]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
IFC @r269962
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_radix.h>
98 #include <vm/vm_reserv.h>
99 #include <vm/uma.h>
100
101 static int old_msync;
102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103     "Use old (insecure) msync behavior");
104
105 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106                     int pagerflags, int flags, boolean_t *clearobjflags,
107                     boolean_t *eio);
108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109                     boolean_t *clearobjflags);
110 static void     vm_object_qcollapse(vm_object_t object);
111 static void     vm_object_vndeallocate(vm_object_t object);
112
113 /*
114  *      Virtual memory objects maintain the actual data
115  *      associated with allocated virtual memory.  A given
116  *      page of memory exists within exactly one object.
117  *
118  *      An object is only deallocated when all "references"
119  *      are given up.  Only one "reference" to a given
120  *      region of an object should be writeable.
121  *
122  *      Associated with each object is a list of all resident
123  *      memory pages belonging to that object; this list is
124  *      maintained by the "vm_page" module, and locked by the object's
125  *      lock.
126  *
127  *      Each object also records a "pager" routine which is
128  *      used to retrieve (and store) pages to the proper backing
129  *      storage.  In addition, objects may be backed by other
130  *      objects from which they were virtual-copied.
131  *
132  *      The only items within the object structure which are
133  *      modified after time of creation are:
134  *              reference count         locked by object's lock
135  *              pager routine           locked by object's lock
136  *
137  */
138
139 struct object_q vm_object_list;
140 struct mtx vm_object_list_mtx;  /* lock for object list and count */
141
142 struct vm_object kernel_object_store;
143 struct vm_object kmem_object_store;
144
145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146     "VM object stats");
147
148 static long object_collapses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150     &object_collapses, 0, "VM object collapses");
151
152 static long object_bypasses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154     &object_bypasses, 0, "VM object bypasses");
155
156 static uma_zone_t obj_zone;
157
158 static int vm_object_zinit(void *mem, int size, int flags);
159
160 #ifdef INVARIANTS
161 static void vm_object_zdtor(void *mem, int size, void *arg);
162
163 static void
164 vm_object_zdtor(void *mem, int size, void *arg)
165 {
166         vm_object_t object;
167
168         object = (vm_object_t)mem;
169         KASSERT(TAILQ_EMPTY(&object->memq),
170             ("object %p has resident pages in its memq", object));
171         KASSERT(vm_radix_is_empty(&object->rtree),
172             ("object %p has resident pages in its trie", object));
173 #if VM_NRESERVLEVEL > 0
174         KASSERT(LIST_EMPTY(&object->rvq),
175             ("object %p has reservations",
176             object));
177 #endif
178         KASSERT(vm_object_cache_is_empty(object),
179             ("object %p has cached pages",
180             object));
181         KASSERT(object->paging_in_progress == 0,
182             ("object %p paging_in_progress = %d",
183             object, object->paging_in_progress));
184         KASSERT(object->resident_page_count == 0,
185             ("object %p resident_page_count = %d",
186             object, object->resident_page_count));
187         KASSERT(object->shadow_count == 0,
188             ("object %p shadow_count = %d",
189             object, object->shadow_count));
190 }
191 #endif
192
193 static int
194 vm_object_zinit(void *mem, int size, int flags)
195 {
196         vm_object_t object;
197
198         object = (vm_object_t)mem;
199         bzero(&object->lock, sizeof(object->lock));
200         rw_init_flags(&object->lock, "vm object", RW_DUPOK);
201
202         /* These are true for any object that has been freed */
203         object->rtree.rt_root = 0;
204         object->rtree.rt_flags = 0;
205         object->paging_in_progress = 0;
206         object->resident_page_count = 0;
207         object->shadow_count = 0;
208         object->cache.rt_root = 0;
209         object->cache.rt_flags = 0;
210         return (0);
211 }
212
213 static void
214 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
215 {
216
217         TAILQ_INIT(&object->memq);
218         LIST_INIT(&object->shadow_head);
219
220         object->type = type;
221         switch (type) {
222         case OBJT_DEAD:
223                 panic("_vm_object_allocate: can't create OBJT_DEAD");
224         case OBJT_DEFAULT:
225         case OBJT_SWAP:
226                 object->flags = OBJ_ONEMAPPING;
227                 break;
228         case OBJT_DEVICE:
229         case OBJT_SG:
230                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
231                 break;
232         case OBJT_MGTDEVICE:
233                 object->flags = OBJ_FICTITIOUS;
234                 break;
235         case OBJT_PHYS:
236                 object->flags = OBJ_UNMANAGED;
237                 break;
238         case OBJT_VNODE:
239                 object->flags = 0;
240                 break;
241         default:
242                 panic("_vm_object_allocate: type %d is undefined", type);
243         }
244         object->size = size;
245         object->generation = 1;
246         object->ref_count = 1;
247         object->memattr = VM_MEMATTR_DEFAULT;
248         object->cred = NULL;
249         object->charge = 0;
250         object->handle = NULL;
251         object->backing_object = NULL;
252         object->backing_object_offset = (vm_ooffset_t) 0;
253 #if VM_NRESERVLEVEL > 0
254         LIST_INIT(&object->rvq);
255 #endif
256
257         mtx_lock(&vm_object_list_mtx);
258         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
259         mtx_unlock(&vm_object_list_mtx);
260 }
261
262 /*
263  *      vm_object_init:
264  *
265  *      Initialize the VM objects module.
266  */
267 void
268 vm_object_init(void)
269 {
270         TAILQ_INIT(&vm_object_list);
271         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
272         
273         rw_init(&kernel_object->lock, "kernel vm object");
274         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
275             kernel_object);
276 #if VM_NRESERVLEVEL > 0
277         kernel_object->flags |= OBJ_COLORED;
278         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
279 #endif
280
281         rw_init(&kmem_object->lock, "kmem vm object");
282         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283             kmem_object);
284 #if VM_NRESERVLEVEL > 0
285         kmem_object->flags |= OBJ_COLORED;
286         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287 #endif
288
289         /*
290          * The lock portion of struct vm_object must be type stable due
291          * to vm_pageout_fallback_object_lock locking a vm object
292          * without holding any references to it.
293          */
294         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
295 #ifdef INVARIANTS
296             vm_object_zdtor,
297 #else
298             NULL,
299 #endif
300             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
301
302         vm_radix_init();
303 }
304
305 void
306 vm_object_clear_flag(vm_object_t object, u_short bits)
307 {
308
309         VM_OBJECT_ASSERT_WLOCKED(object);
310         object->flags &= ~bits;
311 }
312
313 /*
314  *      Sets the default memory attribute for the specified object.  Pages
315  *      that are allocated to this object are by default assigned this memory
316  *      attribute.
317  *
318  *      Presently, this function must be called before any pages are allocated
319  *      to the object.  In the future, this requirement may be relaxed for
320  *      "default" and "swap" objects.
321  */
322 int
323 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
324 {
325
326         VM_OBJECT_ASSERT_WLOCKED(object);
327         switch (object->type) {
328         case OBJT_DEFAULT:
329         case OBJT_DEVICE:
330         case OBJT_MGTDEVICE:
331         case OBJT_PHYS:
332         case OBJT_SG:
333         case OBJT_SWAP:
334         case OBJT_VNODE:
335                 if (!TAILQ_EMPTY(&object->memq))
336                         return (KERN_FAILURE);
337                 break;
338         case OBJT_DEAD:
339                 return (KERN_INVALID_ARGUMENT);
340         default:
341                 panic("vm_object_set_memattr: object %p is of undefined type",
342                     object);
343         }
344         object->memattr = memattr;
345         return (KERN_SUCCESS);
346 }
347
348 void
349 vm_object_pip_add(vm_object_t object, short i)
350 {
351
352         VM_OBJECT_ASSERT_WLOCKED(object);
353         object->paging_in_progress += i;
354 }
355
356 void
357 vm_object_pip_subtract(vm_object_t object, short i)
358 {
359
360         VM_OBJECT_ASSERT_WLOCKED(object);
361         object->paging_in_progress -= i;
362 }
363
364 void
365 vm_object_pip_wakeup(vm_object_t object)
366 {
367
368         VM_OBJECT_ASSERT_WLOCKED(object);
369         object->paging_in_progress--;
370         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
371                 vm_object_clear_flag(object, OBJ_PIPWNT);
372                 wakeup(object);
373         }
374 }
375
376 void
377 vm_object_pip_wakeupn(vm_object_t object, short i)
378 {
379
380         VM_OBJECT_ASSERT_WLOCKED(object);
381         if (i)
382                 object->paging_in_progress -= i;
383         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
384                 vm_object_clear_flag(object, OBJ_PIPWNT);
385                 wakeup(object);
386         }
387 }
388
389 void
390 vm_object_pip_wait(vm_object_t object, char *waitid)
391 {
392
393         VM_OBJECT_ASSERT_WLOCKED(object);
394         while (object->paging_in_progress) {
395                 object->flags |= OBJ_PIPWNT;
396                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
397         }
398 }
399
400 /*
401  *      vm_object_allocate:
402  *
403  *      Returns a new object with the given size.
404  */
405 vm_object_t
406 vm_object_allocate(objtype_t type, vm_pindex_t size)
407 {
408         vm_object_t object;
409
410         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
411         _vm_object_allocate(type, size, object);
412         return (object);
413 }
414
415
416 /*
417  *      vm_object_reference:
418  *
419  *      Gets another reference to the given object.  Note: OBJ_DEAD
420  *      objects can be referenced during final cleaning.
421  */
422 void
423 vm_object_reference(vm_object_t object)
424 {
425         if (object == NULL)
426                 return;
427         VM_OBJECT_WLOCK(object);
428         vm_object_reference_locked(object);
429         VM_OBJECT_WUNLOCK(object);
430 }
431
432 /*
433  *      vm_object_reference_locked:
434  *
435  *      Gets another reference to the given object.
436  *
437  *      The object must be locked.
438  */
439 void
440 vm_object_reference_locked(vm_object_t object)
441 {
442         struct vnode *vp;
443
444         VM_OBJECT_ASSERT_WLOCKED(object);
445         object->ref_count++;
446         if (object->type == OBJT_VNODE) {
447                 vp = object->handle;
448                 vref(vp);
449         }
450 }
451
452 /*
453  * Handle deallocating an object of type OBJT_VNODE.
454  */
455 static void
456 vm_object_vndeallocate(vm_object_t object)
457 {
458         struct vnode *vp = (struct vnode *) object->handle;
459
460         VM_OBJECT_ASSERT_WLOCKED(object);
461         KASSERT(object->type == OBJT_VNODE,
462             ("vm_object_vndeallocate: not a vnode object"));
463         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
464 #ifdef INVARIANTS
465         if (object->ref_count == 0) {
466                 vprint("vm_object_vndeallocate", vp);
467                 panic("vm_object_vndeallocate: bad object reference count");
468         }
469 #endif
470
471         if (object->ref_count > 1) {
472                 object->ref_count--;
473                 VM_OBJECT_WUNLOCK(object);
474                 /* vrele may need the vnode lock. */
475                 vrele(vp);
476         } else {
477                 vhold(vp);
478                 VM_OBJECT_WUNLOCK(object);
479                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
480                 vdrop(vp);
481                 VM_OBJECT_WLOCK(object);
482                 object->ref_count--;
483                 if (object->type == OBJT_DEAD) {
484                         VM_OBJECT_WUNLOCK(object);
485                         VOP_UNLOCK(vp, 0);
486                 } else {
487                         if (object->ref_count == 0)
488                                 VOP_UNSET_TEXT(vp);
489                         VM_OBJECT_WUNLOCK(object);
490                         vput(vp);
491                 }
492         }
493 }
494
495 /*
496  *      vm_object_deallocate:
497  *
498  *      Release a reference to the specified object,
499  *      gained either through a vm_object_allocate
500  *      or a vm_object_reference call.  When all references
501  *      are gone, storage associated with this object
502  *      may be relinquished.
503  *
504  *      No object may be locked.
505  */
506 void
507 vm_object_deallocate(vm_object_t object)
508 {
509         vm_object_t temp;
510         struct vnode *vp;
511
512         while (object != NULL) {
513                 VM_OBJECT_WLOCK(object);
514                 if (object->type == OBJT_VNODE) {
515                         vm_object_vndeallocate(object);
516                         return;
517                 }
518
519                 KASSERT(object->ref_count != 0,
520                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
521
522                 /*
523                  * If the reference count goes to 0 we start calling
524                  * vm_object_terminate() on the object chain.
525                  * A ref count of 1 may be a special case depending on the
526                  * shadow count being 0 or 1.
527                  */
528                 object->ref_count--;
529                 if (object->ref_count > 1) {
530                         VM_OBJECT_WUNLOCK(object);
531                         return;
532                 } else if (object->ref_count == 1) {
533                         if (object->type == OBJT_SWAP &&
534                             (object->flags & OBJ_TMPFS) != 0) {
535                                 vp = object->un_pager.swp.swp_tmpfs;
536                                 vhold(vp);
537                                 VM_OBJECT_WUNLOCK(object);
538                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
539                                 VM_OBJECT_WLOCK(object);
540                                 if (object->type == OBJT_DEAD ||
541                                     object->ref_count != 1) {
542                                         VM_OBJECT_WUNLOCK(object);
543                                         VOP_UNLOCK(vp, 0);
544                                         vdrop(vp);
545                                         return;
546                                 }
547                                 if ((object->flags & OBJ_TMPFS) != 0)
548                                         VOP_UNSET_TEXT(vp);
549                                 VOP_UNLOCK(vp, 0);
550                                 vdrop(vp);
551                         }
552                         if (object->shadow_count == 0 &&
553                             object->handle == NULL &&
554                             (object->type == OBJT_DEFAULT ||
555                             (object->type == OBJT_SWAP &&
556                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
557                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
558                         } else if ((object->shadow_count == 1) &&
559                             (object->handle == NULL) &&
560                             (object->type == OBJT_DEFAULT ||
561                              object->type == OBJT_SWAP)) {
562                                 vm_object_t robject;
563
564                                 robject = LIST_FIRST(&object->shadow_head);
565                                 KASSERT(robject != NULL,
566                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
567                                          object->ref_count,
568                                          object->shadow_count));
569                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
570                                     ("shadowed tmpfs v_object %p", object));
571                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
572                                         /*
573                                          * Avoid a potential deadlock.
574                                          */
575                                         object->ref_count++;
576                                         VM_OBJECT_WUNLOCK(object);
577                                         /*
578                                          * More likely than not the thread
579                                          * holding robject's lock has lower
580                                          * priority than the current thread.
581                                          * Let the lower priority thread run.
582                                          */
583                                         pause("vmo_de", 1);
584                                         continue;
585                                 }
586                                 /*
587                                  * Collapse object into its shadow unless its
588                                  * shadow is dead.  In that case, object will
589                                  * be deallocated by the thread that is
590                                  * deallocating its shadow.
591                                  */
592                                 if ((robject->flags & OBJ_DEAD) == 0 &&
593                                     (robject->handle == NULL) &&
594                                     (robject->type == OBJT_DEFAULT ||
595                                      robject->type == OBJT_SWAP)) {
596
597                                         robject->ref_count++;
598 retry:
599                                         if (robject->paging_in_progress) {
600                                                 VM_OBJECT_WUNLOCK(object);
601                                                 vm_object_pip_wait(robject,
602                                                     "objde1");
603                                                 temp = robject->backing_object;
604                                                 if (object == temp) {
605                                                         VM_OBJECT_WLOCK(object);
606                                                         goto retry;
607                                                 }
608                                         } else if (object->paging_in_progress) {
609                                                 VM_OBJECT_WUNLOCK(robject);
610                                                 object->flags |= OBJ_PIPWNT;
611                                                 VM_OBJECT_SLEEP(object, object,
612                                                     PDROP | PVM, "objde2", 0);
613                                                 VM_OBJECT_WLOCK(robject);
614                                                 temp = robject->backing_object;
615                                                 if (object == temp) {
616                                                         VM_OBJECT_WLOCK(object);
617                                                         goto retry;
618                                                 }
619                                         } else
620                                                 VM_OBJECT_WUNLOCK(object);
621
622                                         if (robject->ref_count == 1) {
623                                                 robject->ref_count--;
624                                                 object = robject;
625                                                 goto doterm;
626                                         }
627                                         object = robject;
628                                         vm_object_collapse(object);
629                                         VM_OBJECT_WUNLOCK(object);
630                                         continue;
631                                 }
632                                 VM_OBJECT_WUNLOCK(robject);
633                         }
634                         VM_OBJECT_WUNLOCK(object);
635                         return;
636                 }
637 doterm:
638                 temp = object->backing_object;
639                 if (temp != NULL) {
640                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
641                             ("shadowed tmpfs v_object 2 %p", object));
642                         VM_OBJECT_WLOCK(temp);
643                         LIST_REMOVE(object, shadow_list);
644                         temp->shadow_count--;
645                         VM_OBJECT_WUNLOCK(temp);
646                         object->backing_object = NULL;
647                 }
648                 /*
649                  * Don't double-terminate, we could be in a termination
650                  * recursion due to the terminate having to sync data
651                  * to disk.
652                  */
653                 if ((object->flags & OBJ_DEAD) == 0)
654                         vm_object_terminate(object);
655                 else
656                         VM_OBJECT_WUNLOCK(object);
657                 object = temp;
658         }
659 }
660
661 /*
662  *      vm_object_destroy removes the object from the global object list
663  *      and frees the space for the object.
664  */
665 void
666 vm_object_destroy(vm_object_t object)
667 {
668
669         /*
670          * Remove the object from the global object list.
671          */
672         mtx_lock(&vm_object_list_mtx);
673         TAILQ_REMOVE(&vm_object_list, object, object_list);
674         mtx_unlock(&vm_object_list_mtx);
675
676         /*
677          * Release the allocation charge.
678          */
679         if (object->cred != NULL) {
680                 KASSERT(object->type == OBJT_DEFAULT ||
681                     object->type == OBJT_SWAP,
682                     ("%s: non-swap obj %p has cred", __func__, object));
683                 swap_release_by_cred(object->charge, object->cred);
684                 object->charge = 0;
685                 crfree(object->cred);
686                 object->cred = NULL;
687         }
688
689         /*
690          * Free the space for the object.
691          */
692         uma_zfree(obj_zone, object);
693 }
694
695 /*
696  *      vm_object_terminate actually destroys the specified object, freeing
697  *      up all previously used resources.
698  *
699  *      The object must be locked.
700  *      This routine may block.
701  */
702 void
703 vm_object_terminate(vm_object_t object)
704 {
705         vm_page_t p, p_next;
706
707         VM_OBJECT_ASSERT_WLOCKED(object);
708
709         /*
710          * Make sure no one uses us.
711          */
712         vm_object_set_flag(object, OBJ_DEAD);
713
714         /*
715          * wait for the pageout daemon to be done with the object
716          */
717         vm_object_pip_wait(object, "objtrm");
718
719         KASSERT(!object->paging_in_progress,
720                 ("vm_object_terminate: pageout in progress"));
721
722         /*
723          * Clean and free the pages, as appropriate. All references to the
724          * object are gone, so we don't need to lock it.
725          */
726         if (object->type == OBJT_VNODE) {
727                 struct vnode *vp = (struct vnode *)object->handle;
728
729                 /*
730                  * Clean pages and flush buffers.
731                  */
732                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
733                 VM_OBJECT_WUNLOCK(object);
734
735                 vinvalbuf(vp, V_SAVE, 0, 0);
736
737                 VM_OBJECT_WLOCK(object);
738         }
739
740         KASSERT(object->ref_count == 0, 
741                 ("vm_object_terminate: object with references, ref_count=%d",
742                 object->ref_count));
743
744         /*
745          * Free any remaining pageable pages.  This also removes them from the
746          * paging queues.  However, don't free wired pages, just remove them
747          * from the object.  Rather than incrementally removing each page from
748          * the object, the page and object are reset to any empty state. 
749          */
750         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
751                 vm_page_assert_unbusied(p);
752                 vm_page_lock(p);
753                 /*
754                  * Optimize the page's removal from the object by resetting
755                  * its "object" field.  Specifically, if the page is not
756                  * wired, then the effect of this assignment is that
757                  * vm_page_free()'s call to vm_page_remove() will return
758                  * immediately without modifying the page or the object.
759                  */ 
760                 p->object = NULL;
761                 if (p->wire_count == 0) {
762                         vm_page_free(p);
763                         PCPU_INC(cnt.v_pfree);
764                 }
765                 vm_page_unlock(p);
766         }
767         /*
768          * If the object contained any pages, then reset it to an empty state.
769          * None of the object's fields, including "resident_page_count", were
770          * modified by the preceding loop.
771          */
772         if (object->resident_page_count != 0) {
773                 vm_radix_reclaim_allnodes(&object->rtree);
774                 TAILQ_INIT(&object->memq);
775                 object->resident_page_count = 0;
776                 if (object->type == OBJT_VNODE)
777                         vdrop(object->handle);
778         }
779
780 #if VM_NRESERVLEVEL > 0
781         if (__predict_false(!LIST_EMPTY(&object->rvq)))
782                 vm_reserv_break_all(object);
783 #endif
784         if (__predict_false(!vm_object_cache_is_empty(object)))
785                 vm_page_cache_free(object, 0, 0);
786
787         /*
788          * Let the pager know object is dead.
789          */
790         vm_pager_deallocate(object);
791         VM_OBJECT_WUNLOCK(object);
792
793         vm_object_destroy(object);
794 }
795
796 /*
797  * Make the page read-only so that we can clear the object flags.  However, if
798  * this is a nosync mmap then the object is likely to stay dirty so do not
799  * mess with the page and do not clear the object flags.  Returns TRUE if the
800  * page should be flushed, and FALSE otherwise.
801  */
802 static boolean_t
803 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
804 {
805
806         /*
807          * If we have been asked to skip nosync pages and this is a
808          * nosync page, skip it.  Note that the object flags were not
809          * cleared in this case so we do not have to set them.
810          */
811         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
812                 *clearobjflags = FALSE;
813                 return (FALSE);
814         } else {
815                 pmap_remove_write(p);
816                 return (p->dirty != 0);
817         }
818 }
819
820 /*
821  *      vm_object_page_clean
822  *
823  *      Clean all dirty pages in the specified range of object.  Leaves page 
824  *      on whatever queue it is currently on.   If NOSYNC is set then do not
825  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
826  *      leaving the object dirty.
827  *
828  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
829  *      synchronous clustering mode implementation.
830  *
831  *      Odd semantics: if start == end, we clean everything.
832  *
833  *      The object must be locked.
834  *
835  *      Returns FALSE if some page from the range was not written, as
836  *      reported by the pager, and TRUE otherwise.
837  */
838 boolean_t
839 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
840     int flags)
841 {
842         vm_page_t np, p;
843         vm_pindex_t pi, tend, tstart;
844         int curgeneration, n, pagerflags;
845         boolean_t clearobjflags, eio, res;
846
847         VM_OBJECT_ASSERT_WLOCKED(object);
848
849         /*
850          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
851          * objects.  The check below prevents the function from
852          * operating on non-vnode objects.
853          */
854         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
855             object->resident_page_count == 0)
856                 return (TRUE);
857
858         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
859             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
860         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
861
862         tstart = OFF_TO_IDX(start);
863         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
864         clearobjflags = tstart == 0 && tend >= object->size;
865         res = TRUE;
866
867 rescan:
868         curgeneration = object->generation;
869
870         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
871                 pi = p->pindex;
872                 if (pi >= tend)
873                         break;
874                 np = TAILQ_NEXT(p, listq);
875                 if (p->valid == 0)
876                         continue;
877                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
878                         if (object->generation != curgeneration) {
879                                 if ((flags & OBJPC_SYNC) != 0)
880                                         goto rescan;
881                                 else
882                                         clearobjflags = FALSE;
883                         }
884                         np = vm_page_find_least(object, pi);
885                         continue;
886                 }
887                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
888                         continue;
889
890                 n = vm_object_page_collect_flush(object, p, pagerflags,
891                     flags, &clearobjflags, &eio);
892                 if (eio) {
893                         res = FALSE;
894                         clearobjflags = FALSE;
895                 }
896                 if (object->generation != curgeneration) {
897                         if ((flags & OBJPC_SYNC) != 0)
898                                 goto rescan;
899                         else
900                                 clearobjflags = FALSE;
901                 }
902
903                 /*
904                  * If the VOP_PUTPAGES() did a truncated write, so
905                  * that even the first page of the run is not fully
906                  * written, vm_pageout_flush() returns 0 as the run
907                  * length.  Since the condition that caused truncated
908                  * write may be permanent, e.g. exhausted free space,
909                  * accepting n == 0 would cause an infinite loop.
910                  *
911                  * Forwarding the iterator leaves the unwritten page
912                  * behind, but there is not much we can do there if
913                  * filesystem refuses to write it.
914                  */
915                 if (n == 0) {
916                         n = 1;
917                         clearobjflags = FALSE;
918                 }
919                 np = vm_page_find_least(object, pi + n);
920         }
921 #if 0
922         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
923 #endif
924
925         if (clearobjflags)
926                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
927         return (res);
928 }
929
930 static int
931 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
932     int flags, boolean_t *clearobjflags, boolean_t *eio)
933 {
934         vm_page_t ma[vm_pageout_page_count], p_first, tp;
935         int count, i, mreq, runlen;
936
937         vm_page_lock_assert(p, MA_NOTOWNED);
938         VM_OBJECT_ASSERT_WLOCKED(object);
939
940         count = 1;
941         mreq = 0;
942
943         for (tp = p; count < vm_pageout_page_count; count++) {
944                 tp = vm_page_next(tp);
945                 if (tp == NULL || vm_page_busied(tp))
946                         break;
947                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
948                         break;
949         }
950
951         for (p_first = p; count < vm_pageout_page_count; count++) {
952                 tp = vm_page_prev(p_first);
953                 if (tp == NULL || vm_page_busied(tp))
954                         break;
955                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
956                         break;
957                 p_first = tp;
958                 mreq++;
959         }
960
961         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
962                 ma[i] = tp;
963
964         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
965         return (runlen);
966 }
967
968 /*
969  * Note that there is absolutely no sense in writing out
970  * anonymous objects, so we track down the vnode object
971  * to write out.
972  * We invalidate (remove) all pages from the address space
973  * for semantic correctness.
974  *
975  * If the backing object is a device object with unmanaged pages, then any
976  * mappings to the specified range of pages must be removed before this
977  * function is called.
978  *
979  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
980  * may start out with a NULL object.
981  */
982 boolean_t
983 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
984     boolean_t syncio, boolean_t invalidate)
985 {
986         vm_object_t backing_object;
987         struct vnode *vp;
988         struct mount *mp;
989         int error, flags, fsync_after;
990         boolean_t res;
991
992         if (object == NULL)
993                 return (TRUE);
994         res = TRUE;
995         error = 0;
996         VM_OBJECT_WLOCK(object);
997         while ((backing_object = object->backing_object) != NULL) {
998                 VM_OBJECT_WLOCK(backing_object);
999                 offset += object->backing_object_offset;
1000                 VM_OBJECT_WUNLOCK(object);
1001                 object = backing_object;
1002                 if (object->size < OFF_TO_IDX(offset + size))
1003                         size = IDX_TO_OFF(object->size) - offset;
1004         }
1005         /*
1006          * Flush pages if writing is allowed, invalidate them
1007          * if invalidation requested.  Pages undergoing I/O
1008          * will be ignored by vm_object_page_remove().
1009          *
1010          * We cannot lock the vnode and then wait for paging
1011          * to complete without deadlocking against vm_fault.
1012          * Instead we simply call vm_object_page_remove() and
1013          * allow it to block internally on a page-by-page
1014          * basis when it encounters pages undergoing async
1015          * I/O.
1016          */
1017         if (object->type == OBJT_VNODE &&
1018             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1019                 vp = object->handle;
1020                 VM_OBJECT_WUNLOCK(object);
1021                 (void) vn_start_write(vp, &mp, V_WAIT);
1022                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1023                 if (syncio && !invalidate && offset == 0 &&
1024                     OFF_TO_IDX(size) == object->size) {
1025                         /*
1026                          * If syncing the whole mapping of the file,
1027                          * it is faster to schedule all the writes in
1028                          * async mode, also allowing the clustering,
1029                          * and then wait for i/o to complete.
1030                          */
1031                         flags = 0;
1032                         fsync_after = TRUE;
1033                 } else {
1034                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1035                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1036                         fsync_after = FALSE;
1037                 }
1038                 VM_OBJECT_WLOCK(object);
1039                 res = vm_object_page_clean(object, offset, offset + size,
1040                     flags);
1041                 VM_OBJECT_WUNLOCK(object);
1042                 if (fsync_after)
1043                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1044                 VOP_UNLOCK(vp, 0);
1045                 vn_finished_write(mp);
1046                 if (error != 0)
1047                         res = FALSE;
1048                 VM_OBJECT_WLOCK(object);
1049         }
1050         if ((object->type == OBJT_VNODE ||
1051              object->type == OBJT_DEVICE) && invalidate) {
1052                 if (object->type == OBJT_DEVICE)
1053                         /*
1054                          * The option OBJPR_NOTMAPPED must be passed here
1055                          * because vm_object_page_remove() cannot remove
1056                          * unmanaged mappings.
1057                          */
1058                         flags = OBJPR_NOTMAPPED;
1059                 else if (old_msync)
1060                         flags = OBJPR_NOTWIRED;
1061                 else
1062                         flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
1063                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1064                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1065         }
1066         VM_OBJECT_WUNLOCK(object);
1067         return (res);
1068 }
1069
1070 /*
1071  *      vm_object_madvise:
1072  *
1073  *      Implements the madvise function at the object/page level.
1074  *
1075  *      MADV_WILLNEED   (any object)
1076  *
1077  *          Activate the specified pages if they are resident.
1078  *
1079  *      MADV_DONTNEED   (any object)
1080  *
1081  *          Deactivate the specified pages if they are resident.
1082  *
1083  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1084  *                       OBJ_ONEMAPPING only)
1085  *
1086  *          Deactivate and clean the specified pages if they are
1087  *          resident.  This permits the process to reuse the pages
1088  *          without faulting or the kernel to reclaim the pages
1089  *          without I/O.
1090  */
1091 void
1092 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1093     int advise)
1094 {
1095         vm_pindex_t tpindex;
1096         vm_object_t backing_object, tobject;
1097         vm_page_t m;
1098
1099         if (object == NULL)
1100                 return;
1101         VM_OBJECT_WLOCK(object);
1102         /*
1103          * Locate and adjust resident pages
1104          */
1105         for (; pindex < end; pindex += 1) {
1106 relookup:
1107                 tobject = object;
1108                 tpindex = pindex;
1109 shadowlookup:
1110                 /*
1111                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1112                  * and those pages must be OBJ_ONEMAPPING.
1113                  */
1114                 if (advise == MADV_FREE) {
1115                         if ((tobject->type != OBJT_DEFAULT &&
1116                              tobject->type != OBJT_SWAP) ||
1117                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1118                                 goto unlock_tobject;
1119                         }
1120                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1121                         goto unlock_tobject;
1122                 m = vm_page_lookup(tobject, tpindex);
1123                 if (m == NULL && advise == MADV_WILLNEED) {
1124                         /*
1125                          * If the page is cached, reactivate it.
1126                          */
1127                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1128                             VM_ALLOC_NOBUSY);
1129                 }
1130                 if (m == NULL) {
1131                         /*
1132                          * There may be swap even if there is no backing page
1133                          */
1134                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1135                                 swap_pager_freespace(tobject, tpindex, 1);
1136                         /*
1137                          * next object
1138                          */
1139                         backing_object = tobject->backing_object;
1140                         if (backing_object == NULL)
1141                                 goto unlock_tobject;
1142                         VM_OBJECT_WLOCK(backing_object);
1143                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1144                         if (tobject != object)
1145                                 VM_OBJECT_WUNLOCK(tobject);
1146                         tobject = backing_object;
1147                         goto shadowlookup;
1148                 } else if (m->valid != VM_PAGE_BITS_ALL)
1149                         goto unlock_tobject;
1150                 /*
1151                  * If the page is not in a normal state, skip it.
1152                  */
1153                 vm_page_lock(m);
1154                 if (m->hold_count != 0 || m->wire_count != 0) {
1155                         vm_page_unlock(m);
1156                         goto unlock_tobject;
1157                 }
1158                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1159                     ("vm_object_madvise: page %p is fictitious", m));
1160                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1161                     ("vm_object_madvise: page %p is not managed", m));
1162                 if (vm_page_busied(m)) {
1163                         if (advise == MADV_WILLNEED) {
1164                                 /*
1165                                  * Reference the page before unlocking and
1166                                  * sleeping so that the page daemon is less
1167                                  * likely to reclaim it. 
1168                                  */
1169                                 vm_page_aflag_set(m, PGA_REFERENCED);
1170                         }
1171                         if (object != tobject)
1172                                 VM_OBJECT_WUNLOCK(object);
1173                         VM_OBJECT_WUNLOCK(tobject);
1174                         vm_page_busy_sleep(m, "madvpo");
1175                         VM_OBJECT_WLOCK(object);
1176                         goto relookup;
1177                 }
1178                 if (advise == MADV_WILLNEED) {
1179                         vm_page_activate(m);
1180                 } else {
1181                         vm_page_advise(m, advise);
1182                 }
1183                 vm_page_unlock(m);
1184                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1185                         swap_pager_freespace(tobject, tpindex, 1);
1186 unlock_tobject:
1187                 if (tobject != object)
1188                         VM_OBJECT_WUNLOCK(tobject);
1189         }       
1190         VM_OBJECT_WUNLOCK(object);
1191 }
1192
1193 /*
1194  *      vm_object_shadow:
1195  *
1196  *      Create a new object which is backed by the
1197  *      specified existing object range.  The source
1198  *      object reference is deallocated.
1199  *
1200  *      The new object and offset into that object
1201  *      are returned in the source parameters.
1202  */
1203 void
1204 vm_object_shadow(
1205         vm_object_t *object,    /* IN/OUT */
1206         vm_ooffset_t *offset,   /* IN/OUT */
1207         vm_size_t length)
1208 {
1209         vm_object_t source;
1210         vm_object_t result;
1211
1212         source = *object;
1213
1214         /*
1215          * Don't create the new object if the old object isn't shared.
1216          */
1217         if (source != NULL) {
1218                 VM_OBJECT_WLOCK(source);
1219                 if (source->ref_count == 1 &&
1220                     source->handle == NULL &&
1221                     (source->type == OBJT_DEFAULT ||
1222                      source->type == OBJT_SWAP)) {
1223                         VM_OBJECT_WUNLOCK(source);
1224                         return;
1225                 }
1226                 VM_OBJECT_WUNLOCK(source);
1227         }
1228
1229         /*
1230          * Allocate a new object with the given length.
1231          */
1232         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1233
1234         /*
1235          * The new object shadows the source object, adding a reference to it.
1236          * Our caller changes his reference to point to the new object,
1237          * removing a reference to the source object.  Net result: no change
1238          * of reference count.
1239          *
1240          * Try to optimize the result object's page color when shadowing
1241          * in order to maintain page coloring consistency in the combined 
1242          * shadowed object.
1243          */
1244         result->backing_object = source;
1245         /*
1246          * Store the offset into the source object, and fix up the offset into
1247          * the new object.
1248          */
1249         result->backing_object_offset = *offset;
1250         if (source != NULL) {
1251                 VM_OBJECT_WLOCK(source);
1252                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1253                 source->shadow_count++;
1254 #if VM_NRESERVLEVEL > 0
1255                 result->flags |= source->flags & OBJ_COLORED;
1256                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1257                     ((1 << (VM_NFREEORDER - 1)) - 1);
1258 #endif
1259                 VM_OBJECT_WUNLOCK(source);
1260         }
1261
1262
1263         /*
1264          * Return the new things
1265          */
1266         *offset = 0;
1267         *object = result;
1268 }
1269
1270 /*
1271  *      vm_object_split:
1272  *
1273  * Split the pages in a map entry into a new object.  This affords
1274  * easier removal of unused pages, and keeps object inheritance from
1275  * being a negative impact on memory usage.
1276  */
1277 void
1278 vm_object_split(vm_map_entry_t entry)
1279 {
1280         vm_page_t m, m_next;
1281         vm_object_t orig_object, new_object, source;
1282         vm_pindex_t idx, offidxstart;
1283         vm_size_t size;
1284
1285         orig_object = entry->object.vm_object;
1286         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1287                 return;
1288         if (orig_object->ref_count <= 1)
1289                 return;
1290         VM_OBJECT_WUNLOCK(orig_object);
1291
1292         offidxstart = OFF_TO_IDX(entry->offset);
1293         size = atop(entry->end - entry->start);
1294
1295         /*
1296          * If swap_pager_copy() is later called, it will convert new_object
1297          * into a swap object.
1298          */
1299         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1300
1301         /*
1302          * At this point, the new object is still private, so the order in
1303          * which the original and new objects are locked does not matter.
1304          */
1305         VM_OBJECT_WLOCK(new_object);
1306         VM_OBJECT_WLOCK(orig_object);
1307         source = orig_object->backing_object;
1308         if (source != NULL) {
1309                 VM_OBJECT_WLOCK(source);
1310                 if ((source->flags & OBJ_DEAD) != 0) {
1311                         VM_OBJECT_WUNLOCK(source);
1312                         VM_OBJECT_WUNLOCK(orig_object);
1313                         VM_OBJECT_WUNLOCK(new_object);
1314                         vm_object_deallocate(new_object);
1315                         VM_OBJECT_WLOCK(orig_object);
1316                         return;
1317                 }
1318                 LIST_INSERT_HEAD(&source->shadow_head,
1319                                   new_object, shadow_list);
1320                 source->shadow_count++;
1321                 vm_object_reference_locked(source);     /* for new_object */
1322                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1323                 VM_OBJECT_WUNLOCK(source);
1324                 new_object->backing_object_offset = 
1325                         orig_object->backing_object_offset + entry->offset;
1326                 new_object->backing_object = source;
1327         }
1328         if (orig_object->cred != NULL) {
1329                 new_object->cred = orig_object->cred;
1330                 crhold(orig_object->cred);
1331                 new_object->charge = ptoa(size);
1332                 KASSERT(orig_object->charge >= ptoa(size),
1333                     ("orig_object->charge < 0"));
1334                 orig_object->charge -= ptoa(size);
1335         }
1336 retry:
1337         m = vm_page_find_least(orig_object, offidxstart);
1338         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1339             m = m_next) {
1340                 m_next = TAILQ_NEXT(m, listq);
1341
1342                 /*
1343                  * We must wait for pending I/O to complete before we can
1344                  * rename the page.
1345                  *
1346                  * We do not have to VM_PROT_NONE the page as mappings should
1347                  * not be changed by this operation.
1348                  */
1349                 if (vm_page_busied(m)) {
1350                         VM_OBJECT_WUNLOCK(new_object);
1351                         vm_page_lock(m);
1352                         VM_OBJECT_WUNLOCK(orig_object);
1353                         vm_page_busy_sleep(m, "spltwt");
1354                         VM_OBJECT_WLOCK(orig_object);
1355                         VM_OBJECT_WLOCK(new_object);
1356                         goto retry;
1357                 }
1358
1359                 /* vm_page_rename() will handle dirty and cache. */
1360                 if (vm_page_rename(m, new_object, idx)) {
1361                         VM_OBJECT_WUNLOCK(new_object);
1362                         VM_OBJECT_WUNLOCK(orig_object);
1363                         VM_WAIT;
1364                         VM_OBJECT_WLOCK(orig_object);
1365                         VM_OBJECT_WLOCK(new_object);
1366                         goto retry;
1367                 }
1368 #if VM_NRESERVLEVEL > 0
1369                 /*
1370                  * If some of the reservation's allocated pages remain with
1371                  * the original object, then transferring the reservation to
1372                  * the new object is neither particularly beneficial nor
1373                  * particularly harmful as compared to leaving the reservation
1374                  * with the original object.  If, however, all of the
1375                  * reservation's allocated pages are transferred to the new
1376                  * object, then transferring the reservation is typically
1377                  * beneficial.  Determining which of these two cases applies
1378                  * would be more costly than unconditionally renaming the
1379                  * reservation.
1380                  */
1381                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1382 #endif
1383                 if (orig_object->type == OBJT_SWAP)
1384                         vm_page_xbusy(m);
1385         }
1386         if (orig_object->type == OBJT_SWAP) {
1387                 /*
1388                  * swap_pager_copy() can sleep, in which case the orig_object's
1389                  * and new_object's locks are released and reacquired. 
1390                  */
1391                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1392                 TAILQ_FOREACH(m, &new_object->memq, listq)
1393                         vm_page_xunbusy(m);
1394
1395                 /*
1396                  * Transfer any cached pages from orig_object to new_object.
1397                  * If swap_pager_copy() found swapped out pages within the
1398                  * specified range of orig_object, then it changed
1399                  * new_object's type to OBJT_SWAP when it transferred those
1400                  * pages to new_object.  Otherwise, new_object's type
1401                  * should still be OBJT_DEFAULT and orig_object should not
1402                  * contain any cached pages within the specified range.
1403                  */
1404                 if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1405                         vm_page_cache_transfer(orig_object, offidxstart,
1406                             new_object);
1407         }
1408         VM_OBJECT_WUNLOCK(orig_object);
1409         VM_OBJECT_WUNLOCK(new_object);
1410         entry->object.vm_object = new_object;
1411         entry->offset = 0LL;
1412         vm_object_deallocate(orig_object);
1413         VM_OBJECT_WLOCK(new_object);
1414 }
1415
1416 #define OBSC_TEST_ALL_SHADOWED  0x0001
1417 #define OBSC_COLLAPSE_NOWAIT    0x0002
1418 #define OBSC_COLLAPSE_WAIT      0x0004
1419
1420 static int
1421 vm_object_backing_scan(vm_object_t object, int op)
1422 {
1423         int r = 1;
1424         vm_page_t p;
1425         vm_object_t backing_object;
1426         vm_pindex_t backing_offset_index;
1427
1428         VM_OBJECT_ASSERT_WLOCKED(object);
1429         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1430
1431         backing_object = object->backing_object;
1432         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1433
1434         /*
1435          * Initial conditions
1436          */
1437         if (op & OBSC_TEST_ALL_SHADOWED) {
1438                 /*
1439                  * We do not want to have to test for the existence of cache
1440                  * or swap pages in the backing object.  XXX but with the
1441                  * new swapper this would be pretty easy to do.
1442                  *
1443                  * XXX what about anonymous MAP_SHARED memory that hasn't
1444                  * been ZFOD faulted yet?  If we do not test for this, the
1445                  * shadow test may succeed! XXX
1446                  */
1447                 if (backing_object->type != OBJT_DEFAULT) {
1448                         return (0);
1449                 }
1450         }
1451         if (op & OBSC_COLLAPSE_WAIT) {
1452                 vm_object_set_flag(backing_object, OBJ_DEAD);
1453         }
1454
1455         /*
1456          * Our scan
1457          */
1458         p = TAILQ_FIRST(&backing_object->memq);
1459         while (p) {
1460                 vm_page_t next = TAILQ_NEXT(p, listq);
1461                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1462
1463                 if (op & OBSC_TEST_ALL_SHADOWED) {
1464                         vm_page_t pp;
1465
1466                         /*
1467                          * Ignore pages outside the parent object's range
1468                          * and outside the parent object's mapping of the 
1469                          * backing object.
1470                          *
1471                          * note that we do not busy the backing object's
1472                          * page.
1473                          */
1474                         if (
1475                             p->pindex < backing_offset_index ||
1476                             new_pindex >= object->size
1477                         ) {
1478                                 p = next;
1479                                 continue;
1480                         }
1481
1482                         /*
1483                          * See if the parent has the page or if the parent's
1484                          * object pager has the page.  If the parent has the
1485                          * page but the page is not valid, the parent's
1486                          * object pager must have the page.
1487                          *
1488                          * If this fails, the parent does not completely shadow
1489                          * the object and we might as well give up now.
1490                          */
1491
1492                         pp = vm_page_lookup(object, new_pindex);
1493                         if (
1494                             (pp == NULL || pp->valid == 0) &&
1495                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1496                         ) {
1497                                 r = 0;
1498                                 break;
1499                         }
1500                 }
1501
1502                 /*
1503                  * Check for busy page
1504                  */
1505                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1506                         vm_page_t pp;
1507
1508                         if (op & OBSC_COLLAPSE_NOWAIT) {
1509                                 if (!p->valid || vm_page_busied(p)) {
1510                                         p = next;
1511                                         continue;
1512                                 }
1513                         } else if (op & OBSC_COLLAPSE_WAIT) {
1514                                 if (vm_page_busied(p)) {
1515                                         VM_OBJECT_WUNLOCK(object);
1516                                         vm_page_lock(p);
1517                                         VM_OBJECT_WUNLOCK(backing_object);
1518                                         vm_page_busy_sleep(p, "vmocol");
1519                                         VM_OBJECT_WLOCK(object);
1520                                         VM_OBJECT_WLOCK(backing_object);
1521                                         /*
1522                                          * If we slept, anything could have
1523                                          * happened.  Since the object is
1524                                          * marked dead, the backing offset
1525                                          * should not have changed so we
1526                                          * just restart our scan.
1527                                          */
1528                                         p = TAILQ_FIRST(&backing_object->memq);
1529                                         continue;
1530                                 }
1531                         }
1532
1533                         KASSERT(
1534                             p->object == backing_object,
1535                             ("vm_object_backing_scan: object mismatch")
1536                         );
1537
1538                         if (
1539                             p->pindex < backing_offset_index ||
1540                             new_pindex >= object->size
1541                         ) {
1542                                 if (backing_object->type == OBJT_SWAP)
1543                                         swap_pager_freespace(backing_object, 
1544                                             p->pindex, 1);
1545
1546                                 /*
1547                                  * Page is out of the parent object's range, we 
1548                                  * can simply destroy it. 
1549                                  */
1550                                 vm_page_lock(p);
1551                                 KASSERT(!pmap_page_is_mapped(p),
1552                                     ("freeing mapped page %p", p));
1553                                 if (p->wire_count == 0)
1554                                         vm_page_free(p);
1555                                 else
1556                                         vm_page_remove(p);
1557                                 vm_page_unlock(p);
1558                                 p = next;
1559                                 continue;
1560                         }
1561
1562                         pp = vm_page_lookup(object, new_pindex);
1563                         if (
1564                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1565                             (pp != NULL && pp->valid == 0)
1566                         ) {
1567                                 if (backing_object->type == OBJT_SWAP)
1568                                         swap_pager_freespace(backing_object, 
1569                                             p->pindex, 1);
1570
1571                                 /*
1572                                  * The page in the parent is not (yet) valid.
1573                                  * We don't know anything about the state of
1574                                  * the original page.  It might be mapped,
1575                                  * so we must avoid the next if here.
1576                                  *
1577                                  * This is due to a race in vm_fault() where
1578                                  * we must unbusy the original (backing_obj)
1579                                  * page before we can (re)lock the parent.
1580                                  * Hence we can get here.
1581                                  */
1582                                 p = next;
1583                                 continue;
1584                         }
1585                         if (
1586                             pp != NULL ||
1587                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1588                         ) {
1589                                 if (backing_object->type == OBJT_SWAP)
1590                                         swap_pager_freespace(backing_object, 
1591                                             p->pindex, 1);
1592
1593                                 /*
1594                                  * page already exists in parent OR swap exists
1595                                  * for this location in the parent.  Destroy 
1596                                  * the original page from the backing object.
1597                                  *
1598                                  * Leave the parent's page alone
1599                                  */
1600                                 vm_page_lock(p);
1601                                 KASSERT(!pmap_page_is_mapped(p),
1602                                     ("freeing mapped page %p", p));
1603                                 if (p->wire_count == 0)
1604                                         vm_page_free(p);
1605                                 else
1606                                         vm_page_remove(p);
1607                                 vm_page_unlock(p);
1608                                 p = next;
1609                                 continue;
1610                         }
1611
1612                         /*
1613                          * Page does not exist in parent, rename the
1614                          * page from the backing object to the main object. 
1615                          *
1616                          * If the page was mapped to a process, it can remain 
1617                          * mapped through the rename.
1618                          * vm_page_rename() will handle dirty and cache.
1619                          */
1620                         if (vm_page_rename(p, object, new_pindex)) {
1621                                 if (op & OBSC_COLLAPSE_NOWAIT) {
1622                                         p = next;
1623                                         continue;
1624                                 }
1625                                 VM_OBJECT_WLOCK(backing_object);
1626                                 VM_OBJECT_WUNLOCK(object);
1627                                 VM_WAIT;
1628                                 VM_OBJECT_WLOCK(object);
1629                                 VM_OBJECT_WLOCK(backing_object);
1630                                 p = TAILQ_FIRST(&backing_object->memq);
1631                                 continue;
1632                         }
1633
1634                         /* Use the old pindex to free the right page. */
1635                         if (backing_object->type == OBJT_SWAP)
1636                                 swap_pager_freespace(backing_object,
1637                                     new_pindex + backing_offset_index, 1);
1638
1639 #if VM_NRESERVLEVEL > 0
1640                         /*
1641                          * Rename the reservation.
1642                          */
1643                         vm_reserv_rename(p, object, backing_object,
1644                             backing_offset_index);
1645 #endif
1646                 }
1647                 p = next;
1648         }
1649         return (r);
1650 }
1651
1652
1653 /*
1654  * this version of collapse allows the operation to occur earlier and
1655  * when paging_in_progress is true for an object...  This is not a complete
1656  * operation, but should plug 99.9% of the rest of the leaks.
1657  */
1658 static void
1659 vm_object_qcollapse(vm_object_t object)
1660 {
1661         vm_object_t backing_object = object->backing_object;
1662
1663         VM_OBJECT_ASSERT_WLOCKED(object);
1664         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1665
1666         if (backing_object->ref_count != 1)
1667                 return;
1668
1669         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1670 }
1671
1672 /*
1673  *      vm_object_collapse:
1674  *
1675  *      Collapse an object with the object backing it.
1676  *      Pages in the backing object are moved into the
1677  *      parent, and the backing object is deallocated.
1678  */
1679 void
1680 vm_object_collapse(vm_object_t object)
1681 {
1682         VM_OBJECT_ASSERT_WLOCKED(object);
1683         
1684         while (TRUE) {
1685                 vm_object_t backing_object;
1686
1687                 /*
1688                  * Verify that the conditions are right for collapse:
1689                  *
1690                  * The object exists and the backing object exists.
1691                  */
1692                 if ((backing_object = object->backing_object) == NULL)
1693                         break;
1694
1695                 /*
1696                  * we check the backing object first, because it is most likely
1697                  * not collapsable.
1698                  */
1699                 VM_OBJECT_WLOCK(backing_object);
1700                 if (backing_object->handle != NULL ||
1701                     (backing_object->type != OBJT_DEFAULT &&
1702                      backing_object->type != OBJT_SWAP) ||
1703                     (backing_object->flags & OBJ_DEAD) ||
1704                     object->handle != NULL ||
1705                     (object->type != OBJT_DEFAULT &&
1706                      object->type != OBJT_SWAP) ||
1707                     (object->flags & OBJ_DEAD)) {
1708                         VM_OBJECT_WUNLOCK(backing_object);
1709                         break;
1710                 }
1711
1712                 if (
1713                     object->paging_in_progress != 0 ||
1714                     backing_object->paging_in_progress != 0
1715                 ) {
1716                         vm_object_qcollapse(object);
1717                         VM_OBJECT_WUNLOCK(backing_object);
1718                         break;
1719                 }
1720                 /*
1721                  * We know that we can either collapse the backing object (if
1722                  * the parent is the only reference to it) or (perhaps) have
1723                  * the parent bypass the object if the parent happens to shadow
1724                  * all the resident pages in the entire backing object.
1725                  *
1726                  * This is ignoring pager-backed pages such as swap pages.
1727                  * vm_object_backing_scan fails the shadowing test in this
1728                  * case.
1729                  */
1730                 if (backing_object->ref_count == 1) {
1731                         /*
1732                          * If there is exactly one reference to the backing
1733                          * object, we can collapse it into the parent.  
1734                          */
1735                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1736
1737 #if VM_NRESERVLEVEL > 0
1738                         /*
1739                          * Break any reservations from backing_object.
1740                          */
1741                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1742                                 vm_reserv_break_all(backing_object);
1743 #endif
1744
1745                         /*
1746                          * Move the pager from backing_object to object.
1747                          */
1748                         if (backing_object->type == OBJT_SWAP) {
1749                                 /*
1750                                  * swap_pager_copy() can sleep, in which case
1751                                  * the backing_object's and object's locks are
1752                                  * released and reacquired.
1753                                  * Since swap_pager_copy() is being asked to
1754                                  * destroy the source, it will change the
1755                                  * backing_object's type to OBJT_DEFAULT.
1756                                  */
1757                                 swap_pager_copy(
1758                                     backing_object,
1759                                     object,
1760                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1761
1762                                 /*
1763                                  * Free any cached pages from backing_object.
1764                                  */
1765                                 if (__predict_false(
1766                                     !vm_object_cache_is_empty(backing_object)))
1767                                         vm_page_cache_free(backing_object, 0, 0);
1768                         }
1769                         /*
1770                          * Object now shadows whatever backing_object did.
1771                          * Note that the reference to 
1772                          * backing_object->backing_object moves from within 
1773                          * backing_object to within object.
1774                          */
1775                         LIST_REMOVE(object, shadow_list);
1776                         backing_object->shadow_count--;
1777                         if (backing_object->backing_object) {
1778                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1779                                 LIST_REMOVE(backing_object, shadow_list);
1780                                 LIST_INSERT_HEAD(
1781                                     &backing_object->backing_object->shadow_head,
1782                                     object, shadow_list);
1783                                 /*
1784                                  * The shadow_count has not changed.
1785                                  */
1786                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1787                         }
1788                         object->backing_object = backing_object->backing_object;
1789                         object->backing_object_offset +=
1790                             backing_object->backing_object_offset;
1791
1792                         /*
1793                          * Discard backing_object.
1794                          *
1795                          * Since the backing object has no pages, no pager left,
1796                          * and no object references within it, all that is
1797                          * necessary is to dispose of it.
1798                          */
1799                         KASSERT(backing_object->ref_count == 1, (
1800 "backing_object %p was somehow re-referenced during collapse!",
1801                             backing_object));
1802                         VM_OBJECT_WUNLOCK(backing_object);
1803                         vm_object_destroy(backing_object);
1804
1805                         object_collapses++;
1806                 } else {
1807                         vm_object_t new_backing_object;
1808
1809                         /*
1810                          * If we do not entirely shadow the backing object,
1811                          * there is nothing we can do so we give up.
1812                          */
1813                         if (object->resident_page_count != object->size &&
1814                             vm_object_backing_scan(object,
1815                             OBSC_TEST_ALL_SHADOWED) == 0) {
1816                                 VM_OBJECT_WUNLOCK(backing_object);
1817                                 break;
1818                         }
1819
1820                         /*
1821                          * Make the parent shadow the next object in the
1822                          * chain.  Deallocating backing_object will not remove
1823                          * it, since its reference count is at least 2.
1824                          */
1825                         LIST_REMOVE(object, shadow_list);
1826                         backing_object->shadow_count--;
1827
1828                         new_backing_object = backing_object->backing_object;
1829                         if ((object->backing_object = new_backing_object) != NULL) {
1830                                 VM_OBJECT_WLOCK(new_backing_object);
1831                                 LIST_INSERT_HEAD(
1832                                     &new_backing_object->shadow_head,
1833                                     object,
1834                                     shadow_list
1835                                 );
1836                                 new_backing_object->shadow_count++;
1837                                 vm_object_reference_locked(new_backing_object);
1838                                 VM_OBJECT_WUNLOCK(new_backing_object);
1839                                 object->backing_object_offset +=
1840                                         backing_object->backing_object_offset;
1841                         }
1842
1843                         /*
1844                          * Drop the reference count on backing_object. Since
1845                          * its ref_count was at least 2, it will not vanish.
1846                          */
1847                         backing_object->ref_count--;
1848                         VM_OBJECT_WUNLOCK(backing_object);
1849                         object_bypasses++;
1850                 }
1851
1852                 /*
1853                  * Try again with this object's new backing object.
1854                  */
1855         }
1856 }
1857
1858 /*
1859  *      vm_object_page_remove:
1860  *
1861  *      For the given object, either frees or invalidates each of the
1862  *      specified pages.  In general, a page is freed.  However, if a page is
1863  *      wired for any reason other than the existence of a managed, wired
1864  *      mapping, then it may be invalidated but not removed from the object.
1865  *      Pages are specified by the given range ["start", "end") and the option
1866  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1867  *      extends from "start" to the end of the object.  If the option
1868  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1869  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1870  *      specified, then the pages within the specified range must have no
1871  *      mappings.  Otherwise, if this option is not specified, any mappings to
1872  *      the specified pages are removed before the pages are freed or
1873  *      invalidated.
1874  *
1875  *      In general, this operation should only be performed on objects that
1876  *      contain managed pages.  There are, however, two exceptions.  First, it
1877  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1878  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1879  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1880  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1881  *
1882  *      The object must be locked.
1883  */
1884 void
1885 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1886     int options)
1887 {
1888         vm_page_t p, next;
1889         int wirings;
1890
1891         VM_OBJECT_ASSERT_WLOCKED(object);
1892         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1893             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1894             ("vm_object_page_remove: illegal options for object %p", object));
1895         if (object->resident_page_count == 0)
1896                 goto skipmemq;
1897         vm_object_pip_add(object, 1);
1898 again:
1899         p = vm_page_find_least(object, start);
1900
1901         /*
1902          * Here, the variable "p" is either (1) the page with the least pindex
1903          * greater than or equal to the parameter "start" or (2) NULL. 
1904          */
1905         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1906                 next = TAILQ_NEXT(p, listq);
1907
1908                 /*
1909                  * If the page is wired for any reason besides the existence
1910                  * of managed, wired mappings, then it cannot be freed.  For
1911                  * example, fictitious pages, which represent device memory,
1912                  * are inherently wired and cannot be freed.  They can,
1913                  * however, be invalidated if the option OBJPR_CLEANONLY is
1914                  * not specified.
1915                  */
1916                 vm_page_lock(p);
1917                 if (vm_page_xbusied(p)) {
1918                         VM_OBJECT_WUNLOCK(object);
1919                         vm_page_busy_sleep(p, "vmopax");
1920                         VM_OBJECT_WLOCK(object);
1921                         goto again;
1922                 }
1923                 if ((wirings = p->wire_count) != 0 &&
1924                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1925                         if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
1926                             0) {
1927                                 pmap_remove_all(p);
1928                                 /* Account for removal of wired mappings. */
1929                                 if (wirings != 0)
1930                                         p->wire_count -= wirings;
1931                         }
1932                         if ((options & OBJPR_CLEANONLY) == 0) {
1933                                 p->valid = 0;
1934                                 vm_page_undirty(p);
1935                         }
1936                         goto next;
1937                 }
1938                 if (vm_page_busied(p)) {
1939                         VM_OBJECT_WUNLOCK(object);
1940                         vm_page_busy_sleep(p, "vmopar");
1941                         VM_OBJECT_WLOCK(object);
1942                         goto again;
1943                 }
1944                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1945                     ("vm_object_page_remove: page %p is fictitious", p));
1946                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1947                         if ((options & OBJPR_NOTMAPPED) == 0)
1948                                 pmap_remove_write(p);
1949                         if (p->dirty)
1950                                 goto next;
1951                 }
1952                 if ((options & OBJPR_NOTMAPPED) == 0) {
1953                         if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
1954                                 goto next;
1955                         pmap_remove_all(p);
1956                         /* Account for removal of wired mappings. */
1957                         if (wirings != 0) {
1958                                 KASSERT(p->wire_count == wirings,
1959                                     ("inconsistent wire count %d %d %p",
1960                                     p->wire_count, wirings, p));
1961                                 p->wire_count = 0;
1962                                 atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1963                         }
1964                 }
1965                 vm_page_free(p);
1966 next:
1967                 vm_page_unlock(p);
1968         }
1969         vm_object_pip_wakeup(object);
1970 skipmemq:
1971         if (__predict_false(!vm_object_cache_is_empty(object)))
1972                 vm_page_cache_free(object, start, end);
1973 }
1974
1975 /*
1976  *      vm_object_page_cache:
1977  *
1978  *      For the given object, attempt to move the specified clean
1979  *      pages to the cache queue.  If a page is wired for any reason,
1980  *      then it will not be changed.  Pages are specified by the given
1981  *      range ["start", "end").  As a special case, if "end" is zero,
1982  *      then the range extends from "start" to the end of the object.
1983  *      Any mappings to the specified pages are removed before the
1984  *      pages are moved to the cache queue.
1985  *
1986  *      This operation should only be performed on objects that
1987  *      contain non-fictitious, managed pages.
1988  *
1989  *      The object must be locked.
1990  */
1991 void
1992 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1993 {
1994         struct mtx *mtx, *new_mtx;
1995         vm_page_t p, next;
1996
1997         VM_OBJECT_ASSERT_WLOCKED(object);
1998         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1999             ("vm_object_page_cache: illegal object %p", object));
2000         if (object->resident_page_count == 0)
2001                 return;
2002         p = vm_page_find_least(object, start);
2003
2004         /*
2005          * Here, the variable "p" is either (1) the page with the least pindex
2006          * greater than or equal to the parameter "start" or (2) NULL. 
2007          */
2008         mtx = NULL;
2009         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2010                 next = TAILQ_NEXT(p, listq);
2011
2012                 /*
2013                  * Avoid releasing and reacquiring the same page lock.
2014                  */
2015                 new_mtx = vm_page_lockptr(p);
2016                 if (mtx != new_mtx) {
2017                         if (mtx != NULL)
2018                                 mtx_unlock(mtx);
2019                         mtx = new_mtx;
2020                         mtx_lock(mtx);
2021                 }
2022                 vm_page_try_to_cache(p);
2023         }
2024         if (mtx != NULL)
2025                 mtx_unlock(mtx);
2026 }
2027
2028 /*
2029  *      Populate the specified range of the object with valid pages.  Returns
2030  *      TRUE if the range is successfully populated and FALSE otherwise.
2031  *
2032  *      Note: This function should be optimized to pass a larger array of
2033  *      pages to vm_pager_get_pages() before it is applied to a non-
2034  *      OBJT_DEVICE object.
2035  *
2036  *      The object must be locked.
2037  */
2038 boolean_t
2039 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2040 {
2041         vm_page_t m, ma[1];
2042         vm_pindex_t pindex;
2043         int rv;
2044
2045         VM_OBJECT_ASSERT_WLOCKED(object);
2046         for (pindex = start; pindex < end; pindex++) {
2047                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2048                 if (m->valid != VM_PAGE_BITS_ALL) {
2049                         ma[0] = m;
2050                         rv = vm_pager_get_pages(object, ma, 1, 0);
2051                         m = vm_page_lookup(object, pindex);
2052                         if (m == NULL)
2053                                 break;
2054                         if (rv != VM_PAGER_OK) {
2055                                 vm_page_lock(m);
2056                                 vm_page_free(m);
2057                                 vm_page_unlock(m);
2058                                 break;
2059                         }
2060                 }
2061                 /*
2062                  * Keep "m" busy because a subsequent iteration may unlock
2063                  * the object.
2064                  */
2065         }
2066         if (pindex > start) {
2067                 m = vm_page_lookup(object, start);
2068                 while (m != NULL && m->pindex < pindex) {
2069                         vm_page_xunbusy(m);
2070                         m = TAILQ_NEXT(m, listq);
2071                 }
2072         }
2073         return (pindex == end);
2074 }
2075
2076 /*
2077  *      Routine:        vm_object_coalesce
2078  *      Function:       Coalesces two objects backing up adjoining
2079  *                      regions of memory into a single object.
2080  *
2081  *      returns TRUE if objects were combined.
2082  *
2083  *      NOTE:   Only works at the moment if the second object is NULL -
2084  *              if it's not, which object do we lock first?
2085  *
2086  *      Parameters:
2087  *              prev_object     First object to coalesce
2088  *              prev_offset     Offset into prev_object
2089  *              prev_size       Size of reference to prev_object
2090  *              next_size       Size of reference to the second object
2091  *              reserved        Indicator that extension region has
2092  *                              swap accounted for
2093  *
2094  *      Conditions:
2095  *      The object must *not* be locked.
2096  */
2097 boolean_t
2098 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2099     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2100 {
2101         vm_pindex_t next_pindex;
2102
2103         if (prev_object == NULL)
2104                 return (TRUE);
2105         VM_OBJECT_WLOCK(prev_object);
2106         if ((prev_object->type != OBJT_DEFAULT &&
2107             prev_object->type != OBJT_SWAP) ||
2108             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2109                 VM_OBJECT_WUNLOCK(prev_object);
2110                 return (FALSE);
2111         }
2112
2113         /*
2114          * Try to collapse the object first
2115          */
2116         vm_object_collapse(prev_object);
2117
2118         /*
2119          * Can't coalesce if: . more than one reference . paged out . shadows
2120          * another object . has a copy elsewhere (any of which mean that the
2121          * pages not mapped to prev_entry may be in use anyway)
2122          */
2123         if (prev_object->backing_object != NULL) {
2124                 VM_OBJECT_WUNLOCK(prev_object);
2125                 return (FALSE);
2126         }
2127
2128         prev_size >>= PAGE_SHIFT;
2129         next_size >>= PAGE_SHIFT;
2130         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2131
2132         if ((prev_object->ref_count > 1) &&
2133             (prev_object->size != next_pindex)) {
2134                 VM_OBJECT_WUNLOCK(prev_object);
2135                 return (FALSE);
2136         }
2137
2138         /*
2139          * Account for the charge.
2140          */
2141         if (prev_object->cred != NULL) {
2142
2143                 /*
2144                  * If prev_object was charged, then this mapping,
2145                  * althought not charged now, may become writable
2146                  * later. Non-NULL cred in the object would prevent
2147                  * swap reservation during enabling of the write
2148                  * access, so reserve swap now. Failed reservation
2149                  * cause allocation of the separate object for the map
2150                  * entry, and swap reservation for this entry is
2151                  * managed in appropriate time.
2152                  */
2153                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2154                     prev_object->cred)) {
2155                         return (FALSE);
2156                 }
2157                 prev_object->charge += ptoa(next_size);
2158         }
2159
2160         /*
2161          * Remove any pages that may still be in the object from a previous
2162          * deallocation.
2163          */
2164         if (next_pindex < prev_object->size) {
2165                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2166                     next_size, 0);
2167                 if (prev_object->type == OBJT_SWAP)
2168                         swap_pager_freespace(prev_object,
2169                                              next_pindex, next_size);
2170 #if 0
2171                 if (prev_object->cred != NULL) {
2172                         KASSERT(prev_object->charge >=
2173                             ptoa(prev_object->size - next_pindex),
2174                             ("object %p overcharged 1 %jx %jx", prev_object,
2175                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2176                         prev_object->charge -= ptoa(prev_object->size -
2177                             next_pindex);
2178                 }
2179 #endif
2180         }
2181
2182         /*
2183          * Extend the object if necessary.
2184          */
2185         if (next_pindex + next_size > prev_object->size)
2186                 prev_object->size = next_pindex + next_size;
2187
2188         VM_OBJECT_WUNLOCK(prev_object);
2189         return (TRUE);
2190 }
2191
2192 void
2193 vm_object_set_writeable_dirty(vm_object_t object)
2194 {
2195
2196         VM_OBJECT_ASSERT_WLOCKED(object);
2197         if (object->type != OBJT_VNODE)
2198                 return;
2199         object->generation++;
2200         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2201                 return;
2202         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2203 }
2204
2205 /*
2206  *      vm_object_unwire:
2207  *
2208  *      For each page offset within the specified range of the given object,
2209  *      find the highest-level page in the shadow chain and unwire it.  A page
2210  *      must exist at every page offset, and the highest-level page must be
2211  *      wired.
2212  */
2213 void
2214 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2215     uint8_t queue)
2216 {
2217         vm_object_t tobject;
2218         vm_page_t m, tm;
2219         vm_pindex_t end_pindex, pindex, tpindex;
2220         int depth, locked_depth;
2221
2222         KASSERT((offset & PAGE_MASK) == 0,
2223             ("vm_object_unwire: offset is not page aligned"));
2224         KASSERT((length & PAGE_MASK) == 0,
2225             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2226         /* The wired count of a fictitious page never changes. */
2227         if ((object->flags & OBJ_FICTITIOUS) != 0)
2228                 return;
2229         pindex = OFF_TO_IDX(offset);
2230         end_pindex = pindex + atop(length);
2231         locked_depth = 1;
2232         VM_OBJECT_RLOCK(object);
2233         m = vm_page_find_least(object, pindex);
2234         while (pindex < end_pindex) {
2235                 if (m == NULL || pindex < m->pindex) {
2236                         /*
2237                          * The first object in the shadow chain doesn't
2238                          * contain a page at the current index.  Therefore,
2239                          * the page must exist in a backing object.
2240                          */
2241                         tobject = object;
2242                         tpindex = pindex;
2243                         depth = 0;
2244                         do {
2245                                 tpindex +=
2246                                     OFF_TO_IDX(tobject->backing_object_offset);
2247                                 tobject = tobject->backing_object;
2248                                 KASSERT(tobject != NULL,
2249                                     ("vm_object_unwire: missing page"));
2250                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2251                                         goto next_page;
2252                                 depth++;
2253                                 if (depth == locked_depth) {
2254                                         locked_depth++;
2255                                         VM_OBJECT_RLOCK(tobject);
2256                                 }
2257                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2258                             NULL);
2259                 } else {
2260                         tm = m;
2261                         m = TAILQ_NEXT(m, listq);
2262                 }
2263                 vm_page_lock(tm);
2264                 vm_page_unwire(tm, queue);
2265                 vm_page_unlock(tm);
2266 next_page:
2267                 pindex++;
2268         }
2269         /* Release the accumulated object locks. */
2270         for (depth = 0; depth < locked_depth; depth++) {
2271                 tobject = object->backing_object;
2272                 VM_OBJECT_RUNLOCK(object);
2273                 object = tobject;
2274         }
2275 }
2276
2277 #include "opt_ddb.h"
2278 #ifdef DDB
2279 #include <sys/kernel.h>
2280
2281 #include <sys/cons.h>
2282
2283 #include <ddb/ddb.h>
2284
2285 static int
2286 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2287 {
2288         vm_map_t tmpm;
2289         vm_map_entry_t tmpe;
2290         vm_object_t obj;
2291         int entcount;
2292
2293         if (map == 0)
2294                 return 0;
2295
2296         if (entry == 0) {
2297                 tmpe = map->header.next;
2298                 entcount = map->nentries;
2299                 while (entcount-- && (tmpe != &map->header)) {
2300                         if (_vm_object_in_map(map, object, tmpe)) {
2301                                 return 1;
2302                         }
2303                         tmpe = tmpe->next;
2304                 }
2305         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2306                 tmpm = entry->object.sub_map;
2307                 tmpe = tmpm->header.next;
2308                 entcount = tmpm->nentries;
2309                 while (entcount-- && tmpe != &tmpm->header) {
2310                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2311                                 return 1;
2312                         }
2313                         tmpe = tmpe->next;
2314                 }
2315         } else if ((obj = entry->object.vm_object) != NULL) {
2316                 for (; obj; obj = obj->backing_object)
2317                         if (obj == object) {
2318                                 return 1;
2319                         }
2320         }
2321         return 0;
2322 }
2323
2324 static int
2325 vm_object_in_map(vm_object_t object)
2326 {
2327         struct proc *p;
2328
2329         /* sx_slock(&allproc_lock); */
2330         FOREACH_PROC_IN_SYSTEM(p) {
2331                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2332                         continue;
2333                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2334                         /* sx_sunlock(&allproc_lock); */
2335                         return 1;
2336                 }
2337         }
2338         /* sx_sunlock(&allproc_lock); */
2339         if (_vm_object_in_map(kernel_map, object, 0))
2340                 return 1;
2341         return 0;
2342 }
2343
2344 DB_SHOW_COMMAND(vmochk, vm_object_check)
2345 {
2346         vm_object_t object;
2347
2348         /*
2349          * make sure that internal objs are in a map somewhere
2350          * and none have zero ref counts.
2351          */
2352         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2353                 if (object->handle == NULL &&
2354                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2355                         if (object->ref_count == 0) {
2356                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2357                                         (long)object->size);
2358                         }
2359                         if (!vm_object_in_map(object)) {
2360                                 db_printf(
2361                         "vmochk: internal obj is not in a map: "
2362                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2363                                     object->ref_count, (u_long)object->size, 
2364                                     (u_long)object->size,
2365                                     (void *)object->backing_object);
2366                         }
2367                 }
2368         }
2369 }
2370
2371 /*
2372  *      vm_object_print:        [ debug ]
2373  */
2374 DB_SHOW_COMMAND(object, vm_object_print_static)
2375 {
2376         /* XXX convert args. */
2377         vm_object_t object = (vm_object_t)addr;
2378         boolean_t full = have_addr;
2379
2380         vm_page_t p;
2381
2382         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2383 #define count   was_count
2384
2385         int count;
2386
2387         if (object == NULL)
2388                 return;
2389
2390         db_iprintf(
2391             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2392             object, (int)object->type, (uintmax_t)object->size,
2393             object->resident_page_count, object->ref_count, object->flags,
2394             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2395         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2396             object->shadow_count, 
2397             object->backing_object ? object->backing_object->ref_count : 0,
2398             object->backing_object, (uintmax_t)object->backing_object_offset);
2399
2400         if (!full)
2401                 return;
2402
2403         db_indent += 2;
2404         count = 0;
2405         TAILQ_FOREACH(p, &object->memq, listq) {
2406                 if (count == 0)
2407                         db_iprintf("memory:=");
2408                 else if (count == 6) {
2409                         db_printf("\n");
2410                         db_iprintf(" ...");
2411                         count = 0;
2412                 } else
2413                         db_printf(",");
2414                 count++;
2415
2416                 db_printf("(off=0x%jx,page=0x%jx)",
2417                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2418         }
2419         if (count != 0)
2420                 db_printf("\n");
2421         db_indent -= 2;
2422 }
2423
2424 /* XXX. */
2425 #undef count
2426
2427 /* XXX need this non-static entry for calling from vm_map_print. */
2428 void
2429 vm_object_print(
2430         /* db_expr_t */ long addr,
2431         boolean_t have_addr,
2432         /* db_expr_t */ long count,
2433         char *modif)
2434 {
2435         vm_object_print_static(addr, have_addr, count, modif);
2436 }
2437
2438 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2439 {
2440         vm_object_t object;
2441         vm_pindex_t fidx;
2442         vm_paddr_t pa;
2443         vm_page_t m, prev_m;
2444         int rcount, nl, c;
2445
2446         nl = 0;
2447         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2448                 db_printf("new object: %p\n", (void *)object);
2449                 if (nl > 18) {
2450                         c = cngetc();
2451                         if (c != ' ')
2452                                 return;
2453                         nl = 0;
2454                 }
2455                 nl++;
2456                 rcount = 0;
2457                 fidx = 0;
2458                 pa = -1;
2459                 TAILQ_FOREACH(m, &object->memq, listq) {
2460                         if (m->pindex > 128)
2461                                 break;
2462                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2463                             prev_m->pindex + 1 != m->pindex) {
2464                                 if (rcount) {
2465                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2466                                                 (long)fidx, rcount, (long)pa);
2467                                         if (nl > 18) {
2468                                                 c = cngetc();
2469                                                 if (c != ' ')
2470                                                         return;
2471                                                 nl = 0;
2472                                         }
2473                                         nl++;
2474                                         rcount = 0;
2475                                 }
2476                         }                               
2477                         if (rcount &&
2478                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2479                                 ++rcount;
2480                                 continue;
2481                         }
2482                         if (rcount) {
2483                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2484                                         (long)fidx, rcount, (long)pa);
2485                                 if (nl > 18) {
2486                                         c = cngetc();
2487                                         if (c != ' ')
2488                                                 return;
2489                                         nl = 0;
2490                                 }
2491                                 nl++;
2492                         }
2493                         fidx = m->pindex;
2494                         pa = VM_PAGE_TO_PHYS(m);
2495                         rcount = 1;
2496                 }
2497                 if (rcount) {
2498                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2499                                 (long)fidx, rcount, (long)pa);
2500                         if (nl > 18) {
2501                                 c = cngetc();
2502                                 if (c != ' ')
2503                                         return;
2504                                 nl = 0;
2505                         }
2506                         nl++;
2507                 }
2508         }
2509 }
2510 #endif /* DDB */