]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Merge ACPICA 20150515.
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_radix.h>
98 #include <vm/vm_reserv.h>
99 #include <vm/uma.h>
100
101 static int old_msync;
102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103     "Use old (insecure) msync behavior");
104
105 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106                     int pagerflags, int flags, boolean_t *clearobjflags,
107                     boolean_t *eio);
108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109                     boolean_t *clearobjflags);
110 static void     vm_object_qcollapse(vm_object_t object);
111 static void     vm_object_vndeallocate(vm_object_t object);
112
113 /*
114  *      Virtual memory objects maintain the actual data
115  *      associated with allocated virtual memory.  A given
116  *      page of memory exists within exactly one object.
117  *
118  *      An object is only deallocated when all "references"
119  *      are given up.  Only one "reference" to a given
120  *      region of an object should be writeable.
121  *
122  *      Associated with each object is a list of all resident
123  *      memory pages belonging to that object; this list is
124  *      maintained by the "vm_page" module, and locked by the object's
125  *      lock.
126  *
127  *      Each object also records a "pager" routine which is
128  *      used to retrieve (and store) pages to the proper backing
129  *      storage.  In addition, objects may be backed by other
130  *      objects from which they were virtual-copied.
131  *
132  *      The only items within the object structure which are
133  *      modified after time of creation are:
134  *              reference count         locked by object's lock
135  *              pager routine           locked by object's lock
136  *
137  */
138
139 struct object_q vm_object_list;
140 struct mtx vm_object_list_mtx;  /* lock for object list and count */
141
142 struct vm_object kernel_object_store;
143 struct vm_object kmem_object_store;
144
145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146     "VM object stats");
147
148 static long object_collapses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150     &object_collapses, 0, "VM object collapses");
151
152 static long object_bypasses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154     &object_bypasses, 0, "VM object bypasses");
155
156 static uma_zone_t obj_zone;
157
158 static int vm_object_zinit(void *mem, int size, int flags);
159
160 #ifdef INVARIANTS
161 static void vm_object_zdtor(void *mem, int size, void *arg);
162
163 static void
164 vm_object_zdtor(void *mem, int size, void *arg)
165 {
166         vm_object_t object;
167
168         object = (vm_object_t)mem;
169         KASSERT(object->ref_count == 0,
170             ("object %p ref_count = %d", object, object->ref_count));
171         KASSERT(TAILQ_EMPTY(&object->memq),
172             ("object %p has resident pages in its memq", object));
173         KASSERT(vm_radix_is_empty(&object->rtree),
174             ("object %p has resident pages in its trie", object));
175 #if VM_NRESERVLEVEL > 0
176         KASSERT(LIST_EMPTY(&object->rvq),
177             ("object %p has reservations",
178             object));
179 #endif
180         KASSERT(vm_object_cache_is_empty(object),
181             ("object %p has cached pages",
182             object));
183         KASSERT(object->paging_in_progress == 0,
184             ("object %p paging_in_progress = %d",
185             object, object->paging_in_progress));
186         KASSERT(object->resident_page_count == 0,
187             ("object %p resident_page_count = %d",
188             object, object->resident_page_count));
189         KASSERT(object->shadow_count == 0,
190             ("object %p shadow_count = %d",
191             object, object->shadow_count));
192         KASSERT(object->type == OBJT_DEAD,
193             ("object %p has non-dead type %d",
194             object, object->type));
195 }
196 #endif
197
198 static int
199 vm_object_zinit(void *mem, int size, int flags)
200 {
201         vm_object_t object;
202
203         object = (vm_object_t)mem;
204         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
205
206         /* These are true for any object that has been freed */
207         object->type = OBJT_DEAD;
208         object->ref_count = 0;
209         object->rtree.rt_root = 0;
210         object->rtree.rt_flags = 0;
211         object->paging_in_progress = 0;
212         object->resident_page_count = 0;
213         object->shadow_count = 0;
214         object->cache.rt_root = 0;
215         object->cache.rt_flags = 0;
216
217         mtx_lock(&vm_object_list_mtx);
218         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
219         mtx_unlock(&vm_object_list_mtx);
220         return (0);
221 }
222
223 static void
224 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
225 {
226
227         TAILQ_INIT(&object->memq);
228         LIST_INIT(&object->shadow_head);
229
230         object->type = type;
231         switch (type) {
232         case OBJT_DEAD:
233                 panic("_vm_object_allocate: can't create OBJT_DEAD");
234         case OBJT_DEFAULT:
235         case OBJT_SWAP:
236                 object->flags = OBJ_ONEMAPPING;
237                 break;
238         case OBJT_DEVICE:
239         case OBJT_SG:
240                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
241                 break;
242         case OBJT_MGTDEVICE:
243                 object->flags = OBJ_FICTITIOUS;
244                 break;
245         case OBJT_PHYS:
246                 object->flags = OBJ_UNMANAGED;
247                 break;
248         case OBJT_VNODE:
249                 object->flags = 0;
250                 break;
251         default:
252                 panic("_vm_object_allocate: type %d is undefined", type);
253         }
254         object->size = size;
255         object->generation = 1;
256         object->ref_count = 1;
257         object->memattr = VM_MEMATTR_DEFAULT;
258         object->cred = NULL;
259         object->charge = 0;
260         object->handle = NULL;
261         object->backing_object = NULL;
262         object->backing_object_offset = (vm_ooffset_t) 0;
263 #if VM_NRESERVLEVEL > 0
264         LIST_INIT(&object->rvq);
265 #endif
266 }
267
268 /*
269  *      vm_object_init:
270  *
271  *      Initialize the VM objects module.
272  */
273 void
274 vm_object_init(void)
275 {
276         TAILQ_INIT(&vm_object_list);
277         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
278         
279         rw_init(&kernel_object->lock, "kernel vm object");
280         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
281             kernel_object);
282 #if VM_NRESERVLEVEL > 0
283         kernel_object->flags |= OBJ_COLORED;
284         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
285 #endif
286
287         rw_init(&kmem_object->lock, "kmem vm object");
288         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
289             kmem_object);
290 #if VM_NRESERVLEVEL > 0
291         kmem_object->flags |= OBJ_COLORED;
292         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
293 #endif
294
295         /*
296          * The lock portion of struct vm_object must be type stable due
297          * to vm_pageout_fallback_object_lock locking a vm object
298          * without holding any references to it.
299          */
300         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
301 #ifdef INVARIANTS
302             vm_object_zdtor,
303 #else
304             NULL,
305 #endif
306             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
307
308         vm_radix_init();
309 }
310
311 void
312 vm_object_clear_flag(vm_object_t object, u_short bits)
313 {
314
315         VM_OBJECT_ASSERT_WLOCKED(object);
316         object->flags &= ~bits;
317 }
318
319 /*
320  *      Sets the default memory attribute for the specified object.  Pages
321  *      that are allocated to this object are by default assigned this memory
322  *      attribute.
323  *
324  *      Presently, this function must be called before any pages are allocated
325  *      to the object.  In the future, this requirement may be relaxed for
326  *      "default" and "swap" objects.
327  */
328 int
329 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
330 {
331
332         VM_OBJECT_ASSERT_WLOCKED(object);
333         switch (object->type) {
334         case OBJT_DEFAULT:
335         case OBJT_DEVICE:
336         case OBJT_MGTDEVICE:
337         case OBJT_PHYS:
338         case OBJT_SG:
339         case OBJT_SWAP:
340         case OBJT_VNODE:
341                 if (!TAILQ_EMPTY(&object->memq))
342                         return (KERN_FAILURE);
343                 break;
344         case OBJT_DEAD:
345                 return (KERN_INVALID_ARGUMENT);
346         default:
347                 panic("vm_object_set_memattr: object %p is of undefined type",
348                     object);
349         }
350         object->memattr = memattr;
351         return (KERN_SUCCESS);
352 }
353
354 void
355 vm_object_pip_add(vm_object_t object, short i)
356 {
357
358         VM_OBJECT_ASSERT_WLOCKED(object);
359         object->paging_in_progress += i;
360 }
361
362 void
363 vm_object_pip_subtract(vm_object_t object, short i)
364 {
365
366         VM_OBJECT_ASSERT_WLOCKED(object);
367         object->paging_in_progress -= i;
368 }
369
370 void
371 vm_object_pip_wakeup(vm_object_t object)
372 {
373
374         VM_OBJECT_ASSERT_WLOCKED(object);
375         object->paging_in_progress--;
376         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
377                 vm_object_clear_flag(object, OBJ_PIPWNT);
378                 wakeup(object);
379         }
380 }
381
382 void
383 vm_object_pip_wakeupn(vm_object_t object, short i)
384 {
385
386         VM_OBJECT_ASSERT_WLOCKED(object);
387         if (i)
388                 object->paging_in_progress -= i;
389         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
390                 vm_object_clear_flag(object, OBJ_PIPWNT);
391                 wakeup(object);
392         }
393 }
394
395 void
396 vm_object_pip_wait(vm_object_t object, char *waitid)
397 {
398
399         VM_OBJECT_ASSERT_WLOCKED(object);
400         while (object->paging_in_progress) {
401                 object->flags |= OBJ_PIPWNT;
402                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
403         }
404 }
405
406 /*
407  *      vm_object_allocate:
408  *
409  *      Returns a new object with the given size.
410  */
411 vm_object_t
412 vm_object_allocate(objtype_t type, vm_pindex_t size)
413 {
414         vm_object_t object;
415
416         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
417         _vm_object_allocate(type, size, object);
418         return (object);
419 }
420
421
422 /*
423  *      vm_object_reference:
424  *
425  *      Gets another reference to the given object.  Note: OBJ_DEAD
426  *      objects can be referenced during final cleaning.
427  */
428 void
429 vm_object_reference(vm_object_t object)
430 {
431         if (object == NULL)
432                 return;
433         VM_OBJECT_WLOCK(object);
434         vm_object_reference_locked(object);
435         VM_OBJECT_WUNLOCK(object);
436 }
437
438 /*
439  *      vm_object_reference_locked:
440  *
441  *      Gets another reference to the given object.
442  *
443  *      The object must be locked.
444  */
445 void
446 vm_object_reference_locked(vm_object_t object)
447 {
448         struct vnode *vp;
449
450         VM_OBJECT_ASSERT_WLOCKED(object);
451         object->ref_count++;
452         if (object->type == OBJT_VNODE) {
453                 vp = object->handle;
454                 vref(vp);
455         }
456 }
457
458 /*
459  * Handle deallocating an object of type OBJT_VNODE.
460  */
461 static void
462 vm_object_vndeallocate(vm_object_t object)
463 {
464         struct vnode *vp = (struct vnode *) object->handle;
465
466         VM_OBJECT_ASSERT_WLOCKED(object);
467         KASSERT(object->type == OBJT_VNODE,
468             ("vm_object_vndeallocate: not a vnode object"));
469         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
470 #ifdef INVARIANTS
471         if (object->ref_count == 0) {
472                 vprint("vm_object_vndeallocate", vp);
473                 panic("vm_object_vndeallocate: bad object reference count");
474         }
475 #endif
476
477         /*
478          * The test for text of vp vnode does not need a bypass to
479          * reach right VV_TEXT there, since it is obtained from
480          * object->handle.
481          */
482         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
483                 object->ref_count--;
484                 VM_OBJECT_WUNLOCK(object);
485                 /* vrele may need the vnode lock. */
486                 vrele(vp);
487         } else {
488                 vhold(vp);
489                 VM_OBJECT_WUNLOCK(object);
490                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
491                 vdrop(vp);
492                 VM_OBJECT_WLOCK(object);
493                 object->ref_count--;
494                 if (object->type == OBJT_DEAD) {
495                         VM_OBJECT_WUNLOCK(object);
496                         VOP_UNLOCK(vp, 0);
497                 } else {
498                         if (object->ref_count == 0)
499                                 VOP_UNSET_TEXT(vp);
500                         VM_OBJECT_WUNLOCK(object);
501                         vput(vp);
502                 }
503         }
504 }
505
506 /*
507  *      vm_object_deallocate:
508  *
509  *      Release a reference to the specified object,
510  *      gained either through a vm_object_allocate
511  *      or a vm_object_reference call.  When all references
512  *      are gone, storage associated with this object
513  *      may be relinquished.
514  *
515  *      No object may be locked.
516  */
517 void
518 vm_object_deallocate(vm_object_t object)
519 {
520         vm_object_t temp;
521         struct vnode *vp;
522
523         while (object != NULL) {
524                 VM_OBJECT_WLOCK(object);
525                 if (object->type == OBJT_VNODE) {
526                         vm_object_vndeallocate(object);
527                         return;
528                 }
529
530                 KASSERT(object->ref_count != 0,
531                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
532
533                 /*
534                  * If the reference count goes to 0 we start calling
535                  * vm_object_terminate() on the object chain.
536                  * A ref count of 1 may be a special case depending on the
537                  * shadow count being 0 or 1.
538                  */
539                 object->ref_count--;
540                 if (object->ref_count > 1) {
541                         VM_OBJECT_WUNLOCK(object);
542                         return;
543                 } else if (object->ref_count == 1) {
544                         if (object->type == OBJT_SWAP &&
545                             (object->flags & OBJ_TMPFS) != 0) {
546                                 vp = object->un_pager.swp.swp_tmpfs;
547                                 vhold(vp);
548                                 VM_OBJECT_WUNLOCK(object);
549                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
550                                 VM_OBJECT_WLOCK(object);
551                                 if (object->type == OBJT_DEAD ||
552                                     object->ref_count != 1) {
553                                         VM_OBJECT_WUNLOCK(object);
554                                         VOP_UNLOCK(vp, 0);
555                                         vdrop(vp);
556                                         return;
557                                 }
558                                 if ((object->flags & OBJ_TMPFS) != 0)
559                                         VOP_UNSET_TEXT(vp);
560                                 VOP_UNLOCK(vp, 0);
561                                 vdrop(vp);
562                         }
563                         if (object->shadow_count == 0 &&
564                             object->handle == NULL &&
565                             (object->type == OBJT_DEFAULT ||
566                             (object->type == OBJT_SWAP &&
567                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
568                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
569                         } else if ((object->shadow_count == 1) &&
570                             (object->handle == NULL) &&
571                             (object->type == OBJT_DEFAULT ||
572                              object->type == OBJT_SWAP)) {
573                                 vm_object_t robject;
574
575                                 robject = LIST_FIRST(&object->shadow_head);
576                                 KASSERT(robject != NULL,
577                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
578                                          object->ref_count,
579                                          object->shadow_count));
580                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
581                                     ("shadowed tmpfs v_object %p", object));
582                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
583                                         /*
584                                          * Avoid a potential deadlock.
585                                          */
586                                         object->ref_count++;
587                                         VM_OBJECT_WUNLOCK(object);
588                                         /*
589                                          * More likely than not the thread
590                                          * holding robject's lock has lower
591                                          * priority than the current thread.
592                                          * Let the lower priority thread run.
593                                          */
594                                         pause("vmo_de", 1);
595                                         continue;
596                                 }
597                                 /*
598                                  * Collapse object into its shadow unless its
599                                  * shadow is dead.  In that case, object will
600                                  * be deallocated by the thread that is
601                                  * deallocating its shadow.
602                                  */
603                                 if ((robject->flags & OBJ_DEAD) == 0 &&
604                                     (robject->handle == NULL) &&
605                                     (robject->type == OBJT_DEFAULT ||
606                                      robject->type == OBJT_SWAP)) {
607
608                                         robject->ref_count++;
609 retry:
610                                         if (robject->paging_in_progress) {
611                                                 VM_OBJECT_WUNLOCK(object);
612                                                 vm_object_pip_wait(robject,
613                                                     "objde1");
614                                                 temp = robject->backing_object;
615                                                 if (object == temp) {
616                                                         VM_OBJECT_WLOCK(object);
617                                                         goto retry;
618                                                 }
619                                         } else if (object->paging_in_progress) {
620                                                 VM_OBJECT_WUNLOCK(robject);
621                                                 object->flags |= OBJ_PIPWNT;
622                                                 VM_OBJECT_SLEEP(object, object,
623                                                     PDROP | PVM, "objde2", 0);
624                                                 VM_OBJECT_WLOCK(robject);
625                                                 temp = robject->backing_object;
626                                                 if (object == temp) {
627                                                         VM_OBJECT_WLOCK(object);
628                                                         goto retry;
629                                                 }
630                                         } else
631                                                 VM_OBJECT_WUNLOCK(object);
632
633                                         if (robject->ref_count == 1) {
634                                                 robject->ref_count--;
635                                                 object = robject;
636                                                 goto doterm;
637                                         }
638                                         object = robject;
639                                         vm_object_collapse(object);
640                                         VM_OBJECT_WUNLOCK(object);
641                                         continue;
642                                 }
643                                 VM_OBJECT_WUNLOCK(robject);
644                         }
645                         VM_OBJECT_WUNLOCK(object);
646                         return;
647                 }
648 doterm:
649                 temp = object->backing_object;
650                 if (temp != NULL) {
651                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
652                             ("shadowed tmpfs v_object 2 %p", object));
653                         VM_OBJECT_WLOCK(temp);
654                         LIST_REMOVE(object, shadow_list);
655                         temp->shadow_count--;
656                         VM_OBJECT_WUNLOCK(temp);
657                         object->backing_object = NULL;
658                 }
659                 /*
660                  * Don't double-terminate, we could be in a termination
661                  * recursion due to the terminate having to sync data
662                  * to disk.
663                  */
664                 if ((object->flags & OBJ_DEAD) == 0)
665                         vm_object_terminate(object);
666                 else
667                         VM_OBJECT_WUNLOCK(object);
668                 object = temp;
669         }
670 }
671
672 /*
673  *      vm_object_destroy removes the object from the global object list
674  *      and frees the space for the object.
675  */
676 void
677 vm_object_destroy(vm_object_t object)
678 {
679
680         /*
681          * Release the allocation charge.
682          */
683         if (object->cred != NULL) {
684                 swap_release_by_cred(object->charge, object->cred);
685                 object->charge = 0;
686                 crfree(object->cred);
687                 object->cred = NULL;
688         }
689
690         /*
691          * Free the space for the object.
692          */
693         uma_zfree(obj_zone, object);
694 }
695
696 /*
697  *      vm_object_terminate actually destroys the specified object, freeing
698  *      up all previously used resources.
699  *
700  *      The object must be locked.
701  *      This routine may block.
702  */
703 void
704 vm_object_terminate(vm_object_t object)
705 {
706         vm_page_t p, p_next;
707
708         VM_OBJECT_ASSERT_WLOCKED(object);
709
710         /*
711          * Make sure no one uses us.
712          */
713         vm_object_set_flag(object, OBJ_DEAD);
714
715         /*
716          * wait for the pageout daemon to be done with the object
717          */
718         vm_object_pip_wait(object, "objtrm");
719
720         KASSERT(!object->paging_in_progress,
721                 ("vm_object_terminate: pageout in progress"));
722
723         /*
724          * Clean and free the pages, as appropriate. All references to the
725          * object are gone, so we don't need to lock it.
726          */
727         if (object->type == OBJT_VNODE) {
728                 struct vnode *vp = (struct vnode *)object->handle;
729
730                 /*
731                  * Clean pages and flush buffers.
732                  */
733                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
734                 VM_OBJECT_WUNLOCK(object);
735
736                 vinvalbuf(vp, V_SAVE, 0, 0);
737
738                 VM_OBJECT_WLOCK(object);
739         }
740
741         KASSERT(object->ref_count == 0, 
742                 ("vm_object_terminate: object with references, ref_count=%d",
743                 object->ref_count));
744
745         /*
746          * Free any remaining pageable pages.  This also removes them from the
747          * paging queues.  However, don't free wired pages, just remove them
748          * from the object.  Rather than incrementally removing each page from
749          * the object, the page and object are reset to any empty state. 
750          */
751         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
752                 vm_page_assert_unbusied(p);
753                 vm_page_lock(p);
754                 /*
755                  * Optimize the page's removal from the object by resetting
756                  * its "object" field.  Specifically, if the page is not
757                  * wired, then the effect of this assignment is that
758                  * vm_page_free()'s call to vm_page_remove() will return
759                  * immediately without modifying the page or the object.
760                  */ 
761                 p->object = NULL;
762                 if (p->wire_count == 0) {
763                         vm_page_free(p);
764                         PCPU_INC(cnt.v_pfree);
765                 }
766                 vm_page_unlock(p);
767         }
768         /*
769          * If the object contained any pages, then reset it to an empty state.
770          * None of the object's fields, including "resident_page_count", were
771          * modified by the preceding loop.
772          */
773         if (object->resident_page_count != 0) {
774                 vm_radix_reclaim_allnodes(&object->rtree);
775                 TAILQ_INIT(&object->memq);
776                 object->resident_page_count = 0;
777                 if (object->type == OBJT_VNODE)
778                         vdrop(object->handle);
779         }
780
781 #if VM_NRESERVLEVEL > 0
782         if (__predict_false(!LIST_EMPTY(&object->rvq)))
783                 vm_reserv_break_all(object);
784 #endif
785         if (__predict_false(!vm_object_cache_is_empty(object)))
786                 vm_page_cache_free(object, 0, 0);
787
788         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
789             object->type == OBJT_SWAP,
790             ("%s: non-swap obj %p has cred", __func__, object));
791
792         /*
793          * Let the pager know object is dead.
794          */
795         vm_pager_deallocate(object);
796         VM_OBJECT_WUNLOCK(object);
797
798         vm_object_destroy(object);
799 }
800
801 /*
802  * Make the page read-only so that we can clear the object flags.  However, if
803  * this is a nosync mmap then the object is likely to stay dirty so do not
804  * mess with the page and do not clear the object flags.  Returns TRUE if the
805  * page should be flushed, and FALSE otherwise.
806  */
807 static boolean_t
808 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
809 {
810
811         /*
812          * If we have been asked to skip nosync pages and this is a
813          * nosync page, skip it.  Note that the object flags were not
814          * cleared in this case so we do not have to set them.
815          */
816         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
817                 *clearobjflags = FALSE;
818                 return (FALSE);
819         } else {
820                 pmap_remove_write(p);
821                 return (p->dirty != 0);
822         }
823 }
824
825 /*
826  *      vm_object_page_clean
827  *
828  *      Clean all dirty pages in the specified range of object.  Leaves page 
829  *      on whatever queue it is currently on.   If NOSYNC is set then do not
830  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
831  *      leaving the object dirty.
832  *
833  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
834  *      synchronous clustering mode implementation.
835  *
836  *      Odd semantics: if start == end, we clean everything.
837  *
838  *      The object must be locked.
839  *
840  *      Returns FALSE if some page from the range was not written, as
841  *      reported by the pager, and TRUE otherwise.
842  */
843 boolean_t
844 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
845     int flags)
846 {
847         vm_page_t np, p;
848         vm_pindex_t pi, tend, tstart;
849         int curgeneration, n, pagerflags;
850         boolean_t clearobjflags, eio, res;
851
852         VM_OBJECT_ASSERT_WLOCKED(object);
853
854         /*
855          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
856          * objects.  The check below prevents the function from
857          * operating on non-vnode objects.
858          */
859         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
860             object->resident_page_count == 0)
861                 return (TRUE);
862
863         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
864             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
865         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
866
867         tstart = OFF_TO_IDX(start);
868         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
869         clearobjflags = tstart == 0 && tend >= object->size;
870         res = TRUE;
871
872 rescan:
873         curgeneration = object->generation;
874
875         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
876                 pi = p->pindex;
877                 if (pi >= tend)
878                         break;
879                 np = TAILQ_NEXT(p, listq);
880                 if (p->valid == 0)
881                         continue;
882                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
883                         if (object->generation != curgeneration) {
884                                 if ((flags & OBJPC_SYNC) != 0)
885                                         goto rescan;
886                                 else
887                                         clearobjflags = FALSE;
888                         }
889                         np = vm_page_find_least(object, pi);
890                         continue;
891                 }
892                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
893                         continue;
894
895                 n = vm_object_page_collect_flush(object, p, pagerflags,
896                     flags, &clearobjflags, &eio);
897                 if (eio) {
898                         res = FALSE;
899                         clearobjflags = FALSE;
900                 }
901                 if (object->generation != curgeneration) {
902                         if ((flags & OBJPC_SYNC) != 0)
903                                 goto rescan;
904                         else
905                                 clearobjflags = FALSE;
906                 }
907
908                 /*
909                  * If the VOP_PUTPAGES() did a truncated write, so
910                  * that even the first page of the run is not fully
911                  * written, vm_pageout_flush() returns 0 as the run
912                  * length.  Since the condition that caused truncated
913                  * write may be permanent, e.g. exhausted free space,
914                  * accepting n == 0 would cause an infinite loop.
915                  *
916                  * Forwarding the iterator leaves the unwritten page
917                  * behind, but there is not much we can do there if
918                  * filesystem refuses to write it.
919                  */
920                 if (n == 0) {
921                         n = 1;
922                         clearobjflags = FALSE;
923                 }
924                 np = vm_page_find_least(object, pi + n);
925         }
926 #if 0
927         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
928 #endif
929
930         if (clearobjflags)
931                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
932         return (res);
933 }
934
935 static int
936 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
937     int flags, boolean_t *clearobjflags, boolean_t *eio)
938 {
939         vm_page_t ma[vm_pageout_page_count], p_first, tp;
940         int count, i, mreq, runlen;
941
942         vm_page_lock_assert(p, MA_NOTOWNED);
943         VM_OBJECT_ASSERT_WLOCKED(object);
944
945         count = 1;
946         mreq = 0;
947
948         for (tp = p; count < vm_pageout_page_count; count++) {
949                 tp = vm_page_next(tp);
950                 if (tp == NULL || vm_page_busied(tp))
951                         break;
952                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
953                         break;
954         }
955
956         for (p_first = p; count < vm_pageout_page_count; count++) {
957                 tp = vm_page_prev(p_first);
958                 if (tp == NULL || vm_page_busied(tp))
959                         break;
960                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
961                         break;
962                 p_first = tp;
963                 mreq++;
964         }
965
966         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
967                 ma[i] = tp;
968
969         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
970         return (runlen);
971 }
972
973 /*
974  * Note that there is absolutely no sense in writing out
975  * anonymous objects, so we track down the vnode object
976  * to write out.
977  * We invalidate (remove) all pages from the address space
978  * for semantic correctness.
979  *
980  * If the backing object is a device object with unmanaged pages, then any
981  * mappings to the specified range of pages must be removed before this
982  * function is called.
983  *
984  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
985  * may start out with a NULL object.
986  */
987 boolean_t
988 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
989     boolean_t syncio, boolean_t invalidate)
990 {
991         vm_object_t backing_object;
992         struct vnode *vp;
993         struct mount *mp;
994         int error, flags, fsync_after;
995         boolean_t res;
996
997         if (object == NULL)
998                 return (TRUE);
999         res = TRUE;
1000         error = 0;
1001         VM_OBJECT_WLOCK(object);
1002         while ((backing_object = object->backing_object) != NULL) {
1003                 VM_OBJECT_WLOCK(backing_object);
1004                 offset += object->backing_object_offset;
1005                 VM_OBJECT_WUNLOCK(object);
1006                 object = backing_object;
1007                 if (object->size < OFF_TO_IDX(offset + size))
1008                         size = IDX_TO_OFF(object->size) - offset;
1009         }
1010         /*
1011          * Flush pages if writing is allowed, invalidate them
1012          * if invalidation requested.  Pages undergoing I/O
1013          * will be ignored by vm_object_page_remove().
1014          *
1015          * We cannot lock the vnode and then wait for paging
1016          * to complete without deadlocking against vm_fault.
1017          * Instead we simply call vm_object_page_remove() and
1018          * allow it to block internally on a page-by-page
1019          * basis when it encounters pages undergoing async
1020          * I/O.
1021          */
1022         if (object->type == OBJT_VNODE &&
1023             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1024                 vp = object->handle;
1025                 VM_OBJECT_WUNLOCK(object);
1026                 (void) vn_start_write(vp, &mp, V_WAIT);
1027                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1028                 if (syncio && !invalidate && offset == 0 &&
1029                     OFF_TO_IDX(size) == object->size) {
1030                         /*
1031                          * If syncing the whole mapping of the file,
1032                          * it is faster to schedule all the writes in
1033                          * async mode, also allowing the clustering,
1034                          * and then wait for i/o to complete.
1035                          */
1036                         flags = 0;
1037                         fsync_after = TRUE;
1038                 } else {
1039                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1040                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1041                         fsync_after = FALSE;
1042                 }
1043                 VM_OBJECT_WLOCK(object);
1044                 res = vm_object_page_clean(object, offset, offset + size,
1045                     flags);
1046                 VM_OBJECT_WUNLOCK(object);
1047                 if (fsync_after)
1048                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1049                 VOP_UNLOCK(vp, 0);
1050                 vn_finished_write(mp);
1051                 if (error != 0)
1052                         res = FALSE;
1053                 VM_OBJECT_WLOCK(object);
1054         }
1055         if ((object->type == OBJT_VNODE ||
1056              object->type == OBJT_DEVICE) && invalidate) {
1057                 if (object->type == OBJT_DEVICE)
1058                         /*
1059                          * The option OBJPR_NOTMAPPED must be passed here
1060                          * because vm_object_page_remove() cannot remove
1061                          * unmanaged mappings.
1062                          */
1063                         flags = OBJPR_NOTMAPPED;
1064                 else if (old_msync)
1065                         flags = OBJPR_NOTWIRED;
1066                 else
1067                         flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
1068                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1069                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1070         }
1071         VM_OBJECT_WUNLOCK(object);
1072         return (res);
1073 }
1074
1075 /*
1076  *      vm_object_madvise:
1077  *
1078  *      Implements the madvise function at the object/page level.
1079  *
1080  *      MADV_WILLNEED   (any object)
1081  *
1082  *          Activate the specified pages if they are resident.
1083  *
1084  *      MADV_DONTNEED   (any object)
1085  *
1086  *          Deactivate the specified pages if they are resident.
1087  *
1088  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1089  *                       OBJ_ONEMAPPING only)
1090  *
1091  *          Deactivate and clean the specified pages if they are
1092  *          resident.  This permits the process to reuse the pages
1093  *          without faulting or the kernel to reclaim the pages
1094  *          without I/O.
1095  */
1096 void
1097 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1098     int advise)
1099 {
1100         vm_pindex_t tpindex;
1101         vm_object_t backing_object, tobject;
1102         vm_page_t m;
1103
1104         if (object == NULL)
1105                 return;
1106         VM_OBJECT_WLOCK(object);
1107         /*
1108          * Locate and adjust resident pages
1109          */
1110         for (; pindex < end; pindex += 1) {
1111 relookup:
1112                 tobject = object;
1113                 tpindex = pindex;
1114 shadowlookup:
1115                 /*
1116                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1117                  * and those pages must be OBJ_ONEMAPPING.
1118                  */
1119                 if (advise == MADV_FREE) {
1120                         if ((tobject->type != OBJT_DEFAULT &&
1121                              tobject->type != OBJT_SWAP) ||
1122                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1123                                 goto unlock_tobject;
1124                         }
1125                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1126                         goto unlock_tobject;
1127                 m = vm_page_lookup(tobject, tpindex);
1128                 if (m == NULL && advise == MADV_WILLNEED) {
1129                         /*
1130                          * If the page is cached, reactivate it.
1131                          */
1132                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1133                             VM_ALLOC_NOBUSY);
1134                 }
1135                 if (m == NULL) {
1136                         /*
1137                          * There may be swap even if there is no backing page
1138                          */
1139                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1140                                 swap_pager_freespace(tobject, tpindex, 1);
1141                         /*
1142                          * next object
1143                          */
1144                         backing_object = tobject->backing_object;
1145                         if (backing_object == NULL)
1146                                 goto unlock_tobject;
1147                         VM_OBJECT_WLOCK(backing_object);
1148                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1149                         if (tobject != object)
1150                                 VM_OBJECT_WUNLOCK(tobject);
1151                         tobject = backing_object;
1152                         goto shadowlookup;
1153                 } else if (m->valid != VM_PAGE_BITS_ALL)
1154                         goto unlock_tobject;
1155                 /*
1156                  * If the page is not in a normal state, skip it.
1157                  */
1158                 vm_page_lock(m);
1159                 if (m->hold_count != 0 || m->wire_count != 0) {
1160                         vm_page_unlock(m);
1161                         goto unlock_tobject;
1162                 }
1163                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1164                     ("vm_object_madvise: page %p is fictitious", m));
1165                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1166                     ("vm_object_madvise: page %p is not managed", m));
1167                 if (vm_page_busied(m)) {
1168                         if (advise == MADV_WILLNEED) {
1169                                 /*
1170                                  * Reference the page before unlocking and
1171                                  * sleeping so that the page daemon is less
1172                                  * likely to reclaim it. 
1173                                  */
1174                                 vm_page_aflag_set(m, PGA_REFERENCED);
1175                         }
1176                         if (object != tobject)
1177                                 VM_OBJECT_WUNLOCK(object);
1178                         VM_OBJECT_WUNLOCK(tobject);
1179                         vm_page_busy_sleep(m, "madvpo");
1180                         VM_OBJECT_WLOCK(object);
1181                         goto relookup;
1182                 }
1183                 if (advise == MADV_WILLNEED) {
1184                         vm_page_activate(m);
1185                 } else {
1186                         vm_page_advise(m, advise);
1187                 }
1188                 vm_page_unlock(m);
1189                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1190                         swap_pager_freespace(tobject, tpindex, 1);
1191 unlock_tobject:
1192                 if (tobject != object)
1193                         VM_OBJECT_WUNLOCK(tobject);
1194         }       
1195         VM_OBJECT_WUNLOCK(object);
1196 }
1197
1198 /*
1199  *      vm_object_shadow:
1200  *
1201  *      Create a new object which is backed by the
1202  *      specified existing object range.  The source
1203  *      object reference is deallocated.
1204  *
1205  *      The new object and offset into that object
1206  *      are returned in the source parameters.
1207  */
1208 void
1209 vm_object_shadow(
1210         vm_object_t *object,    /* IN/OUT */
1211         vm_ooffset_t *offset,   /* IN/OUT */
1212         vm_size_t length)
1213 {
1214         vm_object_t source;
1215         vm_object_t result;
1216
1217         source = *object;
1218
1219         /*
1220          * Don't create the new object if the old object isn't shared.
1221          */
1222         if (source != NULL) {
1223                 VM_OBJECT_WLOCK(source);
1224                 if (source->ref_count == 1 &&
1225                     source->handle == NULL &&
1226                     (source->type == OBJT_DEFAULT ||
1227                      source->type == OBJT_SWAP)) {
1228                         VM_OBJECT_WUNLOCK(source);
1229                         return;
1230                 }
1231                 VM_OBJECT_WUNLOCK(source);
1232         }
1233
1234         /*
1235          * Allocate a new object with the given length.
1236          */
1237         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1238
1239         /*
1240          * The new object shadows the source object, adding a reference to it.
1241          * Our caller changes his reference to point to the new object,
1242          * removing a reference to the source object.  Net result: no change
1243          * of reference count.
1244          *
1245          * Try to optimize the result object's page color when shadowing
1246          * in order to maintain page coloring consistency in the combined 
1247          * shadowed object.
1248          */
1249         result->backing_object = source;
1250         /*
1251          * Store the offset into the source object, and fix up the offset into
1252          * the new object.
1253          */
1254         result->backing_object_offset = *offset;
1255         if (source != NULL) {
1256                 VM_OBJECT_WLOCK(source);
1257                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1258                 source->shadow_count++;
1259 #if VM_NRESERVLEVEL > 0
1260                 result->flags |= source->flags & OBJ_COLORED;
1261                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1262                     ((1 << (VM_NFREEORDER - 1)) - 1);
1263 #endif
1264                 VM_OBJECT_WUNLOCK(source);
1265         }
1266
1267
1268         /*
1269          * Return the new things
1270          */
1271         *offset = 0;
1272         *object = result;
1273 }
1274
1275 /*
1276  *      vm_object_split:
1277  *
1278  * Split the pages in a map entry into a new object.  This affords
1279  * easier removal of unused pages, and keeps object inheritance from
1280  * being a negative impact on memory usage.
1281  */
1282 void
1283 vm_object_split(vm_map_entry_t entry)
1284 {
1285         vm_page_t m, m_next;
1286         vm_object_t orig_object, new_object, source;
1287         vm_pindex_t idx, offidxstart;
1288         vm_size_t size;
1289
1290         orig_object = entry->object.vm_object;
1291         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1292                 return;
1293         if (orig_object->ref_count <= 1)
1294                 return;
1295         VM_OBJECT_WUNLOCK(orig_object);
1296
1297         offidxstart = OFF_TO_IDX(entry->offset);
1298         size = atop(entry->end - entry->start);
1299
1300         /*
1301          * If swap_pager_copy() is later called, it will convert new_object
1302          * into a swap object.
1303          */
1304         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1305
1306         /*
1307          * At this point, the new object is still private, so the order in
1308          * which the original and new objects are locked does not matter.
1309          */
1310         VM_OBJECT_WLOCK(new_object);
1311         VM_OBJECT_WLOCK(orig_object);
1312         source = orig_object->backing_object;
1313         if (source != NULL) {
1314                 VM_OBJECT_WLOCK(source);
1315                 if ((source->flags & OBJ_DEAD) != 0) {
1316                         VM_OBJECT_WUNLOCK(source);
1317                         VM_OBJECT_WUNLOCK(orig_object);
1318                         VM_OBJECT_WUNLOCK(new_object);
1319                         vm_object_deallocate(new_object);
1320                         VM_OBJECT_WLOCK(orig_object);
1321                         return;
1322                 }
1323                 LIST_INSERT_HEAD(&source->shadow_head,
1324                                   new_object, shadow_list);
1325                 source->shadow_count++;
1326                 vm_object_reference_locked(source);     /* for new_object */
1327                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1328                 VM_OBJECT_WUNLOCK(source);
1329                 new_object->backing_object_offset = 
1330                         orig_object->backing_object_offset + entry->offset;
1331                 new_object->backing_object = source;
1332         }
1333         if (orig_object->cred != NULL) {
1334                 new_object->cred = orig_object->cred;
1335                 crhold(orig_object->cred);
1336                 new_object->charge = ptoa(size);
1337                 KASSERT(orig_object->charge >= ptoa(size),
1338                     ("orig_object->charge < 0"));
1339                 orig_object->charge -= ptoa(size);
1340         }
1341 retry:
1342         m = vm_page_find_least(orig_object, offidxstart);
1343         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1344             m = m_next) {
1345                 m_next = TAILQ_NEXT(m, listq);
1346
1347                 /*
1348                  * We must wait for pending I/O to complete before we can
1349                  * rename the page.
1350                  *
1351                  * We do not have to VM_PROT_NONE the page as mappings should
1352                  * not be changed by this operation.
1353                  */
1354                 if (vm_page_busied(m)) {
1355                         VM_OBJECT_WUNLOCK(new_object);
1356                         vm_page_lock(m);
1357                         VM_OBJECT_WUNLOCK(orig_object);
1358                         vm_page_busy_sleep(m, "spltwt");
1359                         VM_OBJECT_WLOCK(orig_object);
1360                         VM_OBJECT_WLOCK(new_object);
1361                         goto retry;
1362                 }
1363
1364                 /* vm_page_rename() will handle dirty and cache. */
1365                 if (vm_page_rename(m, new_object, idx)) {
1366                         VM_OBJECT_WUNLOCK(new_object);
1367                         VM_OBJECT_WUNLOCK(orig_object);
1368                         VM_WAIT;
1369                         VM_OBJECT_WLOCK(orig_object);
1370                         VM_OBJECT_WLOCK(new_object);
1371                         goto retry;
1372                 }
1373 #if VM_NRESERVLEVEL > 0
1374                 /*
1375                  * If some of the reservation's allocated pages remain with
1376                  * the original object, then transferring the reservation to
1377                  * the new object is neither particularly beneficial nor
1378                  * particularly harmful as compared to leaving the reservation
1379                  * with the original object.  If, however, all of the
1380                  * reservation's allocated pages are transferred to the new
1381                  * object, then transferring the reservation is typically
1382                  * beneficial.  Determining which of these two cases applies
1383                  * would be more costly than unconditionally renaming the
1384                  * reservation.
1385                  */
1386                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1387 #endif
1388                 if (orig_object->type == OBJT_SWAP)
1389                         vm_page_xbusy(m);
1390         }
1391         if (orig_object->type == OBJT_SWAP) {
1392                 /*
1393                  * swap_pager_copy() can sleep, in which case the orig_object's
1394                  * and new_object's locks are released and reacquired. 
1395                  */
1396                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1397                 TAILQ_FOREACH(m, &new_object->memq, listq)
1398                         vm_page_xunbusy(m);
1399
1400                 /*
1401                  * Transfer any cached pages from orig_object to new_object.
1402                  * If swap_pager_copy() found swapped out pages within the
1403                  * specified range of orig_object, then it changed
1404                  * new_object's type to OBJT_SWAP when it transferred those
1405                  * pages to new_object.  Otherwise, new_object's type
1406                  * should still be OBJT_DEFAULT and orig_object should not
1407                  * contain any cached pages within the specified range.
1408                  */
1409                 if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1410                         vm_page_cache_transfer(orig_object, offidxstart,
1411                             new_object);
1412         }
1413         VM_OBJECT_WUNLOCK(orig_object);
1414         VM_OBJECT_WUNLOCK(new_object);
1415         entry->object.vm_object = new_object;
1416         entry->offset = 0LL;
1417         vm_object_deallocate(orig_object);
1418         VM_OBJECT_WLOCK(new_object);
1419 }
1420
1421 #define OBSC_TEST_ALL_SHADOWED  0x0001
1422 #define OBSC_COLLAPSE_NOWAIT    0x0002
1423 #define OBSC_COLLAPSE_WAIT      0x0004
1424
1425 static int
1426 vm_object_backing_scan(vm_object_t object, int op)
1427 {
1428         int r = 1;
1429         vm_page_t p;
1430         vm_object_t backing_object;
1431         vm_pindex_t backing_offset_index;
1432
1433         VM_OBJECT_ASSERT_WLOCKED(object);
1434         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1435
1436         backing_object = object->backing_object;
1437         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1438
1439         /*
1440          * Initial conditions
1441          */
1442         if (op & OBSC_TEST_ALL_SHADOWED) {
1443                 /*
1444                  * We do not want to have to test for the existence of cache
1445                  * or swap pages in the backing object.  XXX but with the
1446                  * new swapper this would be pretty easy to do.
1447                  *
1448                  * XXX what about anonymous MAP_SHARED memory that hasn't
1449                  * been ZFOD faulted yet?  If we do not test for this, the
1450                  * shadow test may succeed! XXX
1451                  */
1452                 if (backing_object->type != OBJT_DEFAULT) {
1453                         return (0);
1454                 }
1455         }
1456         if (op & OBSC_COLLAPSE_WAIT) {
1457                 vm_object_set_flag(backing_object, OBJ_DEAD);
1458         }
1459
1460         /*
1461          * Our scan
1462          */
1463         p = TAILQ_FIRST(&backing_object->memq);
1464         while (p) {
1465                 vm_page_t next = TAILQ_NEXT(p, listq);
1466                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1467
1468                 if (op & OBSC_TEST_ALL_SHADOWED) {
1469                         vm_page_t pp;
1470
1471                         /*
1472                          * Ignore pages outside the parent object's range
1473                          * and outside the parent object's mapping of the 
1474                          * backing object.
1475                          *
1476                          * note that we do not busy the backing object's
1477                          * page.
1478                          */
1479                         if (
1480                             p->pindex < backing_offset_index ||
1481                             new_pindex >= object->size
1482                         ) {
1483                                 p = next;
1484                                 continue;
1485                         }
1486
1487                         /*
1488                          * See if the parent has the page or if the parent's
1489                          * object pager has the page.  If the parent has the
1490                          * page but the page is not valid, the parent's
1491                          * object pager must have the page.
1492                          *
1493                          * If this fails, the parent does not completely shadow
1494                          * the object and we might as well give up now.
1495                          */
1496
1497                         pp = vm_page_lookup(object, new_pindex);
1498                         if (
1499                             (pp == NULL || pp->valid == 0) &&
1500                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1501                         ) {
1502                                 r = 0;
1503                                 break;
1504                         }
1505                 }
1506
1507                 /*
1508                  * Check for busy page
1509                  */
1510                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1511                         vm_page_t pp;
1512
1513                         if (op & OBSC_COLLAPSE_NOWAIT) {
1514                                 if (!p->valid || vm_page_busied(p)) {
1515                                         p = next;
1516                                         continue;
1517                                 }
1518                         } else if (op & OBSC_COLLAPSE_WAIT) {
1519                                 if (vm_page_busied(p)) {
1520                                         VM_OBJECT_WUNLOCK(object);
1521                                         vm_page_lock(p);
1522                                         VM_OBJECT_WUNLOCK(backing_object);
1523                                         vm_page_busy_sleep(p, "vmocol");
1524                                         VM_OBJECT_WLOCK(object);
1525                                         VM_OBJECT_WLOCK(backing_object);
1526                                         /*
1527                                          * If we slept, anything could have
1528                                          * happened.  Since the object is
1529                                          * marked dead, the backing offset
1530                                          * should not have changed so we
1531                                          * just restart our scan.
1532                                          */
1533                                         p = TAILQ_FIRST(&backing_object->memq);
1534                                         continue;
1535                                 }
1536                         }
1537
1538                         KASSERT(
1539                             p->object == backing_object,
1540                             ("vm_object_backing_scan: object mismatch")
1541                         );
1542
1543                         if (
1544                             p->pindex < backing_offset_index ||
1545                             new_pindex >= object->size
1546                         ) {
1547                                 if (backing_object->type == OBJT_SWAP)
1548                                         swap_pager_freespace(backing_object, 
1549                                             p->pindex, 1);
1550
1551                                 /*
1552                                  * Page is out of the parent object's range, we 
1553                                  * can simply destroy it. 
1554                                  */
1555                                 vm_page_lock(p);
1556                                 KASSERT(!pmap_page_is_mapped(p),
1557                                     ("freeing mapped page %p", p));
1558                                 if (p->wire_count == 0)
1559                                         vm_page_free(p);
1560                                 else
1561                                         vm_page_remove(p);
1562                                 vm_page_unlock(p);
1563                                 p = next;
1564                                 continue;
1565                         }
1566
1567                         pp = vm_page_lookup(object, new_pindex);
1568                         if (
1569                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1570                             (pp != NULL && pp->valid == 0)
1571                         ) {
1572                                 if (backing_object->type == OBJT_SWAP)
1573                                         swap_pager_freespace(backing_object, 
1574                                             p->pindex, 1);
1575
1576                                 /*
1577                                  * The page in the parent is not (yet) valid.
1578                                  * We don't know anything about the state of
1579                                  * the original page.  It might be mapped,
1580                                  * so we must avoid the next if here.
1581                                  *
1582                                  * This is due to a race in vm_fault() where
1583                                  * we must unbusy the original (backing_obj)
1584                                  * page before we can (re)lock the parent.
1585                                  * Hence we can get here.
1586                                  */
1587                                 p = next;
1588                                 continue;
1589                         }
1590                         if (
1591                             pp != NULL ||
1592                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1593                         ) {
1594                                 if (backing_object->type == OBJT_SWAP)
1595                                         swap_pager_freespace(backing_object, 
1596                                             p->pindex, 1);
1597
1598                                 /*
1599                                  * page already exists in parent OR swap exists
1600                                  * for this location in the parent.  Destroy 
1601                                  * the original page from the backing object.
1602                                  *
1603                                  * Leave the parent's page alone
1604                                  */
1605                                 vm_page_lock(p);
1606                                 KASSERT(!pmap_page_is_mapped(p),
1607                                     ("freeing mapped page %p", p));
1608                                 if (p->wire_count == 0)
1609                                         vm_page_free(p);
1610                                 else
1611                                         vm_page_remove(p);
1612                                 vm_page_unlock(p);
1613                                 p = next;
1614                                 continue;
1615                         }
1616
1617                         /*
1618                          * Page does not exist in parent, rename the
1619                          * page from the backing object to the main object. 
1620                          *
1621                          * If the page was mapped to a process, it can remain 
1622                          * mapped through the rename.
1623                          * vm_page_rename() will handle dirty and cache.
1624                          */
1625                         if (vm_page_rename(p, object, new_pindex)) {
1626                                 if (op & OBSC_COLLAPSE_NOWAIT) {
1627                                         p = next;
1628                                         continue;
1629                                 }
1630                                 VM_OBJECT_WUNLOCK(backing_object);
1631                                 VM_OBJECT_WUNLOCK(object);
1632                                 VM_WAIT;
1633                                 VM_OBJECT_WLOCK(object);
1634                                 VM_OBJECT_WLOCK(backing_object);
1635                                 p = TAILQ_FIRST(&backing_object->memq);
1636                                 continue;
1637                         }
1638
1639                         /* Use the old pindex to free the right page. */
1640                         if (backing_object->type == OBJT_SWAP)
1641                                 swap_pager_freespace(backing_object,
1642                                     new_pindex + backing_offset_index, 1);
1643
1644 #if VM_NRESERVLEVEL > 0
1645                         /*
1646                          * Rename the reservation.
1647                          */
1648                         vm_reserv_rename(p, object, backing_object,
1649                             backing_offset_index);
1650 #endif
1651                 }
1652                 p = next;
1653         }
1654         return (r);
1655 }
1656
1657
1658 /*
1659  * this version of collapse allows the operation to occur earlier and
1660  * when paging_in_progress is true for an object...  This is not a complete
1661  * operation, but should plug 99.9% of the rest of the leaks.
1662  */
1663 static void
1664 vm_object_qcollapse(vm_object_t object)
1665 {
1666         vm_object_t backing_object = object->backing_object;
1667
1668         VM_OBJECT_ASSERT_WLOCKED(object);
1669         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1670
1671         if (backing_object->ref_count != 1)
1672                 return;
1673
1674         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1675 }
1676
1677 /*
1678  *      vm_object_collapse:
1679  *
1680  *      Collapse an object with the object backing it.
1681  *      Pages in the backing object are moved into the
1682  *      parent, and the backing object is deallocated.
1683  */
1684 void
1685 vm_object_collapse(vm_object_t object)
1686 {
1687         VM_OBJECT_ASSERT_WLOCKED(object);
1688         
1689         while (TRUE) {
1690                 vm_object_t backing_object;
1691
1692                 /*
1693                  * Verify that the conditions are right for collapse:
1694                  *
1695                  * The object exists and the backing object exists.
1696                  */
1697                 if ((backing_object = object->backing_object) == NULL)
1698                         break;
1699
1700                 /*
1701                  * we check the backing object first, because it is most likely
1702                  * not collapsable.
1703                  */
1704                 VM_OBJECT_WLOCK(backing_object);
1705                 if (backing_object->handle != NULL ||
1706                     (backing_object->type != OBJT_DEFAULT &&
1707                      backing_object->type != OBJT_SWAP) ||
1708                     (backing_object->flags & OBJ_DEAD) ||
1709                     object->handle != NULL ||
1710                     (object->type != OBJT_DEFAULT &&
1711                      object->type != OBJT_SWAP) ||
1712                     (object->flags & OBJ_DEAD)) {
1713                         VM_OBJECT_WUNLOCK(backing_object);
1714                         break;
1715                 }
1716
1717                 if (
1718                     object->paging_in_progress != 0 ||
1719                     backing_object->paging_in_progress != 0
1720                 ) {
1721                         vm_object_qcollapse(object);
1722                         VM_OBJECT_WUNLOCK(backing_object);
1723                         break;
1724                 }
1725                 /*
1726                  * We know that we can either collapse the backing object (if
1727                  * the parent is the only reference to it) or (perhaps) have
1728                  * the parent bypass the object if the parent happens to shadow
1729                  * all the resident pages in the entire backing object.
1730                  *
1731                  * This is ignoring pager-backed pages such as swap pages.
1732                  * vm_object_backing_scan fails the shadowing test in this
1733                  * case.
1734                  */
1735                 if (backing_object->ref_count == 1) {
1736                         /*
1737                          * If there is exactly one reference to the backing
1738                          * object, we can collapse it into the parent.  
1739                          */
1740                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1741
1742 #if VM_NRESERVLEVEL > 0
1743                         /*
1744                          * Break any reservations from backing_object.
1745                          */
1746                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1747                                 vm_reserv_break_all(backing_object);
1748 #endif
1749
1750                         /*
1751                          * Move the pager from backing_object to object.
1752                          */
1753                         if (backing_object->type == OBJT_SWAP) {
1754                                 /*
1755                                  * swap_pager_copy() can sleep, in which case
1756                                  * the backing_object's and object's locks are
1757                                  * released and reacquired.
1758                                  * Since swap_pager_copy() is being asked to
1759                                  * destroy the source, it will change the
1760                                  * backing_object's type to OBJT_DEFAULT.
1761                                  */
1762                                 swap_pager_copy(
1763                                     backing_object,
1764                                     object,
1765                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1766
1767                                 /*
1768                                  * Free any cached pages from backing_object.
1769                                  */
1770                                 if (__predict_false(
1771                                     !vm_object_cache_is_empty(backing_object)))
1772                                         vm_page_cache_free(backing_object, 0, 0);
1773                         }
1774                         /*
1775                          * Object now shadows whatever backing_object did.
1776                          * Note that the reference to 
1777                          * backing_object->backing_object moves from within 
1778                          * backing_object to within object.
1779                          */
1780                         LIST_REMOVE(object, shadow_list);
1781                         backing_object->shadow_count--;
1782                         if (backing_object->backing_object) {
1783                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1784                                 LIST_REMOVE(backing_object, shadow_list);
1785                                 LIST_INSERT_HEAD(
1786                                     &backing_object->backing_object->shadow_head,
1787                                     object, shadow_list);
1788                                 /*
1789                                  * The shadow_count has not changed.
1790                                  */
1791                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1792                         }
1793                         object->backing_object = backing_object->backing_object;
1794                         object->backing_object_offset +=
1795                             backing_object->backing_object_offset;
1796
1797                         /*
1798                          * Discard backing_object.
1799                          *
1800                          * Since the backing object has no pages, no pager left,
1801                          * and no object references within it, all that is
1802                          * necessary is to dispose of it.
1803                          */
1804                         KASSERT(backing_object->ref_count == 1, (
1805 "backing_object %p was somehow re-referenced during collapse!",
1806                             backing_object));
1807                         backing_object->type = OBJT_DEAD;
1808                         backing_object->ref_count = 0;
1809                         VM_OBJECT_WUNLOCK(backing_object);
1810                         vm_object_destroy(backing_object);
1811
1812                         object_collapses++;
1813                 } else {
1814                         vm_object_t new_backing_object;
1815
1816                         /*
1817                          * If we do not entirely shadow the backing object,
1818                          * there is nothing we can do so we give up.
1819                          */
1820                         if (object->resident_page_count != object->size &&
1821                             vm_object_backing_scan(object,
1822                             OBSC_TEST_ALL_SHADOWED) == 0) {
1823                                 VM_OBJECT_WUNLOCK(backing_object);
1824                                 break;
1825                         }
1826
1827                         /*
1828                          * Make the parent shadow the next object in the
1829                          * chain.  Deallocating backing_object will not remove
1830                          * it, since its reference count is at least 2.
1831                          */
1832                         LIST_REMOVE(object, shadow_list);
1833                         backing_object->shadow_count--;
1834
1835                         new_backing_object = backing_object->backing_object;
1836                         if ((object->backing_object = new_backing_object) != NULL) {
1837                                 VM_OBJECT_WLOCK(new_backing_object);
1838                                 LIST_INSERT_HEAD(
1839                                     &new_backing_object->shadow_head,
1840                                     object,
1841                                     shadow_list
1842                                 );
1843                                 new_backing_object->shadow_count++;
1844                                 vm_object_reference_locked(new_backing_object);
1845                                 VM_OBJECT_WUNLOCK(new_backing_object);
1846                                 object->backing_object_offset +=
1847                                         backing_object->backing_object_offset;
1848                         }
1849
1850                         /*
1851                          * Drop the reference count on backing_object. Since
1852                          * its ref_count was at least 2, it will not vanish.
1853                          */
1854                         backing_object->ref_count--;
1855                         VM_OBJECT_WUNLOCK(backing_object);
1856                         object_bypasses++;
1857                 }
1858
1859                 /*
1860                  * Try again with this object's new backing object.
1861                  */
1862         }
1863 }
1864
1865 /*
1866  *      vm_object_page_remove:
1867  *
1868  *      For the given object, either frees or invalidates each of the
1869  *      specified pages.  In general, a page is freed.  However, if a page is
1870  *      wired for any reason other than the existence of a managed, wired
1871  *      mapping, then it may be invalidated but not removed from the object.
1872  *      Pages are specified by the given range ["start", "end") and the option
1873  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1874  *      extends from "start" to the end of the object.  If the option
1875  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1876  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1877  *      specified, then the pages within the specified range must have no
1878  *      mappings.  Otherwise, if this option is not specified, any mappings to
1879  *      the specified pages are removed before the pages are freed or
1880  *      invalidated.
1881  *
1882  *      In general, this operation should only be performed on objects that
1883  *      contain managed pages.  There are, however, two exceptions.  First, it
1884  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1885  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1886  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1887  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1888  *
1889  *      The object must be locked.
1890  */
1891 void
1892 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1893     int options)
1894 {
1895         vm_page_t p, next;
1896         int wirings;
1897
1898         VM_OBJECT_ASSERT_WLOCKED(object);
1899         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1900             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1901             ("vm_object_page_remove: illegal options for object %p", object));
1902         if (object->resident_page_count == 0)
1903                 goto skipmemq;
1904         vm_object_pip_add(object, 1);
1905 again:
1906         p = vm_page_find_least(object, start);
1907
1908         /*
1909          * Here, the variable "p" is either (1) the page with the least pindex
1910          * greater than or equal to the parameter "start" or (2) NULL. 
1911          */
1912         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1913                 next = TAILQ_NEXT(p, listq);
1914
1915                 /*
1916                  * If the page is wired for any reason besides the existence
1917                  * of managed, wired mappings, then it cannot be freed.  For
1918                  * example, fictitious pages, which represent device memory,
1919                  * are inherently wired and cannot be freed.  They can,
1920                  * however, be invalidated if the option OBJPR_CLEANONLY is
1921                  * not specified.
1922                  */
1923                 vm_page_lock(p);
1924                 if (vm_page_xbusied(p)) {
1925                         VM_OBJECT_WUNLOCK(object);
1926                         vm_page_busy_sleep(p, "vmopax");
1927                         VM_OBJECT_WLOCK(object);
1928                         goto again;
1929                 }
1930                 if ((wirings = p->wire_count) != 0 &&
1931                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1932                         if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
1933                             0) {
1934                                 pmap_remove_all(p);
1935                                 /* Account for removal of wired mappings. */
1936                                 if (wirings != 0)
1937                                         p->wire_count -= wirings;
1938                         }
1939                         if ((options & OBJPR_CLEANONLY) == 0) {
1940                                 p->valid = 0;
1941                                 vm_page_undirty(p);
1942                         }
1943                         goto next;
1944                 }
1945                 if (vm_page_busied(p)) {
1946                         VM_OBJECT_WUNLOCK(object);
1947                         vm_page_busy_sleep(p, "vmopar");
1948                         VM_OBJECT_WLOCK(object);
1949                         goto again;
1950                 }
1951                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1952                     ("vm_object_page_remove: page %p is fictitious", p));
1953                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1954                         if ((options & OBJPR_NOTMAPPED) == 0)
1955                                 pmap_remove_write(p);
1956                         if (p->dirty)
1957                                 goto next;
1958                 }
1959                 if ((options & OBJPR_NOTMAPPED) == 0) {
1960                         if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
1961                                 goto next;
1962                         pmap_remove_all(p);
1963                         /* Account for removal of wired mappings. */
1964                         if (wirings != 0) {
1965                                 KASSERT(p->wire_count == wirings,
1966                                     ("inconsistent wire count %d %d %p",
1967                                     p->wire_count, wirings, p));
1968                                 p->wire_count = 0;
1969                                 atomic_subtract_int(&vm_cnt.v_wire_count, 1);
1970                         }
1971                 }
1972                 vm_page_free(p);
1973 next:
1974                 vm_page_unlock(p);
1975         }
1976         vm_object_pip_wakeup(object);
1977 skipmemq:
1978         if (__predict_false(!vm_object_cache_is_empty(object)))
1979                 vm_page_cache_free(object, start, end);
1980 }
1981
1982 /*
1983  *      vm_object_page_cache:
1984  *
1985  *      For the given object, attempt to move the specified clean
1986  *      pages to the cache queue.  If a page is wired for any reason,
1987  *      then it will not be changed.  Pages are specified by the given
1988  *      range ["start", "end").  As a special case, if "end" is zero,
1989  *      then the range extends from "start" to the end of the object.
1990  *      Any mappings to the specified pages are removed before the
1991  *      pages are moved to the cache queue.
1992  *
1993  *      This operation should only be performed on objects that
1994  *      contain non-fictitious, managed pages.
1995  *
1996  *      The object must be locked.
1997  */
1998 void
1999 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2000 {
2001         struct mtx *mtx, *new_mtx;
2002         vm_page_t p, next;
2003
2004         VM_OBJECT_ASSERT_WLOCKED(object);
2005         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2006             ("vm_object_page_cache: illegal object %p", object));
2007         if (object->resident_page_count == 0)
2008                 return;
2009         p = vm_page_find_least(object, start);
2010
2011         /*
2012          * Here, the variable "p" is either (1) the page with the least pindex
2013          * greater than or equal to the parameter "start" or (2) NULL. 
2014          */
2015         mtx = NULL;
2016         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2017                 next = TAILQ_NEXT(p, listq);
2018
2019                 /*
2020                  * Avoid releasing and reacquiring the same page lock.
2021                  */
2022                 new_mtx = vm_page_lockptr(p);
2023                 if (mtx != new_mtx) {
2024                         if (mtx != NULL)
2025                                 mtx_unlock(mtx);
2026                         mtx = new_mtx;
2027                         mtx_lock(mtx);
2028                 }
2029                 vm_page_try_to_cache(p);
2030         }
2031         if (mtx != NULL)
2032                 mtx_unlock(mtx);
2033 }
2034
2035 /*
2036  *      Populate the specified range of the object with valid pages.  Returns
2037  *      TRUE if the range is successfully populated and FALSE otherwise.
2038  *
2039  *      Note: This function should be optimized to pass a larger array of
2040  *      pages to vm_pager_get_pages() before it is applied to a non-
2041  *      OBJT_DEVICE object.
2042  *
2043  *      The object must be locked.
2044  */
2045 boolean_t
2046 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2047 {
2048         vm_page_t m, ma[1];
2049         vm_pindex_t pindex;
2050         int rv;
2051
2052         VM_OBJECT_ASSERT_WLOCKED(object);
2053         for (pindex = start; pindex < end; pindex++) {
2054                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2055                 if (m->valid != VM_PAGE_BITS_ALL) {
2056                         ma[0] = m;
2057                         rv = vm_pager_get_pages(object, ma, 1, 0);
2058                         m = vm_page_lookup(object, pindex);
2059                         if (m == NULL)
2060                                 break;
2061                         if (rv != VM_PAGER_OK) {
2062                                 vm_page_lock(m);
2063                                 vm_page_free(m);
2064                                 vm_page_unlock(m);
2065                                 break;
2066                         }
2067                 }
2068                 /*
2069                  * Keep "m" busy because a subsequent iteration may unlock
2070                  * the object.
2071                  */
2072         }
2073         if (pindex > start) {
2074                 m = vm_page_lookup(object, start);
2075                 while (m != NULL && m->pindex < pindex) {
2076                         vm_page_xunbusy(m);
2077                         m = TAILQ_NEXT(m, listq);
2078                 }
2079         }
2080         return (pindex == end);
2081 }
2082
2083 /*
2084  *      Routine:        vm_object_coalesce
2085  *      Function:       Coalesces two objects backing up adjoining
2086  *                      regions of memory into a single object.
2087  *
2088  *      returns TRUE if objects were combined.
2089  *
2090  *      NOTE:   Only works at the moment if the second object is NULL -
2091  *              if it's not, which object do we lock first?
2092  *
2093  *      Parameters:
2094  *              prev_object     First object to coalesce
2095  *              prev_offset     Offset into prev_object
2096  *              prev_size       Size of reference to prev_object
2097  *              next_size       Size of reference to the second object
2098  *              reserved        Indicator that extension region has
2099  *                              swap accounted for
2100  *
2101  *      Conditions:
2102  *      The object must *not* be locked.
2103  */
2104 boolean_t
2105 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2106     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2107 {
2108         vm_pindex_t next_pindex;
2109
2110         if (prev_object == NULL)
2111                 return (TRUE);
2112         VM_OBJECT_WLOCK(prev_object);
2113         if ((prev_object->type != OBJT_DEFAULT &&
2114             prev_object->type != OBJT_SWAP) ||
2115             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2116                 VM_OBJECT_WUNLOCK(prev_object);
2117                 return (FALSE);
2118         }
2119
2120         /*
2121          * Try to collapse the object first
2122          */
2123         vm_object_collapse(prev_object);
2124
2125         /*
2126          * Can't coalesce if: . more than one reference . paged out . shadows
2127          * another object . has a copy elsewhere (any of which mean that the
2128          * pages not mapped to prev_entry may be in use anyway)
2129          */
2130         if (prev_object->backing_object != NULL) {
2131                 VM_OBJECT_WUNLOCK(prev_object);
2132                 return (FALSE);
2133         }
2134
2135         prev_size >>= PAGE_SHIFT;
2136         next_size >>= PAGE_SHIFT;
2137         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2138
2139         if ((prev_object->ref_count > 1) &&
2140             (prev_object->size != next_pindex)) {
2141                 VM_OBJECT_WUNLOCK(prev_object);
2142                 return (FALSE);
2143         }
2144
2145         /*
2146          * Account for the charge.
2147          */
2148         if (prev_object->cred != NULL) {
2149
2150                 /*
2151                  * If prev_object was charged, then this mapping,
2152                  * althought not charged now, may become writable
2153                  * later. Non-NULL cred in the object would prevent
2154                  * swap reservation during enabling of the write
2155                  * access, so reserve swap now. Failed reservation
2156                  * cause allocation of the separate object for the map
2157                  * entry, and swap reservation for this entry is
2158                  * managed in appropriate time.
2159                  */
2160                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2161                     prev_object->cred)) {
2162                         return (FALSE);
2163                 }
2164                 prev_object->charge += ptoa(next_size);
2165         }
2166
2167         /*
2168          * Remove any pages that may still be in the object from a previous
2169          * deallocation.
2170          */
2171         if (next_pindex < prev_object->size) {
2172                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2173                     next_size, 0);
2174                 if (prev_object->type == OBJT_SWAP)
2175                         swap_pager_freespace(prev_object,
2176                                              next_pindex, next_size);
2177 #if 0
2178                 if (prev_object->cred != NULL) {
2179                         KASSERT(prev_object->charge >=
2180                             ptoa(prev_object->size - next_pindex),
2181                             ("object %p overcharged 1 %jx %jx", prev_object,
2182                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2183                         prev_object->charge -= ptoa(prev_object->size -
2184                             next_pindex);
2185                 }
2186 #endif
2187         }
2188
2189         /*
2190          * Extend the object if necessary.
2191          */
2192         if (next_pindex + next_size > prev_object->size)
2193                 prev_object->size = next_pindex + next_size;
2194
2195         VM_OBJECT_WUNLOCK(prev_object);
2196         return (TRUE);
2197 }
2198
2199 void
2200 vm_object_set_writeable_dirty(vm_object_t object)
2201 {
2202
2203         VM_OBJECT_ASSERT_WLOCKED(object);
2204         if (object->type != OBJT_VNODE) {
2205                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2206                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2207                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2208                 }
2209                 return;
2210         }
2211         object->generation++;
2212         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2213                 return;
2214         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2215 }
2216
2217 /*
2218  *      vm_object_unwire:
2219  *
2220  *      For each page offset within the specified range of the given object,
2221  *      find the highest-level page in the shadow chain and unwire it.  A page
2222  *      must exist at every page offset, and the highest-level page must be
2223  *      wired.
2224  */
2225 void
2226 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2227     uint8_t queue)
2228 {
2229         vm_object_t tobject;
2230         vm_page_t m, tm;
2231         vm_pindex_t end_pindex, pindex, tpindex;
2232         int depth, locked_depth;
2233
2234         KASSERT((offset & PAGE_MASK) == 0,
2235             ("vm_object_unwire: offset is not page aligned"));
2236         KASSERT((length & PAGE_MASK) == 0,
2237             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2238         /* The wired count of a fictitious page never changes. */
2239         if ((object->flags & OBJ_FICTITIOUS) != 0)
2240                 return;
2241         pindex = OFF_TO_IDX(offset);
2242         end_pindex = pindex + atop(length);
2243         locked_depth = 1;
2244         VM_OBJECT_RLOCK(object);
2245         m = vm_page_find_least(object, pindex);
2246         while (pindex < end_pindex) {
2247                 if (m == NULL || pindex < m->pindex) {
2248                         /*
2249                          * The first object in the shadow chain doesn't
2250                          * contain a page at the current index.  Therefore,
2251                          * the page must exist in a backing object.
2252                          */
2253                         tobject = object;
2254                         tpindex = pindex;
2255                         depth = 0;
2256                         do {
2257                                 tpindex +=
2258                                     OFF_TO_IDX(tobject->backing_object_offset);
2259                                 tobject = tobject->backing_object;
2260                                 KASSERT(tobject != NULL,
2261                                     ("vm_object_unwire: missing page"));
2262                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2263                                         goto next_page;
2264                                 depth++;
2265                                 if (depth == locked_depth) {
2266                                         locked_depth++;
2267                                         VM_OBJECT_RLOCK(tobject);
2268                                 }
2269                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2270                             NULL);
2271                 } else {
2272                         tm = m;
2273                         m = TAILQ_NEXT(m, listq);
2274                 }
2275                 vm_page_lock(tm);
2276                 vm_page_unwire(tm, queue);
2277                 vm_page_unlock(tm);
2278 next_page:
2279                 pindex++;
2280         }
2281         /* Release the accumulated object locks. */
2282         for (depth = 0; depth < locked_depth; depth++) {
2283                 tobject = object->backing_object;
2284                 VM_OBJECT_RUNLOCK(object);
2285                 object = tobject;
2286         }
2287 }
2288
2289 #include "opt_ddb.h"
2290 #ifdef DDB
2291 #include <sys/kernel.h>
2292
2293 #include <sys/cons.h>
2294
2295 #include <ddb/ddb.h>
2296
2297 static int
2298 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2299 {
2300         vm_map_t tmpm;
2301         vm_map_entry_t tmpe;
2302         vm_object_t obj;
2303         int entcount;
2304
2305         if (map == 0)
2306                 return 0;
2307
2308         if (entry == 0) {
2309                 tmpe = map->header.next;
2310                 entcount = map->nentries;
2311                 while (entcount-- && (tmpe != &map->header)) {
2312                         if (_vm_object_in_map(map, object, tmpe)) {
2313                                 return 1;
2314                         }
2315                         tmpe = tmpe->next;
2316                 }
2317         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2318                 tmpm = entry->object.sub_map;
2319                 tmpe = tmpm->header.next;
2320                 entcount = tmpm->nentries;
2321                 while (entcount-- && tmpe != &tmpm->header) {
2322                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2323                                 return 1;
2324                         }
2325                         tmpe = tmpe->next;
2326                 }
2327         } else if ((obj = entry->object.vm_object) != NULL) {
2328                 for (; obj; obj = obj->backing_object)
2329                         if (obj == object) {
2330                                 return 1;
2331                         }
2332         }
2333         return 0;
2334 }
2335
2336 static int
2337 vm_object_in_map(vm_object_t object)
2338 {
2339         struct proc *p;
2340
2341         /* sx_slock(&allproc_lock); */
2342         FOREACH_PROC_IN_SYSTEM(p) {
2343                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2344                         continue;
2345                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2346                         /* sx_sunlock(&allproc_lock); */
2347                         return 1;
2348                 }
2349         }
2350         /* sx_sunlock(&allproc_lock); */
2351         if (_vm_object_in_map(kernel_map, object, 0))
2352                 return 1;
2353         return 0;
2354 }
2355
2356 DB_SHOW_COMMAND(vmochk, vm_object_check)
2357 {
2358         vm_object_t object;
2359
2360         /*
2361          * make sure that internal objs are in a map somewhere
2362          * and none have zero ref counts.
2363          */
2364         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2365                 if (object->handle == NULL &&
2366                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2367                         if (object->ref_count == 0) {
2368                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2369                                         (long)object->size);
2370                         }
2371                         if (!vm_object_in_map(object)) {
2372                                 db_printf(
2373                         "vmochk: internal obj is not in a map: "
2374                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2375                                     object->ref_count, (u_long)object->size, 
2376                                     (u_long)object->size,
2377                                     (void *)object->backing_object);
2378                         }
2379                 }
2380         }
2381 }
2382
2383 /*
2384  *      vm_object_print:        [ debug ]
2385  */
2386 DB_SHOW_COMMAND(object, vm_object_print_static)
2387 {
2388         /* XXX convert args. */
2389         vm_object_t object = (vm_object_t)addr;
2390         boolean_t full = have_addr;
2391
2392         vm_page_t p;
2393
2394         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2395 #define count   was_count
2396
2397         int count;
2398
2399         if (object == NULL)
2400                 return;
2401
2402         db_iprintf(
2403             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2404             object, (int)object->type, (uintmax_t)object->size,
2405             object->resident_page_count, object->ref_count, object->flags,
2406             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2407         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2408             object->shadow_count, 
2409             object->backing_object ? object->backing_object->ref_count : 0,
2410             object->backing_object, (uintmax_t)object->backing_object_offset);
2411
2412         if (!full)
2413                 return;
2414
2415         db_indent += 2;
2416         count = 0;
2417         TAILQ_FOREACH(p, &object->memq, listq) {
2418                 if (count == 0)
2419                         db_iprintf("memory:=");
2420                 else if (count == 6) {
2421                         db_printf("\n");
2422                         db_iprintf(" ...");
2423                         count = 0;
2424                 } else
2425                         db_printf(",");
2426                 count++;
2427
2428                 db_printf("(off=0x%jx,page=0x%jx)",
2429                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2430         }
2431         if (count != 0)
2432                 db_printf("\n");
2433         db_indent -= 2;
2434 }
2435
2436 /* XXX. */
2437 #undef count
2438
2439 /* XXX need this non-static entry for calling from vm_map_print. */
2440 void
2441 vm_object_print(
2442         /* db_expr_t */ long addr,
2443         boolean_t have_addr,
2444         /* db_expr_t */ long count,
2445         char *modif)
2446 {
2447         vm_object_print_static(addr, have_addr, count, modif);
2448 }
2449
2450 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2451 {
2452         vm_object_t object;
2453         vm_pindex_t fidx;
2454         vm_paddr_t pa;
2455         vm_page_t m, prev_m;
2456         int rcount, nl, c;
2457
2458         nl = 0;
2459         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2460                 db_printf("new object: %p\n", (void *)object);
2461                 if (nl > 18) {
2462                         c = cngetc();
2463                         if (c != ' ')
2464                                 return;
2465                         nl = 0;
2466                 }
2467                 nl++;
2468                 rcount = 0;
2469                 fidx = 0;
2470                 pa = -1;
2471                 TAILQ_FOREACH(m, &object->memq, listq) {
2472                         if (m->pindex > 128)
2473                                 break;
2474                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2475                             prev_m->pindex + 1 != m->pindex) {
2476                                 if (rcount) {
2477                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2478                                                 (long)fidx, rcount, (long)pa);
2479                                         if (nl > 18) {
2480                                                 c = cngetc();
2481                                                 if (c != ' ')
2482                                                         return;
2483                                                 nl = 0;
2484                                         }
2485                                         nl++;
2486                                         rcount = 0;
2487                                 }
2488                         }                               
2489                         if (rcount &&
2490                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2491                                 ++rcount;
2492                                 continue;
2493                         }
2494                         if (rcount) {
2495                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2496                                         (long)fidx, rcount, (long)pa);
2497                                 if (nl > 18) {
2498                                         c = cngetc();
2499                                         if (c != ' ')
2500                                                 return;
2501                                         nl = 0;
2502                                 }
2503                                 nl++;
2504                         }
2505                         fidx = m->pindex;
2506                         pa = VM_PAGE_TO_PHYS(m);
2507                         rcount = 1;
2508                 }
2509                 if (rcount) {
2510                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2511                                 (long)fidx, rcount, (long)pa);
2512                         if (nl > 18) {
2513                                 c = cngetc();
2514                                 if (c != ' ')
2515                                         return;
2516                                 nl = 0;
2517                         }
2518                         nl++;
2519                 }
2520         }
2521 }
2522 #endif /* DDB */