]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_page.c
Add more Arm arm64 CPU identification values
[FreeBSD/FreeBSD.git] / sys / vm / vm_page.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
36  */
37
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64
65 /*
66  *      Resident memory management module.
67  */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_vm.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113
114 #include <machine/md_var.h>
115
116 extern int      uma_startup_count(int);
117 extern void     uma_startup(void *, int);
118 extern int      vmem_startup_count(void);
119
120 struct vm_domain vm_dom[MAXMEMDOM];
121
122 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
123
124 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
125
126 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
127 /* The following fields are protected by the domainset lock. */
128 domainset_t __exclusive_cache_line vm_min_domains;
129 domainset_t __exclusive_cache_line vm_severe_domains;
130 static int vm_min_waiters;
131 static int vm_severe_waiters;
132 static int vm_pageproc_waiters;
133
134 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0,
135     "VM page statistics");
136
137 static counter_u64_t pqstate_commit_retries = EARLY_COUNTER;
138 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
139     CTLFLAG_RD, &pqstate_commit_retries,
140     "Number of failed per-page atomic queue state updates");
141
142 static counter_u64_t queue_ops = EARLY_COUNTER;
143 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
144     CTLFLAG_RD, &queue_ops,
145     "Number of batched queue operations");
146
147 static counter_u64_t queue_nops = EARLY_COUNTER;
148 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
149     CTLFLAG_RD, &queue_nops,
150     "Number of batched queue operations with no effects");
151
152 static void
153 counter_startup(void)
154 {
155
156         pqstate_commit_retries = counter_u64_alloc(M_WAITOK);
157         queue_ops = counter_u64_alloc(M_WAITOK);
158         queue_nops = counter_u64_alloc(M_WAITOK);
159 }
160 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
161
162 /*
163  * bogus page -- for I/O to/from partially complete buffers,
164  * or for paging into sparsely invalid regions.
165  */
166 vm_page_t bogus_page;
167
168 vm_page_t vm_page_array;
169 long vm_page_array_size;
170 long first_page;
171
172 static int boot_pages;
173 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
174     &boot_pages, 0,
175     "number of pages allocated for bootstrapping the VM system");
176
177 static TAILQ_HEAD(, vm_page) blacklist_head;
178 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
179 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
180     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
181
182 static uma_zone_t fakepg_zone;
183
184 static void vm_page_alloc_check(vm_page_t m);
185 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
186     const char *wmesg, bool nonshared, bool locked);
187 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
188 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
189 static bool vm_page_free_prep(vm_page_t m);
190 static void vm_page_free_toq(vm_page_t m);
191 static void vm_page_init(void *dummy);
192 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
193     vm_pindex_t pindex, vm_page_t mpred);
194 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
195     vm_page_t mpred);
196 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
197     const uint16_t nflag);
198 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
199     vm_page_t m_run, vm_paddr_t high);
200 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
201 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
202     int req);
203 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
204     int flags);
205 static void vm_page_zone_release(void *arg, void **store, int cnt);
206
207 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
208
209 static void
210 vm_page_init(void *dummy)
211 {
212
213         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
214             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
215         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
216             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
217 }
218
219 /*
220  * The cache page zone is initialized later since we need to be able to allocate
221  * pages before UMA is fully initialized.
222  */
223 static void
224 vm_page_init_cache_zones(void *dummy __unused)
225 {
226         struct vm_domain *vmd;
227         struct vm_pgcache *pgcache;
228         int cache, domain, maxcache, pool;
229
230         maxcache = 0;
231         TUNABLE_INT_FETCH("vm.pgcache_zone_max", &maxcache);
232         for (domain = 0; domain < vm_ndomains; domain++) {
233                 vmd = VM_DOMAIN(domain);
234                 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
235                         pgcache = &vmd->vmd_pgcache[pool];
236                         pgcache->domain = domain;
237                         pgcache->pool = pool;
238                         pgcache->zone = uma_zcache_create("vm pgcache",
239                             PAGE_SIZE, NULL, NULL, NULL, NULL,
240                             vm_page_zone_import, vm_page_zone_release, pgcache,
241                             UMA_ZONE_VM);
242
243                         /*
244                          * Limit each pool's zone to 0.1% of the pages in the
245                          * domain.
246                          */
247                         cache = maxcache != 0 ? maxcache :
248                             vmd->vmd_page_count / 1000;
249                         uma_zone_set_maxcache(pgcache->zone, cache);
250                 }
251         }
252 }
253 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
254
255 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
256 #if PAGE_SIZE == 32768
257 #ifdef CTASSERT
258 CTASSERT(sizeof(u_long) >= 8);
259 #endif
260 #endif
261
262 /*
263  *      vm_set_page_size:
264  *
265  *      Sets the page size, perhaps based upon the memory
266  *      size.  Must be called before any use of page-size
267  *      dependent functions.
268  */
269 void
270 vm_set_page_size(void)
271 {
272         if (vm_cnt.v_page_size == 0)
273                 vm_cnt.v_page_size = PAGE_SIZE;
274         if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
275                 panic("vm_set_page_size: page size not a power of two");
276 }
277
278 /*
279  *      vm_page_blacklist_next:
280  *
281  *      Find the next entry in the provided string of blacklist
282  *      addresses.  Entries are separated by space, comma, or newline.
283  *      If an invalid integer is encountered then the rest of the
284  *      string is skipped.  Updates the list pointer to the next
285  *      character, or NULL if the string is exhausted or invalid.
286  */
287 static vm_paddr_t
288 vm_page_blacklist_next(char **list, char *end)
289 {
290         vm_paddr_t bad;
291         char *cp, *pos;
292
293         if (list == NULL || *list == NULL)
294                 return (0);
295         if (**list =='\0') {
296                 *list = NULL;
297                 return (0);
298         }
299
300         /*
301          * If there's no end pointer then the buffer is coming from
302          * the kenv and we know it's null-terminated.
303          */
304         if (end == NULL)
305                 end = *list + strlen(*list);
306
307         /* Ensure that strtoq() won't walk off the end */
308         if (*end != '\0') {
309                 if (*end == '\n' || *end == ' ' || *end  == ',')
310                         *end = '\0';
311                 else {
312                         printf("Blacklist not terminated, skipping\n");
313                         *list = NULL;
314                         return (0);
315                 }
316         }
317
318         for (pos = *list; *pos != '\0'; pos = cp) {
319                 bad = strtoq(pos, &cp, 0);
320                 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
321                         if (bad == 0) {
322                                 if (++cp < end)
323                                         continue;
324                                 else
325                                         break;
326                         }
327                 } else
328                         break;
329                 if (*cp == '\0' || ++cp >= end)
330                         *list = NULL;
331                 else
332                         *list = cp;
333                 return (trunc_page(bad));
334         }
335         printf("Garbage in RAM blacklist, skipping\n");
336         *list = NULL;
337         return (0);
338 }
339
340 bool
341 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
342 {
343         struct vm_domain *vmd;
344         vm_page_t m;
345         int ret;
346
347         m = vm_phys_paddr_to_vm_page(pa);
348         if (m == NULL)
349                 return (true); /* page does not exist, no failure */
350
351         vmd = vm_pagequeue_domain(m);
352         vm_domain_free_lock(vmd);
353         ret = vm_phys_unfree_page(m);
354         vm_domain_free_unlock(vmd);
355         if (ret != 0) {
356                 vm_domain_freecnt_inc(vmd, -1);
357                 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
358                 if (verbose)
359                         printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
360         }
361         return (ret);
362 }
363
364 /*
365  *      vm_page_blacklist_check:
366  *
367  *      Iterate through the provided string of blacklist addresses, pulling
368  *      each entry out of the physical allocator free list and putting it
369  *      onto a list for reporting via the vm.page_blacklist sysctl.
370  */
371 static void
372 vm_page_blacklist_check(char *list, char *end)
373 {
374         vm_paddr_t pa;
375         char *next;
376
377         next = list;
378         while (next != NULL) {
379                 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
380                         continue;
381                 vm_page_blacklist_add(pa, bootverbose);
382         }
383 }
384
385 /*
386  *      vm_page_blacklist_load:
387  *
388  *      Search for a special module named "ram_blacklist".  It'll be a
389  *      plain text file provided by the user via the loader directive
390  *      of the same name.
391  */
392 static void
393 vm_page_blacklist_load(char **list, char **end)
394 {
395         void *mod;
396         u_char *ptr;
397         u_int len;
398
399         mod = NULL;
400         ptr = NULL;
401
402         mod = preload_search_by_type("ram_blacklist");
403         if (mod != NULL) {
404                 ptr = preload_fetch_addr(mod);
405                 len = preload_fetch_size(mod);
406         }
407         *list = ptr;
408         if (ptr != NULL)
409                 *end = ptr + len;
410         else
411                 *end = NULL;
412         return;
413 }
414
415 static int
416 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
417 {
418         vm_page_t m;
419         struct sbuf sbuf;
420         int error, first;
421
422         first = 1;
423         error = sysctl_wire_old_buffer(req, 0);
424         if (error != 0)
425                 return (error);
426         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
427         TAILQ_FOREACH(m, &blacklist_head, listq) {
428                 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
429                     (uintmax_t)m->phys_addr);
430                 first = 0;
431         }
432         error = sbuf_finish(&sbuf);
433         sbuf_delete(&sbuf);
434         return (error);
435 }
436
437 /*
438  * Initialize a dummy page for use in scans of the specified paging queue.
439  * In principle, this function only needs to set the flag PG_MARKER.
440  * Nonetheless, it write busies the page as a safety precaution.
441  */
442 static void
443 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
444 {
445
446         bzero(marker, sizeof(*marker));
447         marker->flags = PG_MARKER;
448         marker->a.flags = aflags;
449         marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
450         marker->a.queue = queue;
451 }
452
453 static void
454 vm_page_domain_init(int domain)
455 {
456         struct vm_domain *vmd;
457         struct vm_pagequeue *pq;
458         int i;
459
460         vmd = VM_DOMAIN(domain);
461         bzero(vmd, sizeof(*vmd));
462         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
463             "vm inactive pagequeue";
464         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
465             "vm active pagequeue";
466         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
467             "vm laundry pagequeue";
468         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
469             "vm unswappable pagequeue";
470         vmd->vmd_domain = domain;
471         vmd->vmd_page_count = 0;
472         vmd->vmd_free_count = 0;
473         vmd->vmd_segs = 0;
474         vmd->vmd_oom = FALSE;
475         for (i = 0; i < PQ_COUNT; i++) {
476                 pq = &vmd->vmd_pagequeues[i];
477                 TAILQ_INIT(&pq->pq_pl);
478                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
479                     MTX_DEF | MTX_DUPOK);
480                 pq->pq_pdpages = 0;
481                 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
482         }
483         mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
484         mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
485         snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
486
487         /*
488          * inacthead is used to provide FIFO ordering for LRU-bypassing
489          * insertions.
490          */
491         vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
492         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
493             &vmd->vmd_inacthead, plinks.q);
494
495         /*
496          * The clock pages are used to implement active queue scanning without
497          * requeues.  Scans start at clock[0], which is advanced after the scan
498          * ends.  When the two clock hands meet, they are reset and scanning
499          * resumes from the head of the queue.
500          */
501         vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
502         vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
503         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
504             &vmd->vmd_clock[0], plinks.q);
505         TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
506             &vmd->vmd_clock[1], plinks.q);
507 }
508
509 /*
510  * Initialize a physical page in preparation for adding it to the free
511  * lists.
512  */
513 static void
514 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
515 {
516
517         m->object = NULL;
518         m->ref_count = 0;
519         m->busy_lock = VPB_UNBUSIED;
520         m->flags = m->a.flags = 0;
521         m->phys_addr = pa;
522         m->a.queue = PQ_NONE;
523         m->psind = 0;
524         m->segind = segind;
525         m->order = VM_NFREEORDER;
526         m->pool = VM_FREEPOOL_DEFAULT;
527         m->valid = m->dirty = 0;
528         pmap_page_init(m);
529 }
530
531 #ifndef PMAP_HAS_PAGE_ARRAY
532 static vm_paddr_t
533 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
534 {
535         vm_paddr_t new_end;
536
537         /*
538          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
539          * However, because this page is allocated from KVM, out-of-bounds
540          * accesses using the direct map will not be trapped.
541          */
542         *vaddr += PAGE_SIZE;
543
544         /*
545          * Allocate physical memory for the page structures, and map it.
546          */
547         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
548         vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
549             VM_PROT_READ | VM_PROT_WRITE);
550         vm_page_array_size = page_range;
551
552         return (new_end);
553 }
554 #endif
555
556 /*
557  *      vm_page_startup:
558  *
559  *      Initializes the resident memory module.  Allocates physical memory for
560  *      bootstrapping UMA and some data structures that are used to manage
561  *      physical pages.  Initializes these structures, and populates the free
562  *      page queues.
563  */
564 vm_offset_t
565 vm_page_startup(vm_offset_t vaddr)
566 {
567         struct vm_phys_seg *seg;
568         vm_page_t m;
569         char *list, *listend;
570         vm_offset_t mapped;
571         vm_paddr_t end, high_avail, low_avail, new_end, size;
572         vm_paddr_t page_range __unused;
573         vm_paddr_t last_pa, pa;
574         u_long pagecount;
575         int biggestone, i, segind;
576 #ifdef WITNESS
577         int witness_size;
578 #endif
579 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
580         long ii;
581 #endif
582
583         vaddr = round_page(vaddr);
584
585         vm_phys_early_startup();
586         biggestone = vm_phys_avail_largest();
587         end = phys_avail[biggestone+1];
588
589         /*
590          * Initialize the page and queue locks.
591          */
592         mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
593         for (i = 0; i < PA_LOCK_COUNT; i++)
594                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
595         for (i = 0; i < vm_ndomains; i++)
596                 vm_page_domain_init(i);
597
598         /*
599          * Allocate memory for use when boot strapping the kernel memory
600          * allocator.  Tell UMA how many zones we are going to create
601          * before going fully functional.  UMA will add its zones.
602          *
603          * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP,
604          * KMAP ENTRY, MAP ENTRY, VMSPACE.
605          */
606         boot_pages = uma_startup_count(8);
607
608 #ifndef UMA_MD_SMALL_ALLOC
609         /* vmem_startup() calls uma_prealloc(). */
610         boot_pages += vmem_startup_count();
611         /* vm_map_startup() calls uma_prealloc(). */
612         boot_pages += howmany(MAX_KMAP,
613             slab_ipers(sizeof(struct vm_map), UMA_ALIGN_PTR));
614
615         /*
616          * Before we are fully boot strapped we need to account for the
617          * following allocations:
618          *
619          * "KMAP ENTRY" from kmem_init()
620          * "vmem btag" from vmem_startup()
621          * "vmem" from vmem_create()
622          * "KMAP" from vm_map_startup()
623          *
624          * Each needs at least one page per-domain.
625          */
626         boot_pages += 4 * vm_ndomains;
627 #endif
628         /*
629          * CTFLAG_RDTUN doesn't work during the early boot process, so we must
630          * manually fetch the value.
631          */
632         TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
633         new_end = end - (boot_pages * UMA_SLAB_SIZE);
634         new_end = trunc_page(new_end);
635         mapped = pmap_map(&vaddr, new_end, end,
636             VM_PROT_READ | VM_PROT_WRITE);
637         bzero((void *)mapped, end - new_end);
638         uma_startup((void *)mapped, boot_pages);
639
640 #ifdef WITNESS
641         witness_size = round_page(witness_startup_count());
642         new_end -= witness_size;
643         mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
644             VM_PROT_READ | VM_PROT_WRITE);
645         bzero((void *)mapped, witness_size);
646         witness_startup((void *)mapped);
647 #endif
648
649 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
650     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
651     defined(__powerpc64__)
652         /*
653          * Allocate a bitmap to indicate that a random physical page
654          * needs to be included in a minidump.
655          *
656          * The amd64 port needs this to indicate which direct map pages
657          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
658          *
659          * However, i386 still needs this workspace internally within the
660          * minidump code.  In theory, they are not needed on i386, but are
661          * included should the sf_buf code decide to use them.
662          */
663         last_pa = 0;
664         for (i = 0; dump_avail[i + 1] != 0; i += 2)
665                 if (dump_avail[i + 1] > last_pa)
666                         last_pa = dump_avail[i + 1];
667         page_range = last_pa / PAGE_SIZE;
668         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
669         new_end -= vm_page_dump_size;
670         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
671             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
672         bzero((void *)vm_page_dump, vm_page_dump_size);
673 #else
674         (void)last_pa;
675 #endif
676 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
677     defined(__riscv) || defined(__powerpc64__)
678         /*
679          * Include the UMA bootstrap pages, witness pages and vm_page_dump
680          * in a crash dump.  When pmap_map() uses the direct map, they are
681          * not automatically included.
682          */
683         for (pa = new_end; pa < end; pa += PAGE_SIZE)
684                 dump_add_page(pa);
685 #endif
686         phys_avail[biggestone + 1] = new_end;
687 #ifdef __amd64__
688         /*
689          * Request that the physical pages underlying the message buffer be
690          * included in a crash dump.  Since the message buffer is accessed
691          * through the direct map, they are not automatically included.
692          */
693         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
694         last_pa = pa + round_page(msgbufsize);
695         while (pa < last_pa) {
696                 dump_add_page(pa);
697                 pa += PAGE_SIZE;
698         }
699 #endif
700         /*
701          * Compute the number of pages of memory that will be available for
702          * use, taking into account the overhead of a page structure per page.
703          * In other words, solve
704          *      "available physical memory" - round_page(page_range *
705          *          sizeof(struct vm_page)) = page_range * PAGE_SIZE 
706          * for page_range.  
707          */
708         low_avail = phys_avail[0];
709         high_avail = phys_avail[1];
710         for (i = 0; i < vm_phys_nsegs; i++) {
711                 if (vm_phys_segs[i].start < low_avail)
712                         low_avail = vm_phys_segs[i].start;
713                 if (vm_phys_segs[i].end > high_avail)
714                         high_avail = vm_phys_segs[i].end;
715         }
716         /* Skip the first chunk.  It is already accounted for. */
717         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
718                 if (phys_avail[i] < low_avail)
719                         low_avail = phys_avail[i];
720                 if (phys_avail[i + 1] > high_avail)
721                         high_avail = phys_avail[i + 1];
722         }
723         first_page = low_avail / PAGE_SIZE;
724 #ifdef VM_PHYSSEG_SPARSE
725         size = 0;
726         for (i = 0; i < vm_phys_nsegs; i++)
727                 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
728         for (i = 0; phys_avail[i + 1] != 0; i += 2)
729                 size += phys_avail[i + 1] - phys_avail[i];
730 #elif defined(VM_PHYSSEG_DENSE)
731         size = high_avail - low_avail;
732 #else
733 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
734 #endif
735
736 #ifdef PMAP_HAS_PAGE_ARRAY
737         pmap_page_array_startup(size / PAGE_SIZE);
738         biggestone = vm_phys_avail_largest();
739         end = new_end = phys_avail[biggestone + 1];
740 #else
741 #ifdef VM_PHYSSEG_DENSE
742         /*
743          * In the VM_PHYSSEG_DENSE case, the number of pages can account for
744          * the overhead of a page structure per page only if vm_page_array is
745          * allocated from the last physical memory chunk.  Otherwise, we must
746          * allocate page structures representing the physical memory
747          * underlying vm_page_array, even though they will not be used.
748          */
749         if (new_end != high_avail)
750                 page_range = size / PAGE_SIZE;
751         else
752 #endif
753         {
754                 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
755
756                 /*
757                  * If the partial bytes remaining are large enough for
758                  * a page (PAGE_SIZE) without a corresponding
759                  * 'struct vm_page', then new_end will contain an
760                  * extra page after subtracting the length of the VM
761                  * page array.  Compensate by subtracting an extra
762                  * page from new_end.
763                  */
764                 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
765                         if (new_end == high_avail)
766                                 high_avail -= PAGE_SIZE;
767                         new_end -= PAGE_SIZE;
768                 }
769         }
770         end = new_end;
771         new_end = vm_page_array_alloc(&vaddr, end, page_range);
772 #endif
773
774 #if VM_NRESERVLEVEL > 0
775         /*
776          * Allocate physical memory for the reservation management system's
777          * data structures, and map it.
778          */
779         new_end = vm_reserv_startup(&vaddr, new_end);
780 #endif
781 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
782     defined(__riscv) || defined(__powerpc64__)
783         /*
784          * Include vm_page_array and vm_reserv_array in a crash dump.
785          */
786         for (pa = new_end; pa < end; pa += PAGE_SIZE)
787                 dump_add_page(pa);
788 #endif
789         phys_avail[biggestone + 1] = new_end;
790
791         /*
792          * Add physical memory segments corresponding to the available
793          * physical pages.
794          */
795         for (i = 0; phys_avail[i + 1] != 0; i += 2)
796                 if (vm_phys_avail_size(i) != 0)
797                         vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
798
799         /*
800          * Initialize the physical memory allocator.
801          */
802         vm_phys_init();
803
804         /*
805          * Initialize the page structures and add every available page to the
806          * physical memory allocator's free lists.
807          */
808 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
809         for (ii = 0; ii < vm_page_array_size; ii++) {
810                 m = &vm_page_array[ii];
811                 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
812                 m->flags = PG_FICTITIOUS;
813         }
814 #endif
815         vm_cnt.v_page_count = 0;
816         for (segind = 0; segind < vm_phys_nsegs; segind++) {
817                 seg = &vm_phys_segs[segind];
818                 for (m = seg->first_page, pa = seg->start; pa < seg->end;
819                     m++, pa += PAGE_SIZE)
820                         vm_page_init_page(m, pa, segind);
821
822                 /*
823                  * Add the segment to the free lists only if it is covered by
824                  * one of the ranges in phys_avail.  Because we've added the
825                  * ranges to the vm_phys_segs array, we can assume that each
826                  * segment is either entirely contained in one of the ranges,
827                  * or doesn't overlap any of them.
828                  */
829                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
830                         struct vm_domain *vmd;
831
832                         if (seg->start < phys_avail[i] ||
833                             seg->end > phys_avail[i + 1])
834                                 continue;
835
836                         m = seg->first_page;
837                         pagecount = (u_long)atop(seg->end - seg->start);
838
839                         vmd = VM_DOMAIN(seg->domain);
840                         vm_domain_free_lock(vmd);
841                         vm_phys_enqueue_contig(m, pagecount);
842                         vm_domain_free_unlock(vmd);
843                         vm_domain_freecnt_inc(vmd, pagecount);
844                         vm_cnt.v_page_count += (u_int)pagecount;
845
846                         vmd = VM_DOMAIN(seg->domain);
847                         vmd->vmd_page_count += (u_int)pagecount;
848                         vmd->vmd_segs |= 1UL << m->segind;
849                         break;
850                 }
851         }
852
853         /*
854          * Remove blacklisted pages from the physical memory allocator.
855          */
856         TAILQ_INIT(&blacklist_head);
857         vm_page_blacklist_load(&list, &listend);
858         vm_page_blacklist_check(list, listend);
859
860         list = kern_getenv("vm.blacklist");
861         vm_page_blacklist_check(list, NULL);
862
863         freeenv(list);
864 #if VM_NRESERVLEVEL > 0
865         /*
866          * Initialize the reservation management system.
867          */
868         vm_reserv_init();
869 #endif
870
871         return (vaddr);
872 }
873
874 void
875 vm_page_reference(vm_page_t m)
876 {
877
878         vm_page_aflag_set(m, PGA_REFERENCED);
879 }
880
881 static bool
882 vm_page_acquire_flags(vm_page_t m, int allocflags)
883 {
884         bool locked;
885
886         if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
887                 locked = vm_page_trysbusy(m);
888         else
889                 locked = vm_page_tryxbusy(m);
890         if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
891                 vm_page_wire(m);
892         return (locked);
893 }
894
895 /*
896  *      vm_page_busy_sleep_flags
897  *
898  *      Sleep for busy according to VM_ALLOC_ parameters.
899  */
900 static bool
901 vm_page_busy_sleep_flags(vm_object_t object, vm_page_t m, const char *wmesg,
902     int allocflags)
903 {
904
905         if ((allocflags & VM_ALLOC_NOWAIT) != 0)
906                 return (false);
907         /*
908          * Reference the page before unlocking and
909          * sleeping so that the page daemon is less
910          * likely to reclaim it.
911          */
912         if ((allocflags & VM_ALLOC_NOCREAT) == 0)
913                 vm_page_aflag_set(m, PGA_REFERENCED);
914         if (_vm_page_busy_sleep(object, m, wmesg, (allocflags &
915             VM_ALLOC_IGN_SBUSY) != 0, true))
916                 VM_OBJECT_WLOCK(object);
917         if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
918                 return (false);
919         return (true);
920 }
921
922 /*
923  *      vm_page_busy_acquire:
924  *
925  *      Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
926  *      and drop the object lock if necessary.
927  */
928 bool
929 vm_page_busy_acquire(vm_page_t m, int allocflags)
930 {
931         vm_object_t obj;
932         bool locked;
933
934         /*
935          * The page-specific object must be cached because page
936          * identity can change during the sleep, causing the
937          * re-lock of a different object.
938          * It is assumed that a reference to the object is already
939          * held by the callers.
940          */
941         obj = m->object;
942         for (;;) {
943                 if (vm_page_acquire_flags(m, allocflags))
944                         return (true);
945                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
946                         return (false);
947                 if (obj != NULL)
948                         locked = VM_OBJECT_WOWNED(obj);
949                 else
950                         locked = false;
951                 MPASS(locked || vm_page_wired(m));
952                 if (_vm_page_busy_sleep(obj, m, "vmpba",
953                     (allocflags & VM_ALLOC_SBUSY) != 0, locked))
954                         VM_OBJECT_WLOCK(obj);
955                 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
956                         return (false);
957                 KASSERT(m->object == obj || m->object == NULL,
958                     ("vm_page_busy_acquire: page %p does not belong to %p",
959                     m, obj));
960         }
961 }
962
963 /*
964  *      vm_page_busy_downgrade:
965  *
966  *      Downgrade an exclusive busy page into a single shared busy page.
967  */
968 void
969 vm_page_busy_downgrade(vm_page_t m)
970 {
971         u_int x;
972
973         vm_page_assert_xbusied(m);
974
975         x = m->busy_lock;
976         for (;;) {
977                 if (atomic_fcmpset_rel_int(&m->busy_lock,
978                     &x, VPB_SHARERS_WORD(1)))
979                         break;
980         }
981         if ((x & VPB_BIT_WAITERS) != 0)
982                 wakeup(m);
983 }
984
985 /*
986  *
987  *      vm_page_busy_tryupgrade:
988  *
989  *      Attempt to upgrade a single shared busy into an exclusive busy.
990  */
991 int
992 vm_page_busy_tryupgrade(vm_page_t m)
993 {
994         u_int ce, x;
995
996         vm_page_assert_sbusied(m);
997
998         x = m->busy_lock;
999         ce = VPB_CURTHREAD_EXCLUSIVE;
1000         for (;;) {
1001                 if (VPB_SHARERS(x) > 1)
1002                         return (0);
1003                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1004                     ("vm_page_busy_tryupgrade: invalid lock state"));
1005                 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
1006                     ce | (x & VPB_BIT_WAITERS)))
1007                         continue;
1008                 return (1);
1009         }
1010 }
1011
1012 /*
1013  *      vm_page_sbusied:
1014  *
1015  *      Return a positive value if the page is shared busied, 0 otherwise.
1016  */
1017 int
1018 vm_page_sbusied(vm_page_t m)
1019 {
1020         u_int x;
1021
1022         x = m->busy_lock;
1023         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1024 }
1025
1026 /*
1027  *      vm_page_sunbusy:
1028  *
1029  *      Shared unbusy a page.
1030  */
1031 void
1032 vm_page_sunbusy(vm_page_t m)
1033 {
1034         u_int x;
1035
1036         vm_page_assert_sbusied(m);
1037
1038         x = m->busy_lock;
1039         for (;;) {
1040                 if (VPB_SHARERS(x) > 1) {
1041                         if (atomic_fcmpset_int(&m->busy_lock, &x,
1042                             x - VPB_ONE_SHARER))
1043                                 break;
1044                         continue;
1045                 }
1046                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1047                     ("vm_page_sunbusy: invalid lock state"));
1048                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1049                         continue;
1050                 if ((x & VPB_BIT_WAITERS) == 0)
1051                         break;
1052                 wakeup(m);
1053                 break;
1054         }
1055 }
1056
1057 /*
1058  *      vm_page_busy_sleep:
1059  *
1060  *      Sleep if the page is busy, using the page pointer as wchan.
1061  *      This is used to implement the hard-path of busying mechanism.
1062  *
1063  *      If nonshared is true, sleep only if the page is xbusy.
1064  *
1065  *      The object lock must be held on entry and will be released on exit.
1066  */
1067 void
1068 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1069 {
1070         vm_object_t obj;
1071
1072         obj = m->object;
1073         VM_OBJECT_ASSERT_LOCKED(obj);
1074         vm_page_lock_assert(m, MA_NOTOWNED);
1075
1076         if (!_vm_page_busy_sleep(obj, m, wmesg, nonshared, true))
1077                 VM_OBJECT_DROP(obj);
1078 }
1079
1080 /*
1081  *      _vm_page_busy_sleep:
1082  *
1083  *      Internal busy sleep function.
1084  */
1085 static bool
1086 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg,
1087     bool nonshared, bool locked)
1088 {
1089         u_int x;
1090
1091         /*
1092          * If the object is busy we must wait for that to drain to zero
1093          * before trying the page again.
1094          */
1095         if (obj != NULL && vm_object_busied(obj)) {
1096                 if (locked)
1097                         VM_OBJECT_DROP(obj);
1098                 vm_object_busy_wait(obj, wmesg);
1099                 return (locked);
1100         }
1101         sleepq_lock(m);
1102         x = m->busy_lock;
1103         if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
1104             ((x & VPB_BIT_WAITERS) == 0 &&
1105             !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
1106                 sleepq_release(m);
1107                 return (false);
1108         }
1109         if (locked)
1110                 VM_OBJECT_DROP(obj);
1111         DROP_GIANT();
1112         sleepq_add(m, NULL, wmesg, 0, 0);
1113         sleepq_wait(m, PVM);
1114         PICKUP_GIANT();
1115         return (locked);
1116 }
1117
1118 /*
1119  *      vm_page_trysbusy:
1120  *
1121  *      Try to shared busy a page.
1122  *      If the operation succeeds 1 is returned otherwise 0.
1123  *      The operation never sleeps.
1124  */
1125 int
1126 vm_page_trysbusy(vm_page_t m)
1127 {
1128         vm_object_t obj;
1129         u_int x;
1130
1131         obj = m->object;
1132         x = m->busy_lock;
1133         for (;;) {
1134                 if ((x & VPB_BIT_SHARED) == 0)
1135                         return (0);
1136                 /*
1137                  * Reduce the window for transient busies that will trigger
1138                  * false negatives in vm_page_ps_test().
1139                  */
1140                 if (obj != NULL && vm_object_busied(obj))
1141                         return (0);
1142                 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1143                     x + VPB_ONE_SHARER))
1144                         break;
1145         }
1146
1147         /* Refetch the object now that we're guaranteed that it is stable. */
1148         obj = m->object;
1149         if (obj != NULL && vm_object_busied(obj)) {
1150                 vm_page_sunbusy(m);
1151                 return (0);
1152         }
1153         return (1);
1154 }
1155
1156 /*
1157  *      vm_page_tryxbusy:
1158  *
1159  *      Try to exclusive busy a page.
1160  *      If the operation succeeds 1 is returned otherwise 0.
1161  *      The operation never sleeps.
1162  */
1163 int
1164 vm_page_tryxbusy(vm_page_t m)
1165 {
1166         vm_object_t obj;
1167
1168         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1169             VPB_CURTHREAD_EXCLUSIVE) == 0)
1170                 return (0);
1171
1172         obj = m->object;
1173         if (obj != NULL && vm_object_busied(obj)) {
1174                 vm_page_xunbusy(m);
1175                 return (0);
1176         }
1177         return (1);
1178 }
1179
1180 static void
1181 vm_page_xunbusy_hard_tail(vm_page_t m)
1182 {
1183         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1184         /* Wake the waiter. */
1185         wakeup(m);
1186 }
1187
1188 /*
1189  *      vm_page_xunbusy_hard:
1190  *
1191  *      Called when unbusy has failed because there is a waiter.
1192  */
1193 void
1194 vm_page_xunbusy_hard(vm_page_t m)
1195 {
1196         vm_page_assert_xbusied(m);
1197         vm_page_xunbusy_hard_tail(m);
1198 }
1199
1200 void
1201 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1202 {
1203         vm_page_assert_xbusied_unchecked(m);
1204         vm_page_xunbusy_hard_tail(m);
1205 }
1206
1207 /*
1208  * Avoid releasing and reacquiring the same page lock.
1209  */
1210 void
1211 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
1212 {
1213         struct mtx *mtx1;
1214
1215         mtx1 = vm_page_lockptr(m);
1216         if (*mtx == mtx1)
1217                 return;
1218         if (*mtx != NULL)
1219                 mtx_unlock(*mtx);
1220         *mtx = mtx1;
1221         mtx_lock(mtx1);
1222 }
1223
1224 /*
1225  *      vm_page_unhold_pages:
1226  *
1227  *      Unhold each of the pages that is referenced by the given array.
1228  */
1229 void
1230 vm_page_unhold_pages(vm_page_t *ma, int count)
1231 {
1232
1233         for (; count != 0; count--) {
1234                 vm_page_unwire(*ma, PQ_ACTIVE);
1235                 ma++;
1236         }
1237 }
1238
1239 vm_page_t
1240 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1241 {
1242         vm_page_t m;
1243
1244 #ifdef VM_PHYSSEG_SPARSE
1245         m = vm_phys_paddr_to_vm_page(pa);
1246         if (m == NULL)
1247                 m = vm_phys_fictitious_to_vm_page(pa);
1248         return (m);
1249 #elif defined(VM_PHYSSEG_DENSE)
1250         long pi;
1251
1252         pi = atop(pa);
1253         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1254                 m = &vm_page_array[pi - first_page];
1255                 return (m);
1256         }
1257         return (vm_phys_fictitious_to_vm_page(pa));
1258 #else
1259 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1260 #endif
1261 }
1262
1263 /*
1264  *      vm_page_getfake:
1265  *
1266  *      Create a fictitious page with the specified physical address and
1267  *      memory attribute.  The memory attribute is the only the machine-
1268  *      dependent aspect of a fictitious page that must be initialized.
1269  */
1270 vm_page_t
1271 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1272 {
1273         vm_page_t m;
1274
1275         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1276         vm_page_initfake(m, paddr, memattr);
1277         return (m);
1278 }
1279
1280 void
1281 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1282 {
1283
1284         if ((m->flags & PG_FICTITIOUS) != 0) {
1285                 /*
1286                  * The page's memattr might have changed since the
1287                  * previous initialization.  Update the pmap to the
1288                  * new memattr.
1289                  */
1290                 goto memattr;
1291         }
1292         m->phys_addr = paddr;
1293         m->a.queue = PQ_NONE;
1294         /* Fictitious pages don't use "segind". */
1295         m->flags = PG_FICTITIOUS;
1296         /* Fictitious pages don't use "order" or "pool". */
1297         m->oflags = VPO_UNMANAGED;
1298         m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1299         /* Fictitious pages are unevictable. */
1300         m->ref_count = 1;
1301         pmap_page_init(m);
1302 memattr:
1303         pmap_page_set_memattr(m, memattr);
1304 }
1305
1306 /*
1307  *      vm_page_putfake:
1308  *
1309  *      Release a fictitious page.
1310  */
1311 void
1312 vm_page_putfake(vm_page_t m)
1313 {
1314
1315         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1316         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1317             ("vm_page_putfake: bad page %p", m));
1318         vm_page_xunbusy(m);
1319         uma_zfree(fakepg_zone, m);
1320 }
1321
1322 /*
1323  *      vm_page_updatefake:
1324  *
1325  *      Update the given fictitious page to the specified physical address and
1326  *      memory attribute.
1327  */
1328 void
1329 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1330 {
1331
1332         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1333             ("vm_page_updatefake: bad page %p", m));
1334         m->phys_addr = paddr;
1335         pmap_page_set_memattr(m, memattr);
1336 }
1337
1338 /*
1339  *      vm_page_free:
1340  *
1341  *      Free a page.
1342  */
1343 void
1344 vm_page_free(vm_page_t m)
1345 {
1346
1347         m->flags &= ~PG_ZERO;
1348         vm_page_free_toq(m);
1349 }
1350
1351 /*
1352  *      vm_page_free_zero:
1353  *
1354  *      Free a page to the zerod-pages queue
1355  */
1356 void
1357 vm_page_free_zero(vm_page_t m)
1358 {
1359
1360         m->flags |= PG_ZERO;
1361         vm_page_free_toq(m);
1362 }
1363
1364 /*
1365  * Unbusy and handle the page queueing for a page from a getpages request that
1366  * was optionally read ahead or behind.
1367  */
1368 void
1369 vm_page_readahead_finish(vm_page_t m)
1370 {
1371
1372         /* We shouldn't put invalid pages on queues. */
1373         KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1374
1375         /*
1376          * Since the page is not the actually needed one, whether it should
1377          * be activated or deactivated is not obvious.  Empirical results
1378          * have shown that deactivating the page is usually the best choice,
1379          * unless the page is wanted by another thread.
1380          */
1381         if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1382                 vm_page_activate(m);
1383         else
1384                 vm_page_deactivate(m);
1385         vm_page_xunbusy_unchecked(m);
1386 }
1387
1388 /*
1389  *      vm_page_sleep_if_busy:
1390  *
1391  *      Sleep and release the object lock if the page is busied.
1392  *      Returns TRUE if the thread slept.
1393  *
1394  *      The given page must be unlocked and object containing it must
1395  *      be locked.
1396  */
1397 int
1398 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1399 {
1400         vm_object_t obj;
1401
1402         vm_page_lock_assert(m, MA_NOTOWNED);
1403         VM_OBJECT_ASSERT_WLOCKED(m->object);
1404
1405         /*
1406          * The page-specific object must be cached because page
1407          * identity can change during the sleep, causing the
1408          * re-lock of a different object.
1409          * It is assumed that a reference to the object is already
1410          * held by the callers.
1411          */
1412         obj = m->object;
1413         if (vm_page_busied(m) || (obj != NULL && obj->busy)) {
1414                 vm_page_busy_sleep(m, msg, false);
1415                 VM_OBJECT_WLOCK(obj);
1416                 return (TRUE);
1417         }
1418         return (FALSE);
1419 }
1420
1421 /*
1422  *      vm_page_sleep_if_xbusy:
1423  *
1424  *      Sleep and release the object lock if the page is xbusied.
1425  *      Returns TRUE if the thread slept.
1426  *
1427  *      The given page must be unlocked and object containing it must
1428  *      be locked.
1429  */
1430 int
1431 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg)
1432 {
1433         vm_object_t obj;
1434
1435         vm_page_lock_assert(m, MA_NOTOWNED);
1436         VM_OBJECT_ASSERT_WLOCKED(m->object);
1437
1438         /*
1439          * The page-specific object must be cached because page
1440          * identity can change during the sleep, causing the
1441          * re-lock of a different object.
1442          * It is assumed that a reference to the object is already
1443          * held by the callers.
1444          */
1445         obj = m->object;
1446         if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) {
1447                 vm_page_busy_sleep(m, msg, true);
1448                 VM_OBJECT_WLOCK(obj);
1449                 return (TRUE);
1450         }
1451         return (FALSE);
1452 }
1453
1454 /*
1455  *      vm_page_dirty_KBI:              [ internal use only ]
1456  *
1457  *      Set all bits in the page's dirty field.
1458  *
1459  *      The object containing the specified page must be locked if the
1460  *      call is made from the machine-independent layer.
1461  *
1462  *      See vm_page_clear_dirty_mask().
1463  *
1464  *      This function should only be called by vm_page_dirty().
1465  */
1466 void
1467 vm_page_dirty_KBI(vm_page_t m)
1468 {
1469
1470         /* Refer to this operation by its public name. */
1471         KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1472         m->dirty = VM_PAGE_BITS_ALL;
1473 }
1474
1475 /*
1476  *      vm_page_insert:         [ internal use only ]
1477  *
1478  *      Inserts the given mem entry into the object and object list.
1479  *
1480  *      The object must be locked.
1481  */
1482 int
1483 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1484 {
1485         vm_page_t mpred;
1486
1487         VM_OBJECT_ASSERT_WLOCKED(object);
1488         mpred = vm_radix_lookup_le(&object->rtree, pindex);
1489         return (vm_page_insert_after(m, object, pindex, mpred));
1490 }
1491
1492 /*
1493  *      vm_page_insert_after:
1494  *
1495  *      Inserts the page "m" into the specified object at offset "pindex".
1496  *
1497  *      The page "mpred" must immediately precede the offset "pindex" within
1498  *      the specified object.
1499  *
1500  *      The object must be locked.
1501  */
1502 static int
1503 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1504     vm_page_t mpred)
1505 {
1506         vm_page_t msucc;
1507
1508         VM_OBJECT_ASSERT_WLOCKED(object);
1509         KASSERT(m->object == NULL,
1510             ("vm_page_insert_after: page already inserted"));
1511         if (mpred != NULL) {
1512                 KASSERT(mpred->object == object,
1513                     ("vm_page_insert_after: object doesn't contain mpred"));
1514                 KASSERT(mpred->pindex < pindex,
1515                     ("vm_page_insert_after: mpred doesn't precede pindex"));
1516                 msucc = TAILQ_NEXT(mpred, listq);
1517         } else
1518                 msucc = TAILQ_FIRST(&object->memq);
1519         if (msucc != NULL)
1520                 KASSERT(msucc->pindex > pindex,
1521                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
1522
1523         /*
1524          * Record the object/offset pair in this page.
1525          */
1526         m->object = object;
1527         m->pindex = pindex;
1528         m->ref_count |= VPRC_OBJREF;
1529
1530         /*
1531          * Now link into the object's ordered list of backed pages.
1532          */
1533         if (vm_radix_insert(&object->rtree, m)) {
1534                 m->object = NULL;
1535                 m->pindex = 0;
1536                 m->ref_count &= ~VPRC_OBJREF;
1537                 return (1);
1538         }
1539         vm_page_insert_radixdone(m, object, mpred);
1540         return (0);
1541 }
1542
1543 /*
1544  *      vm_page_insert_radixdone:
1545  *
1546  *      Complete page "m" insertion into the specified object after the
1547  *      radix trie hooking.
1548  *
1549  *      The page "mpred" must precede the offset "m->pindex" within the
1550  *      specified object.
1551  *
1552  *      The object must be locked.
1553  */
1554 static void
1555 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1556 {
1557
1558         VM_OBJECT_ASSERT_WLOCKED(object);
1559         KASSERT(object != NULL && m->object == object,
1560             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1561         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1562             ("vm_page_insert_radixdone: page %p is missing object ref", m));
1563         if (mpred != NULL) {
1564                 KASSERT(mpred->object == object,
1565                     ("vm_page_insert_radixdone: object doesn't contain mpred"));
1566                 KASSERT(mpred->pindex < m->pindex,
1567                     ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1568         }
1569
1570         if (mpred != NULL)
1571                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1572         else
1573                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1574
1575         /*
1576          * Show that the object has one more resident page.
1577          */
1578         object->resident_page_count++;
1579
1580         /*
1581          * Hold the vnode until the last page is released.
1582          */
1583         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1584                 vhold(object->handle);
1585
1586         /*
1587          * Since we are inserting a new and possibly dirty page,
1588          * update the object's generation count.
1589          */
1590         if (pmap_page_is_write_mapped(m))
1591                 vm_object_set_writeable_dirty(object);
1592 }
1593
1594 /*
1595  * Do the work to remove a page from its object.  The caller is responsible for
1596  * updating the page's fields to reflect this removal.
1597  */
1598 static void
1599 vm_page_object_remove(vm_page_t m)
1600 {
1601         vm_object_t object;
1602         vm_page_t mrem;
1603
1604         vm_page_assert_xbusied(m);
1605         object = m->object;
1606         VM_OBJECT_ASSERT_WLOCKED(object);
1607         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1608             ("page %p is missing its object ref", m));
1609
1610         /* Deferred free of swap space. */
1611         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1612                 vm_pager_page_unswapped(m);
1613
1614         mrem = vm_radix_remove(&object->rtree, m->pindex);
1615         KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1616
1617         /*
1618          * Now remove from the object's list of backed pages.
1619          */
1620         TAILQ_REMOVE(&object->memq, m, listq);
1621
1622         /*
1623          * And show that the object has one fewer resident page.
1624          */
1625         object->resident_page_count--;
1626
1627         /*
1628          * The vnode may now be recycled.
1629          */
1630         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1631                 vdrop(object->handle);
1632 }
1633
1634 /*
1635  *      vm_page_remove:
1636  *
1637  *      Removes the specified page from its containing object, but does not
1638  *      invalidate any backing storage.  Returns true if the object's reference
1639  *      was the last reference to the page, and false otherwise.
1640  *
1641  *      The object must be locked and the page must be exclusively busied.
1642  *      The exclusive busy will be released on return.  If this is not the
1643  *      final ref and the caller does not hold a wire reference it may not
1644  *      continue to access the page.
1645  */
1646 bool
1647 vm_page_remove(vm_page_t m)
1648 {
1649         bool dropped;
1650
1651         dropped = vm_page_remove_xbusy(m);
1652         vm_page_xunbusy(m);
1653
1654         return (dropped);
1655 }
1656
1657 /*
1658  *      vm_page_remove_xbusy
1659  *
1660  *      Removes the page but leaves the xbusy held.  Returns true if this
1661  *      removed the final ref and false otherwise.
1662  */
1663 bool
1664 vm_page_remove_xbusy(vm_page_t m)
1665 {
1666
1667         vm_page_object_remove(m);
1668         m->object = NULL;
1669         return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1670 }
1671
1672 /*
1673  *      vm_page_lookup:
1674  *
1675  *      Returns the page associated with the object/offset
1676  *      pair specified; if none is found, NULL is returned.
1677  *
1678  *      The object must be locked.
1679  */
1680 vm_page_t
1681 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1682 {
1683
1684         VM_OBJECT_ASSERT_LOCKED(object);
1685         return (vm_radix_lookup(&object->rtree, pindex));
1686 }
1687
1688 /*
1689  *      vm_page_find_least:
1690  *
1691  *      Returns the page associated with the object with least pindex
1692  *      greater than or equal to the parameter pindex, or NULL.
1693  *
1694  *      The object must be locked.
1695  */
1696 vm_page_t
1697 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1698 {
1699         vm_page_t m;
1700
1701         VM_OBJECT_ASSERT_LOCKED(object);
1702         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1703                 m = vm_radix_lookup_ge(&object->rtree, pindex);
1704         return (m);
1705 }
1706
1707 /*
1708  * Returns the given page's successor (by pindex) within the object if it is
1709  * resident; if none is found, NULL is returned.
1710  *
1711  * The object must be locked.
1712  */
1713 vm_page_t
1714 vm_page_next(vm_page_t m)
1715 {
1716         vm_page_t next;
1717
1718         VM_OBJECT_ASSERT_LOCKED(m->object);
1719         if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1720                 MPASS(next->object == m->object);
1721                 if (next->pindex != m->pindex + 1)
1722                         next = NULL;
1723         }
1724         return (next);
1725 }
1726
1727 /*
1728  * Returns the given page's predecessor (by pindex) within the object if it is
1729  * resident; if none is found, NULL is returned.
1730  *
1731  * The object must be locked.
1732  */
1733 vm_page_t
1734 vm_page_prev(vm_page_t m)
1735 {
1736         vm_page_t prev;
1737
1738         VM_OBJECT_ASSERT_LOCKED(m->object);
1739         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1740                 MPASS(prev->object == m->object);
1741                 if (prev->pindex != m->pindex - 1)
1742                         prev = NULL;
1743         }
1744         return (prev);
1745 }
1746
1747 /*
1748  * Uses the page mnew as a replacement for an existing page at index
1749  * pindex which must be already present in the object.
1750  *
1751  * Both pages must be exclusively busied on enter.  The old page is
1752  * unbusied on exit.
1753  *
1754  * A return value of true means mold is now free.  If this is not the
1755  * final ref and the caller does not hold a wire reference it may not
1756  * continue to access the page.
1757  */
1758 static bool
1759 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1760     vm_page_t mold)
1761 {
1762         vm_page_t mret;
1763         bool dropped;
1764
1765         VM_OBJECT_ASSERT_WLOCKED(object);
1766         vm_page_assert_xbusied(mold);
1767         KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1768             ("vm_page_replace: page %p already in object", mnew));
1769
1770         /*
1771          * This function mostly follows vm_page_insert() and
1772          * vm_page_remove() without the radix, object count and vnode
1773          * dance.  Double check such functions for more comments.
1774          */
1775
1776         mnew->object = object;
1777         mnew->pindex = pindex;
1778         atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1779         mret = vm_radix_replace(&object->rtree, mnew);
1780         KASSERT(mret == mold,
1781             ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1782         KASSERT((mold->oflags & VPO_UNMANAGED) ==
1783             (mnew->oflags & VPO_UNMANAGED),
1784             ("vm_page_replace: mismatched VPO_UNMANAGED"));
1785
1786         /* Keep the resident page list in sorted order. */
1787         TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1788         TAILQ_REMOVE(&object->memq, mold, listq);
1789         mold->object = NULL;
1790
1791         /*
1792          * The object's resident_page_count does not change because we have
1793          * swapped one page for another, but the generation count should
1794          * change if the page is dirty.
1795          */
1796         if (pmap_page_is_write_mapped(mnew))
1797                 vm_object_set_writeable_dirty(object);
1798         dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1799         vm_page_xunbusy(mold);
1800
1801         return (dropped);
1802 }
1803
1804 void
1805 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1806     vm_page_t mold)
1807 {
1808
1809         vm_page_assert_xbusied(mnew);
1810
1811         if (vm_page_replace_hold(mnew, object, pindex, mold))
1812                 vm_page_free(mold);
1813 }
1814
1815 /*
1816  *      vm_page_rename:
1817  *
1818  *      Move the given memory entry from its
1819  *      current object to the specified target object/offset.
1820  *
1821  *      Note: swap associated with the page must be invalidated by the move.  We
1822  *            have to do this for several reasons:  (1) we aren't freeing the
1823  *            page, (2) we are dirtying the page, (3) the VM system is probably
1824  *            moving the page from object A to B, and will then later move
1825  *            the backing store from A to B and we can't have a conflict.
1826  *
1827  *      Note: we *always* dirty the page.  It is necessary both for the
1828  *            fact that we moved it, and because we may be invalidating
1829  *            swap.
1830  *
1831  *      The objects must be locked.
1832  */
1833 int
1834 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1835 {
1836         vm_page_t mpred;
1837         vm_pindex_t opidx;
1838
1839         VM_OBJECT_ASSERT_WLOCKED(new_object);
1840
1841         KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1842         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1843         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1844             ("vm_page_rename: pindex already renamed"));
1845
1846         /*
1847          * Create a custom version of vm_page_insert() which does not depend
1848          * by m_prev and can cheat on the implementation aspects of the
1849          * function.
1850          */
1851         opidx = m->pindex;
1852         m->pindex = new_pindex;
1853         if (vm_radix_insert(&new_object->rtree, m)) {
1854                 m->pindex = opidx;
1855                 return (1);
1856         }
1857
1858         /*
1859          * The operation cannot fail anymore.  The removal must happen before
1860          * the listq iterator is tainted.
1861          */
1862         m->pindex = opidx;
1863         vm_page_object_remove(m);
1864
1865         /* Return back to the new pindex to complete vm_page_insert(). */
1866         m->pindex = new_pindex;
1867         m->object = new_object;
1868
1869         vm_page_insert_radixdone(m, new_object, mpred);
1870         vm_page_dirty(m);
1871         return (0);
1872 }
1873
1874 /*
1875  *      vm_page_alloc:
1876  *
1877  *      Allocate and return a page that is associated with the specified
1878  *      object and offset pair.  By default, this page is exclusive busied.
1879  *
1880  *      The caller must always specify an allocation class.
1881  *
1882  *      allocation classes:
1883  *      VM_ALLOC_NORMAL         normal process request
1884  *      VM_ALLOC_SYSTEM         system *really* needs a page
1885  *      VM_ALLOC_INTERRUPT      interrupt time request
1886  *
1887  *      optional allocation flags:
1888  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
1889  *                              intends to allocate
1890  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1891  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1892  *      VM_ALLOC_NOOBJ          page is not associated with an object and
1893  *                              should not be exclusive busy
1894  *      VM_ALLOC_SBUSY          shared busy the allocated page
1895  *      VM_ALLOC_WIRED          wire the allocated page
1896  *      VM_ALLOC_ZERO           prefer a zeroed page
1897  */
1898 vm_page_t
1899 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1900 {
1901
1902         return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1903             vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1904 }
1905
1906 vm_page_t
1907 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1908     int req)
1909 {
1910
1911         return (vm_page_alloc_domain_after(object, pindex, domain, req,
1912             object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1913             NULL));
1914 }
1915
1916 /*
1917  * Allocate a page in the specified object with the given page index.  To
1918  * optimize insertion of the page into the object, the caller must also specifiy
1919  * the resident page in the object with largest index smaller than the given
1920  * page index, or NULL if no such page exists.
1921  */
1922 vm_page_t
1923 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1924     int req, vm_page_t mpred)
1925 {
1926         struct vm_domainset_iter di;
1927         vm_page_t m;
1928         int domain;
1929
1930         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1931         do {
1932                 m = vm_page_alloc_domain_after(object, pindex, domain, req,
1933                     mpred);
1934                 if (m != NULL)
1935                         break;
1936         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
1937
1938         return (m);
1939 }
1940
1941 /*
1942  * Returns true if the number of free pages exceeds the minimum
1943  * for the request class and false otherwise.
1944  */
1945 static int
1946 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1947 {
1948         u_int limit, old, new;
1949
1950         if (req_class == VM_ALLOC_INTERRUPT)
1951                 limit = 0;
1952         else if (req_class == VM_ALLOC_SYSTEM)
1953                 limit = vmd->vmd_interrupt_free_min;
1954         else
1955                 limit = vmd->vmd_free_reserved;
1956
1957         /*
1958          * Attempt to reserve the pages.  Fail if we're below the limit.
1959          */
1960         limit += npages;
1961         old = vmd->vmd_free_count;
1962         do {
1963                 if (old < limit)
1964                         return (0);
1965                 new = old - npages;
1966         } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1967
1968         /* Wake the page daemon if we've crossed the threshold. */
1969         if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1970                 pagedaemon_wakeup(vmd->vmd_domain);
1971
1972         /* Only update bitsets on transitions. */
1973         if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1974             (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1975                 vm_domain_set(vmd);
1976
1977         return (1);
1978 }
1979
1980 int
1981 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1982 {
1983         int req_class;
1984
1985         /*
1986          * The page daemon is allowed to dig deeper into the free page list.
1987          */
1988         req_class = req & VM_ALLOC_CLASS_MASK;
1989         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1990                 req_class = VM_ALLOC_SYSTEM;
1991         return (_vm_domain_allocate(vmd, req_class, npages));
1992 }
1993
1994 vm_page_t
1995 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1996     int req, vm_page_t mpred)
1997 {
1998         struct vm_domain *vmd;
1999         vm_page_t m;
2000         int flags, pool;
2001
2002         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2003             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2004             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2005             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2006             ("inconsistent object(%p)/req(%x)", object, req));
2007         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2008             ("Can't sleep and retry object insertion."));
2009         KASSERT(mpred == NULL || mpred->pindex < pindex,
2010             ("mpred %p doesn't precede pindex 0x%jx", mpred,
2011             (uintmax_t)pindex));
2012         if (object != NULL)
2013                 VM_OBJECT_ASSERT_WLOCKED(object);
2014
2015         flags = 0;
2016         m = NULL;
2017         pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
2018 again:
2019 #if VM_NRESERVLEVEL > 0
2020         /*
2021          * Can we allocate the page from a reservation?
2022          */
2023         if (vm_object_reserv(object) &&
2024             (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2025             NULL) {
2026                 domain = vm_phys_domain(m);
2027                 vmd = VM_DOMAIN(domain);
2028                 goto found;
2029         }
2030 #endif
2031         vmd = VM_DOMAIN(domain);
2032         if (vmd->vmd_pgcache[pool].zone != NULL) {
2033                 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
2034                 if (m != NULL) {
2035                         flags |= PG_PCPU_CACHE;
2036                         goto found;
2037                 }
2038         }
2039         if (vm_domain_allocate(vmd, req, 1)) {
2040                 /*
2041                  * If not, allocate it from the free page queues.
2042                  */
2043                 vm_domain_free_lock(vmd);
2044                 m = vm_phys_alloc_pages(domain, pool, 0);
2045                 vm_domain_free_unlock(vmd);
2046                 if (m == NULL) {
2047                         vm_domain_freecnt_inc(vmd, 1);
2048 #if VM_NRESERVLEVEL > 0
2049                         if (vm_reserv_reclaim_inactive(domain))
2050                                 goto again;
2051 #endif
2052                 }
2053         }
2054         if (m == NULL) {
2055                 /*
2056                  * Not allocatable, give up.
2057                  */
2058                 if (vm_domain_alloc_fail(vmd, object, req))
2059                         goto again;
2060                 return (NULL);
2061         }
2062
2063         /*
2064          * At this point we had better have found a good page.
2065          */
2066 found:
2067         vm_page_dequeue(m);
2068         vm_page_alloc_check(m);
2069
2070         /*
2071          * Initialize the page.  Only the PG_ZERO flag is inherited.
2072          */
2073         if ((req & VM_ALLOC_ZERO) != 0)
2074                 flags |= (m->flags & PG_ZERO);
2075         if ((req & VM_ALLOC_NODUMP) != 0)
2076                 flags |= PG_NODUMP;
2077         m->flags = flags;
2078         m->a.flags = 0;
2079         m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2080             VPO_UNMANAGED : 0;
2081         m->busy_lock = VPB_UNBUSIED;
2082         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2083                 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2084         if ((req & VM_ALLOC_SBUSY) != 0)
2085                 m->busy_lock = VPB_SHARERS_WORD(1);
2086         if (req & VM_ALLOC_WIRED) {
2087                 vm_wire_add(1);
2088                 m->ref_count = 1;
2089         }
2090         m->a.act_count = 0;
2091
2092         if (object != NULL) {
2093                 if (vm_page_insert_after(m, object, pindex, mpred)) {
2094                         if (req & VM_ALLOC_WIRED) {
2095                                 vm_wire_sub(1);
2096                                 m->ref_count = 0;
2097                         }
2098                         KASSERT(m->object == NULL, ("page %p has object", m));
2099                         m->oflags = VPO_UNMANAGED;
2100                         m->busy_lock = VPB_UNBUSIED;
2101                         /* Don't change PG_ZERO. */
2102                         vm_page_free_toq(m);
2103                         if (req & VM_ALLOC_WAITFAIL) {
2104                                 VM_OBJECT_WUNLOCK(object);
2105                                 vm_radix_wait();
2106                                 VM_OBJECT_WLOCK(object);
2107                         }
2108                         return (NULL);
2109                 }
2110
2111                 /* Ignore device objects; the pager sets "memattr" for them. */
2112                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2113                     (object->flags & OBJ_FICTITIOUS) == 0)
2114                         pmap_page_set_memattr(m, object->memattr);
2115         } else
2116                 m->pindex = pindex;
2117
2118         return (m);
2119 }
2120
2121 /*
2122  *      vm_page_alloc_contig:
2123  *
2124  *      Allocate a contiguous set of physical pages of the given size "npages"
2125  *      from the free lists.  All of the physical pages must be at or above
2126  *      the given physical address "low" and below the given physical address
2127  *      "high".  The given value "alignment" determines the alignment of the
2128  *      first physical page in the set.  If the given value "boundary" is
2129  *      non-zero, then the set of physical pages cannot cross any physical
2130  *      address boundary that is a multiple of that value.  Both "alignment"
2131  *      and "boundary" must be a power of two.
2132  *
2133  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2134  *      then the memory attribute setting for the physical pages is configured
2135  *      to the object's memory attribute setting.  Otherwise, the memory
2136  *      attribute setting for the physical pages is configured to "memattr",
2137  *      overriding the object's memory attribute setting.  However, if the
2138  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2139  *      memory attribute setting for the physical pages cannot be configured
2140  *      to VM_MEMATTR_DEFAULT.
2141  *
2142  *      The specified object may not contain fictitious pages.
2143  *
2144  *      The caller must always specify an allocation class.
2145  *
2146  *      allocation classes:
2147  *      VM_ALLOC_NORMAL         normal process request
2148  *      VM_ALLOC_SYSTEM         system *really* needs a page
2149  *      VM_ALLOC_INTERRUPT      interrupt time request
2150  *
2151  *      optional allocation flags:
2152  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
2153  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
2154  *      VM_ALLOC_NOOBJ          page is not associated with an object and
2155  *                              should not be exclusive busy
2156  *      VM_ALLOC_SBUSY          shared busy the allocated page
2157  *      VM_ALLOC_WIRED          wire the allocated page
2158  *      VM_ALLOC_ZERO           prefer a zeroed page
2159  */
2160 vm_page_t
2161 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2162     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2163     vm_paddr_t boundary, vm_memattr_t memattr)
2164 {
2165         struct vm_domainset_iter di;
2166         vm_page_t m;
2167         int domain;
2168
2169         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2170         do {
2171                 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2172                     npages, low, high, alignment, boundary, memattr);
2173                 if (m != NULL)
2174                         break;
2175         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2176
2177         return (m);
2178 }
2179
2180 vm_page_t
2181 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2182     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2183     vm_paddr_t boundary, vm_memattr_t memattr)
2184 {
2185         struct vm_domain *vmd;
2186         vm_page_t m, m_ret, mpred;
2187         u_int busy_lock, flags, oflags;
2188
2189         mpred = NULL;   /* XXX: pacify gcc */
2190         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2191             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2192             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2193             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2194             ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2195             req));
2196         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2197             ("Can't sleep and retry object insertion."));
2198         if (object != NULL) {
2199                 VM_OBJECT_ASSERT_WLOCKED(object);
2200                 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2201                     ("vm_page_alloc_contig: object %p has fictitious pages",
2202                     object));
2203         }
2204         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2205
2206         if (object != NULL) {
2207                 mpred = vm_radix_lookup_le(&object->rtree, pindex);
2208                 KASSERT(mpred == NULL || mpred->pindex != pindex,
2209                     ("vm_page_alloc_contig: pindex already allocated"));
2210         }
2211
2212         /*
2213          * Can we allocate the pages without the number of free pages falling
2214          * below the lower bound for the allocation class?
2215          */
2216         m_ret = NULL;
2217 again:
2218 #if VM_NRESERVLEVEL > 0
2219         /*
2220          * Can we allocate the pages from a reservation?
2221          */
2222         if (vm_object_reserv(object) &&
2223             (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2224             mpred, npages, low, high, alignment, boundary)) != NULL) {
2225                 domain = vm_phys_domain(m_ret);
2226                 vmd = VM_DOMAIN(domain);
2227                 goto found;
2228         }
2229 #endif
2230         vmd = VM_DOMAIN(domain);
2231         if (vm_domain_allocate(vmd, req, npages)) {
2232                 /*
2233                  * allocate them from the free page queues.
2234                  */
2235                 vm_domain_free_lock(vmd);
2236                 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2237                     alignment, boundary);
2238                 vm_domain_free_unlock(vmd);
2239                 if (m_ret == NULL) {
2240                         vm_domain_freecnt_inc(vmd, npages);
2241 #if VM_NRESERVLEVEL > 0
2242                         if (vm_reserv_reclaim_contig(domain, npages, low,
2243                             high, alignment, boundary))
2244                                 goto again;
2245 #endif
2246                 }
2247         }
2248         if (m_ret == NULL) {
2249                 if (vm_domain_alloc_fail(vmd, object, req))
2250                         goto again;
2251                 return (NULL);
2252         }
2253 #if VM_NRESERVLEVEL > 0
2254 found:
2255 #endif
2256         for (m = m_ret; m < &m_ret[npages]; m++) {
2257                 vm_page_dequeue(m);
2258                 vm_page_alloc_check(m);
2259         }
2260
2261         /*
2262          * Initialize the pages.  Only the PG_ZERO flag is inherited.
2263          */
2264         flags = 0;
2265         if ((req & VM_ALLOC_ZERO) != 0)
2266                 flags = PG_ZERO;
2267         if ((req & VM_ALLOC_NODUMP) != 0)
2268                 flags |= PG_NODUMP;
2269         oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2270             VPO_UNMANAGED : 0;
2271         busy_lock = VPB_UNBUSIED;
2272         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2273                 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2274         if ((req & VM_ALLOC_SBUSY) != 0)
2275                 busy_lock = VPB_SHARERS_WORD(1);
2276         if ((req & VM_ALLOC_WIRED) != 0)
2277                 vm_wire_add(npages);
2278         if (object != NULL) {
2279                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2280                     memattr == VM_MEMATTR_DEFAULT)
2281                         memattr = object->memattr;
2282         }
2283         for (m = m_ret; m < &m_ret[npages]; m++) {
2284                 m->a.flags = 0;
2285                 m->flags = (m->flags | PG_NODUMP) & flags;
2286                 m->busy_lock = busy_lock;
2287                 if ((req & VM_ALLOC_WIRED) != 0)
2288                         m->ref_count = 1;
2289                 m->a.act_count = 0;
2290                 m->oflags = oflags;
2291                 if (object != NULL) {
2292                         if (vm_page_insert_after(m, object, pindex, mpred)) {
2293                                 if ((req & VM_ALLOC_WIRED) != 0)
2294                                         vm_wire_sub(npages);
2295                                 KASSERT(m->object == NULL,
2296                                     ("page %p has object", m));
2297                                 mpred = m;
2298                                 for (m = m_ret; m < &m_ret[npages]; m++) {
2299                                         if (m <= mpred &&
2300                                             (req & VM_ALLOC_WIRED) != 0)
2301                                                 m->ref_count = 0;
2302                                         m->oflags = VPO_UNMANAGED;
2303                                         m->busy_lock = VPB_UNBUSIED;
2304                                         /* Don't change PG_ZERO. */
2305                                         vm_page_free_toq(m);
2306                                 }
2307                                 if (req & VM_ALLOC_WAITFAIL) {
2308                                         VM_OBJECT_WUNLOCK(object);
2309                                         vm_radix_wait();
2310                                         VM_OBJECT_WLOCK(object);
2311                                 }
2312                                 return (NULL);
2313                         }
2314                         mpred = m;
2315                 } else
2316                         m->pindex = pindex;
2317                 if (memattr != VM_MEMATTR_DEFAULT)
2318                         pmap_page_set_memattr(m, memattr);
2319                 pindex++;
2320         }
2321         return (m_ret);
2322 }
2323
2324 /*
2325  * Check a page that has been freshly dequeued from a freelist.
2326  */
2327 static void
2328 vm_page_alloc_check(vm_page_t m)
2329 {
2330
2331         KASSERT(m->object == NULL, ("page %p has object", m));
2332         KASSERT(m->a.queue == PQ_NONE &&
2333             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2334             ("page %p has unexpected queue %d, flags %#x",
2335             m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2336         KASSERT(m->ref_count == 0, ("page %p has references", m));
2337         KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2338         KASSERT(m->dirty == 0, ("page %p is dirty", m));
2339         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2340             ("page %p has unexpected memattr %d",
2341             m, pmap_page_get_memattr(m)));
2342         KASSERT(m->valid == 0, ("free page %p is valid", m));
2343 }
2344
2345 /*
2346  *      vm_page_alloc_freelist:
2347  *
2348  *      Allocate a physical page from the specified free page list.
2349  *
2350  *      The caller must always specify an allocation class.
2351  *
2352  *      allocation classes:
2353  *      VM_ALLOC_NORMAL         normal process request
2354  *      VM_ALLOC_SYSTEM         system *really* needs a page
2355  *      VM_ALLOC_INTERRUPT      interrupt time request
2356  *
2357  *      optional allocation flags:
2358  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
2359  *                              intends to allocate
2360  *      VM_ALLOC_WIRED          wire the allocated page
2361  *      VM_ALLOC_ZERO           prefer a zeroed page
2362  */
2363 vm_page_t
2364 vm_page_alloc_freelist(int freelist, int req)
2365 {
2366         struct vm_domainset_iter di;
2367         vm_page_t m;
2368         int domain;
2369
2370         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2371         do {
2372                 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2373                 if (m != NULL)
2374                         break;
2375         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2376
2377         return (m);
2378 }
2379
2380 vm_page_t
2381 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2382 {
2383         struct vm_domain *vmd;
2384         vm_page_t m;
2385         u_int flags;
2386
2387         m = NULL;
2388         vmd = VM_DOMAIN(domain);
2389 again:
2390         if (vm_domain_allocate(vmd, req, 1)) {
2391                 vm_domain_free_lock(vmd);
2392                 m = vm_phys_alloc_freelist_pages(domain, freelist,
2393                     VM_FREEPOOL_DIRECT, 0);
2394                 vm_domain_free_unlock(vmd);
2395                 if (m == NULL)
2396                         vm_domain_freecnt_inc(vmd, 1);
2397         }
2398         if (m == NULL) {
2399                 if (vm_domain_alloc_fail(vmd, NULL, req))
2400                         goto again;
2401                 return (NULL);
2402         }
2403         vm_page_dequeue(m);
2404         vm_page_alloc_check(m);
2405
2406         /*
2407          * Initialize the page.  Only the PG_ZERO flag is inherited.
2408          */
2409         m->a.flags = 0;
2410         flags = 0;
2411         if ((req & VM_ALLOC_ZERO) != 0)
2412                 flags = PG_ZERO;
2413         m->flags &= flags;
2414         if ((req & VM_ALLOC_WIRED) != 0) {
2415                 vm_wire_add(1);
2416                 m->ref_count = 1;
2417         }
2418         /* Unmanaged pages don't use "act_count". */
2419         m->oflags = VPO_UNMANAGED;
2420         return (m);
2421 }
2422
2423 static int
2424 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2425 {
2426         struct vm_domain *vmd;
2427         struct vm_pgcache *pgcache;
2428         int i;
2429
2430         pgcache = arg;
2431         vmd = VM_DOMAIN(pgcache->domain);
2432
2433         /*
2434          * The page daemon should avoid creating extra memory pressure since its
2435          * main purpose is to replenish the store of free pages.
2436          */
2437         if (vmd->vmd_severeset || curproc == pageproc ||
2438             !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2439                 return (0);
2440         domain = vmd->vmd_domain;
2441         vm_domain_free_lock(vmd);
2442         i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2443             (vm_page_t *)store);
2444         vm_domain_free_unlock(vmd);
2445         if (cnt != i)
2446                 vm_domain_freecnt_inc(vmd, cnt - i);
2447
2448         return (i);
2449 }
2450
2451 static void
2452 vm_page_zone_release(void *arg, void **store, int cnt)
2453 {
2454         struct vm_domain *vmd;
2455         struct vm_pgcache *pgcache;
2456         vm_page_t m;
2457         int i;
2458
2459         pgcache = arg;
2460         vmd = VM_DOMAIN(pgcache->domain);
2461         vm_domain_free_lock(vmd);
2462         for (i = 0; i < cnt; i++) {
2463                 m = (vm_page_t)store[i];
2464                 vm_phys_free_pages(m, 0);
2465         }
2466         vm_domain_free_unlock(vmd);
2467         vm_domain_freecnt_inc(vmd, cnt);
2468 }
2469
2470 #define VPSC_ANY        0       /* No restrictions. */
2471 #define VPSC_NORESERV   1       /* Skip reservations; implies VPSC_NOSUPER. */
2472 #define VPSC_NOSUPER    2       /* Skip superpages. */
2473
2474 /*
2475  *      vm_page_scan_contig:
2476  *
2477  *      Scan vm_page_array[] between the specified entries "m_start" and
2478  *      "m_end" for a run of contiguous physical pages that satisfy the
2479  *      specified conditions, and return the lowest page in the run.  The
2480  *      specified "alignment" determines the alignment of the lowest physical
2481  *      page in the run.  If the specified "boundary" is non-zero, then the
2482  *      run of physical pages cannot span a physical address that is a
2483  *      multiple of "boundary".
2484  *
2485  *      "m_end" is never dereferenced, so it need not point to a vm_page
2486  *      structure within vm_page_array[].
2487  *
2488  *      "npages" must be greater than zero.  "m_start" and "m_end" must not
2489  *      span a hole (or discontiguity) in the physical address space.  Both
2490  *      "alignment" and "boundary" must be a power of two.
2491  */
2492 vm_page_t
2493 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2494     u_long alignment, vm_paddr_t boundary, int options)
2495 {
2496         struct mtx *m_mtx;
2497         vm_object_t object;
2498         vm_paddr_t pa;
2499         vm_page_t m, m_run;
2500 #if VM_NRESERVLEVEL > 0
2501         int level;
2502 #endif
2503         int m_inc, order, run_ext, run_len;
2504
2505         KASSERT(npages > 0, ("npages is 0"));
2506         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2507         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2508         m_run = NULL;
2509         run_len = 0;
2510         m_mtx = NULL;
2511         for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2512                 KASSERT((m->flags & PG_MARKER) == 0,
2513                     ("page %p is PG_MARKER", m));
2514                 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2515                     ("fictitious page %p has invalid ref count", m));
2516
2517                 /*
2518                  * If the current page would be the start of a run, check its
2519                  * physical address against the end, alignment, and boundary
2520                  * conditions.  If it doesn't satisfy these conditions, either
2521                  * terminate the scan or advance to the next page that
2522                  * satisfies the failed condition.
2523                  */
2524                 if (run_len == 0) {
2525                         KASSERT(m_run == NULL, ("m_run != NULL"));
2526                         if (m + npages > m_end)
2527                                 break;
2528                         pa = VM_PAGE_TO_PHYS(m);
2529                         if ((pa & (alignment - 1)) != 0) {
2530                                 m_inc = atop(roundup2(pa, alignment) - pa);
2531                                 continue;
2532                         }
2533                         if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2534                             boundary) != 0) {
2535                                 m_inc = atop(roundup2(pa, boundary) - pa);
2536                                 continue;
2537                         }
2538                 } else
2539                         KASSERT(m_run != NULL, ("m_run == NULL"));
2540
2541                 vm_page_change_lock(m, &m_mtx);
2542                 m_inc = 1;
2543 retry:
2544                 if (vm_page_wired(m))
2545                         run_ext = 0;
2546 #if VM_NRESERVLEVEL > 0
2547                 else if ((level = vm_reserv_level(m)) >= 0 &&
2548                     (options & VPSC_NORESERV) != 0) {
2549                         run_ext = 0;
2550                         /* Advance to the end of the reservation. */
2551                         pa = VM_PAGE_TO_PHYS(m);
2552                         m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2553                             pa);
2554                 }
2555 #endif
2556                 else if ((object = m->object) != NULL) {
2557                         /*
2558                          * The page is considered eligible for relocation if
2559                          * and only if it could be laundered or reclaimed by
2560                          * the page daemon.
2561                          */
2562                         if (!VM_OBJECT_TRYRLOCK(object)) {
2563                                 mtx_unlock(m_mtx);
2564                                 VM_OBJECT_RLOCK(object);
2565                                 mtx_lock(m_mtx);
2566                                 if (m->object != object) {
2567                                         /*
2568                                          * The page may have been freed.
2569                                          */
2570                                         VM_OBJECT_RUNLOCK(object);
2571                                         goto retry;
2572                                 }
2573                         }
2574                         /* Don't care: PG_NODUMP, PG_ZERO. */
2575                         if (object->type != OBJT_DEFAULT &&
2576                             object->type != OBJT_SWAP &&
2577                             object->type != OBJT_VNODE) {
2578                                 run_ext = 0;
2579 #if VM_NRESERVLEVEL > 0
2580                         } else if ((options & VPSC_NOSUPER) != 0 &&
2581                             (level = vm_reserv_level_iffullpop(m)) >= 0) {
2582                                 run_ext = 0;
2583                                 /* Advance to the end of the superpage. */
2584                                 pa = VM_PAGE_TO_PHYS(m);
2585                                 m_inc = atop(roundup2(pa + 1,
2586                                     vm_reserv_size(level)) - pa);
2587 #endif
2588                         } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2589                             vm_page_queue(m) != PQ_NONE && !vm_page_busied(m) &&
2590                             !vm_page_wired(m)) {
2591                                 /*
2592                                  * The page is allocated but eligible for
2593                                  * relocation.  Extend the current run by one
2594                                  * page.
2595                                  */
2596                                 KASSERT(pmap_page_get_memattr(m) ==
2597                                     VM_MEMATTR_DEFAULT,
2598                                     ("page %p has an unexpected memattr", m));
2599                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2600                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2601                                     ("page %p has unexpected oflags", m));
2602                                 /* Don't care: PGA_NOSYNC. */
2603                                 run_ext = 1;
2604                         } else
2605                                 run_ext = 0;
2606                         VM_OBJECT_RUNLOCK(object);
2607 #if VM_NRESERVLEVEL > 0
2608                 } else if (level >= 0) {
2609                         /*
2610                          * The page is reserved but not yet allocated.  In
2611                          * other words, it is still free.  Extend the current
2612                          * run by one page.
2613                          */
2614                         run_ext = 1;
2615 #endif
2616                 } else if ((order = m->order) < VM_NFREEORDER) {
2617                         /*
2618                          * The page is enqueued in the physical memory
2619                          * allocator's free page queues.  Moreover, it is the
2620                          * first page in a power-of-two-sized run of
2621                          * contiguous free pages.  Add these pages to the end
2622                          * of the current run, and jump ahead.
2623                          */
2624                         run_ext = 1 << order;
2625                         m_inc = 1 << order;
2626                 } else {
2627                         /*
2628                          * Skip the page for one of the following reasons: (1)
2629                          * It is enqueued in the physical memory allocator's
2630                          * free page queues.  However, it is not the first
2631                          * page in a run of contiguous free pages.  (This case
2632                          * rarely occurs because the scan is performed in
2633                          * ascending order.) (2) It is not reserved, and it is
2634                          * transitioning from free to allocated.  (Conversely,
2635                          * the transition from allocated to free for managed
2636                          * pages is blocked by the page lock.) (3) It is
2637                          * allocated but not contained by an object and not
2638                          * wired, e.g., allocated by Xen's balloon driver.
2639                          */
2640                         run_ext = 0;
2641                 }
2642
2643                 /*
2644                  * Extend or reset the current run of pages.
2645                  */
2646                 if (run_ext > 0) {
2647                         if (run_len == 0)
2648                                 m_run = m;
2649                         run_len += run_ext;
2650                 } else {
2651                         if (run_len > 0) {
2652                                 m_run = NULL;
2653                                 run_len = 0;
2654                         }
2655                 }
2656         }
2657         if (m_mtx != NULL)
2658                 mtx_unlock(m_mtx);
2659         if (run_len >= npages)
2660                 return (m_run);
2661         return (NULL);
2662 }
2663
2664 /*
2665  *      vm_page_reclaim_run:
2666  *
2667  *      Try to relocate each of the allocated virtual pages within the
2668  *      specified run of physical pages to a new physical address.  Free the
2669  *      physical pages underlying the relocated virtual pages.  A virtual page
2670  *      is relocatable if and only if it could be laundered or reclaimed by
2671  *      the page daemon.  Whenever possible, a virtual page is relocated to a
2672  *      physical address above "high".
2673  *
2674  *      Returns 0 if every physical page within the run was already free or
2675  *      just freed by a successful relocation.  Otherwise, returns a non-zero
2676  *      value indicating why the last attempt to relocate a virtual page was
2677  *      unsuccessful.
2678  *
2679  *      "req_class" must be an allocation class.
2680  */
2681 static int
2682 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2683     vm_paddr_t high)
2684 {
2685         struct vm_domain *vmd;
2686         struct mtx *m_mtx;
2687         struct spglist free;
2688         vm_object_t object;
2689         vm_paddr_t pa;
2690         vm_page_t m, m_end, m_new;
2691         int error, order, req;
2692
2693         KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2694             ("req_class is not an allocation class"));
2695         SLIST_INIT(&free);
2696         error = 0;
2697         m = m_run;
2698         m_end = m_run + npages;
2699         m_mtx = NULL;
2700         for (; error == 0 && m < m_end; m++) {
2701                 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2702                     ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2703
2704                 /*
2705                  * Avoid releasing and reacquiring the same page lock.
2706                  */
2707                 vm_page_change_lock(m, &m_mtx);
2708 retry:
2709                 /*
2710                  * Racily check for wirings.  Races are handled below.
2711                  */
2712                 if (vm_page_wired(m))
2713                         error = EBUSY;
2714                 else if ((object = m->object) != NULL) {
2715                         /*
2716                          * The page is relocated if and only if it could be
2717                          * laundered or reclaimed by the page daemon.
2718                          */
2719                         if (!VM_OBJECT_TRYWLOCK(object)) {
2720                                 mtx_unlock(m_mtx);
2721                                 VM_OBJECT_WLOCK(object);
2722                                 mtx_lock(m_mtx);
2723                                 if (m->object != object) {
2724                                         /*
2725                                          * The page may have been freed.
2726                                          */
2727                                         VM_OBJECT_WUNLOCK(object);
2728                                         goto retry;
2729                                 }
2730                         }
2731                         /* Don't care: PG_NODUMP, PG_ZERO. */
2732                         if (object->type != OBJT_DEFAULT &&
2733                             object->type != OBJT_SWAP &&
2734                             object->type != OBJT_VNODE)
2735                                 error = EINVAL;
2736                         else if (object->memattr != VM_MEMATTR_DEFAULT)
2737                                 error = EINVAL;
2738                         else if (vm_page_queue(m) != PQ_NONE &&
2739                             vm_page_tryxbusy(m) != 0) {
2740                                 if (vm_page_wired(m)) {
2741                                         vm_page_xunbusy(m);
2742                                         error = EBUSY;
2743                                         goto unlock;
2744                                 }
2745                                 KASSERT(pmap_page_get_memattr(m) ==
2746                                     VM_MEMATTR_DEFAULT,
2747                                     ("page %p has an unexpected memattr", m));
2748                                 KASSERT(m->oflags == 0,
2749                                     ("page %p has unexpected oflags", m));
2750                                 /* Don't care: PGA_NOSYNC. */
2751                                 if (!vm_page_none_valid(m)) {
2752                                         /*
2753                                          * First, try to allocate a new page
2754                                          * that is above "high".  Failing
2755                                          * that, try to allocate a new page
2756                                          * that is below "m_run".  Allocate
2757                                          * the new page between the end of
2758                                          * "m_run" and "high" only as a last
2759                                          * resort.
2760                                          */
2761                                         req = req_class | VM_ALLOC_NOOBJ;
2762                                         if ((m->flags & PG_NODUMP) != 0)
2763                                                 req |= VM_ALLOC_NODUMP;
2764                                         if (trunc_page(high) !=
2765                                             ~(vm_paddr_t)PAGE_MASK) {
2766                                                 m_new = vm_page_alloc_contig(
2767                                                     NULL, 0, req, 1,
2768                                                     round_page(high),
2769                                                     ~(vm_paddr_t)0,
2770                                                     PAGE_SIZE, 0,
2771                                                     VM_MEMATTR_DEFAULT);
2772                                         } else
2773                                                 m_new = NULL;
2774                                         if (m_new == NULL) {
2775                                                 pa = VM_PAGE_TO_PHYS(m_run);
2776                                                 m_new = vm_page_alloc_contig(
2777                                                     NULL, 0, req, 1,
2778                                                     0, pa - 1, PAGE_SIZE, 0,
2779                                                     VM_MEMATTR_DEFAULT);
2780                                         }
2781                                         if (m_new == NULL) {
2782                                                 pa += ptoa(npages);
2783                                                 m_new = vm_page_alloc_contig(
2784                                                     NULL, 0, req, 1,
2785                                                     pa, high, PAGE_SIZE, 0,
2786                                                     VM_MEMATTR_DEFAULT);
2787                                         }
2788                                         if (m_new == NULL) {
2789                                                 vm_page_xunbusy(m);
2790                                                 error = ENOMEM;
2791                                                 goto unlock;
2792                                         }
2793
2794                                         /*
2795                                          * Unmap the page and check for new
2796                                          * wirings that may have been acquired
2797                                          * through a pmap lookup.
2798                                          */
2799                                         if (object->ref_count != 0 &&
2800                                             !vm_page_try_remove_all(m)) {
2801                                                 vm_page_xunbusy(m);
2802                                                 vm_page_free(m_new);
2803                                                 error = EBUSY;
2804                                                 goto unlock;
2805                                         }
2806
2807                                         /*
2808                                          * Replace "m" with the new page.  For
2809                                          * vm_page_replace(), "m" must be busy
2810                                          * and dequeued.  Finally, change "m"
2811                                          * as if vm_page_free() was called.
2812                                          */
2813                                         m_new->a.flags = m->a.flags &
2814                                             ~PGA_QUEUE_STATE_MASK;
2815                                         KASSERT(m_new->oflags == VPO_UNMANAGED,
2816                                             ("page %p is managed", m_new));
2817                                         m_new->oflags = 0;
2818                                         pmap_copy_page(m, m_new);
2819                                         m_new->valid = m->valid;
2820                                         m_new->dirty = m->dirty;
2821                                         m->flags &= ~PG_ZERO;
2822                                         vm_page_dequeue(m);
2823                                         if (vm_page_replace_hold(m_new, object,
2824                                             m->pindex, m) &&
2825                                             vm_page_free_prep(m))
2826                                                 SLIST_INSERT_HEAD(&free, m,
2827                                                     plinks.s.ss);
2828
2829                                         /*
2830                                          * The new page must be deactivated
2831                                          * before the object is unlocked.
2832                                          */
2833                                         vm_page_change_lock(m_new, &m_mtx);
2834                                         vm_page_deactivate(m_new);
2835                                 } else {
2836                                         m->flags &= ~PG_ZERO;
2837                                         vm_page_dequeue(m);
2838                                         if (vm_page_free_prep(m))
2839                                                 SLIST_INSERT_HEAD(&free, m,
2840                                                     plinks.s.ss);
2841                                         KASSERT(m->dirty == 0,
2842                                             ("page %p is dirty", m));
2843                                 }
2844                         } else
2845                                 error = EBUSY;
2846 unlock:
2847                         VM_OBJECT_WUNLOCK(object);
2848                 } else {
2849                         MPASS(vm_phys_domain(m) == domain);
2850                         vmd = VM_DOMAIN(domain);
2851                         vm_domain_free_lock(vmd);
2852                         order = m->order;
2853                         if (order < VM_NFREEORDER) {
2854                                 /*
2855                                  * The page is enqueued in the physical memory
2856                                  * allocator's free page queues.  Moreover, it
2857                                  * is the first page in a power-of-two-sized
2858                                  * run of contiguous free pages.  Jump ahead
2859                                  * to the last page within that run, and
2860                                  * continue from there.
2861                                  */
2862                                 m += (1 << order) - 1;
2863                         }
2864 #if VM_NRESERVLEVEL > 0
2865                         else if (vm_reserv_is_page_free(m))
2866                                 order = 0;
2867 #endif
2868                         vm_domain_free_unlock(vmd);
2869                         if (order == VM_NFREEORDER)
2870                                 error = EINVAL;
2871                 }
2872         }
2873         if (m_mtx != NULL)
2874                 mtx_unlock(m_mtx);
2875         if ((m = SLIST_FIRST(&free)) != NULL) {
2876                 int cnt;
2877
2878                 vmd = VM_DOMAIN(domain);
2879                 cnt = 0;
2880                 vm_domain_free_lock(vmd);
2881                 do {
2882                         MPASS(vm_phys_domain(m) == domain);
2883                         SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2884                         vm_phys_free_pages(m, 0);
2885                         cnt++;
2886                 } while ((m = SLIST_FIRST(&free)) != NULL);
2887                 vm_domain_free_unlock(vmd);
2888                 vm_domain_freecnt_inc(vmd, cnt);
2889         }
2890         return (error);
2891 }
2892
2893 #define NRUNS   16
2894
2895 CTASSERT(powerof2(NRUNS));
2896
2897 #define RUN_INDEX(count)        ((count) & (NRUNS - 1))
2898
2899 #define MIN_RECLAIM     8
2900
2901 /*
2902  *      vm_page_reclaim_contig:
2903  *
2904  *      Reclaim allocated, contiguous physical memory satisfying the specified
2905  *      conditions by relocating the virtual pages using that physical memory.
2906  *      Returns true if reclamation is successful and false otherwise.  Since
2907  *      relocation requires the allocation of physical pages, reclamation may
2908  *      fail due to a shortage of free pages.  When reclamation fails, callers
2909  *      are expected to perform vm_wait() before retrying a failed allocation
2910  *      operation, e.g., vm_page_alloc_contig().
2911  *
2912  *      The caller must always specify an allocation class through "req".
2913  *
2914  *      allocation classes:
2915  *      VM_ALLOC_NORMAL         normal process request
2916  *      VM_ALLOC_SYSTEM         system *really* needs a page
2917  *      VM_ALLOC_INTERRUPT      interrupt time request
2918  *
2919  *      The optional allocation flags are ignored.
2920  *
2921  *      "npages" must be greater than zero.  Both "alignment" and "boundary"
2922  *      must be a power of two.
2923  */
2924 bool
2925 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2926     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2927 {
2928         struct vm_domain *vmd;
2929         vm_paddr_t curr_low;
2930         vm_page_t m_run, m_runs[NRUNS];
2931         u_long count, reclaimed;
2932         int error, i, options, req_class;
2933
2934         KASSERT(npages > 0, ("npages is 0"));
2935         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2936         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2937         req_class = req & VM_ALLOC_CLASS_MASK;
2938
2939         /*
2940          * The page daemon is allowed to dig deeper into the free page list.
2941          */
2942         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2943                 req_class = VM_ALLOC_SYSTEM;
2944
2945         /*
2946          * Return if the number of free pages cannot satisfy the requested
2947          * allocation.
2948          */
2949         vmd = VM_DOMAIN(domain);
2950         count = vmd->vmd_free_count;
2951         if (count < npages + vmd->vmd_free_reserved || (count < npages +
2952             vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2953             (count < npages && req_class == VM_ALLOC_INTERRUPT))
2954                 return (false);
2955
2956         /*
2957          * Scan up to three times, relaxing the restrictions ("options") on
2958          * the reclamation of reservations and superpages each time.
2959          */
2960         for (options = VPSC_NORESERV;;) {
2961                 /*
2962                  * Find the highest runs that satisfy the given constraints
2963                  * and restrictions, and record them in "m_runs".
2964                  */
2965                 curr_low = low;
2966                 count = 0;
2967                 for (;;) {
2968                         m_run = vm_phys_scan_contig(domain, npages, curr_low,
2969                             high, alignment, boundary, options);
2970                         if (m_run == NULL)
2971                                 break;
2972                         curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2973                         m_runs[RUN_INDEX(count)] = m_run;
2974                         count++;
2975                 }
2976
2977                 /*
2978                  * Reclaim the highest runs in LIFO (descending) order until
2979                  * the number of reclaimed pages, "reclaimed", is at least
2980                  * MIN_RECLAIM.  Reset "reclaimed" each time because each
2981                  * reclamation is idempotent, and runs will (likely) recur
2982                  * from one scan to the next as restrictions are relaxed.
2983                  */
2984                 reclaimed = 0;
2985                 for (i = 0; count > 0 && i < NRUNS; i++) {
2986                         count--;
2987                         m_run = m_runs[RUN_INDEX(count)];
2988                         error = vm_page_reclaim_run(req_class, domain, npages,
2989                             m_run, high);
2990                         if (error == 0) {
2991                                 reclaimed += npages;
2992                                 if (reclaimed >= MIN_RECLAIM)
2993                                         return (true);
2994                         }
2995                 }
2996
2997                 /*
2998                  * Either relax the restrictions on the next scan or return if
2999                  * the last scan had no restrictions.
3000                  */
3001                 if (options == VPSC_NORESERV)
3002                         options = VPSC_NOSUPER;
3003                 else if (options == VPSC_NOSUPER)
3004                         options = VPSC_ANY;
3005                 else if (options == VPSC_ANY)
3006                         return (reclaimed != 0);
3007         }
3008 }
3009
3010 bool
3011 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3012     u_long alignment, vm_paddr_t boundary)
3013 {
3014         struct vm_domainset_iter di;
3015         int domain;
3016         bool ret;
3017
3018         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3019         do {
3020                 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
3021                     high, alignment, boundary);
3022                 if (ret)
3023                         break;
3024         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3025
3026         return (ret);
3027 }
3028
3029 /*
3030  * Set the domain in the appropriate page level domainset.
3031  */
3032 void
3033 vm_domain_set(struct vm_domain *vmd)
3034 {
3035
3036         mtx_lock(&vm_domainset_lock);
3037         if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3038                 vmd->vmd_minset = 1;
3039                 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3040         }
3041         if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3042                 vmd->vmd_severeset = 1;
3043                 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3044         }
3045         mtx_unlock(&vm_domainset_lock);
3046 }
3047
3048 /*
3049  * Clear the domain from the appropriate page level domainset.
3050  */
3051 void
3052 vm_domain_clear(struct vm_domain *vmd)
3053 {
3054
3055         mtx_lock(&vm_domainset_lock);
3056         if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3057                 vmd->vmd_minset = 0;
3058                 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3059                 if (vm_min_waiters != 0) {
3060                         vm_min_waiters = 0;
3061                         wakeup(&vm_min_domains);
3062                 }
3063         }
3064         if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3065                 vmd->vmd_severeset = 0;
3066                 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3067                 if (vm_severe_waiters != 0) {
3068                         vm_severe_waiters = 0;
3069                         wakeup(&vm_severe_domains);
3070                 }
3071         }
3072
3073         /*
3074          * If pageout daemon needs pages, then tell it that there are
3075          * some free.
3076          */
3077         if (vmd->vmd_pageout_pages_needed &&
3078             vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3079                 wakeup(&vmd->vmd_pageout_pages_needed);
3080                 vmd->vmd_pageout_pages_needed = 0;
3081         }
3082
3083         /* See comments in vm_wait_doms(). */
3084         if (vm_pageproc_waiters) {
3085                 vm_pageproc_waiters = 0;
3086                 wakeup(&vm_pageproc_waiters);
3087         }
3088         mtx_unlock(&vm_domainset_lock);
3089 }
3090
3091 /*
3092  * Wait for free pages to exceed the min threshold globally.
3093  */
3094 void
3095 vm_wait_min(void)
3096 {
3097
3098         mtx_lock(&vm_domainset_lock);
3099         while (vm_page_count_min()) {
3100                 vm_min_waiters++;
3101                 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3102         }
3103         mtx_unlock(&vm_domainset_lock);
3104 }
3105
3106 /*
3107  * Wait for free pages to exceed the severe threshold globally.
3108  */
3109 void
3110 vm_wait_severe(void)
3111 {
3112
3113         mtx_lock(&vm_domainset_lock);
3114         while (vm_page_count_severe()) {
3115                 vm_severe_waiters++;
3116                 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3117                     "vmwait", 0);
3118         }
3119         mtx_unlock(&vm_domainset_lock);
3120 }
3121
3122 u_int
3123 vm_wait_count(void)
3124 {
3125
3126         return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3127 }
3128
3129 void
3130 vm_wait_doms(const domainset_t *wdoms)
3131 {
3132
3133         /*
3134          * We use racey wakeup synchronization to avoid expensive global
3135          * locking for the pageproc when sleeping with a non-specific vm_wait.
3136          * To handle this, we only sleep for one tick in this instance.  It
3137          * is expected that most allocations for the pageproc will come from
3138          * kmem or vm_page_grab* which will use the more specific and
3139          * race-free vm_wait_domain().
3140          */
3141         if (curproc == pageproc) {
3142                 mtx_lock(&vm_domainset_lock);
3143                 vm_pageproc_waiters++;
3144                 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3145                     "pageprocwait", 1);
3146         } else {
3147                 /*
3148                  * XXX Ideally we would wait only until the allocation could
3149                  * be satisfied.  This condition can cause new allocators to
3150                  * consume all freed pages while old allocators wait.
3151                  */
3152                 mtx_lock(&vm_domainset_lock);
3153                 if (vm_page_count_min_set(wdoms)) {
3154                         vm_min_waiters++;
3155                         msleep(&vm_min_domains, &vm_domainset_lock,
3156                             PVM | PDROP, "vmwait", 0);
3157                 } else
3158                         mtx_unlock(&vm_domainset_lock);
3159         }
3160 }
3161
3162 /*
3163  *      vm_wait_domain:
3164  *
3165  *      Sleep until free pages are available for allocation.
3166  *      - Called in various places after failed memory allocations.
3167  */
3168 void
3169 vm_wait_domain(int domain)
3170 {
3171         struct vm_domain *vmd;
3172         domainset_t wdom;
3173
3174         vmd = VM_DOMAIN(domain);
3175         vm_domain_free_assert_unlocked(vmd);
3176
3177         if (curproc == pageproc) {
3178                 mtx_lock(&vm_domainset_lock);
3179                 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3180                         vmd->vmd_pageout_pages_needed = 1;
3181                         msleep(&vmd->vmd_pageout_pages_needed,
3182                             &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3183                 } else
3184                         mtx_unlock(&vm_domainset_lock);
3185         } else {
3186                 if (pageproc == NULL)
3187                         panic("vm_wait in early boot");
3188                 DOMAINSET_ZERO(&wdom);
3189                 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3190                 vm_wait_doms(&wdom);
3191         }
3192 }
3193
3194 /*
3195  *      vm_wait:
3196  *
3197  *      Sleep until free pages are available for allocation in the
3198  *      affinity domains of the obj.  If obj is NULL, the domain set
3199  *      for the calling thread is used.
3200  *      Called in various places after failed memory allocations.
3201  */
3202 void
3203 vm_wait(vm_object_t obj)
3204 {
3205         struct domainset *d;
3206
3207         d = NULL;
3208
3209         /*
3210          * Carefully fetch pointers only once: the struct domainset
3211          * itself is ummutable but the pointer might change.
3212          */
3213         if (obj != NULL)
3214                 d = obj->domain.dr_policy;
3215         if (d == NULL)
3216                 d = curthread->td_domain.dr_policy;
3217
3218         vm_wait_doms(&d->ds_mask);
3219 }
3220
3221 /*
3222  *      vm_domain_alloc_fail:
3223  *
3224  *      Called when a page allocation function fails.  Informs the
3225  *      pagedaemon and performs the requested wait.  Requires the
3226  *      domain_free and object lock on entry.  Returns with the
3227  *      object lock held and free lock released.  Returns an error when
3228  *      retry is necessary.
3229  *
3230  */
3231 static int
3232 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3233 {
3234
3235         vm_domain_free_assert_unlocked(vmd);
3236
3237         atomic_add_int(&vmd->vmd_pageout_deficit,
3238             max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3239         if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3240                 if (object != NULL) 
3241                         VM_OBJECT_WUNLOCK(object);
3242                 vm_wait_domain(vmd->vmd_domain);
3243                 if (object != NULL) 
3244                         VM_OBJECT_WLOCK(object);
3245                 if (req & VM_ALLOC_WAITOK)
3246                         return (EAGAIN);
3247         }
3248
3249         return (0);
3250 }
3251
3252 /*
3253  *      vm_waitpfault:
3254  *
3255  *      Sleep until free pages are available for allocation.
3256  *      - Called only in vm_fault so that processes page faulting
3257  *        can be easily tracked.
3258  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3259  *        processes will be able to grab memory first.  Do not change
3260  *        this balance without careful testing first.
3261  */
3262 void
3263 vm_waitpfault(struct domainset *dset, int timo)
3264 {
3265
3266         /*
3267          * XXX Ideally we would wait only until the allocation could
3268          * be satisfied.  This condition can cause new allocators to
3269          * consume all freed pages while old allocators wait.
3270          */
3271         mtx_lock(&vm_domainset_lock);
3272         if (vm_page_count_min_set(&dset->ds_mask)) {
3273                 vm_min_waiters++;
3274                 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3275                     "pfault", timo);
3276         } else
3277                 mtx_unlock(&vm_domainset_lock);
3278 }
3279
3280 static struct vm_pagequeue *
3281 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3282 {
3283
3284         return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3285 }
3286
3287 #ifdef INVARIANTS
3288 static struct vm_pagequeue *
3289 vm_page_pagequeue(vm_page_t m)
3290 {
3291
3292         return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3293 }
3294 #endif
3295
3296 static __always_inline bool
3297 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3298 {
3299         vm_page_astate_t tmp;
3300
3301         tmp = *old;
3302         do {
3303                 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3304                         return (true);
3305                 counter_u64_add(pqstate_commit_retries, 1);
3306         } while (old->_bits == tmp._bits);
3307
3308         return (false);
3309 }
3310
3311 /*
3312  * Do the work of committing a queue state update that moves the page out of
3313  * its current queue.
3314  */
3315 static bool
3316 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3317     vm_page_astate_t *old, vm_page_astate_t new)
3318 {
3319         vm_page_t next;
3320
3321         vm_pagequeue_assert_locked(pq);
3322         KASSERT(vm_page_pagequeue(m) == pq,
3323             ("%s: queue %p does not match page %p", __func__, pq, m));
3324         KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3325             ("%s: invalid queue indices %d %d",
3326             __func__, old->queue, new.queue));
3327
3328         /*
3329          * Once the queue index of the page changes there is nothing
3330          * synchronizing with further updates to the page's physical
3331          * queue state.  Therefore we must speculatively remove the page
3332          * from the queue now and be prepared to roll back if the queue
3333          * state update fails.  If the page is not physically enqueued then
3334          * we just update its queue index.
3335          */
3336         if ((old->flags & PGA_ENQUEUED) != 0) {
3337                 new.flags &= ~PGA_ENQUEUED;
3338                 next = TAILQ_NEXT(m, plinks.q);
3339                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3340                 vm_pagequeue_cnt_dec(pq);
3341                 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3342                         if (next == NULL)
3343                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3344                         else
3345                                 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3346                         vm_pagequeue_cnt_inc(pq);
3347                         return (false);
3348                 } else {
3349                         return (true);
3350                 }
3351         } else {
3352                 return (vm_page_pqstate_fcmpset(m, old, new));
3353         }
3354 }
3355
3356 static bool
3357 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3358     vm_page_astate_t new)
3359 {
3360         struct vm_pagequeue *pq;
3361         vm_page_astate_t as;
3362         bool ret;
3363
3364         pq = _vm_page_pagequeue(m, old->queue);
3365
3366         /*
3367          * The queue field and PGA_ENQUEUED flag are stable only so long as the
3368          * corresponding page queue lock is held.
3369          */
3370         vm_pagequeue_lock(pq);
3371         as = vm_page_astate_load(m);
3372         if (__predict_false(as._bits != old->_bits)) {
3373                 *old = as;
3374                 ret = false;
3375         } else {
3376                 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3377         }
3378         vm_pagequeue_unlock(pq);
3379         return (ret);
3380 }
3381
3382 /*
3383  * Commit a queue state update that enqueues or requeues a page.
3384  */
3385 static bool
3386 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3387     vm_page_astate_t *old, vm_page_astate_t new)
3388 {
3389         struct vm_domain *vmd;
3390
3391         vm_pagequeue_assert_locked(pq);
3392         KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3393             ("%s: invalid queue indices %d %d",
3394             __func__, old->queue, new.queue));
3395
3396         new.flags |= PGA_ENQUEUED;
3397         if (!vm_page_pqstate_fcmpset(m, old, new))
3398                 return (false);
3399
3400         if ((old->flags & PGA_ENQUEUED) != 0)
3401                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3402         else
3403                 vm_pagequeue_cnt_inc(pq);
3404
3405         /*
3406          * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3407          * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3408          * applied, even if it was set first.
3409          */
3410         if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3411                 vmd = vm_pagequeue_domain(m);
3412                 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3413                     ("%s: invalid page queue for page %p", __func__, m));
3414                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3415         } else {
3416                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3417         }
3418         return (true);
3419 }
3420
3421 /*
3422  * Commit a queue state update that encodes a request for a deferred queue
3423  * operation.
3424  */
3425 static bool
3426 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3427     vm_page_astate_t new)
3428 {
3429
3430         KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3431             ("%s: invalid state, queue %d flags %x",
3432             __func__, new.queue, new.flags));
3433
3434         if (old->_bits != new._bits &&
3435             !vm_page_pqstate_fcmpset(m, old, new))
3436                 return (false);
3437         vm_page_pqbatch_submit(m, new.queue);
3438         return (true);
3439 }
3440
3441 /*
3442  * A generic queue state update function.  This handles more cases than the
3443  * specialized functions above.
3444  */
3445 bool
3446 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3447 {
3448
3449         if (old->_bits == new._bits)
3450                 return (true);
3451
3452         if (old->queue != PQ_NONE && new.queue != old->queue) {
3453                 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3454                         return (false);
3455                 if (new.queue != PQ_NONE)
3456                         vm_page_pqbatch_submit(m, new.queue);
3457         } else {
3458                 if (!vm_page_pqstate_fcmpset(m, old, new))
3459                         return (false);
3460                 if (new.queue != PQ_NONE &&
3461                     ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3462                         vm_page_pqbatch_submit(m, new.queue);
3463         }
3464         return (true);
3465 }
3466
3467 /*
3468  * Apply deferred queue state updates to a page.
3469  */
3470 static inline void
3471 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3472 {
3473         vm_page_astate_t new, old;
3474
3475         CRITICAL_ASSERT(curthread);
3476         vm_pagequeue_assert_locked(pq);
3477         KASSERT(queue < PQ_COUNT,
3478             ("%s: invalid queue index %d", __func__, queue));
3479         KASSERT(pq == _vm_page_pagequeue(m, queue),
3480             ("%s: page %p does not belong to queue %p", __func__, m, pq));
3481
3482         for (old = vm_page_astate_load(m);;) {
3483                 if (__predict_false(old.queue != queue ||
3484                     (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3485                         counter_u64_add(queue_nops, 1);
3486                         break;
3487                 }
3488                 KASSERT(old.queue != PQ_NONE || (old.flags & PGA_QUEUE_STATE_MASK) == 0,
3489                     ("%s: page %p has unexpected queue state", __func__, m));
3490
3491                 new = old;
3492                 if ((old.flags & PGA_DEQUEUE) != 0) {
3493                         new.flags &= ~PGA_QUEUE_OP_MASK;
3494                         new.queue = PQ_NONE;
3495                         if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3496                             m, &old, new))) {
3497                                 counter_u64_add(queue_ops, 1);
3498                                 break;
3499                         }
3500                 } else {
3501                         new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3502                         if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3503                             m, &old, new))) {
3504                                 counter_u64_add(queue_ops, 1);
3505                                 break;
3506                         }
3507                 }
3508         }
3509 }
3510
3511 static void
3512 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3513     uint8_t queue)
3514 {
3515         int i;
3516
3517         for (i = 0; i < bq->bq_cnt; i++)
3518                 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3519         vm_batchqueue_init(bq);
3520 }
3521
3522 /*
3523  *      vm_page_pqbatch_submit:         [ internal use only ]
3524  *
3525  *      Enqueue a page in the specified page queue's batched work queue.
3526  *      The caller must have encoded the requested operation in the page
3527  *      structure's a.flags field.
3528  */
3529 void
3530 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3531 {
3532         struct vm_batchqueue *bq;
3533         struct vm_pagequeue *pq;
3534         int domain;
3535
3536         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3537             ("page %p is unmanaged", m));
3538         KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3539
3540         domain = vm_phys_domain(m);
3541         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3542
3543         critical_enter();
3544         bq = DPCPU_PTR(pqbatch[domain][queue]);
3545         if (vm_batchqueue_insert(bq, m)) {
3546                 critical_exit();
3547                 return;
3548         }
3549         critical_exit();
3550         vm_pagequeue_lock(pq);
3551         critical_enter();
3552         bq = DPCPU_PTR(pqbatch[domain][queue]);
3553         vm_pqbatch_process(pq, bq, queue);
3554         vm_pqbatch_process_page(pq, m, queue);
3555         vm_pagequeue_unlock(pq);
3556         critical_exit();
3557 }
3558
3559 /*
3560  *      vm_page_pqbatch_drain:          [ internal use only ]
3561  *
3562  *      Force all per-CPU page queue batch queues to be drained.  This is
3563  *      intended for use in severe memory shortages, to ensure that pages
3564  *      do not remain stuck in the batch queues.
3565  */
3566 void
3567 vm_page_pqbatch_drain(void)
3568 {
3569         struct thread *td;
3570         struct vm_domain *vmd;
3571         struct vm_pagequeue *pq;
3572         int cpu, domain, queue;
3573
3574         td = curthread;
3575         CPU_FOREACH(cpu) {
3576                 thread_lock(td);
3577                 sched_bind(td, cpu);
3578                 thread_unlock(td);
3579
3580                 for (domain = 0; domain < vm_ndomains; domain++) {
3581                         vmd = VM_DOMAIN(domain);
3582                         for (queue = 0; queue < PQ_COUNT; queue++) {
3583                                 pq = &vmd->vmd_pagequeues[queue];
3584                                 vm_pagequeue_lock(pq);
3585                                 critical_enter();
3586                                 vm_pqbatch_process(pq,
3587                                     DPCPU_PTR(pqbatch[domain][queue]), queue);
3588                                 critical_exit();
3589                                 vm_pagequeue_unlock(pq);
3590                         }
3591                 }
3592         }
3593         thread_lock(td);
3594         sched_unbind(td);
3595         thread_unlock(td);
3596 }
3597
3598 /*
3599  *      vm_page_dequeue_deferred:       [ internal use only ]
3600  *
3601  *      Request removal of the given page from its current page
3602  *      queue.  Physical removal from the queue may be deferred
3603  *      indefinitely.
3604  *
3605  *      The page must be locked.
3606  */
3607 void
3608 vm_page_dequeue_deferred(vm_page_t m)
3609 {
3610         vm_page_astate_t new, old;
3611
3612         old = vm_page_astate_load(m);
3613         do {
3614                 if (old.queue == PQ_NONE) {
3615                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3616                             ("%s: page %p has unexpected queue state",
3617                             __func__, m));
3618                         break;
3619                 }
3620                 new = old;
3621                 new.flags |= PGA_DEQUEUE;
3622         } while (!vm_page_pqstate_commit_request(m, &old, new));
3623 }
3624
3625 /*
3626  *      vm_page_dequeue:
3627  *
3628  *      Remove the page from whichever page queue it's in, if any, before
3629  *      returning.
3630  */
3631 void
3632 vm_page_dequeue(vm_page_t m)
3633 {
3634         vm_page_astate_t new, old;
3635
3636         old = vm_page_astate_load(m);
3637         do {
3638                 if (old.queue == PQ_NONE) {
3639                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3640                             ("%s: page %p has unexpected queue state",
3641                             __func__, m));
3642                         break;
3643                 }
3644                 new = old;
3645                 new.flags &= ~PGA_QUEUE_OP_MASK;
3646                 new.queue = PQ_NONE;
3647         } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3648
3649 }
3650
3651 /*
3652  * Schedule the given page for insertion into the specified page queue.
3653  * Physical insertion of the page may be deferred indefinitely.
3654  */
3655 static void
3656 vm_page_enqueue(vm_page_t m, uint8_t queue)
3657 {
3658
3659         KASSERT(m->a.queue == PQ_NONE &&
3660             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3661             ("%s: page %p is already enqueued", __func__, m));
3662         KASSERT(m->ref_count > 0,
3663             ("%s: page %p does not carry any references", __func__, m));
3664
3665         m->a.queue = queue;
3666         if ((m->a.flags & PGA_REQUEUE) == 0)
3667                 vm_page_aflag_set(m, PGA_REQUEUE);
3668         vm_page_pqbatch_submit(m, queue);
3669 }
3670
3671 /*
3672  *      vm_page_free_prep:
3673  *
3674  *      Prepares the given page to be put on the free list,
3675  *      disassociating it from any VM object. The caller may return
3676  *      the page to the free list only if this function returns true.
3677  *
3678  *      The object must be locked.  The page must be locked if it is
3679  *      managed.
3680  */
3681 static bool
3682 vm_page_free_prep(vm_page_t m)
3683 {
3684
3685         /*
3686          * Synchronize with threads that have dropped a reference to this
3687          * page.
3688          */
3689         atomic_thread_fence_acq();
3690
3691         if (vm_page_sbusied(m))
3692                 panic("vm_page_free_prep: freeing shared busy page %p", m);
3693
3694 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3695         if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3696                 uint64_t *p;
3697                 int i;
3698                 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3699                 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3700                         KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3701                             m, i, (uintmax_t)*p));
3702         }
3703 #endif
3704         if ((m->oflags & VPO_UNMANAGED) == 0) {
3705                 KASSERT(!pmap_page_is_mapped(m),
3706                     ("vm_page_free_prep: freeing mapped page %p", m));
3707                 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3708                     ("vm_page_free_prep: mapping flags set in page %p", m));
3709         } else {
3710                 KASSERT(m->a.queue == PQ_NONE,
3711                     ("vm_page_free_prep: unmanaged page %p is queued", m));
3712         }
3713         VM_CNT_INC(v_tfree);
3714
3715         if (m->object != NULL) {
3716                 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3717                     ((m->object->flags & OBJ_UNMANAGED) != 0),
3718                     ("vm_page_free_prep: managed flag mismatch for page %p",
3719                     m));
3720                 vm_page_object_remove(m);
3721
3722                 /*
3723                  * The object reference can be released without an atomic
3724                  * operation.
3725                  */
3726                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3727                     m->ref_count == VPRC_OBJREF,
3728                     ("vm_page_free_prep: page %p has unexpected ref_count %u",
3729                     m, m->ref_count));
3730                 m->object = NULL;
3731                 m->ref_count -= VPRC_OBJREF;
3732                 vm_page_xunbusy(m);
3733         }
3734
3735         if (vm_page_xbusied(m))
3736                 panic("vm_page_free_prep: freeing exclusive busy page %p", m);
3737
3738         /*
3739          * If fictitious remove object association and
3740          * return.
3741          */
3742         if ((m->flags & PG_FICTITIOUS) != 0) {
3743                 KASSERT(m->ref_count == 1,
3744                     ("fictitious page %p is referenced", m));
3745                 KASSERT(m->a.queue == PQ_NONE,
3746                     ("fictitious page %p is queued", m));
3747                 return (false);
3748         }
3749
3750         /*
3751          * Pages need not be dequeued before they are returned to the physical
3752          * memory allocator, but they must at least be marked for a deferred
3753          * dequeue.
3754          */
3755         if ((m->oflags & VPO_UNMANAGED) == 0)
3756                 vm_page_dequeue_deferred(m);
3757
3758         m->valid = 0;
3759         vm_page_undirty(m);
3760
3761         if (m->ref_count != 0)
3762                 panic("vm_page_free_prep: page %p has references", m);
3763
3764         /*
3765          * Restore the default memory attribute to the page.
3766          */
3767         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3768                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3769
3770 #if VM_NRESERVLEVEL > 0
3771         /*
3772          * Determine whether the page belongs to a reservation.  If the page was
3773          * allocated from a per-CPU cache, it cannot belong to a reservation, so
3774          * as an optimization, we avoid the check in that case.
3775          */
3776         if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3777                 return (false);
3778 #endif
3779
3780         return (true);
3781 }
3782
3783 /*
3784  *      vm_page_free_toq:
3785  *
3786  *      Returns the given page to the free list, disassociating it
3787  *      from any VM object.
3788  *
3789  *      The object must be locked.  The page must be locked if it is
3790  *      managed.
3791  */
3792 static void
3793 vm_page_free_toq(vm_page_t m)
3794 {
3795         struct vm_domain *vmd;
3796         uma_zone_t zone;
3797
3798         if (!vm_page_free_prep(m))
3799                 return;
3800
3801         vmd = vm_pagequeue_domain(m);
3802         zone = vmd->vmd_pgcache[m->pool].zone;
3803         if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3804                 uma_zfree(zone, m);
3805                 return;
3806         }
3807         vm_domain_free_lock(vmd);
3808         vm_phys_free_pages(m, 0);
3809         vm_domain_free_unlock(vmd);
3810         vm_domain_freecnt_inc(vmd, 1);
3811 }
3812
3813 /*
3814  *      vm_page_free_pages_toq:
3815  *
3816  *      Returns a list of pages to the free list, disassociating it
3817  *      from any VM object.  In other words, this is equivalent to
3818  *      calling vm_page_free_toq() for each page of a list of VM objects.
3819  *
3820  *      The objects must be locked.  The pages must be locked if it is
3821  *      managed.
3822  */
3823 void
3824 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3825 {
3826         vm_page_t m;
3827         int count;
3828
3829         if (SLIST_EMPTY(free))
3830                 return;
3831
3832         count = 0;
3833         while ((m = SLIST_FIRST(free)) != NULL) {
3834                 count++;
3835                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
3836                 vm_page_free_toq(m);
3837         }
3838
3839         if (update_wire_count)
3840                 vm_wire_sub(count);
3841 }
3842
3843 /*
3844  * Mark this page as wired down, preventing reclamation by the page daemon
3845  * or when the containing object is destroyed.
3846  */
3847 void
3848 vm_page_wire(vm_page_t m)
3849 {
3850         u_int old;
3851
3852         KASSERT(m->object != NULL,
3853             ("vm_page_wire: page %p does not belong to an object", m));
3854         if (!vm_page_busied(m) && !vm_object_busied(m->object))
3855                 VM_OBJECT_ASSERT_LOCKED(m->object);
3856         KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3857             VPRC_WIRE_COUNT(m->ref_count) >= 1,
3858             ("vm_page_wire: fictitious page %p has zero wirings", m));
3859
3860         old = atomic_fetchadd_int(&m->ref_count, 1);
3861         KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3862             ("vm_page_wire: counter overflow for page %p", m));
3863         if (VPRC_WIRE_COUNT(old) == 0) {
3864                 if ((m->oflags & VPO_UNMANAGED) == 0)
3865                         vm_page_aflag_set(m, PGA_DEQUEUE);
3866                 vm_wire_add(1);
3867         }
3868 }
3869
3870 /*
3871  * Attempt to wire a mapped page following a pmap lookup of that page.
3872  * This may fail if a thread is concurrently tearing down mappings of the page.
3873  * The transient failure is acceptable because it translates to the
3874  * failure of the caller pmap_extract_and_hold(), which should be then
3875  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3876  */
3877 bool
3878 vm_page_wire_mapped(vm_page_t m)
3879 {
3880         u_int old;
3881
3882         old = m->ref_count;
3883         do {
3884                 KASSERT(old > 0,
3885                     ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3886                 if ((old & VPRC_BLOCKED) != 0)
3887                         return (false);
3888         } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3889
3890         if (VPRC_WIRE_COUNT(old) == 0) {
3891                 if ((m->oflags & VPO_UNMANAGED) == 0)
3892                         vm_page_aflag_set(m, PGA_DEQUEUE);
3893                 vm_wire_add(1);
3894         }
3895         return (true);
3896 }
3897
3898 /*
3899  * Release a wiring reference to a managed page.  If the page still belongs to
3900  * an object, update its position in the page queues to reflect the reference.
3901  * If the wiring was the last reference to the page, free the page.
3902  */
3903 static void
3904 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
3905 {
3906         u_int old;
3907
3908         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3909             ("%s: page %p is unmanaged", __func__, m));
3910
3911         /*
3912          * Update LRU state before releasing the wiring reference.
3913          * Use a release store when updating the reference count to
3914          * synchronize with vm_page_free_prep().
3915          */
3916         old = m->ref_count;
3917         do {
3918                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
3919                     ("vm_page_unwire: wire count underflow for page %p", m));
3920
3921                 if (old > VPRC_OBJREF + 1) {
3922                         /*
3923                          * The page has at least one other wiring reference.  An
3924                          * earlier iteration of this loop may have called
3925                          * vm_page_release_toq() and cleared PGA_DEQUEUE, so
3926                          * re-set it if necessary.
3927                          */
3928                         if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
3929                                 vm_page_aflag_set(m, PGA_DEQUEUE);
3930                 } else if (old == VPRC_OBJREF + 1) {
3931                         /*
3932                          * This is the last wiring.  Clear PGA_DEQUEUE and
3933                          * update the page's queue state to reflect the
3934                          * reference.  If the page does not belong to an object
3935                          * (i.e., the VPRC_OBJREF bit is clear), we only need to
3936                          * clear leftover queue state.
3937                          */
3938                         vm_page_release_toq(m, nqueue, false);
3939                 } else if (old == 1) {
3940                         vm_page_aflag_clear(m, PGA_DEQUEUE);
3941                 }
3942         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3943
3944         if (VPRC_WIRE_COUNT(old) == 1) {
3945                 vm_wire_sub(1);
3946                 if (old == 1)
3947                         vm_page_free(m);
3948         }
3949 }
3950
3951 /*
3952  * Release one wiring of the specified page, potentially allowing it to be
3953  * paged out.
3954  *
3955  * Only managed pages belonging to an object can be paged out.  If the number
3956  * of wirings transitions to zero and the page is eligible for page out, then
3957  * the page is added to the specified paging queue.  If the released wiring
3958  * represented the last reference to the page, the page is freed.
3959  *
3960  * A managed page must be locked.
3961  */
3962 void
3963 vm_page_unwire(vm_page_t m, uint8_t nqueue)
3964 {
3965
3966         KASSERT(nqueue < PQ_COUNT,
3967             ("vm_page_unwire: invalid queue %u request for page %p",
3968             nqueue, m));
3969
3970         if ((m->oflags & VPO_UNMANAGED) != 0) {
3971                 if (vm_page_unwire_noq(m) && m->ref_count == 0)
3972                         vm_page_free(m);
3973                 return;
3974         }
3975         vm_page_unwire_managed(m, nqueue, false);
3976 }
3977
3978 /*
3979  * Unwire a page without (re-)inserting it into a page queue.  It is up
3980  * to the caller to enqueue, requeue, or free the page as appropriate.
3981  * In most cases involving managed pages, vm_page_unwire() should be used
3982  * instead.
3983  */
3984 bool
3985 vm_page_unwire_noq(vm_page_t m)
3986 {
3987         u_int old;
3988
3989         old = vm_page_drop(m, 1);
3990         KASSERT(VPRC_WIRE_COUNT(old) != 0,
3991             ("vm_page_unref: counter underflow for page %p", m));
3992         KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3993             ("vm_page_unref: missing ref on fictitious page %p", m));
3994
3995         if (VPRC_WIRE_COUNT(old) > 1)
3996                 return (false);
3997         if ((m->oflags & VPO_UNMANAGED) == 0)
3998                 vm_page_aflag_clear(m, PGA_DEQUEUE);
3999         vm_wire_sub(1);
4000         return (true);
4001 }
4002
4003 /*
4004  * Ensure that the page ends up in the specified page queue.  If the page is
4005  * active or being moved to the active queue, ensure that its act_count is
4006  * at least ACT_INIT but do not otherwise mess with it.
4007  *
4008  * A managed page must be locked.
4009  */
4010 static __always_inline void
4011 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4012 {
4013         vm_page_astate_t old, new;
4014
4015         KASSERT(m->ref_count > 0,
4016             ("%s: page %p does not carry any references", __func__, m));
4017         KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4018             ("%s: invalid flags %x", __func__, nflag));
4019
4020         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4021                 return;
4022
4023         old = vm_page_astate_load(m);
4024         do {
4025                 if ((old.flags & PGA_DEQUEUE) != 0)
4026                         break;
4027                 new = old;
4028                 new.flags &= ~PGA_QUEUE_OP_MASK;
4029                 if (nqueue == PQ_ACTIVE)
4030                         new.act_count = max(old.act_count, ACT_INIT);
4031                 if (old.queue == nqueue) {
4032                         if (nqueue != PQ_ACTIVE)
4033                                 new.flags |= nflag;
4034                 } else {
4035                         new.flags |= nflag;
4036                         new.queue = nqueue;
4037                 }
4038         } while (!vm_page_pqstate_commit(m, &old, new));
4039 }
4040
4041 /*
4042  * Put the specified page on the active list (if appropriate).
4043  */
4044 void
4045 vm_page_activate(vm_page_t m)
4046 {
4047
4048         vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4049 }
4050
4051 /*
4052  * Move the specified page to the tail of the inactive queue, or requeue
4053  * the page if it is already in the inactive queue.
4054  */
4055 void
4056 vm_page_deactivate(vm_page_t m)
4057 {
4058
4059         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4060 }
4061
4062 void
4063 vm_page_deactivate_noreuse(vm_page_t m)
4064 {
4065
4066         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4067 }
4068
4069 /*
4070  * Put a page in the laundry, or requeue it if it is already there.
4071  */
4072 void
4073 vm_page_launder(vm_page_t m)
4074 {
4075
4076         vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4077 }
4078
4079 /*
4080  * Put a page in the PQ_UNSWAPPABLE holding queue.
4081  */
4082 void
4083 vm_page_unswappable(vm_page_t m)
4084 {
4085
4086         KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4087             ("page %p already unswappable", m));
4088
4089         vm_page_dequeue(m);
4090         vm_page_enqueue(m, PQ_UNSWAPPABLE);
4091 }
4092
4093 /*
4094  * Release a page back to the page queues in preparation for unwiring.
4095  */
4096 static void
4097 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4098 {
4099         vm_page_astate_t old, new;
4100         uint16_t nflag;
4101
4102         /*
4103          * Use a check of the valid bits to determine whether we should
4104          * accelerate reclamation of the page.  The object lock might not be
4105          * held here, in which case the check is racy.  At worst we will either
4106          * accelerate reclamation of a valid page and violate LRU, or
4107          * unnecessarily defer reclamation of an invalid page.
4108          *
4109          * If we were asked to not cache the page, place it near the head of the
4110          * inactive queue so that is reclaimed sooner.
4111          */
4112         if (noreuse || m->valid == 0) {
4113                 nqueue = PQ_INACTIVE;
4114                 nflag = PGA_REQUEUE_HEAD;
4115         } else {
4116                 nflag = PGA_REQUEUE;
4117         }
4118
4119         old = vm_page_astate_load(m);
4120         do {
4121                 new = old;
4122
4123                 /*
4124                  * If the page is already in the active queue and we are not
4125                  * trying to accelerate reclamation, simply mark it as
4126                  * referenced and avoid any queue operations.
4127                  */
4128                 new.flags &= ~PGA_QUEUE_OP_MASK;
4129                 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE)
4130                         new.flags |= PGA_REFERENCED;
4131                 else {
4132                         new.flags |= nflag;
4133                         new.queue = nqueue;
4134                 }
4135         } while (!vm_page_pqstate_commit(m, &old, new));
4136 }
4137
4138 /*
4139  * Unwire a page and either attempt to free it or re-add it to the page queues.
4140  */
4141 void
4142 vm_page_release(vm_page_t m, int flags)
4143 {
4144         vm_object_t object;
4145
4146         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4147             ("vm_page_release: page %p is unmanaged", m));
4148
4149         if ((flags & VPR_TRYFREE) != 0) {
4150                 for (;;) {
4151                         object = (vm_object_t)atomic_load_ptr(&m->object);
4152                         if (object == NULL)
4153                                 break;
4154                         /* Depends on type-stability. */
4155                         if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4156                                 break;
4157                         if (object == m->object) {
4158                                 vm_page_release_locked(m, flags);
4159                                 VM_OBJECT_WUNLOCK(object);
4160                                 return;
4161                         }
4162                         VM_OBJECT_WUNLOCK(object);
4163                 }
4164         }
4165         vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4166 }
4167
4168 /* See vm_page_release(). */
4169 void
4170 vm_page_release_locked(vm_page_t m, int flags)
4171 {
4172
4173         VM_OBJECT_ASSERT_WLOCKED(m->object);
4174         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4175             ("vm_page_release_locked: page %p is unmanaged", m));
4176
4177         if (vm_page_unwire_noq(m)) {
4178                 if ((flags & VPR_TRYFREE) != 0 &&
4179                     (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4180                     m->dirty == 0 && vm_page_tryxbusy(m)) {
4181                         vm_page_free(m);
4182                 } else {
4183                         vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4184                 }
4185         }
4186 }
4187
4188 static bool
4189 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4190 {
4191         u_int old;
4192
4193         KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4194             ("vm_page_try_blocked_op: page %p has no object", m));
4195         KASSERT(vm_page_busied(m),
4196             ("vm_page_try_blocked_op: page %p is not busy", m));
4197         VM_OBJECT_ASSERT_LOCKED(m->object);
4198
4199         old = m->ref_count;
4200         do {
4201                 KASSERT(old != 0,
4202                     ("vm_page_try_blocked_op: page %p has no references", m));
4203                 if (VPRC_WIRE_COUNT(old) != 0)
4204                         return (false);
4205         } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4206
4207         (op)(m);
4208
4209         /*
4210          * If the object is read-locked, new wirings may be created via an
4211          * object lookup.
4212          */
4213         old = vm_page_drop(m, VPRC_BLOCKED);
4214         KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4215             old == (VPRC_BLOCKED | VPRC_OBJREF),
4216             ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4217             old, m));
4218         return (true);
4219 }
4220
4221 /*
4222  * Atomically check for wirings and remove all mappings of the page.
4223  */
4224 bool
4225 vm_page_try_remove_all(vm_page_t m)
4226 {
4227
4228         return (vm_page_try_blocked_op(m, pmap_remove_all));
4229 }
4230
4231 /*
4232  * Atomically check for wirings and remove all writeable mappings of the page.
4233  */
4234 bool
4235 vm_page_try_remove_write(vm_page_t m)
4236 {
4237
4238         return (vm_page_try_blocked_op(m, pmap_remove_write));
4239 }
4240
4241 /*
4242  * vm_page_advise
4243  *
4244  *      Apply the specified advice to the given page.
4245  *
4246  *      The object and page must be locked.
4247  */
4248 void
4249 vm_page_advise(vm_page_t m, int advice)
4250 {
4251
4252         VM_OBJECT_ASSERT_WLOCKED(m->object);
4253         if (advice == MADV_FREE)
4254                 /*
4255                  * Mark the page clean.  This will allow the page to be freed
4256                  * without first paging it out.  MADV_FREE pages are often
4257                  * quickly reused by malloc(3), so we do not do anything that
4258                  * would result in a page fault on a later access.
4259                  */
4260                 vm_page_undirty(m);
4261         else if (advice != MADV_DONTNEED) {
4262                 if (advice == MADV_WILLNEED)
4263                         vm_page_activate(m);
4264                 return;
4265         }
4266
4267         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4268                 vm_page_dirty(m);
4269
4270         /*
4271          * Clear any references to the page.  Otherwise, the page daemon will
4272          * immediately reactivate the page.
4273          */
4274         vm_page_aflag_clear(m, PGA_REFERENCED);
4275
4276         /*
4277          * Place clean pages near the head of the inactive queue rather than
4278          * the tail, thus defeating the queue's LRU operation and ensuring that
4279          * the page will be reused quickly.  Dirty pages not already in the
4280          * laundry are moved there.
4281          */
4282         if (m->dirty == 0)
4283                 vm_page_deactivate_noreuse(m);
4284         else if (!vm_page_in_laundry(m))
4285                 vm_page_launder(m);
4286 }
4287
4288 static inline int
4289 vm_page_grab_pflags(int allocflags)
4290 {
4291         int pflags;
4292
4293         KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4294             (allocflags & VM_ALLOC_WIRED) != 0,
4295             ("vm_page_grab_pflags: the pages must be busied or wired"));
4296         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4297             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4298             ("vm_page_grab_pflags: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4299             "mismatch"));
4300         pflags = allocflags &
4301             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4302             VM_ALLOC_NOBUSY);
4303         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4304                 pflags |= VM_ALLOC_WAITFAIL;
4305         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4306                 pflags |= VM_ALLOC_SBUSY;
4307
4308         return (pflags);
4309 }
4310
4311 /*
4312  * Grab a page, waiting until we are waken up due to the page
4313  * changing state.  We keep on waiting, if the page continues
4314  * to be in the object.  If the page doesn't exist, first allocate it
4315  * and then conditionally zero it.
4316  *
4317  * This routine may sleep.
4318  *
4319  * The object must be locked on entry.  The lock will, however, be released
4320  * and reacquired if the routine sleeps.
4321  */
4322 vm_page_t
4323 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4324 {
4325         vm_page_t m;
4326         int pflags;
4327
4328         VM_OBJECT_ASSERT_WLOCKED(object);
4329         pflags = vm_page_grab_pflags(allocflags);
4330 retrylookup:
4331         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4332                 if (!vm_page_acquire_flags(m, allocflags)) {
4333                         if (vm_page_busy_sleep_flags(object, m, "pgrbwt",
4334                             allocflags))
4335                                 goto retrylookup;
4336                         return (NULL);
4337                 }
4338                 goto out;
4339         }
4340         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4341                 return (NULL);
4342         m = vm_page_alloc(object, pindex, pflags);
4343         if (m == NULL) {
4344                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4345                         return (NULL);
4346                 goto retrylookup;
4347         }
4348         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4349                 pmap_zero_page(m);
4350
4351 out:
4352         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4353                 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4354                         vm_page_sunbusy(m);
4355                 else
4356                         vm_page_xunbusy(m);
4357         }
4358         return (m);
4359 }
4360
4361 /*
4362  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4363  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4364  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4365  * in simultaneously.  Additional pages will be left on a paging queue but
4366  * will neither be wired nor busy regardless of allocflags.
4367  */
4368 int
4369 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4370 {
4371         vm_page_t m;
4372         vm_page_t ma[VM_INITIAL_PAGEIN];
4373         bool sleep, xbusy;
4374         int after, i, pflags, rv;
4375
4376         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4377             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4378             ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4379         KASSERT((allocflags &
4380             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4381             ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4382         VM_OBJECT_ASSERT_WLOCKED(object);
4383         pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY);
4384         pflags |= VM_ALLOC_WAITFAIL;
4385
4386 retrylookup:
4387         xbusy = false;
4388         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4389                 /*
4390                  * If the page is fully valid it can only become invalid
4391                  * with the object lock held.  If it is not valid it can
4392                  * become valid with the busy lock held.  Therefore, we
4393                  * may unnecessarily lock the exclusive busy here if we
4394                  * race with I/O completion not using the object lock.
4395                  * However, we will not end up with an invalid page and a
4396                  * shared lock.
4397                  */
4398                 if (!vm_page_all_valid(m) ||
4399                     (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) {
4400                         sleep = !vm_page_tryxbusy(m);
4401                         xbusy = true;
4402                 } else
4403                         sleep = !vm_page_trysbusy(m);
4404                 if (sleep) {
4405                         (void)vm_page_busy_sleep_flags(object, m, "pgrbwt",
4406                             allocflags);
4407                         goto retrylookup;
4408                 }
4409                 if ((allocflags & VM_ALLOC_NOCREAT) != 0 &&
4410                    !vm_page_all_valid(m)) {
4411                         if (xbusy)
4412                                 vm_page_xunbusy(m);
4413                         else
4414                                 vm_page_sunbusy(m);
4415                         *mp = NULL;
4416                         return (VM_PAGER_FAIL);
4417                 }
4418                 if ((allocflags & VM_ALLOC_WIRED) != 0)
4419                         vm_page_wire(m);
4420                 if (vm_page_all_valid(m))
4421                         goto out;
4422         } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4423                 *mp = NULL;
4424                 return (VM_PAGER_FAIL);
4425         } else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) {
4426                 xbusy = true;
4427         } else {
4428                 goto retrylookup;
4429         }
4430
4431         vm_page_assert_xbusied(m);
4432         MPASS(xbusy);
4433         if (vm_pager_has_page(object, pindex, NULL, &after)) {
4434                 after = MIN(after, VM_INITIAL_PAGEIN);
4435                 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4436                 after = MAX(after, 1);
4437                 ma[0] = m;
4438                 for (i = 1; i < after; i++) {
4439                         if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4440                                 if (ma[i]->valid || !vm_page_tryxbusy(ma[i]))
4441                                         break;
4442                         } else {
4443                                 ma[i] = vm_page_alloc(object, m->pindex + i,
4444                                     VM_ALLOC_NORMAL);
4445                                 if (ma[i] == NULL)
4446                                         break;
4447                         }
4448                 }
4449                 after = i;
4450                 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4451                 /* Pager may have replaced a page. */
4452                 m = ma[0];
4453                 if (rv != VM_PAGER_OK) {
4454                         if ((allocflags & VM_ALLOC_WIRED) != 0)
4455                                 vm_page_unwire_noq(m);
4456                         for (i = 0; i < after; i++) {
4457                                 if (!vm_page_wired(ma[i]))
4458                                         vm_page_free(ma[i]);
4459                                 else
4460                                         vm_page_xunbusy(ma[i]);
4461                         }
4462                         *mp = NULL;
4463                         return (rv);
4464                 }
4465                 for (i = 1; i < after; i++)
4466                         vm_page_readahead_finish(ma[i]);
4467                 MPASS(vm_page_all_valid(m));
4468         } else {
4469                 vm_page_zero_invalid(m, TRUE);
4470         }
4471 out:
4472         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4473                 if (xbusy)
4474                         vm_page_xunbusy(m);
4475                 else
4476                         vm_page_sunbusy(m);
4477         }
4478         if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy)
4479                 vm_page_busy_downgrade(m);
4480         *mp = m;
4481         return (VM_PAGER_OK);
4482 }
4483
4484 /*
4485  * Return the specified range of pages from the given object.  For each
4486  * page offset within the range, if a page already exists within the object
4487  * at that offset and it is busy, then wait for it to change state.  If,
4488  * instead, the page doesn't exist, then allocate it.
4489  *
4490  * The caller must always specify an allocation class.
4491  *
4492  * allocation classes:
4493  *      VM_ALLOC_NORMAL         normal process request
4494  *      VM_ALLOC_SYSTEM         system *really* needs the pages
4495  *
4496  * The caller must always specify that the pages are to be busied and/or
4497  * wired.
4498  *
4499  * optional allocation flags:
4500  *      VM_ALLOC_IGN_SBUSY      do not sleep on soft busy pages
4501  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
4502  *      VM_ALLOC_NOWAIT         do not sleep
4503  *      VM_ALLOC_SBUSY          set page to sbusy state
4504  *      VM_ALLOC_WIRED          wire the pages
4505  *      VM_ALLOC_ZERO           zero and validate any invalid pages
4506  *
4507  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4508  * may return a partial prefix of the requested range.
4509  */
4510 int
4511 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4512     vm_page_t *ma, int count)
4513 {
4514         vm_page_t m, mpred;
4515         int pflags;
4516         int i;
4517
4518         VM_OBJECT_ASSERT_WLOCKED(object);
4519         KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4520             ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4521
4522         pflags = vm_page_grab_pflags(allocflags);
4523         if (count == 0)
4524                 return (0);
4525
4526         i = 0;
4527 retrylookup:
4528         m = vm_radix_lookup_le(&object->rtree, pindex + i);
4529         if (m == NULL || m->pindex != pindex + i) {
4530                 mpred = m;
4531                 m = NULL;
4532         } else
4533                 mpred = TAILQ_PREV(m, pglist, listq);
4534         for (; i < count; i++) {
4535                 if (m != NULL) {
4536                         if (!vm_page_acquire_flags(m, allocflags)) {
4537                                 if (vm_page_busy_sleep_flags(object, m,
4538                                     "grbmaw", allocflags))
4539                                         goto retrylookup;
4540                                 break;
4541                         }
4542                 } else {
4543                         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4544                                 break;
4545                         m = vm_page_alloc_after(object, pindex + i,
4546                             pflags | VM_ALLOC_COUNT(count - i), mpred);
4547                         if (m == NULL) {
4548                                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4549                                         break;
4550                                 goto retrylookup;
4551                         }
4552                 }
4553                 if (vm_page_none_valid(m) &&
4554                     (allocflags & VM_ALLOC_ZERO) != 0) {
4555                         if ((m->flags & PG_ZERO) == 0)
4556                                 pmap_zero_page(m);
4557                         vm_page_valid(m);
4558                 }
4559                 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4560                         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4561                                 vm_page_sunbusy(m);
4562                         else
4563                                 vm_page_xunbusy(m);
4564                 }
4565                 ma[i] = mpred = m;
4566                 m = vm_page_next(m);
4567         }
4568         return (i);
4569 }
4570
4571 /*
4572  * Mapping function for valid or dirty bits in a page.
4573  *
4574  * Inputs are required to range within a page.
4575  */
4576 vm_page_bits_t
4577 vm_page_bits(int base, int size)
4578 {
4579         int first_bit;
4580         int last_bit;
4581
4582         KASSERT(
4583             base + size <= PAGE_SIZE,
4584             ("vm_page_bits: illegal base/size %d/%d", base, size)
4585         );
4586
4587         if (size == 0)          /* handle degenerate case */
4588                 return (0);
4589
4590         first_bit = base >> DEV_BSHIFT;
4591         last_bit = (base + size - 1) >> DEV_BSHIFT;
4592
4593         return (((vm_page_bits_t)2 << last_bit) -
4594             ((vm_page_bits_t)1 << first_bit));
4595 }
4596
4597 void
4598 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4599 {
4600
4601 #if PAGE_SIZE == 32768
4602         atomic_set_64((uint64_t *)bits, set);
4603 #elif PAGE_SIZE == 16384
4604         atomic_set_32((uint32_t *)bits, set);
4605 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4606         atomic_set_16((uint16_t *)bits, set);
4607 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4608         atomic_set_8((uint8_t *)bits, set);
4609 #else           /* PAGE_SIZE <= 8192 */
4610         uintptr_t addr;
4611         int shift;
4612
4613         addr = (uintptr_t)bits;
4614         /*
4615          * Use a trick to perform a 32-bit atomic on the
4616          * containing aligned word, to not depend on the existence
4617          * of atomic_{set, clear}_{8, 16}.
4618          */
4619         shift = addr & (sizeof(uint32_t) - 1);
4620 #if BYTE_ORDER == BIG_ENDIAN
4621         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4622 #else
4623         shift *= NBBY;
4624 #endif
4625         addr &= ~(sizeof(uint32_t) - 1);
4626         atomic_set_32((uint32_t *)addr, set << shift);
4627 #endif          /* PAGE_SIZE */
4628 }
4629
4630 static inline void
4631 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4632 {
4633
4634 #if PAGE_SIZE == 32768
4635         atomic_clear_64((uint64_t *)bits, clear);
4636 #elif PAGE_SIZE == 16384
4637         atomic_clear_32((uint32_t *)bits, clear);
4638 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4639         atomic_clear_16((uint16_t *)bits, clear);
4640 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4641         atomic_clear_8((uint8_t *)bits, clear);
4642 #else           /* PAGE_SIZE <= 8192 */
4643         uintptr_t addr;
4644         int shift;
4645
4646         addr = (uintptr_t)bits;
4647         /*
4648          * Use a trick to perform a 32-bit atomic on the
4649          * containing aligned word, to not depend on the existence
4650          * of atomic_{set, clear}_{8, 16}.
4651          */
4652         shift = addr & (sizeof(uint32_t) - 1);
4653 #if BYTE_ORDER == BIG_ENDIAN
4654         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4655 #else
4656         shift *= NBBY;
4657 #endif
4658         addr &= ~(sizeof(uint32_t) - 1);
4659         atomic_clear_32((uint32_t *)addr, clear << shift);
4660 #endif          /* PAGE_SIZE */
4661 }
4662
4663 static inline vm_page_bits_t
4664 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
4665 {
4666 #if PAGE_SIZE == 32768
4667         uint64_t old;
4668
4669         old = *bits;
4670         while (atomic_fcmpset_64(bits, &old, newbits) == 0);
4671         return (old);
4672 #elif PAGE_SIZE == 16384
4673         uint32_t old;
4674
4675         old = *bits;
4676         while (atomic_fcmpset_32(bits, &old, newbits) == 0);
4677         return (old);
4678 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
4679         uint16_t old;
4680
4681         old = *bits;
4682         while (atomic_fcmpset_16(bits, &old, newbits) == 0);
4683         return (old);
4684 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
4685         uint8_t old;
4686
4687         old = *bits;
4688         while (atomic_fcmpset_8(bits, &old, newbits) == 0);
4689         return (old);
4690 #else           /* PAGE_SIZE <= 4096*/
4691         uintptr_t addr;
4692         uint32_t old, new, mask;
4693         int shift;
4694
4695         addr = (uintptr_t)bits;
4696         /*
4697          * Use a trick to perform a 32-bit atomic on the
4698          * containing aligned word, to not depend on the existence
4699          * of atomic_{set, swap, clear}_{8, 16}.
4700          */
4701         shift = addr & (sizeof(uint32_t) - 1);
4702 #if BYTE_ORDER == BIG_ENDIAN
4703         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4704 #else
4705         shift *= NBBY;
4706 #endif
4707         addr &= ~(sizeof(uint32_t) - 1);
4708         mask = VM_PAGE_BITS_ALL << shift;
4709
4710         old = *bits;
4711         do {
4712                 new = old & ~mask;
4713                 new |= newbits << shift;
4714         } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
4715         return (old >> shift);
4716 #endif          /* PAGE_SIZE */
4717 }
4718
4719 /*
4720  *      vm_page_set_valid_range:
4721  *
4722  *      Sets portions of a page valid.  The arguments are expected
4723  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4724  *      of any partial chunks touched by the range.  The invalid portion of
4725  *      such chunks will be zeroed.
4726  *
4727  *      (base + size) must be less then or equal to PAGE_SIZE.
4728  */
4729 void
4730 vm_page_set_valid_range(vm_page_t m, int base, int size)
4731 {
4732         int endoff, frag;
4733         vm_page_bits_t pagebits;
4734
4735         vm_page_assert_busied(m);
4736         if (size == 0)  /* handle degenerate case */
4737                 return;
4738
4739         /*
4740          * If the base is not DEV_BSIZE aligned and the valid
4741          * bit is clear, we have to zero out a portion of the
4742          * first block.
4743          */
4744         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4745             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4746                 pmap_zero_page_area(m, frag, base - frag);
4747
4748         /*
4749          * If the ending offset is not DEV_BSIZE aligned and the
4750          * valid bit is clear, we have to zero out a portion of
4751          * the last block.
4752          */
4753         endoff = base + size;
4754         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4755             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4756                 pmap_zero_page_area(m, endoff,
4757                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4758
4759         /*
4760          * Assert that no previously invalid block that is now being validated
4761          * is already dirty.
4762          */
4763         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4764             ("vm_page_set_valid_range: page %p is dirty", m));
4765
4766         /*
4767          * Set valid bits inclusive of any overlap.
4768          */
4769         pagebits = vm_page_bits(base, size);
4770         if (vm_page_xbusied(m))
4771                 m->valid |= pagebits;
4772         else
4773                 vm_page_bits_set(m, &m->valid, pagebits);
4774 }
4775
4776 /*
4777  * Set the page dirty bits and free the invalid swap space if
4778  * present.  Returns the previous dirty bits.
4779  */
4780 vm_page_bits_t
4781 vm_page_set_dirty(vm_page_t m)
4782 {
4783         vm_page_bits_t old;
4784
4785         VM_PAGE_OBJECT_BUSY_ASSERT(m);
4786
4787         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
4788                 old = m->dirty;
4789                 m->dirty = VM_PAGE_BITS_ALL;
4790         } else
4791                 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
4792         if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
4793                 vm_pager_page_unswapped(m);
4794
4795         return (old);
4796 }
4797
4798 /*
4799  * Clear the given bits from the specified page's dirty field.
4800  */
4801 static __inline void
4802 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4803 {
4804
4805         vm_page_assert_busied(m);
4806
4807         /*
4808          * If the page is xbusied and not write mapped we are the
4809          * only thread that can modify dirty bits.  Otherwise, The pmap
4810          * layer can call vm_page_dirty() without holding a distinguished
4811          * lock.  The combination of page busy and atomic operations
4812          * suffice to guarantee consistency of the page dirty field.
4813          */
4814         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4815                 m->dirty &= ~pagebits;
4816         else
4817                 vm_page_bits_clear(m, &m->dirty, pagebits);
4818 }
4819
4820 /*
4821  *      vm_page_set_validclean:
4822  *
4823  *      Sets portions of a page valid and clean.  The arguments are expected
4824  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4825  *      of any partial chunks touched by the range.  The invalid portion of
4826  *      such chunks will be zero'd.
4827  *
4828  *      (base + size) must be less then or equal to PAGE_SIZE.
4829  */
4830 void
4831 vm_page_set_validclean(vm_page_t m, int base, int size)
4832 {
4833         vm_page_bits_t oldvalid, pagebits;
4834         int endoff, frag;
4835
4836         vm_page_assert_busied(m);
4837         if (size == 0)  /* handle degenerate case */
4838                 return;
4839
4840         /*
4841          * If the base is not DEV_BSIZE aligned and the valid
4842          * bit is clear, we have to zero out a portion of the
4843          * first block.
4844          */
4845         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4846             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4847                 pmap_zero_page_area(m, frag, base - frag);
4848
4849         /*
4850          * If the ending offset is not DEV_BSIZE aligned and the
4851          * valid bit is clear, we have to zero out a portion of
4852          * the last block.
4853          */
4854         endoff = base + size;
4855         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4856             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4857                 pmap_zero_page_area(m, endoff,
4858                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4859
4860         /*
4861          * Set valid, clear dirty bits.  If validating the entire
4862          * page we can safely clear the pmap modify bit.  We also
4863          * use this opportunity to clear the PGA_NOSYNC flag.  If a process
4864          * takes a write fault on a MAP_NOSYNC memory area the flag will
4865          * be set again.
4866          *
4867          * We set valid bits inclusive of any overlap, but we can only
4868          * clear dirty bits for DEV_BSIZE chunks that are fully within
4869          * the range.
4870          */
4871         oldvalid = m->valid;
4872         pagebits = vm_page_bits(base, size);
4873         if (vm_page_xbusied(m))
4874                 m->valid |= pagebits;
4875         else
4876                 vm_page_bits_set(m, &m->valid, pagebits);
4877 #if 0   /* NOT YET */
4878         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4879                 frag = DEV_BSIZE - frag;
4880                 base += frag;
4881                 size -= frag;
4882                 if (size < 0)
4883                         size = 0;
4884         }
4885         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4886 #endif
4887         if (base == 0 && size == PAGE_SIZE) {
4888                 /*
4889                  * The page can only be modified within the pmap if it is
4890                  * mapped, and it can only be mapped if it was previously
4891                  * fully valid.
4892                  */
4893                 if (oldvalid == VM_PAGE_BITS_ALL)
4894                         /*
4895                          * Perform the pmap_clear_modify() first.  Otherwise,
4896                          * a concurrent pmap operation, such as
4897                          * pmap_protect(), could clear a modification in the
4898                          * pmap and set the dirty field on the page before
4899                          * pmap_clear_modify() had begun and after the dirty
4900                          * field was cleared here.
4901                          */
4902                         pmap_clear_modify(m);
4903                 m->dirty = 0;
4904                 vm_page_aflag_clear(m, PGA_NOSYNC);
4905         } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
4906                 m->dirty &= ~pagebits;
4907         else
4908                 vm_page_clear_dirty_mask(m, pagebits);
4909 }
4910
4911 void
4912 vm_page_clear_dirty(vm_page_t m, int base, int size)
4913 {
4914
4915         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4916 }
4917
4918 /*
4919  *      vm_page_set_invalid:
4920  *
4921  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
4922  *      valid and dirty bits for the effected areas are cleared.
4923  */
4924 void
4925 vm_page_set_invalid(vm_page_t m, int base, int size)
4926 {
4927         vm_page_bits_t bits;
4928         vm_object_t object;
4929
4930         /*
4931          * The object lock is required so that pages can't be mapped
4932          * read-only while we're in the process of invalidating them.
4933          */
4934         object = m->object;
4935         VM_OBJECT_ASSERT_WLOCKED(object);
4936         vm_page_assert_busied(m);
4937
4938         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4939             size >= object->un_pager.vnp.vnp_size)
4940                 bits = VM_PAGE_BITS_ALL;
4941         else
4942                 bits = vm_page_bits(base, size);
4943         if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
4944                 pmap_remove_all(m);
4945         KASSERT((bits == 0 && vm_page_all_valid(m)) ||
4946             !pmap_page_is_mapped(m),
4947             ("vm_page_set_invalid: page %p is mapped", m));
4948         if (vm_page_xbusied(m)) {
4949                 m->valid &= ~bits;
4950                 m->dirty &= ~bits;
4951         } else {
4952                 vm_page_bits_clear(m, &m->valid, bits);
4953                 vm_page_bits_clear(m, &m->dirty, bits);
4954         }
4955 }
4956
4957 /*
4958  *      vm_page_invalid:
4959  *
4960  *      Invalidates the entire page.  The page must be busy, unmapped, and
4961  *      the enclosing object must be locked.  The object locks protects
4962  *      against concurrent read-only pmap enter which is done without
4963  *      busy.
4964  */
4965 void
4966 vm_page_invalid(vm_page_t m)
4967 {
4968
4969         vm_page_assert_busied(m);
4970         VM_OBJECT_ASSERT_LOCKED(m->object);
4971         MPASS(!pmap_page_is_mapped(m));
4972
4973         if (vm_page_xbusied(m))
4974                 m->valid = 0;
4975         else
4976                 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
4977 }
4978
4979 /*
4980  * vm_page_zero_invalid()
4981  *
4982  *      The kernel assumes that the invalid portions of a page contain
4983  *      garbage, but such pages can be mapped into memory by user code.
4984  *      When this occurs, we must zero out the non-valid portions of the
4985  *      page so user code sees what it expects.
4986  *
4987  *      Pages are most often semi-valid when the end of a file is mapped
4988  *      into memory and the file's size is not page aligned.
4989  */
4990 void
4991 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4992 {
4993         int b;
4994         int i;
4995
4996         /*
4997          * Scan the valid bits looking for invalid sections that
4998          * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4999          * valid bit may be set ) have already been zeroed by
5000          * vm_page_set_validclean().
5001          */
5002         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5003                 if (i == (PAGE_SIZE / DEV_BSIZE) ||
5004                     (m->valid & ((vm_page_bits_t)1 << i))) {
5005                         if (i > b) {
5006                                 pmap_zero_page_area(m,
5007                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5008                         }
5009                         b = i + 1;
5010                 }
5011         }
5012
5013         /*
5014          * setvalid is TRUE when we can safely set the zero'd areas
5015          * as being valid.  We can do this if there are no cache consistancy
5016          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5017          */
5018         if (setvalid)
5019                 vm_page_valid(m);
5020 }
5021
5022 /*
5023  *      vm_page_is_valid:
5024  *
5025  *      Is (partial) page valid?  Note that the case where size == 0
5026  *      will return FALSE in the degenerate case where the page is
5027  *      entirely invalid, and TRUE otherwise.
5028  *
5029  *      Some callers envoke this routine without the busy lock held and
5030  *      handle races via higher level locks.  Typical callers should
5031  *      hold a busy lock to prevent invalidation.
5032  */
5033 int
5034 vm_page_is_valid(vm_page_t m, int base, int size)
5035 {
5036         vm_page_bits_t bits;
5037
5038         bits = vm_page_bits(base, size);
5039         return (m->valid != 0 && (m->valid & bits) == bits);
5040 }
5041
5042 /*
5043  * Returns true if all of the specified predicates are true for the entire
5044  * (super)page and false otherwise.
5045  */
5046 bool
5047 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5048 {
5049         vm_object_t object;
5050         int i, npages;
5051
5052         object = m->object;
5053         if (skip_m != NULL && skip_m->object != object)
5054                 return (false);
5055         VM_OBJECT_ASSERT_LOCKED(object);
5056         npages = atop(pagesizes[m->psind]);
5057
5058         /*
5059          * The physically contiguous pages that make up a superpage, i.e., a
5060          * page with a page size index ("psind") greater than zero, will
5061          * occupy adjacent entries in vm_page_array[].
5062          */
5063         for (i = 0; i < npages; i++) {
5064                 /* Always test object consistency, including "skip_m". */
5065                 if (m[i].object != object)
5066                         return (false);
5067                 if (&m[i] == skip_m)
5068                         continue;
5069                 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5070                         return (false);
5071                 if ((flags & PS_ALL_DIRTY) != 0) {
5072                         /*
5073                          * Calling vm_page_test_dirty() or pmap_is_modified()
5074                          * might stop this case from spuriously returning
5075                          * "false".  However, that would require a write lock
5076                          * on the object containing "m[i]".
5077                          */
5078                         if (m[i].dirty != VM_PAGE_BITS_ALL)
5079                                 return (false);
5080                 }
5081                 if ((flags & PS_ALL_VALID) != 0 &&
5082                     m[i].valid != VM_PAGE_BITS_ALL)
5083                         return (false);
5084         }
5085         return (true);
5086 }
5087
5088 /*
5089  * Set the page's dirty bits if the page is modified.
5090  */
5091 void
5092 vm_page_test_dirty(vm_page_t m)
5093 {
5094
5095         vm_page_assert_busied(m);
5096         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5097                 vm_page_dirty(m);
5098 }
5099
5100 void
5101 vm_page_valid(vm_page_t m)
5102 {
5103
5104         vm_page_assert_busied(m);
5105         if (vm_page_xbusied(m))
5106                 m->valid = VM_PAGE_BITS_ALL;
5107         else
5108                 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5109 }
5110
5111 void
5112 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5113 {
5114
5115         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5116 }
5117
5118 void
5119 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5120 {
5121
5122         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5123 }
5124
5125 int
5126 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5127 {
5128
5129         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5130 }
5131
5132 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5133 void
5134 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5135 {
5136
5137         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5138 }
5139
5140 void
5141 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5142 {
5143
5144         mtx_assert_(vm_page_lockptr(m), a, file, line);
5145 }
5146 #endif
5147
5148 #ifdef INVARIANTS
5149 void
5150 vm_page_object_busy_assert(vm_page_t m)
5151 {
5152
5153         /*
5154          * Certain of the page's fields may only be modified by the
5155          * holder of a page or object busy.
5156          */
5157         if (m->object != NULL && !vm_page_busied(m))
5158                 VM_OBJECT_ASSERT_BUSY(m->object);
5159 }
5160
5161 void
5162 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5163 {
5164
5165         if ((bits & PGA_WRITEABLE) == 0)
5166                 return;
5167
5168         /*
5169          * The PGA_WRITEABLE flag can only be set if the page is
5170          * managed, is exclusively busied or the object is locked.
5171          * Currently, this flag is only set by pmap_enter().
5172          */
5173         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5174             ("PGA_WRITEABLE on unmanaged page"));
5175         if (!vm_page_xbusied(m))
5176                 VM_OBJECT_ASSERT_BUSY(m->object);
5177 }
5178 #endif
5179
5180 #include "opt_ddb.h"
5181 #ifdef DDB
5182 #include <sys/kernel.h>
5183
5184 #include <ddb/ddb.h>
5185
5186 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5187 {
5188
5189         db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5190         db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5191         db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5192         db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5193         db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5194         db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5195         db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5196         db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5197         db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5198 }
5199
5200 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5201 {
5202         int dom;
5203
5204         db_printf("pq_free %d\n", vm_free_count());
5205         for (dom = 0; dom < vm_ndomains; dom++) {
5206                 db_printf(
5207     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5208                     dom,
5209                     vm_dom[dom].vmd_page_count,
5210                     vm_dom[dom].vmd_free_count,
5211                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5212                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5213                     vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5214                     vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5215         }
5216 }
5217
5218 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5219 {
5220         vm_page_t m;
5221         boolean_t phys, virt;
5222
5223         if (!have_addr) {
5224                 db_printf("show pginfo addr\n");
5225                 return;
5226         }
5227
5228         phys = strchr(modif, 'p') != NULL;
5229         virt = strchr(modif, 'v') != NULL;
5230         if (virt)
5231                 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5232         else if (phys)
5233                 m = PHYS_TO_VM_PAGE(addr);
5234         else
5235                 m = (vm_page_t)addr;
5236         db_printf(
5237     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
5238     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5239             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5240             m->a.queue, m->ref_count, m->a.flags, m->oflags,
5241             m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5242 }
5243 #endif /* DDB */