]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_page.c
Introduce vm_page_astate.
[FreeBSD/FreeBSD.git] / sys / vm / vm_page.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
36  */
37
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64
65 /*
66  *      Resident memory management module.
67  */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_vm.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113
114 #include <machine/md_var.h>
115
116 extern int      uma_startup_count(int);
117 extern void     uma_startup(void *, int);
118 extern int      vmem_startup_count(void);
119
120 struct vm_domain vm_dom[MAXMEMDOM];
121
122 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
123
124 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
125
126 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
127 /* The following fields are protected by the domainset lock. */
128 domainset_t __exclusive_cache_line vm_min_domains;
129 domainset_t __exclusive_cache_line vm_severe_domains;
130 static int vm_min_waiters;
131 static int vm_severe_waiters;
132 static int vm_pageproc_waiters;
133
134 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0,
135     "VM page statistics");
136
137 static counter_u64_t queue_ops = EARLY_COUNTER;
138 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
139     CTLFLAG_RD, &queue_ops,
140     "Number of batched queue operations");
141
142 static counter_u64_t queue_nops = EARLY_COUNTER;
143 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
144     CTLFLAG_RD, &queue_nops,
145     "Number of batched queue operations with no effects");
146
147 static void
148 counter_startup(void)
149 {
150
151         queue_ops = counter_u64_alloc(M_WAITOK);
152         queue_nops = counter_u64_alloc(M_WAITOK);
153 }
154 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
155
156 /*
157  * bogus page -- for I/O to/from partially complete buffers,
158  * or for paging into sparsely invalid regions.
159  */
160 vm_page_t bogus_page;
161
162 vm_page_t vm_page_array;
163 long vm_page_array_size;
164 long first_page;
165
166 static int boot_pages;
167 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
168     &boot_pages, 0,
169     "number of pages allocated for bootstrapping the VM system");
170
171 static TAILQ_HEAD(, vm_page) blacklist_head;
172 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
173 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
174     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
175
176 static uma_zone_t fakepg_zone;
177
178 static void vm_page_alloc_check(vm_page_t m);
179 static void _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
180     const char *wmesg, bool nonshared, bool locked);
181 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
182 static void vm_page_dequeue_complete(vm_page_t m);
183 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
184 static void vm_page_init(void *dummy);
185 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
186     vm_pindex_t pindex, vm_page_t mpred);
187 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
188     vm_page_t mpred);
189 static void vm_page_mvqueue(vm_page_t m, uint8_t queue);
190 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
191     vm_page_t m_run, vm_paddr_t high);
192 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
193     int req);
194 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
195     int flags);
196 static void vm_page_zone_release(void *arg, void **store, int cnt);
197
198 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
199
200 static void
201 vm_page_init(void *dummy)
202 {
203
204         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
205             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
206         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
207             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
208 }
209
210 /*
211  * The cache page zone is initialized later since we need to be able to allocate
212  * pages before UMA is fully initialized.
213  */
214 static void
215 vm_page_init_cache_zones(void *dummy __unused)
216 {
217         struct vm_domain *vmd;
218         struct vm_pgcache *pgcache;
219         int cache, domain, maxcache, pool;
220
221         maxcache = 0;
222         TUNABLE_INT_FETCH("vm.pgcache_zone_max", &maxcache);
223         for (domain = 0; domain < vm_ndomains; domain++) {
224                 vmd = VM_DOMAIN(domain);
225                 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
226                         pgcache = &vmd->vmd_pgcache[pool];
227                         pgcache->domain = domain;
228                         pgcache->pool = pool;
229                         pgcache->zone = uma_zcache_create("vm pgcache",
230                             PAGE_SIZE, NULL, NULL, NULL, NULL,
231                             vm_page_zone_import, vm_page_zone_release, pgcache,
232                             UMA_ZONE_VM);
233
234                         /*
235                          * Limit each pool's zone to 0.1% of the pages in the
236                          * domain.
237                          */
238                         cache = maxcache != 0 ? maxcache :
239                             vmd->vmd_page_count / 1000;
240                         uma_zone_set_maxcache(pgcache->zone, cache);
241                 }
242         }
243 }
244 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
245
246 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
247 #if PAGE_SIZE == 32768
248 #ifdef CTASSERT
249 CTASSERT(sizeof(u_long) >= 8);
250 #endif
251 #endif
252
253 /*
254  *      vm_set_page_size:
255  *
256  *      Sets the page size, perhaps based upon the memory
257  *      size.  Must be called before any use of page-size
258  *      dependent functions.
259  */
260 void
261 vm_set_page_size(void)
262 {
263         if (vm_cnt.v_page_size == 0)
264                 vm_cnt.v_page_size = PAGE_SIZE;
265         if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
266                 panic("vm_set_page_size: page size not a power of two");
267 }
268
269 /*
270  *      vm_page_blacklist_next:
271  *
272  *      Find the next entry in the provided string of blacklist
273  *      addresses.  Entries are separated by space, comma, or newline.
274  *      If an invalid integer is encountered then the rest of the
275  *      string is skipped.  Updates the list pointer to the next
276  *      character, or NULL if the string is exhausted or invalid.
277  */
278 static vm_paddr_t
279 vm_page_blacklist_next(char **list, char *end)
280 {
281         vm_paddr_t bad;
282         char *cp, *pos;
283
284         if (list == NULL || *list == NULL)
285                 return (0);
286         if (**list =='\0') {
287                 *list = NULL;
288                 return (0);
289         }
290
291         /*
292          * If there's no end pointer then the buffer is coming from
293          * the kenv and we know it's null-terminated.
294          */
295         if (end == NULL)
296                 end = *list + strlen(*list);
297
298         /* Ensure that strtoq() won't walk off the end */
299         if (*end != '\0') {
300                 if (*end == '\n' || *end == ' ' || *end  == ',')
301                         *end = '\0';
302                 else {
303                         printf("Blacklist not terminated, skipping\n");
304                         *list = NULL;
305                         return (0);
306                 }
307         }
308
309         for (pos = *list; *pos != '\0'; pos = cp) {
310                 bad = strtoq(pos, &cp, 0);
311                 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
312                         if (bad == 0) {
313                                 if (++cp < end)
314                                         continue;
315                                 else
316                                         break;
317                         }
318                 } else
319                         break;
320                 if (*cp == '\0' || ++cp >= end)
321                         *list = NULL;
322                 else
323                         *list = cp;
324                 return (trunc_page(bad));
325         }
326         printf("Garbage in RAM blacklist, skipping\n");
327         *list = NULL;
328         return (0);
329 }
330
331 bool
332 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
333 {
334         struct vm_domain *vmd;
335         vm_page_t m;
336         int ret;
337
338         m = vm_phys_paddr_to_vm_page(pa);
339         if (m == NULL)
340                 return (true); /* page does not exist, no failure */
341
342         vmd = vm_pagequeue_domain(m);
343         vm_domain_free_lock(vmd);
344         ret = vm_phys_unfree_page(m);
345         vm_domain_free_unlock(vmd);
346         if (ret != 0) {
347                 vm_domain_freecnt_inc(vmd, -1);
348                 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
349                 if (verbose)
350                         printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
351         }
352         return (ret);
353 }
354
355 /*
356  *      vm_page_blacklist_check:
357  *
358  *      Iterate through the provided string of blacklist addresses, pulling
359  *      each entry out of the physical allocator free list and putting it
360  *      onto a list for reporting via the vm.page_blacklist sysctl.
361  */
362 static void
363 vm_page_blacklist_check(char *list, char *end)
364 {
365         vm_paddr_t pa;
366         char *next;
367
368         next = list;
369         while (next != NULL) {
370                 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
371                         continue;
372                 vm_page_blacklist_add(pa, bootverbose);
373         }
374 }
375
376 /*
377  *      vm_page_blacklist_load:
378  *
379  *      Search for a special module named "ram_blacklist".  It'll be a
380  *      plain text file provided by the user via the loader directive
381  *      of the same name.
382  */
383 static void
384 vm_page_blacklist_load(char **list, char **end)
385 {
386         void *mod;
387         u_char *ptr;
388         u_int len;
389
390         mod = NULL;
391         ptr = NULL;
392
393         mod = preload_search_by_type("ram_blacklist");
394         if (mod != NULL) {
395                 ptr = preload_fetch_addr(mod);
396                 len = preload_fetch_size(mod);
397         }
398         *list = ptr;
399         if (ptr != NULL)
400                 *end = ptr + len;
401         else
402                 *end = NULL;
403         return;
404 }
405
406 static int
407 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
408 {
409         vm_page_t m;
410         struct sbuf sbuf;
411         int error, first;
412
413         first = 1;
414         error = sysctl_wire_old_buffer(req, 0);
415         if (error != 0)
416                 return (error);
417         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
418         TAILQ_FOREACH(m, &blacklist_head, listq) {
419                 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
420                     (uintmax_t)m->phys_addr);
421                 first = 0;
422         }
423         error = sbuf_finish(&sbuf);
424         sbuf_delete(&sbuf);
425         return (error);
426 }
427
428 /*
429  * Initialize a dummy page for use in scans of the specified paging queue.
430  * In principle, this function only needs to set the flag PG_MARKER.
431  * Nonetheless, it write busies the page as a safety precaution.
432  */
433 static void
434 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
435 {
436
437         bzero(marker, sizeof(*marker));
438         marker->flags = PG_MARKER;
439         marker->a.flags = aflags;
440         marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
441         marker->a.queue = queue;
442 }
443
444 static void
445 vm_page_domain_init(int domain)
446 {
447         struct vm_domain *vmd;
448         struct vm_pagequeue *pq;
449         int i;
450
451         vmd = VM_DOMAIN(domain);
452         bzero(vmd, sizeof(*vmd));
453         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
454             "vm inactive pagequeue";
455         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
456             "vm active pagequeue";
457         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
458             "vm laundry pagequeue";
459         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
460             "vm unswappable pagequeue";
461         vmd->vmd_domain = domain;
462         vmd->vmd_page_count = 0;
463         vmd->vmd_free_count = 0;
464         vmd->vmd_segs = 0;
465         vmd->vmd_oom = FALSE;
466         for (i = 0; i < PQ_COUNT; i++) {
467                 pq = &vmd->vmd_pagequeues[i];
468                 TAILQ_INIT(&pq->pq_pl);
469                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
470                     MTX_DEF | MTX_DUPOK);
471                 pq->pq_pdpages = 0;
472                 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
473         }
474         mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
475         mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
476         snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
477
478         /*
479          * inacthead is used to provide FIFO ordering for LRU-bypassing
480          * insertions.
481          */
482         vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
483         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
484             &vmd->vmd_inacthead, plinks.q);
485
486         /*
487          * The clock pages are used to implement active queue scanning without
488          * requeues.  Scans start at clock[0], which is advanced after the scan
489          * ends.  When the two clock hands meet, they are reset and scanning
490          * resumes from the head of the queue.
491          */
492         vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
493         vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
494         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
495             &vmd->vmd_clock[0], plinks.q);
496         TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
497             &vmd->vmd_clock[1], plinks.q);
498 }
499
500 /*
501  * Initialize a physical page in preparation for adding it to the free
502  * lists.
503  */
504 static void
505 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
506 {
507
508         m->object = NULL;
509         m->ref_count = 0;
510         m->busy_lock = VPB_UNBUSIED;
511         m->flags = m->a.flags = 0;
512         m->phys_addr = pa;
513         m->a.queue = PQ_NONE;
514         m->psind = 0;
515         m->segind = segind;
516         m->order = VM_NFREEORDER;
517         m->pool = VM_FREEPOOL_DEFAULT;
518         m->valid = m->dirty = 0;
519         pmap_page_init(m);
520 }
521
522 #ifndef PMAP_HAS_PAGE_ARRAY
523 static vm_paddr_t
524 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
525 {
526         vm_paddr_t new_end;
527
528         /*
529          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
530          * However, because this page is allocated from KVM, out-of-bounds
531          * accesses using the direct map will not be trapped.
532          */
533         *vaddr += PAGE_SIZE;
534
535         /*
536          * Allocate physical memory for the page structures, and map it.
537          */
538         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
539         vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
540             VM_PROT_READ | VM_PROT_WRITE);
541         vm_page_array_size = page_range;
542
543         return (new_end);
544 }
545 #endif
546
547 /*
548  *      vm_page_startup:
549  *
550  *      Initializes the resident memory module.  Allocates physical memory for
551  *      bootstrapping UMA and some data structures that are used to manage
552  *      physical pages.  Initializes these structures, and populates the free
553  *      page queues.
554  */
555 vm_offset_t
556 vm_page_startup(vm_offset_t vaddr)
557 {
558         struct vm_phys_seg *seg;
559         vm_page_t m;
560         char *list, *listend;
561         vm_offset_t mapped;
562         vm_paddr_t end, high_avail, low_avail, new_end, size;
563         vm_paddr_t page_range __unused;
564         vm_paddr_t last_pa, pa;
565         u_long pagecount;
566         int biggestone, i, segind;
567 #ifdef WITNESS
568         int witness_size;
569 #endif
570 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
571         long ii;
572 #endif
573
574         vaddr = round_page(vaddr);
575
576         vm_phys_early_startup();
577         biggestone = vm_phys_avail_largest();
578         end = phys_avail[biggestone+1];
579
580         /*
581          * Initialize the page and queue locks.
582          */
583         mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
584         for (i = 0; i < PA_LOCK_COUNT; i++)
585                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
586         for (i = 0; i < vm_ndomains; i++)
587                 vm_page_domain_init(i);
588
589         /*
590          * Allocate memory for use when boot strapping the kernel memory
591          * allocator.  Tell UMA how many zones we are going to create
592          * before going fully functional.  UMA will add its zones.
593          *
594          * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP,
595          * KMAP ENTRY, MAP ENTRY, VMSPACE.
596          */
597         boot_pages = uma_startup_count(8);
598
599 #ifndef UMA_MD_SMALL_ALLOC
600         /* vmem_startup() calls uma_prealloc(). */
601         boot_pages += vmem_startup_count();
602         /* vm_map_startup() calls uma_prealloc(). */
603         boot_pages += howmany(MAX_KMAP,
604             slab_ipers(sizeof(struct vm_map), UMA_ALIGN_PTR));
605
606         /*
607          * Before going fully functional kmem_init() does allocation
608          * from "KMAP ENTRY" and vmem_create() does allocation from "vmem".
609          */
610         boot_pages += 2;
611 #endif
612         /*
613          * CTFLAG_RDTUN doesn't work during the early boot process, so we must
614          * manually fetch the value.
615          */
616         TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
617         new_end = end - (boot_pages * UMA_SLAB_SIZE);
618         new_end = trunc_page(new_end);
619         mapped = pmap_map(&vaddr, new_end, end,
620             VM_PROT_READ | VM_PROT_WRITE);
621         bzero((void *)mapped, end - new_end);
622         uma_startup((void *)mapped, boot_pages);
623
624 #ifdef WITNESS
625         witness_size = round_page(witness_startup_count());
626         new_end -= witness_size;
627         mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
628             VM_PROT_READ | VM_PROT_WRITE);
629         bzero((void *)mapped, witness_size);
630         witness_startup((void *)mapped);
631 #endif
632
633 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
634     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
635     defined(__powerpc64__)
636         /*
637          * Allocate a bitmap to indicate that a random physical page
638          * needs to be included in a minidump.
639          *
640          * The amd64 port needs this to indicate which direct map pages
641          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
642          *
643          * However, i386 still needs this workspace internally within the
644          * minidump code.  In theory, they are not needed on i386, but are
645          * included should the sf_buf code decide to use them.
646          */
647         last_pa = 0;
648         for (i = 0; dump_avail[i + 1] != 0; i += 2)
649                 if (dump_avail[i + 1] > last_pa)
650                         last_pa = dump_avail[i + 1];
651         page_range = last_pa / PAGE_SIZE;
652         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
653         new_end -= vm_page_dump_size;
654         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
655             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
656         bzero((void *)vm_page_dump, vm_page_dump_size);
657 #else
658         (void)last_pa;
659 #endif
660 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
661     defined(__riscv) || defined(__powerpc64__)
662         /*
663          * Include the UMA bootstrap pages, witness pages and vm_page_dump
664          * in a crash dump.  When pmap_map() uses the direct map, they are
665          * not automatically included.
666          */
667         for (pa = new_end; pa < end; pa += PAGE_SIZE)
668                 dump_add_page(pa);
669 #endif
670         phys_avail[biggestone + 1] = new_end;
671 #ifdef __amd64__
672         /*
673          * Request that the physical pages underlying the message buffer be
674          * included in a crash dump.  Since the message buffer is accessed
675          * through the direct map, they are not automatically included.
676          */
677         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
678         last_pa = pa + round_page(msgbufsize);
679         while (pa < last_pa) {
680                 dump_add_page(pa);
681                 pa += PAGE_SIZE;
682         }
683 #endif
684         /*
685          * Compute the number of pages of memory that will be available for
686          * use, taking into account the overhead of a page structure per page.
687          * In other words, solve
688          *      "available physical memory" - round_page(page_range *
689          *          sizeof(struct vm_page)) = page_range * PAGE_SIZE 
690          * for page_range.  
691          */
692         low_avail = phys_avail[0];
693         high_avail = phys_avail[1];
694         for (i = 0; i < vm_phys_nsegs; i++) {
695                 if (vm_phys_segs[i].start < low_avail)
696                         low_avail = vm_phys_segs[i].start;
697                 if (vm_phys_segs[i].end > high_avail)
698                         high_avail = vm_phys_segs[i].end;
699         }
700         /* Skip the first chunk.  It is already accounted for. */
701         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
702                 if (phys_avail[i] < low_avail)
703                         low_avail = phys_avail[i];
704                 if (phys_avail[i + 1] > high_avail)
705                         high_avail = phys_avail[i + 1];
706         }
707         first_page = low_avail / PAGE_SIZE;
708 #ifdef VM_PHYSSEG_SPARSE
709         size = 0;
710         for (i = 0; i < vm_phys_nsegs; i++)
711                 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
712         for (i = 0; phys_avail[i + 1] != 0; i += 2)
713                 size += phys_avail[i + 1] - phys_avail[i];
714 #elif defined(VM_PHYSSEG_DENSE)
715         size = high_avail - low_avail;
716 #else
717 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
718 #endif
719
720 #ifdef PMAP_HAS_PAGE_ARRAY
721         pmap_page_array_startup(size / PAGE_SIZE);
722         biggestone = vm_phys_avail_largest();
723         end = new_end = phys_avail[biggestone + 1];
724 #else
725 #ifdef VM_PHYSSEG_DENSE
726         /*
727          * In the VM_PHYSSEG_DENSE case, the number of pages can account for
728          * the overhead of a page structure per page only if vm_page_array is
729          * allocated from the last physical memory chunk.  Otherwise, we must
730          * allocate page structures representing the physical memory
731          * underlying vm_page_array, even though they will not be used.
732          */
733         if (new_end != high_avail)
734                 page_range = size / PAGE_SIZE;
735         else
736 #endif
737         {
738                 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
739
740                 /*
741                  * If the partial bytes remaining are large enough for
742                  * a page (PAGE_SIZE) without a corresponding
743                  * 'struct vm_page', then new_end will contain an
744                  * extra page after subtracting the length of the VM
745                  * page array.  Compensate by subtracting an extra
746                  * page from new_end.
747                  */
748                 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
749                         if (new_end == high_avail)
750                                 high_avail -= PAGE_SIZE;
751                         new_end -= PAGE_SIZE;
752                 }
753         }
754         end = new_end;
755         new_end = vm_page_array_alloc(&vaddr, end, page_range);
756 #endif
757
758 #if VM_NRESERVLEVEL > 0
759         /*
760          * Allocate physical memory for the reservation management system's
761          * data structures, and map it.
762          */
763         new_end = vm_reserv_startup(&vaddr, new_end);
764 #endif
765 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
766     defined(__riscv) || defined(__powerpc64__)
767         /*
768          * Include vm_page_array and vm_reserv_array in a crash dump.
769          */
770         for (pa = new_end; pa < end; pa += PAGE_SIZE)
771                 dump_add_page(pa);
772 #endif
773         phys_avail[biggestone + 1] = new_end;
774
775         /*
776          * Add physical memory segments corresponding to the available
777          * physical pages.
778          */
779         for (i = 0; phys_avail[i + 1] != 0; i += 2)
780                 if (vm_phys_avail_size(i) != 0)
781                         vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
782
783         /*
784          * Initialize the physical memory allocator.
785          */
786         vm_phys_init();
787
788         /*
789          * Initialize the page structures and add every available page to the
790          * physical memory allocator's free lists.
791          */
792 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
793         for (ii = 0; ii < vm_page_array_size; ii++) {
794                 m = &vm_page_array[ii];
795                 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
796                 m->flags = PG_FICTITIOUS;
797         }
798 #endif
799         vm_cnt.v_page_count = 0;
800         for (segind = 0; segind < vm_phys_nsegs; segind++) {
801                 seg = &vm_phys_segs[segind];
802                 for (m = seg->first_page, pa = seg->start; pa < seg->end;
803                     m++, pa += PAGE_SIZE)
804                         vm_page_init_page(m, pa, segind);
805
806                 /*
807                  * Add the segment to the free lists only if it is covered by
808                  * one of the ranges in phys_avail.  Because we've added the
809                  * ranges to the vm_phys_segs array, we can assume that each
810                  * segment is either entirely contained in one of the ranges,
811                  * or doesn't overlap any of them.
812                  */
813                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
814                         struct vm_domain *vmd;
815
816                         if (seg->start < phys_avail[i] ||
817                             seg->end > phys_avail[i + 1])
818                                 continue;
819
820                         m = seg->first_page;
821                         pagecount = (u_long)atop(seg->end - seg->start);
822
823                         vmd = VM_DOMAIN(seg->domain);
824                         vm_domain_free_lock(vmd);
825                         vm_phys_enqueue_contig(m, pagecount);
826                         vm_domain_free_unlock(vmd);
827                         vm_domain_freecnt_inc(vmd, pagecount);
828                         vm_cnt.v_page_count += (u_int)pagecount;
829
830                         vmd = VM_DOMAIN(seg->domain);
831                         vmd->vmd_page_count += (u_int)pagecount;
832                         vmd->vmd_segs |= 1UL << m->segind;
833                         break;
834                 }
835         }
836
837         /*
838          * Remove blacklisted pages from the physical memory allocator.
839          */
840         TAILQ_INIT(&blacklist_head);
841         vm_page_blacklist_load(&list, &listend);
842         vm_page_blacklist_check(list, listend);
843
844         list = kern_getenv("vm.blacklist");
845         vm_page_blacklist_check(list, NULL);
846
847         freeenv(list);
848 #if VM_NRESERVLEVEL > 0
849         /*
850          * Initialize the reservation management system.
851          */
852         vm_reserv_init();
853 #endif
854
855         return (vaddr);
856 }
857
858 void
859 vm_page_reference(vm_page_t m)
860 {
861
862         vm_page_aflag_set(m, PGA_REFERENCED);
863 }
864
865 static bool
866 vm_page_acquire_flags(vm_page_t m, int allocflags)
867 {
868         bool locked;
869
870         if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
871                 locked = vm_page_trysbusy(m);
872         else
873                 locked = vm_page_tryxbusy(m);
874         if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
875                 vm_page_wire(m);
876         return (locked);
877 }
878
879 static bool
880 vm_page_busy_sleep_flags(vm_object_t object, vm_page_t m, const char *wchan,
881     int allocflags)
882 {
883
884         if ((allocflags & VM_ALLOC_NOWAIT) != 0)
885                 return (false);
886         /*
887          * Reference the page before unlocking and
888          * sleeping so that the page daemon is less
889          * likely to reclaim it.
890          */
891         if ((allocflags & VM_ALLOC_NOCREAT) == 0)
892                 vm_page_aflag_set(m, PGA_REFERENCED);
893         vm_page_busy_sleep(m, wchan, (allocflags &
894             VM_ALLOC_IGN_SBUSY) != 0);
895         VM_OBJECT_WLOCK(object);
896         if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
897                 return (false);
898         return (true);
899 }
900
901 /*
902  *      vm_page_busy_acquire:
903  *
904  *      Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
905  *      and drop the object lock if necessary.
906  */
907 bool
908 vm_page_busy_acquire(vm_page_t m, int allocflags)
909 {
910         vm_object_t obj;
911         bool locked;
912
913         /*
914          * The page-specific object must be cached because page
915          * identity can change during the sleep, causing the
916          * re-lock of a different object.
917          * It is assumed that a reference to the object is already
918          * held by the callers.
919          */
920         obj = m->object;
921         for (;;) {
922                 if (vm_page_acquire_flags(m, allocflags))
923                         return (true);
924                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
925                         return (false);
926                 if (obj != NULL)
927                         locked = VM_OBJECT_WOWNED(obj);
928                 else
929                         locked = false;
930                 MPASS(locked || vm_page_wired(m));
931                 _vm_page_busy_sleep(obj, m, "vmpba",
932                     (allocflags & VM_ALLOC_SBUSY) != 0, locked);
933                 if (locked)
934                         VM_OBJECT_WLOCK(obj);
935                 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
936                         return (false);
937                 KASSERT(m->object == obj || m->object == NULL,
938                     ("vm_page_busy_acquire: page %p does not belong to %p",
939                     m, obj));
940         }
941 }
942
943 /*
944  *      vm_page_busy_downgrade:
945  *
946  *      Downgrade an exclusive busy page into a single shared busy page.
947  */
948 void
949 vm_page_busy_downgrade(vm_page_t m)
950 {
951         u_int x;
952
953         vm_page_assert_xbusied(m);
954
955         x = m->busy_lock;
956         for (;;) {
957                 if (atomic_fcmpset_rel_int(&m->busy_lock,
958                     &x, VPB_SHARERS_WORD(1)))
959                         break;
960         }
961         if ((x & VPB_BIT_WAITERS) != 0)
962                 wakeup(m);
963 }
964
965 /*
966  *
967  *      vm_page_busy_tryupgrade:
968  *
969  *      Attempt to upgrade a single shared busy into an exclusive busy.
970  */
971 int
972 vm_page_busy_tryupgrade(vm_page_t m)
973 {
974         u_int ce, x;
975
976         vm_page_assert_sbusied(m);
977
978         x = m->busy_lock;
979         ce = VPB_CURTHREAD_EXCLUSIVE;
980         for (;;) {
981                 if (VPB_SHARERS(x) > 1)
982                         return (0);
983                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
984                     ("vm_page_busy_tryupgrade: invalid lock state"));
985                 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
986                     ce | (x & VPB_BIT_WAITERS)))
987                         continue;
988                 return (1);
989         }
990 }
991
992 /*
993  *      vm_page_sbusied:
994  *
995  *      Return a positive value if the page is shared busied, 0 otherwise.
996  */
997 int
998 vm_page_sbusied(vm_page_t m)
999 {
1000         u_int x;
1001
1002         x = m->busy_lock;
1003         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1004 }
1005
1006 /*
1007  *      vm_page_sunbusy:
1008  *
1009  *      Shared unbusy a page.
1010  */
1011 void
1012 vm_page_sunbusy(vm_page_t m)
1013 {
1014         u_int x;
1015
1016         vm_page_assert_sbusied(m);
1017
1018         x = m->busy_lock;
1019         for (;;) {
1020                 if (VPB_SHARERS(x) > 1) {
1021                         if (atomic_fcmpset_int(&m->busy_lock, &x,
1022                             x - VPB_ONE_SHARER))
1023                                 break;
1024                         continue;
1025                 }
1026                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1027                     ("vm_page_sunbusy: invalid lock state"));
1028                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1029                         continue;
1030                 if ((x & VPB_BIT_WAITERS) == 0)
1031                         break;
1032                 wakeup(m);
1033                 break;
1034         }
1035 }
1036
1037 /*
1038  *      vm_page_busy_sleep:
1039  *
1040  *      Sleep if the page is busy, using the page pointer as wchan.
1041  *      This is used to implement the hard-path of busying mechanism.
1042  *
1043  *      If nonshared is true, sleep only if the page is xbusy.
1044  *
1045  *      The object lock must be held on entry and will be released on exit.
1046  */
1047 void
1048 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1049 {
1050         vm_object_t obj;
1051
1052         obj = m->object;
1053         VM_OBJECT_ASSERT_LOCKED(obj);
1054         vm_page_lock_assert(m, MA_NOTOWNED);
1055
1056         _vm_page_busy_sleep(obj, m, wmesg, nonshared, true);
1057 }
1058
1059 static void
1060 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg,
1061     bool nonshared, bool locked)
1062 {
1063         u_int x;
1064
1065         /*
1066          * If the object is busy we must wait for that to drain to zero
1067          * before trying the page again.
1068          */
1069         if (obj != NULL && vm_object_busied(obj)) {
1070                 if (locked)
1071                         VM_OBJECT_DROP(obj);
1072                 vm_object_busy_wait(obj, wmesg);
1073                 return;
1074         }
1075         sleepq_lock(m);
1076         x = m->busy_lock;
1077         if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
1078             ((x & VPB_BIT_WAITERS) == 0 &&
1079             !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
1080                 if (locked)
1081                         VM_OBJECT_DROP(obj);
1082                 sleepq_release(m);
1083                 return;
1084         }
1085         if (locked)
1086                 VM_OBJECT_DROP(obj);
1087         DROP_GIANT();
1088         sleepq_add(m, NULL, wmesg, 0, 0);
1089         sleepq_wait(m, PVM);
1090         PICKUP_GIANT();
1091 }
1092
1093 /*
1094  *      vm_page_trysbusy:
1095  *
1096  *      Try to shared busy a page.
1097  *      If the operation succeeds 1 is returned otherwise 0.
1098  *      The operation never sleeps.
1099  */
1100 int
1101 vm_page_trysbusy(vm_page_t m)
1102 {
1103         vm_object_t obj;
1104         u_int x;
1105
1106         obj = m->object;
1107         x = m->busy_lock;
1108         for (;;) {
1109                 if ((x & VPB_BIT_SHARED) == 0)
1110                         return (0);
1111                 /*
1112                  * Reduce the window for transient busies that will trigger
1113                  * false negatives in vm_page_ps_test().
1114                  */
1115                 if (obj != NULL && vm_object_busied(obj))
1116                         return (0);
1117                 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1118                     x + VPB_ONE_SHARER))
1119                         break;
1120         }
1121
1122         /* Refetch the object now that we're guaranteed that it is stable. */
1123         obj = m->object;
1124         if (obj != NULL && vm_object_busied(obj)) {
1125                 vm_page_sunbusy(m);
1126                 return (0);
1127         }
1128         return (1);
1129 }
1130
1131 /*
1132  *      vm_page_tryxbusy:
1133  *
1134  *      Try to exclusive busy a page.
1135  *      If the operation succeeds 1 is returned otherwise 0.
1136  *      The operation never sleeps.
1137  */
1138 int
1139 vm_page_tryxbusy(vm_page_t m)
1140 {
1141         vm_object_t obj;
1142
1143         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1144             VPB_CURTHREAD_EXCLUSIVE) == 0)
1145                 return (0);
1146
1147         obj = m->object;
1148         if (obj != NULL && vm_object_busied(obj)) {
1149                 vm_page_xunbusy(m);
1150                 return (0);
1151         }
1152         return (1);
1153 }
1154
1155 static void
1156 vm_page_xunbusy_hard_tail(vm_page_t m)
1157 {
1158         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1159         /* Wake the waiter. */
1160         wakeup(m);
1161 }
1162
1163 /*
1164  *      vm_page_xunbusy_hard:
1165  *
1166  *      Called when unbusy has failed because there is a waiter.
1167  */
1168 void
1169 vm_page_xunbusy_hard(vm_page_t m)
1170 {
1171         vm_page_assert_xbusied(m);
1172         vm_page_xunbusy_hard_tail(m);
1173 }
1174
1175 void
1176 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1177 {
1178         vm_page_assert_xbusied_unchecked(m);
1179         vm_page_xunbusy_hard_tail(m);
1180 }
1181
1182 /*
1183  * Avoid releasing and reacquiring the same page lock.
1184  */
1185 void
1186 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
1187 {
1188         struct mtx *mtx1;
1189
1190         mtx1 = vm_page_lockptr(m);
1191         if (*mtx == mtx1)
1192                 return;
1193         if (*mtx != NULL)
1194                 mtx_unlock(*mtx);
1195         *mtx = mtx1;
1196         mtx_lock(mtx1);
1197 }
1198
1199 /*
1200  *      vm_page_unhold_pages:
1201  *
1202  *      Unhold each of the pages that is referenced by the given array.
1203  */
1204 void
1205 vm_page_unhold_pages(vm_page_t *ma, int count)
1206 {
1207
1208         for (; count != 0; count--) {
1209                 vm_page_unwire(*ma, PQ_ACTIVE);
1210                 ma++;
1211         }
1212 }
1213
1214 vm_page_t
1215 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1216 {
1217         vm_page_t m;
1218
1219 #ifdef VM_PHYSSEG_SPARSE
1220         m = vm_phys_paddr_to_vm_page(pa);
1221         if (m == NULL)
1222                 m = vm_phys_fictitious_to_vm_page(pa);
1223         return (m);
1224 #elif defined(VM_PHYSSEG_DENSE)
1225         long pi;
1226
1227         pi = atop(pa);
1228         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1229                 m = &vm_page_array[pi - first_page];
1230                 return (m);
1231         }
1232         return (vm_phys_fictitious_to_vm_page(pa));
1233 #else
1234 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1235 #endif
1236 }
1237
1238 /*
1239  *      vm_page_getfake:
1240  *
1241  *      Create a fictitious page with the specified physical address and
1242  *      memory attribute.  The memory attribute is the only the machine-
1243  *      dependent aspect of a fictitious page that must be initialized.
1244  */
1245 vm_page_t
1246 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1247 {
1248         vm_page_t m;
1249
1250         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1251         vm_page_initfake(m, paddr, memattr);
1252         return (m);
1253 }
1254
1255 void
1256 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1257 {
1258
1259         if ((m->flags & PG_FICTITIOUS) != 0) {
1260                 /*
1261                  * The page's memattr might have changed since the
1262                  * previous initialization.  Update the pmap to the
1263                  * new memattr.
1264                  */
1265                 goto memattr;
1266         }
1267         m->phys_addr = paddr;
1268         m->a.queue = PQ_NONE;
1269         /* Fictitious pages don't use "segind". */
1270         m->flags = PG_FICTITIOUS;
1271         /* Fictitious pages don't use "order" or "pool". */
1272         m->oflags = VPO_UNMANAGED;
1273         m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1274         /* Fictitious pages are unevictable. */
1275         m->ref_count = 1;
1276         pmap_page_init(m);
1277 memattr:
1278         pmap_page_set_memattr(m, memattr);
1279 }
1280
1281 /*
1282  *      vm_page_putfake:
1283  *
1284  *      Release a fictitious page.
1285  */
1286 void
1287 vm_page_putfake(vm_page_t m)
1288 {
1289
1290         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1291         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1292             ("vm_page_putfake: bad page %p", m));
1293         if (vm_page_xbusied(m))
1294                 vm_page_xunbusy(m);
1295         uma_zfree(fakepg_zone, m);
1296 }
1297
1298 /*
1299  *      vm_page_updatefake:
1300  *
1301  *      Update the given fictitious page to the specified physical address and
1302  *      memory attribute.
1303  */
1304 void
1305 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1306 {
1307
1308         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1309             ("vm_page_updatefake: bad page %p", m));
1310         m->phys_addr = paddr;
1311         pmap_page_set_memattr(m, memattr);
1312 }
1313
1314 /*
1315  *      vm_page_free:
1316  *
1317  *      Free a page.
1318  */
1319 void
1320 vm_page_free(vm_page_t m)
1321 {
1322
1323         m->flags &= ~PG_ZERO;
1324         vm_page_free_toq(m);
1325 }
1326
1327 /*
1328  *      vm_page_free_zero:
1329  *
1330  *      Free a page to the zerod-pages queue
1331  */
1332 void
1333 vm_page_free_zero(vm_page_t m)
1334 {
1335
1336         m->flags |= PG_ZERO;
1337         vm_page_free_toq(m);
1338 }
1339
1340 /*
1341  * Unbusy and handle the page queueing for a page from a getpages request that
1342  * was optionally read ahead or behind.
1343  */
1344 void
1345 vm_page_readahead_finish(vm_page_t m)
1346 {
1347
1348         /* We shouldn't put invalid pages on queues. */
1349         KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1350
1351         /*
1352          * Since the page is not the actually needed one, whether it should
1353          * be activated or deactivated is not obvious.  Empirical results
1354          * have shown that deactivating the page is usually the best choice,
1355          * unless the page is wanted by another thread.
1356          */
1357         vm_page_lock(m);
1358         if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1359                 vm_page_activate(m);
1360         else
1361                 vm_page_deactivate(m);
1362         vm_page_unlock(m);
1363         vm_page_xunbusy_unchecked(m);
1364 }
1365
1366 /*
1367  *      vm_page_sleep_if_busy:
1368  *
1369  *      Sleep and release the object lock if the page is busied.
1370  *      Returns TRUE if the thread slept.
1371  *
1372  *      The given page must be unlocked and object containing it must
1373  *      be locked.
1374  */
1375 int
1376 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1377 {
1378         vm_object_t obj;
1379
1380         vm_page_lock_assert(m, MA_NOTOWNED);
1381         VM_OBJECT_ASSERT_WLOCKED(m->object);
1382
1383         /*
1384          * The page-specific object must be cached because page
1385          * identity can change during the sleep, causing the
1386          * re-lock of a different object.
1387          * It is assumed that a reference to the object is already
1388          * held by the callers.
1389          */
1390         obj = m->object;
1391         if (vm_page_busied(m) || (obj != NULL && obj->busy)) {
1392                 vm_page_busy_sleep(m, msg, false);
1393                 VM_OBJECT_WLOCK(obj);
1394                 return (TRUE);
1395         }
1396         return (FALSE);
1397 }
1398
1399 /*
1400  *      vm_page_sleep_if_xbusy:
1401  *
1402  *      Sleep and release the object lock if the page is xbusied.
1403  *      Returns TRUE if the thread slept.
1404  *
1405  *      The given page must be unlocked and object containing it must
1406  *      be locked.
1407  */
1408 int
1409 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg)
1410 {
1411         vm_object_t obj;
1412
1413         vm_page_lock_assert(m, MA_NOTOWNED);
1414         VM_OBJECT_ASSERT_WLOCKED(m->object);
1415
1416         /*
1417          * The page-specific object must be cached because page
1418          * identity can change during the sleep, causing the
1419          * re-lock of a different object.
1420          * It is assumed that a reference to the object is already
1421          * held by the callers.
1422          */
1423         obj = m->object;
1424         if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) {
1425                 vm_page_busy_sleep(m, msg, true);
1426                 VM_OBJECT_WLOCK(obj);
1427                 return (TRUE);
1428         }
1429         return (FALSE);
1430 }
1431
1432 /*
1433  *      vm_page_dirty_KBI:              [ internal use only ]
1434  *
1435  *      Set all bits in the page's dirty field.
1436  *
1437  *      The object containing the specified page must be locked if the
1438  *      call is made from the machine-independent layer.
1439  *
1440  *      See vm_page_clear_dirty_mask().
1441  *
1442  *      This function should only be called by vm_page_dirty().
1443  */
1444 void
1445 vm_page_dirty_KBI(vm_page_t m)
1446 {
1447
1448         /* Refer to this operation by its public name. */
1449         KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1450         m->dirty = VM_PAGE_BITS_ALL;
1451 }
1452
1453 /*
1454  *      vm_page_insert:         [ internal use only ]
1455  *
1456  *      Inserts the given mem entry into the object and object list.
1457  *
1458  *      The object must be locked.
1459  */
1460 int
1461 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1462 {
1463         vm_page_t mpred;
1464
1465         VM_OBJECT_ASSERT_WLOCKED(object);
1466         mpred = vm_radix_lookup_le(&object->rtree, pindex);
1467         return (vm_page_insert_after(m, object, pindex, mpred));
1468 }
1469
1470 /*
1471  *      vm_page_insert_after:
1472  *
1473  *      Inserts the page "m" into the specified object at offset "pindex".
1474  *
1475  *      The page "mpred" must immediately precede the offset "pindex" within
1476  *      the specified object.
1477  *
1478  *      The object must be locked.
1479  */
1480 static int
1481 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1482     vm_page_t mpred)
1483 {
1484         vm_page_t msucc;
1485
1486         VM_OBJECT_ASSERT_WLOCKED(object);
1487         KASSERT(m->object == NULL,
1488             ("vm_page_insert_after: page already inserted"));
1489         if (mpred != NULL) {
1490                 KASSERT(mpred->object == object,
1491                     ("vm_page_insert_after: object doesn't contain mpred"));
1492                 KASSERT(mpred->pindex < pindex,
1493                     ("vm_page_insert_after: mpred doesn't precede pindex"));
1494                 msucc = TAILQ_NEXT(mpred, listq);
1495         } else
1496                 msucc = TAILQ_FIRST(&object->memq);
1497         if (msucc != NULL)
1498                 KASSERT(msucc->pindex > pindex,
1499                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
1500
1501         /*
1502          * Record the object/offset pair in this page.
1503          */
1504         m->object = object;
1505         m->pindex = pindex;
1506         m->ref_count |= VPRC_OBJREF;
1507
1508         /*
1509          * Now link into the object's ordered list of backed pages.
1510          */
1511         if (vm_radix_insert(&object->rtree, m)) {
1512                 m->object = NULL;
1513                 m->pindex = 0;
1514                 m->ref_count &= ~VPRC_OBJREF;
1515                 return (1);
1516         }
1517         vm_page_insert_radixdone(m, object, mpred);
1518         return (0);
1519 }
1520
1521 /*
1522  *      vm_page_insert_radixdone:
1523  *
1524  *      Complete page "m" insertion into the specified object after the
1525  *      radix trie hooking.
1526  *
1527  *      The page "mpred" must precede the offset "m->pindex" within the
1528  *      specified object.
1529  *
1530  *      The object must be locked.
1531  */
1532 static void
1533 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1534 {
1535
1536         VM_OBJECT_ASSERT_WLOCKED(object);
1537         KASSERT(object != NULL && m->object == object,
1538             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1539         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1540             ("vm_page_insert_radixdone: page %p is missing object ref", m));
1541         if (mpred != NULL) {
1542                 KASSERT(mpred->object == object,
1543                     ("vm_page_insert_radixdone: object doesn't contain mpred"));
1544                 KASSERT(mpred->pindex < m->pindex,
1545                     ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1546         }
1547
1548         if (mpred != NULL)
1549                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1550         else
1551                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1552
1553         /*
1554          * Show that the object has one more resident page.
1555          */
1556         object->resident_page_count++;
1557
1558         /*
1559          * Hold the vnode until the last page is released.
1560          */
1561         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1562                 vhold(object->handle);
1563
1564         /*
1565          * Since we are inserting a new and possibly dirty page,
1566          * update the object's generation count.
1567          */
1568         if (pmap_page_is_write_mapped(m))
1569                 vm_object_set_writeable_dirty(object);
1570 }
1571
1572 /*
1573  * Do the work to remove a page from its object.  The caller is responsible for
1574  * updating the page's fields to reflect this removal.
1575  */
1576 static void
1577 vm_page_object_remove(vm_page_t m)
1578 {
1579         vm_object_t object;
1580         vm_page_t mrem;
1581
1582         object = m->object;
1583         VM_OBJECT_ASSERT_WLOCKED(object);
1584         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1585             ("page %p is missing its object ref", m));
1586
1587         mrem = vm_radix_remove(&object->rtree, m->pindex);
1588         KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1589
1590         /*
1591          * Now remove from the object's list of backed pages.
1592          */
1593         TAILQ_REMOVE(&object->memq, m, listq);
1594
1595         /*
1596          * And show that the object has one fewer resident page.
1597          */
1598         object->resident_page_count--;
1599
1600         /*
1601          * The vnode may now be recycled.
1602          */
1603         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1604                 vdrop(object->handle);
1605 }
1606
1607 /*
1608  *      vm_page_remove:
1609  *
1610  *      Removes the specified page from its containing object, but does not
1611  *      invalidate any backing storage.  Returns true if the object's reference
1612  *      was the last reference to the page, and false otherwise.
1613  *
1614  *      The object must be locked.
1615  */
1616 bool
1617 vm_page_remove(vm_page_t m)
1618 {
1619
1620         vm_page_object_remove(m);
1621         m->object = NULL;
1622         return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1623 }
1624
1625 /*
1626  *      vm_page_lookup:
1627  *
1628  *      Returns the page associated with the object/offset
1629  *      pair specified; if none is found, NULL is returned.
1630  *
1631  *      The object must be locked.
1632  */
1633 vm_page_t
1634 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1635 {
1636
1637         VM_OBJECT_ASSERT_LOCKED(object);
1638         return (vm_radix_lookup(&object->rtree, pindex));
1639 }
1640
1641 /*
1642  *      vm_page_find_least:
1643  *
1644  *      Returns the page associated with the object with least pindex
1645  *      greater than or equal to the parameter pindex, or NULL.
1646  *
1647  *      The object must be locked.
1648  */
1649 vm_page_t
1650 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1651 {
1652         vm_page_t m;
1653
1654         VM_OBJECT_ASSERT_LOCKED(object);
1655         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1656                 m = vm_radix_lookup_ge(&object->rtree, pindex);
1657         return (m);
1658 }
1659
1660 /*
1661  * Returns the given page's successor (by pindex) within the object if it is
1662  * resident; if none is found, NULL is returned.
1663  *
1664  * The object must be locked.
1665  */
1666 vm_page_t
1667 vm_page_next(vm_page_t m)
1668 {
1669         vm_page_t next;
1670
1671         VM_OBJECT_ASSERT_LOCKED(m->object);
1672         if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1673                 MPASS(next->object == m->object);
1674                 if (next->pindex != m->pindex + 1)
1675                         next = NULL;
1676         }
1677         return (next);
1678 }
1679
1680 /*
1681  * Returns the given page's predecessor (by pindex) within the object if it is
1682  * resident; if none is found, NULL is returned.
1683  *
1684  * The object must be locked.
1685  */
1686 vm_page_t
1687 vm_page_prev(vm_page_t m)
1688 {
1689         vm_page_t prev;
1690
1691         VM_OBJECT_ASSERT_LOCKED(m->object);
1692         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1693                 MPASS(prev->object == m->object);
1694                 if (prev->pindex != m->pindex - 1)
1695                         prev = NULL;
1696         }
1697         return (prev);
1698 }
1699
1700 /*
1701  * Uses the page mnew as a replacement for an existing page at index
1702  * pindex which must be already present in the object.
1703  */
1704 vm_page_t
1705 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1706 {
1707         vm_page_t mold;
1708
1709         VM_OBJECT_ASSERT_WLOCKED(object);
1710         KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1711             ("vm_page_replace: page %p already in object", mnew));
1712
1713         /*
1714          * This function mostly follows vm_page_insert() and
1715          * vm_page_remove() without the radix, object count and vnode
1716          * dance.  Double check such functions for more comments.
1717          */
1718
1719         mnew->object = object;
1720         mnew->pindex = pindex;
1721         atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1722         mold = vm_radix_replace(&object->rtree, mnew);
1723
1724         /* Keep the resident page list in sorted order. */
1725         TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1726         TAILQ_REMOVE(&object->memq, mold, listq);
1727
1728         mold->object = NULL;
1729         atomic_clear_int(&mold->ref_count, VPRC_OBJREF);
1730         vm_page_xunbusy(mold);
1731
1732         /*
1733          * The object's resident_page_count does not change because we have
1734          * swapped one page for another, but the generation count should
1735          * change if the page is dirty.
1736          */
1737         if (pmap_page_is_write_mapped(mnew))
1738                 vm_object_set_writeable_dirty(object);
1739         return (mold);
1740 }
1741
1742 /*
1743  *      vm_page_rename:
1744  *
1745  *      Move the given memory entry from its
1746  *      current object to the specified target object/offset.
1747  *
1748  *      Note: swap associated with the page must be invalidated by the move.  We
1749  *            have to do this for several reasons:  (1) we aren't freeing the
1750  *            page, (2) we are dirtying the page, (3) the VM system is probably
1751  *            moving the page from object A to B, and will then later move
1752  *            the backing store from A to B and we can't have a conflict.
1753  *
1754  *      Note: we *always* dirty the page.  It is necessary both for the
1755  *            fact that we moved it, and because we may be invalidating
1756  *            swap.
1757  *
1758  *      The objects must be locked.
1759  */
1760 int
1761 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1762 {
1763         vm_page_t mpred;
1764         vm_pindex_t opidx;
1765
1766         VM_OBJECT_ASSERT_WLOCKED(new_object);
1767
1768         KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1769         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1770         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1771             ("vm_page_rename: pindex already renamed"));
1772
1773         /*
1774          * Create a custom version of vm_page_insert() which does not depend
1775          * by m_prev and can cheat on the implementation aspects of the
1776          * function.
1777          */
1778         opidx = m->pindex;
1779         m->pindex = new_pindex;
1780         if (vm_radix_insert(&new_object->rtree, m)) {
1781                 m->pindex = opidx;
1782                 return (1);
1783         }
1784
1785         /*
1786          * The operation cannot fail anymore.  The removal must happen before
1787          * the listq iterator is tainted.
1788          */
1789         m->pindex = opidx;
1790         vm_page_object_remove(m);
1791
1792         /* Return back to the new pindex to complete vm_page_insert(). */
1793         m->pindex = new_pindex;
1794         m->object = new_object;
1795
1796         vm_page_insert_radixdone(m, new_object, mpred);
1797         vm_page_dirty(m);
1798         return (0);
1799 }
1800
1801 /*
1802  *      vm_page_alloc:
1803  *
1804  *      Allocate and return a page that is associated with the specified
1805  *      object and offset pair.  By default, this page is exclusive busied.
1806  *
1807  *      The caller must always specify an allocation class.
1808  *
1809  *      allocation classes:
1810  *      VM_ALLOC_NORMAL         normal process request
1811  *      VM_ALLOC_SYSTEM         system *really* needs a page
1812  *      VM_ALLOC_INTERRUPT      interrupt time request
1813  *
1814  *      optional allocation flags:
1815  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
1816  *                              intends to allocate
1817  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1818  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1819  *      VM_ALLOC_NOOBJ          page is not associated with an object and
1820  *                              should not be exclusive busy
1821  *      VM_ALLOC_SBUSY          shared busy the allocated page
1822  *      VM_ALLOC_WIRED          wire the allocated page
1823  *      VM_ALLOC_ZERO           prefer a zeroed page
1824  */
1825 vm_page_t
1826 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1827 {
1828
1829         return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1830             vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1831 }
1832
1833 vm_page_t
1834 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1835     int req)
1836 {
1837
1838         return (vm_page_alloc_domain_after(object, pindex, domain, req,
1839             object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1840             NULL));
1841 }
1842
1843 /*
1844  * Allocate a page in the specified object with the given page index.  To
1845  * optimize insertion of the page into the object, the caller must also specifiy
1846  * the resident page in the object with largest index smaller than the given
1847  * page index, or NULL if no such page exists.
1848  */
1849 vm_page_t
1850 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1851     int req, vm_page_t mpred)
1852 {
1853         struct vm_domainset_iter di;
1854         vm_page_t m;
1855         int domain;
1856
1857         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1858         do {
1859                 m = vm_page_alloc_domain_after(object, pindex, domain, req,
1860                     mpred);
1861                 if (m != NULL)
1862                         break;
1863         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
1864
1865         return (m);
1866 }
1867
1868 /*
1869  * Returns true if the number of free pages exceeds the minimum
1870  * for the request class and false otherwise.
1871  */
1872 static int
1873 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1874 {
1875         u_int limit, old, new;
1876
1877         if (req_class == VM_ALLOC_INTERRUPT)
1878                 limit = 0;
1879         else if (req_class == VM_ALLOC_SYSTEM)
1880                 limit = vmd->vmd_interrupt_free_min;
1881         else
1882                 limit = vmd->vmd_free_reserved;
1883
1884         /*
1885          * Attempt to reserve the pages.  Fail if we're below the limit.
1886          */
1887         limit += npages;
1888         old = vmd->vmd_free_count;
1889         do {
1890                 if (old < limit)
1891                         return (0);
1892                 new = old - npages;
1893         } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1894
1895         /* Wake the page daemon if we've crossed the threshold. */
1896         if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1897                 pagedaemon_wakeup(vmd->vmd_domain);
1898
1899         /* Only update bitsets on transitions. */
1900         if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1901             (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1902                 vm_domain_set(vmd);
1903
1904         return (1);
1905 }
1906
1907 int
1908 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1909 {
1910         int req_class;
1911
1912         /*
1913          * The page daemon is allowed to dig deeper into the free page list.
1914          */
1915         req_class = req & VM_ALLOC_CLASS_MASK;
1916         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1917                 req_class = VM_ALLOC_SYSTEM;
1918         return (_vm_domain_allocate(vmd, req_class, npages));
1919 }
1920
1921 vm_page_t
1922 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1923     int req, vm_page_t mpred)
1924 {
1925         struct vm_domain *vmd;
1926         vm_page_t m;
1927         int flags, pool;
1928
1929         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1930             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1931             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1932             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1933             ("inconsistent object(%p)/req(%x)", object, req));
1934         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1935             ("Can't sleep and retry object insertion."));
1936         KASSERT(mpred == NULL || mpred->pindex < pindex,
1937             ("mpred %p doesn't precede pindex 0x%jx", mpred,
1938             (uintmax_t)pindex));
1939         if (object != NULL)
1940                 VM_OBJECT_ASSERT_WLOCKED(object);
1941
1942         flags = 0;
1943         m = NULL;
1944         pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
1945 again:
1946 #if VM_NRESERVLEVEL > 0
1947         /*
1948          * Can we allocate the page from a reservation?
1949          */
1950         if (vm_object_reserv(object) &&
1951             (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
1952             NULL) {
1953                 domain = vm_phys_domain(m);
1954                 vmd = VM_DOMAIN(domain);
1955                 goto found;
1956         }
1957 #endif
1958         vmd = VM_DOMAIN(domain);
1959         if (vmd->vmd_pgcache[pool].zone != NULL) {
1960                 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
1961                 if (m != NULL) {
1962                         flags |= PG_PCPU_CACHE;
1963                         goto found;
1964                 }
1965         }
1966         if (vm_domain_allocate(vmd, req, 1)) {
1967                 /*
1968                  * If not, allocate it from the free page queues.
1969                  */
1970                 vm_domain_free_lock(vmd);
1971                 m = vm_phys_alloc_pages(domain, pool, 0);
1972                 vm_domain_free_unlock(vmd);
1973                 if (m == NULL) {
1974                         vm_domain_freecnt_inc(vmd, 1);
1975 #if VM_NRESERVLEVEL > 0
1976                         if (vm_reserv_reclaim_inactive(domain))
1977                                 goto again;
1978 #endif
1979                 }
1980         }
1981         if (m == NULL) {
1982                 /*
1983                  * Not allocatable, give up.
1984                  */
1985                 if (vm_domain_alloc_fail(vmd, object, req))
1986                         goto again;
1987                 return (NULL);
1988         }
1989
1990         /*
1991          * At this point we had better have found a good page.
1992          */
1993 found:
1994         vm_page_dequeue(m);
1995         vm_page_alloc_check(m);
1996
1997         /*
1998          * Initialize the page.  Only the PG_ZERO flag is inherited.
1999          */
2000         if ((req & VM_ALLOC_ZERO) != 0)
2001                 flags |= (m->flags & PG_ZERO);
2002         if ((req & VM_ALLOC_NODUMP) != 0)
2003                 flags |= PG_NODUMP;
2004         m->flags = flags;
2005         m->a.flags = 0;
2006         m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2007             VPO_UNMANAGED : 0;
2008         m->busy_lock = VPB_UNBUSIED;
2009         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2010                 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2011         if ((req & VM_ALLOC_SBUSY) != 0)
2012                 m->busy_lock = VPB_SHARERS_WORD(1);
2013         if (req & VM_ALLOC_WIRED) {
2014                 /*
2015                  * The page lock is not required for wiring a page until that
2016                  * page is inserted into the object.
2017                  */
2018                 vm_wire_add(1);
2019                 m->ref_count = 1;
2020         }
2021         m->a.act_count = 0;
2022
2023         if (object != NULL) {
2024                 if (vm_page_insert_after(m, object, pindex, mpred)) {
2025                         if (req & VM_ALLOC_WIRED) {
2026                                 vm_wire_sub(1);
2027                                 m->ref_count = 0;
2028                         }
2029                         KASSERT(m->object == NULL, ("page %p has object", m));
2030                         m->oflags = VPO_UNMANAGED;
2031                         m->busy_lock = VPB_UNBUSIED;
2032                         /* Don't change PG_ZERO. */
2033                         vm_page_free_toq(m);
2034                         if (req & VM_ALLOC_WAITFAIL) {
2035                                 VM_OBJECT_WUNLOCK(object);
2036                                 vm_radix_wait();
2037                                 VM_OBJECT_WLOCK(object);
2038                         }
2039                         return (NULL);
2040                 }
2041
2042                 /* Ignore device objects; the pager sets "memattr" for them. */
2043                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2044                     (object->flags & OBJ_FICTITIOUS) == 0)
2045                         pmap_page_set_memattr(m, object->memattr);
2046         } else
2047                 m->pindex = pindex;
2048
2049         return (m);
2050 }
2051
2052 /*
2053  *      vm_page_alloc_contig:
2054  *
2055  *      Allocate a contiguous set of physical pages of the given size "npages"
2056  *      from the free lists.  All of the physical pages must be at or above
2057  *      the given physical address "low" and below the given physical address
2058  *      "high".  The given value "alignment" determines the alignment of the
2059  *      first physical page in the set.  If the given value "boundary" is
2060  *      non-zero, then the set of physical pages cannot cross any physical
2061  *      address boundary that is a multiple of that value.  Both "alignment"
2062  *      and "boundary" must be a power of two.
2063  *
2064  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2065  *      then the memory attribute setting for the physical pages is configured
2066  *      to the object's memory attribute setting.  Otherwise, the memory
2067  *      attribute setting for the physical pages is configured to "memattr",
2068  *      overriding the object's memory attribute setting.  However, if the
2069  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2070  *      memory attribute setting for the physical pages cannot be configured
2071  *      to VM_MEMATTR_DEFAULT.
2072  *
2073  *      The specified object may not contain fictitious pages.
2074  *
2075  *      The caller must always specify an allocation class.
2076  *
2077  *      allocation classes:
2078  *      VM_ALLOC_NORMAL         normal process request
2079  *      VM_ALLOC_SYSTEM         system *really* needs a page
2080  *      VM_ALLOC_INTERRUPT      interrupt time request
2081  *
2082  *      optional allocation flags:
2083  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
2084  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
2085  *      VM_ALLOC_NOOBJ          page is not associated with an object and
2086  *                              should not be exclusive busy
2087  *      VM_ALLOC_SBUSY          shared busy the allocated page
2088  *      VM_ALLOC_WIRED          wire the allocated page
2089  *      VM_ALLOC_ZERO           prefer a zeroed page
2090  */
2091 vm_page_t
2092 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2093     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2094     vm_paddr_t boundary, vm_memattr_t memattr)
2095 {
2096         struct vm_domainset_iter di;
2097         vm_page_t m;
2098         int domain;
2099
2100         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2101         do {
2102                 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2103                     npages, low, high, alignment, boundary, memattr);
2104                 if (m != NULL)
2105                         break;
2106         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2107
2108         return (m);
2109 }
2110
2111 vm_page_t
2112 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2113     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2114     vm_paddr_t boundary, vm_memattr_t memattr)
2115 {
2116         struct vm_domain *vmd;
2117         vm_page_t m, m_ret, mpred;
2118         u_int busy_lock, flags, oflags;
2119
2120         mpred = NULL;   /* XXX: pacify gcc */
2121         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2122             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2123             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2124             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2125             ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2126             req));
2127         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2128             ("Can't sleep and retry object insertion."));
2129         if (object != NULL) {
2130                 VM_OBJECT_ASSERT_WLOCKED(object);
2131                 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2132                     ("vm_page_alloc_contig: object %p has fictitious pages",
2133                     object));
2134         }
2135         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2136
2137         if (object != NULL) {
2138                 mpred = vm_radix_lookup_le(&object->rtree, pindex);
2139                 KASSERT(mpred == NULL || mpred->pindex != pindex,
2140                     ("vm_page_alloc_contig: pindex already allocated"));
2141         }
2142
2143         /*
2144          * Can we allocate the pages without the number of free pages falling
2145          * below the lower bound for the allocation class?
2146          */
2147         m_ret = NULL;
2148 again:
2149 #if VM_NRESERVLEVEL > 0
2150         /*
2151          * Can we allocate the pages from a reservation?
2152          */
2153         if (vm_object_reserv(object) &&
2154             (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2155             mpred, npages, low, high, alignment, boundary)) != NULL) {
2156                 domain = vm_phys_domain(m_ret);
2157                 vmd = VM_DOMAIN(domain);
2158                 goto found;
2159         }
2160 #endif
2161         vmd = VM_DOMAIN(domain);
2162         if (vm_domain_allocate(vmd, req, npages)) {
2163                 /*
2164                  * allocate them from the free page queues.
2165                  */
2166                 vm_domain_free_lock(vmd);
2167                 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2168                     alignment, boundary);
2169                 vm_domain_free_unlock(vmd);
2170                 if (m_ret == NULL) {
2171                         vm_domain_freecnt_inc(vmd, npages);
2172 #if VM_NRESERVLEVEL > 0
2173                         if (vm_reserv_reclaim_contig(domain, npages, low,
2174                             high, alignment, boundary))
2175                                 goto again;
2176 #endif
2177                 }
2178         }
2179         if (m_ret == NULL) {
2180                 if (vm_domain_alloc_fail(vmd, object, req))
2181                         goto again;
2182                 return (NULL);
2183         }
2184 #if VM_NRESERVLEVEL > 0
2185 found:
2186 #endif
2187         for (m = m_ret; m < &m_ret[npages]; m++) {
2188                 vm_page_dequeue(m);
2189                 vm_page_alloc_check(m);
2190         }
2191
2192         /*
2193          * Initialize the pages.  Only the PG_ZERO flag is inherited.
2194          */
2195         flags = 0;
2196         if ((req & VM_ALLOC_ZERO) != 0)
2197                 flags = PG_ZERO;
2198         if ((req & VM_ALLOC_NODUMP) != 0)
2199                 flags |= PG_NODUMP;
2200         oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2201             VPO_UNMANAGED : 0;
2202         busy_lock = VPB_UNBUSIED;
2203         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2204                 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2205         if ((req & VM_ALLOC_SBUSY) != 0)
2206                 busy_lock = VPB_SHARERS_WORD(1);
2207         if ((req & VM_ALLOC_WIRED) != 0)
2208                 vm_wire_add(npages);
2209         if (object != NULL) {
2210                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2211                     memattr == VM_MEMATTR_DEFAULT)
2212                         memattr = object->memattr;
2213         }
2214         for (m = m_ret; m < &m_ret[npages]; m++) {
2215                 m->a.flags = 0;
2216                 m->flags = (m->flags | PG_NODUMP) & flags;
2217                 m->busy_lock = busy_lock;
2218                 if ((req & VM_ALLOC_WIRED) != 0)
2219                         m->ref_count = 1;
2220                 m->a.act_count = 0;
2221                 m->oflags = oflags;
2222                 if (object != NULL) {
2223                         if (vm_page_insert_after(m, object, pindex, mpred)) {
2224                                 if ((req & VM_ALLOC_WIRED) != 0)
2225                                         vm_wire_sub(npages);
2226                                 KASSERT(m->object == NULL,
2227                                     ("page %p has object", m));
2228                                 mpred = m;
2229                                 for (m = m_ret; m < &m_ret[npages]; m++) {
2230                                         if (m <= mpred &&
2231                                             (req & VM_ALLOC_WIRED) != 0)
2232                                                 m->ref_count = 0;
2233                                         m->oflags = VPO_UNMANAGED;
2234                                         m->busy_lock = VPB_UNBUSIED;
2235                                         /* Don't change PG_ZERO. */
2236                                         vm_page_free_toq(m);
2237                                 }
2238                                 if (req & VM_ALLOC_WAITFAIL) {
2239                                         VM_OBJECT_WUNLOCK(object);
2240                                         vm_radix_wait();
2241                                         VM_OBJECT_WLOCK(object);
2242                                 }
2243                                 return (NULL);
2244                         }
2245                         mpred = m;
2246                 } else
2247                         m->pindex = pindex;
2248                 if (memattr != VM_MEMATTR_DEFAULT)
2249                         pmap_page_set_memattr(m, memattr);
2250                 pindex++;
2251         }
2252         return (m_ret);
2253 }
2254
2255 /*
2256  * Check a page that has been freshly dequeued from a freelist.
2257  */
2258 static void
2259 vm_page_alloc_check(vm_page_t m)
2260 {
2261
2262         KASSERT(m->object == NULL, ("page %p has object", m));
2263         KASSERT(m->a.queue == PQ_NONE &&
2264             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2265             ("page %p has unexpected queue %d, flags %#x",
2266             m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2267         KASSERT(m->ref_count == 0, ("page %p has references", m));
2268         KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2269         KASSERT(m->dirty == 0, ("page %p is dirty", m));
2270         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2271             ("page %p has unexpected memattr %d",
2272             m, pmap_page_get_memattr(m)));
2273         KASSERT(m->valid == 0, ("free page %p is valid", m));
2274 }
2275
2276 /*
2277  *      vm_page_alloc_freelist:
2278  *
2279  *      Allocate a physical page from the specified free page list.
2280  *
2281  *      The caller must always specify an allocation class.
2282  *
2283  *      allocation classes:
2284  *      VM_ALLOC_NORMAL         normal process request
2285  *      VM_ALLOC_SYSTEM         system *really* needs a page
2286  *      VM_ALLOC_INTERRUPT      interrupt time request
2287  *
2288  *      optional allocation flags:
2289  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
2290  *                              intends to allocate
2291  *      VM_ALLOC_WIRED          wire the allocated page
2292  *      VM_ALLOC_ZERO           prefer a zeroed page
2293  */
2294 vm_page_t
2295 vm_page_alloc_freelist(int freelist, int req)
2296 {
2297         struct vm_domainset_iter di;
2298         vm_page_t m;
2299         int domain;
2300
2301         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2302         do {
2303                 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2304                 if (m != NULL)
2305                         break;
2306         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2307
2308         return (m);
2309 }
2310
2311 vm_page_t
2312 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2313 {
2314         struct vm_domain *vmd;
2315         vm_page_t m;
2316         u_int flags;
2317
2318         m = NULL;
2319         vmd = VM_DOMAIN(domain);
2320 again:
2321         if (vm_domain_allocate(vmd, req, 1)) {
2322                 vm_domain_free_lock(vmd);
2323                 m = vm_phys_alloc_freelist_pages(domain, freelist,
2324                     VM_FREEPOOL_DIRECT, 0);
2325                 vm_domain_free_unlock(vmd);
2326                 if (m == NULL)
2327                         vm_domain_freecnt_inc(vmd, 1);
2328         }
2329         if (m == NULL) {
2330                 if (vm_domain_alloc_fail(vmd, NULL, req))
2331                         goto again;
2332                 return (NULL);
2333         }
2334         vm_page_dequeue(m);
2335         vm_page_alloc_check(m);
2336
2337         /*
2338          * Initialize the page.  Only the PG_ZERO flag is inherited.
2339          */
2340         m->a.flags = 0;
2341         flags = 0;
2342         if ((req & VM_ALLOC_ZERO) != 0)
2343                 flags = PG_ZERO;
2344         m->flags &= flags;
2345         if ((req & VM_ALLOC_WIRED) != 0) {
2346                 /*
2347                  * The page lock is not required for wiring a page that does
2348                  * not belong to an object.
2349                  */
2350                 vm_wire_add(1);
2351                 m->ref_count = 1;
2352         }
2353         /* Unmanaged pages don't use "act_count". */
2354         m->oflags = VPO_UNMANAGED;
2355         return (m);
2356 }
2357
2358 static int
2359 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2360 {
2361         struct vm_domain *vmd;
2362         struct vm_pgcache *pgcache;
2363         int i;
2364
2365         pgcache = arg;
2366         vmd = VM_DOMAIN(pgcache->domain);
2367
2368         /*
2369          * The page daemon should avoid creating extra memory pressure since its
2370          * main purpose is to replenish the store of free pages.
2371          */
2372         if (vmd->vmd_severeset || curproc == pageproc ||
2373             !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2374                 return (0);
2375         domain = vmd->vmd_domain;
2376         vm_domain_free_lock(vmd);
2377         i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2378             (vm_page_t *)store);
2379         vm_domain_free_unlock(vmd);
2380         if (cnt != i)
2381                 vm_domain_freecnt_inc(vmd, cnt - i);
2382
2383         return (i);
2384 }
2385
2386 static void
2387 vm_page_zone_release(void *arg, void **store, int cnt)
2388 {
2389         struct vm_domain *vmd;
2390         struct vm_pgcache *pgcache;
2391         vm_page_t m;
2392         int i;
2393
2394         pgcache = arg;
2395         vmd = VM_DOMAIN(pgcache->domain);
2396         vm_domain_free_lock(vmd);
2397         for (i = 0; i < cnt; i++) {
2398                 m = (vm_page_t)store[i];
2399                 vm_phys_free_pages(m, 0);
2400         }
2401         vm_domain_free_unlock(vmd);
2402         vm_domain_freecnt_inc(vmd, cnt);
2403 }
2404
2405 #define VPSC_ANY        0       /* No restrictions. */
2406 #define VPSC_NORESERV   1       /* Skip reservations; implies VPSC_NOSUPER. */
2407 #define VPSC_NOSUPER    2       /* Skip superpages. */
2408
2409 /*
2410  *      vm_page_scan_contig:
2411  *
2412  *      Scan vm_page_array[] between the specified entries "m_start" and
2413  *      "m_end" for a run of contiguous physical pages that satisfy the
2414  *      specified conditions, and return the lowest page in the run.  The
2415  *      specified "alignment" determines the alignment of the lowest physical
2416  *      page in the run.  If the specified "boundary" is non-zero, then the
2417  *      run of physical pages cannot span a physical address that is a
2418  *      multiple of "boundary".
2419  *
2420  *      "m_end" is never dereferenced, so it need not point to a vm_page
2421  *      structure within vm_page_array[].
2422  *
2423  *      "npages" must be greater than zero.  "m_start" and "m_end" must not
2424  *      span a hole (or discontiguity) in the physical address space.  Both
2425  *      "alignment" and "boundary" must be a power of two.
2426  */
2427 vm_page_t
2428 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2429     u_long alignment, vm_paddr_t boundary, int options)
2430 {
2431         struct mtx *m_mtx;
2432         vm_object_t object;
2433         vm_paddr_t pa;
2434         vm_page_t m, m_run;
2435 #if VM_NRESERVLEVEL > 0
2436         int level;
2437 #endif
2438         int m_inc, order, run_ext, run_len;
2439
2440         KASSERT(npages > 0, ("npages is 0"));
2441         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2442         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2443         m_run = NULL;
2444         run_len = 0;
2445         m_mtx = NULL;
2446         for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2447                 KASSERT((m->flags & PG_MARKER) == 0,
2448                     ("page %p is PG_MARKER", m));
2449                 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2450                     ("fictitious page %p has invalid ref count", m));
2451
2452                 /*
2453                  * If the current page would be the start of a run, check its
2454                  * physical address against the end, alignment, and boundary
2455                  * conditions.  If it doesn't satisfy these conditions, either
2456                  * terminate the scan or advance to the next page that
2457                  * satisfies the failed condition.
2458                  */
2459                 if (run_len == 0) {
2460                         KASSERT(m_run == NULL, ("m_run != NULL"));
2461                         if (m + npages > m_end)
2462                                 break;
2463                         pa = VM_PAGE_TO_PHYS(m);
2464                         if ((pa & (alignment - 1)) != 0) {
2465                                 m_inc = atop(roundup2(pa, alignment) - pa);
2466                                 continue;
2467                         }
2468                         if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2469                             boundary) != 0) {
2470                                 m_inc = atop(roundup2(pa, boundary) - pa);
2471                                 continue;
2472                         }
2473                 } else
2474                         KASSERT(m_run != NULL, ("m_run == NULL"));
2475
2476                 vm_page_change_lock(m, &m_mtx);
2477                 m_inc = 1;
2478 retry:
2479                 if (vm_page_wired(m))
2480                         run_ext = 0;
2481 #if VM_NRESERVLEVEL > 0
2482                 else if ((level = vm_reserv_level(m)) >= 0 &&
2483                     (options & VPSC_NORESERV) != 0) {
2484                         run_ext = 0;
2485                         /* Advance to the end of the reservation. */
2486                         pa = VM_PAGE_TO_PHYS(m);
2487                         m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2488                             pa);
2489                 }
2490 #endif
2491                 else if ((object = m->object) != NULL) {
2492                         /*
2493                          * The page is considered eligible for relocation if
2494                          * and only if it could be laundered or reclaimed by
2495                          * the page daemon.
2496                          */
2497                         if (!VM_OBJECT_TRYRLOCK(object)) {
2498                                 mtx_unlock(m_mtx);
2499                                 VM_OBJECT_RLOCK(object);
2500                                 mtx_lock(m_mtx);
2501                                 if (m->object != object) {
2502                                         /*
2503                                          * The page may have been freed.
2504                                          */
2505                                         VM_OBJECT_RUNLOCK(object);
2506                                         goto retry;
2507                                 }
2508                         }
2509                         /* Don't care: PG_NODUMP, PG_ZERO. */
2510                         if (object->type != OBJT_DEFAULT &&
2511                             object->type != OBJT_SWAP &&
2512                             object->type != OBJT_VNODE) {
2513                                 run_ext = 0;
2514 #if VM_NRESERVLEVEL > 0
2515                         } else if ((options & VPSC_NOSUPER) != 0 &&
2516                             (level = vm_reserv_level_iffullpop(m)) >= 0) {
2517                                 run_ext = 0;
2518                                 /* Advance to the end of the superpage. */
2519                                 pa = VM_PAGE_TO_PHYS(m);
2520                                 m_inc = atop(roundup2(pa + 1,
2521                                     vm_reserv_size(level)) - pa);
2522 #endif
2523                         } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2524                             vm_page_queue(m) != PQ_NONE && !vm_page_busied(m) &&
2525                             !vm_page_wired(m)) {
2526                                 /*
2527                                  * The page is allocated but eligible for
2528                                  * relocation.  Extend the current run by one
2529                                  * page.
2530                                  */
2531                                 KASSERT(pmap_page_get_memattr(m) ==
2532                                     VM_MEMATTR_DEFAULT,
2533                                     ("page %p has an unexpected memattr", m));
2534                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2535                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2536                                     ("page %p has unexpected oflags", m));
2537                                 /* Don't care: PGA_NOSYNC. */
2538                                 run_ext = 1;
2539                         } else
2540                                 run_ext = 0;
2541                         VM_OBJECT_RUNLOCK(object);
2542 #if VM_NRESERVLEVEL > 0
2543                 } else if (level >= 0) {
2544                         /*
2545                          * The page is reserved but not yet allocated.  In
2546                          * other words, it is still free.  Extend the current
2547                          * run by one page.
2548                          */
2549                         run_ext = 1;
2550 #endif
2551                 } else if ((order = m->order) < VM_NFREEORDER) {
2552                         /*
2553                          * The page is enqueued in the physical memory
2554                          * allocator's free page queues.  Moreover, it is the
2555                          * first page in a power-of-two-sized run of
2556                          * contiguous free pages.  Add these pages to the end
2557                          * of the current run, and jump ahead.
2558                          */
2559                         run_ext = 1 << order;
2560                         m_inc = 1 << order;
2561                 } else {
2562                         /*
2563                          * Skip the page for one of the following reasons: (1)
2564                          * It is enqueued in the physical memory allocator's
2565                          * free page queues.  However, it is not the first
2566                          * page in a run of contiguous free pages.  (This case
2567                          * rarely occurs because the scan is performed in
2568                          * ascending order.) (2) It is not reserved, and it is
2569                          * transitioning from free to allocated.  (Conversely,
2570                          * the transition from allocated to free for managed
2571                          * pages is blocked by the page lock.) (3) It is
2572                          * allocated but not contained by an object and not
2573                          * wired, e.g., allocated by Xen's balloon driver.
2574                          */
2575                         run_ext = 0;
2576                 }
2577
2578                 /*
2579                  * Extend or reset the current run of pages.
2580                  */
2581                 if (run_ext > 0) {
2582                         if (run_len == 0)
2583                                 m_run = m;
2584                         run_len += run_ext;
2585                 } else {
2586                         if (run_len > 0) {
2587                                 m_run = NULL;
2588                                 run_len = 0;
2589                         }
2590                 }
2591         }
2592         if (m_mtx != NULL)
2593                 mtx_unlock(m_mtx);
2594         if (run_len >= npages)
2595                 return (m_run);
2596         return (NULL);
2597 }
2598
2599 /*
2600  *      vm_page_reclaim_run:
2601  *
2602  *      Try to relocate each of the allocated virtual pages within the
2603  *      specified run of physical pages to a new physical address.  Free the
2604  *      physical pages underlying the relocated virtual pages.  A virtual page
2605  *      is relocatable if and only if it could be laundered or reclaimed by
2606  *      the page daemon.  Whenever possible, a virtual page is relocated to a
2607  *      physical address above "high".
2608  *
2609  *      Returns 0 if every physical page within the run was already free or
2610  *      just freed by a successful relocation.  Otherwise, returns a non-zero
2611  *      value indicating why the last attempt to relocate a virtual page was
2612  *      unsuccessful.
2613  *
2614  *      "req_class" must be an allocation class.
2615  */
2616 static int
2617 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2618     vm_paddr_t high)
2619 {
2620         struct vm_domain *vmd;
2621         struct mtx *m_mtx;
2622         struct spglist free;
2623         vm_object_t object;
2624         vm_paddr_t pa;
2625         vm_page_t m, m_end, m_new;
2626         int error, order, req;
2627
2628         KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2629             ("req_class is not an allocation class"));
2630         SLIST_INIT(&free);
2631         error = 0;
2632         m = m_run;
2633         m_end = m_run + npages;
2634         m_mtx = NULL;
2635         for (; error == 0 && m < m_end; m++) {
2636                 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2637                     ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2638
2639                 /*
2640                  * Avoid releasing and reacquiring the same page lock.
2641                  */
2642                 vm_page_change_lock(m, &m_mtx);
2643 retry:
2644                 /*
2645                  * Racily check for wirings.  Races are handled below.
2646                  */
2647                 if (vm_page_wired(m))
2648                         error = EBUSY;
2649                 else if ((object = m->object) != NULL) {
2650                         /*
2651                          * The page is relocated if and only if it could be
2652                          * laundered or reclaimed by the page daemon.
2653                          */
2654                         if (!VM_OBJECT_TRYWLOCK(object)) {
2655                                 mtx_unlock(m_mtx);
2656                                 VM_OBJECT_WLOCK(object);
2657                                 mtx_lock(m_mtx);
2658                                 if (m->object != object) {
2659                                         /*
2660                                          * The page may have been freed.
2661                                          */
2662                                         VM_OBJECT_WUNLOCK(object);
2663                                         goto retry;
2664                                 }
2665                         }
2666                         /* Don't care: PG_NODUMP, PG_ZERO. */
2667                         if (object->type != OBJT_DEFAULT &&
2668                             object->type != OBJT_SWAP &&
2669                             object->type != OBJT_VNODE)
2670                                 error = EINVAL;
2671                         else if (object->memattr != VM_MEMATTR_DEFAULT)
2672                                 error = EINVAL;
2673                         else if (vm_page_queue(m) != PQ_NONE &&
2674                             vm_page_tryxbusy(m) != 0) {
2675                                 if (vm_page_wired(m)) {
2676                                         vm_page_xunbusy(m);
2677                                         error = EBUSY;
2678                                         goto unlock;
2679                                 }
2680                                 KASSERT(pmap_page_get_memattr(m) ==
2681                                     VM_MEMATTR_DEFAULT,
2682                                     ("page %p has an unexpected memattr", m));
2683                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2684                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2685                                     ("page %p has unexpected oflags", m));
2686                                 /* Don't care: PGA_NOSYNC. */
2687                                 if (!vm_page_none_valid(m)) {
2688                                         /*
2689                                          * First, try to allocate a new page
2690                                          * that is above "high".  Failing
2691                                          * that, try to allocate a new page
2692                                          * that is below "m_run".  Allocate
2693                                          * the new page between the end of
2694                                          * "m_run" and "high" only as a last
2695                                          * resort.
2696                                          */
2697                                         req = req_class | VM_ALLOC_NOOBJ;
2698                                         if ((m->flags & PG_NODUMP) != 0)
2699                                                 req |= VM_ALLOC_NODUMP;
2700                                         if (trunc_page(high) !=
2701                                             ~(vm_paddr_t)PAGE_MASK) {
2702                                                 m_new = vm_page_alloc_contig(
2703                                                     NULL, 0, req, 1,
2704                                                     round_page(high),
2705                                                     ~(vm_paddr_t)0,
2706                                                     PAGE_SIZE, 0,
2707                                                     VM_MEMATTR_DEFAULT);
2708                                         } else
2709                                                 m_new = NULL;
2710                                         if (m_new == NULL) {
2711                                                 pa = VM_PAGE_TO_PHYS(m_run);
2712                                                 m_new = vm_page_alloc_contig(
2713                                                     NULL, 0, req, 1,
2714                                                     0, pa - 1, PAGE_SIZE, 0,
2715                                                     VM_MEMATTR_DEFAULT);
2716                                         }
2717                                         if (m_new == NULL) {
2718                                                 pa += ptoa(npages);
2719                                                 m_new = vm_page_alloc_contig(
2720                                                     NULL, 0, req, 1,
2721                                                     pa, high, PAGE_SIZE, 0,
2722                                                     VM_MEMATTR_DEFAULT);
2723                                         }
2724                                         if (m_new == NULL) {
2725                                                 vm_page_xunbusy(m);
2726                                                 error = ENOMEM;
2727                                                 goto unlock;
2728                                         }
2729
2730                                         /*
2731                                          * Unmap the page and check for new
2732                                          * wirings that may have been acquired
2733                                          * through a pmap lookup.
2734                                          */
2735                                         if (object->ref_count != 0 &&
2736                                             !vm_page_try_remove_all(m)) {
2737                                                 vm_page_free(m_new);
2738                                                 error = EBUSY;
2739                                                 goto unlock;
2740                                         }
2741
2742                                         /*
2743                                          * Replace "m" with the new page.  For
2744                                          * vm_page_replace(), "m" must be busy
2745                                          * and dequeued.  Finally, change "m"
2746                                          * as if vm_page_free() was called.
2747                                          */
2748                                         m_new->a.flags = m->a.flags &
2749                                             ~PGA_QUEUE_STATE_MASK;
2750                                         KASSERT(m_new->oflags == VPO_UNMANAGED,
2751                                             ("page %p is managed", m_new));
2752                                         pmap_copy_page(m, m_new);
2753                                         m_new->valid = m->valid;
2754                                         m_new->dirty = m->dirty;
2755                                         m->flags &= ~PG_ZERO;
2756                                         vm_page_dequeue(m);
2757                                         vm_page_replace_checked(m_new, object,
2758                                             m->pindex, m);
2759                                         if (vm_page_free_prep(m))
2760                                                 SLIST_INSERT_HEAD(&free, m,
2761                                                     plinks.s.ss);
2762
2763                                         /*
2764                                          * The new page must be deactivated
2765                                          * before the object is unlocked.
2766                                          */
2767                                         vm_page_change_lock(m_new, &m_mtx);
2768                                         vm_page_deactivate(m_new);
2769                                 } else {
2770                                         m->flags &= ~PG_ZERO;
2771                                         vm_page_dequeue(m);
2772                                         if (vm_page_free_prep(m))
2773                                                 SLIST_INSERT_HEAD(&free, m,
2774                                                     plinks.s.ss);
2775                                         KASSERT(m->dirty == 0,
2776                                             ("page %p is dirty", m));
2777                                 }
2778                         } else
2779                                 error = EBUSY;
2780 unlock:
2781                         VM_OBJECT_WUNLOCK(object);
2782                 } else {
2783                         MPASS(vm_phys_domain(m) == domain);
2784                         vmd = VM_DOMAIN(domain);
2785                         vm_domain_free_lock(vmd);
2786                         order = m->order;
2787                         if (order < VM_NFREEORDER) {
2788                                 /*
2789                                  * The page is enqueued in the physical memory
2790                                  * allocator's free page queues.  Moreover, it
2791                                  * is the first page in a power-of-two-sized
2792                                  * run of contiguous free pages.  Jump ahead
2793                                  * to the last page within that run, and
2794                                  * continue from there.
2795                                  */
2796                                 m += (1 << order) - 1;
2797                         }
2798 #if VM_NRESERVLEVEL > 0
2799                         else if (vm_reserv_is_page_free(m))
2800                                 order = 0;
2801 #endif
2802                         vm_domain_free_unlock(vmd);
2803                         if (order == VM_NFREEORDER)
2804                                 error = EINVAL;
2805                 }
2806         }
2807         if (m_mtx != NULL)
2808                 mtx_unlock(m_mtx);
2809         if ((m = SLIST_FIRST(&free)) != NULL) {
2810                 int cnt;
2811
2812                 vmd = VM_DOMAIN(domain);
2813                 cnt = 0;
2814                 vm_domain_free_lock(vmd);
2815                 do {
2816                         MPASS(vm_phys_domain(m) == domain);
2817                         SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2818                         vm_phys_free_pages(m, 0);
2819                         cnt++;
2820                 } while ((m = SLIST_FIRST(&free)) != NULL);
2821                 vm_domain_free_unlock(vmd);
2822                 vm_domain_freecnt_inc(vmd, cnt);
2823         }
2824         return (error);
2825 }
2826
2827 #define NRUNS   16
2828
2829 CTASSERT(powerof2(NRUNS));
2830
2831 #define RUN_INDEX(count)        ((count) & (NRUNS - 1))
2832
2833 #define MIN_RECLAIM     8
2834
2835 /*
2836  *      vm_page_reclaim_contig:
2837  *
2838  *      Reclaim allocated, contiguous physical memory satisfying the specified
2839  *      conditions by relocating the virtual pages using that physical memory.
2840  *      Returns true if reclamation is successful and false otherwise.  Since
2841  *      relocation requires the allocation of physical pages, reclamation may
2842  *      fail due to a shortage of free pages.  When reclamation fails, callers
2843  *      are expected to perform vm_wait() before retrying a failed allocation
2844  *      operation, e.g., vm_page_alloc_contig().
2845  *
2846  *      The caller must always specify an allocation class through "req".
2847  *
2848  *      allocation classes:
2849  *      VM_ALLOC_NORMAL         normal process request
2850  *      VM_ALLOC_SYSTEM         system *really* needs a page
2851  *      VM_ALLOC_INTERRUPT      interrupt time request
2852  *
2853  *      The optional allocation flags are ignored.
2854  *
2855  *      "npages" must be greater than zero.  Both "alignment" and "boundary"
2856  *      must be a power of two.
2857  */
2858 bool
2859 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2860     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2861 {
2862         struct vm_domain *vmd;
2863         vm_paddr_t curr_low;
2864         vm_page_t m_run, m_runs[NRUNS];
2865         u_long count, reclaimed;
2866         int error, i, options, req_class;
2867
2868         KASSERT(npages > 0, ("npages is 0"));
2869         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2870         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2871         req_class = req & VM_ALLOC_CLASS_MASK;
2872
2873         /*
2874          * The page daemon is allowed to dig deeper into the free page list.
2875          */
2876         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2877                 req_class = VM_ALLOC_SYSTEM;
2878
2879         /*
2880          * Return if the number of free pages cannot satisfy the requested
2881          * allocation.
2882          */
2883         vmd = VM_DOMAIN(domain);
2884         count = vmd->vmd_free_count;
2885         if (count < npages + vmd->vmd_free_reserved || (count < npages +
2886             vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2887             (count < npages && req_class == VM_ALLOC_INTERRUPT))
2888                 return (false);
2889
2890         /*
2891          * Scan up to three times, relaxing the restrictions ("options") on
2892          * the reclamation of reservations and superpages each time.
2893          */
2894         for (options = VPSC_NORESERV;;) {
2895                 /*
2896                  * Find the highest runs that satisfy the given constraints
2897                  * and restrictions, and record them in "m_runs".
2898                  */
2899                 curr_low = low;
2900                 count = 0;
2901                 for (;;) {
2902                         m_run = vm_phys_scan_contig(domain, npages, curr_low,
2903                             high, alignment, boundary, options);
2904                         if (m_run == NULL)
2905                                 break;
2906                         curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2907                         m_runs[RUN_INDEX(count)] = m_run;
2908                         count++;
2909                 }
2910
2911                 /*
2912                  * Reclaim the highest runs in LIFO (descending) order until
2913                  * the number of reclaimed pages, "reclaimed", is at least
2914                  * MIN_RECLAIM.  Reset "reclaimed" each time because each
2915                  * reclamation is idempotent, and runs will (likely) recur
2916                  * from one scan to the next as restrictions are relaxed.
2917                  */
2918                 reclaimed = 0;
2919                 for (i = 0; count > 0 && i < NRUNS; i++) {
2920                         count--;
2921                         m_run = m_runs[RUN_INDEX(count)];
2922                         error = vm_page_reclaim_run(req_class, domain, npages,
2923                             m_run, high);
2924                         if (error == 0) {
2925                                 reclaimed += npages;
2926                                 if (reclaimed >= MIN_RECLAIM)
2927                                         return (true);
2928                         }
2929                 }
2930
2931                 /*
2932                  * Either relax the restrictions on the next scan or return if
2933                  * the last scan had no restrictions.
2934                  */
2935                 if (options == VPSC_NORESERV)
2936                         options = VPSC_NOSUPER;
2937                 else if (options == VPSC_NOSUPER)
2938                         options = VPSC_ANY;
2939                 else if (options == VPSC_ANY)
2940                         return (reclaimed != 0);
2941         }
2942 }
2943
2944 bool
2945 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2946     u_long alignment, vm_paddr_t boundary)
2947 {
2948         struct vm_domainset_iter di;
2949         int domain;
2950         bool ret;
2951
2952         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2953         do {
2954                 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2955                     high, alignment, boundary);
2956                 if (ret)
2957                         break;
2958         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2959
2960         return (ret);
2961 }
2962
2963 /*
2964  * Set the domain in the appropriate page level domainset.
2965  */
2966 void
2967 vm_domain_set(struct vm_domain *vmd)
2968 {
2969
2970         mtx_lock(&vm_domainset_lock);
2971         if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2972                 vmd->vmd_minset = 1;
2973                 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2974         }
2975         if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2976                 vmd->vmd_severeset = 1;
2977                 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
2978         }
2979         mtx_unlock(&vm_domainset_lock);
2980 }
2981
2982 /*
2983  * Clear the domain from the appropriate page level domainset.
2984  */
2985 void
2986 vm_domain_clear(struct vm_domain *vmd)
2987 {
2988
2989         mtx_lock(&vm_domainset_lock);
2990         if (vmd->vmd_minset && !vm_paging_min(vmd)) {
2991                 vmd->vmd_minset = 0;
2992                 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
2993                 if (vm_min_waiters != 0) {
2994                         vm_min_waiters = 0;
2995                         wakeup(&vm_min_domains);
2996                 }
2997         }
2998         if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
2999                 vmd->vmd_severeset = 0;
3000                 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3001                 if (vm_severe_waiters != 0) {
3002                         vm_severe_waiters = 0;
3003                         wakeup(&vm_severe_domains);
3004                 }
3005         }
3006
3007         /*
3008          * If pageout daemon needs pages, then tell it that there are
3009          * some free.
3010          */
3011         if (vmd->vmd_pageout_pages_needed &&
3012             vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3013                 wakeup(&vmd->vmd_pageout_pages_needed);
3014                 vmd->vmd_pageout_pages_needed = 0;
3015         }
3016
3017         /* See comments in vm_wait_doms(). */
3018         if (vm_pageproc_waiters) {
3019                 vm_pageproc_waiters = 0;
3020                 wakeup(&vm_pageproc_waiters);
3021         }
3022         mtx_unlock(&vm_domainset_lock);
3023 }
3024
3025 /*
3026  * Wait for free pages to exceed the min threshold globally.
3027  */
3028 void
3029 vm_wait_min(void)
3030 {
3031
3032         mtx_lock(&vm_domainset_lock);
3033         while (vm_page_count_min()) {
3034                 vm_min_waiters++;
3035                 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3036         }
3037         mtx_unlock(&vm_domainset_lock);
3038 }
3039
3040 /*
3041  * Wait for free pages to exceed the severe threshold globally.
3042  */
3043 void
3044 vm_wait_severe(void)
3045 {
3046
3047         mtx_lock(&vm_domainset_lock);
3048         while (vm_page_count_severe()) {
3049                 vm_severe_waiters++;
3050                 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3051                     "vmwait", 0);
3052         }
3053         mtx_unlock(&vm_domainset_lock);
3054 }
3055
3056 u_int
3057 vm_wait_count(void)
3058 {
3059
3060         return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3061 }
3062
3063 void
3064 vm_wait_doms(const domainset_t *wdoms)
3065 {
3066
3067         /*
3068          * We use racey wakeup synchronization to avoid expensive global
3069          * locking for the pageproc when sleeping with a non-specific vm_wait.
3070          * To handle this, we only sleep for one tick in this instance.  It
3071          * is expected that most allocations for the pageproc will come from
3072          * kmem or vm_page_grab* which will use the more specific and
3073          * race-free vm_wait_domain().
3074          */
3075         if (curproc == pageproc) {
3076                 mtx_lock(&vm_domainset_lock);
3077                 vm_pageproc_waiters++;
3078                 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3079                     "pageprocwait", 1);
3080         } else {
3081                 /*
3082                  * XXX Ideally we would wait only until the allocation could
3083                  * be satisfied.  This condition can cause new allocators to
3084                  * consume all freed pages while old allocators wait.
3085                  */
3086                 mtx_lock(&vm_domainset_lock);
3087                 if (vm_page_count_min_set(wdoms)) {
3088                         vm_min_waiters++;
3089                         msleep(&vm_min_domains, &vm_domainset_lock,
3090                             PVM | PDROP, "vmwait", 0);
3091                 } else
3092                         mtx_unlock(&vm_domainset_lock);
3093         }
3094 }
3095
3096 /*
3097  *      vm_wait_domain:
3098  *
3099  *      Sleep until free pages are available for allocation.
3100  *      - Called in various places after failed memory allocations.
3101  */
3102 void
3103 vm_wait_domain(int domain)
3104 {
3105         struct vm_domain *vmd;
3106         domainset_t wdom;
3107
3108         vmd = VM_DOMAIN(domain);
3109         vm_domain_free_assert_unlocked(vmd);
3110
3111         if (curproc == pageproc) {
3112                 mtx_lock(&vm_domainset_lock);
3113                 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3114                         vmd->vmd_pageout_pages_needed = 1;
3115                         msleep(&vmd->vmd_pageout_pages_needed,
3116                             &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3117                 } else
3118                         mtx_unlock(&vm_domainset_lock);
3119         } else {
3120                 if (pageproc == NULL)
3121                         panic("vm_wait in early boot");
3122                 DOMAINSET_ZERO(&wdom);
3123                 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3124                 vm_wait_doms(&wdom);
3125         }
3126 }
3127
3128 /*
3129  *      vm_wait:
3130  *
3131  *      Sleep until free pages are available for allocation in the
3132  *      affinity domains of the obj.  If obj is NULL, the domain set
3133  *      for the calling thread is used.
3134  *      Called in various places after failed memory allocations.
3135  */
3136 void
3137 vm_wait(vm_object_t obj)
3138 {
3139         struct domainset *d;
3140
3141         d = NULL;
3142
3143         /*
3144          * Carefully fetch pointers only once: the struct domainset
3145          * itself is ummutable but the pointer might change.
3146          */
3147         if (obj != NULL)
3148                 d = obj->domain.dr_policy;
3149         if (d == NULL)
3150                 d = curthread->td_domain.dr_policy;
3151
3152         vm_wait_doms(&d->ds_mask);
3153 }
3154
3155 /*
3156  *      vm_domain_alloc_fail:
3157  *
3158  *      Called when a page allocation function fails.  Informs the
3159  *      pagedaemon and performs the requested wait.  Requires the
3160  *      domain_free and object lock on entry.  Returns with the
3161  *      object lock held and free lock released.  Returns an error when
3162  *      retry is necessary.
3163  *
3164  */
3165 static int
3166 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3167 {
3168
3169         vm_domain_free_assert_unlocked(vmd);
3170
3171         atomic_add_int(&vmd->vmd_pageout_deficit,
3172             max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3173         if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3174                 if (object != NULL) 
3175                         VM_OBJECT_WUNLOCK(object);
3176                 vm_wait_domain(vmd->vmd_domain);
3177                 if (object != NULL) 
3178                         VM_OBJECT_WLOCK(object);
3179                 if (req & VM_ALLOC_WAITOK)
3180                         return (EAGAIN);
3181         }
3182
3183         return (0);
3184 }
3185
3186 /*
3187  *      vm_waitpfault:
3188  *
3189  *      Sleep until free pages are available for allocation.
3190  *      - Called only in vm_fault so that processes page faulting
3191  *        can be easily tracked.
3192  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3193  *        processes will be able to grab memory first.  Do not change
3194  *        this balance without careful testing first.
3195  */
3196 void
3197 vm_waitpfault(struct domainset *dset, int timo)
3198 {
3199
3200         /*
3201          * XXX Ideally we would wait only until the allocation could
3202          * be satisfied.  This condition can cause new allocators to
3203          * consume all freed pages while old allocators wait.
3204          */
3205         mtx_lock(&vm_domainset_lock);
3206         if (vm_page_count_min_set(&dset->ds_mask)) {
3207                 vm_min_waiters++;
3208                 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3209                     "pfault", timo);
3210         } else
3211                 mtx_unlock(&vm_domainset_lock);
3212 }
3213
3214 static struct vm_pagequeue *
3215 vm_page_pagequeue(vm_page_t m)
3216 {
3217
3218         uint8_t queue;
3219
3220         if ((queue = atomic_load_8(&m->a.queue)) == PQ_NONE)
3221                 return (NULL);
3222         return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3223 }
3224
3225 static inline void
3226 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m)
3227 {
3228         struct vm_domain *vmd;
3229         uint16_t qflags;
3230
3231         CRITICAL_ASSERT(curthread);
3232         vm_pagequeue_assert_locked(pq);
3233
3234         /*
3235          * The page daemon is allowed to set m->a.queue = PQ_NONE without
3236          * the page queue lock held.  In this case it is about to free the page,
3237          * which must not have any queue state.
3238          */
3239         qflags = atomic_load_16(&m->a.flags);
3240         KASSERT(pq == vm_page_pagequeue(m) ||
3241             (qflags & PGA_QUEUE_STATE_MASK) == 0,
3242             ("page %p doesn't belong to queue %p but has aflags %#x",
3243             m, pq, qflags));
3244
3245         if ((qflags & PGA_DEQUEUE) != 0) {
3246                 if (__predict_true((qflags & PGA_ENQUEUED) != 0))
3247                         vm_pagequeue_remove(pq, m);
3248                 vm_page_dequeue_complete(m);
3249                 counter_u64_add(queue_ops, 1);
3250         } else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) {
3251                 if ((qflags & PGA_ENQUEUED) != 0)
3252                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3253                 else {
3254                         vm_pagequeue_cnt_inc(pq);
3255                         vm_page_aflag_set(m, PGA_ENQUEUED);
3256                 }
3257
3258                 /*
3259                  * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.
3260                  * In particular, if both flags are set in close succession,
3261                  * only PGA_REQUEUE_HEAD will be applied, even if it was set
3262                  * first.
3263                  */
3264                 if ((qflags & PGA_REQUEUE_HEAD) != 0) {
3265                         KASSERT(m->a.queue == PQ_INACTIVE,
3266                             ("head enqueue not supported for page %p", m));
3267                         vmd = vm_pagequeue_domain(m);
3268                         TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3269                 } else
3270                         TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3271
3272                 vm_page_aflag_clear(m, qflags & (PGA_REQUEUE |
3273                     PGA_REQUEUE_HEAD));
3274                 counter_u64_add(queue_ops, 1);
3275         } else {
3276                 counter_u64_add(queue_nops, 1);
3277         }
3278 }
3279
3280 static void
3281 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3282     uint8_t queue)
3283 {
3284         vm_page_t m;
3285         int i;
3286
3287         for (i = 0; i < bq->bq_cnt; i++) {
3288                 m = bq->bq_pa[i];
3289                 if (__predict_false(m->a.queue != queue))
3290                         continue;
3291                 vm_pqbatch_process_page(pq, m);
3292         }
3293         vm_batchqueue_init(bq);
3294 }
3295
3296 /*
3297  *      vm_page_pqbatch_submit:         [ internal use only ]
3298  *
3299  *      Enqueue a page in the specified page queue's batched work queue.
3300  *      The caller must have encoded the requested operation in the page
3301  *      structure's a.flags field.
3302  */
3303 void
3304 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3305 {
3306         struct vm_batchqueue *bq;
3307         struct vm_pagequeue *pq;
3308         int domain;
3309
3310         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3311             ("page %p is unmanaged", m));
3312         KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL,
3313             ("missing synchronization for page %p", m));
3314         KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3315
3316         domain = vm_phys_domain(m);
3317         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3318
3319         critical_enter();
3320         bq = DPCPU_PTR(pqbatch[domain][queue]);
3321         if (vm_batchqueue_insert(bq, m)) {
3322                 critical_exit();
3323                 return;
3324         }
3325         critical_exit();
3326         vm_pagequeue_lock(pq);
3327         critical_enter();
3328         bq = DPCPU_PTR(pqbatch[domain][queue]);
3329         vm_pqbatch_process(pq, bq, queue);
3330
3331         /*
3332          * The page may have been logically dequeued before we acquired the
3333          * page queue lock.  In this case, since we either hold the page lock
3334          * or the page is being freed, a different thread cannot be concurrently
3335          * enqueuing the page.
3336          */
3337         if (__predict_true(m->a.queue == queue))
3338                 vm_pqbatch_process_page(pq, m);
3339         else {
3340                 KASSERT(m->a.queue == PQ_NONE,
3341                     ("invalid queue transition for page %p", m));
3342                 KASSERT((m->a.flags & PGA_ENQUEUED) == 0,
3343                     ("page %p is enqueued with invalid queue index", m));
3344         }
3345         vm_pagequeue_unlock(pq);
3346         critical_exit();
3347 }
3348
3349 /*
3350  *      vm_page_pqbatch_drain:          [ internal use only ]
3351  *
3352  *      Force all per-CPU page queue batch queues to be drained.  This is
3353  *      intended for use in severe memory shortages, to ensure that pages
3354  *      do not remain stuck in the batch queues.
3355  */
3356 void
3357 vm_page_pqbatch_drain(void)
3358 {
3359         struct thread *td;
3360         struct vm_domain *vmd;
3361         struct vm_pagequeue *pq;
3362         int cpu, domain, queue;
3363
3364         td = curthread;
3365         CPU_FOREACH(cpu) {
3366                 thread_lock(td);
3367                 sched_bind(td, cpu);
3368                 thread_unlock(td);
3369
3370                 for (domain = 0; domain < vm_ndomains; domain++) {
3371                         vmd = VM_DOMAIN(domain);
3372                         for (queue = 0; queue < PQ_COUNT; queue++) {
3373                                 pq = &vmd->vmd_pagequeues[queue];
3374                                 vm_pagequeue_lock(pq);
3375                                 critical_enter();
3376                                 vm_pqbatch_process(pq,
3377                                     DPCPU_PTR(pqbatch[domain][queue]), queue);
3378                                 critical_exit();
3379                                 vm_pagequeue_unlock(pq);
3380                         }
3381                 }
3382         }
3383         thread_lock(td);
3384         sched_unbind(td);
3385         thread_unlock(td);
3386 }
3387
3388 /*
3389  * Complete the logical removal of a page from a page queue.  We must be
3390  * careful to synchronize with the page daemon, which may be concurrently
3391  * examining the page with only the page lock held.  The page must not be
3392  * in a state where it appears to be logically enqueued.
3393  */
3394 static void
3395 vm_page_dequeue_complete(vm_page_t m)
3396 {
3397
3398         m->a.queue = PQ_NONE;
3399         atomic_thread_fence_rel();
3400         vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK);
3401 }
3402
3403 /*
3404  *      vm_page_dequeue_deferred:       [ internal use only ]
3405  *
3406  *      Request removal of the given page from its current page
3407  *      queue.  Physical removal from the queue may be deferred
3408  *      indefinitely.
3409  *
3410  *      The page must be locked.
3411  */
3412 void
3413 vm_page_dequeue_deferred(vm_page_t m)
3414 {
3415         uint8_t queue;
3416
3417         vm_page_assert_locked(m);
3418
3419         if ((queue = vm_page_queue(m)) == PQ_NONE)
3420                 return;
3421
3422         /*
3423          * Set PGA_DEQUEUE if it is not already set to handle a concurrent call
3424          * to vm_page_dequeue_deferred_free().  In particular, avoid modifying
3425          * the page's queue state once vm_page_dequeue_deferred_free() has been
3426          * called.  In the event of a race, two batch queue entries for the page
3427          * will be created, but the second will have no effect.
3428          */
3429         if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE, PGA_DEQUEUE))
3430                 vm_page_pqbatch_submit(m, queue);
3431 }
3432
3433 /*
3434  * A variant of vm_page_dequeue_deferred() that does not assert the page
3435  * lock and is only to be called from vm_page_free_prep().  Because the
3436  * page is being freed, we can assume that nothing other than the page
3437  * daemon is scheduling queue operations on this page, so we get for
3438  * free the mutual exclusion that is otherwise provided by the page lock.
3439  * To handle races, the page daemon must take care to atomically check
3440  * for PGA_DEQUEUE when updating queue state.
3441  */
3442 static void
3443 vm_page_dequeue_deferred_free(vm_page_t m)
3444 {
3445         uint8_t queue;
3446
3447         KASSERT(m->ref_count == 0, ("page %p has references", m));
3448
3449         for (;;) {
3450                 if ((m->a.flags & PGA_DEQUEUE) != 0)
3451                         return;
3452                 atomic_thread_fence_acq();
3453                 if ((queue = atomic_load_8(&m->a.queue)) == PQ_NONE)
3454                         return;
3455                 if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE,
3456                     PGA_DEQUEUE)) {
3457                         vm_page_pqbatch_submit(m, queue);
3458                         break;
3459                 }
3460         }
3461 }
3462
3463 /*
3464  *      vm_page_dequeue:
3465  *
3466  *      Remove the page from whichever page queue it's in, if any.
3467  *      The page must either be locked or unallocated.  This constraint
3468  *      ensures that the queue state of the page will remain consistent
3469  *      after this function returns.
3470  */
3471 void
3472 vm_page_dequeue(vm_page_t m)
3473 {
3474         struct vm_pagequeue *pq, *pq1;
3475         uint16_t aflags;
3476
3477         KASSERT(mtx_owned(vm_page_lockptr(m)) || m->ref_count == 0,
3478             ("page %p is allocated and unlocked", m));
3479
3480         for (pq = vm_page_pagequeue(m);; pq = pq1) {
3481                 if (pq == NULL) {
3482                         /*
3483                          * A thread may be concurrently executing
3484                          * vm_page_dequeue_complete().  Ensure that all queue
3485                          * state is cleared before we return.
3486                          */
3487                         aflags = atomic_load_16(&m->a.flags);
3488                         if ((aflags & PGA_QUEUE_STATE_MASK) == 0)
3489                                 return;
3490                         KASSERT((aflags & PGA_DEQUEUE) != 0,
3491                             ("page %p has unexpected queue state flags %#x",
3492                             m, aflags));
3493
3494                         /*
3495                          * Busy wait until the thread updating queue state is
3496                          * finished.  Such a thread must be executing in a
3497                          * critical section.
3498                          */
3499                         cpu_spinwait();
3500                         pq1 = vm_page_pagequeue(m);
3501                         continue;
3502                 }
3503                 vm_pagequeue_lock(pq);
3504                 if ((pq1 = vm_page_pagequeue(m)) == pq)
3505                         break;
3506                 vm_pagequeue_unlock(pq);
3507         }
3508         KASSERT(pq == vm_page_pagequeue(m),
3509             ("%s: page %p migrated directly between queues", __func__, m));
3510         KASSERT((m->a.flags & PGA_DEQUEUE) != 0 ||
3511             mtx_owned(vm_page_lockptr(m)),
3512             ("%s: queued unlocked page %p", __func__, m));
3513
3514         if ((m->a.flags & PGA_ENQUEUED) != 0)
3515                 vm_pagequeue_remove(pq, m);
3516         vm_page_dequeue_complete(m);
3517         vm_pagequeue_unlock(pq);
3518 }
3519
3520 /*
3521  * Schedule the given page for insertion into the specified page queue.
3522  * Physical insertion of the page may be deferred indefinitely.
3523  */
3524 static void
3525 vm_page_enqueue(vm_page_t m, uint8_t queue)
3526 {
3527
3528         vm_page_assert_locked(m);
3529         KASSERT(m->a.queue == PQ_NONE &&
3530             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3531             ("%s: page %p is already enqueued", __func__, m));
3532         KASSERT(m->ref_count > 0,
3533             ("%s: page %p does not carry any references", __func__, m));
3534
3535         m->a.queue = queue;
3536         if ((m->a.flags & PGA_REQUEUE) == 0)
3537                 vm_page_aflag_set(m, PGA_REQUEUE);
3538         vm_page_pqbatch_submit(m, queue);
3539 }
3540
3541 /*
3542  *      vm_page_requeue:                [ internal use only ]
3543  *
3544  *      Schedule a requeue of the given page.
3545  *
3546  *      The page must be locked.
3547  */
3548 void
3549 vm_page_requeue(vm_page_t m)
3550 {
3551
3552         vm_page_assert_locked(m);
3553         KASSERT(vm_page_queue(m) != PQ_NONE,
3554             ("%s: page %p is not logically enqueued", __func__, m));
3555         KASSERT(m->ref_count > 0,
3556             ("%s: page %p does not carry any references", __func__, m));
3557
3558         if ((m->a.flags & PGA_REQUEUE) == 0)
3559                 vm_page_aflag_set(m, PGA_REQUEUE);
3560         vm_page_pqbatch_submit(m, atomic_load_8(&m->a.queue));
3561 }
3562
3563 /*
3564  *      vm_page_swapqueue:              [ internal use only ]
3565  *
3566  *      Move the page from one queue to another, or to the tail of its
3567  *      current queue, in the face of a possible concurrent call to
3568  *      vm_page_dequeue_deferred_free().
3569  */
3570 void
3571 vm_page_swapqueue(vm_page_t m, uint8_t oldq, uint8_t newq)
3572 {
3573         struct vm_pagequeue *pq;
3574         vm_page_t next;
3575         bool queued;
3576
3577         KASSERT(oldq < PQ_COUNT && newq < PQ_COUNT && oldq != newq,
3578             ("vm_page_swapqueue: invalid queues (%d, %d)", oldq, newq));
3579         vm_page_assert_locked(m);
3580
3581         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[oldq];
3582         vm_pagequeue_lock(pq);
3583
3584         /*
3585          * The physical queue state might change at any point before the page
3586          * queue lock is acquired, so we must verify that we hold the correct
3587          * lock before proceeding.
3588          */
3589         if (__predict_false(m->a.queue != oldq)) {
3590                 vm_pagequeue_unlock(pq);
3591                 return;
3592         }
3593
3594         /*
3595          * Once the queue index of the page changes, there is nothing
3596          * synchronizing with further updates to the physical queue state.
3597          * Therefore we must remove the page from the queue now in anticipation
3598          * of a successful commit, and be prepared to roll back.
3599          */
3600         if (__predict_true((m->a.flags & PGA_ENQUEUED) != 0)) {
3601                 next = TAILQ_NEXT(m, plinks.q);
3602                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3603                 vm_page_aflag_clear(m, PGA_ENQUEUED);
3604                 queued = true;
3605         } else {
3606                 queued = false;
3607         }
3608
3609         /*
3610          * Atomically update the queue field and set PGA_REQUEUE while
3611          * ensuring that PGA_DEQUEUE has not been set.
3612          */
3613         if (__predict_false(!vm_page_pqstate_cmpset(m, oldq, newq, PGA_DEQUEUE,
3614             PGA_REQUEUE))) {
3615                 if (queued) {
3616                         vm_page_aflag_set(m, PGA_ENQUEUED);
3617                         if (next != NULL)
3618                                 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3619                         else
3620                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3621                 }
3622                 vm_pagequeue_unlock(pq);
3623                 return;
3624         }
3625         vm_pagequeue_cnt_dec(pq);
3626         vm_pagequeue_unlock(pq);
3627         vm_page_pqbatch_submit(m, newq);
3628 }
3629
3630 /*
3631  *      vm_page_free_prep:
3632  *
3633  *      Prepares the given page to be put on the free list,
3634  *      disassociating it from any VM object. The caller may return
3635  *      the page to the free list only if this function returns true.
3636  *
3637  *      The object must be locked.  The page must be locked if it is
3638  *      managed.
3639  */
3640 bool
3641 vm_page_free_prep(vm_page_t m)
3642 {
3643
3644         /*
3645          * Synchronize with threads that have dropped a reference to this
3646          * page.
3647          */
3648         atomic_thread_fence_acq();
3649
3650 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3651         if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3652                 uint64_t *p;
3653                 int i;
3654                 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3655                 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3656                         KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3657                             m, i, (uintmax_t)*p));
3658         }
3659 #endif
3660         if ((m->oflags & VPO_UNMANAGED) == 0) {
3661                 KASSERT(!pmap_page_is_mapped(m),
3662                     ("vm_page_free_prep: freeing mapped page %p", m));
3663                 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3664                     ("vm_page_free_prep: mapping flags set in page %p", m));
3665         } else {
3666                 KASSERT(m->a.queue == PQ_NONE,
3667                     ("vm_page_free_prep: unmanaged page %p is queued", m));
3668         }
3669         VM_CNT_INC(v_tfree);
3670
3671         if (vm_page_sbusied(m))
3672                 panic("vm_page_free_prep: freeing shared busy page %p", m);
3673
3674         if (m->object != NULL) {
3675                 vm_page_object_remove(m);
3676
3677                 /*
3678                  * The object reference can be released without an atomic
3679                  * operation.
3680                  */
3681                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3682                     m->ref_count == VPRC_OBJREF,
3683                     ("vm_page_free_prep: page %p has unexpected ref_count %u",
3684                     m, m->ref_count));
3685                 m->object = NULL;
3686                 m->ref_count -= VPRC_OBJREF;
3687         }
3688
3689         if (vm_page_xbusied(m))
3690                 vm_page_xunbusy(m);
3691
3692         /*
3693          * If fictitious remove object association and
3694          * return.
3695          */
3696         if ((m->flags & PG_FICTITIOUS) != 0) {
3697                 KASSERT(m->ref_count == 1,
3698                     ("fictitious page %p is referenced", m));
3699                 KASSERT(m->a.queue == PQ_NONE,
3700                     ("fictitious page %p is queued", m));
3701                 return (false);
3702         }
3703
3704         /*
3705          * Pages need not be dequeued before they are returned to the physical
3706          * memory allocator, but they must at least be marked for a deferred
3707          * dequeue.
3708          */
3709         if ((m->oflags & VPO_UNMANAGED) == 0)
3710                 vm_page_dequeue_deferred_free(m);
3711
3712         m->valid = 0;
3713         vm_page_undirty(m);
3714
3715         if (m->ref_count != 0)
3716                 panic("vm_page_free_prep: page %p has references", m);
3717
3718         /*
3719          * Restore the default memory attribute to the page.
3720          */
3721         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3722                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3723
3724 #if VM_NRESERVLEVEL > 0
3725         /*
3726          * Determine whether the page belongs to a reservation.  If the page was
3727          * allocated from a per-CPU cache, it cannot belong to a reservation, so
3728          * as an optimization, we avoid the check in that case.
3729          */
3730         if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3731                 return (false);
3732 #endif
3733
3734         return (true);
3735 }
3736
3737 /*
3738  *      vm_page_free_toq:
3739  *
3740  *      Returns the given page to the free list, disassociating it
3741  *      from any VM object.
3742  *
3743  *      The object must be locked.  The page must be locked if it is
3744  *      managed.
3745  */
3746 void
3747 vm_page_free_toq(vm_page_t m)
3748 {
3749         struct vm_domain *vmd;
3750         uma_zone_t zone;
3751
3752         if (!vm_page_free_prep(m))
3753                 return;
3754
3755         vmd = vm_pagequeue_domain(m);
3756         zone = vmd->vmd_pgcache[m->pool].zone;
3757         if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3758                 uma_zfree(zone, m);
3759                 return;
3760         }
3761         vm_domain_free_lock(vmd);
3762         vm_phys_free_pages(m, 0);
3763         vm_domain_free_unlock(vmd);
3764         vm_domain_freecnt_inc(vmd, 1);
3765 }
3766
3767 /*
3768  *      vm_page_free_pages_toq:
3769  *
3770  *      Returns a list of pages to the free list, disassociating it
3771  *      from any VM object.  In other words, this is equivalent to
3772  *      calling vm_page_free_toq() for each page of a list of VM objects.
3773  *
3774  *      The objects must be locked.  The pages must be locked if it is
3775  *      managed.
3776  */
3777 void
3778 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3779 {
3780         vm_page_t m;
3781         int count;
3782
3783         if (SLIST_EMPTY(free))
3784                 return;
3785
3786         count = 0;
3787         while ((m = SLIST_FIRST(free)) != NULL) {
3788                 count++;
3789                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
3790                 vm_page_free_toq(m);
3791         }
3792
3793         if (update_wire_count)
3794                 vm_wire_sub(count);
3795 }
3796
3797 /*
3798  * Mark this page as wired down, preventing reclamation by the page daemon
3799  * or when the containing object is destroyed.
3800  */
3801 void
3802 vm_page_wire(vm_page_t m)
3803 {
3804         u_int old;
3805
3806         KASSERT(m->object != NULL,
3807             ("vm_page_wire: page %p does not belong to an object", m));
3808         if (!vm_page_busied(m) && !vm_object_busied(m->object))
3809                 VM_OBJECT_ASSERT_LOCKED(m->object);
3810         KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3811             VPRC_WIRE_COUNT(m->ref_count) >= 1,
3812             ("vm_page_wire: fictitious page %p has zero wirings", m));
3813
3814         old = atomic_fetchadd_int(&m->ref_count, 1);
3815         KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3816             ("vm_page_wire: counter overflow for page %p", m));
3817         if (VPRC_WIRE_COUNT(old) == 0)
3818                 vm_wire_add(1);
3819 }
3820
3821 /*
3822  * Attempt to wire a mapped page following a pmap lookup of that page.
3823  * This may fail if a thread is concurrently tearing down mappings of the page.
3824  * The transient failure is acceptable because it translates to the
3825  * failure of the caller pmap_extract_and_hold(), which should be then
3826  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3827  */
3828 bool
3829 vm_page_wire_mapped(vm_page_t m)
3830 {
3831         u_int old;
3832
3833         old = m->ref_count;
3834         do {
3835                 KASSERT(old > 0,
3836                     ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3837                 if ((old & VPRC_BLOCKED) != 0)
3838                         return (false);
3839         } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3840
3841         if (VPRC_WIRE_COUNT(old) == 0)
3842                 vm_wire_add(1);
3843         return (true);
3844 }
3845
3846 /*
3847  * Release one wiring of the specified page, potentially allowing it to be
3848  * paged out.
3849  *
3850  * Only managed pages belonging to an object can be paged out.  If the number
3851  * of wirings transitions to zero and the page is eligible for page out, then
3852  * the page is added to the specified paging queue.  If the released wiring
3853  * represented the last reference to the page, the page is freed.
3854  *
3855  * A managed page must be locked.
3856  */
3857 void
3858 vm_page_unwire(vm_page_t m, uint8_t queue)
3859 {
3860         u_int old;
3861         bool locked;
3862
3863         KASSERT(queue < PQ_COUNT,
3864             ("vm_page_unwire: invalid queue %u request for page %p", queue, m));
3865
3866         if ((m->oflags & VPO_UNMANAGED) != 0) {
3867                 if (vm_page_unwire_noq(m) && m->ref_count == 0)
3868                         vm_page_free(m);
3869                 return;
3870         }
3871
3872         /*
3873          * Update LRU state before releasing the wiring reference.
3874          * We only need to do this once since we hold the page lock.
3875          * Use a release store when updating the reference count to
3876          * synchronize with vm_page_free_prep().
3877          */
3878         old = m->ref_count;
3879         locked = false;
3880         do {
3881                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
3882                     ("vm_page_unwire: wire count underflow for page %p", m));
3883                 if (!locked && VPRC_WIRE_COUNT(old) == 1) {
3884                         vm_page_lock(m);
3885                         locked = true;
3886                         if (queue == PQ_ACTIVE && vm_page_queue(m) == PQ_ACTIVE)
3887                                 vm_page_reference(m);
3888                         else
3889                                 vm_page_mvqueue(m, queue);
3890                 }
3891         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3892
3893         /*
3894          * Release the lock only after the wiring is released, to ensure that
3895          * the page daemon does not encounter and dequeue the page while it is
3896          * still wired.
3897          */
3898         if (locked)
3899                 vm_page_unlock(m);
3900
3901         if (VPRC_WIRE_COUNT(old) == 1) {
3902                 vm_wire_sub(1);
3903                 if (old == 1)
3904                         vm_page_free(m);
3905         }
3906 }
3907
3908 /*
3909  * Unwire a page without (re-)inserting it into a page queue.  It is up
3910  * to the caller to enqueue, requeue, or free the page as appropriate.
3911  * In most cases involving managed pages, vm_page_unwire() should be used
3912  * instead.
3913  */
3914 bool
3915 vm_page_unwire_noq(vm_page_t m)
3916 {
3917         u_int old;
3918
3919         old = vm_page_drop(m, 1);
3920         KASSERT(VPRC_WIRE_COUNT(old) != 0,
3921             ("vm_page_unref: counter underflow for page %p", m));
3922         KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3923             ("vm_page_unref: missing ref on fictitious page %p", m));
3924
3925         if (VPRC_WIRE_COUNT(old) > 1)
3926                 return (false);
3927         vm_wire_sub(1);
3928         return (true);
3929 }
3930
3931 /*
3932  * Ensure that the page is in the specified page queue.  If the page is
3933  * active or being moved to the active queue, ensure that its act_count is
3934  * at least ACT_INIT but do not otherwise mess with it.  Otherwise, ensure that
3935  * the page is at the tail of its page queue.
3936  *
3937  * The page may be wired.  The caller should release its wiring reference
3938  * before releasing the page lock, otherwise the page daemon may immediately
3939  * dequeue the page.
3940  *
3941  * A managed page must be locked.
3942  */
3943 static __always_inline void
3944 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue)
3945 {
3946
3947         vm_page_assert_locked(m);
3948         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3949             ("vm_page_mvqueue: page %p is unmanaged", m));
3950         KASSERT(m->ref_count > 0,
3951             ("%s: page %p does not carry any references", __func__, m));
3952
3953         if (vm_page_queue(m) != nqueue) {
3954                 vm_page_dequeue(m);
3955                 vm_page_enqueue(m, nqueue);
3956         } else if (nqueue != PQ_ACTIVE) {
3957                 vm_page_requeue(m);
3958         }
3959
3960         if (nqueue == PQ_ACTIVE && m->a.act_count < ACT_INIT)
3961                 m->a.act_count = ACT_INIT;
3962 }
3963
3964 /*
3965  * Put the specified page on the active list (if appropriate).
3966  */
3967 void
3968 vm_page_activate(vm_page_t m)
3969 {
3970
3971         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3972                 return;
3973         vm_page_mvqueue(m, PQ_ACTIVE);
3974 }
3975
3976 /*
3977  * Move the specified page to the tail of the inactive queue, or requeue
3978  * the page if it is already in the inactive queue.
3979  */
3980 void
3981 vm_page_deactivate(vm_page_t m)
3982 {
3983
3984         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3985                 return;
3986         vm_page_mvqueue(m, PQ_INACTIVE);
3987 }
3988
3989 /*
3990  * Move the specified page close to the head of the inactive queue,
3991  * bypassing LRU.  A marker page is used to maintain FIFO ordering.
3992  * As with regular enqueues, we use a per-CPU batch queue to reduce
3993  * contention on the page queue lock.
3994  */
3995 static void
3996 _vm_page_deactivate_noreuse(vm_page_t m)
3997 {
3998
3999         vm_page_assert_locked(m);
4000
4001         if (!vm_page_inactive(m)) {
4002                 vm_page_dequeue(m);
4003                 m->a.queue = PQ_INACTIVE;
4004         }
4005         if ((m->a.flags & PGA_REQUEUE_HEAD) == 0)
4006                 vm_page_aflag_set(m, PGA_REQUEUE_HEAD);
4007         vm_page_pqbatch_submit(m, PQ_INACTIVE);
4008 }
4009
4010 void
4011 vm_page_deactivate_noreuse(vm_page_t m)
4012 {
4013
4014         KASSERT(m->object != NULL,
4015             ("vm_page_deactivate_noreuse: page %p has no object", m));
4016
4017         if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_wired(m))
4018                 _vm_page_deactivate_noreuse(m);
4019 }
4020
4021 /*
4022  * Put a page in the laundry, or requeue it if it is already there.
4023  */
4024 void
4025 vm_page_launder(vm_page_t m)
4026 {
4027
4028         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4029                 return;
4030         vm_page_mvqueue(m, PQ_LAUNDRY);
4031 }
4032
4033 /*
4034  * Put a page in the PQ_UNSWAPPABLE holding queue.
4035  */
4036 void
4037 vm_page_unswappable(vm_page_t m)
4038 {
4039
4040         vm_page_assert_locked(m);
4041         KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4042             ("page %p already unswappable", m));
4043
4044         vm_page_dequeue(m);
4045         vm_page_enqueue(m, PQ_UNSWAPPABLE);
4046 }
4047
4048 static void
4049 vm_page_release_toq(vm_page_t m, int flags)
4050 {
4051
4052         vm_page_assert_locked(m);
4053
4054         /*
4055          * Use a check of the valid bits to determine whether we should
4056          * accelerate reclamation of the page.  The object lock might not be
4057          * held here, in which case the check is racy.  At worst we will either
4058          * accelerate reclamation of a valid page and violate LRU, or
4059          * unnecessarily defer reclamation of an invalid page.
4060          *
4061          * If we were asked to not cache the page, place it near the head of the
4062          * inactive queue so that is reclaimed sooner.
4063          */
4064         if ((flags & (VPR_TRYFREE | VPR_NOREUSE)) != 0 || m->valid == 0)
4065                 _vm_page_deactivate_noreuse(m);
4066         else if (vm_page_active(m))
4067                 vm_page_reference(m);
4068         else
4069                 vm_page_mvqueue(m, PQ_INACTIVE);
4070 }
4071
4072 /*
4073  * Unwire a page and either attempt to free it or re-add it to the page queues.
4074  */
4075 void
4076 vm_page_release(vm_page_t m, int flags)
4077 {
4078         vm_object_t object;
4079         u_int old;
4080         bool locked;
4081
4082         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4083             ("vm_page_release: page %p is unmanaged", m));
4084
4085         if ((flags & VPR_TRYFREE) != 0) {
4086                 for (;;) {
4087                         object = (vm_object_t)atomic_load_ptr(&m->object);
4088                         if (object == NULL)
4089                                 break;
4090                         /* Depends on type-stability. */
4091                         if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) {
4092                                 object = NULL;
4093                                 break;
4094                         }
4095                         if (object == m->object)
4096                                 break;
4097                         VM_OBJECT_WUNLOCK(object);
4098                 }
4099                 if (__predict_true(object != NULL)) {
4100                         vm_page_release_locked(m, flags);
4101                         VM_OBJECT_WUNLOCK(object);
4102                         return;
4103                 }
4104         }
4105
4106         /*
4107          * Update LRU state before releasing the wiring reference.
4108          * Use a release store when updating the reference count to
4109          * synchronize with vm_page_free_prep().
4110          */
4111         old = m->ref_count;
4112         locked = false;
4113         do {
4114                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
4115                     ("vm_page_unwire: wire count underflow for page %p", m));
4116                 if (!locked && VPRC_WIRE_COUNT(old) == 1) {
4117                         vm_page_lock(m);
4118                         locked = true;
4119                         vm_page_release_toq(m, flags);
4120                 }
4121         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4122
4123         /*
4124          * Release the lock only after the wiring is released, to ensure that
4125          * the page daemon does not encounter and dequeue the page while it is
4126          * still wired.
4127          */
4128         if (locked)
4129                 vm_page_unlock(m);
4130
4131         if (VPRC_WIRE_COUNT(old) == 1) {
4132                 vm_wire_sub(1);
4133                 if (old == 1)
4134                         vm_page_free(m);
4135         }
4136 }
4137
4138 /* See vm_page_release(). */
4139 void
4140 vm_page_release_locked(vm_page_t m, int flags)
4141 {
4142
4143         VM_OBJECT_ASSERT_WLOCKED(m->object);
4144         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4145             ("vm_page_release_locked: page %p is unmanaged", m));
4146
4147         if (vm_page_unwire_noq(m)) {
4148                 if ((flags & VPR_TRYFREE) != 0 &&
4149                     (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4150                     m->dirty == 0 && !vm_page_busied(m)) {
4151                         vm_page_free(m);
4152                 } else {
4153                         vm_page_lock(m);
4154                         vm_page_release_toq(m, flags);
4155                         vm_page_unlock(m);
4156                 }
4157         }
4158 }
4159
4160 static bool
4161 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4162 {
4163         u_int old;
4164
4165         KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4166             ("vm_page_try_blocked_op: page %p has no object", m));
4167         KASSERT(vm_page_busied(m),
4168             ("vm_page_try_blocked_op: page %p is not busy", m));
4169         VM_OBJECT_ASSERT_LOCKED(m->object);
4170
4171         old = m->ref_count;
4172         do {
4173                 KASSERT(old != 0,
4174                     ("vm_page_try_blocked_op: page %p has no references", m));
4175                 if (VPRC_WIRE_COUNT(old) != 0)
4176                         return (false);
4177         } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4178
4179         (op)(m);
4180
4181         /*
4182          * If the object is read-locked, new wirings may be created via an
4183          * object lookup.
4184          */
4185         old = vm_page_drop(m, VPRC_BLOCKED);
4186         KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4187             old == (VPRC_BLOCKED | VPRC_OBJREF),
4188             ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4189             old, m));
4190         return (true);
4191 }
4192
4193 /*
4194  * Atomically check for wirings and remove all mappings of the page.
4195  */
4196 bool
4197 vm_page_try_remove_all(vm_page_t m)
4198 {
4199
4200         return (vm_page_try_blocked_op(m, pmap_remove_all));
4201 }
4202
4203 /*
4204  * Atomically check for wirings and remove all writeable mappings of the page.
4205  */
4206 bool
4207 vm_page_try_remove_write(vm_page_t m)
4208 {
4209
4210         return (vm_page_try_blocked_op(m, pmap_remove_write));
4211 }
4212
4213 /*
4214  * vm_page_advise
4215  *
4216  *      Apply the specified advice to the given page.
4217  *
4218  *      The object and page must be locked.
4219  */
4220 void
4221 vm_page_advise(vm_page_t m, int advice)
4222 {
4223
4224         vm_page_assert_locked(m);
4225         VM_OBJECT_ASSERT_WLOCKED(m->object);
4226         if (advice == MADV_FREE)
4227                 /*
4228                  * Mark the page clean.  This will allow the page to be freed
4229                  * without first paging it out.  MADV_FREE pages are often
4230                  * quickly reused by malloc(3), so we do not do anything that
4231                  * would result in a page fault on a later access.
4232                  */
4233                 vm_page_undirty(m);
4234         else if (advice != MADV_DONTNEED) {
4235                 if (advice == MADV_WILLNEED)
4236                         vm_page_activate(m);
4237                 return;
4238         }
4239
4240         /*
4241          * Clear any references to the page.  Otherwise, the page daemon will
4242          * immediately reactivate the page.
4243          */
4244         vm_page_aflag_clear(m, PGA_REFERENCED);
4245
4246         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4247                 vm_page_dirty(m);
4248
4249         /*
4250          * Place clean pages near the head of the inactive queue rather than
4251          * the tail, thus defeating the queue's LRU operation and ensuring that
4252          * the page will be reused quickly.  Dirty pages not already in the
4253          * laundry are moved there.
4254          */
4255         if (m->dirty == 0)
4256                 vm_page_deactivate_noreuse(m);
4257         else if (!vm_page_in_laundry(m))
4258                 vm_page_launder(m);
4259 }
4260
4261 static inline int
4262 vm_page_grab_pflags(int allocflags)
4263 {
4264         int pflags;
4265
4266         KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4267             (allocflags & VM_ALLOC_WIRED) != 0,
4268             ("vm_page_grab_pflags: the pages must be busied or wired"));
4269         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4270             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4271             ("vm_page_grab_pflags: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4272             "mismatch"));
4273         pflags = allocflags &
4274             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4275             VM_ALLOC_NOBUSY);
4276         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4277                 pflags |= VM_ALLOC_WAITFAIL;
4278         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4279                 pflags |= VM_ALLOC_SBUSY;
4280
4281         return (pflags);
4282 }
4283
4284 /*
4285  * Grab a page, waiting until we are waken up due to the page
4286  * changing state.  We keep on waiting, if the page continues
4287  * to be in the object.  If the page doesn't exist, first allocate it
4288  * and then conditionally zero it.
4289  *
4290  * This routine may sleep.
4291  *
4292  * The object must be locked on entry.  The lock will, however, be released
4293  * and reacquired if the routine sleeps.
4294  */
4295 vm_page_t
4296 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4297 {
4298         vm_page_t m;
4299         int pflags;
4300
4301         VM_OBJECT_ASSERT_WLOCKED(object);
4302         pflags = vm_page_grab_pflags(allocflags);
4303 retrylookup:
4304         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4305                 if (!vm_page_acquire_flags(m, allocflags)) {
4306                         if (vm_page_busy_sleep_flags(object, m, "pgrbwt",
4307                             allocflags))
4308                                 goto retrylookup;
4309                         return (NULL);
4310                 }
4311                 goto out;
4312         }
4313         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4314                 return (NULL);
4315         m = vm_page_alloc(object, pindex, pflags);
4316         if (m == NULL) {
4317                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4318                         return (NULL);
4319                 goto retrylookup;
4320         }
4321         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4322                 pmap_zero_page(m);
4323
4324 out:
4325         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4326                 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4327                         vm_page_sunbusy(m);
4328                 else
4329                         vm_page_xunbusy(m);
4330         }
4331         return (m);
4332 }
4333
4334 /*
4335  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4336  * their pager are zero filled and validated.
4337  */
4338 int
4339 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4340 {
4341         vm_page_t m;
4342         bool sleep, xbusy;
4343         int pflags;
4344         int rv;
4345
4346         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4347             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4348             ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4349         KASSERT((allocflags &
4350             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4351             ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4352         VM_OBJECT_ASSERT_WLOCKED(object);
4353         pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY);
4354         pflags |= VM_ALLOC_WAITFAIL;
4355
4356 retrylookup:
4357         xbusy = false;
4358         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4359                 /*
4360                  * If the page is fully valid it can only become invalid
4361                  * with the object lock held.  If it is not valid it can
4362                  * become valid with the busy lock held.  Therefore, we
4363                  * may unnecessarily lock the exclusive busy here if we
4364                  * race with I/O completion not using the object lock.
4365                  * However, we will not end up with an invalid page and a
4366                  * shared lock.
4367                  */
4368                 if (!vm_page_all_valid(m) ||
4369                     (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) {
4370                         sleep = !vm_page_tryxbusy(m);
4371                         xbusy = true;
4372                 } else
4373                         sleep = !vm_page_trysbusy(m);
4374                 if (sleep) {
4375                         (void)vm_page_busy_sleep_flags(object, m, "pgrbwt",
4376                             allocflags);
4377                         goto retrylookup;
4378                 }
4379                 if ((allocflags & VM_ALLOC_NOCREAT) != 0 &&
4380                    !vm_page_all_valid(m)) {
4381                         if (xbusy)
4382                                 vm_page_xunbusy(m);
4383                         else
4384                                 vm_page_sunbusy(m);
4385                         *mp = NULL;
4386                         return (VM_PAGER_FAIL);
4387                 }
4388                 if ((allocflags & VM_ALLOC_WIRED) != 0)
4389                         vm_page_wire(m);
4390                 if (vm_page_all_valid(m))
4391                         goto out;
4392         } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4393                 *mp = NULL;
4394                 return (VM_PAGER_FAIL);
4395         } else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) {
4396                 xbusy = true;
4397         } else {
4398                 goto retrylookup;
4399         }
4400
4401         vm_page_assert_xbusied(m);
4402         MPASS(xbusy);
4403         if (vm_pager_has_page(object, pindex, NULL, NULL)) {
4404                 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
4405                 if (rv != VM_PAGER_OK) {
4406                         if (allocflags & VM_ALLOC_WIRED)
4407                                 vm_page_unwire_noq(m);
4408                         vm_page_free(m);
4409                         *mp = NULL;
4410                         return (rv);
4411                 }
4412                 MPASS(vm_page_all_valid(m));
4413         } else {
4414                 vm_page_zero_invalid(m, TRUE);
4415         }
4416 out:
4417         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4418                 if (xbusy)
4419                         vm_page_xunbusy(m);
4420                 else
4421                         vm_page_sunbusy(m);
4422         }
4423         if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy)
4424                 vm_page_busy_downgrade(m);
4425         *mp = m;
4426         return (VM_PAGER_OK);
4427 }
4428
4429 /*
4430  * Return the specified range of pages from the given object.  For each
4431  * page offset within the range, if a page already exists within the object
4432  * at that offset and it is busy, then wait for it to change state.  If,
4433  * instead, the page doesn't exist, then allocate it.
4434  *
4435  * The caller must always specify an allocation class.
4436  *
4437  * allocation classes:
4438  *      VM_ALLOC_NORMAL         normal process request
4439  *      VM_ALLOC_SYSTEM         system *really* needs the pages
4440  *
4441  * The caller must always specify that the pages are to be busied and/or
4442  * wired.
4443  *
4444  * optional allocation flags:
4445  *      VM_ALLOC_IGN_SBUSY      do not sleep on soft busy pages
4446  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
4447  *      VM_ALLOC_NOWAIT         do not sleep
4448  *      VM_ALLOC_SBUSY          set page to sbusy state
4449  *      VM_ALLOC_WIRED          wire the pages
4450  *      VM_ALLOC_ZERO           zero and validate any invalid pages
4451  *
4452  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4453  * may return a partial prefix of the requested range.
4454  */
4455 int
4456 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4457     vm_page_t *ma, int count)
4458 {
4459         vm_page_t m, mpred;
4460         int pflags;
4461         int i;
4462
4463         VM_OBJECT_ASSERT_WLOCKED(object);
4464         KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4465             ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4466
4467         pflags = vm_page_grab_pflags(allocflags);
4468         if (count == 0)
4469                 return (0);
4470
4471         i = 0;
4472 retrylookup:
4473         m = vm_radix_lookup_le(&object->rtree, pindex + i);
4474         if (m == NULL || m->pindex != pindex + i) {
4475                 mpred = m;
4476                 m = NULL;
4477         } else
4478                 mpred = TAILQ_PREV(m, pglist, listq);
4479         for (; i < count; i++) {
4480                 if (m != NULL) {
4481                         if (!vm_page_acquire_flags(m, allocflags)) {
4482                                 if (vm_page_busy_sleep_flags(object, m,
4483                                     "grbmaw", allocflags))
4484                                         goto retrylookup;
4485                                 break;
4486                         }
4487                 } else {
4488                         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4489                                 break;
4490                         m = vm_page_alloc_after(object, pindex + i,
4491                             pflags | VM_ALLOC_COUNT(count - i), mpred);
4492                         if (m == NULL) {
4493                                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4494                                         break;
4495                                 goto retrylookup;
4496                         }
4497                 }
4498                 if (vm_page_none_valid(m) &&
4499                     (allocflags & VM_ALLOC_ZERO) != 0) {
4500                         if ((m->flags & PG_ZERO) == 0)
4501                                 pmap_zero_page(m);
4502                         vm_page_valid(m);
4503                 }
4504                 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4505                         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4506                                 vm_page_sunbusy(m);
4507                         else
4508                                 vm_page_xunbusy(m);
4509                 }
4510                 ma[i] = mpred = m;
4511                 m = vm_page_next(m);
4512         }
4513         return (i);
4514 }
4515
4516 /*
4517  * Mapping function for valid or dirty bits in a page.
4518  *
4519  * Inputs are required to range within a page.
4520  */
4521 vm_page_bits_t
4522 vm_page_bits(int base, int size)
4523 {
4524         int first_bit;
4525         int last_bit;
4526
4527         KASSERT(
4528             base + size <= PAGE_SIZE,
4529             ("vm_page_bits: illegal base/size %d/%d", base, size)
4530         );
4531
4532         if (size == 0)          /* handle degenerate case */
4533                 return (0);
4534
4535         first_bit = base >> DEV_BSHIFT;
4536         last_bit = (base + size - 1) >> DEV_BSHIFT;
4537
4538         return (((vm_page_bits_t)2 << last_bit) -
4539             ((vm_page_bits_t)1 << first_bit));
4540 }
4541
4542 void
4543 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4544 {
4545
4546 #if PAGE_SIZE == 32768
4547         atomic_set_64((uint64_t *)bits, set);
4548 #elif PAGE_SIZE == 16384
4549         atomic_set_32((uint32_t *)bits, set);
4550 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4551         atomic_set_16((uint16_t *)bits, set);
4552 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4553         atomic_set_8((uint8_t *)bits, set);
4554 #else           /* PAGE_SIZE <= 8192 */
4555         uintptr_t addr;
4556         int shift;
4557
4558         addr = (uintptr_t)bits;
4559         /*
4560          * Use a trick to perform a 32-bit atomic on the
4561          * containing aligned word, to not depend on the existence
4562          * of atomic_{set, clear}_{8, 16}.
4563          */
4564         shift = addr & (sizeof(uint32_t) - 1);
4565 #if BYTE_ORDER == BIG_ENDIAN
4566         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4567 #else
4568         shift *= NBBY;
4569 #endif
4570         addr &= ~(sizeof(uint32_t) - 1);
4571         atomic_set_32((uint32_t *)addr, set << shift);
4572 #endif          /* PAGE_SIZE */
4573 }
4574
4575 static inline void
4576 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4577 {
4578
4579 #if PAGE_SIZE == 32768
4580         atomic_clear_64((uint64_t *)bits, clear);
4581 #elif PAGE_SIZE == 16384
4582         atomic_clear_32((uint32_t *)bits, clear);
4583 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4584         atomic_clear_16((uint16_t *)bits, clear);
4585 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4586         atomic_clear_8((uint8_t *)bits, clear);
4587 #else           /* PAGE_SIZE <= 8192 */
4588         uintptr_t addr;
4589         int shift;
4590
4591         addr = (uintptr_t)bits;
4592         /*
4593          * Use a trick to perform a 32-bit atomic on the
4594          * containing aligned word, to not depend on the existence
4595          * of atomic_{set, clear}_{8, 16}.
4596          */
4597         shift = addr & (sizeof(uint32_t) - 1);
4598 #if BYTE_ORDER == BIG_ENDIAN
4599         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4600 #else
4601         shift *= NBBY;
4602 #endif
4603         addr &= ~(sizeof(uint32_t) - 1);
4604         atomic_clear_32((uint32_t *)addr, clear << shift);
4605 #endif          /* PAGE_SIZE */
4606 }
4607
4608 /*
4609  *      vm_page_set_valid_range:
4610  *
4611  *      Sets portions of a page valid.  The arguments are expected
4612  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4613  *      of any partial chunks touched by the range.  The invalid portion of
4614  *      such chunks will be zeroed.
4615  *
4616  *      (base + size) must be less then or equal to PAGE_SIZE.
4617  */
4618 void
4619 vm_page_set_valid_range(vm_page_t m, int base, int size)
4620 {
4621         int endoff, frag;
4622         vm_page_bits_t pagebits;
4623
4624         vm_page_assert_busied(m);
4625         if (size == 0)  /* handle degenerate case */
4626                 return;
4627
4628         /*
4629          * If the base is not DEV_BSIZE aligned and the valid
4630          * bit is clear, we have to zero out a portion of the
4631          * first block.
4632          */
4633         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4634             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4635                 pmap_zero_page_area(m, frag, base - frag);
4636
4637         /*
4638          * If the ending offset is not DEV_BSIZE aligned and the
4639          * valid bit is clear, we have to zero out a portion of
4640          * the last block.
4641          */
4642         endoff = base + size;
4643         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4644             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4645                 pmap_zero_page_area(m, endoff,
4646                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4647
4648         /*
4649          * Assert that no previously invalid block that is now being validated
4650          * is already dirty.
4651          */
4652         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4653             ("vm_page_set_valid_range: page %p is dirty", m));
4654
4655         /*
4656          * Set valid bits inclusive of any overlap.
4657          */
4658         pagebits = vm_page_bits(base, size);
4659         if (vm_page_xbusied(m))
4660                 m->valid |= pagebits;
4661         else
4662                 vm_page_bits_set(m, &m->valid, pagebits);
4663 }
4664
4665 /*
4666  * Clear the given bits from the specified page's dirty field.
4667  */
4668 static __inline void
4669 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4670 {
4671
4672         vm_page_assert_busied(m);
4673
4674         /*
4675          * If the page is xbusied and not write mapped we are the
4676          * only thread that can modify dirty bits.  Otherwise, The pmap
4677          * layer can call vm_page_dirty() without holding a distinguished
4678          * lock.  The combination of page busy and atomic operations
4679          * suffice to guarantee consistency of the page dirty field.
4680          */
4681         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4682                 m->dirty &= ~pagebits;
4683         else
4684                 vm_page_bits_clear(m, &m->dirty, pagebits);
4685 }
4686
4687 /*
4688  *      vm_page_set_validclean:
4689  *
4690  *      Sets portions of a page valid and clean.  The arguments are expected
4691  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4692  *      of any partial chunks touched by the range.  The invalid portion of
4693  *      such chunks will be zero'd.
4694  *
4695  *      (base + size) must be less then or equal to PAGE_SIZE.
4696  */
4697 void
4698 vm_page_set_validclean(vm_page_t m, int base, int size)
4699 {
4700         vm_page_bits_t oldvalid, pagebits;
4701         int endoff, frag;
4702
4703         vm_page_assert_busied(m);
4704         if (size == 0)  /* handle degenerate case */
4705                 return;
4706
4707         /*
4708          * If the base is not DEV_BSIZE aligned and the valid
4709          * bit is clear, we have to zero out a portion of the
4710          * first block.
4711          */
4712         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4713             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4714                 pmap_zero_page_area(m, frag, base - frag);
4715
4716         /*
4717          * If the ending offset is not DEV_BSIZE aligned and the
4718          * valid bit is clear, we have to zero out a portion of
4719          * the last block.
4720          */
4721         endoff = base + size;
4722         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4723             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4724                 pmap_zero_page_area(m, endoff,
4725                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4726
4727         /*
4728          * Set valid, clear dirty bits.  If validating the entire
4729          * page we can safely clear the pmap modify bit.  We also
4730          * use this opportunity to clear the PGA_NOSYNC flag.  If a process
4731          * takes a write fault on a MAP_NOSYNC memory area the flag will
4732          * be set again.
4733          *
4734          * We set valid bits inclusive of any overlap, but we can only
4735          * clear dirty bits for DEV_BSIZE chunks that are fully within
4736          * the range.
4737          */
4738         oldvalid = m->valid;
4739         pagebits = vm_page_bits(base, size);
4740         if (vm_page_xbusied(m))
4741                 m->valid |= pagebits;
4742         else
4743                 vm_page_bits_set(m, &m->valid, pagebits);
4744 #if 0   /* NOT YET */
4745         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4746                 frag = DEV_BSIZE - frag;
4747                 base += frag;
4748                 size -= frag;
4749                 if (size < 0)
4750                         size = 0;
4751         }
4752         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4753 #endif
4754         if (base == 0 && size == PAGE_SIZE) {
4755                 /*
4756                  * The page can only be modified within the pmap if it is
4757                  * mapped, and it can only be mapped if it was previously
4758                  * fully valid.
4759                  */
4760                 if (oldvalid == VM_PAGE_BITS_ALL)
4761                         /*
4762                          * Perform the pmap_clear_modify() first.  Otherwise,
4763                          * a concurrent pmap operation, such as
4764                          * pmap_protect(), could clear a modification in the
4765                          * pmap and set the dirty field on the page before
4766                          * pmap_clear_modify() had begun and after the dirty
4767                          * field was cleared here.
4768                          */
4769                         pmap_clear_modify(m);
4770                 m->dirty = 0;
4771                 vm_page_aflag_clear(m, PGA_NOSYNC);
4772         } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
4773                 m->dirty &= ~pagebits;
4774         else
4775                 vm_page_clear_dirty_mask(m, pagebits);
4776 }
4777
4778 void
4779 vm_page_clear_dirty(vm_page_t m, int base, int size)
4780 {
4781
4782         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4783 }
4784
4785 /*
4786  *      vm_page_set_invalid:
4787  *
4788  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
4789  *      valid and dirty bits for the effected areas are cleared.
4790  */
4791 void
4792 vm_page_set_invalid(vm_page_t m, int base, int size)
4793 {
4794         vm_page_bits_t bits;
4795         vm_object_t object;
4796
4797         /*
4798          * The object lock is required so that pages can't be mapped
4799          * read-only while we're in the process of invalidating them.
4800          */
4801         object = m->object;
4802         VM_OBJECT_ASSERT_WLOCKED(object);
4803         vm_page_assert_busied(m);
4804
4805         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4806             size >= object->un_pager.vnp.vnp_size)
4807                 bits = VM_PAGE_BITS_ALL;
4808         else
4809                 bits = vm_page_bits(base, size);
4810         if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
4811                 pmap_remove_all(m);
4812         KASSERT((bits == 0 && vm_page_all_valid(m)) ||
4813             !pmap_page_is_mapped(m),
4814             ("vm_page_set_invalid: page %p is mapped", m));
4815         if (vm_page_xbusied(m)) {
4816                 m->valid &= ~bits;
4817                 m->dirty &= ~bits;
4818         } else {
4819                 vm_page_bits_clear(m, &m->valid, bits);
4820                 vm_page_bits_clear(m, &m->dirty, bits);
4821         }
4822 }
4823
4824 /*
4825  *      vm_page_invalid:
4826  *
4827  *      Invalidates the entire page.  The page must be busy, unmapped, and
4828  *      the enclosing object must be locked.  The object locks protects
4829  *      against concurrent read-only pmap enter which is done without
4830  *      busy.
4831  */
4832 void
4833 vm_page_invalid(vm_page_t m)
4834 {
4835
4836         vm_page_assert_busied(m);
4837         VM_OBJECT_ASSERT_LOCKED(m->object);
4838         MPASS(!pmap_page_is_mapped(m));
4839
4840         if (vm_page_xbusied(m))
4841                 m->valid = 0;
4842         else
4843                 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
4844 }
4845
4846 /*
4847  * vm_page_zero_invalid()
4848  *
4849  *      The kernel assumes that the invalid portions of a page contain
4850  *      garbage, but such pages can be mapped into memory by user code.
4851  *      When this occurs, we must zero out the non-valid portions of the
4852  *      page so user code sees what it expects.
4853  *
4854  *      Pages are most often semi-valid when the end of a file is mapped
4855  *      into memory and the file's size is not page aligned.
4856  */
4857 void
4858 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4859 {
4860         int b;
4861         int i;
4862
4863         /*
4864          * Scan the valid bits looking for invalid sections that
4865          * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4866          * valid bit may be set ) have already been zeroed by
4867          * vm_page_set_validclean().
4868          */
4869         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4870                 if (i == (PAGE_SIZE / DEV_BSIZE) ||
4871                     (m->valid & ((vm_page_bits_t)1 << i))) {
4872                         if (i > b) {
4873                                 pmap_zero_page_area(m,
4874                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4875                         }
4876                         b = i + 1;
4877                 }
4878         }
4879
4880         /*
4881          * setvalid is TRUE when we can safely set the zero'd areas
4882          * as being valid.  We can do this if there are no cache consistancy
4883          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4884          */
4885         if (setvalid)
4886                 vm_page_valid(m);
4887 }
4888
4889 /*
4890  *      vm_page_is_valid:
4891  *
4892  *      Is (partial) page valid?  Note that the case where size == 0
4893  *      will return FALSE in the degenerate case where the page is
4894  *      entirely invalid, and TRUE otherwise.
4895  *
4896  *      Some callers envoke this routine without the busy lock held and
4897  *      handle races via higher level locks.  Typical callers should
4898  *      hold a busy lock to prevent invalidation.
4899  */
4900 int
4901 vm_page_is_valid(vm_page_t m, int base, int size)
4902 {
4903         vm_page_bits_t bits;
4904
4905         bits = vm_page_bits(base, size);
4906         return (m->valid != 0 && (m->valid & bits) == bits);
4907 }
4908
4909 /*
4910  * Returns true if all of the specified predicates are true for the entire
4911  * (super)page and false otherwise.
4912  */
4913 bool
4914 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
4915 {
4916         vm_object_t object;
4917         int i, npages;
4918
4919         object = m->object;
4920         if (skip_m != NULL && skip_m->object != object)
4921                 return (false);
4922         VM_OBJECT_ASSERT_LOCKED(object);
4923         npages = atop(pagesizes[m->psind]);
4924
4925         /*
4926          * The physically contiguous pages that make up a superpage, i.e., a
4927          * page with a page size index ("psind") greater than zero, will
4928          * occupy adjacent entries in vm_page_array[].
4929          */
4930         for (i = 0; i < npages; i++) {
4931                 /* Always test object consistency, including "skip_m". */
4932                 if (m[i].object != object)
4933                         return (false);
4934                 if (&m[i] == skip_m)
4935                         continue;
4936                 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
4937                         return (false);
4938                 if ((flags & PS_ALL_DIRTY) != 0) {
4939                         /*
4940                          * Calling vm_page_test_dirty() or pmap_is_modified()
4941                          * might stop this case from spuriously returning
4942                          * "false".  However, that would require a write lock
4943                          * on the object containing "m[i]".
4944                          */
4945                         if (m[i].dirty != VM_PAGE_BITS_ALL)
4946                                 return (false);
4947                 }
4948                 if ((flags & PS_ALL_VALID) != 0 &&
4949                     m[i].valid != VM_PAGE_BITS_ALL)
4950                         return (false);
4951         }
4952         return (true);
4953 }
4954
4955 /*
4956  * Set the page's dirty bits if the page is modified.
4957  */
4958 void
4959 vm_page_test_dirty(vm_page_t m)
4960 {
4961
4962         vm_page_assert_busied(m);
4963         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
4964                 vm_page_dirty(m);
4965 }
4966
4967 void
4968 vm_page_valid(vm_page_t m)
4969 {
4970
4971         vm_page_assert_busied(m);
4972         if (vm_page_xbusied(m))
4973                 m->valid = VM_PAGE_BITS_ALL;
4974         else
4975                 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
4976 }
4977
4978 void
4979 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
4980 {
4981
4982         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
4983 }
4984
4985 void
4986 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
4987 {
4988
4989         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
4990 }
4991
4992 int
4993 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
4994 {
4995
4996         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
4997 }
4998
4999 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5000 void
5001 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5002 {
5003
5004         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5005 }
5006
5007 void
5008 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5009 {
5010
5011         mtx_assert_(vm_page_lockptr(m), a, file, line);
5012 }
5013 #endif
5014
5015 #ifdef INVARIANTS
5016 void
5017 vm_page_object_busy_assert(vm_page_t m)
5018 {
5019
5020         /*
5021          * Certain of the page's fields may only be modified by the
5022          * holder of a page or object busy.
5023          */
5024         if (m->object != NULL && !vm_page_busied(m))
5025                 VM_OBJECT_ASSERT_BUSY(m->object);
5026 }
5027
5028 void
5029 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5030 {
5031
5032         if ((bits & PGA_WRITEABLE) == 0)
5033                 return;
5034
5035         /*
5036          * The PGA_WRITEABLE flag can only be set if the page is
5037          * managed, is exclusively busied or the object is locked.
5038          * Currently, this flag is only set by pmap_enter().
5039          */
5040         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5041             ("PGA_WRITEABLE on unmanaged page"));
5042         if (!vm_page_xbusied(m))
5043                 VM_OBJECT_ASSERT_BUSY(m->object);
5044 }
5045 #endif
5046
5047 #include "opt_ddb.h"
5048 #ifdef DDB
5049 #include <sys/kernel.h>
5050
5051 #include <ddb/ddb.h>
5052
5053 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5054 {
5055
5056         db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5057         db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5058         db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5059         db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5060         db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5061         db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5062         db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5063         db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5064         db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5065 }
5066
5067 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5068 {
5069         int dom;
5070
5071         db_printf("pq_free %d\n", vm_free_count());
5072         for (dom = 0; dom < vm_ndomains; dom++) {
5073                 db_printf(
5074     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5075                     dom,
5076                     vm_dom[dom].vmd_page_count,
5077                     vm_dom[dom].vmd_free_count,
5078                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5079                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5080                     vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5081                     vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5082         }
5083 }
5084
5085 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5086 {
5087         vm_page_t m;
5088         boolean_t phys, virt;
5089
5090         if (!have_addr) {
5091                 db_printf("show pginfo addr\n");
5092                 return;
5093         }
5094
5095         phys = strchr(modif, 'p') != NULL;
5096         virt = strchr(modif, 'v') != NULL;
5097         if (virt)
5098                 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5099         else if (phys)
5100                 m = PHYS_TO_VM_PAGE(addr);
5101         else
5102                 m = (vm_page_t)addr;
5103         db_printf(
5104     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
5105     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5106             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5107             m->a.queue, m->ref_count, m->a.flags, m->oflags,
5108             m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5109 }
5110 #endif /* DDB */