]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Update LLDB snapshot to upstream r225923 (git 2b588ecd)
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_radix.h>
98 #include <vm/vm_reserv.h>
99 #include <vm/uma.h>
100
101 static int old_msync;
102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103     "Use old (insecure) msync behavior");
104
105 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106                     int pagerflags, int flags, boolean_t *clearobjflags,
107                     boolean_t *eio);
108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109                     boolean_t *clearobjflags);
110 static void     vm_object_qcollapse(vm_object_t object);
111 static void     vm_object_vndeallocate(vm_object_t object);
112
113 /*
114  *      Virtual memory objects maintain the actual data
115  *      associated with allocated virtual memory.  A given
116  *      page of memory exists within exactly one object.
117  *
118  *      An object is only deallocated when all "references"
119  *      are given up.  Only one "reference" to a given
120  *      region of an object should be writeable.
121  *
122  *      Associated with each object is a list of all resident
123  *      memory pages belonging to that object; this list is
124  *      maintained by the "vm_page" module, and locked by the object's
125  *      lock.
126  *
127  *      Each object also records a "pager" routine which is
128  *      used to retrieve (and store) pages to the proper backing
129  *      storage.  In addition, objects may be backed by other
130  *      objects from which they were virtual-copied.
131  *
132  *      The only items within the object structure which are
133  *      modified after time of creation are:
134  *              reference count         locked by object's lock
135  *              pager routine           locked by object's lock
136  *
137  */
138
139 struct object_q vm_object_list;
140 struct mtx vm_object_list_mtx;  /* lock for object list and count */
141
142 struct vm_object kernel_object_store;
143 struct vm_object kmem_object_store;
144
145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146     "VM object stats");
147
148 static long object_collapses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150     &object_collapses, 0, "VM object collapses");
151
152 static long object_bypasses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154     &object_bypasses, 0, "VM object bypasses");
155
156 static uma_zone_t obj_zone;
157
158 static int vm_object_zinit(void *mem, int size, int flags);
159
160 #ifdef INVARIANTS
161 static void vm_object_zdtor(void *mem, int size, void *arg);
162
163 static void
164 vm_object_zdtor(void *mem, int size, void *arg)
165 {
166         vm_object_t object;
167
168         object = (vm_object_t)mem;
169         KASSERT(TAILQ_EMPTY(&object->memq),
170             ("object %p has resident pages in its memq", object));
171         KASSERT(vm_radix_is_empty(&object->rtree),
172             ("object %p has resident pages in its trie", object));
173 #if VM_NRESERVLEVEL > 0
174         KASSERT(LIST_EMPTY(&object->rvq),
175             ("object %p has reservations",
176             object));
177 #endif
178         KASSERT(vm_object_cache_is_empty(object),
179             ("object %p has cached pages",
180             object));
181         KASSERT(object->paging_in_progress == 0,
182             ("object %p paging_in_progress = %d",
183             object, object->paging_in_progress));
184         KASSERT(object->resident_page_count == 0,
185             ("object %p resident_page_count = %d",
186             object, object->resident_page_count));
187         KASSERT(object->shadow_count == 0,
188             ("object %p shadow_count = %d",
189             object, object->shadow_count));
190 }
191 #endif
192
193 static int
194 vm_object_zinit(void *mem, int size, int flags)
195 {
196         vm_object_t object;
197
198         object = (vm_object_t)mem;
199         bzero(&object->lock, sizeof(object->lock));
200         rw_init_flags(&object->lock, "vm object", RW_DUPOK);
201
202         /* These are true for any object that has been freed */
203         object->rtree.rt_root = 0;
204         object->rtree.rt_flags = 0;
205         object->paging_in_progress = 0;
206         object->resident_page_count = 0;
207         object->shadow_count = 0;
208         object->cache.rt_root = 0;
209         object->cache.rt_flags = 0;
210         return (0);
211 }
212
213 static void
214 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
215 {
216
217         TAILQ_INIT(&object->memq);
218         LIST_INIT(&object->shadow_head);
219
220         object->type = type;
221         switch (type) {
222         case OBJT_DEAD:
223                 panic("_vm_object_allocate: can't create OBJT_DEAD");
224         case OBJT_DEFAULT:
225         case OBJT_SWAP:
226                 object->flags = OBJ_ONEMAPPING;
227                 break;
228         case OBJT_DEVICE:
229         case OBJT_SG:
230                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
231                 break;
232         case OBJT_MGTDEVICE:
233                 object->flags = OBJ_FICTITIOUS;
234                 break;
235         case OBJT_PHYS:
236                 object->flags = OBJ_UNMANAGED;
237                 break;
238         case OBJT_VNODE:
239                 object->flags = 0;
240                 break;
241         default:
242                 panic("_vm_object_allocate: type %d is undefined", type);
243         }
244         object->size = size;
245         object->generation = 1;
246         object->ref_count = 1;
247         object->memattr = VM_MEMATTR_DEFAULT;
248         object->cred = NULL;
249         object->charge = 0;
250         object->handle = NULL;
251         object->backing_object = NULL;
252         object->backing_object_offset = (vm_ooffset_t) 0;
253 #if VM_NRESERVLEVEL > 0
254         LIST_INIT(&object->rvq);
255 #endif
256
257         mtx_lock(&vm_object_list_mtx);
258         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
259         mtx_unlock(&vm_object_list_mtx);
260 }
261
262 /*
263  *      vm_object_init:
264  *
265  *      Initialize the VM objects module.
266  */
267 void
268 vm_object_init(void)
269 {
270         TAILQ_INIT(&vm_object_list);
271         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
272         
273         rw_init(&kernel_object->lock, "kernel vm object");
274         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
275             kernel_object);
276 #if VM_NRESERVLEVEL > 0
277         kernel_object->flags |= OBJ_COLORED;
278         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
279 #endif
280
281         rw_init(&kmem_object->lock, "kmem vm object");
282         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283             kmem_object);
284 #if VM_NRESERVLEVEL > 0
285         kmem_object->flags |= OBJ_COLORED;
286         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287 #endif
288
289         /*
290          * The lock portion of struct vm_object must be type stable due
291          * to vm_pageout_fallback_object_lock locking a vm object
292          * without holding any references to it.
293          */
294         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
295 #ifdef INVARIANTS
296             vm_object_zdtor,
297 #else
298             NULL,
299 #endif
300             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
301
302         vm_radix_init();
303 }
304
305 void
306 vm_object_clear_flag(vm_object_t object, u_short bits)
307 {
308
309         VM_OBJECT_ASSERT_WLOCKED(object);
310         object->flags &= ~bits;
311 }
312
313 /*
314  *      Sets the default memory attribute for the specified object.  Pages
315  *      that are allocated to this object are by default assigned this memory
316  *      attribute.
317  *
318  *      Presently, this function must be called before any pages are allocated
319  *      to the object.  In the future, this requirement may be relaxed for
320  *      "default" and "swap" objects.
321  */
322 int
323 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
324 {
325
326         VM_OBJECT_ASSERT_WLOCKED(object);
327         switch (object->type) {
328         case OBJT_DEFAULT:
329         case OBJT_DEVICE:
330         case OBJT_MGTDEVICE:
331         case OBJT_PHYS:
332         case OBJT_SG:
333         case OBJT_SWAP:
334         case OBJT_VNODE:
335                 if (!TAILQ_EMPTY(&object->memq))
336                         return (KERN_FAILURE);
337                 break;
338         case OBJT_DEAD:
339                 return (KERN_INVALID_ARGUMENT);
340         default:
341                 panic("vm_object_set_memattr: object %p is of undefined type",
342                     object);
343         }
344         object->memattr = memattr;
345         return (KERN_SUCCESS);
346 }
347
348 void
349 vm_object_pip_add(vm_object_t object, short i)
350 {
351
352         VM_OBJECT_ASSERT_WLOCKED(object);
353         object->paging_in_progress += i;
354 }
355
356 void
357 vm_object_pip_subtract(vm_object_t object, short i)
358 {
359
360         VM_OBJECT_ASSERT_WLOCKED(object);
361         object->paging_in_progress -= i;
362 }
363
364 void
365 vm_object_pip_wakeup(vm_object_t object)
366 {
367
368         VM_OBJECT_ASSERT_WLOCKED(object);
369         object->paging_in_progress--;
370         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
371                 vm_object_clear_flag(object, OBJ_PIPWNT);
372                 wakeup(object);
373         }
374 }
375
376 void
377 vm_object_pip_wakeupn(vm_object_t object, short i)
378 {
379
380         VM_OBJECT_ASSERT_WLOCKED(object);
381         if (i)
382                 object->paging_in_progress -= i;
383         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
384                 vm_object_clear_flag(object, OBJ_PIPWNT);
385                 wakeup(object);
386         }
387 }
388
389 void
390 vm_object_pip_wait(vm_object_t object, char *waitid)
391 {
392
393         VM_OBJECT_ASSERT_WLOCKED(object);
394         while (object->paging_in_progress) {
395                 object->flags |= OBJ_PIPWNT;
396                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
397         }
398 }
399
400 /*
401  *      vm_object_allocate:
402  *
403  *      Returns a new object with the given size.
404  */
405 vm_object_t
406 vm_object_allocate(objtype_t type, vm_pindex_t size)
407 {
408         vm_object_t object;
409
410         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
411         _vm_object_allocate(type, size, object);
412         return (object);
413 }
414
415
416 /*
417  *      vm_object_reference:
418  *
419  *      Gets another reference to the given object.  Note: OBJ_DEAD
420  *      objects can be referenced during final cleaning.
421  */
422 void
423 vm_object_reference(vm_object_t object)
424 {
425         if (object == NULL)
426                 return;
427         VM_OBJECT_WLOCK(object);
428         vm_object_reference_locked(object);
429         VM_OBJECT_WUNLOCK(object);
430 }
431
432 /*
433  *      vm_object_reference_locked:
434  *
435  *      Gets another reference to the given object.
436  *
437  *      The object must be locked.
438  */
439 void
440 vm_object_reference_locked(vm_object_t object)
441 {
442         struct vnode *vp;
443
444         VM_OBJECT_ASSERT_WLOCKED(object);
445         object->ref_count++;
446         if (object->type == OBJT_VNODE) {
447                 vp = object->handle;
448                 vref(vp);
449         }
450 }
451
452 /*
453  * Handle deallocating an object of type OBJT_VNODE.
454  */
455 static void
456 vm_object_vndeallocate(vm_object_t object)
457 {
458         struct vnode *vp = (struct vnode *) object->handle;
459
460         VM_OBJECT_ASSERT_WLOCKED(object);
461         KASSERT(object->type == OBJT_VNODE,
462             ("vm_object_vndeallocate: not a vnode object"));
463         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
464 #ifdef INVARIANTS
465         if (object->ref_count == 0) {
466                 vprint("vm_object_vndeallocate", vp);
467                 panic("vm_object_vndeallocate: bad object reference count");
468         }
469 #endif
470
471         /*
472          * The test for text of vp vnode does not need a bypass to
473          * reach right VV_TEXT there, since it is obtained from
474          * object->handle.
475          */
476         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
477                 object->ref_count--;
478                 VM_OBJECT_WUNLOCK(object);
479                 /* vrele may need the vnode lock. */
480                 vrele(vp);
481         } else {
482                 vhold(vp);
483                 VM_OBJECT_WUNLOCK(object);
484                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
485                 vdrop(vp);
486                 VM_OBJECT_WLOCK(object);
487                 object->ref_count--;
488                 if (object->type == OBJT_DEAD) {
489                         VM_OBJECT_WUNLOCK(object);
490                         VOP_UNLOCK(vp, 0);
491                 } else {
492                         if (object->ref_count == 0)
493                                 VOP_UNSET_TEXT(vp);
494                         VM_OBJECT_WUNLOCK(object);
495                         vput(vp);
496                 }
497         }
498 }
499
500 /*
501  *      vm_object_deallocate:
502  *
503  *      Release a reference to the specified object,
504  *      gained either through a vm_object_allocate
505  *      or a vm_object_reference call.  When all references
506  *      are gone, storage associated with this object
507  *      may be relinquished.
508  *
509  *      No object may be locked.
510  */
511 void
512 vm_object_deallocate(vm_object_t object)
513 {
514         vm_object_t temp;
515         struct vnode *vp;
516
517         while (object != NULL) {
518                 VM_OBJECT_WLOCK(object);
519                 if (object->type == OBJT_VNODE) {
520                         vm_object_vndeallocate(object);
521                         return;
522                 }
523
524                 KASSERT(object->ref_count != 0,
525                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
526
527                 /*
528                  * If the reference count goes to 0 we start calling
529                  * vm_object_terminate() on the object chain.
530                  * A ref count of 1 may be a special case depending on the
531                  * shadow count being 0 or 1.
532                  */
533                 object->ref_count--;
534                 if (object->ref_count > 1) {
535                         VM_OBJECT_WUNLOCK(object);
536                         return;
537                 } else if (object->ref_count == 1) {
538                         if (object->type == OBJT_SWAP &&
539                             (object->flags & OBJ_TMPFS) != 0) {
540                                 vp = object->un_pager.swp.swp_tmpfs;
541                                 vhold(vp);
542                                 VM_OBJECT_WUNLOCK(object);
543                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
544                                 VM_OBJECT_WLOCK(object);
545                                 if (object->type == OBJT_DEAD ||
546                                     object->ref_count != 1) {
547                                         VM_OBJECT_WUNLOCK(object);
548                                         VOP_UNLOCK(vp, 0);
549                                         vdrop(vp);
550                                         return;
551                                 }
552                                 if ((object->flags & OBJ_TMPFS) != 0)
553                                         VOP_UNSET_TEXT(vp);
554                                 VOP_UNLOCK(vp, 0);
555                                 vdrop(vp);
556                         }
557                         if (object->shadow_count == 0 &&
558                             object->handle == NULL &&
559                             (object->type == OBJT_DEFAULT ||
560                             (object->type == OBJT_SWAP &&
561                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
562                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
563                         } else if ((object->shadow_count == 1) &&
564                             (object->handle == NULL) &&
565                             (object->type == OBJT_DEFAULT ||
566                              object->type == OBJT_SWAP)) {
567                                 vm_object_t robject;
568
569                                 robject = LIST_FIRST(&object->shadow_head);
570                                 KASSERT(robject != NULL,
571                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
572                                          object->ref_count,
573                                          object->shadow_count));
574                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
575                                     ("shadowed tmpfs v_object %p", object));
576                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
577                                         /*
578                                          * Avoid a potential deadlock.
579                                          */
580                                         object->ref_count++;
581                                         VM_OBJECT_WUNLOCK(object);
582                                         /*
583                                          * More likely than not the thread
584                                          * holding robject's lock has lower
585                                          * priority than the current thread.
586                                          * Let the lower priority thread run.
587                                          */
588                                         pause("vmo_de", 1);
589                                         continue;
590                                 }
591                                 /*
592                                  * Collapse object into its shadow unless its
593                                  * shadow is dead.  In that case, object will
594                                  * be deallocated by the thread that is
595                                  * deallocating its shadow.
596                                  */
597                                 if ((robject->flags & OBJ_DEAD) == 0 &&
598                                     (robject->handle == NULL) &&
599                                     (robject->type == OBJT_DEFAULT ||
600                                      robject->type == OBJT_SWAP)) {
601
602                                         robject->ref_count++;
603 retry:
604                                         if (robject->paging_in_progress) {
605                                                 VM_OBJECT_WUNLOCK(object);
606                                                 vm_object_pip_wait(robject,
607                                                     "objde1");
608                                                 temp = robject->backing_object;
609                                                 if (object == temp) {
610                                                         VM_OBJECT_WLOCK(object);
611                                                         goto retry;
612                                                 }
613                                         } else if (object->paging_in_progress) {
614                                                 VM_OBJECT_WUNLOCK(robject);
615                                                 object->flags |= OBJ_PIPWNT;
616                                                 VM_OBJECT_SLEEP(object, object,
617                                                     PDROP | PVM, "objde2", 0);
618                                                 VM_OBJECT_WLOCK(robject);
619                                                 temp = robject->backing_object;
620                                                 if (object == temp) {
621                                                         VM_OBJECT_WLOCK(object);
622                                                         goto retry;
623                                                 }
624                                         } else
625                                                 VM_OBJECT_WUNLOCK(object);
626
627                                         if (robject->ref_count == 1) {
628                                                 robject->ref_count--;
629                                                 object = robject;
630                                                 goto doterm;
631                                         }
632                                         object = robject;
633                                         vm_object_collapse(object);
634                                         VM_OBJECT_WUNLOCK(object);
635                                         continue;
636                                 }
637                                 VM_OBJECT_WUNLOCK(robject);
638                         }
639                         VM_OBJECT_WUNLOCK(object);
640                         return;
641                 }
642 doterm:
643                 temp = object->backing_object;
644                 if (temp != NULL) {
645                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
646                             ("shadowed tmpfs v_object 2 %p", object));
647                         VM_OBJECT_WLOCK(temp);
648                         LIST_REMOVE(object, shadow_list);
649                         temp->shadow_count--;
650                         VM_OBJECT_WUNLOCK(temp);
651                         object->backing_object = NULL;
652                 }
653                 /*
654                  * Don't double-terminate, we could be in a termination
655                  * recursion due to the terminate having to sync data
656                  * to disk.
657                  */
658                 if ((object->flags & OBJ_DEAD) == 0)
659                         vm_object_terminate(object);
660                 else
661                         VM_OBJECT_WUNLOCK(object);
662                 object = temp;
663         }
664 }
665
666 /*
667  *      vm_object_destroy removes the object from the global object list
668  *      and frees the space for the object.
669  */
670 void
671 vm_object_destroy(vm_object_t object)
672 {
673
674         /*
675          * Remove the object from the global object list.
676          */
677         mtx_lock(&vm_object_list_mtx);
678         TAILQ_REMOVE(&vm_object_list, object, object_list);
679         mtx_unlock(&vm_object_list_mtx);
680
681         /*
682          * Release the allocation charge.
683          */
684         if (object->cred != NULL) {
685                 KASSERT(object->type == OBJT_DEFAULT ||
686                     object->type == OBJT_SWAP,
687                     ("%s: non-swap obj %p has cred", __func__, object));
688                 swap_release_by_cred(object->charge, object->cred);
689                 object->charge = 0;
690                 crfree(object->cred);
691                 object->cred = NULL;
692         }
693
694         /*
695          * Free the space for the object.
696          */
697         uma_zfree(obj_zone, object);
698 }
699
700 /*
701  *      vm_object_terminate actually destroys the specified object, freeing
702  *      up all previously used resources.
703  *
704  *      The object must be locked.
705  *      This routine may block.
706  */
707 void
708 vm_object_terminate(vm_object_t object)
709 {
710         vm_page_t p, p_next;
711
712         VM_OBJECT_ASSERT_WLOCKED(object);
713
714         /*
715          * Make sure no one uses us.
716          */
717         vm_object_set_flag(object, OBJ_DEAD);
718
719         /*
720          * wait for the pageout daemon to be done with the object
721          */
722         vm_object_pip_wait(object, "objtrm");
723
724         KASSERT(!object->paging_in_progress,
725                 ("vm_object_terminate: pageout in progress"));
726
727         /*
728          * Clean and free the pages, as appropriate. All references to the
729          * object are gone, so we don't need to lock it.
730          */
731         if (object->type == OBJT_VNODE) {
732                 struct vnode *vp = (struct vnode *)object->handle;
733
734                 /*
735                  * Clean pages and flush buffers.
736                  */
737                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
738                 VM_OBJECT_WUNLOCK(object);
739
740                 vinvalbuf(vp, V_SAVE, 0, 0);
741
742                 VM_OBJECT_WLOCK(object);
743         }
744
745         KASSERT(object->ref_count == 0, 
746                 ("vm_object_terminate: object with references, ref_count=%d",
747                 object->ref_count));
748
749         /*
750          * Free any remaining pageable pages.  This also removes them from the
751          * paging queues.  However, don't free wired pages, just remove them
752          * from the object.  Rather than incrementally removing each page from
753          * the object, the page and object are reset to any empty state. 
754          */
755         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
756                 vm_page_assert_unbusied(p);
757                 vm_page_lock(p);
758                 /*
759                  * Optimize the page's removal from the object by resetting
760                  * its "object" field.  Specifically, if the page is not
761                  * wired, then the effect of this assignment is that
762                  * vm_page_free()'s call to vm_page_remove() will return
763                  * immediately without modifying the page or the object.
764                  */ 
765                 p->object = NULL;
766                 if (p->wire_count == 0) {
767                         vm_page_free(p);
768                         PCPU_INC(cnt.v_pfree);
769                 }
770                 vm_page_unlock(p);
771         }
772         /*
773          * If the object contained any pages, then reset it to an empty state.
774          * None of the object's fields, including "resident_page_count", were
775          * modified by the preceding loop.
776          */
777         if (object->resident_page_count != 0) {
778                 vm_radix_reclaim_allnodes(&object->rtree);
779                 TAILQ_INIT(&object->memq);
780                 object->resident_page_count = 0;
781                 if (object->type == OBJT_VNODE)
782                         vdrop(object->handle);
783         }
784
785 #if VM_NRESERVLEVEL > 0
786         if (__predict_false(!LIST_EMPTY(&object->rvq)))
787                 vm_reserv_break_all(object);
788 #endif
789         if (__predict_false(!vm_object_cache_is_empty(object)))
790                 vm_page_cache_free(object, 0, 0);
791
792         /*
793          * Let the pager know object is dead.
794          */
795         vm_pager_deallocate(object);
796         VM_OBJECT_WUNLOCK(object);
797
798         vm_object_destroy(object);
799 }
800
801 /*
802  * Make the page read-only so that we can clear the object flags.  However, if
803  * this is a nosync mmap then the object is likely to stay dirty so do not
804  * mess with the page and do not clear the object flags.  Returns TRUE if the
805  * page should be flushed, and FALSE otherwise.
806  */
807 static boolean_t
808 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
809 {
810
811         /*
812          * If we have been asked to skip nosync pages and this is a
813          * nosync page, skip it.  Note that the object flags were not
814          * cleared in this case so we do not have to set them.
815          */
816         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
817                 *clearobjflags = FALSE;
818                 return (FALSE);
819         } else {
820                 pmap_remove_write(p);
821                 return (p->dirty != 0);
822         }
823 }
824
825 /*
826  *      vm_object_page_clean
827  *
828  *      Clean all dirty pages in the specified range of object.  Leaves page 
829  *      on whatever queue it is currently on.   If NOSYNC is set then do not
830  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
831  *      leaving the object dirty.
832  *
833  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
834  *      synchronous clustering mode implementation.
835  *
836  *      Odd semantics: if start == end, we clean everything.
837  *
838  *      The object must be locked.
839  *
840  *      Returns FALSE if some page from the range was not written, as
841  *      reported by the pager, and TRUE otherwise.
842  */
843 boolean_t
844 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
845     int flags)
846 {
847         vm_page_t np, p;
848         vm_pindex_t pi, tend, tstart;
849         int curgeneration, n, pagerflags;
850         boolean_t clearobjflags, eio, res;
851
852         VM_OBJECT_ASSERT_WLOCKED(object);
853
854         /*
855          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
856          * objects.  The check below prevents the function from
857          * operating on non-vnode objects.
858          */
859         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
860             object->resident_page_count == 0)
861                 return (TRUE);
862
863         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
864             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
865         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
866
867         tstart = OFF_TO_IDX(start);
868         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
869         clearobjflags = tstart == 0 && tend >= object->size;
870         res = TRUE;
871
872 rescan:
873         curgeneration = object->generation;
874
875         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
876                 pi = p->pindex;
877                 if (pi >= tend)
878                         break;
879                 np = TAILQ_NEXT(p, listq);
880                 if (p->valid == 0)
881                         continue;
882                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
883                         if (object->generation != curgeneration) {
884                                 if ((flags & OBJPC_SYNC) != 0)
885                                         goto rescan;
886                                 else
887                                         clearobjflags = FALSE;
888                         }
889                         np = vm_page_find_least(object, pi);
890                         continue;
891                 }
892                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
893                         continue;
894
895                 n = vm_object_page_collect_flush(object, p, pagerflags,
896                     flags, &clearobjflags, &eio);
897                 if (eio) {
898                         res = FALSE;
899                         clearobjflags = FALSE;
900                 }
901                 if (object->generation != curgeneration) {
902                         if ((flags & OBJPC_SYNC) != 0)
903                                 goto rescan;
904                         else
905                                 clearobjflags = FALSE;
906                 }
907
908                 /*
909                  * If the VOP_PUTPAGES() did a truncated write, so
910                  * that even the first page of the run is not fully
911                  * written, vm_pageout_flush() returns 0 as the run
912                  * length.  Since the condition that caused truncated
913                  * write may be permanent, e.g. exhausted free space,
914                  * accepting n == 0 would cause an infinite loop.
915                  *
916                  * Forwarding the iterator leaves the unwritten page
917                  * behind, but there is not much we can do there if
918                  * filesystem refuses to write it.
919                  */
920                 if (n == 0) {
921                         n = 1;
922                         clearobjflags = FALSE;
923                 }
924                 np = vm_page_find_least(object, pi + n);
925         }
926 #if 0
927         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
928 #endif
929
930         if (clearobjflags)
931                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
932         return (res);
933 }
934
935 static int
936 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
937     int flags, boolean_t *clearobjflags, boolean_t *eio)
938 {
939         vm_page_t ma[vm_pageout_page_count], p_first, tp;
940         int count, i, mreq, runlen;
941
942         vm_page_lock_assert(p, MA_NOTOWNED);
943         VM_OBJECT_ASSERT_WLOCKED(object);
944
945         count = 1;
946         mreq = 0;
947
948         for (tp = p; count < vm_pageout_page_count; count++) {
949                 tp = vm_page_next(tp);
950                 if (tp == NULL || vm_page_busied(tp))
951                         break;
952                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
953                         break;
954         }
955
956         for (p_first = p; count < vm_pageout_page_count; count++) {
957                 tp = vm_page_prev(p_first);
958                 if (tp == NULL || vm_page_busied(tp))
959                         break;
960                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
961                         break;
962                 p_first = tp;
963                 mreq++;
964         }
965
966         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
967                 ma[i] = tp;
968
969         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
970         return (runlen);
971 }
972
973 /*
974  * Note that there is absolutely no sense in writing out
975  * anonymous objects, so we track down the vnode object
976  * to write out.
977  * We invalidate (remove) all pages from the address space
978  * for semantic correctness.
979  *
980  * If the backing object is a device object with unmanaged pages, then any
981  * mappings to the specified range of pages must be removed before this
982  * function is called.
983  *
984  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
985  * may start out with a NULL object.
986  */
987 boolean_t
988 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
989     boolean_t syncio, boolean_t invalidate)
990 {
991         vm_object_t backing_object;
992         struct vnode *vp;
993         struct mount *mp;
994         int error, flags, fsync_after;
995         boolean_t res;
996
997         if (object == NULL)
998                 return (TRUE);
999         res = TRUE;
1000         error = 0;
1001         VM_OBJECT_WLOCK(object);
1002         while ((backing_object = object->backing_object) != NULL) {
1003                 VM_OBJECT_WLOCK(backing_object);
1004                 offset += object->backing_object_offset;
1005                 VM_OBJECT_WUNLOCK(object);
1006                 object = backing_object;
1007                 if (object->size < OFF_TO_IDX(offset + size))
1008                         size = IDX_TO_OFF(object->size) - offset;
1009         }
1010         /*
1011          * Flush pages if writing is allowed, invalidate them
1012          * if invalidation requested.  Pages undergoing I/O
1013          * will be ignored by vm_object_page_remove().
1014          *
1015          * We cannot lock the vnode and then wait for paging
1016          * to complete without deadlocking against vm_fault.
1017          * Instead we simply call vm_object_page_remove() and
1018          * allow it to block internally on a page-by-page
1019          * basis when it encounters pages undergoing async
1020          * I/O.
1021          */
1022         if (object->type == OBJT_VNODE &&
1023             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1024                 vp = object->handle;
1025                 VM_OBJECT_WUNLOCK(object);
1026                 (void) vn_start_write(vp, &mp, V_WAIT);
1027                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1028                 if (syncio && !invalidate && offset == 0 &&
1029                     OFF_TO_IDX(size) == object->size) {
1030                         /*
1031                          * If syncing the whole mapping of the file,
1032                          * it is faster to schedule all the writes in
1033                          * async mode, also allowing the clustering,
1034                          * and then wait for i/o to complete.
1035                          */
1036                         flags = 0;
1037                         fsync_after = TRUE;
1038                 } else {
1039                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1040                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1041                         fsync_after = FALSE;
1042                 }
1043                 VM_OBJECT_WLOCK(object);
1044                 res = vm_object_page_clean(object, offset, offset + size,
1045                     flags);
1046                 VM_OBJECT_WUNLOCK(object);
1047                 if (fsync_after)
1048                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1049                 VOP_UNLOCK(vp, 0);
1050                 vn_finished_write(mp);
1051                 if (error != 0)
1052                         res = FALSE;
1053                 VM_OBJECT_WLOCK(object);
1054         }
1055         if ((object->type == OBJT_VNODE ||
1056              object->type == OBJT_DEVICE) && invalidate) {
1057                 if (object->type == OBJT_DEVICE)
1058                         /*
1059                          * The option OBJPR_NOTMAPPED must be passed here
1060                          * because vm_object_page_remove() cannot remove
1061                          * unmanaged mappings.
1062                          */
1063                         flags = OBJPR_NOTMAPPED;
1064                 else if (old_msync)
1065                         flags = OBJPR_NOTWIRED;
1066                 else
1067                         flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
1068                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1069                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1070         }
1071         VM_OBJECT_WUNLOCK(object);
1072         return (res);
1073 }
1074
1075 /*
1076  *      vm_object_madvise:
1077  *
1078  *      Implements the madvise function at the object/page level.
1079  *
1080  *      MADV_WILLNEED   (any object)
1081  *
1082  *          Activate the specified pages if they are resident.
1083  *
1084  *      MADV_DONTNEED   (any object)
1085  *
1086  *          Deactivate the specified pages if they are resident.
1087  *
1088  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1089  *                       OBJ_ONEMAPPING only)
1090  *
1091  *          Deactivate and clean the specified pages if they are
1092  *          resident.  This permits the process to reuse the pages
1093  *          without faulting or the kernel to reclaim the pages
1094  *          without I/O.
1095  */
1096 void
1097 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1098     int advise)
1099 {
1100         vm_pindex_t tpindex;
1101         vm_object_t backing_object, tobject;
1102         vm_page_t m;
1103
1104         if (object == NULL)
1105                 return;
1106         VM_OBJECT_WLOCK(object);
1107         /*
1108          * Locate and adjust resident pages
1109          */
1110         for (; pindex < end; pindex += 1) {
1111 relookup:
1112                 tobject = object;
1113                 tpindex = pindex;
1114 shadowlookup:
1115                 /*
1116                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1117                  * and those pages must be OBJ_ONEMAPPING.
1118                  */
1119                 if (advise == MADV_FREE) {
1120                         if ((tobject->type != OBJT_DEFAULT &&
1121                              tobject->type != OBJT_SWAP) ||
1122                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1123                                 goto unlock_tobject;
1124                         }
1125                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1126                         goto unlock_tobject;
1127                 m = vm_page_lookup(tobject, tpindex);
1128                 if (m == NULL && advise == MADV_WILLNEED) {
1129                         /*
1130                          * If the page is cached, reactivate it.
1131                          */
1132                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1133                             VM_ALLOC_NOBUSY);
1134                 }
1135                 if (m == NULL) {
1136                         /*
1137                          * There may be swap even if there is no backing page
1138                          */
1139                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1140                                 swap_pager_freespace(tobject, tpindex, 1);
1141                         /*
1142                          * next object
1143                          */
1144                         backing_object = tobject->backing_object;
1145                         if (backing_object == NULL)
1146                                 goto unlock_tobject;
1147                         VM_OBJECT_WLOCK(backing_object);
1148                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1149                         if (tobject != object)
1150                                 VM_OBJECT_WUNLOCK(tobject);
1151                         tobject = backing_object;
1152                         goto shadowlookup;
1153                 } else if (m->valid != VM_PAGE_BITS_ALL)
1154                         goto unlock_tobject;
1155                 /*
1156                  * If the page is not in a normal state, skip it.
1157                  */
1158                 vm_page_lock(m);
1159                 if (m->hold_count != 0 || m->wire_count != 0) {
1160                         vm_page_unlock(m);
1161                         goto unlock_tobject;
1162                 }
1163                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1164                     ("vm_object_madvise: page %p is fictitious", m));
1165                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1166                     ("vm_object_madvise: page %p is not managed", m));
1167                 if (vm_page_busied(m)) {
1168                         if (advise == MADV_WILLNEED) {
1169                                 /*
1170                                  * Reference the page before unlocking and
1171                                  * sleeping so that the page daemon is less
1172                                  * likely to reclaim it. 
1173                                  */
1174                                 vm_page_aflag_set(m, PGA_REFERENCED);
1175                         }
1176                         if (object != tobject)
1177                                 VM_OBJECT_WUNLOCK(object);
1178                         VM_OBJECT_WUNLOCK(tobject);
1179                         vm_page_busy_sleep(m, "madvpo");
1180                         VM_OBJECT_WLOCK(object);
1181                         goto relookup;
1182                 }
1183                 if (advise == MADV_WILLNEED) {
1184                         vm_page_activate(m);
1185                 } else {
1186                         vm_page_advise(m, advise);
1187                 }
1188                 vm_page_unlock(m);
1189                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1190                         swap_pager_freespace(tobject, tpindex, 1);
1191 unlock_tobject:
1192                 if (tobject != object)
1193                         VM_OBJECT_WUNLOCK(tobject);
1194         }       
1195         VM_OBJECT_WUNLOCK(object);
1196 }
1197
1198 /*
1199  *      vm_object_shadow:
1200  *
1201  *      Create a new object which is backed by the
1202  *      specified existing object range.  The source
1203  *      object reference is deallocated.
1204  *
1205  *      The new object and offset into that object
1206  *      are returned in the source parameters.
1207  */
1208 void
1209 vm_object_shadow(
1210         vm_object_t *object,    /* IN/OUT */
1211         vm_ooffset_t *offset,   /* IN/OUT */
1212         vm_size_t length)
1213 {
1214         vm_object_t source;
1215         vm_object_t result;
1216
1217         source = *object;
1218
1219         /*
1220          * Don't create the new object if the old object isn't shared.
1221          */
1222         if (source != NULL) {
1223                 VM_OBJECT_WLOCK(source);
1224                 if (source->ref_count == 1 &&
1225                     source->handle == NULL &&
1226                     (source->type == OBJT_DEFAULT ||
1227                      source->type == OBJT_SWAP)) {
1228                         VM_OBJECT_WUNLOCK(source);
1229                         return;
1230                 }
1231                 VM_OBJECT_WUNLOCK(source);
1232         }
1233
1234         /*
1235          * Allocate a new object with the given length.
1236          */
1237         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1238
1239         /*
1240          * The new object shadows the source object, adding a reference to it.
1241          * Our caller changes his reference to point to the new object,
1242          * removing a reference to the source object.  Net result: no change
1243          * of reference count.
1244          *
1245          * Try to optimize the result object's page color when shadowing
1246          * in order to maintain page coloring consistency in the combined 
1247          * shadowed object.
1248          */
1249         result->backing_object = source;
1250         /*
1251          * Store the offset into the source object, and fix up the offset into
1252          * the new object.
1253          */
1254         result->backing_object_offset = *offset;
1255         if (source != NULL) {
1256                 VM_OBJECT_WLOCK(source);
1257                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1258                 source->shadow_count++;
1259 #if VM_NRESERVLEVEL > 0
1260                 result->flags |= source->flags & OBJ_COLORED;
1261                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1262                     ((1 << (VM_NFREEORDER - 1)) - 1);
1263 #endif
1264                 VM_OBJECT_WUNLOCK(source);
1265         }
1266
1267
1268         /*
1269          * Return the new things
1270          */
1271         *offset = 0;
1272         *object = result;
1273 }
1274
1275 /*
1276  *      vm_object_split:
1277  *
1278  * Split the pages in a map entry into a new object.  This affords
1279  * easier removal of unused pages, and keeps object inheritance from
1280  * being a negative impact on memory usage.
1281  */
1282 void
1283 vm_object_split(vm_map_entry_t entry)
1284 {
1285         vm_page_t m, m_next;
1286         vm_object_t orig_object, new_object, source;
1287         vm_pindex_t idx, offidxstart;
1288         vm_size_t size;
1289
1290         orig_object = entry->object.vm_object;
1291         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1292                 return;
1293         if (orig_object->ref_count <= 1)
1294                 return;
1295         VM_OBJECT_WUNLOCK(orig_object);
1296
1297         offidxstart = OFF_TO_IDX(entry->offset);
1298         size = atop(entry->end - entry->start);
1299
1300         /*
1301          * If swap_pager_copy() is later called, it will convert new_object
1302          * into a swap object.
1303          */
1304         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1305
1306         /*
1307          * At this point, the new object is still private, so the order in
1308          * which the original and new objects are locked does not matter.
1309          */
1310         VM_OBJECT_WLOCK(new_object);
1311         VM_OBJECT_WLOCK(orig_object);
1312         source = orig_object->backing_object;
1313         if (source != NULL) {
1314                 VM_OBJECT_WLOCK(source);
1315                 if ((source->flags & OBJ_DEAD) != 0) {
1316                         VM_OBJECT_WUNLOCK(source);
1317                         VM_OBJECT_WUNLOCK(orig_object);
1318                         VM_OBJECT_WUNLOCK(new_object);
1319                         vm_object_deallocate(new_object);
1320                         VM_OBJECT_WLOCK(orig_object);
1321                         return;
1322                 }
1323                 LIST_INSERT_HEAD(&source->shadow_head,
1324                                   new_object, shadow_list);
1325                 source->shadow_count++;
1326                 vm_object_reference_locked(source);     /* for new_object */
1327                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1328                 VM_OBJECT_WUNLOCK(source);
1329                 new_object->backing_object_offset = 
1330                         orig_object->backing_object_offset + entry->offset;
1331                 new_object->backing_object = source;
1332         }
1333         if (orig_object->cred != NULL) {
1334                 new_object->cred = orig_object->cred;
1335                 crhold(orig_object->cred);
1336                 new_object->charge = ptoa(size);
1337                 KASSERT(orig_object->charge >= ptoa(size),
1338                     ("orig_object->charge < 0"));
1339                 orig_object->charge -= ptoa(size);
1340         }
1341 retry:
1342         m = vm_page_find_least(orig_object, offidxstart);
1343         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1344             m = m_next) {
1345                 m_next = TAILQ_NEXT(m, listq);
1346
1347                 /*
1348                  * We must wait for pending I/O to complete before we can
1349                  * rename the page.
1350                  *
1351                  * We do not have to VM_PROT_NONE the page as mappings should
1352                  * not be changed by this operation.
1353                  */
1354                 if (vm_page_busied(m)) {
1355                         VM_OBJECT_WUNLOCK(new_object);
1356                         vm_page_lock(m);
1357                         VM_OBJECT_WUNLOCK(orig_object);
1358                         vm_page_busy_sleep(m, "spltwt");
1359                         VM_OBJECT_WLOCK(orig_object);
1360                         VM_OBJECT_WLOCK(new_object);
1361                         goto retry;
1362                 }
1363
1364                 /* vm_page_rename() will handle dirty and cache. */
1365                 if (vm_page_rename(m, new_object, idx)) {
1366                         VM_OBJECT_WUNLOCK(new_object);
1367                         VM_OBJECT_WUNLOCK(orig_object);
1368                         VM_WAIT;
1369                         VM_OBJECT_WLOCK(orig_object);
1370                         VM_OBJECT_WLOCK(new_object);
1371                         goto retry;
1372                 }
1373 #if VM_NRESERVLEVEL > 0
1374                 /*
1375                  * If some of the reservation's allocated pages remain with
1376                  * the original object, then transferring the reservation to
1377                  * the new object is neither particularly beneficial nor
1378                  * particularly harmful as compared to leaving the reservation
1379                  * with the original object.  If, however, all of the
1380                  * reservation's allocated pages are transferred to the new
1381                  * object, then transferring the reservation is typically
1382                  * beneficial.  Determining which of these two cases applies
1383                  * would be more costly than unconditionally renaming the
1384                  * reservation.
1385                  */
1386                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1387 #endif
1388                 if (orig_object->type == OBJT_SWAP)
1389                         vm_page_xbusy(m);
1390         }
1391         if (orig_object->type == OBJT_SWAP) {
1392                 /*
1393                  * swap_pager_copy() can sleep, in which case the orig_object's
1394                  * and new_object's locks are released and reacquired. 
1395                  */
1396                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1397                 TAILQ_FOREACH(m, &new_object->memq, listq)
1398                         vm_page_xunbusy(m);
1399
1400                 /*
1401                  * Transfer any cached pages from orig_object to new_object.
1402                  * If swap_pager_copy() found swapped out pages within the
1403                  * specified range of orig_object, then it changed
1404                  * new_object's type to OBJT_SWAP when it transferred those
1405                  * pages to new_object.  Otherwise, new_object's type
1406                  * should still be OBJT_DEFAULT and orig_object should not
1407                  * contain any cached pages within the specified range.
1408                  */
1409                 if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1410                         vm_page_cache_transfer(orig_object, offidxstart,
1411                             new_object);
1412         }
1413         VM_OBJECT_WUNLOCK(orig_object);
1414         VM_OBJECT_WUNLOCK(new_object);
1415         entry->object.vm_object = new_object;
1416         entry->offset = 0LL;
1417         vm_object_deallocate(orig_object);
1418         VM_OBJECT_WLOCK(new_object);
1419 }
1420
1421 #define OBSC_TEST_ALL_SHADOWED  0x0001
1422 #define OBSC_COLLAPSE_NOWAIT    0x0002
1423 #define OBSC_COLLAPSE_WAIT      0x0004
1424
1425 static int
1426 vm_object_backing_scan(vm_object_t object, int op)
1427 {
1428         int r = 1;
1429         vm_page_t p;
1430         vm_object_t backing_object;
1431         vm_pindex_t backing_offset_index;
1432
1433         VM_OBJECT_ASSERT_WLOCKED(object);
1434         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1435
1436         backing_object = object->backing_object;
1437         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1438
1439         /*
1440          * Initial conditions
1441          */
1442         if (op & OBSC_TEST_ALL_SHADOWED) {
1443                 /*
1444                  * We do not want to have to test for the existence of cache
1445                  * or swap pages in the backing object.  XXX but with the
1446                  * new swapper this would be pretty easy to do.
1447                  *
1448                  * XXX what about anonymous MAP_SHARED memory that hasn't
1449                  * been ZFOD faulted yet?  If we do not test for this, the
1450                  * shadow test may succeed! XXX
1451                  */
1452                 if (backing_object->type != OBJT_DEFAULT) {
1453                         return (0);
1454                 }
1455         }
1456         if (op & OBSC_COLLAPSE_WAIT) {
1457                 vm_object_set_flag(backing_object, OBJ_DEAD);
1458         }
1459
1460         /*
1461          * Our scan
1462          */
1463         p = TAILQ_FIRST(&backing_object->memq);
1464         while (p) {
1465                 vm_page_t next = TAILQ_NEXT(p, listq);
1466                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1467
1468                 if (op & OBSC_TEST_ALL_SHADOWED) {
1469                         vm_page_t pp;
1470
1471                         /*
1472                          * Ignore pages outside the parent object's range
1473                          * and outside the parent object's mapping of the 
1474                          * backing object.
1475                          *
1476                          * note that we do not busy the backing object's
1477                          * page.
1478                          */
1479                         if (
1480                             p->pindex < backing_offset_index ||
1481                             new_pindex >= object->size
1482                         ) {
1483                                 p = next;
1484                                 continue;
1485                         }
1486
1487                         /*
1488                          * See if the parent has the page or if the parent's
1489                          * object pager has the page.  If the parent has the
1490                          * page but the page is not valid, the parent's
1491                          * object pager must have the page.
1492                          *
1493                          * If this fails, the parent does not completely shadow
1494                          * the object and we might as well give up now.
1495                          */
1496
1497                         pp = vm_page_lookup(object, new_pindex);
1498                         if (
1499                             (pp == NULL || pp->valid == 0) &&
1500                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1501                         ) {
1502                                 r = 0;
1503                                 break;
1504                         }
1505                 }
1506
1507                 /*
1508                  * Check for busy page
1509                  */
1510                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1511                         vm_page_t pp;
1512
1513                         if (op & OBSC_COLLAPSE_NOWAIT) {
1514                                 if (!p->valid || vm_page_busied(p)) {
1515                                         p = next;
1516                                         continue;
1517                                 }
1518                         } else if (op & OBSC_COLLAPSE_WAIT) {
1519                                 if (vm_page_busied(p)) {
1520                                         VM_OBJECT_WUNLOCK(object);
1521                                         vm_page_lock(p);
1522                                         VM_OBJECT_WUNLOCK(backing_object);
1523                                         vm_page_busy_sleep(p, "vmocol");
1524                                         VM_OBJECT_WLOCK(object);
1525                                         VM_OBJECT_WLOCK(backing_object);
1526                                         /*
1527                                          * If we slept, anything could have
1528                                          * happened.  Since the object is
1529                                          * marked dead, the backing offset
1530                                          * should not have changed so we
1531                                          * just restart our scan.
1532                                          */
1533                                         p = TAILQ_FIRST(&backing_object->memq);
1534                                         continue;
1535                                 }
1536                         }
1537
1538                         KASSERT(
1539                             p->object == backing_object,
1540                             ("vm_object_backing_scan: object mismatch")
1541                         );
1542
1543                         if (
1544                             p->pindex < backing_offset_index ||
1545                             new_pindex >= object->size
1546                         ) {
1547                                 if (backing_object->type == OBJT_SWAP)
1548                                         swap_pager_freespace(backing_object, 
1549                                             p->pindex, 1);
1550
1551                                 /*
1552                                  * Page is out of the parent object's range, we 
1553                                  * can simply destroy it. 
1554                                  */
1555                                 vm_page_lock(p);
1556                                 KASSERT(!pmap_page_is_mapped(p),
1557                                     ("freeing mapped page %p", p));
1558                                 if (p->wire_count == 0)
1559                                         vm_page_free(p);
1560                                 else
1561                                         vm_page_remove(p);
1562                                 vm_page_unlock(p);
1563                                 p = next;
1564                                 continue;
1565                         }
1566
1567                         pp = vm_page_lookup(object, new_pindex);
1568                         if (
1569                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1570                             (pp != NULL && pp->valid == 0)
1571                         ) {
1572                                 if (backing_object->type == OBJT_SWAP)
1573                                         swap_pager_freespace(backing_object, 
1574                                             p->pindex, 1);
1575
1576                                 /*
1577                                  * The page in the parent is not (yet) valid.
1578                                  * We don't know anything about the state of
1579                                  * the original page.  It might be mapped,
1580                                  * so we must avoid the next if here.
1581                                  *
1582                                  * This is due to a race in vm_fault() where
1583                                  * we must unbusy the original (backing_obj)
1584                                  * page before we can (re)lock the parent.
1585                                  * Hence we can get here.
1586                                  */
1587                                 p = next;
1588                                 continue;
1589                         }
1590                         if (
1591                             pp != NULL ||
1592                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1593                         ) {
1594                                 if (backing_object->type == OBJT_SWAP)
1595                                         swap_pager_freespace(backing_object, 
1596                                             p->pindex, 1);
1597
1598                                 /*
1599                                  * page already exists in parent OR swap exists
1600                                  * for this location in the parent.  Destroy 
1601                                  * the original page from the backing object.
1602                                  *
1603                                  * Leave the parent's page alone
1604                                  */
1605                                 vm_page_lock(p);
1606                                 KASSERT(!pmap_page_is_mapped(p),
1607                                     ("freeing mapped page %p", p));
1608                                 if (p->wire_count == 0)
1609                                         vm_page_free(p);
1610                                 else
1611                                         vm_page_remove(p);
1612                                 vm_page_unlock(p);
1613                                 p = next;
1614                                 continue;
1615                         }
1616
1617                         /*
1618                          * Page does not exist in parent, rename the
1619                          * page from the backing object to the main object. 
1620                          *
1621                          * If the page was mapped to a process, it can remain 
1622                          * mapped through the rename.
1623                          * vm_page_rename() will handle dirty and cache.
1624                          */
1625                         if (vm_page_rename(p, object, new_pindex)) {
1626                                 if (op & OBSC_COLLAPSE_NOWAIT) {
1627                                         p = next;
1628                                         continue;
1629                                 }
1630                                 VM_OBJECT_WLOCK(backing_object);
1631                                 VM_OBJECT_WUNLOCK(object);
1632                                 VM_WAIT;
1633                                 VM_OBJECT_WLOCK(object);
1634                                 VM_OBJECT_WLOCK(backing_object);
1635                                 p = TAILQ_FIRST(&backing_object->memq);
1636                                 continue;
1637                         }
1638
1639                         /* Use the old pindex to free the right page. */
1640                         if (backing_object->type == OBJT_SWAP)
1641                                 swap_pager_freespace(backing_object,
1642                                     new_pindex + backing_offset_index, 1);
1643
1644 #if VM_NRESERVLEVEL > 0
1645                         /*
1646                          * Rename the reservation.
1647                          */
1648                         vm_reserv_rename(p, object, backing_object,
1649                             backing_offset_index);
1650 #endif
1651                 }
1652                 p = next;
1653         }
1654         return (r);
1655 }
1656
1657
1658 /*
1659  * this version of collapse allows the operation to occur earlier and
1660  * when paging_in_progress is true for an object...  This is not a complete
1661  * operation, but should plug 99.9% of the rest of the leaks.
1662  */
1663 static void
1664 vm_object_qcollapse(vm_object_t object)
1665 {
1666         vm_object_t backing_object = object->backing_object;
1667
1668         VM_OBJECT_ASSERT_WLOCKED(object);
1669         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1670
1671         if (backing_object->ref_count != 1)
1672                 return;
1673
1674         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1675 }
1676
1677 /*
1678  *      vm_object_collapse:
1679  *
1680  *      Collapse an object with the object backing it.
1681  *      Pages in the backing object are moved into the
1682  *      parent, and the backing object is deallocated.
1683  */
1684 void
1685 vm_object_collapse(vm_object_t object)
1686 {
1687         VM_OBJECT_ASSERT_WLOCKED(object);
1688         
1689         while (TRUE) {
1690                 vm_object_t backing_object;
1691
1692                 /*
1693                  * Verify that the conditions are right for collapse:
1694                  *
1695                  * The object exists and the backing object exists.
1696                  */
1697                 if ((backing_object = object->backing_object) == NULL)
1698                         break;
1699
1700                 /*
1701                  * we check the backing object first, because it is most likely
1702                  * not collapsable.
1703                  */
1704                 VM_OBJECT_WLOCK(backing_object);
1705                 if (backing_object->handle != NULL ||
1706                     (backing_object->type != OBJT_DEFAULT &&
1707                      backing_object->type != OBJT_SWAP) ||
1708                     (backing_object->flags & OBJ_DEAD) ||
1709                     object->handle != NULL ||
1710                     (object->type != OBJT_DEFAULT &&
1711                      object->type != OBJT_SWAP) ||
1712                     (object->flags & OBJ_DEAD)) {
1713                         VM_OBJECT_WUNLOCK(backing_object);
1714                         break;
1715                 }
1716
1717                 if (
1718                     object->paging_in_progress != 0 ||
1719                     backing_object->paging_in_progress != 0
1720                 ) {
1721                         vm_object_qcollapse(object);
1722                         VM_OBJECT_WUNLOCK(backing_object);
1723                         break;
1724                 }
1725                 /*
1726                  * We know that we can either collapse the backing object (if
1727                  * the parent is the only reference to it) or (perhaps) have
1728                  * the parent bypass the object if the parent happens to shadow
1729                  * all the resident pages in the entire backing object.
1730                  *
1731                  * This is ignoring pager-backed pages such as swap pages.
1732                  * vm_object_backing_scan fails the shadowing test in this
1733                  * case.
1734                  */
1735                 if (backing_object->ref_count == 1) {
1736                         /*
1737                          * If there is exactly one reference to the backing
1738                          * object, we can collapse it into the parent.  
1739                          */
1740                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1741
1742 #if VM_NRESERVLEVEL > 0
1743                         /*
1744                          * Break any reservations from backing_object.
1745                          */
1746                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1747                                 vm_reserv_break_all(backing_object);
1748 #endif
1749
1750                         /*
1751                          * Move the pager from backing_object to object.
1752                          */
1753                         if (backing_object->type == OBJT_SWAP) {
1754                                 /*
1755                                  * swap_pager_copy() can sleep, in which case
1756                                  * the backing_object's and object's locks are
1757                                  * released and reacquired.
1758                                  * Since swap_pager_copy() is being asked to
1759                                  * destroy the source, it will change the
1760                                  * backing_object's type to OBJT_DEFAULT.
1761                                  */
1762                                 swap_pager_copy(
1763                                     backing_object,
1764                                     object,
1765                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1766
1767                                 /*
1768                                  * Free any cached pages from backing_object.
1769                                  */
1770                                 if (__predict_false(
1771                                     !vm_object_cache_is_empty(backing_object)))
1772                                         vm_page_cache_free(backing_object, 0, 0);
1773                         }
1774                         /*
1775                          * Object now shadows whatever backing_object did.
1776                          * Note that the reference to 
1777                          * backing_object->backing_object moves from within 
1778                          * backing_object to within object.
1779                          */
1780                         LIST_REMOVE(object, shadow_list);
1781                         backing_object->shadow_count--;
1782                         if (backing_object->backing_object) {
1783                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1784                                 LIST_REMOVE(backing_object, shadow_list);
1785                                 LIST_INSERT_HEAD(
1786                                     &backing_object->backing_object->shadow_head,
1787                                     object, shadow_list);
1788                                 /*
1789                                  * The shadow_count has not changed.
1790                                  */
1791                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1792                         }
1793                         object->backing_object = backing_object->backing_object;
1794                         object->backing_object_offset +=
1795                             backing_object->backing_object_offset;
1796
1797                         /*
1798                          * Discard backing_object.
1799                          *
1800                          * Since the backing object has no pages, no pager left,
1801                          * and no object references within it, all that is
1802                          * necessary is to dispose of it.
1803                          */
1804                         KASSERT(backing_object->ref_count == 1, (
1805 "backing_object %p was somehow re-referenced during collapse!",
1806                             backing_object));
1807                         VM_OBJECT_WUNLOCK(backing_object);
1808                         vm_object_destroy(backing_object);
1809
1810                         object_collapses++;
1811                 } else {
1812                         vm_object_t new_backing_object;
1813
1814                         /*
1815                          * If we do not entirely shadow the backing object,
1816                          * there is nothing we can do so we give up.
1817                          */
1818                         if (object->resident_page_count != object->size &&
1819                             vm_object_backing_scan(object,
1820                             OBSC_TEST_ALL_SHADOWED) == 0) {
1821                                 VM_OBJECT_WUNLOCK(backing_object);
1822                                 break;
1823                         }
1824
1825                         /*
1826                          * Make the parent shadow the next object in the
1827                          * chain.  Deallocating backing_object will not remove
1828                          * it, since its reference count is at least 2.
1829                          */
1830                         LIST_REMOVE(object, shadow_list);
1831                         backing_object->shadow_count--;
1832
1833                         new_backing_object = backing_object->backing_object;
1834                         if ((object->backing_object = new_backing_object) != NULL) {
1835                                 VM_OBJECT_WLOCK(new_backing_object);
1836                                 LIST_INSERT_HEAD(
1837                                     &new_backing_object->shadow_head,
1838                                     object,
1839                                     shadow_list
1840                                 );
1841                                 new_backing_object->shadow_count++;
1842                                 vm_object_reference_locked(new_backing_object);
1843                                 VM_OBJECT_WUNLOCK(new_backing_object);
1844                                 object->backing_object_offset +=
1845                                         backing_object->backing_object_offset;
1846                         }
1847
1848                         /*
1849                          * Drop the reference count on backing_object. Since
1850                          * its ref_count was at least 2, it will not vanish.
1851                          */
1852                         backing_object->ref_count--;
1853                         VM_OBJECT_WUNLOCK(backing_object);
1854                         object_bypasses++;
1855                 }
1856
1857                 /*
1858                  * Try again with this object's new backing object.
1859                  */
1860         }
1861 }
1862
1863 /*
1864  *      vm_object_page_remove:
1865  *
1866  *      For the given object, either frees or invalidates each of the
1867  *      specified pages.  In general, a page is freed.  However, if a page is
1868  *      wired for any reason other than the existence of a managed, wired
1869  *      mapping, then it may be invalidated but not removed from the object.
1870  *      Pages are specified by the given range ["start", "end") and the option
1871  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1872  *      extends from "start" to the end of the object.  If the option
1873  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1874  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1875  *      specified, then the pages within the specified range must have no
1876  *      mappings.  Otherwise, if this option is not specified, any mappings to
1877  *      the specified pages are removed before the pages are freed or
1878  *      invalidated.
1879  *
1880  *      In general, this operation should only be performed on objects that
1881  *      contain managed pages.  There are, however, two exceptions.  First, it
1882  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1883  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1884  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1885  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1886  *
1887  *      The object must be locked.
1888  */
1889 void
1890 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1891     int options)
1892 {
1893         vm_page_t p, next;
1894         int wirings;
1895
1896         VM_OBJECT_ASSERT_WLOCKED(object);
1897         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1898             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1899             ("vm_object_page_remove: illegal options for object %p", object));
1900         if (object->resident_page_count == 0)
1901                 goto skipmemq;
1902         vm_object_pip_add(object, 1);
1903 again:
1904         p = vm_page_find_least(object, start);
1905
1906         /*
1907          * Here, the variable "p" is either (1) the page with the least pindex
1908          * greater than or equal to the parameter "start" or (2) NULL. 
1909          */
1910         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1911                 next = TAILQ_NEXT(p, listq);
1912
1913                 /*
1914                  * If the page is wired for any reason besides the existence
1915                  * of managed, wired mappings, then it cannot be freed.  For
1916                  * example, fictitious pages, which represent device memory,
1917                  * are inherently wired and cannot be freed.  They can,
1918                  * however, be invalidated if the option OBJPR_CLEANONLY is
1919                  * not specified.
1920                  */
1921                 vm_page_lock(p);
1922                 if (vm_page_xbusied(p)) {
1923                         VM_OBJECT_WUNLOCK(object);
1924                         vm_page_busy_sleep(p, "vmopax");
1925                         VM_OBJECT_WLOCK(object);
1926                         goto again;
1927                 }
1928                 if ((wirings = p->wire_count) != 0 &&
1929                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1930                         if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
1931                             0) {
1932                                 pmap_remove_all(p);
1933                                 /* Account for removal of wired mappings. */
1934                                 if (wirings != 0)
1935                                         p->wire_count -= wirings;
1936                         }
1937                         if ((options & OBJPR_CLEANONLY) == 0) {
1938                                 p->valid = 0;
1939                                 vm_page_undirty(p);
1940                         }
1941                         goto next;
1942                 }
1943                 if (vm_page_busied(p)) {
1944                         VM_OBJECT_WUNLOCK(object);
1945                         vm_page_busy_sleep(p, "vmopar");
1946                         VM_OBJECT_WLOCK(object);
1947                         goto again;
1948                 }
1949                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1950                     ("vm_object_page_remove: page %p is fictitious", p));
1951                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1952                         if ((options & OBJPR_NOTMAPPED) == 0)
1953                                 pmap_remove_write(p);
1954                         if (p->dirty)
1955                                 goto next;
1956                 }
1957                 if ((options & OBJPR_NOTMAPPED) == 0) {
1958                         if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
1959                                 goto next;
1960                         pmap_remove_all(p);
1961                         /* Account for removal of wired mappings. */
1962                         if (wirings != 0) {
1963                                 KASSERT(p->wire_count == wirings,
1964                                     ("inconsistent wire count %d %d %p",
1965                                     p->wire_count, wirings, p));
1966                                 p->wire_count = 0;
1967                                 atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1968                         }
1969                 }
1970                 vm_page_free(p);
1971 next:
1972                 vm_page_unlock(p);
1973         }
1974         vm_object_pip_wakeup(object);
1975 skipmemq:
1976         if (__predict_false(!vm_object_cache_is_empty(object)))
1977                 vm_page_cache_free(object, start, end);
1978 }
1979
1980 /*
1981  *      vm_object_page_cache:
1982  *
1983  *      For the given object, attempt to move the specified clean
1984  *      pages to the cache queue.  If a page is wired for any reason,
1985  *      then it will not be changed.  Pages are specified by the given
1986  *      range ["start", "end").  As a special case, if "end" is zero,
1987  *      then the range extends from "start" to the end of the object.
1988  *      Any mappings to the specified pages are removed before the
1989  *      pages are moved to the cache queue.
1990  *
1991  *      This operation should only be performed on objects that
1992  *      contain non-fictitious, managed pages.
1993  *
1994  *      The object must be locked.
1995  */
1996 void
1997 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1998 {
1999         struct mtx *mtx, *new_mtx;
2000         vm_page_t p, next;
2001
2002         VM_OBJECT_ASSERT_WLOCKED(object);
2003         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2004             ("vm_object_page_cache: illegal object %p", object));
2005         if (object->resident_page_count == 0)
2006                 return;
2007         p = vm_page_find_least(object, start);
2008
2009         /*
2010          * Here, the variable "p" is either (1) the page with the least pindex
2011          * greater than or equal to the parameter "start" or (2) NULL. 
2012          */
2013         mtx = NULL;
2014         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2015                 next = TAILQ_NEXT(p, listq);
2016
2017                 /*
2018                  * Avoid releasing and reacquiring the same page lock.
2019                  */
2020                 new_mtx = vm_page_lockptr(p);
2021                 if (mtx != new_mtx) {
2022                         if (mtx != NULL)
2023                                 mtx_unlock(mtx);
2024                         mtx = new_mtx;
2025                         mtx_lock(mtx);
2026                 }
2027                 vm_page_try_to_cache(p);
2028         }
2029         if (mtx != NULL)
2030                 mtx_unlock(mtx);
2031 }
2032
2033 /*
2034  *      Populate the specified range of the object with valid pages.  Returns
2035  *      TRUE if the range is successfully populated and FALSE otherwise.
2036  *
2037  *      Note: This function should be optimized to pass a larger array of
2038  *      pages to vm_pager_get_pages() before it is applied to a non-
2039  *      OBJT_DEVICE object.
2040  *
2041  *      The object must be locked.
2042  */
2043 boolean_t
2044 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2045 {
2046         vm_page_t m, ma[1];
2047         vm_pindex_t pindex;
2048         int rv;
2049
2050         VM_OBJECT_ASSERT_WLOCKED(object);
2051         for (pindex = start; pindex < end; pindex++) {
2052                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2053                 if (m->valid != VM_PAGE_BITS_ALL) {
2054                         ma[0] = m;
2055                         rv = vm_pager_get_pages(object, ma, 1, 0);
2056                         m = vm_page_lookup(object, pindex);
2057                         if (m == NULL)
2058                                 break;
2059                         if (rv != VM_PAGER_OK) {
2060                                 vm_page_lock(m);
2061                                 vm_page_free(m);
2062                                 vm_page_unlock(m);
2063                                 break;
2064                         }
2065                 }
2066                 /*
2067                  * Keep "m" busy because a subsequent iteration may unlock
2068                  * the object.
2069                  */
2070         }
2071         if (pindex > start) {
2072                 m = vm_page_lookup(object, start);
2073                 while (m != NULL && m->pindex < pindex) {
2074                         vm_page_xunbusy(m);
2075                         m = TAILQ_NEXT(m, listq);
2076                 }
2077         }
2078         return (pindex == end);
2079 }
2080
2081 /*
2082  *      Routine:        vm_object_coalesce
2083  *      Function:       Coalesces two objects backing up adjoining
2084  *                      regions of memory into a single object.
2085  *
2086  *      returns TRUE if objects were combined.
2087  *
2088  *      NOTE:   Only works at the moment if the second object is NULL -
2089  *              if it's not, which object do we lock first?
2090  *
2091  *      Parameters:
2092  *              prev_object     First object to coalesce
2093  *              prev_offset     Offset into prev_object
2094  *              prev_size       Size of reference to prev_object
2095  *              next_size       Size of reference to the second object
2096  *              reserved        Indicator that extension region has
2097  *                              swap accounted for
2098  *
2099  *      Conditions:
2100  *      The object must *not* be locked.
2101  */
2102 boolean_t
2103 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2104     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2105 {
2106         vm_pindex_t next_pindex;
2107
2108         if (prev_object == NULL)
2109                 return (TRUE);
2110         VM_OBJECT_WLOCK(prev_object);
2111         if ((prev_object->type != OBJT_DEFAULT &&
2112             prev_object->type != OBJT_SWAP) ||
2113             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2114                 VM_OBJECT_WUNLOCK(prev_object);
2115                 return (FALSE);
2116         }
2117
2118         /*
2119          * Try to collapse the object first
2120          */
2121         vm_object_collapse(prev_object);
2122
2123         /*
2124          * Can't coalesce if: . more than one reference . paged out . shadows
2125          * another object . has a copy elsewhere (any of which mean that the
2126          * pages not mapped to prev_entry may be in use anyway)
2127          */
2128         if (prev_object->backing_object != NULL) {
2129                 VM_OBJECT_WUNLOCK(prev_object);
2130                 return (FALSE);
2131         }
2132
2133         prev_size >>= PAGE_SHIFT;
2134         next_size >>= PAGE_SHIFT;
2135         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2136
2137         if ((prev_object->ref_count > 1) &&
2138             (prev_object->size != next_pindex)) {
2139                 VM_OBJECT_WUNLOCK(prev_object);
2140                 return (FALSE);
2141         }
2142
2143         /*
2144          * Account for the charge.
2145          */
2146         if (prev_object->cred != NULL) {
2147
2148                 /*
2149                  * If prev_object was charged, then this mapping,
2150                  * althought not charged now, may become writable
2151                  * later. Non-NULL cred in the object would prevent
2152                  * swap reservation during enabling of the write
2153                  * access, so reserve swap now. Failed reservation
2154                  * cause allocation of the separate object for the map
2155                  * entry, and swap reservation for this entry is
2156                  * managed in appropriate time.
2157                  */
2158                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2159                     prev_object->cred)) {
2160                         return (FALSE);
2161                 }
2162                 prev_object->charge += ptoa(next_size);
2163         }
2164
2165         /*
2166          * Remove any pages that may still be in the object from a previous
2167          * deallocation.
2168          */
2169         if (next_pindex < prev_object->size) {
2170                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2171                     next_size, 0);
2172                 if (prev_object->type == OBJT_SWAP)
2173                         swap_pager_freespace(prev_object,
2174                                              next_pindex, next_size);
2175 #if 0
2176                 if (prev_object->cred != NULL) {
2177                         KASSERT(prev_object->charge >=
2178                             ptoa(prev_object->size - next_pindex),
2179                             ("object %p overcharged 1 %jx %jx", prev_object,
2180                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2181                         prev_object->charge -= ptoa(prev_object->size -
2182                             next_pindex);
2183                 }
2184 #endif
2185         }
2186
2187         /*
2188          * Extend the object if necessary.
2189          */
2190         if (next_pindex + next_size > prev_object->size)
2191                 prev_object->size = next_pindex + next_size;
2192
2193         VM_OBJECT_WUNLOCK(prev_object);
2194         return (TRUE);
2195 }
2196
2197 void
2198 vm_object_set_writeable_dirty(vm_object_t object)
2199 {
2200
2201         VM_OBJECT_ASSERT_WLOCKED(object);
2202         if (object->type != OBJT_VNODE) {
2203                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2204                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2205                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2206                 }
2207                 return;
2208         }
2209         object->generation++;
2210         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2211                 return;
2212         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2213 }
2214
2215 /*
2216  *      vm_object_unwire:
2217  *
2218  *      For each page offset within the specified range of the given object,
2219  *      find the highest-level page in the shadow chain and unwire it.  A page
2220  *      must exist at every page offset, and the highest-level page must be
2221  *      wired.
2222  */
2223 void
2224 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2225     uint8_t queue)
2226 {
2227         vm_object_t tobject;
2228         vm_page_t m, tm;
2229         vm_pindex_t end_pindex, pindex, tpindex;
2230         int depth, locked_depth;
2231
2232         KASSERT((offset & PAGE_MASK) == 0,
2233             ("vm_object_unwire: offset is not page aligned"));
2234         KASSERT((length & PAGE_MASK) == 0,
2235             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2236         /* The wired count of a fictitious page never changes. */
2237         if ((object->flags & OBJ_FICTITIOUS) != 0)
2238                 return;
2239         pindex = OFF_TO_IDX(offset);
2240         end_pindex = pindex + atop(length);
2241         locked_depth = 1;
2242         VM_OBJECT_RLOCK(object);
2243         m = vm_page_find_least(object, pindex);
2244         while (pindex < end_pindex) {
2245                 if (m == NULL || pindex < m->pindex) {
2246                         /*
2247                          * The first object in the shadow chain doesn't
2248                          * contain a page at the current index.  Therefore,
2249                          * the page must exist in a backing object.
2250                          */
2251                         tobject = object;
2252                         tpindex = pindex;
2253                         depth = 0;
2254                         do {
2255                                 tpindex +=
2256                                     OFF_TO_IDX(tobject->backing_object_offset);
2257                                 tobject = tobject->backing_object;
2258                                 KASSERT(tobject != NULL,
2259                                     ("vm_object_unwire: missing page"));
2260                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2261                                         goto next_page;
2262                                 depth++;
2263                                 if (depth == locked_depth) {
2264                                         locked_depth++;
2265                                         VM_OBJECT_RLOCK(tobject);
2266                                 }
2267                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2268                             NULL);
2269                 } else {
2270                         tm = m;
2271                         m = TAILQ_NEXT(m, listq);
2272                 }
2273                 vm_page_lock(tm);
2274                 vm_page_unwire(tm, queue);
2275                 vm_page_unlock(tm);
2276 next_page:
2277                 pindex++;
2278         }
2279         /* Release the accumulated object locks. */
2280         for (depth = 0; depth < locked_depth; depth++) {
2281                 tobject = object->backing_object;
2282                 VM_OBJECT_RUNLOCK(object);
2283                 object = tobject;
2284         }
2285 }
2286
2287 #include "opt_ddb.h"
2288 #ifdef DDB
2289 #include <sys/kernel.h>
2290
2291 #include <sys/cons.h>
2292
2293 #include <ddb/ddb.h>
2294
2295 static int
2296 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2297 {
2298         vm_map_t tmpm;
2299         vm_map_entry_t tmpe;
2300         vm_object_t obj;
2301         int entcount;
2302
2303         if (map == 0)
2304                 return 0;
2305
2306         if (entry == 0) {
2307                 tmpe = map->header.next;
2308                 entcount = map->nentries;
2309                 while (entcount-- && (tmpe != &map->header)) {
2310                         if (_vm_object_in_map(map, object, tmpe)) {
2311                                 return 1;
2312                         }
2313                         tmpe = tmpe->next;
2314                 }
2315         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2316                 tmpm = entry->object.sub_map;
2317                 tmpe = tmpm->header.next;
2318                 entcount = tmpm->nentries;
2319                 while (entcount-- && tmpe != &tmpm->header) {
2320                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2321                                 return 1;
2322                         }
2323                         tmpe = tmpe->next;
2324                 }
2325         } else if ((obj = entry->object.vm_object) != NULL) {
2326                 for (; obj; obj = obj->backing_object)
2327                         if (obj == object) {
2328                                 return 1;
2329                         }
2330         }
2331         return 0;
2332 }
2333
2334 static int
2335 vm_object_in_map(vm_object_t object)
2336 {
2337         struct proc *p;
2338
2339         /* sx_slock(&allproc_lock); */
2340         FOREACH_PROC_IN_SYSTEM(p) {
2341                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2342                         continue;
2343                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2344                         /* sx_sunlock(&allproc_lock); */
2345                         return 1;
2346                 }
2347         }
2348         /* sx_sunlock(&allproc_lock); */
2349         if (_vm_object_in_map(kernel_map, object, 0))
2350                 return 1;
2351         return 0;
2352 }
2353
2354 DB_SHOW_COMMAND(vmochk, vm_object_check)
2355 {
2356         vm_object_t object;
2357
2358         /*
2359          * make sure that internal objs are in a map somewhere
2360          * and none have zero ref counts.
2361          */
2362         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2363                 if (object->handle == NULL &&
2364                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2365                         if (object->ref_count == 0) {
2366                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2367                                         (long)object->size);
2368                         }
2369                         if (!vm_object_in_map(object)) {
2370                                 db_printf(
2371                         "vmochk: internal obj is not in a map: "
2372                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2373                                     object->ref_count, (u_long)object->size, 
2374                                     (u_long)object->size,
2375                                     (void *)object->backing_object);
2376                         }
2377                 }
2378         }
2379 }
2380
2381 /*
2382  *      vm_object_print:        [ debug ]
2383  */
2384 DB_SHOW_COMMAND(object, vm_object_print_static)
2385 {
2386         /* XXX convert args. */
2387         vm_object_t object = (vm_object_t)addr;
2388         boolean_t full = have_addr;
2389
2390         vm_page_t p;
2391
2392         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2393 #define count   was_count
2394
2395         int count;
2396
2397         if (object == NULL)
2398                 return;
2399
2400         db_iprintf(
2401             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2402             object, (int)object->type, (uintmax_t)object->size,
2403             object->resident_page_count, object->ref_count, object->flags,
2404             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2405         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2406             object->shadow_count, 
2407             object->backing_object ? object->backing_object->ref_count : 0,
2408             object->backing_object, (uintmax_t)object->backing_object_offset);
2409
2410         if (!full)
2411                 return;
2412
2413         db_indent += 2;
2414         count = 0;
2415         TAILQ_FOREACH(p, &object->memq, listq) {
2416                 if (count == 0)
2417                         db_iprintf("memory:=");
2418                 else if (count == 6) {
2419                         db_printf("\n");
2420                         db_iprintf(" ...");
2421                         count = 0;
2422                 } else
2423                         db_printf(",");
2424                 count++;
2425
2426                 db_printf("(off=0x%jx,page=0x%jx)",
2427                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2428         }
2429         if (count != 0)
2430                 db_printf("\n");
2431         db_indent -= 2;
2432 }
2433
2434 /* XXX. */
2435 #undef count
2436
2437 /* XXX need this non-static entry for calling from vm_map_print. */
2438 void
2439 vm_object_print(
2440         /* db_expr_t */ long addr,
2441         boolean_t have_addr,
2442         /* db_expr_t */ long count,
2443         char *modif)
2444 {
2445         vm_object_print_static(addr, have_addr, count, modif);
2446 }
2447
2448 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2449 {
2450         vm_object_t object;
2451         vm_pindex_t fidx;
2452         vm_paddr_t pa;
2453         vm_page_t m, prev_m;
2454         int rcount, nl, c;
2455
2456         nl = 0;
2457         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2458                 db_printf("new object: %p\n", (void *)object);
2459                 if (nl > 18) {
2460                         c = cngetc();
2461                         if (c != ' ')
2462                                 return;
2463                         nl = 0;
2464                 }
2465                 nl++;
2466                 rcount = 0;
2467                 fidx = 0;
2468                 pa = -1;
2469                 TAILQ_FOREACH(m, &object->memq, listq) {
2470                         if (m->pindex > 128)
2471                                 break;
2472                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2473                             prev_m->pindex + 1 != m->pindex) {
2474                                 if (rcount) {
2475                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2476                                                 (long)fidx, rcount, (long)pa);
2477                                         if (nl > 18) {
2478                                                 c = cngetc();
2479                                                 if (c != ' ')
2480                                                         return;
2481                                                 nl = 0;
2482                                         }
2483                                         nl++;
2484                                         rcount = 0;
2485                                 }
2486                         }                               
2487                         if (rcount &&
2488                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2489                                 ++rcount;
2490                                 continue;
2491                         }
2492                         if (rcount) {
2493                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2494                                         (long)fidx, rcount, (long)pa);
2495                                 if (nl > 18) {
2496                                         c = cngetc();
2497                                         if (c != ' ')
2498                                                 return;
2499                                         nl = 0;
2500                                 }
2501                                 nl++;
2502                         }
2503                         fidx = m->pindex;
2504                         pa = VM_PAGE_TO_PHYS(m);
2505                         rcount = 1;
2506                 }
2507                 if (rcount) {
2508                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2509                                 (long)fidx, rcount, (long)pa);
2510                         if (nl > 18) {
2511                                 c = cngetc();
2512                                 if (c != ' ')
2513                                         return;
2514                                 nl = 0;
2515                         }
2516                         nl++;
2517                 }
2518         }
2519 }
2520 #endif /* DDB */