]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Merge compiler-rt trunk r321414 to contrib/compiler-rt.
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/lock.h>
75 #include <sys/mman.h>
76 #include <sys/mount.h>
77 #include <sys/kernel.h>
78 #include <sys/pctrie.h>
79 #include <sys/sysctl.h>
80 #include <sys/mutex.h>
81 #include <sys/proc.h>           /* for curproc, pageproc */
82 #include <sys/socket.h>
83 #include <sys/resourcevar.h>
84 #include <sys/rwlock.h>
85 #include <sys/user.h>
86 #include <sys/vnode.h>
87 #include <sys/vmmeter.h>
88 #include <sys/sx.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_extern.h>
101 #include <vm/vm_radix.h>
102 #include <vm/vm_reserv.h>
103 #include <vm/uma.h>
104
105 static int old_msync;
106 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
107     "Use old (insecure) msync behavior");
108
109 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
110                     int pagerflags, int flags, boolean_t *clearobjflags,
111                     boolean_t *eio);
112 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
113                     boolean_t *clearobjflags);
114 static void     vm_object_qcollapse(vm_object_t object);
115 static void     vm_object_vndeallocate(vm_object_t object);
116
117 /*
118  *      Virtual memory objects maintain the actual data
119  *      associated with allocated virtual memory.  A given
120  *      page of memory exists within exactly one object.
121  *
122  *      An object is only deallocated when all "references"
123  *      are given up.  Only one "reference" to a given
124  *      region of an object should be writeable.
125  *
126  *      Associated with each object is a list of all resident
127  *      memory pages belonging to that object; this list is
128  *      maintained by the "vm_page" module, and locked by the object's
129  *      lock.
130  *
131  *      Each object also records a "pager" routine which is
132  *      used to retrieve (and store) pages to the proper backing
133  *      storage.  In addition, objects may be backed by other
134  *      objects from which they were virtual-copied.
135  *
136  *      The only items within the object structure which are
137  *      modified after time of creation are:
138  *              reference count         locked by object's lock
139  *              pager routine           locked by object's lock
140  *
141  */
142
143 struct object_q vm_object_list;
144 struct mtx vm_object_list_mtx;  /* lock for object list and count */
145
146 struct vm_object kernel_object_store;
147
148 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
149     "VM object stats");
150
151 static long object_collapses;
152 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
153     &object_collapses, 0, "VM object collapses");
154
155 static long object_bypasses;
156 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
157     &object_bypasses, 0, "VM object bypasses");
158
159 static uma_zone_t obj_zone;
160
161 static int vm_object_zinit(void *mem, int size, int flags);
162
163 #ifdef INVARIANTS
164 static void vm_object_zdtor(void *mem, int size, void *arg);
165
166 static void
167 vm_object_zdtor(void *mem, int size, void *arg)
168 {
169         vm_object_t object;
170
171         object = (vm_object_t)mem;
172         KASSERT(object->ref_count == 0,
173             ("object %p ref_count = %d", object, object->ref_count));
174         KASSERT(TAILQ_EMPTY(&object->memq),
175             ("object %p has resident pages in its memq", object));
176         KASSERT(vm_radix_is_empty(&object->rtree),
177             ("object %p has resident pages in its trie", object));
178 #if VM_NRESERVLEVEL > 0
179         KASSERT(LIST_EMPTY(&object->rvq),
180             ("object %p has reservations",
181             object));
182 #endif
183         KASSERT(object->paging_in_progress == 0,
184             ("object %p paging_in_progress = %d",
185             object, object->paging_in_progress));
186         KASSERT(object->resident_page_count == 0,
187             ("object %p resident_page_count = %d",
188             object, object->resident_page_count));
189         KASSERT(object->shadow_count == 0,
190             ("object %p shadow_count = %d",
191             object, object->shadow_count));
192         KASSERT(object->type == OBJT_DEAD,
193             ("object %p has non-dead type %d",
194             object, object->type));
195 }
196 #endif
197
198 static int
199 vm_object_zinit(void *mem, int size, int flags)
200 {
201         vm_object_t object;
202
203         object = (vm_object_t)mem;
204         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
205
206         /* These are true for any object that has been freed */
207         object->type = OBJT_DEAD;
208         object->ref_count = 0;
209         vm_radix_init(&object->rtree);
210         object->paging_in_progress = 0;
211         object->resident_page_count = 0;
212         object->shadow_count = 0;
213         object->flags = OBJ_DEAD;
214
215         mtx_lock(&vm_object_list_mtx);
216         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
217         mtx_unlock(&vm_object_list_mtx);
218         return (0);
219 }
220
221 static void
222 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
223 {
224
225         TAILQ_INIT(&object->memq);
226         LIST_INIT(&object->shadow_head);
227
228         object->type = type;
229         if (type == OBJT_SWAP)
230                 pctrie_init(&object->un_pager.swp.swp_blks);
231
232         /*
233          * Ensure that swap_pager_swapoff() iteration over object_list
234          * sees up to date type and pctrie head if it observed
235          * non-dead object.
236          */
237         atomic_thread_fence_rel();
238
239         switch (type) {
240         case OBJT_DEAD:
241                 panic("_vm_object_allocate: can't create OBJT_DEAD");
242         case OBJT_DEFAULT:
243         case OBJT_SWAP:
244                 object->flags = OBJ_ONEMAPPING;
245                 break;
246         case OBJT_DEVICE:
247         case OBJT_SG:
248                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
249                 break;
250         case OBJT_MGTDEVICE:
251                 object->flags = OBJ_FICTITIOUS;
252                 break;
253         case OBJT_PHYS:
254                 object->flags = OBJ_UNMANAGED;
255                 break;
256         case OBJT_VNODE:
257                 object->flags = 0;
258                 break;
259         default:
260                 panic("_vm_object_allocate: type %d is undefined", type);
261         }
262         object->size = size;
263         object->generation = 1;
264         object->ref_count = 1;
265         object->memattr = VM_MEMATTR_DEFAULT;
266         object->cred = NULL;
267         object->charge = 0;
268         object->handle = NULL;
269         object->backing_object = NULL;
270         object->backing_object_offset = (vm_ooffset_t) 0;
271 #if VM_NRESERVLEVEL > 0
272         LIST_INIT(&object->rvq);
273 #endif
274         umtx_shm_object_init(object);
275 }
276
277 /*
278  *      vm_object_init:
279  *
280  *      Initialize the VM objects module.
281  */
282 void
283 vm_object_init(void)
284 {
285         TAILQ_INIT(&vm_object_list);
286         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
287         
288         rw_init(&kernel_object->lock, "kernel vm object");
289         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
290             VM_MIN_KERNEL_ADDRESS), kernel_object);
291 #if VM_NRESERVLEVEL > 0
292         kernel_object->flags |= OBJ_COLORED;
293         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
294 #endif
295
296         /*
297          * The lock portion of struct vm_object must be type stable due
298          * to vm_pageout_fallback_object_lock locking a vm object
299          * without holding any references to it.
300          */
301         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
302 #ifdef INVARIANTS
303             vm_object_zdtor,
304 #else
305             NULL,
306 #endif
307             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
308
309         vm_radix_zinit();
310 }
311
312 void
313 vm_object_clear_flag(vm_object_t object, u_short bits)
314 {
315
316         VM_OBJECT_ASSERT_WLOCKED(object);
317         object->flags &= ~bits;
318 }
319
320 /*
321  *      Sets the default memory attribute for the specified object.  Pages
322  *      that are allocated to this object are by default assigned this memory
323  *      attribute.
324  *
325  *      Presently, this function must be called before any pages are allocated
326  *      to the object.  In the future, this requirement may be relaxed for
327  *      "default" and "swap" objects.
328  */
329 int
330 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
331 {
332
333         VM_OBJECT_ASSERT_WLOCKED(object);
334         switch (object->type) {
335         case OBJT_DEFAULT:
336         case OBJT_DEVICE:
337         case OBJT_MGTDEVICE:
338         case OBJT_PHYS:
339         case OBJT_SG:
340         case OBJT_SWAP:
341         case OBJT_VNODE:
342                 if (!TAILQ_EMPTY(&object->memq))
343                         return (KERN_FAILURE);
344                 break;
345         case OBJT_DEAD:
346                 return (KERN_INVALID_ARGUMENT);
347         default:
348                 panic("vm_object_set_memattr: object %p is of undefined type",
349                     object);
350         }
351         object->memattr = memattr;
352         return (KERN_SUCCESS);
353 }
354
355 void
356 vm_object_pip_add(vm_object_t object, short i)
357 {
358
359         VM_OBJECT_ASSERT_WLOCKED(object);
360         object->paging_in_progress += i;
361 }
362
363 void
364 vm_object_pip_subtract(vm_object_t object, short i)
365 {
366
367         VM_OBJECT_ASSERT_WLOCKED(object);
368         object->paging_in_progress -= i;
369 }
370
371 void
372 vm_object_pip_wakeup(vm_object_t object)
373 {
374
375         VM_OBJECT_ASSERT_WLOCKED(object);
376         object->paging_in_progress--;
377         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
378                 vm_object_clear_flag(object, OBJ_PIPWNT);
379                 wakeup(object);
380         }
381 }
382
383 void
384 vm_object_pip_wakeupn(vm_object_t object, short i)
385 {
386
387         VM_OBJECT_ASSERT_WLOCKED(object);
388         if (i)
389                 object->paging_in_progress -= i;
390         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
391                 vm_object_clear_flag(object, OBJ_PIPWNT);
392                 wakeup(object);
393         }
394 }
395
396 void
397 vm_object_pip_wait(vm_object_t object, char *waitid)
398 {
399
400         VM_OBJECT_ASSERT_WLOCKED(object);
401         while (object->paging_in_progress) {
402                 object->flags |= OBJ_PIPWNT;
403                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
404         }
405 }
406
407 /*
408  *      vm_object_allocate:
409  *
410  *      Returns a new object with the given size.
411  */
412 vm_object_t
413 vm_object_allocate(objtype_t type, vm_pindex_t size)
414 {
415         vm_object_t object;
416
417         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
418         _vm_object_allocate(type, size, object);
419         return (object);
420 }
421
422
423 /*
424  *      vm_object_reference:
425  *
426  *      Gets another reference to the given object.  Note: OBJ_DEAD
427  *      objects can be referenced during final cleaning.
428  */
429 void
430 vm_object_reference(vm_object_t object)
431 {
432         if (object == NULL)
433                 return;
434         VM_OBJECT_WLOCK(object);
435         vm_object_reference_locked(object);
436         VM_OBJECT_WUNLOCK(object);
437 }
438
439 /*
440  *      vm_object_reference_locked:
441  *
442  *      Gets another reference to the given object.
443  *
444  *      The object must be locked.
445  */
446 void
447 vm_object_reference_locked(vm_object_t object)
448 {
449         struct vnode *vp;
450
451         VM_OBJECT_ASSERT_WLOCKED(object);
452         object->ref_count++;
453         if (object->type == OBJT_VNODE) {
454                 vp = object->handle;
455                 vref(vp);
456         }
457 }
458
459 /*
460  * Handle deallocating an object of type OBJT_VNODE.
461  */
462 static void
463 vm_object_vndeallocate(vm_object_t object)
464 {
465         struct vnode *vp = (struct vnode *) object->handle;
466
467         VM_OBJECT_ASSERT_WLOCKED(object);
468         KASSERT(object->type == OBJT_VNODE,
469             ("vm_object_vndeallocate: not a vnode object"));
470         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
471 #ifdef INVARIANTS
472         if (object->ref_count == 0) {
473                 vn_printf(vp, "vm_object_vndeallocate ");
474                 panic("vm_object_vndeallocate: bad object reference count");
475         }
476 #endif
477
478         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
479                 umtx_shm_object_terminated(object);
480
481         /*
482          * The test for text of vp vnode does not need a bypass to
483          * reach right VV_TEXT there, since it is obtained from
484          * object->handle.
485          */
486         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
487                 object->ref_count--;
488                 VM_OBJECT_WUNLOCK(object);
489                 /* vrele may need the vnode lock. */
490                 vrele(vp);
491         } else {
492                 vhold(vp);
493                 VM_OBJECT_WUNLOCK(object);
494                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
495                 vdrop(vp);
496                 VM_OBJECT_WLOCK(object);
497                 object->ref_count--;
498                 if (object->type == OBJT_DEAD) {
499                         VM_OBJECT_WUNLOCK(object);
500                         VOP_UNLOCK(vp, 0);
501                 } else {
502                         if (object->ref_count == 0)
503                                 VOP_UNSET_TEXT(vp);
504                         VM_OBJECT_WUNLOCK(object);
505                         vput(vp);
506                 }
507         }
508 }
509
510 /*
511  *      vm_object_deallocate:
512  *
513  *      Release a reference to the specified object,
514  *      gained either through a vm_object_allocate
515  *      or a vm_object_reference call.  When all references
516  *      are gone, storage associated with this object
517  *      may be relinquished.
518  *
519  *      No object may be locked.
520  */
521 void
522 vm_object_deallocate(vm_object_t object)
523 {
524         vm_object_t temp;
525         struct vnode *vp;
526
527         while (object != NULL) {
528                 VM_OBJECT_WLOCK(object);
529                 if (object->type == OBJT_VNODE) {
530                         vm_object_vndeallocate(object);
531                         return;
532                 }
533
534                 KASSERT(object->ref_count != 0,
535                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
536
537                 /*
538                  * If the reference count goes to 0 we start calling
539                  * vm_object_terminate() on the object chain.
540                  * A ref count of 1 may be a special case depending on the
541                  * shadow count being 0 or 1.
542                  */
543                 object->ref_count--;
544                 if (object->ref_count > 1) {
545                         VM_OBJECT_WUNLOCK(object);
546                         return;
547                 } else if (object->ref_count == 1) {
548                         if (object->type == OBJT_SWAP &&
549                             (object->flags & OBJ_TMPFS) != 0) {
550                                 vp = object->un_pager.swp.swp_tmpfs;
551                                 vhold(vp);
552                                 VM_OBJECT_WUNLOCK(object);
553                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
554                                 VM_OBJECT_WLOCK(object);
555                                 if (object->type == OBJT_DEAD ||
556                                     object->ref_count != 1) {
557                                         VM_OBJECT_WUNLOCK(object);
558                                         VOP_UNLOCK(vp, 0);
559                                         vdrop(vp);
560                                         return;
561                                 }
562                                 if ((object->flags & OBJ_TMPFS) != 0)
563                                         VOP_UNSET_TEXT(vp);
564                                 VOP_UNLOCK(vp, 0);
565                                 vdrop(vp);
566                         }
567                         if (object->shadow_count == 0 &&
568                             object->handle == NULL &&
569                             (object->type == OBJT_DEFAULT ||
570                             (object->type == OBJT_SWAP &&
571                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
572                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
573                         } else if ((object->shadow_count == 1) &&
574                             (object->handle == NULL) &&
575                             (object->type == OBJT_DEFAULT ||
576                              object->type == OBJT_SWAP)) {
577                                 vm_object_t robject;
578
579                                 robject = LIST_FIRST(&object->shadow_head);
580                                 KASSERT(robject != NULL,
581                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
582                                          object->ref_count,
583                                          object->shadow_count));
584                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
585                                     ("shadowed tmpfs v_object %p", object));
586                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
587                                         /*
588                                          * Avoid a potential deadlock.
589                                          */
590                                         object->ref_count++;
591                                         VM_OBJECT_WUNLOCK(object);
592                                         /*
593                                          * More likely than not the thread
594                                          * holding robject's lock has lower
595                                          * priority than the current thread.
596                                          * Let the lower priority thread run.
597                                          */
598                                         pause("vmo_de", 1);
599                                         continue;
600                                 }
601                                 /*
602                                  * Collapse object into its shadow unless its
603                                  * shadow is dead.  In that case, object will
604                                  * be deallocated by the thread that is
605                                  * deallocating its shadow.
606                                  */
607                                 if ((robject->flags & OBJ_DEAD) == 0 &&
608                                     (robject->handle == NULL) &&
609                                     (robject->type == OBJT_DEFAULT ||
610                                      robject->type == OBJT_SWAP)) {
611
612                                         robject->ref_count++;
613 retry:
614                                         if (robject->paging_in_progress) {
615                                                 VM_OBJECT_WUNLOCK(object);
616                                                 vm_object_pip_wait(robject,
617                                                     "objde1");
618                                                 temp = robject->backing_object;
619                                                 if (object == temp) {
620                                                         VM_OBJECT_WLOCK(object);
621                                                         goto retry;
622                                                 }
623                                         } else if (object->paging_in_progress) {
624                                                 VM_OBJECT_WUNLOCK(robject);
625                                                 object->flags |= OBJ_PIPWNT;
626                                                 VM_OBJECT_SLEEP(object, object,
627                                                     PDROP | PVM, "objde2", 0);
628                                                 VM_OBJECT_WLOCK(robject);
629                                                 temp = robject->backing_object;
630                                                 if (object == temp) {
631                                                         VM_OBJECT_WLOCK(object);
632                                                         goto retry;
633                                                 }
634                                         } else
635                                                 VM_OBJECT_WUNLOCK(object);
636
637                                         if (robject->ref_count == 1) {
638                                                 robject->ref_count--;
639                                                 object = robject;
640                                                 goto doterm;
641                                         }
642                                         object = robject;
643                                         vm_object_collapse(object);
644                                         VM_OBJECT_WUNLOCK(object);
645                                         continue;
646                                 }
647                                 VM_OBJECT_WUNLOCK(robject);
648                         }
649                         VM_OBJECT_WUNLOCK(object);
650                         return;
651                 }
652 doterm:
653                 umtx_shm_object_terminated(object);
654                 temp = object->backing_object;
655                 if (temp != NULL) {
656                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
657                             ("shadowed tmpfs v_object 2 %p", object));
658                         VM_OBJECT_WLOCK(temp);
659                         LIST_REMOVE(object, shadow_list);
660                         temp->shadow_count--;
661                         VM_OBJECT_WUNLOCK(temp);
662                         object->backing_object = NULL;
663                 }
664                 /*
665                  * Don't double-terminate, we could be in a termination
666                  * recursion due to the terminate having to sync data
667                  * to disk.
668                  */
669                 if ((object->flags & OBJ_DEAD) == 0)
670                         vm_object_terminate(object);
671                 else
672                         VM_OBJECT_WUNLOCK(object);
673                 object = temp;
674         }
675 }
676
677 /*
678  *      vm_object_destroy removes the object from the global object list
679  *      and frees the space for the object.
680  */
681 void
682 vm_object_destroy(vm_object_t object)
683 {
684
685         /*
686          * Release the allocation charge.
687          */
688         if (object->cred != NULL) {
689                 swap_release_by_cred(object->charge, object->cred);
690                 object->charge = 0;
691                 crfree(object->cred);
692                 object->cred = NULL;
693         }
694
695         /*
696          * Free the space for the object.
697          */
698         uma_zfree(obj_zone, object);
699 }
700
701 /*
702  *      vm_object_terminate_pages removes any remaining pageable pages
703  *      from the object and resets the object to an empty state.
704  */
705 static void
706 vm_object_terminate_pages(vm_object_t object)
707 {
708         vm_page_t p, p_next;
709         struct mtx *mtx, *mtx1;
710         struct vm_pagequeue *pq, *pq1;
711         int dequeued;
712
713         VM_OBJECT_ASSERT_WLOCKED(object);
714
715         mtx = NULL;
716         pq = NULL;
717
718         /*
719          * Free any remaining pageable pages.  This also removes them from the
720          * paging queues.  However, don't free wired pages, just remove them
721          * from the object.  Rather than incrementally removing each page from
722          * the object, the page and object are reset to any empty state. 
723          */
724         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
725                 vm_page_assert_unbusied(p);
726                 if ((object->flags & OBJ_UNMANAGED) == 0) {
727                         /*
728                          * vm_page_free_prep() only needs the page
729                          * lock for managed pages.
730                          */
731                         mtx1 = vm_page_lockptr(p);
732                         if (mtx1 != mtx) {
733                                 if (mtx != NULL)
734                                         mtx_unlock(mtx);
735                                 if (pq != NULL) {
736                                         vm_pagequeue_cnt_add(pq, dequeued);
737                                         vm_pagequeue_unlock(pq);
738                                         pq = NULL;
739                                 }
740                                 mtx = mtx1;
741                                 mtx_lock(mtx);
742                         }
743                 }
744                 p->object = NULL;
745                 if (p->wire_count != 0)
746                         goto unlist;
747                 VM_CNT_INC(v_pfree);
748                 p->flags &= ~PG_ZERO;
749                 if (p->queue != PQ_NONE) {
750                         KASSERT(p->queue < PQ_COUNT, ("vm_object_terminate: "
751                             "page %p is not queued", p));
752                         pq1 = vm_page_pagequeue(p);
753                         if (pq != pq1) {
754                                 if (pq != NULL) {
755                                         vm_pagequeue_cnt_add(pq, dequeued);
756                                         vm_pagequeue_unlock(pq);
757                                 }
758                                 pq = pq1;
759                                 vm_pagequeue_lock(pq);
760                                 dequeued = 0;
761                         }
762                         p->queue = PQ_NONE;
763                         TAILQ_REMOVE(&pq->pq_pl, p, plinks.q);
764                         dequeued--;
765                 }
766                 if (vm_page_free_prep(p, true))
767                         continue;
768 unlist:
769                 TAILQ_REMOVE(&object->memq, p, listq);
770         }
771         if (pq != NULL) {
772                 vm_pagequeue_cnt_add(pq, dequeued);
773                 vm_pagequeue_unlock(pq);
774         }
775         if (mtx != NULL)
776                 mtx_unlock(mtx);
777
778         vm_page_free_phys_pglist(&object->memq);
779
780         /*
781          * If the object contained any pages, then reset it to an empty state.
782          * None of the object's fields, including "resident_page_count", were
783          * modified by the preceding loop.
784          */
785         if (object->resident_page_count != 0) {
786                 vm_radix_reclaim_allnodes(&object->rtree);
787                 TAILQ_INIT(&object->memq);
788                 object->resident_page_count = 0;
789                 if (object->type == OBJT_VNODE)
790                         vdrop(object->handle);
791         }
792 }
793
794 /*
795  *      vm_object_terminate actually destroys the specified object, freeing
796  *      up all previously used resources.
797  *
798  *      The object must be locked.
799  *      This routine may block.
800  */
801 void
802 vm_object_terminate(vm_object_t object)
803 {
804
805         VM_OBJECT_ASSERT_WLOCKED(object);
806
807         /*
808          * Make sure no one uses us.
809          */
810         vm_object_set_flag(object, OBJ_DEAD);
811
812         /*
813          * wait for the pageout daemon to be done with the object
814          */
815         vm_object_pip_wait(object, "objtrm");
816
817         KASSERT(!object->paging_in_progress,
818                 ("vm_object_terminate: pageout in progress"));
819
820         /*
821          * Clean and free the pages, as appropriate. All references to the
822          * object are gone, so we don't need to lock it.
823          */
824         if (object->type == OBJT_VNODE) {
825                 struct vnode *vp = (struct vnode *)object->handle;
826
827                 /*
828                  * Clean pages and flush buffers.
829                  */
830                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
831                 VM_OBJECT_WUNLOCK(object);
832
833                 vinvalbuf(vp, V_SAVE, 0, 0);
834
835                 BO_LOCK(&vp->v_bufobj);
836                 vp->v_bufobj.bo_flag |= BO_DEAD;
837                 BO_UNLOCK(&vp->v_bufobj);
838
839                 VM_OBJECT_WLOCK(object);
840         }
841
842         KASSERT(object->ref_count == 0, 
843                 ("vm_object_terminate: object with references, ref_count=%d",
844                 object->ref_count));
845
846         if ((object->flags & OBJ_PG_DTOR) == 0)
847                 vm_object_terminate_pages(object);
848
849 #if VM_NRESERVLEVEL > 0
850         if (__predict_false(!LIST_EMPTY(&object->rvq)))
851                 vm_reserv_break_all(object);
852 #endif
853
854         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
855             object->type == OBJT_SWAP,
856             ("%s: non-swap obj %p has cred", __func__, object));
857
858         /*
859          * Let the pager know object is dead.
860          */
861         vm_pager_deallocate(object);
862         VM_OBJECT_WUNLOCK(object);
863
864         vm_object_destroy(object);
865 }
866
867 /*
868  * Make the page read-only so that we can clear the object flags.  However, if
869  * this is a nosync mmap then the object is likely to stay dirty so do not
870  * mess with the page and do not clear the object flags.  Returns TRUE if the
871  * page should be flushed, and FALSE otherwise.
872  */
873 static boolean_t
874 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
875 {
876
877         /*
878          * If we have been asked to skip nosync pages and this is a
879          * nosync page, skip it.  Note that the object flags were not
880          * cleared in this case so we do not have to set them.
881          */
882         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
883                 *clearobjflags = FALSE;
884                 return (FALSE);
885         } else {
886                 pmap_remove_write(p);
887                 return (p->dirty != 0);
888         }
889 }
890
891 /*
892  *      vm_object_page_clean
893  *
894  *      Clean all dirty pages in the specified range of object.  Leaves page 
895  *      on whatever queue it is currently on.   If NOSYNC is set then do not
896  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
897  *      leaving the object dirty.
898  *
899  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
900  *      synchronous clustering mode implementation.
901  *
902  *      Odd semantics: if start == end, we clean everything.
903  *
904  *      The object must be locked.
905  *
906  *      Returns FALSE if some page from the range was not written, as
907  *      reported by the pager, and TRUE otherwise.
908  */
909 boolean_t
910 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
911     int flags)
912 {
913         vm_page_t np, p;
914         vm_pindex_t pi, tend, tstart;
915         int curgeneration, n, pagerflags;
916         boolean_t clearobjflags, eio, res;
917
918         VM_OBJECT_ASSERT_WLOCKED(object);
919
920         /*
921          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
922          * objects.  The check below prevents the function from
923          * operating on non-vnode objects.
924          */
925         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
926             object->resident_page_count == 0)
927                 return (TRUE);
928
929         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
930             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
931         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
932
933         tstart = OFF_TO_IDX(start);
934         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
935         clearobjflags = tstart == 0 && tend >= object->size;
936         res = TRUE;
937
938 rescan:
939         curgeneration = object->generation;
940
941         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
942                 pi = p->pindex;
943                 if (pi >= tend)
944                         break;
945                 np = TAILQ_NEXT(p, listq);
946                 if (p->valid == 0)
947                         continue;
948                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
949                         if (object->generation != curgeneration) {
950                                 if ((flags & OBJPC_SYNC) != 0)
951                                         goto rescan;
952                                 else
953                                         clearobjflags = FALSE;
954                         }
955                         np = vm_page_find_least(object, pi);
956                         continue;
957                 }
958                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
959                         continue;
960
961                 n = vm_object_page_collect_flush(object, p, pagerflags,
962                     flags, &clearobjflags, &eio);
963                 if (eio) {
964                         res = FALSE;
965                         clearobjflags = FALSE;
966                 }
967                 if (object->generation != curgeneration) {
968                         if ((flags & OBJPC_SYNC) != 0)
969                                 goto rescan;
970                         else
971                                 clearobjflags = FALSE;
972                 }
973
974                 /*
975                  * If the VOP_PUTPAGES() did a truncated write, so
976                  * that even the first page of the run is not fully
977                  * written, vm_pageout_flush() returns 0 as the run
978                  * length.  Since the condition that caused truncated
979                  * write may be permanent, e.g. exhausted free space,
980                  * accepting n == 0 would cause an infinite loop.
981                  *
982                  * Forwarding the iterator leaves the unwritten page
983                  * behind, but there is not much we can do there if
984                  * filesystem refuses to write it.
985                  */
986                 if (n == 0) {
987                         n = 1;
988                         clearobjflags = FALSE;
989                 }
990                 np = vm_page_find_least(object, pi + n);
991         }
992 #if 0
993         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
994 #endif
995
996         if (clearobjflags)
997                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
998         return (res);
999 }
1000
1001 static int
1002 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1003     int flags, boolean_t *clearobjflags, boolean_t *eio)
1004 {
1005         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1006         int count, i, mreq, runlen;
1007
1008         vm_page_lock_assert(p, MA_NOTOWNED);
1009         VM_OBJECT_ASSERT_WLOCKED(object);
1010
1011         count = 1;
1012         mreq = 0;
1013
1014         for (tp = p; count < vm_pageout_page_count; count++) {
1015                 tp = vm_page_next(tp);
1016                 if (tp == NULL || vm_page_busied(tp))
1017                         break;
1018                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1019                         break;
1020         }
1021
1022         for (p_first = p; count < vm_pageout_page_count; count++) {
1023                 tp = vm_page_prev(p_first);
1024                 if (tp == NULL || vm_page_busied(tp))
1025                         break;
1026                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
1027                         break;
1028                 p_first = tp;
1029                 mreq++;
1030         }
1031
1032         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1033                 ma[i] = tp;
1034
1035         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1036         return (runlen);
1037 }
1038
1039 /*
1040  * Note that there is absolutely no sense in writing out
1041  * anonymous objects, so we track down the vnode object
1042  * to write out.
1043  * We invalidate (remove) all pages from the address space
1044  * for semantic correctness.
1045  *
1046  * If the backing object is a device object with unmanaged pages, then any
1047  * mappings to the specified range of pages must be removed before this
1048  * function is called.
1049  *
1050  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1051  * may start out with a NULL object.
1052  */
1053 boolean_t
1054 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1055     boolean_t syncio, boolean_t invalidate)
1056 {
1057         vm_object_t backing_object;
1058         struct vnode *vp;
1059         struct mount *mp;
1060         int error, flags, fsync_after;
1061         boolean_t res;
1062
1063         if (object == NULL)
1064                 return (TRUE);
1065         res = TRUE;
1066         error = 0;
1067         VM_OBJECT_WLOCK(object);
1068         while ((backing_object = object->backing_object) != NULL) {
1069                 VM_OBJECT_WLOCK(backing_object);
1070                 offset += object->backing_object_offset;
1071                 VM_OBJECT_WUNLOCK(object);
1072                 object = backing_object;
1073                 if (object->size < OFF_TO_IDX(offset + size))
1074                         size = IDX_TO_OFF(object->size) - offset;
1075         }
1076         /*
1077          * Flush pages if writing is allowed, invalidate them
1078          * if invalidation requested.  Pages undergoing I/O
1079          * will be ignored by vm_object_page_remove().
1080          *
1081          * We cannot lock the vnode and then wait for paging
1082          * to complete without deadlocking against vm_fault.
1083          * Instead we simply call vm_object_page_remove() and
1084          * allow it to block internally on a page-by-page
1085          * basis when it encounters pages undergoing async
1086          * I/O.
1087          */
1088         if (object->type == OBJT_VNODE &&
1089             (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1090             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1091                 VM_OBJECT_WUNLOCK(object);
1092                 (void) vn_start_write(vp, &mp, V_WAIT);
1093                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1094                 if (syncio && !invalidate && offset == 0 &&
1095                     atop(size) == object->size) {
1096                         /*
1097                          * If syncing the whole mapping of the file,
1098                          * it is faster to schedule all the writes in
1099                          * async mode, also allowing the clustering,
1100                          * and then wait for i/o to complete.
1101                          */
1102                         flags = 0;
1103                         fsync_after = TRUE;
1104                 } else {
1105                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1106                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1107                         fsync_after = FALSE;
1108                 }
1109                 VM_OBJECT_WLOCK(object);
1110                 res = vm_object_page_clean(object, offset, offset + size,
1111                     flags);
1112                 VM_OBJECT_WUNLOCK(object);
1113                 if (fsync_after)
1114                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1115                 VOP_UNLOCK(vp, 0);
1116                 vn_finished_write(mp);
1117                 if (error != 0)
1118                         res = FALSE;
1119                 VM_OBJECT_WLOCK(object);
1120         }
1121         if ((object->type == OBJT_VNODE ||
1122              object->type == OBJT_DEVICE) && invalidate) {
1123                 if (object->type == OBJT_DEVICE)
1124                         /*
1125                          * The option OBJPR_NOTMAPPED must be passed here
1126                          * because vm_object_page_remove() cannot remove
1127                          * unmanaged mappings.
1128                          */
1129                         flags = OBJPR_NOTMAPPED;
1130                 else if (old_msync)
1131                         flags = 0;
1132                 else
1133                         flags = OBJPR_CLEANONLY;
1134                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1135                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1136         }
1137         VM_OBJECT_WUNLOCK(object);
1138         return (res);
1139 }
1140
1141 /*
1142  * Determine whether the given advice can be applied to the object.  Advice is
1143  * not applied to unmanaged pages since they never belong to page queues, and
1144  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1145  * have been mapped at most once.
1146  */
1147 static bool
1148 vm_object_advice_applies(vm_object_t object, int advice)
1149 {
1150
1151         if ((object->flags & OBJ_UNMANAGED) != 0)
1152                 return (false);
1153         if (advice != MADV_FREE)
1154                 return (true);
1155         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1156             (object->flags & OBJ_ONEMAPPING) != 0);
1157 }
1158
1159 static void
1160 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1161     vm_size_t size)
1162 {
1163
1164         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1165                 swap_pager_freespace(object, pindex, size);
1166 }
1167
1168 /*
1169  *      vm_object_madvise:
1170  *
1171  *      Implements the madvise function at the object/page level.
1172  *
1173  *      MADV_WILLNEED   (any object)
1174  *
1175  *          Activate the specified pages if they are resident.
1176  *
1177  *      MADV_DONTNEED   (any object)
1178  *
1179  *          Deactivate the specified pages if they are resident.
1180  *
1181  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1182  *                       OBJ_ONEMAPPING only)
1183  *
1184  *          Deactivate and clean the specified pages if they are
1185  *          resident.  This permits the process to reuse the pages
1186  *          without faulting or the kernel to reclaim the pages
1187  *          without I/O.
1188  */
1189 void
1190 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1191     int advice)
1192 {
1193         vm_pindex_t tpindex;
1194         vm_object_t backing_object, tobject;
1195         vm_page_t m, tm;
1196
1197         if (object == NULL)
1198                 return;
1199
1200 relookup:
1201         VM_OBJECT_WLOCK(object);
1202         if (!vm_object_advice_applies(object, advice)) {
1203                 VM_OBJECT_WUNLOCK(object);
1204                 return;
1205         }
1206         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1207                 tobject = object;
1208
1209                 /*
1210                  * If the next page isn't resident in the top-level object, we
1211                  * need to search the shadow chain.  When applying MADV_FREE, we
1212                  * take care to release any swap space used to store
1213                  * non-resident pages.
1214                  */
1215                 if (m == NULL || pindex < m->pindex) {
1216                         /*
1217                          * Optimize a common case: if the top-level object has
1218                          * no backing object, we can skip over the non-resident
1219                          * range in constant time.
1220                          */
1221                         if (object->backing_object == NULL) {
1222                                 tpindex = (m != NULL && m->pindex < end) ?
1223                                     m->pindex : end;
1224                                 vm_object_madvise_freespace(object, advice,
1225                                     pindex, tpindex - pindex);
1226                                 if ((pindex = tpindex) == end)
1227                                         break;
1228                                 goto next_page;
1229                         }
1230
1231                         tpindex = pindex;
1232                         do {
1233                                 vm_object_madvise_freespace(tobject, advice,
1234                                     tpindex, 1);
1235                                 /*
1236                                  * Prepare to search the next object in the
1237                                  * chain.
1238                                  */
1239                                 backing_object = tobject->backing_object;
1240                                 if (backing_object == NULL)
1241                                         goto next_pindex;
1242                                 VM_OBJECT_WLOCK(backing_object);
1243                                 tpindex +=
1244                                     OFF_TO_IDX(tobject->backing_object_offset);
1245                                 if (tobject != object)
1246                                         VM_OBJECT_WUNLOCK(tobject);
1247                                 tobject = backing_object;
1248                                 if (!vm_object_advice_applies(tobject, advice))
1249                                         goto next_pindex;
1250                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1251                             NULL);
1252                 } else {
1253 next_page:
1254                         tm = m;
1255                         m = TAILQ_NEXT(m, listq);
1256                 }
1257
1258                 /*
1259                  * If the page is not in a normal state, skip it.
1260                  */
1261                 if (tm->valid != VM_PAGE_BITS_ALL)
1262                         goto next_pindex;
1263                 vm_page_lock(tm);
1264                 if (tm->hold_count != 0 || tm->wire_count != 0) {
1265                         vm_page_unlock(tm);
1266                         goto next_pindex;
1267                 }
1268                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1269                     ("vm_object_madvise: page %p is fictitious", tm));
1270                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1271                     ("vm_object_madvise: page %p is not managed", tm));
1272                 if (vm_page_busied(tm)) {
1273                         if (object != tobject)
1274                                 VM_OBJECT_WUNLOCK(tobject);
1275                         VM_OBJECT_WUNLOCK(object);
1276                         if (advice == MADV_WILLNEED) {
1277                                 /*
1278                                  * Reference the page before unlocking and
1279                                  * sleeping so that the page daemon is less
1280                                  * likely to reclaim it.
1281                                  */
1282                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1283                         }
1284                         vm_page_busy_sleep(tm, "madvpo", false);
1285                         goto relookup;
1286                 }
1287                 vm_page_advise(tm, advice);
1288                 vm_page_unlock(tm);
1289                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1290 next_pindex:
1291                 if (tobject != object)
1292                         VM_OBJECT_WUNLOCK(tobject);
1293         }
1294         VM_OBJECT_WUNLOCK(object);
1295 }
1296
1297 /*
1298  *      vm_object_shadow:
1299  *
1300  *      Create a new object which is backed by the
1301  *      specified existing object range.  The source
1302  *      object reference is deallocated.
1303  *
1304  *      The new object and offset into that object
1305  *      are returned in the source parameters.
1306  */
1307 void
1308 vm_object_shadow(
1309         vm_object_t *object,    /* IN/OUT */
1310         vm_ooffset_t *offset,   /* IN/OUT */
1311         vm_size_t length)
1312 {
1313         vm_object_t source;
1314         vm_object_t result;
1315
1316         source = *object;
1317
1318         /*
1319          * Don't create the new object if the old object isn't shared.
1320          */
1321         if (source != NULL) {
1322                 VM_OBJECT_WLOCK(source);
1323                 if (source->ref_count == 1 &&
1324                     source->handle == NULL &&
1325                     (source->type == OBJT_DEFAULT ||
1326                      source->type == OBJT_SWAP)) {
1327                         VM_OBJECT_WUNLOCK(source);
1328                         return;
1329                 }
1330                 VM_OBJECT_WUNLOCK(source);
1331         }
1332
1333         /*
1334          * Allocate a new object with the given length.
1335          */
1336         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1337
1338         /*
1339          * The new object shadows the source object, adding a reference to it.
1340          * Our caller changes his reference to point to the new object,
1341          * removing a reference to the source object.  Net result: no change
1342          * of reference count.
1343          *
1344          * Try to optimize the result object's page color when shadowing
1345          * in order to maintain page coloring consistency in the combined 
1346          * shadowed object.
1347          */
1348         result->backing_object = source;
1349         /*
1350          * Store the offset into the source object, and fix up the offset into
1351          * the new object.
1352          */
1353         result->backing_object_offset = *offset;
1354         if (source != NULL) {
1355                 VM_OBJECT_WLOCK(source);
1356                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1357                 source->shadow_count++;
1358 #if VM_NRESERVLEVEL > 0
1359                 result->flags |= source->flags & OBJ_COLORED;
1360                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1361                     ((1 << (VM_NFREEORDER - 1)) - 1);
1362 #endif
1363                 VM_OBJECT_WUNLOCK(source);
1364         }
1365
1366
1367         /*
1368          * Return the new things
1369          */
1370         *offset = 0;
1371         *object = result;
1372 }
1373
1374 /*
1375  *      vm_object_split:
1376  *
1377  * Split the pages in a map entry into a new object.  This affords
1378  * easier removal of unused pages, and keeps object inheritance from
1379  * being a negative impact on memory usage.
1380  */
1381 void
1382 vm_object_split(vm_map_entry_t entry)
1383 {
1384         vm_page_t m, m_next;
1385         vm_object_t orig_object, new_object, source;
1386         vm_pindex_t idx, offidxstart;
1387         vm_size_t size;
1388
1389         orig_object = entry->object.vm_object;
1390         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1391                 return;
1392         if (orig_object->ref_count <= 1)
1393                 return;
1394         VM_OBJECT_WUNLOCK(orig_object);
1395
1396         offidxstart = OFF_TO_IDX(entry->offset);
1397         size = atop(entry->end - entry->start);
1398
1399         /*
1400          * If swap_pager_copy() is later called, it will convert new_object
1401          * into a swap object.
1402          */
1403         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1404
1405         /*
1406          * At this point, the new object is still private, so the order in
1407          * which the original and new objects are locked does not matter.
1408          */
1409         VM_OBJECT_WLOCK(new_object);
1410         VM_OBJECT_WLOCK(orig_object);
1411         source = orig_object->backing_object;
1412         if (source != NULL) {
1413                 VM_OBJECT_WLOCK(source);
1414                 if ((source->flags & OBJ_DEAD) != 0) {
1415                         VM_OBJECT_WUNLOCK(source);
1416                         VM_OBJECT_WUNLOCK(orig_object);
1417                         VM_OBJECT_WUNLOCK(new_object);
1418                         vm_object_deallocate(new_object);
1419                         VM_OBJECT_WLOCK(orig_object);
1420                         return;
1421                 }
1422                 LIST_INSERT_HEAD(&source->shadow_head,
1423                                   new_object, shadow_list);
1424                 source->shadow_count++;
1425                 vm_object_reference_locked(source);     /* for new_object */
1426                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1427                 VM_OBJECT_WUNLOCK(source);
1428                 new_object->backing_object_offset = 
1429                         orig_object->backing_object_offset + entry->offset;
1430                 new_object->backing_object = source;
1431         }
1432         if (orig_object->cred != NULL) {
1433                 new_object->cred = orig_object->cred;
1434                 crhold(orig_object->cred);
1435                 new_object->charge = ptoa(size);
1436                 KASSERT(orig_object->charge >= ptoa(size),
1437                     ("orig_object->charge < 0"));
1438                 orig_object->charge -= ptoa(size);
1439         }
1440 retry:
1441         m = vm_page_find_least(orig_object, offidxstart);
1442         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1443             m = m_next) {
1444                 m_next = TAILQ_NEXT(m, listq);
1445
1446                 /*
1447                  * We must wait for pending I/O to complete before we can
1448                  * rename the page.
1449                  *
1450                  * We do not have to VM_PROT_NONE the page as mappings should
1451                  * not be changed by this operation.
1452                  */
1453                 if (vm_page_busied(m)) {
1454                         VM_OBJECT_WUNLOCK(new_object);
1455                         vm_page_lock(m);
1456                         VM_OBJECT_WUNLOCK(orig_object);
1457                         vm_page_busy_sleep(m, "spltwt", false);
1458                         VM_OBJECT_WLOCK(orig_object);
1459                         VM_OBJECT_WLOCK(new_object);
1460                         goto retry;
1461                 }
1462
1463                 /* vm_page_rename() will dirty the page. */
1464                 if (vm_page_rename(m, new_object, idx)) {
1465                         VM_OBJECT_WUNLOCK(new_object);
1466                         VM_OBJECT_WUNLOCK(orig_object);
1467                         vm_radix_wait();
1468                         VM_OBJECT_WLOCK(orig_object);
1469                         VM_OBJECT_WLOCK(new_object);
1470                         goto retry;
1471                 }
1472 #if VM_NRESERVLEVEL > 0
1473                 /*
1474                  * If some of the reservation's allocated pages remain with
1475                  * the original object, then transferring the reservation to
1476                  * the new object is neither particularly beneficial nor
1477                  * particularly harmful as compared to leaving the reservation
1478                  * with the original object.  If, however, all of the
1479                  * reservation's allocated pages are transferred to the new
1480                  * object, then transferring the reservation is typically
1481                  * beneficial.  Determining which of these two cases applies
1482                  * would be more costly than unconditionally renaming the
1483                  * reservation.
1484                  */
1485                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1486 #endif
1487                 if (orig_object->type == OBJT_SWAP)
1488                         vm_page_xbusy(m);
1489         }
1490         if (orig_object->type == OBJT_SWAP) {
1491                 /*
1492                  * swap_pager_copy() can sleep, in which case the orig_object's
1493                  * and new_object's locks are released and reacquired. 
1494                  */
1495                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1496                 TAILQ_FOREACH(m, &new_object->memq, listq)
1497                         vm_page_xunbusy(m);
1498         }
1499         VM_OBJECT_WUNLOCK(orig_object);
1500         VM_OBJECT_WUNLOCK(new_object);
1501         entry->object.vm_object = new_object;
1502         entry->offset = 0LL;
1503         vm_object_deallocate(orig_object);
1504         VM_OBJECT_WLOCK(new_object);
1505 }
1506
1507 #define OBSC_COLLAPSE_NOWAIT    0x0002
1508 #define OBSC_COLLAPSE_WAIT      0x0004
1509
1510 static vm_page_t
1511 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1512     int op)
1513 {
1514         vm_object_t backing_object;
1515
1516         VM_OBJECT_ASSERT_WLOCKED(object);
1517         backing_object = object->backing_object;
1518         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1519
1520         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1521         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1522             ("invalid ownership %p %p %p", p, object, backing_object));
1523         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1524                 return (next);
1525         if (p != NULL)
1526                 vm_page_lock(p);
1527         VM_OBJECT_WUNLOCK(object);
1528         VM_OBJECT_WUNLOCK(backing_object);
1529         /* The page is only NULL when rename fails. */
1530         if (p == NULL)
1531                 vm_radix_wait();
1532         else
1533                 vm_page_busy_sleep(p, "vmocol", false);
1534         VM_OBJECT_WLOCK(object);
1535         VM_OBJECT_WLOCK(backing_object);
1536         return (TAILQ_FIRST(&backing_object->memq));
1537 }
1538
1539 static bool
1540 vm_object_scan_all_shadowed(vm_object_t object)
1541 {
1542         vm_object_t backing_object;
1543         vm_page_t p, pp;
1544         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1545
1546         VM_OBJECT_ASSERT_WLOCKED(object);
1547         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1548
1549         backing_object = object->backing_object;
1550
1551         if (backing_object->type != OBJT_DEFAULT &&
1552             backing_object->type != OBJT_SWAP)
1553                 return (false);
1554
1555         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1556         p = vm_page_find_least(backing_object, pi);
1557         ps = swap_pager_find_least(backing_object, pi);
1558
1559         /*
1560          * Only check pages inside the parent object's range and
1561          * inside the parent object's mapping of the backing object.
1562          */
1563         for (;; pi++) {
1564                 if (p != NULL && p->pindex < pi)
1565                         p = TAILQ_NEXT(p, listq);
1566                 if (ps < pi)
1567                         ps = swap_pager_find_least(backing_object, pi);
1568                 if (p == NULL && ps >= backing_object->size)
1569                         break;
1570                 else if (p == NULL)
1571                         pi = ps;
1572                 else
1573                         pi = MIN(p->pindex, ps);
1574
1575                 new_pindex = pi - backing_offset_index;
1576                 if (new_pindex >= object->size)
1577                         break;
1578
1579                 /*
1580                  * See if the parent has the page or if the parent's object
1581                  * pager has the page.  If the parent has the page but the page
1582                  * is not valid, the parent's object pager must have the page.
1583                  *
1584                  * If this fails, the parent does not completely shadow the
1585                  * object and we might as well give up now.
1586                  */
1587                 pp = vm_page_lookup(object, new_pindex);
1588                 if ((pp == NULL || pp->valid == 0) &&
1589                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1590                         return (false);
1591         }
1592         return (true);
1593 }
1594
1595 static bool
1596 vm_object_collapse_scan(vm_object_t object, int op)
1597 {
1598         vm_object_t backing_object;
1599         vm_page_t next, p, pp;
1600         vm_pindex_t backing_offset_index, new_pindex;
1601
1602         VM_OBJECT_ASSERT_WLOCKED(object);
1603         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1604
1605         backing_object = object->backing_object;
1606         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1607
1608         /*
1609          * Initial conditions
1610          */
1611         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1612                 vm_object_set_flag(backing_object, OBJ_DEAD);
1613
1614         /*
1615          * Our scan
1616          */
1617         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1618                 next = TAILQ_NEXT(p, listq);
1619                 new_pindex = p->pindex - backing_offset_index;
1620
1621                 /*
1622                  * Check for busy page
1623                  */
1624                 if (vm_page_busied(p)) {
1625                         next = vm_object_collapse_scan_wait(object, p, next, op);
1626                         continue;
1627                 }
1628
1629                 KASSERT(p->object == backing_object,
1630                     ("vm_object_collapse_scan: object mismatch"));
1631
1632                 if (p->pindex < backing_offset_index ||
1633                     new_pindex >= object->size) {
1634                         if (backing_object->type == OBJT_SWAP)
1635                                 swap_pager_freespace(backing_object, p->pindex,
1636                                     1);
1637
1638                         /*
1639                          * Page is out of the parent object's range, we can
1640                          * simply destroy it.
1641                          */
1642                         vm_page_lock(p);
1643                         KASSERT(!pmap_page_is_mapped(p),
1644                             ("freeing mapped page %p", p));
1645                         if (p->wire_count == 0)
1646                                 vm_page_free(p);
1647                         else
1648                                 vm_page_remove(p);
1649                         vm_page_unlock(p);
1650                         continue;
1651                 }
1652
1653                 pp = vm_page_lookup(object, new_pindex);
1654                 if (pp != NULL && vm_page_busied(pp)) {
1655                         /*
1656                          * The page in the parent is busy and possibly not
1657                          * (yet) valid.  Until its state is finalized by the
1658                          * busy bit owner, we can't tell whether it shadows the
1659                          * original page.  Therefore, we must either skip it
1660                          * and the original (backing_object) page or wait for
1661                          * its state to be finalized.
1662                          *
1663                          * This is due to a race with vm_fault() where we must
1664                          * unbusy the original (backing_obj) page before we can
1665                          * (re)lock the parent.  Hence we can get here.
1666                          */
1667                         next = vm_object_collapse_scan_wait(object, pp, next,
1668                             op);
1669                         continue;
1670                 }
1671
1672                 KASSERT(pp == NULL || pp->valid != 0,
1673                     ("unbusy invalid page %p", pp));
1674
1675                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1676                         NULL)) {
1677                         /*
1678                          * The page already exists in the parent OR swap exists
1679                          * for this location in the parent.  Leave the parent's
1680                          * page alone.  Destroy the original page from the
1681                          * backing object.
1682                          */
1683                         if (backing_object->type == OBJT_SWAP)
1684                                 swap_pager_freespace(backing_object, p->pindex,
1685                                     1);
1686                         vm_page_lock(p);
1687                         KASSERT(!pmap_page_is_mapped(p),
1688                             ("freeing mapped page %p", p));
1689                         if (p->wire_count == 0)
1690                                 vm_page_free(p);
1691                         else
1692                                 vm_page_remove(p);
1693                         vm_page_unlock(p);
1694                         continue;
1695                 }
1696
1697                 /*
1698                  * Page does not exist in parent, rename the page from the
1699                  * backing object to the main object.
1700                  *
1701                  * If the page was mapped to a process, it can remain mapped
1702                  * through the rename.  vm_page_rename() will dirty the page.
1703                  */
1704                 if (vm_page_rename(p, object, new_pindex)) {
1705                         next = vm_object_collapse_scan_wait(object, NULL, next,
1706                             op);
1707                         continue;
1708                 }
1709
1710                 /* Use the old pindex to free the right page. */
1711                 if (backing_object->type == OBJT_SWAP)
1712                         swap_pager_freespace(backing_object,
1713                             new_pindex + backing_offset_index, 1);
1714
1715 #if VM_NRESERVLEVEL > 0
1716                 /*
1717                  * Rename the reservation.
1718                  */
1719                 vm_reserv_rename(p, object, backing_object,
1720                     backing_offset_index);
1721 #endif
1722         }
1723         return (true);
1724 }
1725
1726
1727 /*
1728  * this version of collapse allows the operation to occur earlier and
1729  * when paging_in_progress is true for an object...  This is not a complete
1730  * operation, but should plug 99.9% of the rest of the leaks.
1731  */
1732 static void
1733 vm_object_qcollapse(vm_object_t object)
1734 {
1735         vm_object_t backing_object = object->backing_object;
1736
1737         VM_OBJECT_ASSERT_WLOCKED(object);
1738         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1739
1740         if (backing_object->ref_count != 1)
1741                 return;
1742
1743         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1744 }
1745
1746 /*
1747  *      vm_object_collapse:
1748  *
1749  *      Collapse an object with the object backing it.
1750  *      Pages in the backing object are moved into the
1751  *      parent, and the backing object is deallocated.
1752  */
1753 void
1754 vm_object_collapse(vm_object_t object)
1755 {
1756         vm_object_t backing_object, new_backing_object;
1757
1758         VM_OBJECT_ASSERT_WLOCKED(object);
1759
1760         while (TRUE) {
1761                 /*
1762                  * Verify that the conditions are right for collapse:
1763                  *
1764                  * The object exists and the backing object exists.
1765                  */
1766                 if ((backing_object = object->backing_object) == NULL)
1767                         break;
1768
1769                 /*
1770                  * we check the backing object first, because it is most likely
1771                  * not collapsable.
1772                  */
1773                 VM_OBJECT_WLOCK(backing_object);
1774                 if (backing_object->handle != NULL ||
1775                     (backing_object->type != OBJT_DEFAULT &&
1776                      backing_object->type != OBJT_SWAP) ||
1777                     (backing_object->flags & OBJ_DEAD) ||
1778                     object->handle != NULL ||
1779                     (object->type != OBJT_DEFAULT &&
1780                      object->type != OBJT_SWAP) ||
1781                     (object->flags & OBJ_DEAD)) {
1782                         VM_OBJECT_WUNLOCK(backing_object);
1783                         break;
1784                 }
1785
1786                 if (object->paging_in_progress != 0 ||
1787                     backing_object->paging_in_progress != 0) {
1788                         vm_object_qcollapse(object);
1789                         VM_OBJECT_WUNLOCK(backing_object);
1790                         break;
1791                 }
1792
1793                 /*
1794                  * We know that we can either collapse the backing object (if
1795                  * the parent is the only reference to it) or (perhaps) have
1796                  * the parent bypass the object if the parent happens to shadow
1797                  * all the resident pages in the entire backing object.
1798                  *
1799                  * This is ignoring pager-backed pages such as swap pages.
1800                  * vm_object_collapse_scan fails the shadowing test in this
1801                  * case.
1802                  */
1803                 if (backing_object->ref_count == 1) {
1804                         vm_object_pip_add(object, 1);
1805                         vm_object_pip_add(backing_object, 1);
1806
1807                         /*
1808                          * If there is exactly one reference to the backing
1809                          * object, we can collapse it into the parent.
1810                          */
1811                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1812
1813 #if VM_NRESERVLEVEL > 0
1814                         /*
1815                          * Break any reservations from backing_object.
1816                          */
1817                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1818                                 vm_reserv_break_all(backing_object);
1819 #endif
1820
1821                         /*
1822                          * Move the pager from backing_object to object.
1823                          */
1824                         if (backing_object->type == OBJT_SWAP) {
1825                                 /*
1826                                  * swap_pager_copy() can sleep, in which case
1827                                  * the backing_object's and object's locks are
1828                                  * released and reacquired.
1829                                  * Since swap_pager_copy() is being asked to
1830                                  * destroy the source, it will change the
1831                                  * backing_object's type to OBJT_DEFAULT.
1832                                  */
1833                                 swap_pager_copy(
1834                                     backing_object,
1835                                     object,
1836                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1837                         }
1838                         /*
1839                          * Object now shadows whatever backing_object did.
1840                          * Note that the reference to 
1841                          * backing_object->backing_object moves from within 
1842                          * backing_object to within object.
1843                          */
1844                         LIST_REMOVE(object, shadow_list);
1845                         backing_object->shadow_count--;
1846                         if (backing_object->backing_object) {
1847                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1848                                 LIST_REMOVE(backing_object, shadow_list);
1849                                 LIST_INSERT_HEAD(
1850                                     &backing_object->backing_object->shadow_head,
1851                                     object, shadow_list);
1852                                 /*
1853                                  * The shadow_count has not changed.
1854                                  */
1855                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1856                         }
1857                         object->backing_object = backing_object->backing_object;
1858                         object->backing_object_offset +=
1859                             backing_object->backing_object_offset;
1860
1861                         /*
1862                          * Discard backing_object.
1863                          *
1864                          * Since the backing object has no pages, no pager left,
1865                          * and no object references within it, all that is
1866                          * necessary is to dispose of it.
1867                          */
1868                         KASSERT(backing_object->ref_count == 1, (
1869 "backing_object %p was somehow re-referenced during collapse!",
1870                             backing_object));
1871                         vm_object_pip_wakeup(backing_object);
1872                         backing_object->type = OBJT_DEAD;
1873                         backing_object->ref_count = 0;
1874                         VM_OBJECT_WUNLOCK(backing_object);
1875                         vm_object_destroy(backing_object);
1876
1877                         vm_object_pip_wakeup(object);
1878                         object_collapses++;
1879                 } else {
1880                         /*
1881                          * If we do not entirely shadow the backing object,
1882                          * there is nothing we can do so we give up.
1883                          */
1884                         if (object->resident_page_count != object->size &&
1885                             !vm_object_scan_all_shadowed(object)) {
1886                                 VM_OBJECT_WUNLOCK(backing_object);
1887                                 break;
1888                         }
1889
1890                         /*
1891                          * Make the parent shadow the next object in the
1892                          * chain.  Deallocating backing_object will not remove
1893                          * it, since its reference count is at least 2.
1894                          */
1895                         LIST_REMOVE(object, shadow_list);
1896                         backing_object->shadow_count--;
1897
1898                         new_backing_object = backing_object->backing_object;
1899                         if ((object->backing_object = new_backing_object) != NULL) {
1900                                 VM_OBJECT_WLOCK(new_backing_object);
1901                                 LIST_INSERT_HEAD(
1902                                     &new_backing_object->shadow_head,
1903                                     object,
1904                                     shadow_list
1905                                 );
1906                                 new_backing_object->shadow_count++;
1907                                 vm_object_reference_locked(new_backing_object);
1908                                 VM_OBJECT_WUNLOCK(new_backing_object);
1909                                 object->backing_object_offset +=
1910                                         backing_object->backing_object_offset;
1911                         }
1912
1913                         /*
1914                          * Drop the reference count on backing_object. Since
1915                          * its ref_count was at least 2, it will not vanish.
1916                          */
1917                         backing_object->ref_count--;
1918                         VM_OBJECT_WUNLOCK(backing_object);
1919                         object_bypasses++;
1920                 }
1921
1922                 /*
1923                  * Try again with this object's new backing object.
1924                  */
1925         }
1926 }
1927
1928 /*
1929  *      vm_object_page_remove:
1930  *
1931  *      For the given object, either frees or invalidates each of the
1932  *      specified pages.  In general, a page is freed.  However, if a page is
1933  *      wired for any reason other than the existence of a managed, wired
1934  *      mapping, then it may be invalidated but not removed from the object.
1935  *      Pages are specified by the given range ["start", "end") and the option
1936  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1937  *      extends from "start" to the end of the object.  If the option
1938  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1939  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1940  *      specified, then the pages within the specified range must have no
1941  *      mappings.  Otherwise, if this option is not specified, any mappings to
1942  *      the specified pages are removed before the pages are freed or
1943  *      invalidated.
1944  *
1945  *      In general, this operation should only be performed on objects that
1946  *      contain managed pages.  There are, however, two exceptions.  First, it
1947  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1948  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1949  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1950  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1951  *
1952  *      The object must be locked.
1953  */
1954 void
1955 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1956     int options)
1957 {
1958         vm_page_t p, next;
1959         struct mtx *mtx;
1960         struct pglist pgl;
1961
1962         VM_OBJECT_ASSERT_WLOCKED(object);
1963         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1964             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1965             ("vm_object_page_remove: illegal options for object %p", object));
1966         if (object->resident_page_count == 0)
1967                 return;
1968         vm_object_pip_add(object, 1);
1969         TAILQ_INIT(&pgl);
1970 again:
1971         p = vm_page_find_least(object, start);
1972         mtx = NULL;
1973
1974         /*
1975          * Here, the variable "p" is either (1) the page with the least pindex
1976          * greater than or equal to the parameter "start" or (2) NULL. 
1977          */
1978         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1979                 next = TAILQ_NEXT(p, listq);
1980
1981                 /*
1982                  * If the page is wired for any reason besides the existence
1983                  * of managed, wired mappings, then it cannot be freed.  For
1984                  * example, fictitious pages, which represent device memory,
1985                  * are inherently wired and cannot be freed.  They can,
1986                  * however, be invalidated if the option OBJPR_CLEANONLY is
1987                  * not specified.
1988                  */
1989                 vm_page_change_lock(p, &mtx);
1990                 if (vm_page_xbusied(p)) {
1991                         VM_OBJECT_WUNLOCK(object);
1992                         vm_page_busy_sleep(p, "vmopax", true);
1993                         VM_OBJECT_WLOCK(object);
1994                         goto again;
1995                 }
1996                 if (p->wire_count != 0) {
1997                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1998                             object->ref_count != 0)
1999                                 pmap_remove_all(p);
2000                         if ((options & OBJPR_CLEANONLY) == 0) {
2001                                 p->valid = 0;
2002                                 vm_page_undirty(p);
2003                         }
2004                         continue;
2005                 }
2006                 if (vm_page_busied(p)) {
2007                         VM_OBJECT_WUNLOCK(object);
2008                         vm_page_busy_sleep(p, "vmopar", false);
2009                         VM_OBJECT_WLOCK(object);
2010                         goto again;
2011                 }
2012                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2013                     ("vm_object_page_remove: page %p is fictitious", p));
2014                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
2015                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2016                             object->ref_count != 0)
2017                                 pmap_remove_write(p);
2018                         if (p->dirty != 0)
2019                                 continue;
2020                 }
2021                 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
2022                         pmap_remove_all(p);
2023                 p->flags &= ~PG_ZERO;
2024                 if (vm_page_free_prep(p, false))
2025                         TAILQ_INSERT_TAIL(&pgl, p, listq);
2026         }
2027         if (mtx != NULL)
2028                 mtx_unlock(mtx);
2029         vm_page_free_phys_pglist(&pgl);
2030         vm_object_pip_wakeup(object);
2031 }
2032
2033 /*
2034  *      vm_object_page_noreuse:
2035  *
2036  *      For the given object, attempt to move the specified pages to
2037  *      the head of the inactive queue.  This bypasses regular LRU
2038  *      operation and allows the pages to be reused quickly under memory
2039  *      pressure.  If a page is wired for any reason, then it will not
2040  *      be queued.  Pages are specified by the range ["start", "end").
2041  *      As a special case, if "end" is zero, then the range extends from
2042  *      "start" to the end of the object.
2043  *
2044  *      This operation should only be performed on objects that
2045  *      contain non-fictitious, managed pages.
2046  *
2047  *      The object must be locked.
2048  */
2049 void
2050 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2051 {
2052         struct mtx *mtx;
2053         vm_page_t p, next;
2054
2055         VM_OBJECT_ASSERT_LOCKED(object);
2056         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2057             ("vm_object_page_noreuse: illegal object %p", object));
2058         if (object->resident_page_count == 0)
2059                 return;
2060         p = vm_page_find_least(object, start);
2061
2062         /*
2063          * Here, the variable "p" is either (1) the page with the least pindex
2064          * greater than or equal to the parameter "start" or (2) NULL. 
2065          */
2066         mtx = NULL;
2067         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2068                 next = TAILQ_NEXT(p, listq);
2069                 vm_page_change_lock(p, &mtx);
2070                 vm_page_deactivate_noreuse(p);
2071         }
2072         if (mtx != NULL)
2073                 mtx_unlock(mtx);
2074 }
2075
2076 /*
2077  *      Populate the specified range of the object with valid pages.  Returns
2078  *      TRUE if the range is successfully populated and FALSE otherwise.
2079  *
2080  *      Note: This function should be optimized to pass a larger array of
2081  *      pages to vm_pager_get_pages() before it is applied to a non-
2082  *      OBJT_DEVICE object.
2083  *
2084  *      The object must be locked.
2085  */
2086 boolean_t
2087 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2088 {
2089         vm_page_t m;
2090         vm_pindex_t pindex;
2091         int rv;
2092
2093         VM_OBJECT_ASSERT_WLOCKED(object);
2094         for (pindex = start; pindex < end; pindex++) {
2095                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2096                 if (m->valid != VM_PAGE_BITS_ALL) {
2097                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2098                         if (rv != VM_PAGER_OK) {
2099                                 vm_page_lock(m);
2100                                 vm_page_free(m);
2101                                 vm_page_unlock(m);
2102                                 break;
2103                         }
2104                 }
2105                 /*
2106                  * Keep "m" busy because a subsequent iteration may unlock
2107                  * the object.
2108                  */
2109         }
2110         if (pindex > start) {
2111                 m = vm_page_lookup(object, start);
2112                 while (m != NULL && m->pindex < pindex) {
2113                         vm_page_xunbusy(m);
2114                         m = TAILQ_NEXT(m, listq);
2115                 }
2116         }
2117         return (pindex == end);
2118 }
2119
2120 /*
2121  *      Routine:        vm_object_coalesce
2122  *      Function:       Coalesces two objects backing up adjoining
2123  *                      regions of memory into a single object.
2124  *
2125  *      returns TRUE if objects were combined.
2126  *
2127  *      NOTE:   Only works at the moment if the second object is NULL -
2128  *              if it's not, which object do we lock first?
2129  *
2130  *      Parameters:
2131  *              prev_object     First object to coalesce
2132  *              prev_offset     Offset into prev_object
2133  *              prev_size       Size of reference to prev_object
2134  *              next_size       Size of reference to the second object
2135  *              reserved        Indicator that extension region has
2136  *                              swap accounted for
2137  *
2138  *      Conditions:
2139  *      The object must *not* be locked.
2140  */
2141 boolean_t
2142 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2143     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2144 {
2145         vm_pindex_t next_pindex;
2146
2147         if (prev_object == NULL)
2148                 return (TRUE);
2149         VM_OBJECT_WLOCK(prev_object);
2150         if ((prev_object->type != OBJT_DEFAULT &&
2151             prev_object->type != OBJT_SWAP) ||
2152             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2153                 VM_OBJECT_WUNLOCK(prev_object);
2154                 return (FALSE);
2155         }
2156
2157         /*
2158          * Try to collapse the object first
2159          */
2160         vm_object_collapse(prev_object);
2161
2162         /*
2163          * Can't coalesce if: . more than one reference . paged out . shadows
2164          * another object . has a copy elsewhere (any of which mean that the
2165          * pages not mapped to prev_entry may be in use anyway)
2166          */
2167         if (prev_object->backing_object != NULL) {
2168                 VM_OBJECT_WUNLOCK(prev_object);
2169                 return (FALSE);
2170         }
2171
2172         prev_size >>= PAGE_SHIFT;
2173         next_size >>= PAGE_SHIFT;
2174         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2175
2176         if ((prev_object->ref_count > 1) &&
2177             (prev_object->size != next_pindex)) {
2178                 VM_OBJECT_WUNLOCK(prev_object);
2179                 return (FALSE);
2180         }
2181
2182         /*
2183          * Account for the charge.
2184          */
2185         if (prev_object->cred != NULL) {
2186
2187                 /*
2188                  * If prev_object was charged, then this mapping,
2189                  * although not charged now, may become writable
2190                  * later. Non-NULL cred in the object would prevent
2191                  * swap reservation during enabling of the write
2192                  * access, so reserve swap now. Failed reservation
2193                  * cause allocation of the separate object for the map
2194                  * entry, and swap reservation for this entry is
2195                  * managed in appropriate time.
2196                  */
2197                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2198                     prev_object->cred)) {
2199                         VM_OBJECT_WUNLOCK(prev_object);
2200                         return (FALSE);
2201                 }
2202                 prev_object->charge += ptoa(next_size);
2203         }
2204
2205         /*
2206          * Remove any pages that may still be in the object from a previous
2207          * deallocation.
2208          */
2209         if (next_pindex < prev_object->size) {
2210                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2211                     next_size, 0);
2212                 if (prev_object->type == OBJT_SWAP)
2213                         swap_pager_freespace(prev_object,
2214                                              next_pindex, next_size);
2215 #if 0
2216                 if (prev_object->cred != NULL) {
2217                         KASSERT(prev_object->charge >=
2218                             ptoa(prev_object->size - next_pindex),
2219                             ("object %p overcharged 1 %jx %jx", prev_object,
2220                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2221                         prev_object->charge -= ptoa(prev_object->size -
2222                             next_pindex);
2223                 }
2224 #endif
2225         }
2226
2227         /*
2228          * Extend the object if necessary.
2229          */
2230         if (next_pindex + next_size > prev_object->size)
2231                 prev_object->size = next_pindex + next_size;
2232
2233         VM_OBJECT_WUNLOCK(prev_object);
2234         return (TRUE);
2235 }
2236
2237 void
2238 vm_object_set_writeable_dirty(vm_object_t object)
2239 {
2240
2241         VM_OBJECT_ASSERT_WLOCKED(object);
2242         if (object->type != OBJT_VNODE) {
2243                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2244                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2245                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2246                 }
2247                 return;
2248         }
2249         object->generation++;
2250         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2251                 return;
2252         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2253 }
2254
2255 /*
2256  *      vm_object_unwire:
2257  *
2258  *      For each page offset within the specified range of the given object,
2259  *      find the highest-level page in the shadow chain and unwire it.  A page
2260  *      must exist at every page offset, and the highest-level page must be
2261  *      wired.
2262  */
2263 void
2264 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2265     uint8_t queue)
2266 {
2267         vm_object_t tobject;
2268         vm_page_t m, tm;
2269         vm_pindex_t end_pindex, pindex, tpindex;
2270         int depth, locked_depth;
2271
2272         KASSERT((offset & PAGE_MASK) == 0,
2273             ("vm_object_unwire: offset is not page aligned"));
2274         KASSERT((length & PAGE_MASK) == 0,
2275             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2276         /* The wired count of a fictitious page never changes. */
2277         if ((object->flags & OBJ_FICTITIOUS) != 0)
2278                 return;
2279         pindex = OFF_TO_IDX(offset);
2280         end_pindex = pindex + atop(length);
2281         locked_depth = 1;
2282         VM_OBJECT_RLOCK(object);
2283         m = vm_page_find_least(object, pindex);
2284         while (pindex < end_pindex) {
2285                 if (m == NULL || pindex < m->pindex) {
2286                         /*
2287                          * The first object in the shadow chain doesn't
2288                          * contain a page at the current index.  Therefore,
2289                          * the page must exist in a backing object.
2290                          */
2291                         tobject = object;
2292                         tpindex = pindex;
2293                         depth = 0;
2294                         do {
2295                                 tpindex +=
2296                                     OFF_TO_IDX(tobject->backing_object_offset);
2297                                 tobject = tobject->backing_object;
2298                                 KASSERT(tobject != NULL,
2299                                     ("vm_object_unwire: missing page"));
2300                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2301                                         goto next_page;
2302                                 depth++;
2303                                 if (depth == locked_depth) {
2304                                         locked_depth++;
2305                                         VM_OBJECT_RLOCK(tobject);
2306                                 }
2307                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2308                             NULL);
2309                 } else {
2310                         tm = m;
2311                         m = TAILQ_NEXT(m, listq);
2312                 }
2313                 vm_page_lock(tm);
2314                 vm_page_unwire(tm, queue);
2315                 vm_page_unlock(tm);
2316 next_page:
2317                 pindex++;
2318         }
2319         /* Release the accumulated object locks. */
2320         for (depth = 0; depth < locked_depth; depth++) {
2321                 tobject = object->backing_object;
2322                 VM_OBJECT_RUNLOCK(object);
2323                 object = tobject;
2324         }
2325 }
2326
2327 struct vnode *
2328 vm_object_vnode(vm_object_t object)
2329 {
2330
2331         VM_OBJECT_ASSERT_LOCKED(object);
2332         if (object->type == OBJT_VNODE)
2333                 return (object->handle);
2334         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2335                 return (object->un_pager.swp.swp_tmpfs);
2336         return (NULL);
2337 }
2338
2339 static int
2340 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2341 {
2342         struct kinfo_vmobject *kvo;
2343         char *fullpath, *freepath;
2344         struct vnode *vp;
2345         struct vattr va;
2346         vm_object_t obj;
2347         vm_page_t m;
2348         int count, error;
2349
2350         if (req->oldptr == NULL) {
2351                 /*
2352                  * If an old buffer has not been provided, generate an
2353                  * estimate of the space needed for a subsequent call.
2354                  */
2355                 mtx_lock(&vm_object_list_mtx);
2356                 count = 0;
2357                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2358                         if (obj->type == OBJT_DEAD)
2359                                 continue;
2360                         count++;
2361                 }
2362                 mtx_unlock(&vm_object_list_mtx);
2363                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2364                     count * 11 / 10));
2365         }
2366
2367         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2368         error = 0;
2369
2370         /*
2371          * VM objects are type stable and are never removed from the
2372          * list once added.  This allows us to safely read obj->object_list
2373          * after reacquiring the VM object lock.
2374          */
2375         mtx_lock(&vm_object_list_mtx);
2376         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2377                 if (obj->type == OBJT_DEAD)
2378                         continue;
2379                 VM_OBJECT_RLOCK(obj);
2380                 if (obj->type == OBJT_DEAD) {
2381                         VM_OBJECT_RUNLOCK(obj);
2382                         continue;
2383                 }
2384                 mtx_unlock(&vm_object_list_mtx);
2385                 kvo->kvo_size = ptoa(obj->size);
2386                 kvo->kvo_resident = obj->resident_page_count;
2387                 kvo->kvo_ref_count = obj->ref_count;
2388                 kvo->kvo_shadow_count = obj->shadow_count;
2389                 kvo->kvo_memattr = obj->memattr;
2390                 kvo->kvo_active = 0;
2391                 kvo->kvo_inactive = 0;
2392                 TAILQ_FOREACH(m, &obj->memq, listq) {
2393                         /*
2394                          * A page may belong to the object but be
2395                          * dequeued and set to PQ_NONE while the
2396                          * object lock is not held.  This makes the
2397                          * reads of m->queue below racy, and we do not
2398                          * count pages set to PQ_NONE.  However, this
2399                          * sysctl is only meant to give an
2400                          * approximation of the system anyway.
2401                          */
2402                         if (vm_page_active(m))
2403                                 kvo->kvo_active++;
2404                         else if (vm_page_inactive(m))
2405                                 kvo->kvo_inactive++;
2406                 }
2407
2408                 kvo->kvo_vn_fileid = 0;
2409                 kvo->kvo_vn_fsid = 0;
2410                 kvo->kvo_vn_fsid_freebsd11 = 0;
2411                 freepath = NULL;
2412                 fullpath = "";
2413                 vp = NULL;
2414                 switch (obj->type) {
2415                 case OBJT_DEFAULT:
2416                         kvo->kvo_type = KVME_TYPE_DEFAULT;
2417                         break;
2418                 case OBJT_VNODE:
2419                         kvo->kvo_type = KVME_TYPE_VNODE;
2420                         vp = obj->handle;
2421                         vref(vp);
2422                         break;
2423                 case OBJT_SWAP:
2424                         kvo->kvo_type = KVME_TYPE_SWAP;
2425                         break;
2426                 case OBJT_DEVICE:
2427                         kvo->kvo_type = KVME_TYPE_DEVICE;
2428                         break;
2429                 case OBJT_PHYS:
2430                         kvo->kvo_type = KVME_TYPE_PHYS;
2431                         break;
2432                 case OBJT_DEAD:
2433                         kvo->kvo_type = KVME_TYPE_DEAD;
2434                         break;
2435                 case OBJT_SG:
2436                         kvo->kvo_type = KVME_TYPE_SG;
2437                         break;
2438                 case OBJT_MGTDEVICE:
2439                         kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2440                         break;
2441                 default:
2442                         kvo->kvo_type = KVME_TYPE_UNKNOWN;
2443                         break;
2444                 }
2445                 VM_OBJECT_RUNLOCK(obj);
2446                 if (vp != NULL) {
2447                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2448                         vn_lock(vp, LK_SHARED | LK_RETRY);
2449                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2450                                 kvo->kvo_vn_fileid = va.va_fileid;
2451                                 kvo->kvo_vn_fsid = va.va_fsid;
2452                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2453                                                                 /* truncate */
2454                         }
2455                         vput(vp);
2456                 }
2457
2458                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2459                 if (freepath != NULL)
2460                         free(freepath, M_TEMP);
2461
2462                 /* Pack record size down */
2463                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2464                     + strlen(kvo->kvo_path) + 1;
2465                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2466                     sizeof(uint64_t));
2467                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2468                 mtx_lock(&vm_object_list_mtx);
2469                 if (error)
2470                         break;
2471         }
2472         mtx_unlock(&vm_object_list_mtx);
2473         free(kvo, M_TEMP);
2474         return (error);
2475 }
2476 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2477     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2478     "List of VM objects");
2479
2480 #include "opt_ddb.h"
2481 #ifdef DDB
2482 #include <sys/kernel.h>
2483
2484 #include <sys/cons.h>
2485
2486 #include <ddb/ddb.h>
2487
2488 static int
2489 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2490 {
2491         vm_map_t tmpm;
2492         vm_map_entry_t tmpe;
2493         vm_object_t obj;
2494         int entcount;
2495
2496         if (map == 0)
2497                 return 0;
2498
2499         if (entry == 0) {
2500                 tmpe = map->header.next;
2501                 entcount = map->nentries;
2502                 while (entcount-- && (tmpe != &map->header)) {
2503                         if (_vm_object_in_map(map, object, tmpe)) {
2504                                 return 1;
2505                         }
2506                         tmpe = tmpe->next;
2507                 }
2508         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2509                 tmpm = entry->object.sub_map;
2510                 tmpe = tmpm->header.next;
2511                 entcount = tmpm->nentries;
2512                 while (entcount-- && tmpe != &tmpm->header) {
2513                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2514                                 return 1;
2515                         }
2516                         tmpe = tmpe->next;
2517                 }
2518         } else if ((obj = entry->object.vm_object) != NULL) {
2519                 for (; obj; obj = obj->backing_object)
2520                         if (obj == object) {
2521                                 return 1;
2522                         }
2523         }
2524         return 0;
2525 }
2526
2527 static int
2528 vm_object_in_map(vm_object_t object)
2529 {
2530         struct proc *p;
2531
2532         /* sx_slock(&allproc_lock); */
2533         FOREACH_PROC_IN_SYSTEM(p) {
2534                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2535                         continue;
2536                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2537                         /* sx_sunlock(&allproc_lock); */
2538                         return 1;
2539                 }
2540         }
2541         /* sx_sunlock(&allproc_lock); */
2542         if (_vm_object_in_map(kernel_map, object, 0))
2543                 return 1;
2544         return 0;
2545 }
2546
2547 DB_SHOW_COMMAND(vmochk, vm_object_check)
2548 {
2549         vm_object_t object;
2550
2551         /*
2552          * make sure that internal objs are in a map somewhere
2553          * and none have zero ref counts.
2554          */
2555         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2556                 if (object->handle == NULL &&
2557                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2558                         if (object->ref_count == 0) {
2559                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2560                                         (long)object->size);
2561                         }
2562                         if (!vm_object_in_map(object)) {
2563                                 db_printf(
2564                         "vmochk: internal obj is not in a map: "
2565                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2566                                     object->ref_count, (u_long)object->size, 
2567                                     (u_long)object->size,
2568                                     (void *)object->backing_object);
2569                         }
2570                 }
2571         }
2572 }
2573
2574 /*
2575  *      vm_object_print:        [ debug ]
2576  */
2577 DB_SHOW_COMMAND(object, vm_object_print_static)
2578 {
2579         /* XXX convert args. */
2580         vm_object_t object = (vm_object_t)addr;
2581         boolean_t full = have_addr;
2582
2583         vm_page_t p;
2584
2585         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2586 #define count   was_count
2587
2588         int count;
2589
2590         if (object == NULL)
2591                 return;
2592
2593         db_iprintf(
2594             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2595             object, (int)object->type, (uintmax_t)object->size,
2596             object->resident_page_count, object->ref_count, object->flags,
2597             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2598         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2599             object->shadow_count, 
2600             object->backing_object ? object->backing_object->ref_count : 0,
2601             object->backing_object, (uintmax_t)object->backing_object_offset);
2602
2603         if (!full)
2604                 return;
2605
2606         db_indent += 2;
2607         count = 0;
2608         TAILQ_FOREACH(p, &object->memq, listq) {
2609                 if (count == 0)
2610                         db_iprintf("memory:=");
2611                 else if (count == 6) {
2612                         db_printf("\n");
2613                         db_iprintf(" ...");
2614                         count = 0;
2615                 } else
2616                         db_printf(",");
2617                 count++;
2618
2619                 db_printf("(off=0x%jx,page=0x%jx)",
2620                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2621         }
2622         if (count != 0)
2623                 db_printf("\n");
2624         db_indent -= 2;
2625 }
2626
2627 /* XXX. */
2628 #undef count
2629
2630 /* XXX need this non-static entry for calling from vm_map_print. */
2631 void
2632 vm_object_print(
2633         /* db_expr_t */ long addr,
2634         boolean_t have_addr,
2635         /* db_expr_t */ long count,
2636         char *modif)
2637 {
2638         vm_object_print_static(addr, have_addr, count, modif);
2639 }
2640
2641 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2642 {
2643         vm_object_t object;
2644         vm_pindex_t fidx;
2645         vm_paddr_t pa;
2646         vm_page_t m, prev_m;
2647         int rcount, nl, c;
2648
2649         nl = 0;
2650         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2651                 db_printf("new object: %p\n", (void *)object);
2652                 if (nl > 18) {
2653                         c = cngetc();
2654                         if (c != ' ')
2655                                 return;
2656                         nl = 0;
2657                 }
2658                 nl++;
2659                 rcount = 0;
2660                 fidx = 0;
2661                 pa = -1;
2662                 TAILQ_FOREACH(m, &object->memq, listq) {
2663                         if (m->pindex > 128)
2664                                 break;
2665                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2666                             prev_m->pindex + 1 != m->pindex) {
2667                                 if (rcount) {
2668                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2669                                                 (long)fidx, rcount, (long)pa);
2670                                         if (nl > 18) {
2671                                                 c = cngetc();
2672                                                 if (c != ' ')
2673                                                         return;
2674                                                 nl = 0;
2675                                         }
2676                                         nl++;
2677                                         rcount = 0;
2678                                 }
2679                         }                               
2680                         if (rcount &&
2681                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2682                                 ++rcount;
2683                                 continue;
2684                         }
2685                         if (rcount) {
2686                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2687                                         (long)fidx, rcount, (long)pa);
2688                                 if (nl > 18) {
2689                                         c = cngetc();
2690                                         if (c != ' ')
2691                                                 return;
2692                                         nl = 0;
2693                                 }
2694                                 nl++;
2695                         }
2696                         fidx = m->pindex;
2697                         pa = VM_PAGE_TO_PHYS(m);
2698                         rcount = 1;
2699                 }
2700                 if (rcount) {
2701                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2702                                 (long)fidx, rcount, (long)pa);
2703                         if (nl > 18) {
2704                                 c = cngetc();
2705                                 if (c != ' ')
2706                                         return;
2707                                 nl = 0;
2708                         }
2709                         nl++;
2710                 }
2711         }
2712 }
2713 #endif /* DDB */