]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_page.c
Don't make the sendall iterator as being up if it could not be started.
[FreeBSD/FreeBSD.git] / sys / vm / vm_page.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
36  */
37
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64
65 /*
66  *      Resident memory management module.
67  */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_vm.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113
114 #include <machine/md_var.h>
115
116 extern int      uma_startup_count(int);
117 extern void     uma_startup(void *, int);
118 extern int      vmem_startup_count(void);
119
120 struct vm_domain vm_dom[MAXMEMDOM];
121
122 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
123
124 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
125
126 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
127 /* The following fields are protected by the domainset lock. */
128 domainset_t __exclusive_cache_line vm_min_domains;
129 domainset_t __exclusive_cache_line vm_severe_domains;
130 static int vm_min_waiters;
131 static int vm_severe_waiters;
132 static int vm_pageproc_waiters;
133
134 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0,
135     "VM page statistics");
136
137 static counter_u64_t pqstate_commit_retries = EARLY_COUNTER;
138 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
139     CTLFLAG_RD, &pqstate_commit_retries,
140     "Number of failed per-page atomic queue state updates");
141
142 static counter_u64_t queue_ops = EARLY_COUNTER;
143 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
144     CTLFLAG_RD, &queue_ops,
145     "Number of batched queue operations");
146
147 static counter_u64_t queue_nops = EARLY_COUNTER;
148 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
149     CTLFLAG_RD, &queue_nops,
150     "Number of batched queue operations with no effects");
151
152 static void
153 counter_startup(void)
154 {
155
156         pqstate_commit_retries = counter_u64_alloc(M_WAITOK);
157         queue_ops = counter_u64_alloc(M_WAITOK);
158         queue_nops = counter_u64_alloc(M_WAITOK);
159 }
160 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
161
162 /*
163  * bogus page -- for I/O to/from partially complete buffers,
164  * or for paging into sparsely invalid regions.
165  */
166 vm_page_t bogus_page;
167
168 vm_page_t vm_page_array;
169 long vm_page_array_size;
170 long first_page;
171
172 static int boot_pages;
173 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
174     &boot_pages, 0,
175     "number of pages allocated for bootstrapping the VM system");
176
177 static TAILQ_HEAD(, vm_page) blacklist_head;
178 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
179 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
180     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
181
182 static uma_zone_t fakepg_zone;
183
184 static void vm_page_alloc_check(vm_page_t m);
185 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
186     const char *wmesg, bool nonshared, bool locked);
187 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
188 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
189 static bool vm_page_free_prep(vm_page_t m);
190 static void vm_page_free_toq(vm_page_t m);
191 static void vm_page_init(void *dummy);
192 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
193     vm_pindex_t pindex, vm_page_t mpred);
194 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
195     vm_page_t mpred);
196 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
197     const uint16_t nflag);
198 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
199     vm_page_t m_run, vm_paddr_t high);
200 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
201 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
202     int req);
203 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
204     int flags);
205 static void vm_page_zone_release(void *arg, void **store, int cnt);
206
207 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
208
209 static void
210 vm_page_init(void *dummy)
211 {
212
213         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
214             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
215         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
216             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
217 }
218
219 /*
220  * The cache page zone is initialized later since we need to be able to allocate
221  * pages before UMA is fully initialized.
222  */
223 static void
224 vm_page_init_cache_zones(void *dummy __unused)
225 {
226         struct vm_domain *vmd;
227         struct vm_pgcache *pgcache;
228         int cache, domain, maxcache, pool;
229
230         maxcache = 0;
231         TUNABLE_INT_FETCH("vm.pgcache_zone_max", &maxcache);
232         for (domain = 0; domain < vm_ndomains; domain++) {
233                 vmd = VM_DOMAIN(domain);
234                 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
235                         pgcache = &vmd->vmd_pgcache[pool];
236                         pgcache->domain = domain;
237                         pgcache->pool = pool;
238                         pgcache->zone = uma_zcache_create("vm pgcache",
239                             PAGE_SIZE, NULL, NULL, NULL, NULL,
240                             vm_page_zone_import, vm_page_zone_release, pgcache,
241                             UMA_ZONE_VM);
242
243                         /*
244                          * Limit each pool's zone to 0.1% of the pages in the
245                          * domain.
246                          */
247                         cache = maxcache != 0 ? maxcache :
248                             vmd->vmd_page_count / 1000;
249                         uma_zone_set_maxcache(pgcache->zone, cache);
250                 }
251         }
252 }
253 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
254
255 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
256 #if PAGE_SIZE == 32768
257 #ifdef CTASSERT
258 CTASSERT(sizeof(u_long) >= 8);
259 #endif
260 #endif
261
262 /*
263  *      vm_set_page_size:
264  *
265  *      Sets the page size, perhaps based upon the memory
266  *      size.  Must be called before any use of page-size
267  *      dependent functions.
268  */
269 void
270 vm_set_page_size(void)
271 {
272         if (vm_cnt.v_page_size == 0)
273                 vm_cnt.v_page_size = PAGE_SIZE;
274         if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
275                 panic("vm_set_page_size: page size not a power of two");
276 }
277
278 /*
279  *      vm_page_blacklist_next:
280  *
281  *      Find the next entry in the provided string of blacklist
282  *      addresses.  Entries are separated by space, comma, or newline.
283  *      If an invalid integer is encountered then the rest of the
284  *      string is skipped.  Updates the list pointer to the next
285  *      character, or NULL if the string is exhausted or invalid.
286  */
287 static vm_paddr_t
288 vm_page_blacklist_next(char **list, char *end)
289 {
290         vm_paddr_t bad;
291         char *cp, *pos;
292
293         if (list == NULL || *list == NULL)
294                 return (0);
295         if (**list =='\0') {
296                 *list = NULL;
297                 return (0);
298         }
299
300         /*
301          * If there's no end pointer then the buffer is coming from
302          * the kenv and we know it's null-terminated.
303          */
304         if (end == NULL)
305                 end = *list + strlen(*list);
306
307         /* Ensure that strtoq() won't walk off the end */
308         if (*end != '\0') {
309                 if (*end == '\n' || *end == ' ' || *end  == ',')
310                         *end = '\0';
311                 else {
312                         printf("Blacklist not terminated, skipping\n");
313                         *list = NULL;
314                         return (0);
315                 }
316         }
317
318         for (pos = *list; *pos != '\0'; pos = cp) {
319                 bad = strtoq(pos, &cp, 0);
320                 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
321                         if (bad == 0) {
322                                 if (++cp < end)
323                                         continue;
324                                 else
325                                         break;
326                         }
327                 } else
328                         break;
329                 if (*cp == '\0' || ++cp >= end)
330                         *list = NULL;
331                 else
332                         *list = cp;
333                 return (trunc_page(bad));
334         }
335         printf("Garbage in RAM blacklist, skipping\n");
336         *list = NULL;
337         return (0);
338 }
339
340 bool
341 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
342 {
343         struct vm_domain *vmd;
344         vm_page_t m;
345         int ret;
346
347         m = vm_phys_paddr_to_vm_page(pa);
348         if (m == NULL)
349                 return (true); /* page does not exist, no failure */
350
351         vmd = vm_pagequeue_domain(m);
352         vm_domain_free_lock(vmd);
353         ret = vm_phys_unfree_page(m);
354         vm_domain_free_unlock(vmd);
355         if (ret != 0) {
356                 vm_domain_freecnt_inc(vmd, -1);
357                 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
358                 if (verbose)
359                         printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
360         }
361         return (ret);
362 }
363
364 /*
365  *      vm_page_blacklist_check:
366  *
367  *      Iterate through the provided string of blacklist addresses, pulling
368  *      each entry out of the physical allocator free list and putting it
369  *      onto a list for reporting via the vm.page_blacklist sysctl.
370  */
371 static void
372 vm_page_blacklist_check(char *list, char *end)
373 {
374         vm_paddr_t pa;
375         char *next;
376
377         next = list;
378         while (next != NULL) {
379                 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
380                         continue;
381                 vm_page_blacklist_add(pa, bootverbose);
382         }
383 }
384
385 /*
386  *      vm_page_blacklist_load:
387  *
388  *      Search for a special module named "ram_blacklist".  It'll be a
389  *      plain text file provided by the user via the loader directive
390  *      of the same name.
391  */
392 static void
393 vm_page_blacklist_load(char **list, char **end)
394 {
395         void *mod;
396         u_char *ptr;
397         u_int len;
398
399         mod = NULL;
400         ptr = NULL;
401
402         mod = preload_search_by_type("ram_blacklist");
403         if (mod != NULL) {
404                 ptr = preload_fetch_addr(mod);
405                 len = preload_fetch_size(mod);
406         }
407         *list = ptr;
408         if (ptr != NULL)
409                 *end = ptr + len;
410         else
411                 *end = NULL;
412         return;
413 }
414
415 static int
416 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
417 {
418         vm_page_t m;
419         struct sbuf sbuf;
420         int error, first;
421
422         first = 1;
423         error = sysctl_wire_old_buffer(req, 0);
424         if (error != 0)
425                 return (error);
426         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
427         TAILQ_FOREACH(m, &blacklist_head, listq) {
428                 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
429                     (uintmax_t)m->phys_addr);
430                 first = 0;
431         }
432         error = sbuf_finish(&sbuf);
433         sbuf_delete(&sbuf);
434         return (error);
435 }
436
437 /*
438  * Initialize a dummy page for use in scans of the specified paging queue.
439  * In principle, this function only needs to set the flag PG_MARKER.
440  * Nonetheless, it write busies the page as a safety precaution.
441  */
442 static void
443 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
444 {
445
446         bzero(marker, sizeof(*marker));
447         marker->flags = PG_MARKER;
448         marker->a.flags = aflags;
449         marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
450         marker->a.queue = queue;
451 }
452
453 static void
454 vm_page_domain_init(int domain)
455 {
456         struct vm_domain *vmd;
457         struct vm_pagequeue *pq;
458         int i;
459
460         vmd = VM_DOMAIN(domain);
461         bzero(vmd, sizeof(*vmd));
462         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
463             "vm inactive pagequeue";
464         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
465             "vm active pagequeue";
466         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
467             "vm laundry pagequeue";
468         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
469             "vm unswappable pagequeue";
470         vmd->vmd_domain = domain;
471         vmd->vmd_page_count = 0;
472         vmd->vmd_free_count = 0;
473         vmd->vmd_segs = 0;
474         vmd->vmd_oom = FALSE;
475         for (i = 0; i < PQ_COUNT; i++) {
476                 pq = &vmd->vmd_pagequeues[i];
477                 TAILQ_INIT(&pq->pq_pl);
478                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
479                     MTX_DEF | MTX_DUPOK);
480                 pq->pq_pdpages = 0;
481                 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
482         }
483         mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
484         mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
485         snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
486
487         /*
488          * inacthead is used to provide FIFO ordering for LRU-bypassing
489          * insertions.
490          */
491         vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
492         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
493             &vmd->vmd_inacthead, plinks.q);
494
495         /*
496          * The clock pages are used to implement active queue scanning without
497          * requeues.  Scans start at clock[0], which is advanced after the scan
498          * ends.  When the two clock hands meet, they are reset and scanning
499          * resumes from the head of the queue.
500          */
501         vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
502         vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
503         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
504             &vmd->vmd_clock[0], plinks.q);
505         TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
506             &vmd->vmd_clock[1], plinks.q);
507 }
508
509 /*
510  * Initialize a physical page in preparation for adding it to the free
511  * lists.
512  */
513 static void
514 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
515 {
516
517         m->object = NULL;
518         m->ref_count = 0;
519         m->busy_lock = VPB_UNBUSIED;
520         m->flags = m->a.flags = 0;
521         m->phys_addr = pa;
522         m->a.queue = PQ_NONE;
523         m->psind = 0;
524         m->segind = segind;
525         m->order = VM_NFREEORDER;
526         m->pool = VM_FREEPOOL_DEFAULT;
527         m->valid = m->dirty = 0;
528         pmap_page_init(m);
529 }
530
531 #ifndef PMAP_HAS_PAGE_ARRAY
532 static vm_paddr_t
533 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
534 {
535         vm_paddr_t new_end;
536
537         /*
538          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
539          * However, because this page is allocated from KVM, out-of-bounds
540          * accesses using the direct map will not be trapped.
541          */
542         *vaddr += PAGE_SIZE;
543
544         /*
545          * Allocate physical memory for the page structures, and map it.
546          */
547         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
548         vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
549             VM_PROT_READ | VM_PROT_WRITE);
550         vm_page_array_size = page_range;
551
552         return (new_end);
553 }
554 #endif
555
556 /*
557  *      vm_page_startup:
558  *
559  *      Initializes the resident memory module.  Allocates physical memory for
560  *      bootstrapping UMA and some data structures that are used to manage
561  *      physical pages.  Initializes these structures, and populates the free
562  *      page queues.
563  */
564 vm_offset_t
565 vm_page_startup(vm_offset_t vaddr)
566 {
567         struct vm_phys_seg *seg;
568         vm_page_t m;
569         char *list, *listend;
570         vm_offset_t mapped;
571         vm_paddr_t end, high_avail, low_avail, new_end, size;
572         vm_paddr_t page_range __unused;
573         vm_paddr_t last_pa, pa;
574         u_long pagecount;
575         int biggestone, i, segind;
576 #ifdef WITNESS
577         int witness_size;
578 #endif
579 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
580         long ii;
581 #endif
582
583         vaddr = round_page(vaddr);
584
585         vm_phys_early_startup();
586         biggestone = vm_phys_avail_largest();
587         end = phys_avail[biggestone+1];
588
589         /*
590          * Initialize the page and queue locks.
591          */
592         mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
593         for (i = 0; i < PA_LOCK_COUNT; i++)
594                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
595         for (i = 0; i < vm_ndomains; i++)
596                 vm_page_domain_init(i);
597
598         /*
599          * Allocate memory for use when boot strapping the kernel memory
600          * allocator.  Tell UMA how many zones we are going to create
601          * before going fully functional.  UMA will add its zones.
602          *
603          * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP,
604          * KMAP ENTRY, MAP ENTRY, VMSPACE.
605          */
606         boot_pages = uma_startup_count(8);
607
608 #ifndef UMA_MD_SMALL_ALLOC
609         /* vmem_startup() calls uma_prealloc(). */
610         boot_pages += vmem_startup_count();
611         /* vm_map_startup() calls uma_prealloc(). */
612         boot_pages += howmany(MAX_KMAP,
613             slab_ipers(sizeof(struct vm_map), UMA_ALIGN_PTR));
614
615         /*
616          * Before going fully functional kmem_init() does allocation
617          * from "KMAP ENTRY" and vmem_create() does allocation from "vmem".
618          */
619         boot_pages += 2;
620 #endif
621         /*
622          * CTFLAG_RDTUN doesn't work during the early boot process, so we must
623          * manually fetch the value.
624          */
625         TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
626         new_end = end - (boot_pages * UMA_SLAB_SIZE);
627         new_end = trunc_page(new_end);
628         mapped = pmap_map(&vaddr, new_end, end,
629             VM_PROT_READ | VM_PROT_WRITE);
630         bzero((void *)mapped, end - new_end);
631         uma_startup((void *)mapped, boot_pages);
632
633 #ifdef WITNESS
634         witness_size = round_page(witness_startup_count());
635         new_end -= witness_size;
636         mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
637             VM_PROT_READ | VM_PROT_WRITE);
638         bzero((void *)mapped, witness_size);
639         witness_startup((void *)mapped);
640 #endif
641
642 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
643     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
644     defined(__powerpc64__)
645         /*
646          * Allocate a bitmap to indicate that a random physical page
647          * needs to be included in a minidump.
648          *
649          * The amd64 port needs this to indicate which direct map pages
650          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
651          *
652          * However, i386 still needs this workspace internally within the
653          * minidump code.  In theory, they are not needed on i386, but are
654          * included should the sf_buf code decide to use them.
655          */
656         last_pa = 0;
657         for (i = 0; dump_avail[i + 1] != 0; i += 2)
658                 if (dump_avail[i + 1] > last_pa)
659                         last_pa = dump_avail[i + 1];
660         page_range = last_pa / PAGE_SIZE;
661         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
662         new_end -= vm_page_dump_size;
663         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
664             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
665         bzero((void *)vm_page_dump, vm_page_dump_size);
666 #else
667         (void)last_pa;
668 #endif
669 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
670     defined(__riscv) || defined(__powerpc64__)
671         /*
672          * Include the UMA bootstrap pages, witness pages and vm_page_dump
673          * in a crash dump.  When pmap_map() uses the direct map, they are
674          * not automatically included.
675          */
676         for (pa = new_end; pa < end; pa += PAGE_SIZE)
677                 dump_add_page(pa);
678 #endif
679         phys_avail[biggestone + 1] = new_end;
680 #ifdef __amd64__
681         /*
682          * Request that the physical pages underlying the message buffer be
683          * included in a crash dump.  Since the message buffer is accessed
684          * through the direct map, they are not automatically included.
685          */
686         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
687         last_pa = pa + round_page(msgbufsize);
688         while (pa < last_pa) {
689                 dump_add_page(pa);
690                 pa += PAGE_SIZE;
691         }
692 #endif
693         /*
694          * Compute the number of pages of memory that will be available for
695          * use, taking into account the overhead of a page structure per page.
696          * In other words, solve
697          *      "available physical memory" - round_page(page_range *
698          *          sizeof(struct vm_page)) = page_range * PAGE_SIZE 
699          * for page_range.  
700          */
701         low_avail = phys_avail[0];
702         high_avail = phys_avail[1];
703         for (i = 0; i < vm_phys_nsegs; i++) {
704                 if (vm_phys_segs[i].start < low_avail)
705                         low_avail = vm_phys_segs[i].start;
706                 if (vm_phys_segs[i].end > high_avail)
707                         high_avail = vm_phys_segs[i].end;
708         }
709         /* Skip the first chunk.  It is already accounted for. */
710         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
711                 if (phys_avail[i] < low_avail)
712                         low_avail = phys_avail[i];
713                 if (phys_avail[i + 1] > high_avail)
714                         high_avail = phys_avail[i + 1];
715         }
716         first_page = low_avail / PAGE_SIZE;
717 #ifdef VM_PHYSSEG_SPARSE
718         size = 0;
719         for (i = 0; i < vm_phys_nsegs; i++)
720                 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
721         for (i = 0; phys_avail[i + 1] != 0; i += 2)
722                 size += phys_avail[i + 1] - phys_avail[i];
723 #elif defined(VM_PHYSSEG_DENSE)
724         size = high_avail - low_avail;
725 #else
726 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
727 #endif
728
729 #ifdef PMAP_HAS_PAGE_ARRAY
730         pmap_page_array_startup(size / PAGE_SIZE);
731         biggestone = vm_phys_avail_largest();
732         end = new_end = phys_avail[biggestone + 1];
733 #else
734 #ifdef VM_PHYSSEG_DENSE
735         /*
736          * In the VM_PHYSSEG_DENSE case, the number of pages can account for
737          * the overhead of a page structure per page only if vm_page_array is
738          * allocated from the last physical memory chunk.  Otherwise, we must
739          * allocate page structures representing the physical memory
740          * underlying vm_page_array, even though they will not be used.
741          */
742         if (new_end != high_avail)
743                 page_range = size / PAGE_SIZE;
744         else
745 #endif
746         {
747                 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
748
749                 /*
750                  * If the partial bytes remaining are large enough for
751                  * a page (PAGE_SIZE) without a corresponding
752                  * 'struct vm_page', then new_end will contain an
753                  * extra page after subtracting the length of the VM
754                  * page array.  Compensate by subtracting an extra
755                  * page from new_end.
756                  */
757                 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
758                         if (new_end == high_avail)
759                                 high_avail -= PAGE_SIZE;
760                         new_end -= PAGE_SIZE;
761                 }
762         }
763         end = new_end;
764         new_end = vm_page_array_alloc(&vaddr, end, page_range);
765 #endif
766
767 #if VM_NRESERVLEVEL > 0
768         /*
769          * Allocate physical memory for the reservation management system's
770          * data structures, and map it.
771          */
772         new_end = vm_reserv_startup(&vaddr, new_end);
773 #endif
774 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
775     defined(__riscv) || defined(__powerpc64__)
776         /*
777          * Include vm_page_array and vm_reserv_array in a crash dump.
778          */
779         for (pa = new_end; pa < end; pa += PAGE_SIZE)
780                 dump_add_page(pa);
781 #endif
782         phys_avail[biggestone + 1] = new_end;
783
784         /*
785          * Add physical memory segments corresponding to the available
786          * physical pages.
787          */
788         for (i = 0; phys_avail[i + 1] != 0; i += 2)
789                 if (vm_phys_avail_size(i) != 0)
790                         vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
791
792         /*
793          * Initialize the physical memory allocator.
794          */
795         vm_phys_init();
796
797         /*
798          * Initialize the page structures and add every available page to the
799          * physical memory allocator's free lists.
800          */
801 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
802         for (ii = 0; ii < vm_page_array_size; ii++) {
803                 m = &vm_page_array[ii];
804                 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
805                 m->flags = PG_FICTITIOUS;
806         }
807 #endif
808         vm_cnt.v_page_count = 0;
809         for (segind = 0; segind < vm_phys_nsegs; segind++) {
810                 seg = &vm_phys_segs[segind];
811                 for (m = seg->first_page, pa = seg->start; pa < seg->end;
812                     m++, pa += PAGE_SIZE)
813                         vm_page_init_page(m, pa, segind);
814
815                 /*
816                  * Add the segment to the free lists only if it is covered by
817                  * one of the ranges in phys_avail.  Because we've added the
818                  * ranges to the vm_phys_segs array, we can assume that each
819                  * segment is either entirely contained in one of the ranges,
820                  * or doesn't overlap any of them.
821                  */
822                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
823                         struct vm_domain *vmd;
824
825                         if (seg->start < phys_avail[i] ||
826                             seg->end > phys_avail[i + 1])
827                                 continue;
828
829                         m = seg->first_page;
830                         pagecount = (u_long)atop(seg->end - seg->start);
831
832                         vmd = VM_DOMAIN(seg->domain);
833                         vm_domain_free_lock(vmd);
834                         vm_phys_enqueue_contig(m, pagecount);
835                         vm_domain_free_unlock(vmd);
836                         vm_domain_freecnt_inc(vmd, pagecount);
837                         vm_cnt.v_page_count += (u_int)pagecount;
838
839                         vmd = VM_DOMAIN(seg->domain);
840                         vmd->vmd_page_count += (u_int)pagecount;
841                         vmd->vmd_segs |= 1UL << m->segind;
842                         break;
843                 }
844         }
845
846         /*
847          * Remove blacklisted pages from the physical memory allocator.
848          */
849         TAILQ_INIT(&blacklist_head);
850         vm_page_blacklist_load(&list, &listend);
851         vm_page_blacklist_check(list, listend);
852
853         list = kern_getenv("vm.blacklist");
854         vm_page_blacklist_check(list, NULL);
855
856         freeenv(list);
857 #if VM_NRESERVLEVEL > 0
858         /*
859          * Initialize the reservation management system.
860          */
861         vm_reserv_init();
862 #endif
863
864         return (vaddr);
865 }
866
867 void
868 vm_page_reference(vm_page_t m)
869 {
870
871         vm_page_aflag_set(m, PGA_REFERENCED);
872 }
873
874 static bool
875 vm_page_acquire_flags(vm_page_t m, int allocflags)
876 {
877         bool locked;
878
879         if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
880                 locked = vm_page_trysbusy(m);
881         else
882                 locked = vm_page_tryxbusy(m);
883         if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
884                 vm_page_wire(m);
885         return (locked);
886 }
887
888 /*
889  *      vm_page_busy_sleep_flags
890  *
891  *      Sleep for busy according to VM_ALLOC_ parameters.
892  */
893 static bool
894 vm_page_busy_sleep_flags(vm_object_t object, vm_page_t m, const char *wmesg,
895     int allocflags)
896 {
897
898         if ((allocflags & VM_ALLOC_NOWAIT) != 0)
899                 return (false);
900         /*
901          * Reference the page before unlocking and
902          * sleeping so that the page daemon is less
903          * likely to reclaim it.
904          */
905         if ((allocflags & VM_ALLOC_NOCREAT) == 0)
906                 vm_page_aflag_set(m, PGA_REFERENCED);
907         if (_vm_page_busy_sleep(object, m, wmesg, (allocflags &
908             VM_ALLOC_IGN_SBUSY) != 0, true))
909                 VM_OBJECT_WLOCK(object);
910         if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
911                 return (false);
912         return (true);
913 }
914
915 /*
916  *      vm_page_busy_acquire:
917  *
918  *      Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
919  *      and drop the object lock if necessary.
920  */
921 bool
922 vm_page_busy_acquire(vm_page_t m, int allocflags)
923 {
924         vm_object_t obj;
925         bool locked;
926
927         /*
928          * The page-specific object must be cached because page
929          * identity can change during the sleep, causing the
930          * re-lock of a different object.
931          * It is assumed that a reference to the object is already
932          * held by the callers.
933          */
934         obj = m->object;
935         for (;;) {
936                 if (vm_page_acquire_flags(m, allocflags))
937                         return (true);
938                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
939                         return (false);
940                 if (obj != NULL)
941                         locked = VM_OBJECT_WOWNED(obj);
942                 else
943                         locked = false;
944                 MPASS(locked || vm_page_wired(m));
945                 if (_vm_page_busy_sleep(obj, m, "vmpba",
946                     (allocflags & VM_ALLOC_SBUSY) != 0, locked))
947                         VM_OBJECT_WLOCK(obj);
948                 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
949                         return (false);
950                 KASSERT(m->object == obj || m->object == NULL,
951                     ("vm_page_busy_acquire: page %p does not belong to %p",
952                     m, obj));
953         }
954 }
955
956 /*
957  *      vm_page_busy_downgrade:
958  *
959  *      Downgrade an exclusive busy page into a single shared busy page.
960  */
961 void
962 vm_page_busy_downgrade(vm_page_t m)
963 {
964         u_int x;
965
966         vm_page_assert_xbusied(m);
967
968         x = m->busy_lock;
969         for (;;) {
970                 if (atomic_fcmpset_rel_int(&m->busy_lock,
971                     &x, VPB_SHARERS_WORD(1)))
972                         break;
973         }
974         if ((x & VPB_BIT_WAITERS) != 0)
975                 wakeup(m);
976 }
977
978 /*
979  *
980  *      vm_page_busy_tryupgrade:
981  *
982  *      Attempt to upgrade a single shared busy into an exclusive busy.
983  */
984 int
985 vm_page_busy_tryupgrade(vm_page_t m)
986 {
987         u_int ce, x;
988
989         vm_page_assert_sbusied(m);
990
991         x = m->busy_lock;
992         ce = VPB_CURTHREAD_EXCLUSIVE;
993         for (;;) {
994                 if (VPB_SHARERS(x) > 1)
995                         return (0);
996                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
997                     ("vm_page_busy_tryupgrade: invalid lock state"));
998                 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
999                     ce | (x & VPB_BIT_WAITERS)))
1000                         continue;
1001                 return (1);
1002         }
1003 }
1004
1005 /*
1006  *      vm_page_sbusied:
1007  *
1008  *      Return a positive value if the page is shared busied, 0 otherwise.
1009  */
1010 int
1011 vm_page_sbusied(vm_page_t m)
1012 {
1013         u_int x;
1014
1015         x = m->busy_lock;
1016         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1017 }
1018
1019 /*
1020  *      vm_page_sunbusy:
1021  *
1022  *      Shared unbusy a page.
1023  */
1024 void
1025 vm_page_sunbusy(vm_page_t m)
1026 {
1027         u_int x;
1028
1029         vm_page_assert_sbusied(m);
1030
1031         x = m->busy_lock;
1032         for (;;) {
1033                 if (VPB_SHARERS(x) > 1) {
1034                         if (atomic_fcmpset_int(&m->busy_lock, &x,
1035                             x - VPB_ONE_SHARER))
1036                                 break;
1037                         continue;
1038                 }
1039                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1040                     ("vm_page_sunbusy: invalid lock state"));
1041                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1042                         continue;
1043                 if ((x & VPB_BIT_WAITERS) == 0)
1044                         break;
1045                 wakeup(m);
1046                 break;
1047         }
1048 }
1049
1050 /*
1051  *      vm_page_busy_sleep:
1052  *
1053  *      Sleep if the page is busy, using the page pointer as wchan.
1054  *      This is used to implement the hard-path of busying mechanism.
1055  *
1056  *      If nonshared is true, sleep only if the page is xbusy.
1057  *
1058  *      The object lock must be held on entry and will be released on exit.
1059  */
1060 void
1061 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1062 {
1063         vm_object_t obj;
1064
1065         obj = m->object;
1066         VM_OBJECT_ASSERT_LOCKED(obj);
1067         vm_page_lock_assert(m, MA_NOTOWNED);
1068
1069         if (!_vm_page_busy_sleep(obj, m, wmesg, nonshared, true))
1070                 VM_OBJECT_DROP(obj);
1071 }
1072
1073 /*
1074  *      _vm_page_busy_sleep:
1075  *
1076  *      Internal busy sleep function.
1077  */
1078 static bool
1079 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg,
1080     bool nonshared, bool locked)
1081 {
1082         u_int x;
1083
1084         /*
1085          * If the object is busy we must wait for that to drain to zero
1086          * before trying the page again.
1087          */
1088         if (obj != NULL && vm_object_busied(obj)) {
1089                 if (locked)
1090                         VM_OBJECT_DROP(obj);
1091                 vm_object_busy_wait(obj, wmesg);
1092                 return (locked);
1093         }
1094         sleepq_lock(m);
1095         x = m->busy_lock;
1096         if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
1097             ((x & VPB_BIT_WAITERS) == 0 &&
1098             !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
1099                 sleepq_release(m);
1100                 return (false);
1101         }
1102         if (locked)
1103                 VM_OBJECT_DROP(obj);
1104         DROP_GIANT();
1105         sleepq_add(m, NULL, wmesg, 0, 0);
1106         sleepq_wait(m, PVM);
1107         PICKUP_GIANT();
1108         return (locked);
1109 }
1110
1111 /*
1112  *      vm_page_trysbusy:
1113  *
1114  *      Try to shared busy a page.
1115  *      If the operation succeeds 1 is returned otherwise 0.
1116  *      The operation never sleeps.
1117  */
1118 int
1119 vm_page_trysbusy(vm_page_t m)
1120 {
1121         vm_object_t obj;
1122         u_int x;
1123
1124         obj = m->object;
1125         x = m->busy_lock;
1126         for (;;) {
1127                 if ((x & VPB_BIT_SHARED) == 0)
1128                         return (0);
1129                 /*
1130                  * Reduce the window for transient busies that will trigger
1131                  * false negatives in vm_page_ps_test().
1132                  */
1133                 if (obj != NULL && vm_object_busied(obj))
1134                         return (0);
1135                 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1136                     x + VPB_ONE_SHARER))
1137                         break;
1138         }
1139
1140         /* Refetch the object now that we're guaranteed that it is stable. */
1141         obj = m->object;
1142         if (obj != NULL && vm_object_busied(obj)) {
1143                 vm_page_sunbusy(m);
1144                 return (0);
1145         }
1146         return (1);
1147 }
1148
1149 /*
1150  *      vm_page_tryxbusy:
1151  *
1152  *      Try to exclusive busy a page.
1153  *      If the operation succeeds 1 is returned otherwise 0.
1154  *      The operation never sleeps.
1155  */
1156 int
1157 vm_page_tryxbusy(vm_page_t m)
1158 {
1159         vm_object_t obj;
1160
1161         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1162             VPB_CURTHREAD_EXCLUSIVE) == 0)
1163                 return (0);
1164
1165         obj = m->object;
1166         if (obj != NULL && vm_object_busied(obj)) {
1167                 vm_page_xunbusy(m);
1168                 return (0);
1169         }
1170         return (1);
1171 }
1172
1173 static void
1174 vm_page_xunbusy_hard_tail(vm_page_t m)
1175 {
1176         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1177         /* Wake the waiter. */
1178         wakeup(m);
1179 }
1180
1181 /*
1182  *      vm_page_xunbusy_hard:
1183  *
1184  *      Called when unbusy has failed because there is a waiter.
1185  */
1186 void
1187 vm_page_xunbusy_hard(vm_page_t m)
1188 {
1189         vm_page_assert_xbusied(m);
1190         vm_page_xunbusy_hard_tail(m);
1191 }
1192
1193 void
1194 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1195 {
1196         vm_page_assert_xbusied_unchecked(m);
1197         vm_page_xunbusy_hard_tail(m);
1198 }
1199
1200 /*
1201  * Avoid releasing and reacquiring the same page lock.
1202  */
1203 void
1204 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
1205 {
1206         struct mtx *mtx1;
1207
1208         mtx1 = vm_page_lockptr(m);
1209         if (*mtx == mtx1)
1210                 return;
1211         if (*mtx != NULL)
1212                 mtx_unlock(*mtx);
1213         *mtx = mtx1;
1214         mtx_lock(mtx1);
1215 }
1216
1217 /*
1218  *      vm_page_unhold_pages:
1219  *
1220  *      Unhold each of the pages that is referenced by the given array.
1221  */
1222 void
1223 vm_page_unhold_pages(vm_page_t *ma, int count)
1224 {
1225
1226         for (; count != 0; count--) {
1227                 vm_page_unwire(*ma, PQ_ACTIVE);
1228                 ma++;
1229         }
1230 }
1231
1232 vm_page_t
1233 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1234 {
1235         vm_page_t m;
1236
1237 #ifdef VM_PHYSSEG_SPARSE
1238         m = vm_phys_paddr_to_vm_page(pa);
1239         if (m == NULL)
1240                 m = vm_phys_fictitious_to_vm_page(pa);
1241         return (m);
1242 #elif defined(VM_PHYSSEG_DENSE)
1243         long pi;
1244
1245         pi = atop(pa);
1246         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1247                 m = &vm_page_array[pi - first_page];
1248                 return (m);
1249         }
1250         return (vm_phys_fictitious_to_vm_page(pa));
1251 #else
1252 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1253 #endif
1254 }
1255
1256 /*
1257  *      vm_page_getfake:
1258  *
1259  *      Create a fictitious page with the specified physical address and
1260  *      memory attribute.  The memory attribute is the only the machine-
1261  *      dependent aspect of a fictitious page that must be initialized.
1262  */
1263 vm_page_t
1264 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1265 {
1266         vm_page_t m;
1267
1268         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1269         vm_page_initfake(m, paddr, memattr);
1270         return (m);
1271 }
1272
1273 void
1274 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1275 {
1276
1277         if ((m->flags & PG_FICTITIOUS) != 0) {
1278                 /*
1279                  * The page's memattr might have changed since the
1280                  * previous initialization.  Update the pmap to the
1281                  * new memattr.
1282                  */
1283                 goto memattr;
1284         }
1285         m->phys_addr = paddr;
1286         m->a.queue = PQ_NONE;
1287         /* Fictitious pages don't use "segind". */
1288         m->flags = PG_FICTITIOUS;
1289         /* Fictitious pages don't use "order" or "pool". */
1290         m->oflags = VPO_UNMANAGED;
1291         m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1292         /* Fictitious pages are unevictable. */
1293         m->ref_count = 1;
1294         pmap_page_init(m);
1295 memattr:
1296         pmap_page_set_memattr(m, memattr);
1297 }
1298
1299 /*
1300  *      vm_page_putfake:
1301  *
1302  *      Release a fictitious page.
1303  */
1304 void
1305 vm_page_putfake(vm_page_t m)
1306 {
1307
1308         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1309         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1310             ("vm_page_putfake: bad page %p", m));
1311         vm_page_xunbusy(m);
1312         uma_zfree(fakepg_zone, m);
1313 }
1314
1315 /*
1316  *      vm_page_updatefake:
1317  *
1318  *      Update the given fictitious page to the specified physical address and
1319  *      memory attribute.
1320  */
1321 void
1322 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1323 {
1324
1325         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1326             ("vm_page_updatefake: bad page %p", m));
1327         m->phys_addr = paddr;
1328         pmap_page_set_memattr(m, memattr);
1329 }
1330
1331 /*
1332  *      vm_page_free:
1333  *
1334  *      Free a page.
1335  */
1336 void
1337 vm_page_free(vm_page_t m)
1338 {
1339
1340         m->flags &= ~PG_ZERO;
1341         vm_page_free_toq(m);
1342 }
1343
1344 /*
1345  *      vm_page_free_zero:
1346  *
1347  *      Free a page to the zerod-pages queue
1348  */
1349 void
1350 vm_page_free_zero(vm_page_t m)
1351 {
1352
1353         m->flags |= PG_ZERO;
1354         vm_page_free_toq(m);
1355 }
1356
1357 /*
1358  * Unbusy and handle the page queueing for a page from a getpages request that
1359  * was optionally read ahead or behind.
1360  */
1361 void
1362 vm_page_readahead_finish(vm_page_t m)
1363 {
1364
1365         /* We shouldn't put invalid pages on queues. */
1366         KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1367
1368         /*
1369          * Since the page is not the actually needed one, whether it should
1370          * be activated or deactivated is not obvious.  Empirical results
1371          * have shown that deactivating the page is usually the best choice,
1372          * unless the page is wanted by another thread.
1373          */
1374         if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1375                 vm_page_activate(m);
1376         else
1377                 vm_page_deactivate(m);
1378         vm_page_xunbusy_unchecked(m);
1379 }
1380
1381 /*
1382  *      vm_page_sleep_if_busy:
1383  *
1384  *      Sleep and release the object lock if the page is busied.
1385  *      Returns TRUE if the thread slept.
1386  *
1387  *      The given page must be unlocked and object containing it must
1388  *      be locked.
1389  */
1390 int
1391 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1392 {
1393         vm_object_t obj;
1394
1395         vm_page_lock_assert(m, MA_NOTOWNED);
1396         VM_OBJECT_ASSERT_WLOCKED(m->object);
1397
1398         /*
1399          * The page-specific object must be cached because page
1400          * identity can change during the sleep, causing the
1401          * re-lock of a different object.
1402          * It is assumed that a reference to the object is already
1403          * held by the callers.
1404          */
1405         obj = m->object;
1406         if (vm_page_busied(m) || (obj != NULL && obj->busy)) {
1407                 vm_page_busy_sleep(m, msg, false);
1408                 VM_OBJECT_WLOCK(obj);
1409                 return (TRUE);
1410         }
1411         return (FALSE);
1412 }
1413
1414 /*
1415  *      vm_page_sleep_if_xbusy:
1416  *
1417  *      Sleep and release the object lock if the page is xbusied.
1418  *      Returns TRUE if the thread slept.
1419  *
1420  *      The given page must be unlocked and object containing it must
1421  *      be locked.
1422  */
1423 int
1424 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg)
1425 {
1426         vm_object_t obj;
1427
1428         vm_page_lock_assert(m, MA_NOTOWNED);
1429         VM_OBJECT_ASSERT_WLOCKED(m->object);
1430
1431         /*
1432          * The page-specific object must be cached because page
1433          * identity can change during the sleep, causing the
1434          * re-lock of a different object.
1435          * It is assumed that a reference to the object is already
1436          * held by the callers.
1437          */
1438         obj = m->object;
1439         if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) {
1440                 vm_page_busy_sleep(m, msg, true);
1441                 VM_OBJECT_WLOCK(obj);
1442                 return (TRUE);
1443         }
1444         return (FALSE);
1445 }
1446
1447 /*
1448  *      vm_page_dirty_KBI:              [ internal use only ]
1449  *
1450  *      Set all bits in the page's dirty field.
1451  *
1452  *      The object containing the specified page must be locked if the
1453  *      call is made from the machine-independent layer.
1454  *
1455  *      See vm_page_clear_dirty_mask().
1456  *
1457  *      This function should only be called by vm_page_dirty().
1458  */
1459 void
1460 vm_page_dirty_KBI(vm_page_t m)
1461 {
1462
1463         /* Refer to this operation by its public name. */
1464         KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1465         m->dirty = VM_PAGE_BITS_ALL;
1466 }
1467
1468 /*
1469  *      vm_page_insert:         [ internal use only ]
1470  *
1471  *      Inserts the given mem entry into the object and object list.
1472  *
1473  *      The object must be locked.
1474  */
1475 int
1476 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1477 {
1478         vm_page_t mpred;
1479
1480         VM_OBJECT_ASSERT_WLOCKED(object);
1481         mpred = vm_radix_lookup_le(&object->rtree, pindex);
1482         return (vm_page_insert_after(m, object, pindex, mpred));
1483 }
1484
1485 /*
1486  *      vm_page_insert_after:
1487  *
1488  *      Inserts the page "m" into the specified object at offset "pindex".
1489  *
1490  *      The page "mpred" must immediately precede the offset "pindex" within
1491  *      the specified object.
1492  *
1493  *      The object must be locked.
1494  */
1495 static int
1496 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1497     vm_page_t mpred)
1498 {
1499         vm_page_t msucc;
1500
1501         VM_OBJECT_ASSERT_WLOCKED(object);
1502         KASSERT(m->object == NULL,
1503             ("vm_page_insert_after: page already inserted"));
1504         if (mpred != NULL) {
1505                 KASSERT(mpred->object == object,
1506                     ("vm_page_insert_after: object doesn't contain mpred"));
1507                 KASSERT(mpred->pindex < pindex,
1508                     ("vm_page_insert_after: mpred doesn't precede pindex"));
1509                 msucc = TAILQ_NEXT(mpred, listq);
1510         } else
1511                 msucc = TAILQ_FIRST(&object->memq);
1512         if (msucc != NULL)
1513                 KASSERT(msucc->pindex > pindex,
1514                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
1515
1516         /*
1517          * Record the object/offset pair in this page.
1518          */
1519         m->object = object;
1520         m->pindex = pindex;
1521         m->ref_count |= VPRC_OBJREF;
1522
1523         /*
1524          * Now link into the object's ordered list of backed pages.
1525          */
1526         if (vm_radix_insert(&object->rtree, m)) {
1527                 m->object = NULL;
1528                 m->pindex = 0;
1529                 m->ref_count &= ~VPRC_OBJREF;
1530                 return (1);
1531         }
1532         vm_page_insert_radixdone(m, object, mpred);
1533         return (0);
1534 }
1535
1536 /*
1537  *      vm_page_insert_radixdone:
1538  *
1539  *      Complete page "m" insertion into the specified object after the
1540  *      radix trie hooking.
1541  *
1542  *      The page "mpred" must precede the offset "m->pindex" within the
1543  *      specified object.
1544  *
1545  *      The object must be locked.
1546  */
1547 static void
1548 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1549 {
1550
1551         VM_OBJECT_ASSERT_WLOCKED(object);
1552         KASSERT(object != NULL && m->object == object,
1553             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1554         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1555             ("vm_page_insert_radixdone: page %p is missing object ref", m));
1556         if (mpred != NULL) {
1557                 KASSERT(mpred->object == object,
1558                     ("vm_page_insert_radixdone: object doesn't contain mpred"));
1559                 KASSERT(mpred->pindex < m->pindex,
1560                     ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1561         }
1562
1563         if (mpred != NULL)
1564                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1565         else
1566                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1567
1568         /*
1569          * Show that the object has one more resident page.
1570          */
1571         object->resident_page_count++;
1572
1573         /*
1574          * Hold the vnode until the last page is released.
1575          */
1576         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1577                 vhold(object->handle);
1578
1579         /*
1580          * Since we are inserting a new and possibly dirty page,
1581          * update the object's generation count.
1582          */
1583         if (pmap_page_is_write_mapped(m))
1584                 vm_object_set_writeable_dirty(object);
1585 }
1586
1587 /*
1588  * Do the work to remove a page from its object.  The caller is responsible for
1589  * updating the page's fields to reflect this removal.
1590  */
1591 static void
1592 vm_page_object_remove(vm_page_t m)
1593 {
1594         vm_object_t object;
1595         vm_page_t mrem;
1596
1597         vm_page_assert_xbusied(m);
1598         object = m->object;
1599         VM_OBJECT_ASSERT_WLOCKED(object);
1600         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1601             ("page %p is missing its object ref", m));
1602
1603         /* Deferred free of swap space. */
1604         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1605                 vm_pager_page_unswapped(m);
1606
1607         mrem = vm_radix_remove(&object->rtree, m->pindex);
1608         KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1609
1610         /*
1611          * Now remove from the object's list of backed pages.
1612          */
1613         TAILQ_REMOVE(&object->memq, m, listq);
1614
1615         /*
1616          * And show that the object has one fewer resident page.
1617          */
1618         object->resident_page_count--;
1619
1620         /*
1621          * The vnode may now be recycled.
1622          */
1623         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1624                 vdrop(object->handle);
1625 }
1626
1627 /*
1628  *      vm_page_remove:
1629  *
1630  *      Removes the specified page from its containing object, but does not
1631  *      invalidate any backing storage.  Returns true if the object's reference
1632  *      was the last reference to the page, and false otherwise.
1633  *
1634  *      The object must be locked and the page must be exclusively busied.
1635  *      The exclusive busy will be released on return.  If this is not the
1636  *      final ref and the caller does not hold a wire reference it may not
1637  *      continue to access the page.
1638  */
1639 bool
1640 vm_page_remove(vm_page_t m)
1641 {
1642         bool dropped;
1643
1644         dropped = vm_page_remove_xbusy(m);
1645         vm_page_xunbusy(m);
1646
1647         return (dropped);
1648 }
1649
1650 /*
1651  *      vm_page_remove_xbusy
1652  *
1653  *      Removes the page but leaves the xbusy held.  Returns true if this
1654  *      removed the final ref and false otherwise.
1655  */
1656 bool
1657 vm_page_remove_xbusy(vm_page_t m)
1658 {
1659
1660         vm_page_object_remove(m);
1661         m->object = NULL;
1662         return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1663 }
1664
1665 /*
1666  *      vm_page_lookup:
1667  *
1668  *      Returns the page associated with the object/offset
1669  *      pair specified; if none is found, NULL is returned.
1670  *
1671  *      The object must be locked.
1672  */
1673 vm_page_t
1674 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1675 {
1676
1677         VM_OBJECT_ASSERT_LOCKED(object);
1678         return (vm_radix_lookup(&object->rtree, pindex));
1679 }
1680
1681 /*
1682  *      vm_page_find_least:
1683  *
1684  *      Returns the page associated with the object with least pindex
1685  *      greater than or equal to the parameter pindex, or NULL.
1686  *
1687  *      The object must be locked.
1688  */
1689 vm_page_t
1690 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1691 {
1692         vm_page_t m;
1693
1694         VM_OBJECT_ASSERT_LOCKED(object);
1695         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1696                 m = vm_radix_lookup_ge(&object->rtree, pindex);
1697         return (m);
1698 }
1699
1700 /*
1701  * Returns the given page's successor (by pindex) within the object if it is
1702  * resident; if none is found, NULL is returned.
1703  *
1704  * The object must be locked.
1705  */
1706 vm_page_t
1707 vm_page_next(vm_page_t m)
1708 {
1709         vm_page_t next;
1710
1711         VM_OBJECT_ASSERT_LOCKED(m->object);
1712         if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1713                 MPASS(next->object == m->object);
1714                 if (next->pindex != m->pindex + 1)
1715                         next = NULL;
1716         }
1717         return (next);
1718 }
1719
1720 /*
1721  * Returns the given page's predecessor (by pindex) within the object if it is
1722  * resident; if none is found, NULL is returned.
1723  *
1724  * The object must be locked.
1725  */
1726 vm_page_t
1727 vm_page_prev(vm_page_t m)
1728 {
1729         vm_page_t prev;
1730
1731         VM_OBJECT_ASSERT_LOCKED(m->object);
1732         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1733                 MPASS(prev->object == m->object);
1734                 if (prev->pindex != m->pindex - 1)
1735                         prev = NULL;
1736         }
1737         return (prev);
1738 }
1739
1740 /*
1741  * Uses the page mnew as a replacement for an existing page at index
1742  * pindex which must be already present in the object.
1743  *
1744  * Both pages must be exclusively busied on enter.  The old page is
1745  * unbusied on exit.
1746  *
1747  * A return value of true means mold is now free.  If this is not the
1748  * final ref and the caller does not hold a wire reference it may not
1749  * continue to access the page.
1750  */
1751 static bool
1752 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1753     vm_page_t mold)
1754 {
1755         vm_page_t mret;
1756         bool dropped;
1757
1758         VM_OBJECT_ASSERT_WLOCKED(object);
1759         vm_page_assert_xbusied(mold);
1760         KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1761             ("vm_page_replace: page %p already in object", mnew));
1762
1763         /*
1764          * This function mostly follows vm_page_insert() and
1765          * vm_page_remove() without the radix, object count and vnode
1766          * dance.  Double check such functions for more comments.
1767          */
1768
1769         mnew->object = object;
1770         mnew->pindex = pindex;
1771         atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1772         mret = vm_radix_replace(&object->rtree, mnew);
1773         KASSERT(mret == mold,
1774             ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1775         KASSERT((mold->oflags & VPO_UNMANAGED) ==
1776             (mnew->oflags & VPO_UNMANAGED),
1777             ("vm_page_replace: mismatched VPO_UNMANAGED"));
1778
1779         /* Keep the resident page list in sorted order. */
1780         TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1781         TAILQ_REMOVE(&object->memq, mold, listq);
1782         mold->object = NULL;
1783
1784         /*
1785          * The object's resident_page_count does not change because we have
1786          * swapped one page for another, but the generation count should
1787          * change if the page is dirty.
1788          */
1789         if (pmap_page_is_write_mapped(mnew))
1790                 vm_object_set_writeable_dirty(object);
1791         dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1792         vm_page_xunbusy(mold);
1793
1794         return (dropped);
1795 }
1796
1797 void
1798 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1799     vm_page_t mold)
1800 {
1801
1802         vm_page_assert_xbusied(mnew);
1803
1804         if (vm_page_replace_hold(mnew, object, pindex, mold))
1805                 vm_page_free(mold);
1806 }
1807
1808 /*
1809  *      vm_page_rename:
1810  *
1811  *      Move the given memory entry from its
1812  *      current object to the specified target object/offset.
1813  *
1814  *      Note: swap associated with the page must be invalidated by the move.  We
1815  *            have to do this for several reasons:  (1) we aren't freeing the
1816  *            page, (2) we are dirtying the page, (3) the VM system is probably
1817  *            moving the page from object A to B, and will then later move
1818  *            the backing store from A to B and we can't have a conflict.
1819  *
1820  *      Note: we *always* dirty the page.  It is necessary both for the
1821  *            fact that we moved it, and because we may be invalidating
1822  *            swap.
1823  *
1824  *      The objects must be locked.
1825  */
1826 int
1827 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1828 {
1829         vm_page_t mpred;
1830         vm_pindex_t opidx;
1831
1832         VM_OBJECT_ASSERT_WLOCKED(new_object);
1833
1834         KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1835         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1836         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1837             ("vm_page_rename: pindex already renamed"));
1838
1839         /*
1840          * Create a custom version of vm_page_insert() which does not depend
1841          * by m_prev and can cheat on the implementation aspects of the
1842          * function.
1843          */
1844         opidx = m->pindex;
1845         m->pindex = new_pindex;
1846         if (vm_radix_insert(&new_object->rtree, m)) {
1847                 m->pindex = opidx;
1848                 return (1);
1849         }
1850
1851         /*
1852          * The operation cannot fail anymore.  The removal must happen before
1853          * the listq iterator is tainted.
1854          */
1855         m->pindex = opidx;
1856         vm_page_object_remove(m);
1857
1858         /* Return back to the new pindex to complete vm_page_insert(). */
1859         m->pindex = new_pindex;
1860         m->object = new_object;
1861
1862         vm_page_insert_radixdone(m, new_object, mpred);
1863         vm_page_dirty(m);
1864         return (0);
1865 }
1866
1867 /*
1868  *      vm_page_alloc:
1869  *
1870  *      Allocate and return a page that is associated with the specified
1871  *      object and offset pair.  By default, this page is exclusive busied.
1872  *
1873  *      The caller must always specify an allocation class.
1874  *
1875  *      allocation classes:
1876  *      VM_ALLOC_NORMAL         normal process request
1877  *      VM_ALLOC_SYSTEM         system *really* needs a page
1878  *      VM_ALLOC_INTERRUPT      interrupt time request
1879  *
1880  *      optional allocation flags:
1881  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
1882  *                              intends to allocate
1883  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1884  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1885  *      VM_ALLOC_NOOBJ          page is not associated with an object and
1886  *                              should not be exclusive busy
1887  *      VM_ALLOC_SBUSY          shared busy the allocated page
1888  *      VM_ALLOC_WIRED          wire the allocated page
1889  *      VM_ALLOC_ZERO           prefer a zeroed page
1890  */
1891 vm_page_t
1892 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1893 {
1894
1895         return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1896             vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1897 }
1898
1899 vm_page_t
1900 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1901     int req)
1902 {
1903
1904         return (vm_page_alloc_domain_after(object, pindex, domain, req,
1905             object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1906             NULL));
1907 }
1908
1909 /*
1910  * Allocate a page in the specified object with the given page index.  To
1911  * optimize insertion of the page into the object, the caller must also specifiy
1912  * the resident page in the object with largest index smaller than the given
1913  * page index, or NULL if no such page exists.
1914  */
1915 vm_page_t
1916 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1917     int req, vm_page_t mpred)
1918 {
1919         struct vm_domainset_iter di;
1920         vm_page_t m;
1921         int domain;
1922
1923         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1924         do {
1925                 m = vm_page_alloc_domain_after(object, pindex, domain, req,
1926                     mpred);
1927                 if (m != NULL)
1928                         break;
1929         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
1930
1931         return (m);
1932 }
1933
1934 /*
1935  * Returns true if the number of free pages exceeds the minimum
1936  * for the request class and false otherwise.
1937  */
1938 static int
1939 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1940 {
1941         u_int limit, old, new;
1942
1943         if (req_class == VM_ALLOC_INTERRUPT)
1944                 limit = 0;
1945         else if (req_class == VM_ALLOC_SYSTEM)
1946                 limit = vmd->vmd_interrupt_free_min;
1947         else
1948                 limit = vmd->vmd_free_reserved;
1949
1950         /*
1951          * Attempt to reserve the pages.  Fail if we're below the limit.
1952          */
1953         limit += npages;
1954         old = vmd->vmd_free_count;
1955         do {
1956                 if (old < limit)
1957                         return (0);
1958                 new = old - npages;
1959         } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1960
1961         /* Wake the page daemon if we've crossed the threshold. */
1962         if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1963                 pagedaemon_wakeup(vmd->vmd_domain);
1964
1965         /* Only update bitsets on transitions. */
1966         if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1967             (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1968                 vm_domain_set(vmd);
1969
1970         return (1);
1971 }
1972
1973 int
1974 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1975 {
1976         int req_class;
1977
1978         /*
1979          * The page daemon is allowed to dig deeper into the free page list.
1980          */
1981         req_class = req & VM_ALLOC_CLASS_MASK;
1982         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1983                 req_class = VM_ALLOC_SYSTEM;
1984         return (_vm_domain_allocate(vmd, req_class, npages));
1985 }
1986
1987 vm_page_t
1988 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1989     int req, vm_page_t mpred)
1990 {
1991         struct vm_domain *vmd;
1992         vm_page_t m;
1993         int flags, pool;
1994
1995         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1996             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1997             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1998             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1999             ("inconsistent object(%p)/req(%x)", object, req));
2000         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2001             ("Can't sleep and retry object insertion."));
2002         KASSERT(mpred == NULL || mpred->pindex < pindex,
2003             ("mpred %p doesn't precede pindex 0x%jx", mpred,
2004             (uintmax_t)pindex));
2005         if (object != NULL)
2006                 VM_OBJECT_ASSERT_WLOCKED(object);
2007
2008         flags = 0;
2009         m = NULL;
2010         pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
2011 again:
2012 #if VM_NRESERVLEVEL > 0
2013         /*
2014          * Can we allocate the page from a reservation?
2015          */
2016         if (vm_object_reserv(object) &&
2017             (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2018             NULL) {
2019                 domain = vm_phys_domain(m);
2020                 vmd = VM_DOMAIN(domain);
2021                 goto found;
2022         }
2023 #endif
2024         vmd = VM_DOMAIN(domain);
2025         if (vmd->vmd_pgcache[pool].zone != NULL) {
2026                 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
2027                 if (m != NULL) {
2028                         flags |= PG_PCPU_CACHE;
2029                         goto found;
2030                 }
2031         }
2032         if (vm_domain_allocate(vmd, req, 1)) {
2033                 /*
2034                  * If not, allocate it from the free page queues.
2035                  */
2036                 vm_domain_free_lock(vmd);
2037                 m = vm_phys_alloc_pages(domain, pool, 0);
2038                 vm_domain_free_unlock(vmd);
2039                 if (m == NULL) {
2040                         vm_domain_freecnt_inc(vmd, 1);
2041 #if VM_NRESERVLEVEL > 0
2042                         if (vm_reserv_reclaim_inactive(domain))
2043                                 goto again;
2044 #endif
2045                 }
2046         }
2047         if (m == NULL) {
2048                 /*
2049                  * Not allocatable, give up.
2050                  */
2051                 if (vm_domain_alloc_fail(vmd, object, req))
2052                         goto again;
2053                 return (NULL);
2054         }
2055
2056         /*
2057          * At this point we had better have found a good page.
2058          */
2059 found:
2060         vm_page_dequeue(m);
2061         vm_page_alloc_check(m);
2062
2063         /*
2064          * Initialize the page.  Only the PG_ZERO flag is inherited.
2065          */
2066         if ((req & VM_ALLOC_ZERO) != 0)
2067                 flags |= (m->flags & PG_ZERO);
2068         if ((req & VM_ALLOC_NODUMP) != 0)
2069                 flags |= PG_NODUMP;
2070         m->flags = flags;
2071         m->a.flags = 0;
2072         m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2073             VPO_UNMANAGED : 0;
2074         m->busy_lock = VPB_UNBUSIED;
2075         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2076                 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2077         if ((req & VM_ALLOC_SBUSY) != 0)
2078                 m->busy_lock = VPB_SHARERS_WORD(1);
2079         if (req & VM_ALLOC_WIRED) {
2080                 vm_wire_add(1);
2081                 m->ref_count = 1;
2082         }
2083         m->a.act_count = 0;
2084
2085         if (object != NULL) {
2086                 if (vm_page_insert_after(m, object, pindex, mpred)) {
2087                         if (req & VM_ALLOC_WIRED) {
2088                                 vm_wire_sub(1);
2089                                 m->ref_count = 0;
2090                         }
2091                         KASSERT(m->object == NULL, ("page %p has object", m));
2092                         m->oflags = VPO_UNMANAGED;
2093                         m->busy_lock = VPB_UNBUSIED;
2094                         /* Don't change PG_ZERO. */
2095                         vm_page_free_toq(m);
2096                         if (req & VM_ALLOC_WAITFAIL) {
2097                                 VM_OBJECT_WUNLOCK(object);
2098                                 vm_radix_wait();
2099                                 VM_OBJECT_WLOCK(object);
2100                         }
2101                         return (NULL);
2102                 }
2103
2104                 /* Ignore device objects; the pager sets "memattr" for them. */
2105                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2106                     (object->flags & OBJ_FICTITIOUS) == 0)
2107                         pmap_page_set_memattr(m, object->memattr);
2108         } else
2109                 m->pindex = pindex;
2110
2111         return (m);
2112 }
2113
2114 /*
2115  *      vm_page_alloc_contig:
2116  *
2117  *      Allocate a contiguous set of physical pages of the given size "npages"
2118  *      from the free lists.  All of the physical pages must be at or above
2119  *      the given physical address "low" and below the given physical address
2120  *      "high".  The given value "alignment" determines the alignment of the
2121  *      first physical page in the set.  If the given value "boundary" is
2122  *      non-zero, then the set of physical pages cannot cross any physical
2123  *      address boundary that is a multiple of that value.  Both "alignment"
2124  *      and "boundary" must be a power of two.
2125  *
2126  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2127  *      then the memory attribute setting for the physical pages is configured
2128  *      to the object's memory attribute setting.  Otherwise, the memory
2129  *      attribute setting for the physical pages is configured to "memattr",
2130  *      overriding the object's memory attribute setting.  However, if the
2131  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2132  *      memory attribute setting for the physical pages cannot be configured
2133  *      to VM_MEMATTR_DEFAULT.
2134  *
2135  *      The specified object may not contain fictitious pages.
2136  *
2137  *      The caller must always specify an allocation class.
2138  *
2139  *      allocation classes:
2140  *      VM_ALLOC_NORMAL         normal process request
2141  *      VM_ALLOC_SYSTEM         system *really* needs a page
2142  *      VM_ALLOC_INTERRUPT      interrupt time request
2143  *
2144  *      optional allocation flags:
2145  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
2146  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
2147  *      VM_ALLOC_NOOBJ          page is not associated with an object and
2148  *                              should not be exclusive busy
2149  *      VM_ALLOC_SBUSY          shared busy the allocated page
2150  *      VM_ALLOC_WIRED          wire the allocated page
2151  *      VM_ALLOC_ZERO           prefer a zeroed page
2152  */
2153 vm_page_t
2154 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2155     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2156     vm_paddr_t boundary, vm_memattr_t memattr)
2157 {
2158         struct vm_domainset_iter di;
2159         vm_page_t m;
2160         int domain;
2161
2162         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2163         do {
2164                 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2165                     npages, low, high, alignment, boundary, memattr);
2166                 if (m != NULL)
2167                         break;
2168         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2169
2170         return (m);
2171 }
2172
2173 vm_page_t
2174 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2175     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2176     vm_paddr_t boundary, vm_memattr_t memattr)
2177 {
2178         struct vm_domain *vmd;
2179         vm_page_t m, m_ret, mpred;
2180         u_int busy_lock, flags, oflags;
2181
2182         mpred = NULL;   /* XXX: pacify gcc */
2183         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2184             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2185             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2186             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2187             ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2188             req));
2189         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2190             ("Can't sleep and retry object insertion."));
2191         if (object != NULL) {
2192                 VM_OBJECT_ASSERT_WLOCKED(object);
2193                 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2194                     ("vm_page_alloc_contig: object %p has fictitious pages",
2195                     object));
2196         }
2197         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2198
2199         if (object != NULL) {
2200                 mpred = vm_radix_lookup_le(&object->rtree, pindex);
2201                 KASSERT(mpred == NULL || mpred->pindex != pindex,
2202                     ("vm_page_alloc_contig: pindex already allocated"));
2203         }
2204
2205         /*
2206          * Can we allocate the pages without the number of free pages falling
2207          * below the lower bound for the allocation class?
2208          */
2209         m_ret = NULL;
2210 again:
2211 #if VM_NRESERVLEVEL > 0
2212         /*
2213          * Can we allocate the pages from a reservation?
2214          */
2215         if (vm_object_reserv(object) &&
2216             (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2217             mpred, npages, low, high, alignment, boundary)) != NULL) {
2218                 domain = vm_phys_domain(m_ret);
2219                 vmd = VM_DOMAIN(domain);
2220                 goto found;
2221         }
2222 #endif
2223         vmd = VM_DOMAIN(domain);
2224         if (vm_domain_allocate(vmd, req, npages)) {
2225                 /*
2226                  * allocate them from the free page queues.
2227                  */
2228                 vm_domain_free_lock(vmd);
2229                 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2230                     alignment, boundary);
2231                 vm_domain_free_unlock(vmd);
2232                 if (m_ret == NULL) {
2233                         vm_domain_freecnt_inc(vmd, npages);
2234 #if VM_NRESERVLEVEL > 0
2235                         if (vm_reserv_reclaim_contig(domain, npages, low,
2236                             high, alignment, boundary))
2237                                 goto again;
2238 #endif
2239                 }
2240         }
2241         if (m_ret == NULL) {
2242                 if (vm_domain_alloc_fail(vmd, object, req))
2243                         goto again;
2244                 return (NULL);
2245         }
2246 #if VM_NRESERVLEVEL > 0
2247 found:
2248 #endif
2249         for (m = m_ret; m < &m_ret[npages]; m++) {
2250                 vm_page_dequeue(m);
2251                 vm_page_alloc_check(m);
2252         }
2253
2254         /*
2255          * Initialize the pages.  Only the PG_ZERO flag is inherited.
2256          */
2257         flags = 0;
2258         if ((req & VM_ALLOC_ZERO) != 0)
2259                 flags = PG_ZERO;
2260         if ((req & VM_ALLOC_NODUMP) != 0)
2261                 flags |= PG_NODUMP;
2262         oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2263             VPO_UNMANAGED : 0;
2264         busy_lock = VPB_UNBUSIED;
2265         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2266                 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2267         if ((req & VM_ALLOC_SBUSY) != 0)
2268                 busy_lock = VPB_SHARERS_WORD(1);
2269         if ((req & VM_ALLOC_WIRED) != 0)
2270                 vm_wire_add(npages);
2271         if (object != NULL) {
2272                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2273                     memattr == VM_MEMATTR_DEFAULT)
2274                         memattr = object->memattr;
2275         }
2276         for (m = m_ret; m < &m_ret[npages]; m++) {
2277                 m->a.flags = 0;
2278                 m->flags = (m->flags | PG_NODUMP) & flags;
2279                 m->busy_lock = busy_lock;
2280                 if ((req & VM_ALLOC_WIRED) != 0)
2281                         m->ref_count = 1;
2282                 m->a.act_count = 0;
2283                 m->oflags = oflags;
2284                 if (object != NULL) {
2285                         if (vm_page_insert_after(m, object, pindex, mpred)) {
2286                                 if ((req & VM_ALLOC_WIRED) != 0)
2287                                         vm_wire_sub(npages);
2288                                 KASSERT(m->object == NULL,
2289                                     ("page %p has object", m));
2290                                 mpred = m;
2291                                 for (m = m_ret; m < &m_ret[npages]; m++) {
2292                                         if (m <= mpred &&
2293                                             (req & VM_ALLOC_WIRED) != 0)
2294                                                 m->ref_count = 0;
2295                                         m->oflags = VPO_UNMANAGED;
2296                                         m->busy_lock = VPB_UNBUSIED;
2297                                         /* Don't change PG_ZERO. */
2298                                         vm_page_free_toq(m);
2299                                 }
2300                                 if (req & VM_ALLOC_WAITFAIL) {
2301                                         VM_OBJECT_WUNLOCK(object);
2302                                         vm_radix_wait();
2303                                         VM_OBJECT_WLOCK(object);
2304                                 }
2305                                 return (NULL);
2306                         }
2307                         mpred = m;
2308                 } else
2309                         m->pindex = pindex;
2310                 if (memattr != VM_MEMATTR_DEFAULT)
2311                         pmap_page_set_memattr(m, memattr);
2312                 pindex++;
2313         }
2314         return (m_ret);
2315 }
2316
2317 /*
2318  * Check a page that has been freshly dequeued from a freelist.
2319  */
2320 static void
2321 vm_page_alloc_check(vm_page_t m)
2322 {
2323
2324         KASSERT(m->object == NULL, ("page %p has object", m));
2325         KASSERT(m->a.queue == PQ_NONE &&
2326             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2327             ("page %p has unexpected queue %d, flags %#x",
2328             m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2329         KASSERT(m->ref_count == 0, ("page %p has references", m));
2330         KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2331         KASSERT(m->dirty == 0, ("page %p is dirty", m));
2332         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2333             ("page %p has unexpected memattr %d",
2334             m, pmap_page_get_memattr(m)));
2335         KASSERT(m->valid == 0, ("free page %p is valid", m));
2336 }
2337
2338 /*
2339  *      vm_page_alloc_freelist:
2340  *
2341  *      Allocate a physical page from the specified free page list.
2342  *
2343  *      The caller must always specify an allocation class.
2344  *
2345  *      allocation classes:
2346  *      VM_ALLOC_NORMAL         normal process request
2347  *      VM_ALLOC_SYSTEM         system *really* needs a page
2348  *      VM_ALLOC_INTERRUPT      interrupt time request
2349  *
2350  *      optional allocation flags:
2351  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
2352  *                              intends to allocate
2353  *      VM_ALLOC_WIRED          wire the allocated page
2354  *      VM_ALLOC_ZERO           prefer a zeroed page
2355  */
2356 vm_page_t
2357 vm_page_alloc_freelist(int freelist, int req)
2358 {
2359         struct vm_domainset_iter di;
2360         vm_page_t m;
2361         int domain;
2362
2363         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2364         do {
2365                 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2366                 if (m != NULL)
2367                         break;
2368         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2369
2370         return (m);
2371 }
2372
2373 vm_page_t
2374 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2375 {
2376         struct vm_domain *vmd;
2377         vm_page_t m;
2378         u_int flags;
2379
2380         m = NULL;
2381         vmd = VM_DOMAIN(domain);
2382 again:
2383         if (vm_domain_allocate(vmd, req, 1)) {
2384                 vm_domain_free_lock(vmd);
2385                 m = vm_phys_alloc_freelist_pages(domain, freelist,
2386                     VM_FREEPOOL_DIRECT, 0);
2387                 vm_domain_free_unlock(vmd);
2388                 if (m == NULL)
2389                         vm_domain_freecnt_inc(vmd, 1);
2390         }
2391         if (m == NULL) {
2392                 if (vm_domain_alloc_fail(vmd, NULL, req))
2393                         goto again;
2394                 return (NULL);
2395         }
2396         vm_page_dequeue(m);
2397         vm_page_alloc_check(m);
2398
2399         /*
2400          * Initialize the page.  Only the PG_ZERO flag is inherited.
2401          */
2402         m->a.flags = 0;
2403         flags = 0;
2404         if ((req & VM_ALLOC_ZERO) != 0)
2405                 flags = PG_ZERO;
2406         m->flags &= flags;
2407         if ((req & VM_ALLOC_WIRED) != 0) {
2408                 vm_wire_add(1);
2409                 m->ref_count = 1;
2410         }
2411         /* Unmanaged pages don't use "act_count". */
2412         m->oflags = VPO_UNMANAGED;
2413         return (m);
2414 }
2415
2416 static int
2417 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2418 {
2419         struct vm_domain *vmd;
2420         struct vm_pgcache *pgcache;
2421         int i;
2422
2423         pgcache = arg;
2424         vmd = VM_DOMAIN(pgcache->domain);
2425
2426         /*
2427          * The page daemon should avoid creating extra memory pressure since its
2428          * main purpose is to replenish the store of free pages.
2429          */
2430         if (vmd->vmd_severeset || curproc == pageproc ||
2431             !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2432                 return (0);
2433         domain = vmd->vmd_domain;
2434         vm_domain_free_lock(vmd);
2435         i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2436             (vm_page_t *)store);
2437         vm_domain_free_unlock(vmd);
2438         if (cnt != i)
2439                 vm_domain_freecnt_inc(vmd, cnt - i);
2440
2441         return (i);
2442 }
2443
2444 static void
2445 vm_page_zone_release(void *arg, void **store, int cnt)
2446 {
2447         struct vm_domain *vmd;
2448         struct vm_pgcache *pgcache;
2449         vm_page_t m;
2450         int i;
2451
2452         pgcache = arg;
2453         vmd = VM_DOMAIN(pgcache->domain);
2454         vm_domain_free_lock(vmd);
2455         for (i = 0; i < cnt; i++) {
2456                 m = (vm_page_t)store[i];
2457                 vm_phys_free_pages(m, 0);
2458         }
2459         vm_domain_free_unlock(vmd);
2460         vm_domain_freecnt_inc(vmd, cnt);
2461 }
2462
2463 #define VPSC_ANY        0       /* No restrictions. */
2464 #define VPSC_NORESERV   1       /* Skip reservations; implies VPSC_NOSUPER. */
2465 #define VPSC_NOSUPER    2       /* Skip superpages. */
2466
2467 /*
2468  *      vm_page_scan_contig:
2469  *
2470  *      Scan vm_page_array[] between the specified entries "m_start" and
2471  *      "m_end" for a run of contiguous physical pages that satisfy the
2472  *      specified conditions, and return the lowest page in the run.  The
2473  *      specified "alignment" determines the alignment of the lowest physical
2474  *      page in the run.  If the specified "boundary" is non-zero, then the
2475  *      run of physical pages cannot span a physical address that is a
2476  *      multiple of "boundary".
2477  *
2478  *      "m_end" is never dereferenced, so it need not point to a vm_page
2479  *      structure within vm_page_array[].
2480  *
2481  *      "npages" must be greater than zero.  "m_start" and "m_end" must not
2482  *      span a hole (or discontiguity) in the physical address space.  Both
2483  *      "alignment" and "boundary" must be a power of two.
2484  */
2485 vm_page_t
2486 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2487     u_long alignment, vm_paddr_t boundary, int options)
2488 {
2489         struct mtx *m_mtx;
2490         vm_object_t object;
2491         vm_paddr_t pa;
2492         vm_page_t m, m_run;
2493 #if VM_NRESERVLEVEL > 0
2494         int level;
2495 #endif
2496         int m_inc, order, run_ext, run_len;
2497
2498         KASSERT(npages > 0, ("npages is 0"));
2499         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2500         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2501         m_run = NULL;
2502         run_len = 0;
2503         m_mtx = NULL;
2504         for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2505                 KASSERT((m->flags & PG_MARKER) == 0,
2506                     ("page %p is PG_MARKER", m));
2507                 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2508                     ("fictitious page %p has invalid ref count", m));
2509
2510                 /*
2511                  * If the current page would be the start of a run, check its
2512                  * physical address against the end, alignment, and boundary
2513                  * conditions.  If it doesn't satisfy these conditions, either
2514                  * terminate the scan or advance to the next page that
2515                  * satisfies the failed condition.
2516                  */
2517                 if (run_len == 0) {
2518                         KASSERT(m_run == NULL, ("m_run != NULL"));
2519                         if (m + npages > m_end)
2520                                 break;
2521                         pa = VM_PAGE_TO_PHYS(m);
2522                         if ((pa & (alignment - 1)) != 0) {
2523                                 m_inc = atop(roundup2(pa, alignment) - pa);
2524                                 continue;
2525                         }
2526                         if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2527                             boundary) != 0) {
2528                                 m_inc = atop(roundup2(pa, boundary) - pa);
2529                                 continue;
2530                         }
2531                 } else
2532                         KASSERT(m_run != NULL, ("m_run == NULL"));
2533
2534                 vm_page_change_lock(m, &m_mtx);
2535                 m_inc = 1;
2536 retry:
2537                 if (vm_page_wired(m))
2538                         run_ext = 0;
2539 #if VM_NRESERVLEVEL > 0
2540                 else if ((level = vm_reserv_level(m)) >= 0 &&
2541                     (options & VPSC_NORESERV) != 0) {
2542                         run_ext = 0;
2543                         /* Advance to the end of the reservation. */
2544                         pa = VM_PAGE_TO_PHYS(m);
2545                         m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2546                             pa);
2547                 }
2548 #endif
2549                 else if ((object = m->object) != NULL) {
2550                         /*
2551                          * The page is considered eligible for relocation if
2552                          * and only if it could be laundered or reclaimed by
2553                          * the page daemon.
2554                          */
2555                         if (!VM_OBJECT_TRYRLOCK(object)) {
2556                                 mtx_unlock(m_mtx);
2557                                 VM_OBJECT_RLOCK(object);
2558                                 mtx_lock(m_mtx);
2559                                 if (m->object != object) {
2560                                         /*
2561                                          * The page may have been freed.
2562                                          */
2563                                         VM_OBJECT_RUNLOCK(object);
2564                                         goto retry;
2565                                 }
2566                         }
2567                         /* Don't care: PG_NODUMP, PG_ZERO. */
2568                         if (object->type != OBJT_DEFAULT &&
2569                             object->type != OBJT_SWAP &&
2570                             object->type != OBJT_VNODE) {
2571                                 run_ext = 0;
2572 #if VM_NRESERVLEVEL > 0
2573                         } else if ((options & VPSC_NOSUPER) != 0 &&
2574                             (level = vm_reserv_level_iffullpop(m)) >= 0) {
2575                                 run_ext = 0;
2576                                 /* Advance to the end of the superpage. */
2577                                 pa = VM_PAGE_TO_PHYS(m);
2578                                 m_inc = atop(roundup2(pa + 1,
2579                                     vm_reserv_size(level)) - pa);
2580 #endif
2581                         } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2582                             vm_page_queue(m) != PQ_NONE && !vm_page_busied(m) &&
2583                             !vm_page_wired(m)) {
2584                                 /*
2585                                  * The page is allocated but eligible for
2586                                  * relocation.  Extend the current run by one
2587                                  * page.
2588                                  */
2589                                 KASSERT(pmap_page_get_memattr(m) ==
2590                                     VM_MEMATTR_DEFAULT,
2591                                     ("page %p has an unexpected memattr", m));
2592                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2593                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2594                                     ("page %p has unexpected oflags", m));
2595                                 /* Don't care: PGA_NOSYNC. */
2596                                 run_ext = 1;
2597                         } else
2598                                 run_ext = 0;
2599                         VM_OBJECT_RUNLOCK(object);
2600 #if VM_NRESERVLEVEL > 0
2601                 } else if (level >= 0) {
2602                         /*
2603                          * The page is reserved but not yet allocated.  In
2604                          * other words, it is still free.  Extend the current
2605                          * run by one page.
2606                          */
2607                         run_ext = 1;
2608 #endif
2609                 } else if ((order = m->order) < VM_NFREEORDER) {
2610                         /*
2611                          * The page is enqueued in the physical memory
2612                          * allocator's free page queues.  Moreover, it is the
2613                          * first page in a power-of-two-sized run of
2614                          * contiguous free pages.  Add these pages to the end
2615                          * of the current run, and jump ahead.
2616                          */
2617                         run_ext = 1 << order;
2618                         m_inc = 1 << order;
2619                 } else {
2620                         /*
2621                          * Skip the page for one of the following reasons: (1)
2622                          * It is enqueued in the physical memory allocator's
2623                          * free page queues.  However, it is not the first
2624                          * page in a run of contiguous free pages.  (This case
2625                          * rarely occurs because the scan is performed in
2626                          * ascending order.) (2) It is not reserved, and it is
2627                          * transitioning from free to allocated.  (Conversely,
2628                          * the transition from allocated to free for managed
2629                          * pages is blocked by the page lock.) (3) It is
2630                          * allocated but not contained by an object and not
2631                          * wired, e.g., allocated by Xen's balloon driver.
2632                          */
2633                         run_ext = 0;
2634                 }
2635
2636                 /*
2637                  * Extend or reset the current run of pages.
2638                  */
2639                 if (run_ext > 0) {
2640                         if (run_len == 0)
2641                                 m_run = m;
2642                         run_len += run_ext;
2643                 } else {
2644                         if (run_len > 0) {
2645                                 m_run = NULL;
2646                                 run_len = 0;
2647                         }
2648                 }
2649         }
2650         if (m_mtx != NULL)
2651                 mtx_unlock(m_mtx);
2652         if (run_len >= npages)
2653                 return (m_run);
2654         return (NULL);
2655 }
2656
2657 /*
2658  *      vm_page_reclaim_run:
2659  *
2660  *      Try to relocate each of the allocated virtual pages within the
2661  *      specified run of physical pages to a new physical address.  Free the
2662  *      physical pages underlying the relocated virtual pages.  A virtual page
2663  *      is relocatable if and only if it could be laundered or reclaimed by
2664  *      the page daemon.  Whenever possible, a virtual page is relocated to a
2665  *      physical address above "high".
2666  *
2667  *      Returns 0 if every physical page within the run was already free or
2668  *      just freed by a successful relocation.  Otherwise, returns a non-zero
2669  *      value indicating why the last attempt to relocate a virtual page was
2670  *      unsuccessful.
2671  *
2672  *      "req_class" must be an allocation class.
2673  */
2674 static int
2675 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2676     vm_paddr_t high)
2677 {
2678         struct vm_domain *vmd;
2679         struct mtx *m_mtx;
2680         struct spglist free;
2681         vm_object_t object;
2682         vm_paddr_t pa;
2683         vm_page_t m, m_end, m_new;
2684         int error, order, req;
2685
2686         KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2687             ("req_class is not an allocation class"));
2688         SLIST_INIT(&free);
2689         error = 0;
2690         m = m_run;
2691         m_end = m_run + npages;
2692         m_mtx = NULL;
2693         for (; error == 0 && m < m_end; m++) {
2694                 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2695                     ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2696
2697                 /*
2698                  * Avoid releasing and reacquiring the same page lock.
2699                  */
2700                 vm_page_change_lock(m, &m_mtx);
2701 retry:
2702                 /*
2703                  * Racily check for wirings.  Races are handled below.
2704                  */
2705                 if (vm_page_wired(m))
2706                         error = EBUSY;
2707                 else if ((object = m->object) != NULL) {
2708                         /*
2709                          * The page is relocated if and only if it could be
2710                          * laundered or reclaimed by the page daemon.
2711                          */
2712                         if (!VM_OBJECT_TRYWLOCK(object)) {
2713                                 mtx_unlock(m_mtx);
2714                                 VM_OBJECT_WLOCK(object);
2715                                 mtx_lock(m_mtx);
2716                                 if (m->object != object) {
2717                                         /*
2718                                          * The page may have been freed.
2719                                          */
2720                                         VM_OBJECT_WUNLOCK(object);
2721                                         goto retry;
2722                                 }
2723                         }
2724                         /* Don't care: PG_NODUMP, PG_ZERO. */
2725                         if (object->type != OBJT_DEFAULT &&
2726                             object->type != OBJT_SWAP &&
2727                             object->type != OBJT_VNODE)
2728                                 error = EINVAL;
2729                         else if (object->memattr != VM_MEMATTR_DEFAULT)
2730                                 error = EINVAL;
2731                         else if (vm_page_queue(m) != PQ_NONE &&
2732                             vm_page_tryxbusy(m) != 0) {
2733                                 if (vm_page_wired(m)) {
2734                                         vm_page_xunbusy(m);
2735                                         error = EBUSY;
2736                                         goto unlock;
2737                                 }
2738                                 KASSERT(pmap_page_get_memattr(m) ==
2739                                     VM_MEMATTR_DEFAULT,
2740                                     ("page %p has an unexpected memattr", m));
2741                                 KASSERT(m->oflags == 0,
2742                                     ("page %p has unexpected oflags", m));
2743                                 /* Don't care: PGA_NOSYNC. */
2744                                 if (!vm_page_none_valid(m)) {
2745                                         /*
2746                                          * First, try to allocate a new page
2747                                          * that is above "high".  Failing
2748                                          * that, try to allocate a new page
2749                                          * that is below "m_run".  Allocate
2750                                          * the new page between the end of
2751                                          * "m_run" and "high" only as a last
2752                                          * resort.
2753                                          */
2754                                         req = req_class | VM_ALLOC_NOOBJ;
2755                                         if ((m->flags & PG_NODUMP) != 0)
2756                                                 req |= VM_ALLOC_NODUMP;
2757                                         if (trunc_page(high) !=
2758                                             ~(vm_paddr_t)PAGE_MASK) {
2759                                                 m_new = vm_page_alloc_contig(
2760                                                     NULL, 0, req, 1,
2761                                                     round_page(high),
2762                                                     ~(vm_paddr_t)0,
2763                                                     PAGE_SIZE, 0,
2764                                                     VM_MEMATTR_DEFAULT);
2765                                         } else
2766                                                 m_new = NULL;
2767                                         if (m_new == NULL) {
2768                                                 pa = VM_PAGE_TO_PHYS(m_run);
2769                                                 m_new = vm_page_alloc_contig(
2770                                                     NULL, 0, req, 1,
2771                                                     0, pa - 1, PAGE_SIZE, 0,
2772                                                     VM_MEMATTR_DEFAULT);
2773                                         }
2774                                         if (m_new == NULL) {
2775                                                 pa += ptoa(npages);
2776                                                 m_new = vm_page_alloc_contig(
2777                                                     NULL, 0, req, 1,
2778                                                     pa, high, PAGE_SIZE, 0,
2779                                                     VM_MEMATTR_DEFAULT);
2780                                         }
2781                                         if (m_new == NULL) {
2782                                                 vm_page_xunbusy(m);
2783                                                 error = ENOMEM;
2784                                                 goto unlock;
2785                                         }
2786
2787                                         /*
2788                                          * Unmap the page and check for new
2789                                          * wirings that may have been acquired
2790                                          * through a pmap lookup.
2791                                          */
2792                                         if (object->ref_count != 0 &&
2793                                             !vm_page_try_remove_all(m)) {
2794                                                 vm_page_xunbusy(m);
2795                                                 vm_page_free(m_new);
2796                                                 error = EBUSY;
2797                                                 goto unlock;
2798                                         }
2799
2800                                         /*
2801                                          * Replace "m" with the new page.  For
2802                                          * vm_page_replace(), "m" must be busy
2803                                          * and dequeued.  Finally, change "m"
2804                                          * as if vm_page_free() was called.
2805                                          */
2806                                         m_new->a.flags = m->a.flags &
2807                                             ~PGA_QUEUE_STATE_MASK;
2808                                         KASSERT(m_new->oflags == VPO_UNMANAGED,
2809                                             ("page %p is managed", m_new));
2810                                         m_new->oflags = 0;
2811                                         pmap_copy_page(m, m_new);
2812                                         m_new->valid = m->valid;
2813                                         m_new->dirty = m->dirty;
2814                                         m->flags &= ~PG_ZERO;
2815                                         vm_page_dequeue(m);
2816                                         if (vm_page_replace_hold(m_new, object,
2817                                             m->pindex, m) &&
2818                                             vm_page_free_prep(m))
2819                                                 SLIST_INSERT_HEAD(&free, m,
2820                                                     plinks.s.ss);
2821
2822                                         /*
2823                                          * The new page must be deactivated
2824                                          * before the object is unlocked.
2825                                          */
2826                                         vm_page_change_lock(m_new, &m_mtx);
2827                                         vm_page_deactivate(m_new);
2828                                 } else {
2829                                         m->flags &= ~PG_ZERO;
2830                                         vm_page_dequeue(m);
2831                                         if (vm_page_free_prep(m))
2832                                                 SLIST_INSERT_HEAD(&free, m,
2833                                                     plinks.s.ss);
2834                                         KASSERT(m->dirty == 0,
2835                                             ("page %p is dirty", m));
2836                                 }
2837                         } else
2838                                 error = EBUSY;
2839 unlock:
2840                         VM_OBJECT_WUNLOCK(object);
2841                 } else {
2842                         MPASS(vm_phys_domain(m) == domain);
2843                         vmd = VM_DOMAIN(domain);
2844                         vm_domain_free_lock(vmd);
2845                         order = m->order;
2846                         if (order < VM_NFREEORDER) {
2847                                 /*
2848                                  * The page is enqueued in the physical memory
2849                                  * allocator's free page queues.  Moreover, it
2850                                  * is the first page in a power-of-two-sized
2851                                  * run of contiguous free pages.  Jump ahead
2852                                  * to the last page within that run, and
2853                                  * continue from there.
2854                                  */
2855                                 m += (1 << order) - 1;
2856                         }
2857 #if VM_NRESERVLEVEL > 0
2858                         else if (vm_reserv_is_page_free(m))
2859                                 order = 0;
2860 #endif
2861                         vm_domain_free_unlock(vmd);
2862                         if (order == VM_NFREEORDER)
2863                                 error = EINVAL;
2864                 }
2865         }
2866         if (m_mtx != NULL)
2867                 mtx_unlock(m_mtx);
2868         if ((m = SLIST_FIRST(&free)) != NULL) {
2869                 int cnt;
2870
2871                 vmd = VM_DOMAIN(domain);
2872                 cnt = 0;
2873                 vm_domain_free_lock(vmd);
2874                 do {
2875                         MPASS(vm_phys_domain(m) == domain);
2876                         SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2877                         vm_phys_free_pages(m, 0);
2878                         cnt++;
2879                 } while ((m = SLIST_FIRST(&free)) != NULL);
2880                 vm_domain_free_unlock(vmd);
2881                 vm_domain_freecnt_inc(vmd, cnt);
2882         }
2883         return (error);
2884 }
2885
2886 #define NRUNS   16
2887
2888 CTASSERT(powerof2(NRUNS));
2889
2890 #define RUN_INDEX(count)        ((count) & (NRUNS - 1))
2891
2892 #define MIN_RECLAIM     8
2893
2894 /*
2895  *      vm_page_reclaim_contig:
2896  *
2897  *      Reclaim allocated, contiguous physical memory satisfying the specified
2898  *      conditions by relocating the virtual pages using that physical memory.
2899  *      Returns true if reclamation is successful and false otherwise.  Since
2900  *      relocation requires the allocation of physical pages, reclamation may
2901  *      fail due to a shortage of free pages.  When reclamation fails, callers
2902  *      are expected to perform vm_wait() before retrying a failed allocation
2903  *      operation, e.g., vm_page_alloc_contig().
2904  *
2905  *      The caller must always specify an allocation class through "req".
2906  *
2907  *      allocation classes:
2908  *      VM_ALLOC_NORMAL         normal process request
2909  *      VM_ALLOC_SYSTEM         system *really* needs a page
2910  *      VM_ALLOC_INTERRUPT      interrupt time request
2911  *
2912  *      The optional allocation flags are ignored.
2913  *
2914  *      "npages" must be greater than zero.  Both "alignment" and "boundary"
2915  *      must be a power of two.
2916  */
2917 bool
2918 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2919     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2920 {
2921         struct vm_domain *vmd;
2922         vm_paddr_t curr_low;
2923         vm_page_t m_run, m_runs[NRUNS];
2924         u_long count, reclaimed;
2925         int error, i, options, req_class;
2926
2927         KASSERT(npages > 0, ("npages is 0"));
2928         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2929         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2930         req_class = req & VM_ALLOC_CLASS_MASK;
2931
2932         /*
2933          * The page daemon is allowed to dig deeper into the free page list.
2934          */
2935         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2936                 req_class = VM_ALLOC_SYSTEM;
2937
2938         /*
2939          * Return if the number of free pages cannot satisfy the requested
2940          * allocation.
2941          */
2942         vmd = VM_DOMAIN(domain);
2943         count = vmd->vmd_free_count;
2944         if (count < npages + vmd->vmd_free_reserved || (count < npages +
2945             vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2946             (count < npages && req_class == VM_ALLOC_INTERRUPT))
2947                 return (false);
2948
2949         /*
2950          * Scan up to three times, relaxing the restrictions ("options") on
2951          * the reclamation of reservations and superpages each time.
2952          */
2953         for (options = VPSC_NORESERV;;) {
2954                 /*
2955                  * Find the highest runs that satisfy the given constraints
2956                  * and restrictions, and record them in "m_runs".
2957                  */
2958                 curr_low = low;
2959                 count = 0;
2960                 for (;;) {
2961                         m_run = vm_phys_scan_contig(domain, npages, curr_low,
2962                             high, alignment, boundary, options);
2963                         if (m_run == NULL)
2964                                 break;
2965                         curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2966                         m_runs[RUN_INDEX(count)] = m_run;
2967                         count++;
2968                 }
2969
2970                 /*
2971                  * Reclaim the highest runs in LIFO (descending) order until
2972                  * the number of reclaimed pages, "reclaimed", is at least
2973                  * MIN_RECLAIM.  Reset "reclaimed" each time because each
2974                  * reclamation is idempotent, and runs will (likely) recur
2975                  * from one scan to the next as restrictions are relaxed.
2976                  */
2977                 reclaimed = 0;
2978                 for (i = 0; count > 0 && i < NRUNS; i++) {
2979                         count--;
2980                         m_run = m_runs[RUN_INDEX(count)];
2981                         error = vm_page_reclaim_run(req_class, domain, npages,
2982                             m_run, high);
2983                         if (error == 0) {
2984                                 reclaimed += npages;
2985                                 if (reclaimed >= MIN_RECLAIM)
2986                                         return (true);
2987                         }
2988                 }
2989
2990                 /*
2991                  * Either relax the restrictions on the next scan or return if
2992                  * the last scan had no restrictions.
2993                  */
2994                 if (options == VPSC_NORESERV)
2995                         options = VPSC_NOSUPER;
2996                 else if (options == VPSC_NOSUPER)
2997                         options = VPSC_ANY;
2998                 else if (options == VPSC_ANY)
2999                         return (reclaimed != 0);
3000         }
3001 }
3002
3003 bool
3004 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3005     u_long alignment, vm_paddr_t boundary)
3006 {
3007         struct vm_domainset_iter di;
3008         int domain;
3009         bool ret;
3010
3011         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3012         do {
3013                 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
3014                     high, alignment, boundary);
3015                 if (ret)
3016                         break;
3017         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3018
3019         return (ret);
3020 }
3021
3022 /*
3023  * Set the domain in the appropriate page level domainset.
3024  */
3025 void
3026 vm_domain_set(struct vm_domain *vmd)
3027 {
3028
3029         mtx_lock(&vm_domainset_lock);
3030         if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3031                 vmd->vmd_minset = 1;
3032                 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3033         }
3034         if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3035                 vmd->vmd_severeset = 1;
3036                 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3037         }
3038         mtx_unlock(&vm_domainset_lock);
3039 }
3040
3041 /*
3042  * Clear the domain from the appropriate page level domainset.
3043  */
3044 void
3045 vm_domain_clear(struct vm_domain *vmd)
3046 {
3047
3048         mtx_lock(&vm_domainset_lock);
3049         if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3050                 vmd->vmd_minset = 0;
3051                 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3052                 if (vm_min_waiters != 0) {
3053                         vm_min_waiters = 0;
3054                         wakeup(&vm_min_domains);
3055                 }
3056         }
3057         if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3058                 vmd->vmd_severeset = 0;
3059                 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3060                 if (vm_severe_waiters != 0) {
3061                         vm_severe_waiters = 0;
3062                         wakeup(&vm_severe_domains);
3063                 }
3064         }
3065
3066         /*
3067          * If pageout daemon needs pages, then tell it that there are
3068          * some free.
3069          */
3070         if (vmd->vmd_pageout_pages_needed &&
3071             vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3072                 wakeup(&vmd->vmd_pageout_pages_needed);
3073                 vmd->vmd_pageout_pages_needed = 0;
3074         }
3075
3076         /* See comments in vm_wait_doms(). */
3077         if (vm_pageproc_waiters) {
3078                 vm_pageproc_waiters = 0;
3079                 wakeup(&vm_pageproc_waiters);
3080         }
3081         mtx_unlock(&vm_domainset_lock);
3082 }
3083
3084 /*
3085  * Wait for free pages to exceed the min threshold globally.
3086  */
3087 void
3088 vm_wait_min(void)
3089 {
3090
3091         mtx_lock(&vm_domainset_lock);
3092         while (vm_page_count_min()) {
3093                 vm_min_waiters++;
3094                 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3095         }
3096         mtx_unlock(&vm_domainset_lock);
3097 }
3098
3099 /*
3100  * Wait for free pages to exceed the severe threshold globally.
3101  */
3102 void
3103 vm_wait_severe(void)
3104 {
3105
3106         mtx_lock(&vm_domainset_lock);
3107         while (vm_page_count_severe()) {
3108                 vm_severe_waiters++;
3109                 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3110                     "vmwait", 0);
3111         }
3112         mtx_unlock(&vm_domainset_lock);
3113 }
3114
3115 u_int
3116 vm_wait_count(void)
3117 {
3118
3119         return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3120 }
3121
3122 void
3123 vm_wait_doms(const domainset_t *wdoms)
3124 {
3125
3126         /*
3127          * We use racey wakeup synchronization to avoid expensive global
3128          * locking for the pageproc when sleeping with a non-specific vm_wait.
3129          * To handle this, we only sleep for one tick in this instance.  It
3130          * is expected that most allocations for the pageproc will come from
3131          * kmem or vm_page_grab* which will use the more specific and
3132          * race-free vm_wait_domain().
3133          */
3134         if (curproc == pageproc) {
3135                 mtx_lock(&vm_domainset_lock);
3136                 vm_pageproc_waiters++;
3137                 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3138                     "pageprocwait", 1);
3139         } else {
3140                 /*
3141                  * XXX Ideally we would wait only until the allocation could
3142                  * be satisfied.  This condition can cause new allocators to
3143                  * consume all freed pages while old allocators wait.
3144                  */
3145                 mtx_lock(&vm_domainset_lock);
3146                 if (vm_page_count_min_set(wdoms)) {
3147                         vm_min_waiters++;
3148                         msleep(&vm_min_domains, &vm_domainset_lock,
3149                             PVM | PDROP, "vmwait", 0);
3150                 } else
3151                         mtx_unlock(&vm_domainset_lock);
3152         }
3153 }
3154
3155 /*
3156  *      vm_wait_domain:
3157  *
3158  *      Sleep until free pages are available for allocation.
3159  *      - Called in various places after failed memory allocations.
3160  */
3161 void
3162 vm_wait_domain(int domain)
3163 {
3164         struct vm_domain *vmd;
3165         domainset_t wdom;
3166
3167         vmd = VM_DOMAIN(domain);
3168         vm_domain_free_assert_unlocked(vmd);
3169
3170         if (curproc == pageproc) {
3171                 mtx_lock(&vm_domainset_lock);
3172                 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3173                         vmd->vmd_pageout_pages_needed = 1;
3174                         msleep(&vmd->vmd_pageout_pages_needed,
3175                             &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3176                 } else
3177                         mtx_unlock(&vm_domainset_lock);
3178         } else {
3179                 if (pageproc == NULL)
3180                         panic("vm_wait in early boot");
3181                 DOMAINSET_ZERO(&wdom);
3182                 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3183                 vm_wait_doms(&wdom);
3184         }
3185 }
3186
3187 /*
3188  *      vm_wait:
3189  *
3190  *      Sleep until free pages are available for allocation in the
3191  *      affinity domains of the obj.  If obj is NULL, the domain set
3192  *      for the calling thread is used.
3193  *      Called in various places after failed memory allocations.
3194  */
3195 void
3196 vm_wait(vm_object_t obj)
3197 {
3198         struct domainset *d;
3199
3200         d = NULL;
3201
3202         /*
3203          * Carefully fetch pointers only once: the struct domainset
3204          * itself is ummutable but the pointer might change.
3205          */
3206         if (obj != NULL)
3207                 d = obj->domain.dr_policy;
3208         if (d == NULL)
3209                 d = curthread->td_domain.dr_policy;
3210
3211         vm_wait_doms(&d->ds_mask);
3212 }
3213
3214 /*
3215  *      vm_domain_alloc_fail:
3216  *
3217  *      Called when a page allocation function fails.  Informs the
3218  *      pagedaemon and performs the requested wait.  Requires the
3219  *      domain_free and object lock on entry.  Returns with the
3220  *      object lock held and free lock released.  Returns an error when
3221  *      retry is necessary.
3222  *
3223  */
3224 static int
3225 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3226 {
3227
3228         vm_domain_free_assert_unlocked(vmd);
3229
3230         atomic_add_int(&vmd->vmd_pageout_deficit,
3231             max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3232         if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3233                 if (object != NULL) 
3234                         VM_OBJECT_WUNLOCK(object);
3235                 vm_wait_domain(vmd->vmd_domain);
3236                 if (object != NULL) 
3237                         VM_OBJECT_WLOCK(object);
3238                 if (req & VM_ALLOC_WAITOK)
3239                         return (EAGAIN);
3240         }
3241
3242         return (0);
3243 }
3244
3245 /*
3246  *      vm_waitpfault:
3247  *
3248  *      Sleep until free pages are available for allocation.
3249  *      - Called only in vm_fault so that processes page faulting
3250  *        can be easily tracked.
3251  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3252  *        processes will be able to grab memory first.  Do not change
3253  *        this balance without careful testing first.
3254  */
3255 void
3256 vm_waitpfault(struct domainset *dset, int timo)
3257 {
3258
3259         /*
3260          * XXX Ideally we would wait only until the allocation could
3261          * be satisfied.  This condition can cause new allocators to
3262          * consume all freed pages while old allocators wait.
3263          */
3264         mtx_lock(&vm_domainset_lock);
3265         if (vm_page_count_min_set(&dset->ds_mask)) {
3266                 vm_min_waiters++;
3267                 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3268                     "pfault", timo);
3269         } else
3270                 mtx_unlock(&vm_domainset_lock);
3271 }
3272
3273 static struct vm_pagequeue *
3274 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3275 {
3276
3277         return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3278 }
3279
3280 #ifdef INVARIANTS
3281 static struct vm_pagequeue *
3282 vm_page_pagequeue(vm_page_t m)
3283 {
3284
3285         return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3286 }
3287 #endif
3288
3289 static __always_inline bool
3290 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3291 {
3292         vm_page_astate_t tmp;
3293
3294         tmp = *old;
3295         do {
3296                 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3297                         return (true);
3298                 counter_u64_add(pqstate_commit_retries, 1);
3299         } while (old->_bits == tmp._bits);
3300
3301         return (false);
3302 }
3303
3304 /*
3305  * Do the work of committing a queue state update that moves the page out of
3306  * its current queue.
3307  */
3308 static bool
3309 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3310     vm_page_astate_t *old, vm_page_astate_t new)
3311 {
3312         vm_page_t next;
3313
3314         vm_pagequeue_assert_locked(pq);
3315         KASSERT(vm_page_pagequeue(m) == pq,
3316             ("%s: queue %p does not match page %p", __func__, pq, m));
3317         KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3318             ("%s: invalid queue indices %d %d",
3319             __func__, old->queue, new.queue));
3320
3321         /*
3322          * Once the queue index of the page changes there is nothing
3323          * synchronizing with further updates to the page's physical
3324          * queue state.  Therefore we must speculatively remove the page
3325          * from the queue now and be prepared to roll back if the queue
3326          * state update fails.  If the page is not physically enqueued then
3327          * we just update its queue index.
3328          */
3329         if ((old->flags & PGA_ENQUEUED) != 0) {
3330                 new.flags &= ~PGA_ENQUEUED;
3331                 next = TAILQ_NEXT(m, plinks.q);
3332                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3333                 vm_pagequeue_cnt_dec(pq);
3334                 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3335                         if (next == NULL)
3336                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3337                         else
3338                                 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3339                         vm_pagequeue_cnt_inc(pq);
3340                         return (false);
3341                 } else {
3342                         return (true);
3343                 }
3344         } else {
3345                 return (vm_page_pqstate_fcmpset(m, old, new));
3346         }
3347 }
3348
3349 static bool
3350 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3351     vm_page_astate_t new)
3352 {
3353         struct vm_pagequeue *pq;
3354         vm_page_astate_t as;
3355         bool ret;
3356
3357         pq = _vm_page_pagequeue(m, old->queue);
3358
3359         /*
3360          * The queue field and PGA_ENQUEUED flag are stable only so long as the
3361          * corresponding page queue lock is held.
3362          */
3363         vm_pagequeue_lock(pq);
3364         as = vm_page_astate_load(m);
3365         if (__predict_false(as._bits != old->_bits)) {
3366                 *old = as;
3367                 ret = false;
3368         } else {
3369                 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3370         }
3371         vm_pagequeue_unlock(pq);
3372         return (ret);
3373 }
3374
3375 /*
3376  * Commit a queue state update that enqueues or requeues a page.
3377  */
3378 static bool
3379 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3380     vm_page_astate_t *old, vm_page_astate_t new)
3381 {
3382         struct vm_domain *vmd;
3383
3384         vm_pagequeue_assert_locked(pq);
3385         KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3386             ("%s: invalid queue indices %d %d",
3387             __func__, old->queue, new.queue));
3388
3389         new.flags |= PGA_ENQUEUED;
3390         if (!vm_page_pqstate_fcmpset(m, old, new))
3391                 return (false);
3392
3393         if ((old->flags & PGA_ENQUEUED) != 0)
3394                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3395         else
3396                 vm_pagequeue_cnt_inc(pq);
3397
3398         /*
3399          * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3400          * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3401          * applied, even if it was set first.
3402          */
3403         if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3404                 vmd = vm_pagequeue_domain(m);
3405                 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3406                     ("%s: invalid page queue for page %p", __func__, m));
3407                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3408         } else {
3409                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3410         }
3411         return (true);
3412 }
3413
3414 /*
3415  * Commit a queue state update that encodes a request for a deferred queue
3416  * operation.
3417  */
3418 static bool
3419 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3420     vm_page_astate_t new)
3421 {
3422
3423         KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3424             ("%s: invalid state, queue %d flags %x",
3425             __func__, new.queue, new.flags));
3426
3427         if (old->_bits != new._bits &&
3428             !vm_page_pqstate_fcmpset(m, old, new))
3429                 return (false);
3430         vm_page_pqbatch_submit(m, new.queue);
3431         return (true);
3432 }
3433
3434 /*
3435  * A generic queue state update function.  This handles more cases than the
3436  * specialized functions above.
3437  */
3438 bool
3439 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3440 {
3441
3442         if (old->_bits == new._bits)
3443                 return (true);
3444
3445         if (old->queue != PQ_NONE && new.queue != old->queue) {
3446                 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3447                         return (false);
3448                 if (new.queue != PQ_NONE)
3449                         vm_page_pqbatch_submit(m, new.queue);
3450         } else {
3451                 if (!vm_page_pqstate_fcmpset(m, old, new))
3452                         return (false);
3453                 if (new.queue != PQ_NONE &&
3454                     ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3455                         vm_page_pqbatch_submit(m, new.queue);
3456         }
3457         return (true);
3458 }
3459
3460 /*
3461  * Apply deferred queue state updates to a page.
3462  */
3463 static inline void
3464 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3465 {
3466         vm_page_astate_t new, old;
3467
3468         CRITICAL_ASSERT(curthread);
3469         vm_pagequeue_assert_locked(pq);
3470         KASSERT(queue < PQ_COUNT,
3471             ("%s: invalid queue index %d", __func__, queue));
3472         KASSERT(pq == _vm_page_pagequeue(m, queue),
3473             ("%s: page %p does not belong to queue %p", __func__, m, pq));
3474
3475         for (old = vm_page_astate_load(m);;) {
3476                 if (__predict_false(old.queue != queue ||
3477                     (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3478                         counter_u64_add(queue_nops, 1);
3479                         break;
3480                 }
3481                 KASSERT(old.queue != PQ_NONE || (old.flags & PGA_QUEUE_STATE_MASK) == 0,
3482                     ("%s: page %p has unexpected queue state", __func__, m));
3483
3484                 new = old;
3485                 if ((old.flags & PGA_DEQUEUE) != 0) {
3486                         new.flags &= ~PGA_QUEUE_OP_MASK;
3487                         new.queue = PQ_NONE;
3488                         if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3489                             m, &old, new))) {
3490                                 counter_u64_add(queue_ops, 1);
3491                                 break;
3492                         }
3493                 } else {
3494                         new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3495                         if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3496                             m, &old, new))) {
3497                                 counter_u64_add(queue_ops, 1);
3498                                 break;
3499                         }
3500                 }
3501         }
3502 }
3503
3504 static void
3505 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3506     uint8_t queue)
3507 {
3508         int i;
3509
3510         for (i = 0; i < bq->bq_cnt; i++)
3511                 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3512         vm_batchqueue_init(bq);
3513 }
3514
3515 /*
3516  *      vm_page_pqbatch_submit:         [ internal use only ]
3517  *
3518  *      Enqueue a page in the specified page queue's batched work queue.
3519  *      The caller must have encoded the requested operation in the page
3520  *      structure's a.flags field.
3521  */
3522 void
3523 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3524 {
3525         struct vm_batchqueue *bq;
3526         struct vm_pagequeue *pq;
3527         int domain;
3528
3529         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3530             ("page %p is unmanaged", m));
3531         KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3532
3533         domain = vm_phys_domain(m);
3534         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3535
3536         critical_enter();
3537         bq = DPCPU_PTR(pqbatch[domain][queue]);
3538         if (vm_batchqueue_insert(bq, m)) {
3539                 critical_exit();
3540                 return;
3541         }
3542         critical_exit();
3543         vm_pagequeue_lock(pq);
3544         critical_enter();
3545         bq = DPCPU_PTR(pqbatch[domain][queue]);
3546         vm_pqbatch_process(pq, bq, queue);
3547         vm_pqbatch_process_page(pq, m, queue);
3548         vm_pagequeue_unlock(pq);
3549         critical_exit();
3550 }
3551
3552 /*
3553  *      vm_page_pqbatch_drain:          [ internal use only ]
3554  *
3555  *      Force all per-CPU page queue batch queues to be drained.  This is
3556  *      intended for use in severe memory shortages, to ensure that pages
3557  *      do not remain stuck in the batch queues.
3558  */
3559 void
3560 vm_page_pqbatch_drain(void)
3561 {
3562         struct thread *td;
3563         struct vm_domain *vmd;
3564         struct vm_pagequeue *pq;
3565         int cpu, domain, queue;
3566
3567         td = curthread;
3568         CPU_FOREACH(cpu) {
3569                 thread_lock(td);
3570                 sched_bind(td, cpu);
3571                 thread_unlock(td);
3572
3573                 for (domain = 0; domain < vm_ndomains; domain++) {
3574                         vmd = VM_DOMAIN(domain);
3575                         for (queue = 0; queue < PQ_COUNT; queue++) {
3576                                 pq = &vmd->vmd_pagequeues[queue];
3577                                 vm_pagequeue_lock(pq);
3578                                 critical_enter();
3579                                 vm_pqbatch_process(pq,
3580                                     DPCPU_PTR(pqbatch[domain][queue]), queue);
3581                                 critical_exit();
3582                                 vm_pagequeue_unlock(pq);
3583                         }
3584                 }
3585         }
3586         thread_lock(td);
3587         sched_unbind(td);
3588         thread_unlock(td);
3589 }
3590
3591 /*
3592  *      vm_page_dequeue_deferred:       [ internal use only ]
3593  *
3594  *      Request removal of the given page from its current page
3595  *      queue.  Physical removal from the queue may be deferred
3596  *      indefinitely.
3597  *
3598  *      The page must be locked.
3599  */
3600 void
3601 vm_page_dequeue_deferred(vm_page_t m)
3602 {
3603         vm_page_astate_t new, old;
3604
3605         old = vm_page_astate_load(m);
3606         do {
3607                 if (old.queue == PQ_NONE) {
3608                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3609                             ("%s: page %p has unexpected queue state",
3610                             __func__, m));
3611                         break;
3612                 }
3613                 new = old;
3614                 new.flags |= PGA_DEQUEUE;
3615         } while (!vm_page_pqstate_commit_request(m, &old, new));
3616 }
3617
3618 /*
3619  *      vm_page_dequeue:
3620  *
3621  *      Remove the page from whichever page queue it's in, if any, before
3622  *      returning.
3623  */
3624 void
3625 vm_page_dequeue(vm_page_t m)
3626 {
3627         vm_page_astate_t new, old;
3628
3629         old = vm_page_astate_load(m);
3630         do {
3631                 if (old.queue == PQ_NONE) {
3632                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3633                             ("%s: page %p has unexpected queue state",
3634                             __func__, m));
3635                         break;
3636                 }
3637                 new = old;
3638                 new.flags &= ~PGA_QUEUE_OP_MASK;
3639                 new.queue = PQ_NONE;
3640         } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3641
3642 }
3643
3644 /*
3645  * Schedule the given page for insertion into the specified page queue.
3646  * Physical insertion of the page may be deferred indefinitely.
3647  */
3648 static void
3649 vm_page_enqueue(vm_page_t m, uint8_t queue)
3650 {
3651
3652         KASSERT(m->a.queue == PQ_NONE &&
3653             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3654             ("%s: page %p is already enqueued", __func__, m));
3655         KASSERT(m->ref_count > 0,
3656             ("%s: page %p does not carry any references", __func__, m));
3657
3658         m->a.queue = queue;
3659         if ((m->a.flags & PGA_REQUEUE) == 0)
3660                 vm_page_aflag_set(m, PGA_REQUEUE);
3661         vm_page_pqbatch_submit(m, queue);
3662 }
3663
3664 /*
3665  *      vm_page_free_prep:
3666  *
3667  *      Prepares the given page to be put on the free list,
3668  *      disassociating it from any VM object. The caller may return
3669  *      the page to the free list only if this function returns true.
3670  *
3671  *      The object must be locked.  The page must be locked if it is
3672  *      managed.
3673  */
3674 static bool
3675 vm_page_free_prep(vm_page_t m)
3676 {
3677
3678         /*
3679          * Synchronize with threads that have dropped a reference to this
3680          * page.
3681          */
3682         atomic_thread_fence_acq();
3683
3684         if (vm_page_sbusied(m))
3685                 panic("vm_page_free_prep: freeing shared busy page %p", m);
3686
3687 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3688         if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3689                 uint64_t *p;
3690                 int i;
3691                 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3692                 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3693                         KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3694                             m, i, (uintmax_t)*p));
3695         }
3696 #endif
3697         if ((m->oflags & VPO_UNMANAGED) == 0) {
3698                 KASSERT(!pmap_page_is_mapped(m),
3699                     ("vm_page_free_prep: freeing mapped page %p", m));
3700                 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3701                     ("vm_page_free_prep: mapping flags set in page %p", m));
3702         } else {
3703                 KASSERT(m->a.queue == PQ_NONE,
3704                     ("vm_page_free_prep: unmanaged page %p is queued", m));
3705         }
3706         VM_CNT_INC(v_tfree);
3707
3708         if (m->object != NULL) {
3709                 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3710                     ((m->object->flags & OBJ_UNMANAGED) != 0),
3711                     ("vm_page_free_prep: managed flag mismatch for page %p",
3712                     m));
3713                 vm_page_object_remove(m);
3714
3715                 /*
3716                  * The object reference can be released without an atomic
3717                  * operation.
3718                  */
3719                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3720                     m->ref_count == VPRC_OBJREF,
3721                     ("vm_page_free_prep: page %p has unexpected ref_count %u",
3722                     m, m->ref_count));
3723                 m->object = NULL;
3724                 m->ref_count -= VPRC_OBJREF;
3725                 vm_page_xunbusy(m);
3726         }
3727
3728         if (vm_page_xbusied(m))
3729                 panic("vm_page_free_prep: freeing exclusive busy page %p", m);
3730
3731         /*
3732          * If fictitious remove object association and
3733          * return.
3734          */
3735         if ((m->flags & PG_FICTITIOUS) != 0) {
3736                 KASSERT(m->ref_count == 1,
3737                     ("fictitious page %p is referenced", m));
3738                 KASSERT(m->a.queue == PQ_NONE,
3739                     ("fictitious page %p is queued", m));
3740                 return (false);
3741         }
3742
3743         /*
3744          * Pages need not be dequeued before they are returned to the physical
3745          * memory allocator, but they must at least be marked for a deferred
3746          * dequeue.
3747          */
3748         if ((m->oflags & VPO_UNMANAGED) == 0)
3749                 vm_page_dequeue_deferred(m);
3750
3751         m->valid = 0;
3752         vm_page_undirty(m);
3753
3754         if (m->ref_count != 0)
3755                 panic("vm_page_free_prep: page %p has references", m);
3756
3757         /*
3758          * Restore the default memory attribute to the page.
3759          */
3760         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3761                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3762
3763 #if VM_NRESERVLEVEL > 0
3764         /*
3765          * Determine whether the page belongs to a reservation.  If the page was
3766          * allocated from a per-CPU cache, it cannot belong to a reservation, so
3767          * as an optimization, we avoid the check in that case.
3768          */
3769         if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3770                 return (false);
3771 #endif
3772
3773         return (true);
3774 }
3775
3776 /*
3777  *      vm_page_free_toq:
3778  *
3779  *      Returns the given page to the free list, disassociating it
3780  *      from any VM object.
3781  *
3782  *      The object must be locked.  The page must be locked if it is
3783  *      managed.
3784  */
3785 static void
3786 vm_page_free_toq(vm_page_t m)
3787 {
3788         struct vm_domain *vmd;
3789         uma_zone_t zone;
3790
3791         if (!vm_page_free_prep(m))
3792                 return;
3793
3794         vmd = vm_pagequeue_domain(m);
3795         zone = vmd->vmd_pgcache[m->pool].zone;
3796         if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3797                 uma_zfree(zone, m);
3798                 return;
3799         }
3800         vm_domain_free_lock(vmd);
3801         vm_phys_free_pages(m, 0);
3802         vm_domain_free_unlock(vmd);
3803         vm_domain_freecnt_inc(vmd, 1);
3804 }
3805
3806 /*
3807  *      vm_page_free_pages_toq:
3808  *
3809  *      Returns a list of pages to the free list, disassociating it
3810  *      from any VM object.  In other words, this is equivalent to
3811  *      calling vm_page_free_toq() for each page of a list of VM objects.
3812  *
3813  *      The objects must be locked.  The pages must be locked if it is
3814  *      managed.
3815  */
3816 void
3817 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3818 {
3819         vm_page_t m;
3820         int count;
3821
3822         if (SLIST_EMPTY(free))
3823                 return;
3824
3825         count = 0;
3826         while ((m = SLIST_FIRST(free)) != NULL) {
3827                 count++;
3828                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
3829                 vm_page_free_toq(m);
3830         }
3831
3832         if (update_wire_count)
3833                 vm_wire_sub(count);
3834 }
3835
3836 /*
3837  * Mark this page as wired down, preventing reclamation by the page daemon
3838  * or when the containing object is destroyed.
3839  */
3840 void
3841 vm_page_wire(vm_page_t m)
3842 {
3843         u_int old;
3844
3845         KASSERT(m->object != NULL,
3846             ("vm_page_wire: page %p does not belong to an object", m));
3847         if (!vm_page_busied(m) && !vm_object_busied(m->object))
3848                 VM_OBJECT_ASSERT_LOCKED(m->object);
3849         KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3850             VPRC_WIRE_COUNT(m->ref_count) >= 1,
3851             ("vm_page_wire: fictitious page %p has zero wirings", m));
3852
3853         old = atomic_fetchadd_int(&m->ref_count, 1);
3854         KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3855             ("vm_page_wire: counter overflow for page %p", m));
3856         if (VPRC_WIRE_COUNT(old) == 0) {
3857                 if ((m->oflags & VPO_UNMANAGED) == 0)
3858                         vm_page_aflag_set(m, PGA_DEQUEUE);
3859                 vm_wire_add(1);
3860         }
3861 }
3862
3863 /*
3864  * Attempt to wire a mapped page following a pmap lookup of that page.
3865  * This may fail if a thread is concurrently tearing down mappings of the page.
3866  * The transient failure is acceptable because it translates to the
3867  * failure of the caller pmap_extract_and_hold(), which should be then
3868  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3869  */
3870 bool
3871 vm_page_wire_mapped(vm_page_t m)
3872 {
3873         u_int old;
3874
3875         old = m->ref_count;
3876         do {
3877                 KASSERT(old > 0,
3878                     ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3879                 if ((old & VPRC_BLOCKED) != 0)
3880                         return (false);
3881         } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3882
3883         if (VPRC_WIRE_COUNT(old) == 0) {
3884                 if ((m->oflags & VPO_UNMANAGED) == 0)
3885                         vm_page_aflag_set(m, PGA_DEQUEUE);
3886                 vm_wire_add(1);
3887         }
3888         return (true);
3889 }
3890
3891 /*
3892  * Release a wiring reference to a managed page.  If the page still belongs to
3893  * an object, update its position in the page queues to reflect the reference.
3894  * If the wiring was the last reference to the page, free the page.
3895  */
3896 static void
3897 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
3898 {
3899         u_int old;
3900
3901         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3902             ("%s: page %p is unmanaged", __func__, m));
3903
3904         /*
3905          * Update LRU state before releasing the wiring reference.
3906          * Use a release store when updating the reference count to
3907          * synchronize with vm_page_free_prep().
3908          */
3909         old = m->ref_count;
3910         do {
3911                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
3912                     ("vm_page_unwire: wire count underflow for page %p", m));
3913
3914                 if (old > VPRC_OBJREF + 1) {
3915                         /*
3916                          * The page has at least one other wiring reference.  An
3917                          * earlier iteration of this loop may have called
3918                          * vm_page_release_toq() and cleared PGA_DEQUEUE, so
3919                          * re-set it if necessary.
3920                          */
3921                         if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
3922                                 vm_page_aflag_set(m, PGA_DEQUEUE);
3923                 } else if (old == VPRC_OBJREF + 1) {
3924                         /*
3925                          * This is the last wiring.  Clear PGA_DEQUEUE and
3926                          * update the page's queue state to reflect the
3927                          * reference.  If the page does not belong to an object
3928                          * (i.e., the VPRC_OBJREF bit is clear), we only need to
3929                          * clear leftover queue state.
3930                          */
3931                         vm_page_release_toq(m, nqueue, false);
3932                 } else if (old == 1) {
3933                         vm_page_aflag_clear(m, PGA_DEQUEUE);
3934                 }
3935         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3936
3937         if (VPRC_WIRE_COUNT(old) == 1) {
3938                 vm_wire_sub(1);
3939                 if (old == 1)
3940                         vm_page_free(m);
3941         }
3942 }
3943
3944 /*
3945  * Release one wiring of the specified page, potentially allowing it to be
3946  * paged out.
3947  *
3948  * Only managed pages belonging to an object can be paged out.  If the number
3949  * of wirings transitions to zero and the page is eligible for page out, then
3950  * the page is added to the specified paging queue.  If the released wiring
3951  * represented the last reference to the page, the page is freed.
3952  *
3953  * A managed page must be locked.
3954  */
3955 void
3956 vm_page_unwire(vm_page_t m, uint8_t nqueue)
3957 {
3958
3959         KASSERT(nqueue < PQ_COUNT,
3960             ("vm_page_unwire: invalid queue %u request for page %p",
3961             nqueue, m));
3962
3963         if ((m->oflags & VPO_UNMANAGED) != 0) {
3964                 if (vm_page_unwire_noq(m) && m->ref_count == 0)
3965                         vm_page_free(m);
3966                 return;
3967         }
3968         vm_page_unwire_managed(m, nqueue, false);
3969 }
3970
3971 /*
3972  * Unwire a page without (re-)inserting it into a page queue.  It is up
3973  * to the caller to enqueue, requeue, or free the page as appropriate.
3974  * In most cases involving managed pages, vm_page_unwire() should be used
3975  * instead.
3976  */
3977 bool
3978 vm_page_unwire_noq(vm_page_t m)
3979 {
3980         u_int old;
3981
3982         old = vm_page_drop(m, 1);
3983         KASSERT(VPRC_WIRE_COUNT(old) != 0,
3984             ("vm_page_unref: counter underflow for page %p", m));
3985         KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3986             ("vm_page_unref: missing ref on fictitious page %p", m));
3987
3988         if (VPRC_WIRE_COUNT(old) > 1)
3989                 return (false);
3990         if ((m->oflags & VPO_UNMANAGED) == 0)
3991                 vm_page_aflag_clear(m, PGA_DEQUEUE);
3992         vm_wire_sub(1);
3993         return (true);
3994 }
3995
3996 /*
3997  * Ensure that the page ends up in the specified page queue.  If the page is
3998  * active or being moved to the active queue, ensure that its act_count is
3999  * at least ACT_INIT but do not otherwise mess with it.
4000  *
4001  * A managed page must be locked.
4002  */
4003 static __always_inline void
4004 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4005 {
4006         vm_page_astate_t old, new;
4007
4008         KASSERT(m->ref_count > 0,
4009             ("%s: page %p does not carry any references", __func__, m));
4010         KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4011             ("%s: invalid flags %x", __func__, nflag));
4012
4013         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4014                 return;
4015
4016         old = vm_page_astate_load(m);
4017         do {
4018                 if ((old.flags & PGA_DEQUEUE) != 0)
4019                         break;
4020                 new = old;
4021                 new.flags &= ~PGA_QUEUE_OP_MASK;
4022                 if (nqueue == PQ_ACTIVE)
4023                         new.act_count = max(old.act_count, ACT_INIT);
4024                 if (old.queue == nqueue) {
4025                         if (nqueue != PQ_ACTIVE)
4026                                 new.flags |= nflag;
4027                 } else {
4028                         new.flags |= nflag;
4029                         new.queue = nqueue;
4030                 }
4031         } while (!vm_page_pqstate_commit(m, &old, new));
4032 }
4033
4034 /*
4035  * Put the specified page on the active list (if appropriate).
4036  */
4037 void
4038 vm_page_activate(vm_page_t m)
4039 {
4040
4041         vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4042 }
4043
4044 /*
4045  * Move the specified page to the tail of the inactive queue, or requeue
4046  * the page if it is already in the inactive queue.
4047  */
4048 void
4049 vm_page_deactivate(vm_page_t m)
4050 {
4051
4052         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4053 }
4054
4055 void
4056 vm_page_deactivate_noreuse(vm_page_t m)
4057 {
4058
4059         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4060 }
4061
4062 /*
4063  * Put a page in the laundry, or requeue it if it is already there.
4064  */
4065 void
4066 vm_page_launder(vm_page_t m)
4067 {
4068
4069         vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4070 }
4071
4072 /*
4073  * Put a page in the PQ_UNSWAPPABLE holding queue.
4074  */
4075 void
4076 vm_page_unswappable(vm_page_t m)
4077 {
4078
4079         KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4080             ("page %p already unswappable", m));
4081
4082         vm_page_dequeue(m);
4083         vm_page_enqueue(m, PQ_UNSWAPPABLE);
4084 }
4085
4086 /*
4087  * Release a page back to the page queues in preparation for unwiring.
4088  */
4089 static void
4090 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4091 {
4092         vm_page_astate_t old, new;
4093         uint16_t nflag;
4094
4095         /*
4096          * Use a check of the valid bits to determine whether we should
4097          * accelerate reclamation of the page.  The object lock might not be
4098          * held here, in which case the check is racy.  At worst we will either
4099          * accelerate reclamation of a valid page and violate LRU, or
4100          * unnecessarily defer reclamation of an invalid page.
4101          *
4102          * If we were asked to not cache the page, place it near the head of the
4103          * inactive queue so that is reclaimed sooner.
4104          */
4105         if (noreuse || m->valid == 0) {
4106                 nqueue = PQ_INACTIVE;
4107                 nflag = PGA_REQUEUE_HEAD;
4108         } else {
4109                 nflag = PGA_REQUEUE;
4110         }
4111
4112         old = vm_page_astate_load(m);
4113         do {
4114                 new = old;
4115
4116                 /*
4117                  * If the page is already in the active queue and we are not
4118                  * trying to accelerate reclamation, simply mark it as
4119                  * referenced and avoid any queue operations.
4120                  */
4121                 new.flags &= ~PGA_QUEUE_OP_MASK;
4122                 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE)
4123                         new.flags |= PGA_REFERENCED;
4124                 else {
4125                         new.flags |= nflag;
4126                         new.queue = nqueue;
4127                 }
4128         } while (!vm_page_pqstate_commit(m, &old, new));
4129 }
4130
4131 /*
4132  * Unwire a page and either attempt to free it or re-add it to the page queues.
4133  */
4134 void
4135 vm_page_release(vm_page_t m, int flags)
4136 {
4137         vm_object_t object;
4138
4139         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4140             ("vm_page_release: page %p is unmanaged", m));
4141
4142         if ((flags & VPR_TRYFREE) != 0) {
4143                 for (;;) {
4144                         object = (vm_object_t)atomic_load_ptr(&m->object);
4145                         if (object == NULL)
4146                                 break;
4147                         /* Depends on type-stability. */
4148                         if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4149                                 break;
4150                         if (object == m->object) {
4151                                 vm_page_release_locked(m, flags);
4152                                 VM_OBJECT_WUNLOCK(object);
4153                                 return;
4154                         }
4155                         VM_OBJECT_WUNLOCK(object);
4156                 }
4157         }
4158         vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4159 }
4160
4161 /* See vm_page_release(). */
4162 void
4163 vm_page_release_locked(vm_page_t m, int flags)
4164 {
4165
4166         VM_OBJECT_ASSERT_WLOCKED(m->object);
4167         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4168             ("vm_page_release_locked: page %p is unmanaged", m));
4169
4170         if (vm_page_unwire_noq(m)) {
4171                 if ((flags & VPR_TRYFREE) != 0 &&
4172                     (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4173                     m->dirty == 0 && vm_page_tryxbusy(m)) {
4174                         vm_page_free(m);
4175                 } else {
4176                         vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4177                 }
4178         }
4179 }
4180
4181 static bool
4182 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4183 {
4184         u_int old;
4185
4186         KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4187             ("vm_page_try_blocked_op: page %p has no object", m));
4188         KASSERT(vm_page_busied(m),
4189             ("vm_page_try_blocked_op: page %p is not busy", m));
4190         VM_OBJECT_ASSERT_LOCKED(m->object);
4191
4192         old = m->ref_count;
4193         do {
4194                 KASSERT(old != 0,
4195                     ("vm_page_try_blocked_op: page %p has no references", m));
4196                 if (VPRC_WIRE_COUNT(old) != 0)
4197                         return (false);
4198         } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4199
4200         (op)(m);
4201
4202         /*
4203          * If the object is read-locked, new wirings may be created via an
4204          * object lookup.
4205          */
4206         old = vm_page_drop(m, VPRC_BLOCKED);
4207         KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4208             old == (VPRC_BLOCKED | VPRC_OBJREF),
4209             ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4210             old, m));
4211         return (true);
4212 }
4213
4214 /*
4215  * Atomically check for wirings and remove all mappings of the page.
4216  */
4217 bool
4218 vm_page_try_remove_all(vm_page_t m)
4219 {
4220
4221         return (vm_page_try_blocked_op(m, pmap_remove_all));
4222 }
4223
4224 /*
4225  * Atomically check for wirings and remove all writeable mappings of the page.
4226  */
4227 bool
4228 vm_page_try_remove_write(vm_page_t m)
4229 {
4230
4231         return (vm_page_try_blocked_op(m, pmap_remove_write));
4232 }
4233
4234 /*
4235  * vm_page_advise
4236  *
4237  *      Apply the specified advice to the given page.
4238  *
4239  *      The object and page must be locked.
4240  */
4241 void
4242 vm_page_advise(vm_page_t m, int advice)
4243 {
4244
4245         VM_OBJECT_ASSERT_WLOCKED(m->object);
4246         if (advice == MADV_FREE)
4247                 /*
4248                  * Mark the page clean.  This will allow the page to be freed
4249                  * without first paging it out.  MADV_FREE pages are often
4250                  * quickly reused by malloc(3), so we do not do anything that
4251                  * would result in a page fault on a later access.
4252                  */
4253                 vm_page_undirty(m);
4254         else if (advice != MADV_DONTNEED) {
4255                 if (advice == MADV_WILLNEED)
4256                         vm_page_activate(m);
4257                 return;
4258         }
4259
4260         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4261                 vm_page_dirty(m);
4262
4263         /*
4264          * Clear any references to the page.  Otherwise, the page daemon will
4265          * immediately reactivate the page.
4266          */
4267         vm_page_aflag_clear(m, PGA_REFERENCED);
4268
4269         /*
4270          * Place clean pages near the head of the inactive queue rather than
4271          * the tail, thus defeating the queue's LRU operation and ensuring that
4272          * the page will be reused quickly.  Dirty pages not already in the
4273          * laundry are moved there.
4274          */
4275         if (m->dirty == 0)
4276                 vm_page_deactivate_noreuse(m);
4277         else if (!vm_page_in_laundry(m))
4278                 vm_page_launder(m);
4279 }
4280
4281 static inline int
4282 vm_page_grab_pflags(int allocflags)
4283 {
4284         int pflags;
4285
4286         KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4287             (allocflags & VM_ALLOC_WIRED) != 0,
4288             ("vm_page_grab_pflags: the pages must be busied or wired"));
4289         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4290             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4291             ("vm_page_grab_pflags: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4292             "mismatch"));
4293         pflags = allocflags &
4294             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4295             VM_ALLOC_NOBUSY);
4296         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4297                 pflags |= VM_ALLOC_WAITFAIL;
4298         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4299                 pflags |= VM_ALLOC_SBUSY;
4300
4301         return (pflags);
4302 }
4303
4304 /*
4305  * Grab a page, waiting until we are waken up due to the page
4306  * changing state.  We keep on waiting, if the page continues
4307  * to be in the object.  If the page doesn't exist, first allocate it
4308  * and then conditionally zero it.
4309  *
4310  * This routine may sleep.
4311  *
4312  * The object must be locked on entry.  The lock will, however, be released
4313  * and reacquired if the routine sleeps.
4314  */
4315 vm_page_t
4316 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4317 {
4318         vm_page_t m;
4319         int pflags;
4320
4321         VM_OBJECT_ASSERT_WLOCKED(object);
4322         pflags = vm_page_grab_pflags(allocflags);
4323 retrylookup:
4324         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4325                 if (!vm_page_acquire_flags(m, allocflags)) {
4326                         if (vm_page_busy_sleep_flags(object, m, "pgrbwt",
4327                             allocflags))
4328                                 goto retrylookup;
4329                         return (NULL);
4330                 }
4331                 goto out;
4332         }
4333         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4334                 return (NULL);
4335         m = vm_page_alloc(object, pindex, pflags);
4336         if (m == NULL) {
4337                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4338                         return (NULL);
4339                 goto retrylookup;
4340         }
4341         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4342                 pmap_zero_page(m);
4343
4344 out:
4345         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4346                 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4347                         vm_page_sunbusy(m);
4348                 else
4349                         vm_page_xunbusy(m);
4350         }
4351         return (m);
4352 }
4353
4354 /*
4355  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4356  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4357  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4358  * in simultaneously.  Additional pages will be left on a paging queue but
4359  * will neither be wired nor busy regardless of allocflags.
4360  */
4361 int
4362 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4363 {
4364         vm_page_t m;
4365         vm_page_t ma[VM_INITIAL_PAGEIN];
4366         bool sleep, xbusy;
4367         int after, i, pflags, rv;
4368
4369         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4370             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4371             ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4372         KASSERT((allocflags &
4373             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4374             ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4375         VM_OBJECT_ASSERT_WLOCKED(object);
4376         pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY);
4377         pflags |= VM_ALLOC_WAITFAIL;
4378
4379 retrylookup:
4380         xbusy = false;
4381         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4382                 /*
4383                  * If the page is fully valid it can only become invalid
4384                  * with the object lock held.  If it is not valid it can
4385                  * become valid with the busy lock held.  Therefore, we
4386                  * may unnecessarily lock the exclusive busy here if we
4387                  * race with I/O completion not using the object lock.
4388                  * However, we will not end up with an invalid page and a
4389                  * shared lock.
4390                  */
4391                 if (!vm_page_all_valid(m) ||
4392                     (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) {
4393                         sleep = !vm_page_tryxbusy(m);
4394                         xbusy = true;
4395                 } else
4396                         sleep = !vm_page_trysbusy(m);
4397                 if (sleep) {
4398                         (void)vm_page_busy_sleep_flags(object, m, "pgrbwt",
4399                             allocflags);
4400                         goto retrylookup;
4401                 }
4402                 if ((allocflags & VM_ALLOC_NOCREAT) != 0 &&
4403                    !vm_page_all_valid(m)) {
4404                         if (xbusy)
4405                                 vm_page_xunbusy(m);
4406                         else
4407                                 vm_page_sunbusy(m);
4408                         *mp = NULL;
4409                         return (VM_PAGER_FAIL);
4410                 }
4411                 if ((allocflags & VM_ALLOC_WIRED) != 0)
4412                         vm_page_wire(m);
4413                 if (vm_page_all_valid(m))
4414                         goto out;
4415         } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4416                 *mp = NULL;
4417                 return (VM_PAGER_FAIL);
4418         } else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) {
4419                 xbusy = true;
4420         } else {
4421                 goto retrylookup;
4422         }
4423
4424         vm_page_assert_xbusied(m);
4425         MPASS(xbusy);
4426         if (vm_pager_has_page(object, pindex, NULL, &after)) {
4427                 after = MIN(after, VM_INITIAL_PAGEIN);
4428                 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4429                 after = MAX(after, 1);
4430                 ma[0] = m;
4431                 for (i = 1; i < after; i++) {
4432                         if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4433                                 if (ma[i]->valid || !vm_page_tryxbusy(ma[i]))
4434                                         break;
4435                         } else {
4436                                 ma[i] = vm_page_alloc(object, m->pindex + i,
4437                                     VM_ALLOC_NORMAL);
4438                                 if (ma[i] == NULL)
4439                                         break;
4440                         }
4441                 }
4442                 after = i;
4443                 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4444                 /* Pager may have replaced a page. */
4445                 m = ma[0];
4446                 if (rv != VM_PAGER_OK) {
4447                         if ((allocflags & VM_ALLOC_WIRED) != 0)
4448                                 vm_page_unwire_noq(m);
4449                         for (i = 0; i < after; i++) {
4450                                 if (!vm_page_wired(ma[i]))
4451                                         vm_page_free(ma[i]);
4452                                 else
4453                                         vm_page_xunbusy(ma[i]);
4454                         }
4455                         *mp = NULL;
4456                         return (rv);
4457                 }
4458                 for (i = 1; i < after; i++)
4459                         vm_page_readahead_finish(ma[i]);
4460                 MPASS(vm_page_all_valid(m));
4461         } else {
4462                 vm_page_zero_invalid(m, TRUE);
4463         }
4464 out:
4465         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4466                 if (xbusy)
4467                         vm_page_xunbusy(m);
4468                 else
4469                         vm_page_sunbusy(m);
4470         }
4471         if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy)
4472                 vm_page_busy_downgrade(m);
4473         *mp = m;
4474         return (VM_PAGER_OK);
4475 }
4476
4477 /*
4478  * Return the specified range of pages from the given object.  For each
4479  * page offset within the range, if a page already exists within the object
4480  * at that offset and it is busy, then wait for it to change state.  If,
4481  * instead, the page doesn't exist, then allocate it.
4482  *
4483  * The caller must always specify an allocation class.
4484  *
4485  * allocation classes:
4486  *      VM_ALLOC_NORMAL         normal process request
4487  *      VM_ALLOC_SYSTEM         system *really* needs the pages
4488  *
4489  * The caller must always specify that the pages are to be busied and/or
4490  * wired.
4491  *
4492  * optional allocation flags:
4493  *      VM_ALLOC_IGN_SBUSY      do not sleep on soft busy pages
4494  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
4495  *      VM_ALLOC_NOWAIT         do not sleep
4496  *      VM_ALLOC_SBUSY          set page to sbusy state
4497  *      VM_ALLOC_WIRED          wire the pages
4498  *      VM_ALLOC_ZERO           zero and validate any invalid pages
4499  *
4500  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4501  * may return a partial prefix of the requested range.
4502  */
4503 int
4504 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4505     vm_page_t *ma, int count)
4506 {
4507         vm_page_t m, mpred;
4508         int pflags;
4509         int i;
4510
4511         VM_OBJECT_ASSERT_WLOCKED(object);
4512         KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4513             ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4514
4515         pflags = vm_page_grab_pflags(allocflags);
4516         if (count == 0)
4517                 return (0);
4518
4519         i = 0;
4520 retrylookup:
4521         m = vm_radix_lookup_le(&object->rtree, pindex + i);
4522         if (m == NULL || m->pindex != pindex + i) {
4523                 mpred = m;
4524                 m = NULL;
4525         } else
4526                 mpred = TAILQ_PREV(m, pglist, listq);
4527         for (; i < count; i++) {
4528                 if (m != NULL) {
4529                         if (!vm_page_acquire_flags(m, allocflags)) {
4530                                 if (vm_page_busy_sleep_flags(object, m,
4531                                     "grbmaw", allocflags))
4532                                         goto retrylookup;
4533                                 break;
4534                         }
4535                 } else {
4536                         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4537                                 break;
4538                         m = vm_page_alloc_after(object, pindex + i,
4539                             pflags | VM_ALLOC_COUNT(count - i), mpred);
4540                         if (m == NULL) {
4541                                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4542                                         break;
4543                                 goto retrylookup;
4544                         }
4545                 }
4546                 if (vm_page_none_valid(m) &&
4547                     (allocflags & VM_ALLOC_ZERO) != 0) {
4548                         if ((m->flags & PG_ZERO) == 0)
4549                                 pmap_zero_page(m);
4550                         vm_page_valid(m);
4551                 }
4552                 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4553                         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4554                                 vm_page_sunbusy(m);
4555                         else
4556                                 vm_page_xunbusy(m);
4557                 }
4558                 ma[i] = mpred = m;
4559                 m = vm_page_next(m);
4560         }
4561         return (i);
4562 }
4563
4564 /*
4565  * Mapping function for valid or dirty bits in a page.
4566  *
4567  * Inputs are required to range within a page.
4568  */
4569 vm_page_bits_t
4570 vm_page_bits(int base, int size)
4571 {
4572         int first_bit;
4573         int last_bit;
4574
4575         KASSERT(
4576             base + size <= PAGE_SIZE,
4577             ("vm_page_bits: illegal base/size %d/%d", base, size)
4578         );
4579
4580         if (size == 0)          /* handle degenerate case */
4581                 return (0);
4582
4583         first_bit = base >> DEV_BSHIFT;
4584         last_bit = (base + size - 1) >> DEV_BSHIFT;
4585
4586         return (((vm_page_bits_t)2 << last_bit) -
4587             ((vm_page_bits_t)1 << first_bit));
4588 }
4589
4590 void
4591 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4592 {
4593
4594 #if PAGE_SIZE == 32768
4595         atomic_set_64((uint64_t *)bits, set);
4596 #elif PAGE_SIZE == 16384
4597         atomic_set_32((uint32_t *)bits, set);
4598 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4599         atomic_set_16((uint16_t *)bits, set);
4600 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4601         atomic_set_8((uint8_t *)bits, set);
4602 #else           /* PAGE_SIZE <= 8192 */
4603         uintptr_t addr;
4604         int shift;
4605
4606         addr = (uintptr_t)bits;
4607         /*
4608          * Use a trick to perform a 32-bit atomic on the
4609          * containing aligned word, to not depend on the existence
4610          * of atomic_{set, clear}_{8, 16}.
4611          */
4612         shift = addr & (sizeof(uint32_t) - 1);
4613 #if BYTE_ORDER == BIG_ENDIAN
4614         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4615 #else
4616         shift *= NBBY;
4617 #endif
4618         addr &= ~(sizeof(uint32_t) - 1);
4619         atomic_set_32((uint32_t *)addr, set << shift);
4620 #endif          /* PAGE_SIZE */
4621 }
4622
4623 static inline void
4624 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4625 {
4626
4627 #if PAGE_SIZE == 32768
4628         atomic_clear_64((uint64_t *)bits, clear);
4629 #elif PAGE_SIZE == 16384
4630         atomic_clear_32((uint32_t *)bits, clear);
4631 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4632         atomic_clear_16((uint16_t *)bits, clear);
4633 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4634         atomic_clear_8((uint8_t *)bits, clear);
4635 #else           /* PAGE_SIZE <= 8192 */
4636         uintptr_t addr;
4637         int shift;
4638
4639         addr = (uintptr_t)bits;
4640         /*
4641          * Use a trick to perform a 32-bit atomic on the
4642          * containing aligned word, to not depend on the existence
4643          * of atomic_{set, clear}_{8, 16}.
4644          */
4645         shift = addr & (sizeof(uint32_t) - 1);
4646 #if BYTE_ORDER == BIG_ENDIAN
4647         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4648 #else
4649         shift *= NBBY;
4650 #endif
4651         addr &= ~(sizeof(uint32_t) - 1);
4652         atomic_clear_32((uint32_t *)addr, clear << shift);
4653 #endif          /* PAGE_SIZE */
4654 }
4655
4656 static inline vm_page_bits_t
4657 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
4658 {
4659 #if PAGE_SIZE == 32768
4660         uint64_t old;
4661
4662         old = *bits;
4663         while (atomic_fcmpset_64(bits, &old, newbits) == 0);
4664         return (old);
4665 #elif PAGE_SIZE == 16384
4666         uint32_t old;
4667
4668         old = *bits;
4669         while (atomic_fcmpset_32(bits, &old, newbits) == 0);
4670         return (old);
4671 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
4672         uint16_t old;
4673
4674         old = *bits;
4675         while (atomic_fcmpset_16(bits, &old, newbits) == 0);
4676         return (old);
4677 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
4678         uint8_t old;
4679
4680         old = *bits;
4681         while (atomic_fcmpset_8(bits, &old, newbits) == 0);
4682         return (old);
4683 #else           /* PAGE_SIZE <= 4096*/
4684         uintptr_t addr;
4685         uint32_t old, new, mask;
4686         int shift;
4687
4688         addr = (uintptr_t)bits;
4689         /*
4690          * Use a trick to perform a 32-bit atomic on the
4691          * containing aligned word, to not depend on the existence
4692          * of atomic_{set, swap, clear}_{8, 16}.
4693          */
4694         shift = addr & (sizeof(uint32_t) - 1);
4695 #if BYTE_ORDER == BIG_ENDIAN
4696         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4697 #else
4698         shift *= NBBY;
4699 #endif
4700         addr &= ~(sizeof(uint32_t) - 1);
4701         mask = VM_PAGE_BITS_ALL << shift;
4702
4703         old = *bits;
4704         do {
4705                 new = old & ~mask;
4706                 new |= newbits << shift;
4707         } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
4708         return (old >> shift);
4709 #endif          /* PAGE_SIZE */
4710 }
4711
4712 /*
4713  *      vm_page_set_valid_range:
4714  *
4715  *      Sets portions of a page valid.  The arguments are expected
4716  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4717  *      of any partial chunks touched by the range.  The invalid portion of
4718  *      such chunks will be zeroed.
4719  *
4720  *      (base + size) must be less then or equal to PAGE_SIZE.
4721  */
4722 void
4723 vm_page_set_valid_range(vm_page_t m, int base, int size)
4724 {
4725         int endoff, frag;
4726         vm_page_bits_t pagebits;
4727
4728         vm_page_assert_busied(m);
4729         if (size == 0)  /* handle degenerate case */
4730                 return;
4731
4732         /*
4733          * If the base is not DEV_BSIZE aligned and the valid
4734          * bit is clear, we have to zero out a portion of the
4735          * first block.
4736          */
4737         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4738             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4739                 pmap_zero_page_area(m, frag, base - frag);
4740
4741         /*
4742          * If the ending offset is not DEV_BSIZE aligned and the
4743          * valid bit is clear, we have to zero out a portion of
4744          * the last block.
4745          */
4746         endoff = base + size;
4747         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4748             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4749                 pmap_zero_page_area(m, endoff,
4750                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4751
4752         /*
4753          * Assert that no previously invalid block that is now being validated
4754          * is already dirty.
4755          */
4756         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4757             ("vm_page_set_valid_range: page %p is dirty", m));
4758
4759         /*
4760          * Set valid bits inclusive of any overlap.
4761          */
4762         pagebits = vm_page_bits(base, size);
4763         if (vm_page_xbusied(m))
4764                 m->valid |= pagebits;
4765         else
4766                 vm_page_bits_set(m, &m->valid, pagebits);
4767 }
4768
4769 /*
4770  * Set the page dirty bits and free the invalid swap space if
4771  * present.  Returns the previous dirty bits.
4772  */
4773 vm_page_bits_t
4774 vm_page_set_dirty(vm_page_t m)
4775 {
4776         vm_page_bits_t old;
4777
4778         VM_PAGE_OBJECT_BUSY_ASSERT(m);
4779
4780         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
4781                 old = m->dirty;
4782                 m->dirty = VM_PAGE_BITS_ALL;
4783         } else
4784                 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
4785         if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
4786                 vm_pager_page_unswapped(m);
4787
4788         return (old);
4789 }
4790
4791 /*
4792  * Clear the given bits from the specified page's dirty field.
4793  */
4794 static __inline void
4795 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4796 {
4797
4798         vm_page_assert_busied(m);
4799
4800         /*
4801          * If the page is xbusied and not write mapped we are the
4802          * only thread that can modify dirty bits.  Otherwise, The pmap
4803          * layer can call vm_page_dirty() without holding a distinguished
4804          * lock.  The combination of page busy and atomic operations
4805          * suffice to guarantee consistency of the page dirty field.
4806          */
4807         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4808                 m->dirty &= ~pagebits;
4809         else
4810                 vm_page_bits_clear(m, &m->dirty, pagebits);
4811 }
4812
4813 /*
4814  *      vm_page_set_validclean:
4815  *
4816  *      Sets portions of a page valid and clean.  The arguments are expected
4817  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4818  *      of any partial chunks touched by the range.  The invalid portion of
4819  *      such chunks will be zero'd.
4820  *
4821  *      (base + size) must be less then or equal to PAGE_SIZE.
4822  */
4823 void
4824 vm_page_set_validclean(vm_page_t m, int base, int size)
4825 {
4826         vm_page_bits_t oldvalid, pagebits;
4827         int endoff, frag;
4828
4829         vm_page_assert_busied(m);
4830         if (size == 0)  /* handle degenerate case */
4831                 return;
4832
4833         /*
4834          * If the base is not DEV_BSIZE aligned and the valid
4835          * bit is clear, we have to zero out a portion of the
4836          * first block.
4837          */
4838         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4839             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4840                 pmap_zero_page_area(m, frag, base - frag);
4841
4842         /*
4843          * If the ending offset is not DEV_BSIZE aligned and the
4844          * valid bit is clear, we have to zero out a portion of
4845          * the last block.
4846          */
4847         endoff = base + size;
4848         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4849             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4850                 pmap_zero_page_area(m, endoff,
4851                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4852
4853         /*
4854          * Set valid, clear dirty bits.  If validating the entire
4855          * page we can safely clear the pmap modify bit.  We also
4856          * use this opportunity to clear the PGA_NOSYNC flag.  If a process
4857          * takes a write fault on a MAP_NOSYNC memory area the flag will
4858          * be set again.
4859          *
4860          * We set valid bits inclusive of any overlap, but we can only
4861          * clear dirty bits for DEV_BSIZE chunks that are fully within
4862          * the range.
4863          */
4864         oldvalid = m->valid;
4865         pagebits = vm_page_bits(base, size);
4866         if (vm_page_xbusied(m))
4867                 m->valid |= pagebits;
4868         else
4869                 vm_page_bits_set(m, &m->valid, pagebits);
4870 #if 0   /* NOT YET */
4871         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4872                 frag = DEV_BSIZE - frag;
4873                 base += frag;
4874                 size -= frag;
4875                 if (size < 0)
4876                         size = 0;
4877         }
4878         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4879 #endif
4880         if (base == 0 && size == PAGE_SIZE) {
4881                 /*
4882                  * The page can only be modified within the pmap if it is
4883                  * mapped, and it can only be mapped if it was previously
4884                  * fully valid.
4885                  */
4886                 if (oldvalid == VM_PAGE_BITS_ALL)
4887                         /*
4888                          * Perform the pmap_clear_modify() first.  Otherwise,
4889                          * a concurrent pmap operation, such as
4890                          * pmap_protect(), could clear a modification in the
4891                          * pmap and set the dirty field on the page before
4892                          * pmap_clear_modify() had begun and after the dirty
4893                          * field was cleared here.
4894                          */
4895                         pmap_clear_modify(m);
4896                 m->dirty = 0;
4897                 vm_page_aflag_clear(m, PGA_NOSYNC);
4898         } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
4899                 m->dirty &= ~pagebits;
4900         else
4901                 vm_page_clear_dirty_mask(m, pagebits);
4902 }
4903
4904 void
4905 vm_page_clear_dirty(vm_page_t m, int base, int size)
4906 {
4907
4908         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4909 }
4910
4911 /*
4912  *      vm_page_set_invalid:
4913  *
4914  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
4915  *      valid and dirty bits for the effected areas are cleared.
4916  */
4917 void
4918 vm_page_set_invalid(vm_page_t m, int base, int size)
4919 {
4920         vm_page_bits_t bits;
4921         vm_object_t object;
4922
4923         /*
4924          * The object lock is required so that pages can't be mapped
4925          * read-only while we're in the process of invalidating them.
4926          */
4927         object = m->object;
4928         VM_OBJECT_ASSERT_WLOCKED(object);
4929         vm_page_assert_busied(m);
4930
4931         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4932             size >= object->un_pager.vnp.vnp_size)
4933                 bits = VM_PAGE_BITS_ALL;
4934         else
4935                 bits = vm_page_bits(base, size);
4936         if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
4937                 pmap_remove_all(m);
4938         KASSERT((bits == 0 && vm_page_all_valid(m)) ||
4939             !pmap_page_is_mapped(m),
4940             ("vm_page_set_invalid: page %p is mapped", m));
4941         if (vm_page_xbusied(m)) {
4942                 m->valid &= ~bits;
4943                 m->dirty &= ~bits;
4944         } else {
4945                 vm_page_bits_clear(m, &m->valid, bits);
4946                 vm_page_bits_clear(m, &m->dirty, bits);
4947         }
4948 }
4949
4950 /*
4951  *      vm_page_invalid:
4952  *
4953  *      Invalidates the entire page.  The page must be busy, unmapped, and
4954  *      the enclosing object must be locked.  The object locks protects
4955  *      against concurrent read-only pmap enter which is done without
4956  *      busy.
4957  */
4958 void
4959 vm_page_invalid(vm_page_t m)
4960 {
4961
4962         vm_page_assert_busied(m);
4963         VM_OBJECT_ASSERT_LOCKED(m->object);
4964         MPASS(!pmap_page_is_mapped(m));
4965
4966         if (vm_page_xbusied(m))
4967                 m->valid = 0;
4968         else
4969                 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
4970 }
4971
4972 /*
4973  * vm_page_zero_invalid()
4974  *
4975  *      The kernel assumes that the invalid portions of a page contain
4976  *      garbage, but such pages can be mapped into memory by user code.
4977  *      When this occurs, we must zero out the non-valid portions of the
4978  *      page so user code sees what it expects.
4979  *
4980  *      Pages are most often semi-valid when the end of a file is mapped
4981  *      into memory and the file's size is not page aligned.
4982  */
4983 void
4984 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4985 {
4986         int b;
4987         int i;
4988
4989         /*
4990          * Scan the valid bits looking for invalid sections that
4991          * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4992          * valid bit may be set ) have already been zeroed by
4993          * vm_page_set_validclean().
4994          */
4995         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4996                 if (i == (PAGE_SIZE / DEV_BSIZE) ||
4997                     (m->valid & ((vm_page_bits_t)1 << i))) {
4998                         if (i > b) {
4999                                 pmap_zero_page_area(m,
5000                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5001                         }
5002                         b = i + 1;
5003                 }
5004         }
5005
5006         /*
5007          * setvalid is TRUE when we can safely set the zero'd areas
5008          * as being valid.  We can do this if there are no cache consistancy
5009          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5010          */
5011         if (setvalid)
5012                 vm_page_valid(m);
5013 }
5014
5015 /*
5016  *      vm_page_is_valid:
5017  *
5018  *      Is (partial) page valid?  Note that the case where size == 0
5019  *      will return FALSE in the degenerate case where the page is
5020  *      entirely invalid, and TRUE otherwise.
5021  *
5022  *      Some callers envoke this routine without the busy lock held and
5023  *      handle races via higher level locks.  Typical callers should
5024  *      hold a busy lock to prevent invalidation.
5025  */
5026 int
5027 vm_page_is_valid(vm_page_t m, int base, int size)
5028 {
5029         vm_page_bits_t bits;
5030
5031         bits = vm_page_bits(base, size);
5032         return (m->valid != 0 && (m->valid & bits) == bits);
5033 }
5034
5035 /*
5036  * Returns true if all of the specified predicates are true for the entire
5037  * (super)page and false otherwise.
5038  */
5039 bool
5040 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5041 {
5042         vm_object_t object;
5043         int i, npages;
5044
5045         object = m->object;
5046         if (skip_m != NULL && skip_m->object != object)
5047                 return (false);
5048         VM_OBJECT_ASSERT_LOCKED(object);
5049         npages = atop(pagesizes[m->psind]);
5050
5051         /*
5052          * The physically contiguous pages that make up a superpage, i.e., a
5053          * page with a page size index ("psind") greater than zero, will
5054          * occupy adjacent entries in vm_page_array[].
5055          */
5056         for (i = 0; i < npages; i++) {
5057                 /* Always test object consistency, including "skip_m". */
5058                 if (m[i].object != object)
5059                         return (false);
5060                 if (&m[i] == skip_m)
5061                         continue;
5062                 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5063                         return (false);
5064                 if ((flags & PS_ALL_DIRTY) != 0) {
5065                         /*
5066                          * Calling vm_page_test_dirty() or pmap_is_modified()
5067                          * might stop this case from spuriously returning
5068                          * "false".  However, that would require a write lock
5069                          * on the object containing "m[i]".
5070                          */
5071                         if (m[i].dirty != VM_PAGE_BITS_ALL)
5072                                 return (false);
5073                 }
5074                 if ((flags & PS_ALL_VALID) != 0 &&
5075                     m[i].valid != VM_PAGE_BITS_ALL)
5076                         return (false);
5077         }
5078         return (true);
5079 }
5080
5081 /*
5082  * Set the page's dirty bits if the page is modified.
5083  */
5084 void
5085 vm_page_test_dirty(vm_page_t m)
5086 {
5087
5088         vm_page_assert_busied(m);
5089         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5090                 vm_page_dirty(m);
5091 }
5092
5093 void
5094 vm_page_valid(vm_page_t m)
5095 {
5096
5097         vm_page_assert_busied(m);
5098         if (vm_page_xbusied(m))
5099                 m->valid = VM_PAGE_BITS_ALL;
5100         else
5101                 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5102 }
5103
5104 void
5105 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5106 {
5107
5108         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5109 }
5110
5111 void
5112 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5113 {
5114
5115         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5116 }
5117
5118 int
5119 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5120 {
5121
5122         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5123 }
5124
5125 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5126 void
5127 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5128 {
5129
5130         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5131 }
5132
5133 void
5134 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5135 {
5136
5137         mtx_assert_(vm_page_lockptr(m), a, file, line);
5138 }
5139 #endif
5140
5141 #ifdef INVARIANTS
5142 void
5143 vm_page_object_busy_assert(vm_page_t m)
5144 {
5145
5146         /*
5147          * Certain of the page's fields may only be modified by the
5148          * holder of a page or object busy.
5149          */
5150         if (m->object != NULL && !vm_page_busied(m))
5151                 VM_OBJECT_ASSERT_BUSY(m->object);
5152 }
5153
5154 void
5155 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5156 {
5157
5158         if ((bits & PGA_WRITEABLE) == 0)
5159                 return;
5160
5161         /*
5162          * The PGA_WRITEABLE flag can only be set if the page is
5163          * managed, is exclusively busied or the object is locked.
5164          * Currently, this flag is only set by pmap_enter().
5165          */
5166         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5167             ("PGA_WRITEABLE on unmanaged page"));
5168         if (!vm_page_xbusied(m))
5169                 VM_OBJECT_ASSERT_BUSY(m->object);
5170 }
5171 #endif
5172
5173 #include "opt_ddb.h"
5174 #ifdef DDB
5175 #include <sys/kernel.h>
5176
5177 #include <ddb/ddb.h>
5178
5179 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5180 {
5181
5182         db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5183         db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5184         db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5185         db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5186         db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5187         db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5188         db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5189         db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5190         db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5191 }
5192
5193 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5194 {
5195         int dom;
5196
5197         db_printf("pq_free %d\n", vm_free_count());
5198         for (dom = 0; dom < vm_ndomains; dom++) {
5199                 db_printf(
5200     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5201                     dom,
5202                     vm_dom[dom].vmd_page_count,
5203                     vm_dom[dom].vmd_free_count,
5204                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5205                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5206                     vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5207                     vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5208         }
5209 }
5210
5211 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5212 {
5213         vm_page_t m;
5214         boolean_t phys, virt;
5215
5216         if (!have_addr) {
5217                 db_printf("show pginfo addr\n");
5218                 return;
5219         }
5220
5221         phys = strchr(modif, 'p') != NULL;
5222         virt = strchr(modif, 'v') != NULL;
5223         if (virt)
5224                 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5225         else if (phys)
5226                 m = PHYS_TO_VM_PAGE(addr);
5227         else
5228                 m = (vm_page_t)addr;
5229         db_printf(
5230     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
5231     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5232             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5233             m->a.queue, m->ref_count, m->a.flags, m->oflags,
5234             m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5235 }
5236 #endif /* DDB */