) &&
1383                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1384                         ) {
1385                                 r = 0;
1386                                 break;
1387                         }
1388                 }
1389
1390                 /*
1391                  * Check for busy page
1392                  */
1393                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1394                         vm_page_t pp;
1395
1396                         if (op & OBSC_COLLAPSE_NOWAIT) {
1397                                 if ((p->oflags & VPO_BUSY) ||
1398                                     !p->valid || 
1399                                     p->busy) {
1400                                         p = next;
1401                                         continue;
1402                                 }
1403                         } else if (op & OBSC_COLLAPSE_WAIT) {
1404                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1405                                         VM_OBJECT_UNLOCK(object);
1406                                         p->oflags |= VPO_WANTED;
1407                                         msleep(p, VM_OBJECT_MTX(backing_object),
1408                                             PDROP | PVM, "vmocol", 0);
1409                                         VM_OBJECT_LOCK(object);
1410                                         VM_OBJECT_LOCK(backing_object);
1411                                         /*
1412                                          * If we slept, anything could have
1413                                          * happened.  Since the object is
1414                                          * marked dead, the backing offset
1415                                          * should not have changed so we
1416                                          * just restart our scan.
1417                                          */
1418                                         p = TAILQ_FIRST(&backing_object->memq);
1419                                         continue;
1420                                 }
1421                         }
1422
1423                         KASSERT(
1424                             p->object == backing_object,
1425                             ("vm_object_backing_scan: object mismatch")
1426                         );
1427
1428                         /*
1429                          * Destroy any associated swap
1430                          */
1431                         if (backing_object->type == OBJT_SWAP) {
1432                                 swap_pager_freespace(
1433                                     backing_object, 
1434                                     p->pindex,
1435                                     1
1436                                 );
1437                         }
1438
1439                         if (
1440                             p->pindex < backing_offset_index ||
1441                             new_pindex >= object->size
1442                         ) {
1443                                 /*
1444                                  * Page is out of the parent object's range, we 
1445                                  * can simply destroy it. 
1446                                  */
1447                                 vm_page_lock(p);
1448                                 KASSERT(!pmap_page_is_mapped(p),
1449                                     ("freeing mapped page %p", p));
1450                                 if (p->wire_count == 0)
1451                                         vm_page_free(p);
1452                                 else
1453                                         vm_page_remove(p);
1454                                 vm_page_unlock(p);
1455                                 p = next;
1456                                 continue;
1457                         }
1458
1459                         pp = vm_page_lookup(object, new_pindex);
1460                         if (
1461                             pp != NULL ||
1462                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1463                         ) {
1464                                 /*
1465                                  * page already exists in parent OR swap exists
1466                                  * for this location in the parent.  Destroy 
1467                                  * the original page from the backing object.
1468                                  *
1469                                  * Leave the parent's page alone
1470                                  */
1471                                 vm_page_lock(p);
1472                                 KASSERT(!pmap_page_is_mapped(p),
1473                                     ("freeing mapped page %p", p));
1474                                 if (p->wire_count == 0)
1475                                         vm_page_free(p);
1476                                 else
1477                                         vm_page_remove(p);
1478                                 vm_page_unlock(p);
1479                                 p = next;
1480                                 continue;
1481                         }
1482
1483 #if VM_NRESERVLEVEL > 0
1484                         /*
1485                          * Rename the reservation.
1486                          */
1487                         vm_reserv_rename(p, object, backing_object,
1488                             backing_offset_index);
1489 #endif
1490
1491                         /*
1492                          * Page does not exist in parent, rename the
1493                          * page from the backing object to the main object. 
1494                          *
1495                          * If the page was mapped to a process, it can remain 
1496                          * mapped through the rename.
1497                          */
1498                         vm_page_lock(p);
1499                         vm_page_rename(p, object, new_pindex);
1500                         vm_page_unlock(p);
1501                         /* page automatically made dirty by rename */
1502                 }
1503                 p = next;
1504         }
1505         return (r);
1506 }
1507
1508
1509 /*
1510  * this version of collapse allows the operation to occur earlier and
1511  * when paging_in_progress is true for an object...  This is not a complete
1512  * operation, but should plug 99.9% of the rest of the leaks.
1513  */
1514 static void
1515 vm_object_qcollapse(vm_object_t object)
1516 {
1517         vm_object_t backing_object = object->backing_object;
1518
1519         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1520         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1521
1522         if (backing_object->ref_count != 1)
1523                 return;
1524
1525         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1526 }
1527
1528 /*
1529  *      vm_object_collapse:
1530  *
1531  *      Collapse an object with the object backing it.
1532  *      Pages in the backing object are moved into the
1533  *      parent, and the backing object is deallocated.
1534  */
1535 void
1536 vm_object_collapse(vm_object_t object)
1537 {
1538         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1539         
1540         while (TRUE) {
1541                 vm_object_t backing_object;
1542
1543                 /*
1544                  * Verify that the conditions are right for collapse:
1545                  *
1546                  * The object exists and the backing object exists.
1547                  */
1548                 if ((backing_object = object->backing_object) == NULL)
1549                         break;
1550
1551                 /*
1552                  * we check the backing object first, because it is most likely
1553                  * not collapsable.
1554                  */
1555                 VM_OBJECT_LOCK(backing_object);
1556                 if (backing_object->handle != NULL ||
1557                     (backing_object->type != OBJT_DEFAULT &&
1558                      backing_object->type != OBJT_SWAP) ||
1559                     (backing_object->flags & OBJ_DEAD) ||
1560                     object->handle != NULL ||
1561                     (object->type != OBJT_DEFAULT &&
1562                      object->type != OBJT_SWAP) ||
1563                     (object->flags & OBJ_DEAD)) {
1564                         VM_OBJECT_UNLOCK(backing_object);
1565                         break;
1566                 }
1567
1568                 if (
1569                     object->paging_in_progress != 0 ||
1570                     backing_object->paging_in_progress != 0
1571                 ) {
1572                         vm_object_qcollapse(object);
1573                         VM_OBJECT_UNLOCK(backing_object);
1574                         break;
1575                 }
1576                 /*
1577                  * We know that we can either collapse the backing object (if
1578                  * the parent is the only reference to it) or (perhaps) have
1579                  * the parent bypass the object if the parent happens to shadow
1580                  * all the resident pages in the entire backing object.
1581                  *
1582                  * This is ignoring pager-backed pages such as swap pages.
1583                  * vm_object_backing_scan fails the shadowing test in this
1584                  * case.
1585                  */
1586                 if (backing_object->ref_count == 1) {
1587                         /*
1588                          * If there is exactly one reference to the backing
1589                          * object, we can collapse it into the parent.  
1590                          */
1591                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1592
1593 #if VM_NRESERVLEVEL > 0
1594                         /*
1595                          * Break any reservations from backing_object.
1596                          */
1597                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1598                                 vm_reserv_break_all(backing_object);
1599 #endif
1600
1601                         /*
1602                          * Move the pager from backing_object to object.
1603                          */
1604                         if (backing_object->type == OBJT_SWAP) {
1605                                 /*
1606                                  * swap_pager_copy() can sleep, in which case
1607                                  * the backing_object's and object's locks are
1608                                  * released and reacquired.
1609                                  */
1610                                 swap_pager_copy(
1611                                     backing_object,
1612                                     object,
1613                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1614
1615                                 /*
1616                                  * Free any cached pages from backing_object.
1617                                  */
1618                                 if (__predict_false(backing_object->cache != NULL))
1619                                         vm_page_cache_free(backing_object, 0, 0);
1620                         }
1621                         /*
1622                          * Object now shadows whatever backing_object did.
1623                          * Note that the reference to 
1624                          * backing_object->backing_object moves from within 
1625                          * backing_object to within object.
1626                          */
1627                         LIST_REMOVE(object, shadow_list);
1628                         backing_object->shadow_count--;
1629                         if (backing_object->backing_object) {
1630                                 VM_OBJECT_LOCK(backing_object->backing_object);
1631                                 LIST_REMOVE(backing_object, shadow_list);
1632                                 LIST_INSERT_HEAD(
1633                                     &backing_object->backing_object->shadow_head,
1634                                     object, shadow_list);
1635                                 /*
1636                                  * The shadow_count has not changed.
1637                                  */
1638                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1639                         }
1640                         object->backing_object = backing_object->backing_object;
1641                         object->backing_object_offset +=
1642                             backing_object->backing_object_offset;
1643
1644                         /*
1645                          * Discard backing_object.
1646                          *
1647                          * Since the backing object has no pages, no pager left,
1648                          * and no object references within it, all that is
1649                          * necessary is to dispose of it.
1650                          */
1651                         KASSERT(backing_object->ref_count == 1, (
1652 "backing_object %p was somehow re-referenced during collapse!",
1653                             backing_object));
1654                         VM_OBJECT_UNLOCK(backing_object);
1655                         vm_object_destroy(backing_object);
1656
1657                         object_collapses++;
1658                 } else {
1659                         vm_object_t new_backing_object;
1660
1661                         /*
1662                          * If we do not entirely shadow the backing object,
1663                          * there is nothing we can do so we give up.
1664                          */
1665                         if (object->resident_page_count != object->size &&
1666                             vm_object_backing_scan(object,
1667                             OBSC_TEST_ALL_SHADOWED) == 0) {
1668                                 VM_OBJECT_UNLOCK(backing_object);
1669                                 break;
1670                         }
1671
1672                         /*
1673                          * Make the parent shadow the next object in the
1674                          * chain.  Deallocating backing_object will not remove
1675                          * it, since its reference count is at least 2.
1676                          */
1677                         LIST_REMOVE(object, shadow_list);
1678                         backing_object->shadow_count--;
1679
1680                         new_backing_object = backing_object->backing_object;
1681                         if ((object->backing_object = new_backing_object) != NULL) {
1682                                 VM_OBJECT_LOCK(new_backing_object);
1683                                 LIST_INSERT_HEAD(
1684                                     &new_backing_object->shadow_head,
1685                                     object,
1686                                     shadow_list
1687                                 );
1688                                 new_backing_object->shadow_count++;
1689                                 vm_object_reference_locked(new_backing_object);
1690                                 VM_OBJECT_UNLOCK(new_backing_object);
1691                                 object->backing_object_offset +=
1692                                         backing_object->backing_object_offset;
1693                         }
1694
1695                         /*
1696                          * Drop the reference count on backing_object. Since
1697                          * its ref_count was at least 2, it will not vanish.
1698                          */
1699                         backing_object->ref_count--;
1700                         VM_OBJECT_UNLOCK(backing_object);
1701                         object_bypasses++;
1702                 }
1703
1704                 /*
1705                  * Try again with this object's new backing object.
1706                  */
1707         }
1708 }
1709
1710 /*
1711  *      vm_object_page_remove:
1712  *
1713  *      For the given object, either frees or invalidates each of the
1714  *      specified pages.  In general, a page is freed.  However, if a
1715  *      page is wired for any reason other than the existence of a
1716  *      managed, wired mapping, then it may be invalidated but not
1717  *      removed from the object.  Pages are specified by the given
1718  *      range ["start", "end") and Boolean "clean_only".  As a
1719  *      special case, if "end" is zero, then the range extends from
1720  *      "start" to the end of the object.  If "clean_only" is TRUE,
1721  *      then only the non-dirty pages within the specified range are
1722  *      affected.
1723  *
1724  *      In general, this operation should only be performed on objects
1725  *      that contain managed pages.  There are two exceptions.  First,
1726  *      it may be performed on the kernel and kmem objects.  Second,
1727  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
1728  *      device-backed pages.  In both of these cases, "clean_only"
1729  *      must be FALSE.
1730  *
1731  *      The object must be locked.
1732  */
1733 void
1734 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1735     boolean_t clean_only)
1736 {
1737         vm_page_t p, next;
1738         int wirings;
1739
1740         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1741         if (object->resident_page_count == 0)
1742                 goto skipmemq;
1743
1744         /*
1745          * Since physically-backed objects do not use managed pages, we can't
1746          * remove pages from the object (we must instead remove the page
1747          * references, and then destroy the object).
1748          */
1749         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1750             object == kmem_object,
1751             ("attempt to remove pages from a physical object"));
1752
1753         vm_object_pip_add(object, 1);
1754 again:
1755         p = vm_page_find_least(object, start);
1756
1757         /*
1758          * Assert: the variable p is either (1) the page with the
1759          * least pindex greater than or equal to the parameter pindex
1760          * or (2) NULL.
1761          */
1762         for (;
1763              p != NULL && (p->pindex < end || end == 0);
1764              p = next) {
1765                 next = TAILQ_NEXT(p, listq);
1766
1767                 /*
1768                  * If the page is wired for any reason besides the
1769                  * existence of managed, wired mappings, then it cannot
1770                  * be freed.  For example, fictitious pages, which
1771                  * represent device memory, are inherently wired and
1772                  * cannot be freed.  They can, however, be invalidated
1773                  * if "clean_only" is FALSE.
1774                  */
1775                 vm_page_lock(p);
1776                 if ((wirings = p->wire_count) != 0 &&
1777                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1778                         /* Fictitious pages do not have managed mappings. */
1779                         if ((p->flags & PG_FICTITIOUS) == 0)
1780                                 pmap_remove_all(p);
1781                         /* Account for removal of managed, wired mappings. */
1782                         p->wire_count -= wirings;
1783                         if (!clean_only) {
1784                                 p->valid = 0;
1785                                 vm_page_undirty(p);
1786                         }
1787                         vm_page_unlock(p);
1788                         continue;
1789                 }
1790                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1791                         goto again;
1792                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1793                     ("vm_object_page_remove: page %p is fictitious", p));
1794                 if (clean_only && p->valid) {
1795                         pmap_remove_write(p);
1796                         if (p->dirty) {
1797                                 vm_page_unlock(p);
1798                                 continue;
1799                         }
1800                 }
1801                 pmap_remove_all(p);
1802                 /* Account for removal of managed, wired mappings. */
1803                 if (wirings != 0)
1804                         p->wire_count -= wirings;
1805                 vm_page_free(p);
1806                 vm_page_unlock(p);
1807         }
1808         vm_object_pip_wakeup(object);
1809 skipmemq:
1810         if (__predict_false(object->cache != NULL))
1811                 vm_page_cache_free(object, start, end);
1812 }
1813
1814 /*
1815  *      Populate the specified range of the object with valid pages.  Returns
1816  *      TRUE if the range is successfully populated and FALSE otherwise.
1817  *
1818  *      Note: This function should be optimized to pass a larger array of
1819  *      pages to vm_pager_get_pages() before it is applied to a non-
1820  *      OBJT_DEVICE object.
1821  *
1822  *      The object must be locked.
1823  */
1824 boolean_t
1825 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1826 {
1827         vm_page_t m, ma[1];
1828         vm_pindex_t pindex;
1829         int rv;
1830
1831         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1832         for (pindex = start; pindex < end; pindex++) {
1833                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1834                     VM_ALLOC_RETRY);
1835                 if (m->valid != VM_PAGE_BITS_ALL) {
1836                         ma[0] = m;
1837                         rv = vm_pager_get_pages(object, ma, 1, 0);
1838                         m = vm_page_lookup(object, pindex);
1839                         if (m == NULL)
1840                                 break;
1841                         if (rv != VM_PAGER_OK) {
1842                                 vm_page_lock(m);
1843                                 vm_page_free(m);
1844                                 vm_page_unlock(m);
1845                                 break;
1846                         }
1847                 }
1848                 /*
1849                  * Keep "m" busy because a subsequent iteration may unlock
1850                  * the object.
1851                  */
1852         }
1853         if (pindex > start) {
1854                 m = vm_page_lookup(object, start);
1855                 while (m != NULL && m->pindex < pindex) {
1856                         vm_page_wakeup(m);
1857                         m = TAILQ_NEXT(m, listq);
1858                 }
1859         }
1860         return (pindex == end);
1861 }
1862
1863 /*
1864  *      Routine:        vm_object_coalesce
1865  *      Function:       Coalesces two objects backing up adjoining
1866  *                      regions of memory into a single object.
1867  *
1868  *      returns TRUE if objects were combined.
1869  *
1870  *      NOTE:   Only works at the moment if the second object is NULL -
1871  *              if it's not, which object do we lock first?
1872  *
1873  *      Parameters:
1874  *              prev_object     First object to coalesce
1875  *              prev_offset     Offset into prev_object
1876  *              prev_size       Size of reference to prev_object
1877  *              next_size       Size of reference to the second object
1878  *              reserved        Indicator that extension region has
1879  *                              swap accounted for
1880  *
1881  *      Conditions:
1882  *      The object must *not* be locked.
1883  */
1884 boolean_t
1885 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1886     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
1887 {
1888         vm_pindex_t next_pindex;
1889
1890         if (prev_object == NULL)
1891                 return (TRUE);
1892         VM_OBJECT_LOCK(prev_object);
1893         if (prev_object->type != OBJT_DEFAULT &&
1894             prev_object->type != OBJT_SWAP) {
1895                 VM_OBJECT_UNLOCK(prev_object);
1896                 return (FALSE);
1897         }
1898
1899         /*
1900          * Try to collapse the object first
1901          */
1902         vm_object_collapse(prev_object);
1903
1904         /*
1905          * Can't coalesce if: . more than one reference . paged out . shadows
1906          * another object . has a copy elsewhere (any of which mean that the
1907          * pages not mapped to prev_entry may be in use anyway)
1908          */
1909         if (prev_object->backing_object != NULL) {
1910                 VM_OBJECT_UNLOCK(prev_object);
1911                 return (FALSE);
1912         }
1913
1914         prev_size >>= PAGE_SHIFT;
1915         next_size >>= PAGE_SHIFT;
1916         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1917
1918         if ((prev_object->ref_count > 1) &&
1919             (prev_object->size != next_pindex)) {
1920                 VM_OBJECT_UNLOCK(prev_object);
1921                 return (FALSE);
1922         }
1923
1924         /*
1925          * Account for the charge.
1926          */
1927         if (prev_object->cred != NULL) {
1928
1929                 /*
1930                  * If prev_object was charged, then this mapping,
1931                  * althought not charged now, may become writable
1932                  * later. Non-NULL cred in the object would prevent
1933                  * swap reservation during enabling of the write
1934                  * access, so reserve swap now. Failed reservation
1935                  * cause allocation of the separate object for the map
1936                  * entry, and swap reservation for this entry is
1937                  * managed in appropriate time.
1938                  */
1939                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
1940                     prev_object->cred)) {
1941                         return (FALSE);
1942                 }
1943                 prev_object->charge += ptoa(next_size);
1944         }
1945
1946         /*
1947          * Remove any pages that may still be in the object from a previous
1948          * deallocation.
1949          */
1950         if (next_pindex < prev_object->size) {
1951                 vm_object_page_remove(prev_object,
1952                                       next_pindex,
1953                                       next_pindex + next_size, FALSE);
1954                 if (prev_object->type == OBJT_SWAP)
1955                         swap_pager_freespace(prev_object,
1956                                              next_pindex, next_size);
1957 #if 0
1958                 if (prev_object->cred != NULL) {
1959                         KASSERT(prev_object->charge >=
1960                             ptoa(prev_object->size - next_pindex),
1961                             ("object %p overcharged 1 %jx %jx", prev_object,
1962                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
1963                         prev_object->charge -= ptoa(prev_object->size -
1964                             next_pindex);
1965                 }
1966 #endif
1967         }
1968
1969         /*
1970          * Extend the object if necessary.
1971          */
1972         if (next_pindex + next_size > prev_object->size)
1973                 prev_object->size = next_pindex + next_size;
1974
1975         VM_OBJECT_UNLOCK(prev_object);
1976         return (TRUE);
1977 }
1978
1979 void
1980 vm_object_set_writeable_dirty(vm_object_t object)
1981 {
1982
1983         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1984         if (object->type != OBJT_VNODE)
1985                 return;
1986         object->generation++;
1987         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
1988                 return;
1989         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
1990 }
1991
1992 #include "opt_ddb.h"
1993 #ifdef DDB
1994 #include <sys/kernel.h>
1995
1996 #include <sys/cons.h>
1997
1998 #include <ddb/ddb.h>
1999
2000 static int
2001 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2002 {
2003         vm_map_t tmpm;
2004         vm_map_entry_t tmpe;
2005         vm_object_t obj;
2006         int entcount;
2007
2008         if (map == 0)
2009                 return 0;
2010
2011         if (entry == 0) {
2012                 tmpe = map->header.next;
2013                 entcount = map->nentries;
2014                 while (entcount-- && (tmpe != &map->header)) {
2015                         if (_vm_object_in_map(map, object, tmpe)) {
2016                                 return 1;
2017                         }
2018                         tmpe = tmpe->next;
2019                 }
2020         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2021                 tmpm = entry->object.sub_map;
2022                 tmpe = tmpm->header.next;
2023                 entcount = tmpm->nentries;
2024                 while (entcount-- && tmpe != &tmpm->header) {
2025                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2026                                 return 1;
2027                         }
2028                         tmpe = tmpe->next;
2029                 }
2030         } else if ((obj = entry->object.vm_object) != NULL) {
2031                 for (; obj; obj = obj->backing_object)
2032                         if (obj == object) {
2033                                 return 1;
2034                         }
2035         }
2036         return 0;
2037 }
2038
2039 static int
2040 vm_object_in_map(vm_object_t object)
2041 {
2042         struct proc *p;
2043
2044         /* sx_slock(&allproc_lock); */
2045         FOREACH_PROC_IN_SYSTEM(p) {
2046                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2047                         continue;
2048                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2049                         /* sx_sunlock(&allproc_lock); */
2050                         return 1;
2051                 }
2052         }
2053         /* sx_sunlock(&allproc_lock); */
2054         if (_vm_object_in_map(kernel_map, object, 0))
2055                 return 1;
2056         if (_vm_object_in_map(kmem_map, object, 0))
2057                 return 1;
2058         if (_vm_object_in_map(pager_map, object, 0))
2059                 return 1;
2060         if (_vm_object_in_map(buffer_map, object, 0))
2061                 return 1;
2062         return 0;
2063 }
2064
2065 DB_SHOW_COMMAND(vmochk, vm_object_check)
2066 {
2067         vm_object_t object;
2068
2069         /*
2070          * make sure that internal objs are in a map somewhere
2071          * and none have zero ref counts.
2072          */
2073         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2074                 if (object->handle == NULL &&
2075                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2076                         if (object->ref_count == 0) {
2077                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2078                                         (long)object->size);
2079                         }
2080                         if (!vm_object_in_map(object)) {
2081                                 db_printf(
2082                         "vmochk: internal obj is not in a map: "
2083                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2084                                     object->ref_count, (u_long)object->size, 
2085                                     (u_long)object->size,
2086                                     (void *)object->backing_object);
2087                         }
2088                 }
2089         }
2090 }
2091
2092 /*
2093  *      vm_object_print:        [ debug ]
2094  */
2095 DB_SHOW_COMMAND(object, vm_object_print_static)
2096 {
2097         /* XXX convert args. */
2098         vm_object_t object = (vm_object_t)addr;
2099         boolean_t full = have_addr;
2100
2101         vm_page_t p;
2102
2103         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2104 #define count   was_count
2105
2106         int count;
2107
2108         if (object == NULL)
2109                 return;
2110
2111         db_iprintf(
2112             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2113             object, (int)object->type, (uintmax_t)object->size,
2114             object->resident_page_count, object->ref_count, object->flags,
2115             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2116         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2117             object->shadow_count, 
2118             object->backing_object ? object->backing_object->ref_count : 0,
2119             object->backing_object, (uintmax_t)object->backing_object_offset);
2120
2121         if (!full)
2122                 return;
2123
2124         db_indent += 2;
2125         count = 0;
2126         TAILQ_FOREACH(p, &object->memq, listq) {
2127                 if (count == 0)
2128                         db_iprintf("memory:=");
2129                 else if (count == 6) {
2130                         db_printf("\n");
2131                         db_iprintf(" ...");
2132                         count = 0;
2133                 } else
2134                         db_printf(",");
2135                 count++;
2136
2137                 db_printf("(off=0x%jx,page=0x%jx)",
2138                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2139         }
2140         if (count != 0)
2141                 db_printf("\n");
2142         db_indent -= 2;
2143 }
2144
2145 /* XXX. */
2146 #undef count
2147
2148 /* XXX need this non-static entry for calling from vm_map_print. */
2149 void
2150 vm_object_print(
2151         /* db_expr_t */ long addr,
2152         boolean_t have_addr,
2153         /* db_expr_t */ long count,
2154         char *modif)
2155 {
2156         vm_object_print_static(addr, have_addr, count, modif);
2157 }
2158
2159 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2160 {
2161         vm_object_t object;
2162         vm_pindex_t fidx;
2163         vm_paddr_t pa;
2164         vm_page_t m, prev_m;
2165         int rcount, nl, c;
2166
2167         nl = 0;
2168         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2169                 db_printf("new object: %p\n", (void *)object);
2170                 if (nl > 18) {
2171                         c = cngetc();
2172                         if (c != ' ')
2173                                 return;
2174                         nl = 0;
2175                 }
2176                 nl++;
2177                 rcount = 0;
2178                 fidx = 0;
2179                 pa = -1;
2180                 TAILQ_FOREACH(m, &object->memq, listq) {
2181                         if (m->pindex > 128)
2182                                 break;
2183                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2184                             prev_m->pindex + 1 != m->pindex) {
2185                                 if (rcount) {
2186                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2187                                                 (long)fidx, rcount, (long)pa);
2188                                         if (nl > 18) {
2189                                                 c = cngetc();
2190                                                 if (c != ' ')
2191                                                         return;
2192                                                 nl = 0;
2193                                         }
2194                                         nl++;
2195                                         rcount = 0;
2196                                 }
2197                         }                               
2198                         if (rcount &&
2199                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2200                                 ++rcount;
2201                                 continue;
2202                         }
2203                         if (rcount) {
2204                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2205                                         (long)fidx, rcount, (long)pa);
2206                                 if (nl > 18) {
2207                                         c = cngetc();
2208                                         if (c != ' ')
2209                                                 return;
2210                                         nl = 0;
2211                                 }
2212                                 nl++;
2213                         }
2214                         fidx = m->pindex;
2215                         pa = VM_PAGE_TO_PHYS(m);
2216                         rcount = 1;
2217                 }
2218                 if (rcount) {
2219                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2220                                 (long)fidx, rcount, (long)pa);
2221                         if (nl > 18) {
2222                                 c = cngetc();
2223                                 if (c != ' ')
2224                                         return;
2225                                 nl = 0;
2226                         }
2227                         nl++;
2228                 }
2229         }
2230 }
2231 #endif /* DDB */