]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Replace kernel virtual address space allocation with vmem. This provides
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_radix.h>
98 #include <vm/vm_reserv.h>
99 #include <vm/uma.h>
100
101 static int old_msync;
102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103     "Use old (insecure) msync behavior");
104
105 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106                     int pagerflags, int flags, boolean_t *clearobjflags,
107                     boolean_t *eio);
108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109                     boolean_t *clearobjflags);
110 static void     vm_object_qcollapse(vm_object_t object);
111 static void     vm_object_vndeallocate(vm_object_t object);
112
113 /*
114  *      Virtual memory objects maintain the actual data
115  *      associated with allocated virtual memory.  A given
116  *      page of memory exists within exactly one object.
117  *
118  *      An object is only deallocated when all "references"
119  *      are given up.  Only one "reference" to a given
120  *      region of an object should be writeable.
121  *
122  *      Associated with each object is a list of all resident
123  *      memory pages belonging to that object; this list is
124  *      maintained by the "vm_page" module, and locked by the object's
125  *      lock.
126  *
127  *      Each object also records a "pager" routine which is
128  *      used to retrieve (and store) pages to the proper backing
129  *      storage.  In addition, objects may be backed by other
130  *      objects from which they were virtual-copied.
131  *
132  *      The only items within the object structure which are
133  *      modified after time of creation are:
134  *              reference count         locked by object's lock
135  *              pager routine           locked by object's lock
136  *
137  */
138
139 struct object_q vm_object_list;
140 struct mtx vm_object_list_mtx;  /* lock for object list and count */
141
142 struct vm_object kernel_object_store;
143 struct vm_object kmem_object_store;
144
145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146     "VM object stats");
147
148 static long object_collapses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150     &object_collapses, 0, "VM object collapses");
151
152 static long object_bypasses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154     &object_bypasses, 0, "VM object bypasses");
155
156 static uma_zone_t obj_zone;
157
158 static int vm_object_zinit(void *mem, int size, int flags);
159
160 #ifdef INVARIANTS
161 static void vm_object_zdtor(void *mem, int size, void *arg);
162
163 static void
164 vm_object_zdtor(void *mem, int size, void *arg)
165 {
166         vm_object_t object;
167
168         object = (vm_object_t)mem;
169         KASSERT(TAILQ_EMPTY(&object->memq),
170             ("object %p has resident pages in its memq", object));
171         KASSERT(vm_radix_is_empty(&object->rtree),
172             ("object %p has resident pages in its trie", object));
173 #if VM_NRESERVLEVEL > 0
174         KASSERT(LIST_EMPTY(&object->rvq),
175             ("object %p has reservations",
176             object));
177 #endif
178         KASSERT(vm_object_cache_is_empty(object),
179             ("object %p has cached pages",
180             object));
181         KASSERT(object->paging_in_progress == 0,
182             ("object %p paging_in_progress = %d",
183             object, object->paging_in_progress));
184         KASSERT(object->resident_page_count == 0,
185             ("object %p resident_page_count = %d",
186             object, object->resident_page_count));
187         KASSERT(object->shadow_count == 0,
188             ("object %p shadow_count = %d",
189             object, object->shadow_count));
190 }
191 #endif
192
193 static int
194 vm_object_zinit(void *mem, int size, int flags)
195 {
196         vm_object_t object;
197
198         object = (vm_object_t)mem;
199         bzero(&object->lock, sizeof(object->lock));
200         rw_init_flags(&object->lock, "vm object", RW_DUPOK);
201
202         /* These are true for any object that has been freed */
203         object->rtree.rt_root = 0;
204         object->paging_in_progress = 0;
205         object->resident_page_count = 0;
206         object->shadow_count = 0;
207         object->cache.rt_root = 0;
208         return (0);
209 }
210
211 static void
212 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
213 {
214
215         TAILQ_INIT(&object->memq);
216         LIST_INIT(&object->shadow_head);
217
218         object->type = type;
219         switch (type) {
220         case OBJT_DEAD:
221                 panic("_vm_object_allocate: can't create OBJT_DEAD");
222         case OBJT_DEFAULT:
223         case OBJT_SWAP:
224                 object->flags = OBJ_ONEMAPPING;
225                 break;
226         case OBJT_DEVICE:
227         case OBJT_SG:
228                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
229                 break;
230         case OBJT_MGTDEVICE:
231                 object->flags = OBJ_FICTITIOUS;
232                 break;
233         case OBJT_PHYS:
234                 object->flags = OBJ_UNMANAGED;
235                 break;
236         case OBJT_VNODE:
237                 object->flags = 0;
238                 break;
239         default:
240                 panic("_vm_object_allocate: type %d is undefined", type);
241         }
242         object->size = size;
243         object->generation = 1;
244         object->ref_count = 1;
245         object->memattr = VM_MEMATTR_DEFAULT;
246         object->cred = NULL;
247         object->charge = 0;
248         object->handle = NULL;
249         object->backing_object = NULL;
250         object->backing_object_offset = (vm_ooffset_t) 0;
251 #if VM_NRESERVLEVEL > 0
252         LIST_INIT(&object->rvq);
253 #endif
254
255         mtx_lock(&vm_object_list_mtx);
256         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
257         mtx_unlock(&vm_object_list_mtx);
258 }
259
260 /*
261  *      vm_object_init:
262  *
263  *      Initialize the VM objects module.
264  */
265 void
266 vm_object_init(void)
267 {
268         TAILQ_INIT(&vm_object_list);
269         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
270         
271         rw_init(&kernel_object->lock, "kernel vm object");
272         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
273             kernel_object);
274 #if VM_NRESERVLEVEL > 0
275         kernel_object->flags |= OBJ_COLORED;
276         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
277 #endif
278
279         rw_init(&kmem_object->lock, "kmem vm object");
280         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
281             kmem_object);
282 #if VM_NRESERVLEVEL > 0
283         kmem_object->flags |= OBJ_COLORED;
284         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
285 #endif
286
287         /*
288          * The lock portion of struct vm_object must be type stable due
289          * to vm_pageout_fallback_object_lock locking a vm object
290          * without holding any references to it.
291          */
292         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
293 #ifdef INVARIANTS
294             vm_object_zdtor,
295 #else
296             NULL,
297 #endif
298             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
299
300         vm_radix_init();
301 }
302
303 void
304 vm_object_clear_flag(vm_object_t object, u_short bits)
305 {
306
307         VM_OBJECT_ASSERT_WLOCKED(object);
308         object->flags &= ~bits;
309 }
310
311 /*
312  *      Sets the default memory attribute for the specified object.  Pages
313  *      that are allocated to this object are by default assigned this memory
314  *      attribute.
315  *
316  *      Presently, this function must be called before any pages are allocated
317  *      to the object.  In the future, this requirement may be relaxed for
318  *      "default" and "swap" objects.
319  */
320 int
321 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
322 {
323
324         VM_OBJECT_ASSERT_WLOCKED(object);
325         switch (object->type) {
326         case OBJT_DEFAULT:
327         case OBJT_DEVICE:
328         case OBJT_MGTDEVICE:
329         case OBJT_PHYS:
330         case OBJT_SG:
331         case OBJT_SWAP:
332         case OBJT_VNODE:
333                 if (!TAILQ_EMPTY(&object->memq))
334                         return (KERN_FAILURE);
335                 break;
336         case OBJT_DEAD:
337                 return (KERN_INVALID_ARGUMENT);
338         default:
339                 panic("vm_object_set_memattr: object %p is of undefined type",
340                     object);
341         }
342         object->memattr = memattr;
343         return (KERN_SUCCESS);
344 }
345
346 void
347 vm_object_pip_add(vm_object_t object, short i)
348 {
349
350         VM_OBJECT_ASSERT_WLOCKED(object);
351         object->paging_in_progress += i;
352 }
353
354 void
355 vm_object_pip_subtract(vm_object_t object, short i)
356 {
357
358         VM_OBJECT_ASSERT_WLOCKED(object);
359         object->paging_in_progress -= i;
360 }
361
362 void
363 vm_object_pip_wakeup(vm_object_t object)
364 {
365
366         VM_OBJECT_ASSERT_WLOCKED(object);
367         object->paging_in_progress--;
368         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
369                 vm_object_clear_flag(object, OBJ_PIPWNT);
370                 wakeup(object);
371         }
372 }
373
374 void
375 vm_object_pip_wakeupn(vm_object_t object, short i)
376 {
377
378         VM_OBJECT_ASSERT_WLOCKED(object);
379         if (i)
380                 object->paging_in_progress -= i;
381         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
382                 vm_object_clear_flag(object, OBJ_PIPWNT);
383                 wakeup(object);
384         }
385 }
386
387 void
388 vm_object_pip_wait(vm_object_t object, char *waitid)
389 {
390
391         VM_OBJECT_ASSERT_WLOCKED(object);
392         while (object->paging_in_progress) {
393                 object->flags |= OBJ_PIPWNT;
394                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
395         }
396 }
397
398 /*
399  *      vm_object_allocate:
400  *
401  *      Returns a new object with the given size.
402  */
403 vm_object_t
404 vm_object_allocate(objtype_t type, vm_pindex_t size)
405 {
406         vm_object_t object;
407
408         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
409         _vm_object_allocate(type, size, object);
410         return (object);
411 }
412
413
414 /*
415  *      vm_object_reference:
416  *
417  *      Gets another reference to the given object.  Note: OBJ_DEAD
418  *      objects can be referenced during final cleaning.
419  */
420 void
421 vm_object_reference(vm_object_t object)
422 {
423         if (object == NULL)
424                 return;
425         VM_OBJECT_WLOCK(object);
426         vm_object_reference_locked(object);
427         VM_OBJECT_WUNLOCK(object);
428 }
429
430 /*
431  *      vm_object_reference_locked:
432  *
433  *      Gets another reference to the given object.
434  *
435  *      The object must be locked.
436  */
437 void
438 vm_object_reference_locked(vm_object_t object)
439 {
440         struct vnode *vp;
441
442         VM_OBJECT_ASSERT_WLOCKED(object);
443         object->ref_count++;
444         if (object->type == OBJT_VNODE) {
445                 vp = object->handle;
446                 vref(vp);
447         }
448 }
449
450 /*
451  * Handle deallocating an object of type OBJT_VNODE.
452  */
453 static void
454 vm_object_vndeallocate(vm_object_t object)
455 {
456         struct vnode *vp = (struct vnode *) object->handle;
457
458         VM_OBJECT_ASSERT_WLOCKED(object);
459         KASSERT(object->type == OBJT_VNODE,
460             ("vm_object_vndeallocate: not a vnode object"));
461         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
462 #ifdef INVARIANTS
463         if (object->ref_count == 0) {
464                 vprint("vm_object_vndeallocate", vp);
465                 panic("vm_object_vndeallocate: bad object reference count");
466         }
467 #endif
468
469         if (object->ref_count > 1) {
470                 object->ref_count--;
471                 VM_OBJECT_WUNLOCK(object);
472                 /* vrele may need the vnode lock. */
473                 vrele(vp);
474         } else {
475                 vhold(vp);
476                 VM_OBJECT_WUNLOCK(object);
477                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
478                 vdrop(vp);
479                 VM_OBJECT_WLOCK(object);
480                 object->ref_count--;
481                 if (object->type == OBJT_DEAD) {
482                         VM_OBJECT_WUNLOCK(object);
483                         VOP_UNLOCK(vp, 0);
484                 } else {
485                         if (object->ref_count == 0)
486                                 VOP_UNSET_TEXT(vp);
487                         VM_OBJECT_WUNLOCK(object);
488                         vput(vp);
489                 }
490         }
491 }
492
493 /*
494  *      vm_object_deallocate:
495  *
496  *      Release a reference to the specified object,
497  *      gained either through a vm_object_allocate
498  *      or a vm_object_reference call.  When all references
499  *      are gone, storage associated with this object
500  *      may be relinquished.
501  *
502  *      No object may be locked.
503  */
504 void
505 vm_object_deallocate(vm_object_t object)
506 {
507         vm_object_t temp;
508         struct vnode *vp;
509
510         while (object != NULL) {
511                 VM_OBJECT_WLOCK(object);
512                 if (object->type == OBJT_VNODE) {
513                         vm_object_vndeallocate(object);
514                         return;
515                 }
516
517                 KASSERT(object->ref_count != 0,
518                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
519
520                 /*
521                  * If the reference count goes to 0 we start calling
522                  * vm_object_terminate() on the object chain.
523                  * A ref count of 1 may be a special case depending on the
524                  * shadow count being 0 or 1.
525                  */
526                 object->ref_count--;
527                 if (object->ref_count > 1) {
528                         VM_OBJECT_WUNLOCK(object);
529                         return;
530                 } else if (object->ref_count == 1) {
531                         if (object->type == OBJT_SWAP &&
532                             (object->flags & OBJ_TMPFS) != 0) {
533                                 vp = object->un_pager.swp.swp_tmpfs;
534                                 vhold(vp);
535                                 VM_OBJECT_WUNLOCK(object);
536                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
537                                 vdrop(vp);
538                                 VM_OBJECT_WLOCK(object);
539                                 if (object->type == OBJT_DEAD ||
540                                     object->ref_count != 1) {
541                                         VM_OBJECT_WUNLOCK(object);
542                                         VOP_UNLOCK(vp, 0);
543                                         return;
544                                 }
545                                 if ((object->flags & OBJ_TMPFS) != 0)
546                                         VOP_UNSET_TEXT(vp);
547                                 VOP_UNLOCK(vp, 0);
548                         }
549                         if (object->shadow_count == 0 &&
550                             object->handle == NULL &&
551                             (object->type == OBJT_DEFAULT ||
552                             (object->type == OBJT_SWAP &&
553                             (object->flags & OBJ_TMPFS) == 0))) {
554                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
555                         } else if ((object->shadow_count == 1) &&
556                             (object->handle == NULL) &&
557                             (object->type == OBJT_DEFAULT ||
558                              object->type == OBJT_SWAP)) {
559                                 KASSERT((object->flags & OBJ_TMPFS) == 0,
560                                     ("shadowed tmpfs v_object %p", object));
561                                 vm_object_t robject;
562
563                                 robject = LIST_FIRST(&object->shadow_head);
564                                 KASSERT(robject != NULL,
565                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
566                                          object->ref_count,
567                                          object->shadow_count));
568                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
569                                         /*
570                                          * Avoid a potential deadlock.
571                                          */
572                                         object->ref_count++;
573                                         VM_OBJECT_WUNLOCK(object);
574                                         /*
575                                          * More likely than not the thread
576                                          * holding robject's lock has lower
577                                          * priority than the current thread.
578                                          * Let the lower priority thread run.
579                                          */
580                                         pause("vmo_de", 1);
581                                         continue;
582                                 }
583                                 /*
584                                  * Collapse object into its shadow unless its
585                                  * shadow is dead.  In that case, object will
586                                  * be deallocated by the thread that is
587                                  * deallocating its shadow.
588                                  */
589                                 if ((robject->flags & OBJ_DEAD) == 0 &&
590                                     (robject->handle == NULL) &&
591                                     (robject->type == OBJT_DEFAULT ||
592                                      robject->type == OBJT_SWAP)) {
593
594                                         robject->ref_count++;
595 retry:
596                                         if (robject->paging_in_progress) {
597                                                 VM_OBJECT_WUNLOCK(object);
598                                                 vm_object_pip_wait(robject,
599                                                     "objde1");
600                                                 temp = robject->backing_object;
601                                                 if (object == temp) {
602                                                         VM_OBJECT_WLOCK(object);
603                                                         goto retry;
604                                                 }
605                                         } else if (object->paging_in_progress) {
606                                                 VM_OBJECT_WUNLOCK(robject);
607                                                 object->flags |= OBJ_PIPWNT;
608                                                 VM_OBJECT_SLEEP(object, object,
609                                                     PDROP | PVM, "objde2", 0);
610                                                 VM_OBJECT_WLOCK(robject);
611                                                 temp = robject->backing_object;
612                                                 if (object == temp) {
613                                                         VM_OBJECT_WLOCK(object);
614                                                         goto retry;
615                                                 }
616                                         } else
617                                                 VM_OBJECT_WUNLOCK(object);
618
619                                         if (robject->ref_count == 1) {
620                                                 robject->ref_count--;
621                                                 object = robject;
622                                                 goto doterm;
623                                         }
624                                         object = robject;
625                                         vm_object_collapse(object);
626                                         VM_OBJECT_WUNLOCK(object);
627                                         continue;
628                                 }
629                                 VM_OBJECT_WUNLOCK(robject);
630                         }
631                         VM_OBJECT_WUNLOCK(object);
632                         return;
633                 }
634 doterm:
635                 temp = object->backing_object;
636                 if (temp != NULL) {
637                         VM_OBJECT_WLOCK(temp);
638                         LIST_REMOVE(object, shadow_list);
639                         temp->shadow_count--;
640                         VM_OBJECT_WUNLOCK(temp);
641                         object->backing_object = NULL;
642                 }
643                 /*
644                  * Don't double-terminate, we could be in a termination
645                  * recursion due to the terminate having to sync data
646                  * to disk.
647                  */
648                 if ((object->flags & OBJ_DEAD) == 0)
649                         vm_object_terminate(object);
650                 else
651                         VM_OBJECT_WUNLOCK(object);
652                 object = temp;
653         }
654 }
655
656 /*
657  *      vm_object_destroy removes the object from the global object list
658  *      and frees the space for the object.
659  */
660 void
661 vm_object_destroy(vm_object_t object)
662 {
663
664         /*
665          * Remove the object from the global object list.
666          */
667         mtx_lock(&vm_object_list_mtx);
668         TAILQ_REMOVE(&vm_object_list, object, object_list);
669         mtx_unlock(&vm_object_list_mtx);
670
671         /*
672          * Release the allocation charge.
673          */
674         if (object->cred != NULL) {
675                 KASSERT(object->type == OBJT_DEFAULT ||
676                     object->type == OBJT_SWAP,
677                     ("vm_object_terminate: non-swap obj %p has cred",
678                      object));
679                 swap_release_by_cred(object->charge, object->cred);
680                 object->charge = 0;
681                 crfree(object->cred);
682                 object->cred = NULL;
683         }
684
685         /*
686          * Free the space for the object.
687          */
688         uma_zfree(obj_zone, object);
689 }
690
691 /*
692  *      vm_object_terminate actually destroys the specified object, freeing
693  *      up all previously used resources.
694  *
695  *      The object must be locked.
696  *      This routine may block.
697  */
698 void
699 vm_object_terminate(vm_object_t object)
700 {
701         vm_page_t p, p_next;
702
703         VM_OBJECT_ASSERT_WLOCKED(object);
704
705         /*
706          * Make sure no one uses us.
707          */
708         vm_object_set_flag(object, OBJ_DEAD);
709
710         /*
711          * wait for the pageout daemon to be done with the object
712          */
713         vm_object_pip_wait(object, "objtrm");
714
715         KASSERT(!object->paging_in_progress,
716                 ("vm_object_terminate: pageout in progress"));
717
718         /*
719          * Clean and free the pages, as appropriate. All references to the
720          * object are gone, so we don't need to lock it.
721          */
722         if (object->type == OBJT_VNODE) {
723                 struct vnode *vp = (struct vnode *)object->handle;
724
725                 /*
726                  * Clean pages and flush buffers.
727                  */
728                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
729                 VM_OBJECT_WUNLOCK(object);
730
731                 vinvalbuf(vp, V_SAVE, 0, 0);
732
733                 VM_OBJECT_WLOCK(object);
734         }
735
736         KASSERT(object->ref_count == 0, 
737                 ("vm_object_terminate: object with references, ref_count=%d",
738                 object->ref_count));
739
740         /*
741          * Free any remaining pageable pages.  This also removes them from the
742          * paging queues.  However, don't free wired pages, just remove them
743          * from the object.  Rather than incrementally removing each page from
744          * the object, the page and object are reset to any empty state. 
745          */
746         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
747                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
748                     ("vm_object_terminate: freeing busy page %p", p));
749                 vm_page_lock(p);
750                 /*
751                  * Optimize the page's removal from the object by resetting
752                  * its "object" field.  Specifically, if the page is not
753                  * wired, then the effect of this assignment is that
754                  * vm_page_free()'s call to vm_page_remove() will return
755                  * immediately without modifying the page or the object.
756                  */ 
757                 p->object = NULL;
758                 if (p->wire_count == 0) {
759                         vm_page_free(p);
760                         PCPU_INC(cnt.v_pfree);
761                 }
762                 vm_page_unlock(p);
763         }
764         /*
765          * If the object contained any pages, then reset it to an empty state.
766          * None of the object's fields, including "resident_page_count", were
767          * modified by the preceding loop.
768          */
769         if (object->resident_page_count != 0) {
770                 vm_radix_reclaim_allnodes(&object->rtree);
771                 TAILQ_INIT(&object->memq);
772                 object->resident_page_count = 0;
773                 if (object->type == OBJT_VNODE)
774                         vdrop(object->handle);
775         }
776
777 #if VM_NRESERVLEVEL > 0
778         if (__predict_false(!LIST_EMPTY(&object->rvq)))
779                 vm_reserv_break_all(object);
780 #endif
781         if (__predict_false(!vm_object_cache_is_empty(object)))
782                 vm_page_cache_free(object, 0, 0);
783
784         /*
785          * Let the pager know object is dead.
786          */
787         vm_pager_deallocate(object);
788         VM_OBJECT_WUNLOCK(object);
789
790         vm_object_destroy(object);
791 }
792
793 /*
794  * Make the page read-only so that we can clear the object flags.  However, if
795  * this is a nosync mmap then the object is likely to stay dirty so do not
796  * mess with the page and do not clear the object flags.  Returns TRUE if the
797  * page should be flushed, and FALSE otherwise.
798  */
799 static boolean_t
800 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
801 {
802
803         /*
804          * If we have been asked to skip nosync pages and this is a
805          * nosync page, skip it.  Note that the object flags were not
806          * cleared in this case so we do not have to set them.
807          */
808         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
809                 *clearobjflags = FALSE;
810                 return (FALSE);
811         } else {
812                 pmap_remove_write(p);
813                 return (p->dirty != 0);
814         }
815 }
816
817 /*
818  *      vm_object_page_clean
819  *
820  *      Clean all dirty pages in the specified range of object.  Leaves page 
821  *      on whatever queue it is currently on.   If NOSYNC is set then do not
822  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
823  *      leaving the object dirty.
824  *
825  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
826  *      synchronous clustering mode implementation.
827  *
828  *      Odd semantics: if start == end, we clean everything.
829  *
830  *      The object must be locked.
831  *
832  *      Returns FALSE if some page from the range was not written, as
833  *      reported by the pager, and TRUE otherwise.
834  */
835 boolean_t
836 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
837     int flags)
838 {
839         vm_page_t np, p;
840         vm_pindex_t pi, tend, tstart;
841         int curgeneration, n, pagerflags;
842         boolean_t clearobjflags, eio, res;
843
844         VM_OBJECT_ASSERT_WLOCKED(object);
845
846         /*
847          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
848          * objects.  The check below prevents the function from
849          * operating on non-vnode objects.
850          */
851         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
852             object->resident_page_count == 0)
853                 return (TRUE);
854
855         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
856             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
857         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
858
859         tstart = OFF_TO_IDX(start);
860         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
861         clearobjflags = tstart == 0 && tend >= object->size;
862         res = TRUE;
863
864 rescan:
865         curgeneration = object->generation;
866
867         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
868                 pi = p->pindex;
869                 if (pi >= tend)
870                         break;
871                 np = TAILQ_NEXT(p, listq);
872                 if (p->valid == 0)
873                         continue;
874                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
875                         if (object->generation != curgeneration) {
876                                 if ((flags & OBJPC_SYNC) != 0)
877                                         goto rescan;
878                                 else
879                                         clearobjflags = FALSE;
880                         }
881                         np = vm_page_find_least(object, pi);
882                         continue;
883                 }
884                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
885                         continue;
886
887                 n = vm_object_page_collect_flush(object, p, pagerflags,
888                     flags, &clearobjflags, &eio);
889                 if (eio) {
890                         res = FALSE;
891                         clearobjflags = FALSE;
892                 }
893                 if (object->generation != curgeneration) {
894                         if ((flags & OBJPC_SYNC) != 0)
895                                 goto rescan;
896                         else
897                                 clearobjflags = FALSE;
898                 }
899
900                 /*
901                  * If the VOP_PUTPAGES() did a truncated write, so
902                  * that even the first page of the run is not fully
903                  * written, vm_pageout_flush() returns 0 as the run
904                  * length.  Since the condition that caused truncated
905                  * write may be permanent, e.g. exhausted free space,
906                  * accepting n == 0 would cause an infinite loop.
907                  *
908                  * Forwarding the iterator leaves the unwritten page
909                  * behind, but there is not much we can do there if
910                  * filesystem refuses to write it.
911                  */
912                 if (n == 0) {
913                         n = 1;
914                         clearobjflags = FALSE;
915                 }
916                 np = vm_page_find_least(object, pi + n);
917         }
918 #if 0
919         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
920 #endif
921
922         if (clearobjflags)
923                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
924         return (res);
925 }
926
927 static int
928 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
929     int flags, boolean_t *clearobjflags, boolean_t *eio)
930 {
931         vm_page_t ma[vm_pageout_page_count], p_first, tp;
932         int count, i, mreq, runlen;
933
934         vm_page_lock_assert(p, MA_NOTOWNED);
935         VM_OBJECT_ASSERT_WLOCKED(object);
936
937         count = 1;
938         mreq = 0;
939
940         for (tp = p; count < vm_pageout_page_count; count++) {
941                 tp = vm_page_next(tp);
942                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
943                         break;
944                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
945                         break;
946         }
947
948         for (p_first = p; count < vm_pageout_page_count; count++) {
949                 tp = vm_page_prev(p_first);
950                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
951                         break;
952                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
953                         break;
954                 p_first = tp;
955                 mreq++;
956         }
957
958         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
959                 ma[i] = tp;
960
961         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
962         return (runlen);
963 }
964
965 /*
966  * Note that there is absolutely no sense in writing out
967  * anonymous objects, so we track down the vnode object
968  * to write out.
969  * We invalidate (remove) all pages from the address space
970  * for semantic correctness.
971  *
972  * If the backing object is a device object with unmanaged pages, then any
973  * mappings to the specified range of pages must be removed before this
974  * function is called.
975  *
976  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
977  * may start out with a NULL object.
978  */
979 boolean_t
980 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
981     boolean_t syncio, boolean_t invalidate)
982 {
983         vm_object_t backing_object;
984         struct vnode *vp;
985         struct mount *mp;
986         int error, flags, fsync_after;
987         boolean_t res;
988
989         if (object == NULL)
990                 return (TRUE);
991         res = TRUE;
992         error = 0;
993         VM_OBJECT_WLOCK(object);
994         while ((backing_object = object->backing_object) != NULL) {
995                 VM_OBJECT_WLOCK(backing_object);
996                 offset += object->backing_object_offset;
997                 VM_OBJECT_WUNLOCK(object);
998                 object = backing_object;
999                 if (object->size < OFF_TO_IDX(offset + size))
1000                         size = IDX_TO_OFF(object->size) - offset;
1001         }
1002         /*
1003          * Flush pages if writing is allowed, invalidate them
1004          * if invalidation requested.  Pages undergoing I/O
1005          * will be ignored by vm_object_page_remove().
1006          *
1007          * We cannot lock the vnode and then wait for paging
1008          * to complete without deadlocking against vm_fault.
1009          * Instead we simply call vm_object_page_remove() and
1010          * allow it to block internally on a page-by-page
1011          * basis when it encounters pages undergoing async
1012          * I/O.
1013          */
1014         if (object->type == OBJT_VNODE &&
1015             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1016                 vp = object->handle;
1017                 VM_OBJECT_WUNLOCK(object);
1018                 (void) vn_start_write(vp, &mp, V_WAIT);
1019                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1020                 if (syncio && !invalidate && offset == 0 &&
1021                     OFF_TO_IDX(size) == object->size) {
1022                         /*
1023                          * If syncing the whole mapping of the file,
1024                          * it is faster to schedule all the writes in
1025                          * async mode, also allowing the clustering,
1026                          * and then wait for i/o to complete.
1027                          */
1028                         flags = 0;
1029                         fsync_after = TRUE;
1030                 } else {
1031                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1032                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1033                         fsync_after = FALSE;
1034                 }
1035                 VM_OBJECT_WLOCK(object);
1036                 res = vm_object_page_clean(object, offset, offset + size,
1037                     flags);
1038                 VM_OBJECT_WUNLOCK(object);
1039                 if (fsync_after)
1040                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1041                 VOP_UNLOCK(vp, 0);
1042                 vn_finished_write(mp);
1043                 if (error != 0)
1044                         res = FALSE;
1045                 VM_OBJECT_WLOCK(object);
1046         }
1047         if ((object->type == OBJT_VNODE ||
1048              object->type == OBJT_DEVICE) && invalidate) {
1049                 if (object->type == OBJT_DEVICE)
1050                         /*
1051                          * The option OBJPR_NOTMAPPED must be passed here
1052                          * because vm_object_page_remove() cannot remove
1053                          * unmanaged mappings.
1054                          */
1055                         flags = OBJPR_NOTMAPPED;
1056                 else if (old_msync)
1057                         flags = OBJPR_NOTWIRED;
1058                 else
1059                         flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
1060                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1061                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1062         }
1063         VM_OBJECT_WUNLOCK(object);
1064         return (res);
1065 }
1066
1067 /*
1068  *      vm_object_madvise:
1069  *
1070  *      Implements the madvise function at the object/page level.
1071  *
1072  *      MADV_WILLNEED   (any object)
1073  *
1074  *          Activate the specified pages if they are resident.
1075  *
1076  *      MADV_DONTNEED   (any object)
1077  *
1078  *          Deactivate the specified pages if they are resident.
1079  *
1080  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1081  *                       OBJ_ONEMAPPING only)
1082  *
1083  *          Deactivate and clean the specified pages if they are
1084  *          resident.  This permits the process to reuse the pages
1085  *          without faulting or the kernel to reclaim the pages
1086  *          without I/O.
1087  */
1088 void
1089 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1090     int advise)
1091 {
1092         vm_pindex_t tpindex;
1093         vm_object_t backing_object, tobject;
1094         vm_page_t m;
1095
1096         if (object == NULL)
1097                 return;
1098         VM_OBJECT_WLOCK(object);
1099         /*
1100          * Locate and adjust resident pages
1101          */
1102         for (; pindex < end; pindex += 1) {
1103 relookup:
1104                 tobject = object;
1105                 tpindex = pindex;
1106 shadowlookup:
1107                 /*
1108                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1109                  * and those pages must be OBJ_ONEMAPPING.
1110                  */
1111                 if (advise == MADV_FREE) {
1112                         if ((tobject->type != OBJT_DEFAULT &&
1113                              tobject->type != OBJT_SWAP) ||
1114                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1115                                 goto unlock_tobject;
1116                         }
1117                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1118                         goto unlock_tobject;
1119                 m = vm_page_lookup(tobject, tpindex);
1120                 if (m == NULL && advise == MADV_WILLNEED) {
1121                         /*
1122                          * If the page is cached, reactivate it.
1123                          */
1124                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1125                             VM_ALLOC_NOBUSY);
1126                 }
1127                 if (m == NULL) {
1128                         /*
1129                          * There may be swap even if there is no backing page
1130                          */
1131                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1132                                 swap_pager_freespace(tobject, tpindex, 1);
1133                         /*
1134                          * next object
1135                          */
1136                         backing_object = tobject->backing_object;
1137                         if (backing_object == NULL)
1138                                 goto unlock_tobject;
1139                         VM_OBJECT_WLOCK(backing_object);
1140                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1141                         if (tobject != object)
1142                                 VM_OBJECT_WUNLOCK(tobject);
1143                         tobject = backing_object;
1144                         goto shadowlookup;
1145                 } else if (m->valid != VM_PAGE_BITS_ALL)
1146                         goto unlock_tobject;
1147                 /*
1148                  * If the page is not in a normal state, skip it.
1149                  */
1150                 vm_page_lock(m);
1151                 if (m->hold_count != 0 || m->wire_count != 0) {
1152                         vm_page_unlock(m);
1153                         goto unlock_tobject;
1154                 }
1155                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1156                     ("vm_object_madvise: page %p is fictitious", m));
1157                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1158                     ("vm_object_madvise: page %p is not managed", m));
1159                 if ((m->oflags & VPO_BUSY) || m->busy) {
1160                         if (advise == MADV_WILLNEED) {
1161                                 /*
1162                                  * Reference the page before unlocking and
1163                                  * sleeping so that the page daemon is less
1164                                  * likely to reclaim it. 
1165                                  */
1166                                 vm_page_aflag_set(m, PGA_REFERENCED);
1167                         }
1168                         vm_page_unlock(m);
1169                         if (object != tobject)
1170                                 VM_OBJECT_WUNLOCK(object);
1171                         m->oflags |= VPO_WANTED;
1172                         VM_OBJECT_SLEEP(tobject, m, PDROP | PVM, "madvpo", 0);
1173                         VM_OBJECT_WLOCK(object);
1174                         goto relookup;
1175                 }
1176                 if (advise == MADV_WILLNEED) {
1177                         vm_page_activate(m);
1178                 } else {
1179                         vm_page_advise(m, advise);
1180                 }
1181                 vm_page_unlock(m);
1182                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1183                         swap_pager_freespace(tobject, tpindex, 1);
1184 unlock_tobject:
1185                 if (tobject != object)
1186                         VM_OBJECT_WUNLOCK(tobject);
1187         }       
1188         VM_OBJECT_WUNLOCK(object);
1189 }
1190
1191 /*
1192  *      vm_object_shadow:
1193  *
1194  *      Create a new object which is backed by the
1195  *      specified existing object range.  The source
1196  *      object reference is deallocated.
1197  *
1198  *      The new object and offset into that object
1199  *      are returned in the source parameters.
1200  */
1201 void
1202 vm_object_shadow(
1203         vm_object_t *object,    /* IN/OUT */
1204         vm_ooffset_t *offset,   /* IN/OUT */
1205         vm_size_t length)
1206 {
1207         vm_object_t source;
1208         vm_object_t result;
1209
1210         source = *object;
1211
1212         /*
1213          * Don't create the new object if the old object isn't shared.
1214          */
1215         if (source != NULL) {
1216                 VM_OBJECT_WLOCK(source);
1217                 if (source->ref_count == 1 &&
1218                     source->handle == NULL &&
1219                     (source->type == OBJT_DEFAULT ||
1220                      source->type == OBJT_SWAP)) {
1221                         VM_OBJECT_WUNLOCK(source);
1222                         return;
1223                 }
1224                 VM_OBJECT_WUNLOCK(source);
1225         }
1226
1227         /*
1228          * Allocate a new object with the given length.
1229          */
1230         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1231
1232         /*
1233          * The new object shadows the source object, adding a reference to it.
1234          * Our caller changes his reference to point to the new object,
1235          * removing a reference to the source object.  Net result: no change
1236          * of reference count.
1237          *
1238          * Try to optimize the result object's page color when shadowing
1239          * in order to maintain page coloring consistency in the combined 
1240          * shadowed object.
1241          */
1242         result->backing_object = source;
1243         /*
1244          * Store the offset into the source object, and fix up the offset into
1245          * the new object.
1246          */
1247         result->backing_object_offset = *offset;
1248         if (source != NULL) {
1249                 VM_OBJECT_WLOCK(source);
1250                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1251                 source->shadow_count++;
1252 #if VM_NRESERVLEVEL > 0
1253                 result->flags |= source->flags & OBJ_COLORED;
1254                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1255                     ((1 << (VM_NFREEORDER - 1)) - 1);
1256 #endif
1257                 VM_OBJECT_WUNLOCK(source);
1258         }
1259
1260
1261         /*
1262          * Return the new things
1263          */
1264         *offset = 0;
1265         *object = result;
1266 }
1267
1268 /*
1269  *      vm_object_split:
1270  *
1271  * Split the pages in a map entry into a new object.  This affords
1272  * easier removal of unused pages, and keeps object inheritance from
1273  * being a negative impact on memory usage.
1274  */
1275 void
1276 vm_object_split(vm_map_entry_t entry)
1277 {
1278         vm_page_t m, m_next;
1279         vm_object_t orig_object, new_object, source;
1280         vm_pindex_t idx, offidxstart;
1281         vm_size_t size;
1282
1283         orig_object = entry->object.vm_object;
1284         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1285                 return;
1286         if (orig_object->ref_count <= 1)
1287                 return;
1288         VM_OBJECT_WUNLOCK(orig_object);
1289
1290         offidxstart = OFF_TO_IDX(entry->offset);
1291         size = atop(entry->end - entry->start);
1292
1293         /*
1294          * If swap_pager_copy() is later called, it will convert new_object
1295          * into a swap object.
1296          */
1297         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1298
1299         /*
1300          * At this point, the new object is still private, so the order in
1301          * which the original and new objects are locked does not matter.
1302          */
1303         VM_OBJECT_WLOCK(new_object);
1304         VM_OBJECT_WLOCK(orig_object);
1305         source = orig_object->backing_object;
1306         if (source != NULL) {
1307                 VM_OBJECT_WLOCK(source);
1308                 if ((source->flags & OBJ_DEAD) != 0) {
1309                         VM_OBJECT_WUNLOCK(source);
1310                         VM_OBJECT_WUNLOCK(orig_object);
1311                         VM_OBJECT_WUNLOCK(new_object);
1312                         vm_object_deallocate(new_object);
1313                         VM_OBJECT_WLOCK(orig_object);
1314                         return;
1315                 }
1316                 LIST_INSERT_HEAD(&source->shadow_head,
1317                                   new_object, shadow_list);
1318                 source->shadow_count++;
1319                 vm_object_reference_locked(source);     /* for new_object */
1320                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1321                 VM_OBJECT_WUNLOCK(source);
1322                 new_object->backing_object_offset = 
1323                         orig_object->backing_object_offset + entry->offset;
1324                 new_object->backing_object = source;
1325         }
1326         if (orig_object->cred != NULL) {
1327                 new_object->cred = orig_object->cred;
1328                 crhold(orig_object->cred);
1329                 new_object->charge = ptoa(size);
1330                 KASSERT(orig_object->charge >= ptoa(size),
1331                     ("orig_object->charge < 0"));
1332                 orig_object->charge -= ptoa(size);
1333         }
1334 retry:
1335         m = vm_page_find_least(orig_object, offidxstart);
1336         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1337             m = m_next) {
1338                 m_next = TAILQ_NEXT(m, listq);
1339
1340                 /*
1341                  * We must wait for pending I/O to complete before we can
1342                  * rename the page.
1343                  *
1344                  * We do not have to VM_PROT_NONE the page as mappings should
1345                  * not be changed by this operation.
1346                  */
1347                 if ((m->oflags & VPO_BUSY) || m->busy) {
1348                         VM_OBJECT_WUNLOCK(new_object);
1349                         m->oflags |= VPO_WANTED;
1350                         VM_OBJECT_SLEEP(orig_object, m, PVM, "spltwt", 0);
1351                         VM_OBJECT_WLOCK(new_object);
1352                         goto retry;
1353                 }
1354 #if VM_NRESERVLEVEL > 0
1355                 /*
1356                  * If some of the reservation's allocated pages remain with
1357                  * the original object, then transferring the reservation to
1358                  * the new object is neither particularly beneficial nor
1359                  * particularly harmful as compared to leaving the reservation
1360                  * with the original object.  If, however, all of the
1361                  * reservation's allocated pages are transferred to the new
1362                  * object, then transferring the reservation is typically
1363                  * beneficial.  Determining which of these two cases applies
1364                  * would be more costly than unconditionally renaming the
1365                  * reservation.
1366                  */
1367                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1368 #endif
1369                 vm_page_lock(m);
1370                 vm_page_rename(m, new_object, idx);
1371                 vm_page_unlock(m);
1372                 /* page automatically made dirty by rename and cache handled */
1373                 if (orig_object->type == OBJT_SWAP)
1374                         vm_page_busy(m);
1375         }
1376         if (orig_object->type == OBJT_SWAP) {
1377                 /*
1378                  * swap_pager_copy() can sleep, in which case the orig_object's
1379                  * and new_object's locks are released and reacquired. 
1380                  */
1381                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1382                 TAILQ_FOREACH(m, &new_object->memq, listq)
1383                         vm_page_wakeup(m);
1384
1385                 /*
1386                  * Transfer any cached pages from orig_object to new_object.
1387                  * If swap_pager_copy() found swapped out pages within the
1388                  * specified range of orig_object, then it changed
1389                  * new_object's type to OBJT_SWAP when it transferred those
1390                  * pages to new_object.  Otherwise, new_object's type
1391                  * should still be OBJT_DEFAULT and orig_object should not
1392                  * contain any cached pages within the specified range.
1393                  */
1394                 if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1395                         vm_page_cache_transfer(orig_object, offidxstart,
1396                             new_object);
1397         }
1398         VM_OBJECT_WUNLOCK(orig_object);
1399         VM_OBJECT_WUNLOCK(new_object);
1400         entry->object.vm_object = new_object;
1401         entry->offset = 0LL;
1402         vm_object_deallocate(orig_object);
1403         VM_OBJECT_WLOCK(new_object);
1404 }
1405
1406 #define OBSC_TEST_ALL_SHADOWED  0x0001
1407 #define OBSC_COLLAPSE_NOWAIT    0x0002
1408 #define OBSC_COLLAPSE_WAIT      0x0004
1409
1410 static int
1411 vm_object_backing_scan(vm_object_t object, int op)
1412 {
1413         int r = 1;
1414         vm_page_t p;
1415         vm_object_t backing_object;
1416         vm_pindex_t backing_offset_index;
1417
1418         VM_OBJECT_ASSERT_WLOCKED(object);
1419         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1420
1421         backing_object = object->backing_object;
1422         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1423
1424         /*
1425          * Initial conditions
1426          */
1427         if (op & OBSC_TEST_ALL_SHADOWED) {
1428                 /*
1429                  * We do not want to have to test for the existence of cache
1430                  * or swap pages in the backing object.  XXX but with the
1431                  * new swapper this would be pretty easy to do.
1432                  *
1433                  * XXX what about anonymous MAP_SHARED memory that hasn't
1434                  * been ZFOD faulted yet?  If we do not test for this, the
1435                  * shadow test may succeed! XXX
1436                  */
1437                 if (backing_object->type != OBJT_DEFAULT) {
1438                         return (0);
1439                 }
1440         }
1441         if (op & OBSC_COLLAPSE_WAIT) {
1442                 vm_object_set_flag(backing_object, OBJ_DEAD);
1443         }
1444
1445         /*
1446          * Our scan
1447          */
1448         p = TAILQ_FIRST(&backing_object->memq);
1449         while (p) {
1450                 vm_page_t next = TAILQ_NEXT(p, listq);
1451                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1452
1453                 if (op & OBSC_TEST_ALL_SHADOWED) {
1454                         vm_page_t pp;
1455
1456                         /*
1457                          * Ignore pages outside the parent object's range
1458                          * and outside the parent object's mapping of the 
1459                          * backing object.
1460                          *
1461                          * note that we do not busy the backing object's
1462                          * page.
1463                          */
1464                         if (
1465                             p->pindex < backing_offset_index ||
1466                             new_pindex >= object->size
1467                         ) {
1468                                 p = next;
1469                                 continue;
1470                         }
1471
1472                         /*
1473                          * See if the parent has the page or if the parent's
1474                          * object pager has the page.  If the parent has the
1475                          * page but the page is not valid, the parent's
1476                          * object pager must have the page.
1477                          *
1478                          * If this fails, the parent does not completely shadow
1479                          * the object and we might as well give up now.
1480                          */
1481
1482                         pp = vm_page_lookup(object, new_pindex);
1483                         if (
1484                             (pp == NULL || pp->valid == 0) &&
1485                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1486                         ) {
1487                                 r = 0;
1488                                 break;
1489                         }
1490                 }
1491
1492                 /*
1493                  * Check for busy page
1494                  */
1495                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1496                         vm_page_t pp;
1497
1498                         if (op & OBSC_COLLAPSE_NOWAIT) {
1499                                 if ((p->oflags & VPO_BUSY) ||
1500                                     !p->valid || 
1501                                     p->busy) {
1502                                         p = next;
1503                                         continue;
1504                                 }
1505                         } else if (op & OBSC_COLLAPSE_WAIT) {
1506                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1507                                         VM_OBJECT_WUNLOCK(object);
1508                                         p->oflags |= VPO_WANTED;
1509                                         VM_OBJECT_SLEEP(backing_object, p,
1510                                             PDROP | PVM, "vmocol", 0);
1511                                         VM_OBJECT_WLOCK(object);
1512                                         VM_OBJECT_WLOCK(backing_object);
1513                                         /*
1514                                          * If we slept, anything could have
1515                                          * happened.  Since the object is
1516                                          * marked dead, the backing offset
1517                                          * should not have changed so we
1518                                          * just restart our scan.
1519                                          */
1520                                         p = TAILQ_FIRST(&backing_object->memq);
1521                                         continue;
1522                                 }
1523                         }
1524
1525                         KASSERT(
1526                             p->object == backing_object,
1527                             ("vm_object_backing_scan: object mismatch")
1528                         );
1529
1530                         /*
1531                          * Destroy any associated swap
1532                          */
1533                         if (backing_object->type == OBJT_SWAP) {
1534                                 swap_pager_freespace(
1535                                     backing_object, 
1536                                     p->pindex,
1537                                     1
1538                                 );
1539                         }
1540
1541                         if (
1542                             p->pindex < backing_offset_index ||
1543                             new_pindex >= object->size
1544                         ) {
1545                                 /*
1546                                  * Page is out of the parent object's range, we 
1547                                  * can simply destroy it. 
1548                                  */
1549                                 vm_page_lock(p);
1550                                 KASSERT(!pmap_page_is_mapped(p),
1551                                     ("freeing mapped page %p", p));
1552                                 if (p->wire_count == 0)
1553                                         vm_page_free(p);
1554                                 else
1555                                         vm_page_remove(p);
1556                                 vm_page_unlock(p);
1557                                 p = next;
1558                                 continue;
1559                         }
1560
1561                         pp = vm_page_lookup(object, new_pindex);
1562                         if (
1563                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1564                             (pp != NULL && pp->valid == 0)
1565                         ) {
1566                                 /*
1567                                  * The page in the parent is not (yet) valid.
1568                                  * We don't know anything about the state of
1569                                  * the original page.  It might be mapped,
1570                                  * so we must avoid the next if here.
1571                                  *
1572                                  * This is due to a race in vm_fault() where
1573                                  * we must unbusy the original (backing_obj)
1574                                  * page before we can (re)lock the parent.
1575                                  * Hence we can get here.
1576                                  */
1577                                 p = next;
1578                                 continue;
1579                         }
1580                         if (
1581                             pp != NULL ||
1582                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1583                         ) {
1584                                 /*
1585                                  * page already exists in parent OR swap exists
1586                                  * for this location in the parent.  Destroy 
1587                                  * the original page from the backing object.
1588                                  *
1589                                  * Leave the parent's page alone
1590                                  */
1591                                 vm_page_lock(p);
1592                                 KASSERT(!pmap_page_is_mapped(p),
1593                                     ("freeing mapped page %p", p));
1594                                 if (p->wire_count == 0)
1595                                         vm_page_free(p);
1596                                 else
1597                                         vm_page_remove(p);
1598                                 vm_page_unlock(p);
1599                                 p = next;
1600                                 continue;
1601                         }
1602
1603 #if VM_NRESERVLEVEL > 0
1604                         /*
1605                          * Rename the reservation.
1606                          */
1607                         vm_reserv_rename(p, object, backing_object,
1608                             backing_offset_index);
1609 #endif
1610
1611                         /*
1612                          * Page does not exist in parent, rename the
1613                          * page from the backing object to the main object. 
1614                          *
1615                          * If the page was mapped to a process, it can remain 
1616                          * mapped through the rename.
1617                          */
1618                         vm_page_lock(p);
1619                         vm_page_rename(p, object, new_pindex);
1620                         vm_page_unlock(p);
1621                         /* page automatically made dirty by rename */
1622                 }
1623                 p = next;
1624         }
1625         return (r);
1626 }
1627
1628
1629 /*
1630  * this version of collapse allows the operation to occur earlier and
1631  * when paging_in_progress is true for an object...  This is not a complete
1632  * operation, but should plug 99.9% of the rest of the leaks.
1633  */
1634 static void
1635 vm_object_qcollapse(vm_object_t object)
1636 {
1637         vm_object_t backing_object = object->backing_object;
1638
1639         VM_OBJECT_ASSERT_WLOCKED(object);
1640         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1641
1642         if (backing_object->ref_count != 1)
1643                 return;
1644
1645         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1646 }
1647
1648 /*
1649  *      vm_object_collapse:
1650  *
1651  *      Collapse an object with the object backing it.
1652  *      Pages in the backing object are moved into the
1653  *      parent, and the backing object is deallocated.
1654  */
1655 void
1656 vm_object_collapse(vm_object_t object)
1657 {
1658         VM_OBJECT_ASSERT_WLOCKED(object);
1659         
1660         while (TRUE) {
1661                 vm_object_t backing_object;
1662
1663                 /*
1664                  * Verify that the conditions are right for collapse:
1665                  *
1666                  * The object exists and the backing object exists.
1667                  */
1668                 if ((backing_object = object->backing_object) == NULL)
1669                         break;
1670
1671                 /*
1672                  * we check the backing object first, because it is most likely
1673                  * not collapsable.
1674                  */
1675                 VM_OBJECT_WLOCK(backing_object);
1676                 if (backing_object->handle != NULL ||
1677                     (backing_object->type != OBJT_DEFAULT &&
1678                      backing_object->type != OBJT_SWAP) ||
1679                     (backing_object->flags & OBJ_DEAD) ||
1680                     object->handle != NULL ||
1681                     (object->type != OBJT_DEFAULT &&
1682                      object->type != OBJT_SWAP) ||
1683                     (object->flags & OBJ_DEAD)) {
1684                         VM_OBJECT_WUNLOCK(backing_object);
1685                         break;
1686                 }
1687
1688                 if (
1689                     object->paging_in_progress != 0 ||
1690                     backing_object->paging_in_progress != 0
1691                 ) {
1692                         vm_object_qcollapse(object);
1693                         VM_OBJECT_WUNLOCK(backing_object);
1694                         break;
1695                 }
1696                 /*
1697                  * We know that we can either collapse the backing object (if
1698                  * the parent is the only reference to it) or (perhaps) have
1699                  * the parent bypass the object if the parent happens to shadow
1700                  * all the resident pages in the entire backing object.
1701                  *
1702                  * This is ignoring pager-backed pages such as swap pages.
1703                  * vm_object_backing_scan fails the shadowing test in this
1704                  * case.
1705                  */
1706                 if (backing_object->ref_count == 1) {
1707                         /*
1708                          * If there is exactly one reference to the backing
1709                          * object, we can collapse it into the parent.  
1710                          */
1711                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1712
1713 #if VM_NRESERVLEVEL > 0
1714                         /*
1715                          * Break any reservations from backing_object.
1716                          */
1717                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1718                                 vm_reserv_break_all(backing_object);
1719 #endif
1720
1721                         /*
1722                          * Move the pager from backing_object to object.
1723                          */
1724                         if (backing_object->type == OBJT_SWAP) {
1725                                 /*
1726                                  * swap_pager_copy() can sleep, in which case
1727                                  * the backing_object's and object's locks are
1728                                  * released and reacquired.
1729                                  * Since swap_pager_copy() is being asked to
1730                                  * destroy the source, it will change the
1731                                  * backing_object's type to OBJT_DEFAULT.
1732                                  */
1733                                 swap_pager_copy(
1734                                     backing_object,
1735                                     object,
1736                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1737
1738                                 /*
1739                                  * Free any cached pages from backing_object.
1740                                  */
1741                                 if (__predict_false(
1742                                     !vm_object_cache_is_empty(backing_object)))
1743                                         vm_page_cache_free(backing_object, 0, 0);
1744                         }
1745                         /*
1746                          * Object now shadows whatever backing_object did.
1747                          * Note that the reference to 
1748                          * backing_object->backing_object moves from within 
1749                          * backing_object to within object.
1750                          */
1751                         LIST_REMOVE(object, shadow_list);
1752                         backing_object->shadow_count--;
1753                         if (backing_object->backing_object) {
1754                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1755                                 LIST_REMOVE(backing_object, shadow_list);
1756                                 LIST_INSERT_HEAD(
1757                                     &backing_object->backing_object->shadow_head,
1758                                     object, shadow_list);
1759                                 /*
1760                                  * The shadow_count has not changed.
1761                                  */
1762                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1763                         }
1764                         object->backing_object = backing_object->backing_object;
1765                         object->backing_object_offset +=
1766                             backing_object->backing_object_offset;
1767
1768                         /*
1769                          * Discard backing_object.
1770                          *
1771                          * Since the backing object has no pages, no pager left,
1772                          * and no object references within it, all that is
1773                          * necessary is to dispose of it.
1774                          */
1775                         KASSERT(backing_object->ref_count == 1, (
1776 "backing_object %p was somehow re-referenced during collapse!",
1777                             backing_object));
1778                         VM_OBJECT_WUNLOCK(backing_object);
1779                         vm_object_destroy(backing_object);
1780
1781                         object_collapses++;
1782                 } else {
1783                         vm_object_t new_backing_object;
1784
1785                         /*
1786                          * If we do not entirely shadow the backing object,
1787                          * there is nothing we can do so we give up.
1788                          */
1789                         if (object->resident_page_count != object->size &&
1790                             vm_object_backing_scan(object,
1791                             OBSC_TEST_ALL_SHADOWED) == 0) {
1792                                 VM_OBJECT_WUNLOCK(backing_object);
1793                                 break;
1794                         }
1795
1796                         /*
1797                          * Make the parent shadow the next object in the
1798                          * chain.  Deallocating backing_object will not remove
1799                          * it, since its reference count is at least 2.
1800                          */
1801                         LIST_REMOVE(object, shadow_list);
1802                         backing_object->shadow_count--;
1803
1804                         new_backing_object = backing_object->backing_object;
1805                         if ((object->backing_object = new_backing_object) != NULL) {
1806                                 VM_OBJECT_WLOCK(new_backing_object);
1807                                 LIST_INSERT_HEAD(
1808                                     &new_backing_object->shadow_head,
1809                                     object,
1810                                     shadow_list
1811                                 );
1812                                 new_backing_object->shadow_count++;
1813                                 vm_object_reference_locked(new_backing_object);
1814                                 VM_OBJECT_WUNLOCK(new_backing_object);
1815                                 object->backing_object_offset +=
1816                                         backing_object->backing_object_offset;
1817                         }
1818
1819                         /*
1820                          * Drop the reference count on backing_object. Since
1821                          * its ref_count was at least 2, it will not vanish.
1822                          */
1823                         backing_object->ref_count--;
1824                         VM_OBJECT_WUNLOCK(backing_object);
1825                         object_bypasses++;
1826                 }
1827
1828                 /*
1829                  * Try again with this object's new backing object.
1830                  */
1831         }
1832 }
1833
1834 /*
1835  *      vm_object_page_remove:
1836  *
1837  *      For the given object, either frees or invalidates each of the
1838  *      specified pages.  In general, a page is freed.  However, if a page is
1839  *      wired for any reason other than the existence of a managed, wired
1840  *      mapping, then it may be invalidated but not removed from the object.
1841  *      Pages are specified by the given range ["start", "end") and the option
1842  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1843  *      extends from "start" to the end of the object.  If the option
1844  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1845  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1846  *      specified, then the pages within the specified range must have no
1847  *      mappings.  Otherwise, if this option is not specified, any mappings to
1848  *      the specified pages are removed before the pages are freed or
1849  *      invalidated.
1850  *
1851  *      In general, this operation should only be performed on objects that
1852  *      contain managed pages.  There are, however, two exceptions.  First, it
1853  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1854  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1855  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1856  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1857  *
1858  *      The object must be locked.
1859  */
1860 void
1861 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1862     int options)
1863 {
1864         vm_page_t p, next;
1865         int wirings;
1866
1867         VM_OBJECT_ASSERT_WLOCKED(object);
1868         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1869             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1870             ("vm_object_page_remove: illegal options for object %p", object));
1871         if (object->resident_page_count == 0)
1872                 goto skipmemq;
1873         vm_object_pip_add(object, 1);
1874 again:
1875         p = vm_page_find_least(object, start);
1876
1877         /*
1878          * Here, the variable "p" is either (1) the page with the least pindex
1879          * greater than or equal to the parameter "start" or (2) NULL. 
1880          */
1881         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1882                 next = TAILQ_NEXT(p, listq);
1883
1884                 /*
1885                  * If the page is wired for any reason besides the existence
1886                  * of managed, wired mappings, then it cannot be freed.  For
1887                  * example, fictitious pages, which represent device memory,
1888                  * are inherently wired and cannot be freed.  They can,
1889                  * however, be invalidated if the option OBJPR_CLEANONLY is
1890                  * not specified.
1891                  */
1892                 vm_page_lock(p);
1893                 if ((wirings = p->wire_count) != 0 &&
1894                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1895                         if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
1896                             0) {
1897                                 pmap_remove_all(p);
1898                                 /* Account for removal of wired mappings. */
1899                                 if (wirings != 0)
1900                                         p->wire_count -= wirings;
1901                         }
1902                         if ((options & OBJPR_CLEANONLY) == 0) {
1903                                 p->valid = 0;
1904                                 vm_page_undirty(p);
1905                         }
1906                         goto next;
1907                 }
1908                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1909                         goto again;
1910                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1911                     ("vm_object_page_remove: page %p is fictitious", p));
1912                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1913                         if ((options & OBJPR_NOTMAPPED) == 0)
1914                                 pmap_remove_write(p);
1915                         if (p->dirty)
1916                                 goto next;
1917                 }
1918                 if ((options & OBJPR_NOTMAPPED) == 0) {
1919                         if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
1920                                 goto next;
1921                         pmap_remove_all(p);
1922                         /* Account for removal of wired mappings. */
1923                         if (wirings != 0) {
1924                                 KASSERT(p->wire_count == wirings,
1925                                     ("inconsistent wire count %d %d %p",
1926                                     p->wire_count, wirings, p));
1927                                 p->wire_count = 0;
1928                                 atomic_subtract_int(&cnt.v_wire_count, 1);
1929                         }
1930                 }
1931                 vm_page_free(p);
1932 next:
1933                 vm_page_unlock(p);
1934         }
1935         vm_object_pip_wakeup(object);
1936 skipmemq:
1937         if (__predict_false(!vm_object_cache_is_empty(object)))
1938                 vm_page_cache_free(object, start, end);
1939 }
1940
1941 /*
1942  *      vm_object_page_cache:
1943  *
1944  *      For the given object, attempt to move the specified clean
1945  *      pages to the cache queue.  If a page is wired for any reason,
1946  *      then it will not be changed.  Pages are specified by the given
1947  *      range ["start", "end").  As a special case, if "end" is zero,
1948  *      then the range extends from "start" to the end of the object.
1949  *      Any mappings to the specified pages are removed before the
1950  *      pages are moved to the cache queue.
1951  *
1952  *      This operation should only be performed on objects that
1953  *      contain non-fictitious, managed pages.
1954  *
1955  *      The object must be locked.
1956  */
1957 void
1958 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1959 {
1960         struct mtx *mtx, *new_mtx;
1961         vm_page_t p, next;
1962
1963         VM_OBJECT_ASSERT_WLOCKED(object);
1964         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1965             ("vm_object_page_cache: illegal object %p", object));
1966         if (object->resident_page_count == 0)
1967                 return;
1968         p = vm_page_find_least(object, start);
1969
1970         /*
1971          * Here, the variable "p" is either (1) the page with the least pindex
1972          * greater than or equal to the parameter "start" or (2) NULL. 
1973          */
1974         mtx = NULL;
1975         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1976                 next = TAILQ_NEXT(p, listq);
1977
1978                 /*
1979                  * Avoid releasing and reacquiring the same page lock.
1980                  */
1981                 new_mtx = vm_page_lockptr(p);
1982                 if (mtx != new_mtx) {
1983                         if (mtx != NULL)
1984                                 mtx_unlock(mtx);
1985                         mtx = new_mtx;
1986                         mtx_lock(mtx);
1987                 }
1988                 vm_page_try_to_cache(p);
1989         }
1990         if (mtx != NULL)
1991                 mtx_unlock(mtx);
1992 }
1993
1994 /*
1995  *      Populate the specified range of the object with valid pages.  Returns
1996  *      TRUE if the range is successfully populated and FALSE otherwise.
1997  *
1998  *      Note: This function should be optimized to pass a larger array of
1999  *      pages to vm_pager_get_pages() before it is applied to a non-
2000  *      OBJT_DEVICE object.
2001  *
2002  *      The object must be locked.
2003  */
2004 boolean_t
2005 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2006 {
2007         vm_page_t m, ma[1];
2008         vm_pindex_t pindex;
2009         int rv;
2010
2011         VM_OBJECT_ASSERT_WLOCKED(object);
2012         for (pindex = start; pindex < end; pindex++) {
2013                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
2014                     VM_ALLOC_RETRY);
2015                 if (m->valid != VM_PAGE_BITS_ALL) {
2016                         ma[0] = m;
2017                         rv = vm_pager_get_pages(object, ma, 1, 0);
2018                         m = vm_page_lookup(object, pindex);
2019                         if (m == NULL)
2020                                 break;
2021                         if (rv != VM_PAGER_OK) {
2022                                 vm_page_lock(m);
2023                                 vm_page_free(m);
2024                                 vm_page_unlock(m);
2025                                 break;
2026                         }
2027                 }
2028                 /*
2029                  * Keep "m" busy because a subsequent iteration may unlock
2030                  * the object.
2031                  */
2032         }
2033         if (pindex > start) {
2034                 m = vm_page_lookup(object, start);
2035                 while (m != NULL && m->pindex < pindex) {
2036                         vm_page_wakeup(m);
2037                         m = TAILQ_NEXT(m, listq);
2038                 }
2039         }
2040         return (pindex == end);
2041 }
2042
2043 /*
2044  *      Routine:        vm_object_coalesce
2045  *      Function:       Coalesces two objects backing up adjoining
2046  *                      regions of memory into a single object.
2047  *
2048  *      returns TRUE if objects were combined.
2049  *
2050  *      NOTE:   Only works at the moment if the second object is NULL -
2051  *              if it's not, which object do we lock first?
2052  *
2053  *      Parameters:
2054  *              prev_object     First object to coalesce
2055  *              prev_offset     Offset into prev_object
2056  *              prev_size       Size of reference to prev_object
2057  *              next_size       Size of reference to the second object
2058  *              reserved        Indicator that extension region has
2059  *                              swap accounted for
2060  *
2061  *      Conditions:
2062  *      The object must *not* be locked.
2063  */
2064 boolean_t
2065 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2066     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2067 {
2068         vm_pindex_t next_pindex;
2069
2070         if (prev_object == NULL)
2071                 return (TRUE);
2072         VM_OBJECT_WLOCK(prev_object);
2073         if (prev_object->type != OBJT_DEFAULT &&
2074             prev_object->type != OBJT_SWAP) {
2075                 VM_OBJECT_WUNLOCK(prev_object);
2076                 return (FALSE);
2077         }
2078
2079         /*
2080          * Try to collapse the object first
2081          */
2082         vm_object_collapse(prev_object);
2083
2084         /*
2085          * Can't coalesce if: . more than one reference . paged out . shadows
2086          * another object . has a copy elsewhere (any of which mean that the
2087          * pages not mapped to prev_entry may be in use anyway)
2088          */
2089         if (prev_object->backing_object != NULL) {
2090                 VM_OBJECT_WUNLOCK(prev_object);
2091                 return (FALSE);
2092         }
2093
2094         prev_size >>= PAGE_SHIFT;
2095         next_size >>= PAGE_SHIFT;
2096         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2097
2098         if ((prev_object->ref_count > 1) &&
2099             (prev_object->size != next_pindex)) {
2100                 VM_OBJECT_WUNLOCK(prev_object);
2101                 return (FALSE);
2102         }
2103
2104         /*
2105          * Account for the charge.
2106          */
2107         if (prev_object->cred != NULL) {
2108
2109                 /*
2110                  * If prev_object was charged, then this mapping,
2111                  * althought not charged now, may become writable
2112                  * later. Non-NULL cred in the object would prevent
2113                  * swap reservation during enabling of the write
2114                  * access, so reserve swap now. Failed reservation
2115                  * cause allocation of the separate object for the map
2116                  * entry, and swap reservation for this entry is
2117                  * managed in appropriate time.
2118                  */
2119                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2120                     prev_object->cred)) {
2121                         return (FALSE);
2122                 }
2123                 prev_object->charge += ptoa(next_size);
2124         }
2125
2126         /*
2127          * Remove any pages that may still be in the object from a previous
2128          * deallocation.
2129          */
2130         if (next_pindex < prev_object->size) {
2131                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2132                     next_size, 0);
2133                 if (prev_object->type == OBJT_SWAP)
2134                         swap_pager_freespace(prev_object,
2135                                              next_pindex, next_size);
2136 #if 0
2137                 if (prev_object->cred != NULL) {
2138                         KASSERT(prev_object->charge >=
2139                             ptoa(prev_object->size - next_pindex),
2140                             ("object %p overcharged 1 %jx %jx", prev_object,
2141                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2142                         prev_object->charge -= ptoa(prev_object->size -
2143                             next_pindex);
2144                 }
2145 #endif
2146         }
2147
2148         /*
2149          * Extend the object if necessary.
2150          */
2151         if (next_pindex + next_size > prev_object->size)
2152                 prev_object->size = next_pindex + next_size;
2153
2154         VM_OBJECT_WUNLOCK(prev_object);
2155         return (TRUE);
2156 }
2157
2158 void
2159 vm_object_set_writeable_dirty(vm_object_t object)
2160 {
2161
2162         VM_OBJECT_ASSERT_WLOCKED(object);
2163         if (object->type != OBJT_VNODE)
2164                 return;
2165         object->generation++;
2166         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2167                 return;
2168         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2169 }
2170
2171 #include "opt_ddb.h"
2172 #ifdef DDB
2173 #include <sys/kernel.h>
2174
2175 #include <sys/cons.h>
2176
2177 #include <ddb/ddb.h>
2178
2179 static int
2180 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2181 {
2182         vm_map_t tmpm;
2183         vm_map_entry_t tmpe;
2184         vm_object_t obj;
2185         int entcount;
2186
2187         if (map == 0)
2188                 return 0;
2189
2190         if (entry == 0) {
2191                 tmpe = map->header.next;
2192                 entcount = map->nentries;
2193                 while (entcount-- && (tmpe != &map->header)) {
2194                         if (_vm_object_in_map(map, object, tmpe)) {
2195                                 return 1;
2196                         }
2197                         tmpe = tmpe->next;
2198                 }
2199         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2200                 tmpm = entry->object.sub_map;
2201                 tmpe = tmpm->header.next;
2202                 entcount = tmpm->nentries;
2203                 while (entcount-- && tmpe != &tmpm->header) {
2204                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2205                                 return 1;
2206                         }
2207                         tmpe = tmpe->next;
2208                 }
2209         } else if ((obj = entry->object.vm_object) != NULL) {
2210                 for (; obj; obj = obj->backing_object)
2211                         if (obj == object) {
2212                                 return 1;
2213                         }
2214         }
2215         return 0;
2216 }
2217
2218 static int
2219 vm_object_in_map(vm_object_t object)
2220 {
2221         struct proc *p;
2222
2223         /* sx_slock(&allproc_lock); */
2224         FOREACH_PROC_IN_SYSTEM(p) {
2225                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2226                         continue;
2227                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2228                         /* sx_sunlock(&allproc_lock); */
2229                         return 1;
2230                 }
2231         }
2232         /* sx_sunlock(&allproc_lock); */
2233         if (_vm_object_in_map(kernel_map, object, 0))
2234                 return 1;
2235         return 0;
2236 }
2237
2238 DB_SHOW_COMMAND(vmochk, vm_object_check)
2239 {
2240         vm_object_t object;
2241
2242         /*
2243          * make sure that internal objs are in a map somewhere
2244          * and none have zero ref counts.
2245          */
2246         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2247                 if (object->handle == NULL &&
2248                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2249                         if (object->ref_count == 0) {
2250                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2251                                         (long)object->size);
2252                         }
2253                         if (!vm_object_in_map(object)) {
2254                                 db_printf(
2255                         "vmochk: internal obj is not in a map: "
2256                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2257                                     object->ref_count, (u_long)object->size, 
2258                                     (u_long)object->size,
2259                                     (void *)object->backing_object);
2260                         }
2261                 }
2262         }
2263 }
2264
2265 /*
2266  *      vm_object_print:        [ debug ]
2267  */
2268 DB_SHOW_COMMAND(object, vm_object_print_static)
2269 {
2270         /* XXX convert args. */
2271         vm_object_t object = (vm_object_t)addr;
2272         boolean_t full = have_addr;
2273
2274         vm_page_t p;
2275
2276         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2277 #define count   was_count
2278
2279         int count;
2280
2281         if (object == NULL)
2282                 return;
2283
2284         db_iprintf(
2285             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2286             object, (int)object->type, (uintmax_t)object->size,
2287             object->resident_page_count, object->ref_count, object->flags,
2288             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2289         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2290             object->shadow_count, 
2291             object->backing_object ? object->backing_object->ref_count : 0,
2292             object->backing_object, (uintmax_t)object->backing_object_offset);
2293
2294         if (!full)
2295                 return;
2296
2297         db_indent += 2;
2298         count = 0;
2299         TAILQ_FOREACH(p, &object->memq, listq) {
2300                 if (count == 0)
2301                         db_iprintf("memory:=");
2302                 else if (count == 6) {
2303                         db_printf("\n");
2304                         db_iprintf(" ...");
2305                         count = 0;
2306                 } else
2307                         db_printf(",");
2308                 count++;
2309
2310                 db_printf("(off=0x%jx,page=0x%jx)",
2311                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2312         }
2313         if (count != 0)
2314                 db_printf("\n");
2315         db_indent -= 2;
2316 }
2317
2318 /* XXX. */
2319 #undef count
2320
2321 /* XXX need this non-static entry for calling from vm_map_print. */
2322 void
2323 vm_object_print(
2324         /* db_expr_t */ long addr,
2325         boolean_t have_addr,
2326         /* db_expr_t */ long count,
2327         char *modif)
2328 {
2329         vm_object_print_static(addr, have_addr, count, modif);
2330 }
2331
2332 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2333 {
2334         vm_object_t object;
2335         vm_pindex_t fidx;
2336         vm_paddr_t pa;
2337         vm_page_t m, prev_m;
2338         int rcount, nl, c;
2339
2340         nl = 0;
2341         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2342                 db_printf("new object: %p\n", (void *)object);
2343                 if (nl > 18) {
2344                         c = cngetc();
2345                         if (c != ' ')
2346                                 return;
2347                         nl = 0;
2348                 }
2349                 nl++;
2350                 rcount = 0;
2351                 fidx = 0;
2352                 pa = -1;
2353                 TAILQ_FOREACH(m, &object->memq, listq) {
2354                         if (m->pindex > 128)
2355                                 break;
2356                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2357                             prev_m->pindex + 1 != m->pindex) {
2358                                 if (rcount) {
2359                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2360                                                 (long)fidx, rcount, (long)pa);
2361                                         if (nl > 18) {
2362                                                 c = cngetc();
2363                                                 if (c != ' ')
2364                                                         return;
2365                                                 nl = 0;
2366                                         }
2367                                         nl++;
2368                                         rcount = 0;
2369                                 }
2370                         }                               
2371                         if (rcount &&
2372                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2373                                 ++rcount;
2374                                 continue;
2375                         }
2376                         if (rcount) {
2377                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2378                                         (long)fidx, rcount, (long)pa);
2379                                 if (nl > 18) {
2380                                         c = cngetc();
2381                                         if (c != ' ')
2382                                                 return;
2383                                         nl = 0;
2384                                 }
2385                                 nl++;
2386                         }
2387                         fidx = m->pindex;
2388                         pa = VM_PAGE_TO_PHYS(m);
2389                         rcount = 1;
2390                 }
2391                 if (rcount) {
2392                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2393                                 (long)fidx, rcount, (long)pa);
2394                         if (nl > 18) {
2395                                 c = cngetc();
2396                                 if (c != ' ')
2397                                         return;
2398                                 nl = 0;
2399                         }
2400                         nl++;
2401                 }
2402         }
2403 }
2404 #endif /* DDB */