]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_page.c
MFV r353551: 10452 ZoL: merge in large dnode feature fixes
[FreeBSD/FreeBSD.git] / sys / vm / vm_page.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
36  */
37
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64
65 /*
66  *      Resident memory management module.
67  */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_vm.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113
114 #include <machine/md_var.h>
115
116 extern int      uma_startup_count(int);
117 extern void     uma_startup(void *, int);
118 extern int      vmem_startup_count(void);
119
120 struct vm_domain vm_dom[MAXMEMDOM];
121
122 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
123
124 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
125
126 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
127 /* The following fields are protected by the domainset lock. */
128 domainset_t __exclusive_cache_line vm_min_domains;
129 domainset_t __exclusive_cache_line vm_severe_domains;
130 static int vm_min_waiters;
131 static int vm_severe_waiters;
132 static int vm_pageproc_waiters;
133
134 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0,
135     "VM page statistics");
136
137 static counter_u64_t queue_ops = EARLY_COUNTER;
138 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
139     CTLFLAG_RD, &queue_ops,
140     "Number of batched queue operations");
141
142 static counter_u64_t queue_nops = EARLY_COUNTER;
143 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
144     CTLFLAG_RD, &queue_nops,
145     "Number of batched queue operations with no effects");
146
147 static void
148 counter_startup(void)
149 {
150
151         queue_ops = counter_u64_alloc(M_WAITOK);
152         queue_nops = counter_u64_alloc(M_WAITOK);
153 }
154 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
155
156 /*
157  * bogus page -- for I/O to/from partially complete buffers,
158  * or for paging into sparsely invalid regions.
159  */
160 vm_page_t bogus_page;
161
162 vm_page_t vm_page_array;
163 long vm_page_array_size;
164 long first_page;
165
166 static int boot_pages;
167 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
168     &boot_pages, 0,
169     "number of pages allocated for bootstrapping the VM system");
170
171 static int pa_tryrelock_restart;
172 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
173     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
174
175 static TAILQ_HEAD(, vm_page) blacklist_head;
176 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
177 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
178     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
179
180 static uma_zone_t fakepg_zone;
181
182 static void vm_page_alloc_check(vm_page_t m);
183 static void _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
184     const char *wmesg, bool nonshared, bool locked);
185 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
186 static void vm_page_dequeue_complete(vm_page_t m);
187 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
188 static void vm_page_init(void *dummy);
189 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
190     vm_pindex_t pindex, vm_page_t mpred);
191 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
192     vm_page_t mpred);
193 static void vm_page_mvqueue(vm_page_t m, uint8_t queue);
194 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
195     vm_page_t m_run, vm_paddr_t high);
196 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
197     int req);
198 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
199     int flags);
200 static void vm_page_zone_release(void *arg, void **store, int cnt);
201
202 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
203
204 static void
205 vm_page_init(void *dummy)
206 {
207
208         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
209             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
210         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
211             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
212 }
213
214 /*
215  * The cache page zone is initialized later since we need to be able to allocate
216  * pages before UMA is fully initialized.
217  */
218 static void
219 vm_page_init_cache_zones(void *dummy __unused)
220 {
221         struct vm_domain *vmd;
222         struct vm_pgcache *pgcache;
223         int domain, pool;
224
225         for (domain = 0; domain < vm_ndomains; domain++) {
226                 vmd = VM_DOMAIN(domain);
227
228                 /*
229                  * Don't allow the page caches to take up more than .25% of
230                  * memory.
231                  */
232                 if (vmd->vmd_page_count / 400 < 256 * mp_ncpus * VM_NFREEPOOL)
233                         continue;
234                 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
235                         pgcache = &vmd->vmd_pgcache[pool];
236                         pgcache->domain = domain;
237                         pgcache->pool = pool;
238                         pgcache->zone = uma_zcache_create("vm pgcache",
239                             sizeof(struct vm_page), NULL, NULL, NULL, NULL,
240                             vm_page_zone_import, vm_page_zone_release, pgcache,
241                             UMA_ZONE_MAXBUCKET | UMA_ZONE_VM);
242                         (void)uma_zone_set_maxcache(pgcache->zone, 0);
243                 }
244         }
245 }
246 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
247
248 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
249 #if PAGE_SIZE == 32768
250 #ifdef CTASSERT
251 CTASSERT(sizeof(u_long) >= 8);
252 #endif
253 #endif
254
255 /*
256  * Try to acquire a physical address lock while a pmap is locked.  If we
257  * fail to trylock we unlock and lock the pmap directly and cache the
258  * locked pa in *locked.  The caller should then restart their loop in case
259  * the virtual to physical mapping has changed.
260  */
261 int
262 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
263 {
264         vm_paddr_t lockpa;
265
266         lockpa = *locked;
267         *locked = pa;
268         if (lockpa) {
269                 PA_LOCK_ASSERT(lockpa, MA_OWNED);
270                 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
271                         return (0);
272                 PA_UNLOCK(lockpa);
273         }
274         if (PA_TRYLOCK(pa))
275                 return (0);
276         PMAP_UNLOCK(pmap);
277         atomic_add_int(&pa_tryrelock_restart, 1);
278         PA_LOCK(pa);
279         PMAP_LOCK(pmap);
280         return (EAGAIN);
281 }
282
283 /*
284  *      vm_set_page_size:
285  *
286  *      Sets the page size, perhaps based upon the memory
287  *      size.  Must be called before any use of page-size
288  *      dependent functions.
289  */
290 void
291 vm_set_page_size(void)
292 {
293         if (vm_cnt.v_page_size == 0)
294                 vm_cnt.v_page_size = PAGE_SIZE;
295         if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
296                 panic("vm_set_page_size: page size not a power of two");
297 }
298
299 /*
300  *      vm_page_blacklist_next:
301  *
302  *      Find the next entry in the provided string of blacklist
303  *      addresses.  Entries are separated by space, comma, or newline.
304  *      If an invalid integer is encountered then the rest of the
305  *      string is skipped.  Updates the list pointer to the next
306  *      character, or NULL if the string is exhausted or invalid.
307  */
308 static vm_paddr_t
309 vm_page_blacklist_next(char **list, char *end)
310 {
311         vm_paddr_t bad;
312         char *cp, *pos;
313
314         if (list == NULL || *list == NULL)
315                 return (0);
316         if (**list =='\0') {
317                 *list = NULL;
318                 return (0);
319         }
320
321         /*
322          * If there's no end pointer then the buffer is coming from
323          * the kenv and we know it's null-terminated.
324          */
325         if (end == NULL)
326                 end = *list + strlen(*list);
327
328         /* Ensure that strtoq() won't walk off the end */
329         if (*end != '\0') {
330                 if (*end == '\n' || *end == ' ' || *end  == ',')
331                         *end = '\0';
332                 else {
333                         printf("Blacklist not terminated, skipping\n");
334                         *list = NULL;
335                         return (0);
336                 }
337         }
338
339         for (pos = *list; *pos != '\0'; pos = cp) {
340                 bad = strtoq(pos, &cp, 0);
341                 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
342                         if (bad == 0) {
343                                 if (++cp < end)
344                                         continue;
345                                 else
346                                         break;
347                         }
348                 } else
349                         break;
350                 if (*cp == '\0' || ++cp >= end)
351                         *list = NULL;
352                 else
353                         *list = cp;
354                 return (trunc_page(bad));
355         }
356         printf("Garbage in RAM blacklist, skipping\n");
357         *list = NULL;
358         return (0);
359 }
360
361 bool
362 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
363 {
364         struct vm_domain *vmd;
365         vm_page_t m;
366         int ret;
367
368         m = vm_phys_paddr_to_vm_page(pa);
369         if (m == NULL)
370                 return (true); /* page does not exist, no failure */
371
372         vmd = vm_pagequeue_domain(m);
373         vm_domain_free_lock(vmd);
374         ret = vm_phys_unfree_page(m);
375         vm_domain_free_unlock(vmd);
376         if (ret != 0) {
377                 vm_domain_freecnt_inc(vmd, -1);
378                 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
379                 if (verbose)
380                         printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
381         }
382         return (ret);
383 }
384
385 /*
386  *      vm_page_blacklist_check:
387  *
388  *      Iterate through the provided string of blacklist addresses, pulling
389  *      each entry out of the physical allocator free list and putting it
390  *      onto a list for reporting via the vm.page_blacklist sysctl.
391  */
392 static void
393 vm_page_blacklist_check(char *list, char *end)
394 {
395         vm_paddr_t pa;
396         char *next;
397
398         next = list;
399         while (next != NULL) {
400                 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
401                         continue;
402                 vm_page_blacklist_add(pa, bootverbose);
403         }
404 }
405
406 /*
407  *      vm_page_blacklist_load:
408  *
409  *      Search for a special module named "ram_blacklist".  It'll be a
410  *      plain text file provided by the user via the loader directive
411  *      of the same name.
412  */
413 static void
414 vm_page_blacklist_load(char **list, char **end)
415 {
416         void *mod;
417         u_char *ptr;
418         u_int len;
419
420         mod = NULL;
421         ptr = NULL;
422
423         mod = preload_search_by_type("ram_blacklist");
424         if (mod != NULL) {
425                 ptr = preload_fetch_addr(mod);
426                 len = preload_fetch_size(mod);
427         }
428         *list = ptr;
429         if (ptr != NULL)
430                 *end = ptr + len;
431         else
432                 *end = NULL;
433         return;
434 }
435
436 static int
437 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
438 {
439         vm_page_t m;
440         struct sbuf sbuf;
441         int error, first;
442
443         first = 1;
444         error = sysctl_wire_old_buffer(req, 0);
445         if (error != 0)
446                 return (error);
447         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
448         TAILQ_FOREACH(m, &blacklist_head, listq) {
449                 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
450                     (uintmax_t)m->phys_addr);
451                 first = 0;
452         }
453         error = sbuf_finish(&sbuf);
454         sbuf_delete(&sbuf);
455         return (error);
456 }
457
458 /*
459  * Initialize a dummy page for use in scans of the specified paging queue.
460  * In principle, this function only needs to set the flag PG_MARKER.
461  * Nonetheless, it write busies the page as a safety precaution.
462  */
463 static void
464 vm_page_init_marker(vm_page_t marker, int queue, uint8_t aflags)
465 {
466
467         bzero(marker, sizeof(*marker));
468         marker->flags = PG_MARKER;
469         marker->aflags = aflags;
470         marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
471         marker->queue = queue;
472 }
473
474 static void
475 vm_page_domain_init(int domain)
476 {
477         struct vm_domain *vmd;
478         struct vm_pagequeue *pq;
479         int i;
480
481         vmd = VM_DOMAIN(domain);
482         bzero(vmd, sizeof(*vmd));
483         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
484             "vm inactive pagequeue";
485         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
486             "vm active pagequeue";
487         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
488             "vm laundry pagequeue";
489         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
490             "vm unswappable pagequeue";
491         vmd->vmd_domain = domain;
492         vmd->vmd_page_count = 0;
493         vmd->vmd_free_count = 0;
494         vmd->vmd_segs = 0;
495         vmd->vmd_oom = FALSE;
496         for (i = 0; i < PQ_COUNT; i++) {
497                 pq = &vmd->vmd_pagequeues[i];
498                 TAILQ_INIT(&pq->pq_pl);
499                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
500                     MTX_DEF | MTX_DUPOK);
501                 pq->pq_pdpages = 0;
502                 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
503         }
504         mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
505         mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
506         snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
507
508         /*
509          * inacthead is used to provide FIFO ordering for LRU-bypassing
510          * insertions.
511          */
512         vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
513         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
514             &vmd->vmd_inacthead, plinks.q);
515
516         /*
517          * The clock pages are used to implement active queue scanning without
518          * requeues.  Scans start at clock[0], which is advanced after the scan
519          * ends.  When the two clock hands meet, they are reset and scanning
520          * resumes from the head of the queue.
521          */
522         vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
523         vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
524         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
525             &vmd->vmd_clock[0], plinks.q);
526         TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
527             &vmd->vmd_clock[1], plinks.q);
528 }
529
530 /*
531  * Initialize a physical page in preparation for adding it to the free
532  * lists.
533  */
534 static void
535 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
536 {
537
538         m->object = NULL;
539         m->ref_count = 0;
540         m->busy_lock = VPB_UNBUSIED;
541         m->flags = m->aflags = 0;
542         m->phys_addr = pa;
543         m->queue = PQ_NONE;
544         m->psind = 0;
545         m->segind = segind;
546         m->order = VM_NFREEORDER;
547         m->pool = VM_FREEPOOL_DEFAULT;
548         m->valid = m->dirty = 0;
549         pmap_page_init(m);
550 }
551
552 #ifndef PMAP_HAS_PAGE_ARRAY
553 static vm_paddr_t
554 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
555 {
556         vm_paddr_t new_end;
557
558         /*
559          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
560          * However, because this page is allocated from KVM, out-of-bounds
561          * accesses using the direct map will not be trapped.
562          */
563         *vaddr += PAGE_SIZE;
564
565         /*
566          * Allocate physical memory for the page structures, and map it.
567          */
568         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
569         vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
570             VM_PROT_READ | VM_PROT_WRITE);
571         vm_page_array_size = page_range;
572
573         return (new_end);
574 }
575 #endif
576
577 /*
578  *      vm_page_startup:
579  *
580  *      Initializes the resident memory module.  Allocates physical memory for
581  *      bootstrapping UMA and some data structures that are used to manage
582  *      physical pages.  Initializes these structures, and populates the free
583  *      page queues.
584  */
585 vm_offset_t
586 vm_page_startup(vm_offset_t vaddr)
587 {
588         struct vm_phys_seg *seg;
589         vm_page_t m;
590         char *list, *listend;
591         vm_offset_t mapped;
592         vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
593         vm_paddr_t last_pa, pa;
594         u_long pagecount;
595         int biggestone, i, segind;
596 #ifdef WITNESS
597         int witness_size;
598 #endif
599 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
600         long ii;
601 #endif
602
603         vaddr = round_page(vaddr);
604
605         vm_phys_early_startup();
606         biggestone = vm_phys_avail_largest();
607         end = phys_avail[biggestone+1];
608
609         /*
610          * Initialize the page and queue locks.
611          */
612         mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
613         for (i = 0; i < PA_LOCK_COUNT; i++)
614                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
615         for (i = 0; i < vm_ndomains; i++)
616                 vm_page_domain_init(i);
617
618         /*
619          * Allocate memory for use when boot strapping the kernel memory
620          * allocator.  Tell UMA how many zones we are going to create
621          * before going fully functional.  UMA will add its zones.
622          *
623          * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP,
624          * KMAP ENTRY, MAP ENTRY, VMSPACE.
625          */
626         boot_pages = uma_startup_count(8);
627
628 #ifndef UMA_MD_SMALL_ALLOC
629         /* vmem_startup() calls uma_prealloc(). */
630         boot_pages += vmem_startup_count();
631         /* vm_map_startup() calls uma_prealloc(). */
632         boot_pages += howmany(MAX_KMAP,
633             UMA_SLAB_SPACE / sizeof(struct vm_map));
634
635         /*
636          * Before going fully functional kmem_init() does allocation
637          * from "KMAP ENTRY" and vmem_create() does allocation from "vmem".
638          */
639         boot_pages += 2;
640 #endif
641         /*
642          * CTFLAG_RDTUN doesn't work during the early boot process, so we must
643          * manually fetch the value.
644          */
645         TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
646         new_end = end - (boot_pages * UMA_SLAB_SIZE);
647         new_end = trunc_page(new_end);
648         mapped = pmap_map(&vaddr, new_end, end,
649             VM_PROT_READ | VM_PROT_WRITE);
650         bzero((void *)mapped, end - new_end);
651         uma_startup((void *)mapped, boot_pages);
652
653 #ifdef WITNESS
654         witness_size = round_page(witness_startup_count());
655         new_end -= witness_size;
656         mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
657             VM_PROT_READ | VM_PROT_WRITE);
658         bzero((void *)mapped, witness_size);
659         witness_startup((void *)mapped);
660 #endif
661
662 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
663     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
664     defined(__powerpc64__)
665         /*
666          * Allocate a bitmap to indicate that a random physical page
667          * needs to be included in a minidump.
668          *
669          * The amd64 port needs this to indicate which direct map pages
670          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
671          *
672          * However, i386 still needs this workspace internally within the
673          * minidump code.  In theory, they are not needed on i386, but are
674          * included should the sf_buf code decide to use them.
675          */
676         last_pa = 0;
677         for (i = 0; dump_avail[i + 1] != 0; i += 2)
678                 if (dump_avail[i + 1] > last_pa)
679                         last_pa = dump_avail[i + 1];
680         page_range = last_pa / PAGE_SIZE;
681         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
682         new_end -= vm_page_dump_size;
683         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
684             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
685         bzero((void *)vm_page_dump, vm_page_dump_size);
686 #else
687         (void)last_pa;
688 #endif
689 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
690     defined(__riscv) || defined(__powerpc64__)
691         /*
692          * Include the UMA bootstrap pages, witness pages and vm_page_dump
693          * in a crash dump.  When pmap_map() uses the direct map, they are
694          * not automatically included.
695          */
696         for (pa = new_end; pa < end; pa += PAGE_SIZE)
697                 dump_add_page(pa);
698 #endif
699         phys_avail[biggestone + 1] = new_end;
700 #ifdef __amd64__
701         /*
702          * Request that the physical pages underlying the message buffer be
703          * included in a crash dump.  Since the message buffer is accessed
704          * through the direct map, they are not automatically included.
705          */
706         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
707         last_pa = pa + round_page(msgbufsize);
708         while (pa < last_pa) {
709                 dump_add_page(pa);
710                 pa += PAGE_SIZE;
711         }
712 #endif
713         /*
714          * Compute the number of pages of memory that will be available for
715          * use, taking into account the overhead of a page structure per page.
716          * In other words, solve
717          *      "available physical memory" - round_page(page_range *
718          *          sizeof(struct vm_page)) = page_range * PAGE_SIZE 
719          * for page_range.  
720          */
721         low_avail = phys_avail[0];
722         high_avail = phys_avail[1];
723         for (i = 0; i < vm_phys_nsegs; i++) {
724                 if (vm_phys_segs[i].start < low_avail)
725                         low_avail = vm_phys_segs[i].start;
726                 if (vm_phys_segs[i].end > high_avail)
727                         high_avail = vm_phys_segs[i].end;
728         }
729         /* Skip the first chunk.  It is already accounted for. */
730         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
731                 if (phys_avail[i] < low_avail)
732                         low_avail = phys_avail[i];
733                 if (phys_avail[i + 1] > high_avail)
734                         high_avail = phys_avail[i + 1];
735         }
736         first_page = low_avail / PAGE_SIZE;
737 #ifdef VM_PHYSSEG_SPARSE
738         size = 0;
739         for (i = 0; i < vm_phys_nsegs; i++)
740                 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
741         for (i = 0; phys_avail[i + 1] != 0; i += 2)
742                 size += phys_avail[i + 1] - phys_avail[i];
743 #elif defined(VM_PHYSSEG_DENSE)
744         size = high_avail - low_avail;
745 #else
746 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
747 #endif
748
749 #ifdef PMAP_HAS_PAGE_ARRAY
750         pmap_page_array_startup(size / PAGE_SIZE);
751         biggestone = vm_phys_avail_largest();
752         end = new_end = phys_avail[biggestone + 1];
753 #else
754 #ifdef VM_PHYSSEG_DENSE
755         /*
756          * In the VM_PHYSSEG_DENSE case, the number of pages can account for
757          * the overhead of a page structure per page only if vm_page_array is
758          * allocated from the last physical memory chunk.  Otherwise, we must
759          * allocate page structures representing the physical memory
760          * underlying vm_page_array, even though they will not be used.
761          */
762         if (new_end != high_avail)
763                 page_range = size / PAGE_SIZE;
764         else
765 #endif
766         {
767                 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
768
769                 /*
770                  * If the partial bytes remaining are large enough for
771                  * a page (PAGE_SIZE) without a corresponding
772                  * 'struct vm_page', then new_end will contain an
773                  * extra page after subtracting the length of the VM
774                  * page array.  Compensate by subtracting an extra
775                  * page from new_end.
776                  */
777                 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
778                         if (new_end == high_avail)
779                                 high_avail -= PAGE_SIZE;
780                         new_end -= PAGE_SIZE;
781                 }
782         }
783         end = new_end;
784         new_end = vm_page_array_alloc(&vaddr, end, page_range);
785 #endif
786
787 #if VM_NRESERVLEVEL > 0
788         /*
789          * Allocate physical memory for the reservation management system's
790          * data structures, and map it.
791          */
792         new_end = vm_reserv_startup(&vaddr, new_end);
793 #endif
794 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
795     defined(__riscv) || defined(__powerpc64__)
796         /*
797          * Include vm_page_array and vm_reserv_array in a crash dump.
798          */
799         for (pa = new_end; pa < end; pa += PAGE_SIZE)
800                 dump_add_page(pa);
801 #endif
802         phys_avail[biggestone + 1] = new_end;
803
804         /*
805          * Add physical memory segments corresponding to the available
806          * physical pages.
807          */
808         for (i = 0; phys_avail[i + 1] != 0; i += 2)
809                 if (vm_phys_avail_size(i) != 0)
810                         vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
811
812         /*
813          * Initialize the physical memory allocator.
814          */
815         vm_phys_init();
816
817         /*
818          * Initialize the page structures and add every available page to the
819          * physical memory allocator's free lists.
820          */
821 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
822         for (ii = 0; ii < vm_page_array_size; ii++) {
823                 m = &vm_page_array[ii];
824                 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
825                 m->flags = PG_FICTITIOUS;
826         }
827 #endif
828         vm_cnt.v_page_count = 0;
829         for (segind = 0; segind < vm_phys_nsegs; segind++) {
830                 seg = &vm_phys_segs[segind];
831                 for (m = seg->first_page, pa = seg->start; pa < seg->end;
832                     m++, pa += PAGE_SIZE)
833                         vm_page_init_page(m, pa, segind);
834
835                 /*
836                  * Add the segment to the free lists only if it is covered by
837                  * one of the ranges in phys_avail.  Because we've added the
838                  * ranges to the vm_phys_segs array, we can assume that each
839                  * segment is either entirely contained in one of the ranges,
840                  * or doesn't overlap any of them.
841                  */
842                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
843                         struct vm_domain *vmd;
844
845                         if (seg->start < phys_avail[i] ||
846                             seg->end > phys_avail[i + 1])
847                                 continue;
848
849                         m = seg->first_page;
850                         pagecount = (u_long)atop(seg->end - seg->start);
851
852                         vmd = VM_DOMAIN(seg->domain);
853                         vm_domain_free_lock(vmd);
854                         vm_phys_enqueue_contig(m, pagecount);
855                         vm_domain_free_unlock(vmd);
856                         vm_domain_freecnt_inc(vmd, pagecount);
857                         vm_cnt.v_page_count += (u_int)pagecount;
858
859                         vmd = VM_DOMAIN(seg->domain);
860                         vmd->vmd_page_count += (u_int)pagecount;
861                         vmd->vmd_segs |= 1UL << m->segind;
862                         break;
863                 }
864         }
865
866         /*
867          * Remove blacklisted pages from the physical memory allocator.
868          */
869         TAILQ_INIT(&blacklist_head);
870         vm_page_blacklist_load(&list, &listend);
871         vm_page_blacklist_check(list, listend);
872
873         list = kern_getenv("vm.blacklist");
874         vm_page_blacklist_check(list, NULL);
875
876         freeenv(list);
877 #if VM_NRESERVLEVEL > 0
878         /*
879          * Initialize the reservation management system.
880          */
881         vm_reserv_init();
882 #endif
883
884         return (vaddr);
885 }
886
887 void
888 vm_page_reference(vm_page_t m)
889 {
890
891         vm_page_aflag_set(m, PGA_REFERENCED);
892 }
893
894 /*
895  *      vm_page_busy_acquire:
896  *
897  *      Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
898  *      and drop the object lock if necessary.
899  */
900 int
901 vm_page_busy_acquire(vm_page_t m, int allocflags)
902 {
903         vm_object_t obj;
904         bool locked;
905
906         /*
907          * The page-specific object must be cached because page
908          * identity can change during the sleep, causing the
909          * re-lock of a different object.
910          * It is assumed that a reference to the object is already
911          * held by the callers.
912          */
913         obj = m->object;
914         for (;;) {
915                 if ((allocflags & VM_ALLOC_SBUSY) == 0) {
916                         if (vm_page_tryxbusy(m))
917                                 return (TRUE);
918                 } else {
919                         if (vm_page_trysbusy(m))
920                                 return (TRUE);
921                 }
922                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
923                         return (FALSE);
924                 if (obj != NULL)
925                         locked = VM_OBJECT_WOWNED(obj);
926                 else
927                         locked = FALSE;
928                 MPASS(locked || vm_page_wired(m));
929                 _vm_page_busy_sleep(obj, m, "vmpba",
930                     (allocflags & VM_ALLOC_SBUSY) != 0, locked);
931                 if (locked)
932                         VM_OBJECT_WLOCK(obj);
933                 MPASS(m->object == obj || m->object == NULL);
934                 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
935                         return (FALSE);
936         }
937 }
938
939 /*
940  *      vm_page_busy_downgrade:
941  *
942  *      Downgrade an exclusive busy page into a single shared busy page.
943  */
944 void
945 vm_page_busy_downgrade(vm_page_t m)
946 {
947         u_int x;
948
949         vm_page_assert_xbusied(m);
950
951         x = m->busy_lock;
952         for (;;) {
953                 if (atomic_fcmpset_rel_int(&m->busy_lock,
954                     &x, VPB_SHARERS_WORD(1)))
955                         break;
956         }
957         if ((x & VPB_BIT_WAITERS) != 0)
958                 wakeup(m);
959 }
960
961 /*
962  *
963  *      vm_page_busy_tryupgrade:
964  *
965  *      Attempt to upgrade a single shared busy into an exclusive busy.
966  */
967 int
968 vm_page_busy_tryupgrade(vm_page_t m)
969 {
970         u_int x;
971
972         vm_page_assert_sbusied(m);
973
974         x = m->busy_lock;
975         for (;;) {
976                 if (VPB_SHARERS(x) > 1)
977                         return (0);
978                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
979                     ("vm_page_busy_tryupgrade: invalid lock state"));
980                 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
981                     VPB_SINGLE_EXCLUSIVER | (x & VPB_BIT_WAITERS)))
982                         continue;
983                 return (1);
984         }
985 }
986
987 /*
988  *      vm_page_sbusied:
989  *
990  *      Return a positive value if the page is shared busied, 0 otherwise.
991  */
992 int
993 vm_page_sbusied(vm_page_t m)
994 {
995         u_int x;
996
997         x = m->busy_lock;
998         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
999 }
1000
1001 /*
1002  *      vm_page_sunbusy:
1003  *
1004  *      Shared unbusy a page.
1005  */
1006 void
1007 vm_page_sunbusy(vm_page_t m)
1008 {
1009         u_int x;
1010
1011         vm_page_assert_sbusied(m);
1012
1013         x = m->busy_lock;
1014         for (;;) {
1015                 if (VPB_SHARERS(x) > 1) {
1016                         if (atomic_fcmpset_int(&m->busy_lock, &x,
1017                             x - VPB_ONE_SHARER))
1018                                 break;
1019                         continue;
1020                 }
1021                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1022                     ("vm_page_sunbusy: invalid lock state"));
1023                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1024                         continue;
1025                 if ((x & VPB_BIT_WAITERS) == 0)
1026                         break;
1027                 wakeup(m);
1028                 break;
1029         }
1030 }
1031
1032 /*
1033  *      vm_page_busy_sleep:
1034  *
1035  *      Sleep if the page is busy, using the page pointer as wchan.
1036  *      This is used to implement the hard-path of busying mechanism.
1037  *
1038  *      If nonshared is true, sleep only if the page is xbusy.
1039  *
1040  *      The object lock must be held on entry and will be released on exit.
1041  */
1042 void
1043 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1044 {
1045         vm_object_t obj;
1046
1047         obj = m->object;
1048         VM_OBJECT_ASSERT_LOCKED(obj);
1049         vm_page_lock_assert(m, MA_NOTOWNED);
1050
1051         _vm_page_busy_sleep(obj, m, wmesg, nonshared, true);
1052 }
1053
1054 static void
1055 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg,
1056     bool nonshared, bool locked)
1057 {
1058         u_int x;
1059
1060         /*
1061          * If the object is busy we must wait for that to drain to zero
1062          * before trying the page again.
1063          */
1064         if (obj != NULL && vm_object_busied(obj)) {
1065                 if (locked)
1066                         VM_OBJECT_DROP(obj);
1067                 vm_object_busy_wait(obj, wmesg);
1068                 return;
1069         }
1070         sleepq_lock(m);
1071         x = m->busy_lock;
1072         if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
1073             ((x & VPB_BIT_WAITERS) == 0 &&
1074             !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
1075                 if (locked)
1076                         VM_OBJECT_DROP(obj);
1077                 sleepq_release(m);
1078                 return;
1079         }
1080         if (locked)
1081                 VM_OBJECT_DROP(obj);
1082         sleepq_add(m, NULL, wmesg, 0, 0);
1083         sleepq_wait(m, PVM);
1084 }
1085
1086 /*
1087  *      vm_page_trysbusy:
1088  *
1089  *      Try to shared busy a page.
1090  *      If the operation succeeds 1 is returned otherwise 0.
1091  *      The operation never sleeps.
1092  */
1093 int
1094 vm_page_trysbusy(vm_page_t m)
1095 {
1096         vm_object_t obj;
1097         u_int x;
1098
1099         obj = m->object;
1100         x = m->busy_lock;
1101         for (;;) {
1102                 if ((x & VPB_BIT_SHARED) == 0)
1103                         return (0);
1104                 /*
1105                  * Reduce the window for transient busies that will trigger
1106                  * false negatives in vm_page_ps_test().
1107                  */
1108                 if (obj != NULL && vm_object_busied(obj))
1109                         return (0);
1110                 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1111                     x + VPB_ONE_SHARER))
1112                         break;
1113         }
1114
1115         /* Refetch the object now that we're guaranteed that it is stable. */
1116         obj = m->object;
1117         if (obj != NULL && vm_object_busied(obj)) {
1118                 vm_page_sunbusy(m);
1119                 return (0);
1120         }
1121         return (1);
1122 }
1123
1124 /*
1125  *      vm_page_tryxbusy:
1126  *
1127  *      Try to exclusive busy a page.
1128  *      If the operation succeeds 1 is returned otherwise 0.
1129  *      The operation never sleeps.
1130  */
1131 int
1132 vm_page_tryxbusy(vm_page_t m)
1133 {
1134         vm_object_t obj;
1135
1136         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1137             VPB_SINGLE_EXCLUSIVER) == 0)
1138                 return (0);
1139
1140         obj = m->object;
1141         if (obj != NULL && vm_object_busied(obj)) {
1142                 vm_page_xunbusy(m);
1143                 return (0);
1144         }
1145         return (1);
1146 }
1147
1148 /*
1149  *      vm_page_xunbusy_hard:
1150  *
1151  *      Called when unbusy has failed because there is a waiter.
1152  */
1153 void
1154 vm_page_xunbusy_hard(vm_page_t m)
1155 {
1156
1157         vm_page_assert_xbusied(m);
1158
1159         /*
1160          * Wake the waiter.
1161          */
1162         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1163         wakeup(m);
1164 }
1165
1166 /*
1167  * Avoid releasing and reacquiring the same page lock.
1168  */
1169 void
1170 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
1171 {
1172         struct mtx *mtx1;
1173
1174         mtx1 = vm_page_lockptr(m);
1175         if (*mtx == mtx1)
1176                 return;
1177         if (*mtx != NULL)
1178                 mtx_unlock(*mtx);
1179         *mtx = mtx1;
1180         mtx_lock(mtx1);
1181 }
1182
1183 /*
1184  *      vm_page_unhold_pages:
1185  *
1186  *      Unhold each of the pages that is referenced by the given array.
1187  */
1188 void
1189 vm_page_unhold_pages(vm_page_t *ma, int count)
1190 {
1191
1192         for (; count != 0; count--) {
1193                 vm_page_unwire(*ma, PQ_ACTIVE);
1194                 ma++;
1195         }
1196 }
1197
1198 vm_page_t
1199 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1200 {
1201         vm_page_t m;
1202
1203 #ifdef VM_PHYSSEG_SPARSE
1204         m = vm_phys_paddr_to_vm_page(pa);
1205         if (m == NULL)
1206                 m = vm_phys_fictitious_to_vm_page(pa);
1207         return (m);
1208 #elif defined(VM_PHYSSEG_DENSE)
1209         long pi;
1210
1211         pi = atop(pa);
1212         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1213                 m = &vm_page_array[pi - first_page];
1214                 return (m);
1215         }
1216         return (vm_phys_fictitious_to_vm_page(pa));
1217 #else
1218 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1219 #endif
1220 }
1221
1222 /*
1223  *      vm_page_getfake:
1224  *
1225  *      Create a fictitious page with the specified physical address and
1226  *      memory attribute.  The memory attribute is the only the machine-
1227  *      dependent aspect of a fictitious page that must be initialized.
1228  */
1229 vm_page_t
1230 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1231 {
1232         vm_page_t m;
1233
1234         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1235         vm_page_initfake(m, paddr, memattr);
1236         return (m);
1237 }
1238
1239 void
1240 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1241 {
1242
1243         if ((m->flags & PG_FICTITIOUS) != 0) {
1244                 /*
1245                  * The page's memattr might have changed since the
1246                  * previous initialization.  Update the pmap to the
1247                  * new memattr.
1248                  */
1249                 goto memattr;
1250         }
1251         m->phys_addr = paddr;
1252         m->queue = PQ_NONE;
1253         /* Fictitious pages don't use "segind". */
1254         m->flags = PG_FICTITIOUS;
1255         /* Fictitious pages don't use "order" or "pool". */
1256         m->oflags = VPO_UNMANAGED;
1257         m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1258         /* Fictitious pages are unevictable. */
1259         m->ref_count = 1;
1260         pmap_page_init(m);
1261 memattr:
1262         pmap_page_set_memattr(m, memattr);
1263 }
1264
1265 /*
1266  *      vm_page_putfake:
1267  *
1268  *      Release a fictitious page.
1269  */
1270 void
1271 vm_page_putfake(vm_page_t m)
1272 {
1273
1274         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1275         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1276             ("vm_page_putfake: bad page %p", m));
1277         if (vm_page_xbusied(m))
1278                 vm_page_xunbusy(m);
1279         uma_zfree(fakepg_zone, m);
1280 }
1281
1282 /*
1283  *      vm_page_updatefake:
1284  *
1285  *      Update the given fictitious page to the specified physical address and
1286  *      memory attribute.
1287  */
1288 void
1289 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1290 {
1291
1292         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1293             ("vm_page_updatefake: bad page %p", m));
1294         m->phys_addr = paddr;
1295         pmap_page_set_memattr(m, memattr);
1296 }
1297
1298 /*
1299  *      vm_page_free:
1300  *
1301  *      Free a page.
1302  */
1303 void
1304 vm_page_free(vm_page_t m)
1305 {
1306
1307         m->flags &= ~PG_ZERO;
1308         vm_page_free_toq(m);
1309 }
1310
1311 /*
1312  *      vm_page_free_zero:
1313  *
1314  *      Free a page to the zerod-pages queue
1315  */
1316 void
1317 vm_page_free_zero(vm_page_t m)
1318 {
1319
1320         m->flags |= PG_ZERO;
1321         vm_page_free_toq(m);
1322 }
1323
1324 /*
1325  * Unbusy and handle the page queueing for a page from a getpages request that
1326  * was optionally read ahead or behind.
1327  */
1328 void
1329 vm_page_readahead_finish(vm_page_t m)
1330 {
1331
1332         /* We shouldn't put invalid pages on queues. */
1333         KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1334
1335         /*
1336          * Since the page is not the actually needed one, whether it should
1337          * be activated or deactivated is not obvious.  Empirical results
1338          * have shown that deactivating the page is usually the best choice,
1339          * unless the page is wanted by another thread.
1340          */
1341         vm_page_lock(m);
1342         if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1343                 vm_page_activate(m);
1344         else
1345                 vm_page_deactivate(m);
1346         vm_page_unlock(m);
1347         vm_page_xunbusy(m);
1348 }
1349
1350 /*
1351  *      vm_page_sleep_if_busy:
1352  *
1353  *      Sleep and release the object lock if the page is busied.
1354  *      Returns TRUE if the thread slept.
1355  *
1356  *      The given page must be unlocked and object containing it must
1357  *      be locked.
1358  */
1359 int
1360 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1361 {
1362         vm_object_t obj;
1363
1364         vm_page_lock_assert(m, MA_NOTOWNED);
1365         VM_OBJECT_ASSERT_WLOCKED(m->object);
1366
1367         /*
1368          * The page-specific object must be cached because page
1369          * identity can change during the sleep, causing the
1370          * re-lock of a different object.
1371          * It is assumed that a reference to the object is already
1372          * held by the callers.
1373          */
1374         obj = m->object;
1375         if (vm_page_busied(m) || (obj != NULL && obj->busy)) {
1376                 vm_page_busy_sleep(m, msg, false);
1377                 VM_OBJECT_WLOCK(obj);
1378                 return (TRUE);
1379         }
1380         return (FALSE);
1381 }
1382
1383 /*
1384  *      vm_page_sleep_if_xbusy:
1385  *
1386  *      Sleep and release the object lock if the page is xbusied.
1387  *      Returns TRUE if the thread slept.
1388  *
1389  *      The given page must be unlocked and object containing it must
1390  *      be locked.
1391  */
1392 int
1393 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg)
1394 {
1395         vm_object_t obj;
1396
1397         vm_page_lock_assert(m, MA_NOTOWNED);
1398         VM_OBJECT_ASSERT_WLOCKED(m->object);
1399
1400         /*
1401          * The page-specific object must be cached because page
1402          * identity can change during the sleep, causing the
1403          * re-lock of a different object.
1404          * It is assumed that a reference to the object is already
1405          * held by the callers.
1406          */
1407         obj = m->object;
1408         if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) {
1409                 vm_page_busy_sleep(m, msg, true);
1410                 VM_OBJECT_WLOCK(obj);
1411                 return (TRUE);
1412         }
1413         return (FALSE);
1414 }
1415
1416 /*
1417  *      vm_page_dirty_KBI:              [ internal use only ]
1418  *
1419  *      Set all bits in the page's dirty field.
1420  *
1421  *      The object containing the specified page must be locked if the
1422  *      call is made from the machine-independent layer.
1423  *
1424  *      See vm_page_clear_dirty_mask().
1425  *
1426  *      This function should only be called by vm_page_dirty().
1427  */
1428 void
1429 vm_page_dirty_KBI(vm_page_t m)
1430 {
1431
1432         /* Refer to this operation by its public name. */
1433         KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1434         m->dirty = VM_PAGE_BITS_ALL;
1435 }
1436
1437 /*
1438  *      vm_page_insert:         [ internal use only ]
1439  *
1440  *      Inserts the given mem entry into the object and object list.
1441  *
1442  *      The object must be locked.
1443  */
1444 int
1445 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1446 {
1447         vm_page_t mpred;
1448
1449         VM_OBJECT_ASSERT_WLOCKED(object);
1450         mpred = vm_radix_lookup_le(&object->rtree, pindex);
1451         return (vm_page_insert_after(m, object, pindex, mpred));
1452 }
1453
1454 /*
1455  *      vm_page_insert_after:
1456  *
1457  *      Inserts the page "m" into the specified object at offset "pindex".
1458  *
1459  *      The page "mpred" must immediately precede the offset "pindex" within
1460  *      the specified object.
1461  *
1462  *      The object must be locked.
1463  */
1464 static int
1465 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1466     vm_page_t mpred)
1467 {
1468         vm_page_t msucc;
1469
1470         VM_OBJECT_ASSERT_WLOCKED(object);
1471         KASSERT(m->object == NULL,
1472             ("vm_page_insert_after: page already inserted"));
1473         if (mpred != NULL) {
1474                 KASSERT(mpred->object == object,
1475                     ("vm_page_insert_after: object doesn't contain mpred"));
1476                 KASSERT(mpred->pindex < pindex,
1477                     ("vm_page_insert_after: mpred doesn't precede pindex"));
1478                 msucc = TAILQ_NEXT(mpred, listq);
1479         } else
1480                 msucc = TAILQ_FIRST(&object->memq);
1481         if (msucc != NULL)
1482                 KASSERT(msucc->pindex > pindex,
1483                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
1484
1485         /*
1486          * Record the object/offset pair in this page.
1487          */
1488         m->object = object;
1489         m->pindex = pindex;
1490         m->ref_count |= VPRC_OBJREF;
1491
1492         /*
1493          * Now link into the object's ordered list of backed pages.
1494          */
1495         if (vm_radix_insert(&object->rtree, m)) {
1496                 m->object = NULL;
1497                 m->pindex = 0;
1498                 m->ref_count &= ~VPRC_OBJREF;
1499                 return (1);
1500         }
1501         vm_page_insert_radixdone(m, object, mpred);
1502         return (0);
1503 }
1504
1505 /*
1506  *      vm_page_insert_radixdone:
1507  *
1508  *      Complete page "m" insertion into the specified object after the
1509  *      radix trie hooking.
1510  *
1511  *      The page "mpred" must precede the offset "m->pindex" within the
1512  *      specified object.
1513  *
1514  *      The object must be locked.
1515  */
1516 static void
1517 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1518 {
1519
1520         VM_OBJECT_ASSERT_WLOCKED(object);
1521         KASSERT(object != NULL && m->object == object,
1522             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1523         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1524             ("vm_page_insert_radixdone: page %p is missing object ref", m));
1525         if (mpred != NULL) {
1526                 KASSERT(mpred->object == object,
1527                     ("vm_page_insert_radixdone: object doesn't contain mpred"));
1528                 KASSERT(mpred->pindex < m->pindex,
1529                     ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1530         }
1531
1532         if (mpred != NULL)
1533                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1534         else
1535                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1536
1537         /*
1538          * Show that the object has one more resident page.
1539          */
1540         object->resident_page_count++;
1541
1542         /*
1543          * Hold the vnode until the last page is released.
1544          */
1545         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1546                 vhold(object->handle);
1547
1548         /*
1549          * Since we are inserting a new and possibly dirty page,
1550          * update the object's OBJ_MIGHTBEDIRTY flag.
1551          */
1552         if (pmap_page_is_write_mapped(m))
1553                 vm_object_set_writeable_dirty(object);
1554 }
1555
1556 /*
1557  * Do the work to remove a page from its object.  The caller is responsible for
1558  * updating the page's fields to reflect this removal.
1559  */
1560 static void
1561 vm_page_object_remove(vm_page_t m)
1562 {
1563         vm_object_t object;
1564         vm_page_t mrem;
1565
1566         object = m->object;
1567         VM_OBJECT_ASSERT_WLOCKED(object);
1568         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1569             ("page %p is missing its object ref", m));
1570
1571         mrem = vm_radix_remove(&object->rtree, m->pindex);
1572         KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1573
1574         /*
1575          * Now remove from the object's list of backed pages.
1576          */
1577         TAILQ_REMOVE(&object->memq, m, listq);
1578
1579         /*
1580          * And show that the object has one fewer resident page.
1581          */
1582         object->resident_page_count--;
1583
1584         /*
1585          * The vnode may now be recycled.
1586          */
1587         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1588                 vdrop(object->handle);
1589 }
1590
1591 /*
1592  *      vm_page_remove:
1593  *
1594  *      Removes the specified page from its containing object, but does not
1595  *      invalidate any backing storage.  Returns true if the object's reference
1596  *      was the last reference to the page, and false otherwise.
1597  *
1598  *      The object must be locked.
1599  */
1600 bool
1601 vm_page_remove(vm_page_t m)
1602 {
1603
1604         vm_page_object_remove(m);
1605         m->object = NULL;
1606         return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1607 }
1608
1609 /*
1610  *      vm_page_lookup:
1611  *
1612  *      Returns the page associated with the object/offset
1613  *      pair specified; if none is found, NULL is returned.
1614  *
1615  *      The object must be locked.
1616  */
1617 vm_page_t
1618 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1619 {
1620
1621         VM_OBJECT_ASSERT_LOCKED(object);
1622         return (vm_radix_lookup(&object->rtree, pindex));
1623 }
1624
1625 /*
1626  *      vm_page_find_least:
1627  *
1628  *      Returns the page associated with the object with least pindex
1629  *      greater than or equal to the parameter pindex, or NULL.
1630  *
1631  *      The object must be locked.
1632  */
1633 vm_page_t
1634 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1635 {
1636         vm_page_t m;
1637
1638         VM_OBJECT_ASSERT_LOCKED(object);
1639         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1640                 m = vm_radix_lookup_ge(&object->rtree, pindex);
1641         return (m);
1642 }
1643
1644 /*
1645  * Returns the given page's successor (by pindex) within the object if it is
1646  * resident; if none is found, NULL is returned.
1647  *
1648  * The object must be locked.
1649  */
1650 vm_page_t
1651 vm_page_next(vm_page_t m)
1652 {
1653         vm_page_t next;
1654
1655         VM_OBJECT_ASSERT_LOCKED(m->object);
1656         if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1657                 MPASS(next->object == m->object);
1658                 if (next->pindex != m->pindex + 1)
1659                         next = NULL;
1660         }
1661         return (next);
1662 }
1663
1664 /*
1665  * Returns the given page's predecessor (by pindex) within the object if it is
1666  * resident; if none is found, NULL is returned.
1667  *
1668  * The object must be locked.
1669  */
1670 vm_page_t
1671 vm_page_prev(vm_page_t m)
1672 {
1673         vm_page_t prev;
1674
1675         VM_OBJECT_ASSERT_LOCKED(m->object);
1676         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1677                 MPASS(prev->object == m->object);
1678                 if (prev->pindex != m->pindex - 1)
1679                         prev = NULL;
1680         }
1681         return (prev);
1682 }
1683
1684 /*
1685  * Uses the page mnew as a replacement for an existing page at index
1686  * pindex which must be already present in the object.
1687  */
1688 vm_page_t
1689 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1690 {
1691         vm_page_t mold;
1692
1693         VM_OBJECT_ASSERT_WLOCKED(object);
1694         KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1695             ("vm_page_replace: page %p already in object", mnew));
1696
1697         /*
1698          * This function mostly follows vm_page_insert() and
1699          * vm_page_remove() without the radix, object count and vnode
1700          * dance.  Double check such functions for more comments.
1701          */
1702
1703         mnew->object = object;
1704         mnew->pindex = pindex;
1705         atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1706         mold = vm_radix_replace(&object->rtree, mnew);
1707         KASSERT(mold->queue == PQ_NONE,
1708             ("vm_page_replace: old page %p is on a paging queue", mold));
1709
1710         /* Keep the resident page list in sorted order. */
1711         TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1712         TAILQ_REMOVE(&object->memq, mold, listq);
1713
1714         mold->object = NULL;
1715         atomic_clear_int(&mold->ref_count, VPRC_OBJREF);
1716         vm_page_xunbusy(mold);
1717
1718         /*
1719          * The object's resident_page_count does not change because we have
1720          * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1721          */
1722         if (pmap_page_is_write_mapped(mnew))
1723                 vm_object_set_writeable_dirty(object);
1724         return (mold);
1725 }
1726
1727 /*
1728  *      vm_page_rename:
1729  *
1730  *      Move the given memory entry from its
1731  *      current object to the specified target object/offset.
1732  *
1733  *      Note: swap associated with the page must be invalidated by the move.  We
1734  *            have to do this for several reasons:  (1) we aren't freeing the
1735  *            page, (2) we are dirtying the page, (3) the VM system is probably
1736  *            moving the page from object A to B, and will then later move
1737  *            the backing store from A to B and we can't have a conflict.
1738  *
1739  *      Note: we *always* dirty the page.  It is necessary both for the
1740  *            fact that we moved it, and because we may be invalidating
1741  *            swap.
1742  *
1743  *      The objects must be locked.
1744  */
1745 int
1746 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1747 {
1748         vm_page_t mpred;
1749         vm_pindex_t opidx;
1750
1751         VM_OBJECT_ASSERT_WLOCKED(new_object);
1752
1753         KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1754         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1755         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1756             ("vm_page_rename: pindex already renamed"));
1757
1758         /*
1759          * Create a custom version of vm_page_insert() which does not depend
1760          * by m_prev and can cheat on the implementation aspects of the
1761          * function.
1762          */
1763         opidx = m->pindex;
1764         m->pindex = new_pindex;
1765         if (vm_radix_insert(&new_object->rtree, m)) {
1766                 m->pindex = opidx;
1767                 return (1);
1768         }
1769
1770         /*
1771          * The operation cannot fail anymore.  The removal must happen before
1772          * the listq iterator is tainted.
1773          */
1774         m->pindex = opidx;
1775         vm_page_object_remove(m);
1776
1777         /* Return back to the new pindex to complete vm_page_insert(). */
1778         m->pindex = new_pindex;
1779         m->object = new_object;
1780
1781         vm_page_insert_radixdone(m, new_object, mpred);
1782         vm_page_dirty(m);
1783         return (0);
1784 }
1785
1786 /*
1787  *      vm_page_alloc:
1788  *
1789  *      Allocate and return a page that is associated with the specified
1790  *      object and offset pair.  By default, this page is exclusive busied.
1791  *
1792  *      The caller must always specify an allocation class.
1793  *
1794  *      allocation classes:
1795  *      VM_ALLOC_NORMAL         normal process request
1796  *      VM_ALLOC_SYSTEM         system *really* needs a page
1797  *      VM_ALLOC_INTERRUPT      interrupt time request
1798  *
1799  *      optional allocation flags:
1800  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
1801  *                              intends to allocate
1802  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1803  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1804  *      VM_ALLOC_NOOBJ          page is not associated with an object and
1805  *                              should not be exclusive busy
1806  *      VM_ALLOC_SBUSY          shared busy the allocated page
1807  *      VM_ALLOC_WIRED          wire the allocated page
1808  *      VM_ALLOC_ZERO           prefer a zeroed page
1809  */
1810 vm_page_t
1811 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1812 {
1813
1814         return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1815             vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1816 }
1817
1818 vm_page_t
1819 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1820     int req)
1821 {
1822
1823         return (vm_page_alloc_domain_after(object, pindex, domain, req,
1824             object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1825             NULL));
1826 }
1827
1828 /*
1829  * Allocate a page in the specified object with the given page index.  To
1830  * optimize insertion of the page into the object, the caller must also specifiy
1831  * the resident page in the object with largest index smaller than the given
1832  * page index, or NULL if no such page exists.
1833  */
1834 vm_page_t
1835 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1836     int req, vm_page_t mpred)
1837 {
1838         struct vm_domainset_iter di;
1839         vm_page_t m;
1840         int domain;
1841
1842         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1843         do {
1844                 m = vm_page_alloc_domain_after(object, pindex, domain, req,
1845                     mpred);
1846                 if (m != NULL)
1847                         break;
1848         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
1849
1850         return (m);
1851 }
1852
1853 /*
1854  * Returns true if the number of free pages exceeds the minimum
1855  * for the request class and false otherwise.
1856  */
1857 int
1858 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1859 {
1860         u_int limit, old, new;
1861
1862         req = req & VM_ALLOC_CLASS_MASK;
1863
1864         /*
1865          * The page daemon is allowed to dig deeper into the free page list.
1866          */
1867         if (curproc == pageproc && req != VM_ALLOC_INTERRUPT)
1868                 req = VM_ALLOC_SYSTEM;
1869         if (req == VM_ALLOC_INTERRUPT)
1870                 limit = 0;
1871         else if (req == VM_ALLOC_SYSTEM)
1872                 limit = vmd->vmd_interrupt_free_min;
1873         else
1874                 limit = vmd->vmd_free_reserved;
1875
1876         /*
1877          * Attempt to reserve the pages.  Fail if we're below the limit.
1878          */
1879         limit += npages;
1880         old = vmd->vmd_free_count;
1881         do {
1882                 if (old < limit)
1883                         return (0);
1884                 new = old - npages;
1885         } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1886
1887         /* Wake the page daemon if we've crossed the threshold. */
1888         if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1889                 pagedaemon_wakeup(vmd->vmd_domain);
1890
1891         /* Only update bitsets on transitions. */
1892         if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1893             (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1894                 vm_domain_set(vmd);
1895
1896         return (1);
1897 }
1898
1899 vm_page_t
1900 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1901     int req, vm_page_t mpred)
1902 {
1903         struct vm_domain *vmd;
1904         vm_page_t m;
1905         int flags, pool;
1906
1907         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1908             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1909             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1910             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1911             ("inconsistent object(%p)/req(%x)", object, req));
1912         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1913             ("Can't sleep and retry object insertion."));
1914         KASSERT(mpred == NULL || mpred->pindex < pindex,
1915             ("mpred %p doesn't precede pindex 0x%jx", mpred,
1916             (uintmax_t)pindex));
1917         if (object != NULL)
1918                 VM_OBJECT_ASSERT_WLOCKED(object);
1919
1920         flags = 0;
1921         m = NULL;
1922         pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
1923 again:
1924 #if VM_NRESERVLEVEL > 0
1925         /*
1926          * Can we allocate the page from a reservation?
1927          */
1928         if (vm_object_reserv(object) &&
1929             (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
1930             NULL) {
1931                 domain = vm_phys_domain(m);
1932                 vmd = VM_DOMAIN(domain);
1933                 goto found;
1934         }
1935 #endif
1936         vmd = VM_DOMAIN(domain);
1937         if (vmd->vmd_pgcache[pool].zone != NULL) {
1938                 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
1939                 if (m != NULL) {
1940                         flags |= PG_PCPU_CACHE;
1941                         goto found;
1942                 }
1943         }
1944         if (vm_domain_allocate(vmd, req, 1)) {
1945                 /*
1946                  * If not, allocate it from the free page queues.
1947                  */
1948                 vm_domain_free_lock(vmd);
1949                 m = vm_phys_alloc_pages(domain, pool, 0);
1950                 vm_domain_free_unlock(vmd);
1951                 if (m == NULL) {
1952                         vm_domain_freecnt_inc(vmd, 1);
1953 #if VM_NRESERVLEVEL > 0
1954                         if (vm_reserv_reclaim_inactive(domain))
1955                                 goto again;
1956 #endif
1957                 }
1958         }
1959         if (m == NULL) {
1960                 /*
1961                  * Not allocatable, give up.
1962                  */
1963                 if (vm_domain_alloc_fail(vmd, object, req))
1964                         goto again;
1965                 return (NULL);
1966         }
1967
1968         /*
1969          * At this point we had better have found a good page.
1970          */
1971 found:
1972         vm_page_dequeue(m);
1973         vm_page_alloc_check(m);
1974
1975         /*
1976          * Initialize the page.  Only the PG_ZERO flag is inherited.
1977          */
1978         if ((req & VM_ALLOC_ZERO) != 0)
1979                 flags |= (m->flags & PG_ZERO);
1980         if ((req & VM_ALLOC_NODUMP) != 0)
1981                 flags |= PG_NODUMP;
1982         m->flags = flags;
1983         m->aflags = 0;
1984         m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1985             VPO_UNMANAGED : 0;
1986         m->busy_lock = VPB_UNBUSIED;
1987         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1988                 m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1989         if ((req & VM_ALLOC_SBUSY) != 0)
1990                 m->busy_lock = VPB_SHARERS_WORD(1);
1991         if (req & VM_ALLOC_WIRED) {
1992                 /*
1993                  * The page lock is not required for wiring a page until that
1994                  * page is inserted into the object.
1995                  */
1996                 vm_wire_add(1);
1997                 m->ref_count = 1;
1998         }
1999         m->act_count = 0;
2000
2001         if (object != NULL) {
2002                 if (vm_page_insert_after(m, object, pindex, mpred)) {
2003                         if (req & VM_ALLOC_WIRED) {
2004                                 vm_wire_sub(1);
2005                                 m->ref_count = 0;
2006                         }
2007                         KASSERT(m->object == NULL, ("page %p has object", m));
2008                         m->oflags = VPO_UNMANAGED;
2009                         m->busy_lock = VPB_UNBUSIED;
2010                         /* Don't change PG_ZERO. */
2011                         vm_page_free_toq(m);
2012                         if (req & VM_ALLOC_WAITFAIL) {
2013                                 VM_OBJECT_WUNLOCK(object);
2014                                 vm_radix_wait();
2015                                 VM_OBJECT_WLOCK(object);
2016                         }
2017                         return (NULL);
2018                 }
2019
2020                 /* Ignore device objects; the pager sets "memattr" for them. */
2021                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2022                     (object->flags & OBJ_FICTITIOUS) == 0)
2023                         pmap_page_set_memattr(m, object->memattr);
2024         } else
2025                 m->pindex = pindex;
2026
2027         return (m);
2028 }
2029
2030 /*
2031  *      vm_page_alloc_contig:
2032  *
2033  *      Allocate a contiguous set of physical pages of the given size "npages"
2034  *      from the free lists.  All of the physical pages must be at or above
2035  *      the given physical address "low" and below the given physical address
2036  *      "high".  The given value "alignment" determines the alignment of the
2037  *      first physical page in the set.  If the given value "boundary" is
2038  *      non-zero, then the set of physical pages cannot cross any physical
2039  *      address boundary that is a multiple of that value.  Both "alignment"
2040  *      and "boundary" must be a power of two.
2041  *
2042  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2043  *      then the memory attribute setting for the physical pages is configured
2044  *      to the object's memory attribute setting.  Otherwise, the memory
2045  *      attribute setting for the physical pages is configured to "memattr",
2046  *      overriding the object's memory attribute setting.  However, if the
2047  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2048  *      memory attribute setting for the physical pages cannot be configured
2049  *      to VM_MEMATTR_DEFAULT.
2050  *
2051  *      The specified object may not contain fictitious pages.
2052  *
2053  *      The caller must always specify an allocation class.
2054  *
2055  *      allocation classes:
2056  *      VM_ALLOC_NORMAL         normal process request
2057  *      VM_ALLOC_SYSTEM         system *really* needs a page
2058  *      VM_ALLOC_INTERRUPT      interrupt time request
2059  *
2060  *      optional allocation flags:
2061  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
2062  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
2063  *      VM_ALLOC_NOOBJ          page is not associated with an object and
2064  *                              should not be exclusive busy
2065  *      VM_ALLOC_SBUSY          shared busy the allocated page
2066  *      VM_ALLOC_WIRED          wire the allocated page
2067  *      VM_ALLOC_ZERO           prefer a zeroed page
2068  */
2069 vm_page_t
2070 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2071     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2072     vm_paddr_t boundary, vm_memattr_t memattr)
2073 {
2074         struct vm_domainset_iter di;
2075         vm_page_t m;
2076         int domain;
2077
2078         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2079         do {
2080                 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2081                     npages, low, high, alignment, boundary, memattr);
2082                 if (m != NULL)
2083                         break;
2084         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2085
2086         return (m);
2087 }
2088
2089 vm_page_t
2090 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2091     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2092     vm_paddr_t boundary, vm_memattr_t memattr)
2093 {
2094         struct vm_domain *vmd;
2095         vm_page_t m, m_ret, mpred;
2096         u_int busy_lock, flags, oflags;
2097
2098         mpred = NULL;   /* XXX: pacify gcc */
2099         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2100             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2101             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2102             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2103             ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2104             req));
2105         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2106             ("Can't sleep and retry object insertion."));
2107         if (object != NULL) {
2108                 VM_OBJECT_ASSERT_WLOCKED(object);
2109                 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2110                     ("vm_page_alloc_contig: object %p has fictitious pages",
2111                     object));
2112         }
2113         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2114
2115         if (object != NULL) {
2116                 mpred = vm_radix_lookup_le(&object->rtree, pindex);
2117                 KASSERT(mpred == NULL || mpred->pindex != pindex,
2118                     ("vm_page_alloc_contig: pindex already allocated"));
2119         }
2120
2121         /*
2122          * Can we allocate the pages without the number of free pages falling
2123          * below the lower bound for the allocation class?
2124          */
2125         m_ret = NULL;
2126 again:
2127 #if VM_NRESERVLEVEL > 0
2128         /*
2129          * Can we allocate the pages from a reservation?
2130          */
2131         if (vm_object_reserv(object) &&
2132             (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2133             mpred, npages, low, high, alignment, boundary)) != NULL) {
2134                 domain = vm_phys_domain(m_ret);
2135                 vmd = VM_DOMAIN(domain);
2136                 goto found;
2137         }
2138 #endif
2139         vmd = VM_DOMAIN(domain);
2140         if (vm_domain_allocate(vmd, req, npages)) {
2141                 /*
2142                  * allocate them from the free page queues.
2143                  */
2144                 vm_domain_free_lock(vmd);
2145                 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2146                     alignment, boundary);
2147                 vm_domain_free_unlock(vmd);
2148                 if (m_ret == NULL) {
2149                         vm_domain_freecnt_inc(vmd, npages);
2150 #if VM_NRESERVLEVEL > 0
2151                         if (vm_reserv_reclaim_contig(domain, npages, low,
2152                             high, alignment, boundary))
2153                                 goto again;
2154 #endif
2155                 }
2156         }
2157         if (m_ret == NULL) {
2158                 if (vm_domain_alloc_fail(vmd, object, req))
2159                         goto again;
2160                 return (NULL);
2161         }
2162 #if VM_NRESERVLEVEL > 0
2163 found:
2164 #endif
2165         for (m = m_ret; m < &m_ret[npages]; m++) {
2166                 vm_page_dequeue(m);
2167                 vm_page_alloc_check(m);
2168         }
2169
2170         /*
2171          * Initialize the pages.  Only the PG_ZERO flag is inherited.
2172          */
2173         flags = 0;
2174         if ((req & VM_ALLOC_ZERO) != 0)
2175                 flags = PG_ZERO;
2176         if ((req & VM_ALLOC_NODUMP) != 0)
2177                 flags |= PG_NODUMP;
2178         oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2179             VPO_UNMANAGED : 0;
2180         busy_lock = VPB_UNBUSIED;
2181         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2182                 busy_lock = VPB_SINGLE_EXCLUSIVER;
2183         if ((req & VM_ALLOC_SBUSY) != 0)
2184                 busy_lock = VPB_SHARERS_WORD(1);
2185         if ((req & VM_ALLOC_WIRED) != 0)
2186                 vm_wire_add(npages);
2187         if (object != NULL) {
2188                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2189                     memattr == VM_MEMATTR_DEFAULT)
2190                         memattr = object->memattr;
2191         }
2192         for (m = m_ret; m < &m_ret[npages]; m++) {
2193                 m->aflags = 0;
2194                 m->flags = (m->flags | PG_NODUMP) & flags;
2195                 m->busy_lock = busy_lock;
2196                 if ((req & VM_ALLOC_WIRED) != 0)
2197                         m->ref_count = 1;
2198                 m->act_count = 0;
2199                 m->oflags = oflags;
2200                 if (object != NULL) {
2201                         if (vm_page_insert_after(m, object, pindex, mpred)) {
2202                                 if ((req & VM_ALLOC_WIRED) != 0)
2203                                         vm_wire_sub(npages);
2204                                 KASSERT(m->object == NULL,
2205                                     ("page %p has object", m));
2206                                 mpred = m;
2207                                 for (m = m_ret; m < &m_ret[npages]; m++) {
2208                                         if (m <= mpred &&
2209                                             (req & VM_ALLOC_WIRED) != 0)
2210                                                 m->ref_count = 0;
2211                                         m->oflags = VPO_UNMANAGED;
2212                                         m->busy_lock = VPB_UNBUSIED;
2213                                         /* Don't change PG_ZERO. */
2214                                         vm_page_free_toq(m);
2215                                 }
2216                                 if (req & VM_ALLOC_WAITFAIL) {
2217                                         VM_OBJECT_WUNLOCK(object);
2218                                         vm_radix_wait();
2219                                         VM_OBJECT_WLOCK(object);
2220                                 }
2221                                 return (NULL);
2222                         }
2223                         mpred = m;
2224                 } else
2225                         m->pindex = pindex;
2226                 if (memattr != VM_MEMATTR_DEFAULT)
2227                         pmap_page_set_memattr(m, memattr);
2228                 pindex++;
2229         }
2230         return (m_ret);
2231 }
2232
2233 /*
2234  * Check a page that has been freshly dequeued from a freelist.
2235  */
2236 static void
2237 vm_page_alloc_check(vm_page_t m)
2238 {
2239
2240         KASSERT(m->object == NULL, ("page %p has object", m));
2241         KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
2242             ("page %p has unexpected queue %d, flags %#x",
2243             m, m->queue, (m->aflags & PGA_QUEUE_STATE_MASK)));
2244         KASSERT(m->ref_count == 0, ("page %p has references", m));
2245         KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2246         KASSERT(m->dirty == 0, ("page %p is dirty", m));
2247         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2248             ("page %p has unexpected memattr %d",
2249             m, pmap_page_get_memattr(m)));
2250         KASSERT(m->valid == 0, ("free page %p is valid", m));
2251 }
2252
2253 /*
2254  *      vm_page_alloc_freelist:
2255  *
2256  *      Allocate a physical page from the specified free page list.
2257  *
2258  *      The caller must always specify an allocation class.
2259  *
2260  *      allocation classes:
2261  *      VM_ALLOC_NORMAL         normal process request
2262  *      VM_ALLOC_SYSTEM         system *really* needs a page
2263  *      VM_ALLOC_INTERRUPT      interrupt time request
2264  *
2265  *      optional allocation flags:
2266  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
2267  *                              intends to allocate
2268  *      VM_ALLOC_WIRED          wire the allocated page
2269  *      VM_ALLOC_ZERO           prefer a zeroed page
2270  */
2271 vm_page_t
2272 vm_page_alloc_freelist(int freelist, int req)
2273 {
2274         struct vm_domainset_iter di;
2275         vm_page_t m;
2276         int domain;
2277
2278         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2279         do {
2280                 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2281                 if (m != NULL)
2282                         break;
2283         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2284
2285         return (m);
2286 }
2287
2288 vm_page_t
2289 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2290 {
2291         struct vm_domain *vmd;
2292         vm_page_t m;
2293         u_int flags;
2294
2295         m = NULL;
2296         vmd = VM_DOMAIN(domain);
2297 again:
2298         if (vm_domain_allocate(vmd, req, 1)) {
2299                 vm_domain_free_lock(vmd);
2300                 m = vm_phys_alloc_freelist_pages(domain, freelist,
2301                     VM_FREEPOOL_DIRECT, 0);
2302                 vm_domain_free_unlock(vmd);
2303                 if (m == NULL)
2304                         vm_domain_freecnt_inc(vmd, 1);
2305         }
2306         if (m == NULL) {
2307                 if (vm_domain_alloc_fail(vmd, NULL, req))
2308                         goto again;
2309                 return (NULL);
2310         }
2311         vm_page_dequeue(m);
2312         vm_page_alloc_check(m);
2313
2314         /*
2315          * Initialize the page.  Only the PG_ZERO flag is inherited.
2316          */
2317         m->aflags = 0;
2318         flags = 0;
2319         if ((req & VM_ALLOC_ZERO) != 0)
2320                 flags = PG_ZERO;
2321         m->flags &= flags;
2322         if ((req & VM_ALLOC_WIRED) != 0) {
2323                 /*
2324                  * The page lock is not required for wiring a page that does
2325                  * not belong to an object.
2326                  */
2327                 vm_wire_add(1);
2328                 m->ref_count = 1;
2329         }
2330         /* Unmanaged pages don't use "act_count". */
2331         m->oflags = VPO_UNMANAGED;
2332         return (m);
2333 }
2334
2335 static int
2336 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2337 {
2338         struct vm_domain *vmd;
2339         struct vm_pgcache *pgcache;
2340         int i;
2341
2342         pgcache = arg;
2343         vmd = VM_DOMAIN(pgcache->domain);
2344         /* Only import if we can bring in a full bucket. */
2345         if (cnt == 1 || !vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2346                 return (0);
2347         domain = vmd->vmd_domain;
2348         vm_domain_free_lock(vmd);
2349         i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2350             (vm_page_t *)store);
2351         vm_domain_free_unlock(vmd);
2352         if (cnt != i)
2353                 vm_domain_freecnt_inc(vmd, cnt - i);
2354
2355         return (i);
2356 }
2357
2358 static void
2359 vm_page_zone_release(void *arg, void **store, int cnt)
2360 {
2361         struct vm_domain *vmd;
2362         struct vm_pgcache *pgcache;
2363         vm_page_t m;
2364         int i;
2365
2366         pgcache = arg;
2367         vmd = VM_DOMAIN(pgcache->domain);
2368         vm_domain_free_lock(vmd);
2369         for (i = 0; i < cnt; i++) {
2370                 m = (vm_page_t)store[i];
2371                 vm_phys_free_pages(m, 0);
2372         }
2373         vm_domain_free_unlock(vmd);
2374         vm_domain_freecnt_inc(vmd, cnt);
2375 }
2376
2377 #define VPSC_ANY        0       /* No restrictions. */
2378 #define VPSC_NORESERV   1       /* Skip reservations; implies VPSC_NOSUPER. */
2379 #define VPSC_NOSUPER    2       /* Skip superpages. */
2380
2381 /*
2382  *      vm_page_scan_contig:
2383  *
2384  *      Scan vm_page_array[] between the specified entries "m_start" and
2385  *      "m_end" for a run of contiguous physical pages that satisfy the
2386  *      specified conditions, and return the lowest page in the run.  The
2387  *      specified "alignment" determines the alignment of the lowest physical
2388  *      page in the run.  If the specified "boundary" is non-zero, then the
2389  *      run of physical pages cannot span a physical address that is a
2390  *      multiple of "boundary".
2391  *
2392  *      "m_end" is never dereferenced, so it need not point to a vm_page
2393  *      structure within vm_page_array[].
2394  *
2395  *      "npages" must be greater than zero.  "m_start" and "m_end" must not
2396  *      span a hole (or discontiguity) in the physical address space.  Both
2397  *      "alignment" and "boundary" must be a power of two.
2398  */
2399 vm_page_t
2400 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2401     u_long alignment, vm_paddr_t boundary, int options)
2402 {
2403         struct mtx *m_mtx;
2404         vm_object_t object;
2405         vm_paddr_t pa;
2406         vm_page_t m, m_run;
2407 #if VM_NRESERVLEVEL > 0
2408         int level;
2409 #endif
2410         int m_inc, order, run_ext, run_len;
2411
2412         KASSERT(npages > 0, ("npages is 0"));
2413         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2414         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2415         m_run = NULL;
2416         run_len = 0;
2417         m_mtx = NULL;
2418         for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2419                 KASSERT((m->flags & PG_MARKER) == 0,
2420                     ("page %p is PG_MARKER", m));
2421                 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2422                     ("fictitious page %p has invalid ref count", m));
2423
2424                 /*
2425                  * If the current page would be the start of a run, check its
2426                  * physical address against the end, alignment, and boundary
2427                  * conditions.  If it doesn't satisfy these conditions, either
2428                  * terminate the scan or advance to the next page that
2429                  * satisfies the failed condition.
2430                  */
2431                 if (run_len == 0) {
2432                         KASSERT(m_run == NULL, ("m_run != NULL"));
2433                         if (m + npages > m_end)
2434                                 break;
2435                         pa = VM_PAGE_TO_PHYS(m);
2436                         if ((pa & (alignment - 1)) != 0) {
2437                                 m_inc = atop(roundup2(pa, alignment) - pa);
2438                                 continue;
2439                         }
2440                         if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2441                             boundary) != 0) {
2442                                 m_inc = atop(roundup2(pa, boundary) - pa);
2443                                 continue;
2444                         }
2445                 } else
2446                         KASSERT(m_run != NULL, ("m_run == NULL"));
2447
2448                 vm_page_change_lock(m, &m_mtx);
2449                 m_inc = 1;
2450 retry:
2451                 if (vm_page_wired(m))
2452                         run_ext = 0;
2453 #if VM_NRESERVLEVEL > 0
2454                 else if ((level = vm_reserv_level(m)) >= 0 &&
2455                     (options & VPSC_NORESERV) != 0) {
2456                         run_ext = 0;
2457                         /* Advance to the end of the reservation. */
2458                         pa = VM_PAGE_TO_PHYS(m);
2459                         m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2460                             pa);
2461                 }
2462 #endif
2463                 else if ((object = m->object) != NULL) {
2464                         /*
2465                          * The page is considered eligible for relocation if
2466                          * and only if it could be laundered or reclaimed by
2467                          * the page daemon.
2468                          */
2469                         if (!VM_OBJECT_TRYRLOCK(object)) {
2470                                 mtx_unlock(m_mtx);
2471                                 VM_OBJECT_RLOCK(object);
2472                                 mtx_lock(m_mtx);
2473                                 if (m->object != object) {
2474                                         /*
2475                                          * The page may have been freed.
2476                                          */
2477                                         VM_OBJECT_RUNLOCK(object);
2478                                         goto retry;
2479                                 }
2480                         }
2481                         /* Don't care: PG_NODUMP, PG_ZERO. */
2482                         if (object->type != OBJT_DEFAULT &&
2483                             object->type != OBJT_SWAP &&
2484                             object->type != OBJT_VNODE) {
2485                                 run_ext = 0;
2486 #if VM_NRESERVLEVEL > 0
2487                         } else if ((options & VPSC_NOSUPER) != 0 &&
2488                             (level = vm_reserv_level_iffullpop(m)) >= 0) {
2489                                 run_ext = 0;
2490                                 /* Advance to the end of the superpage. */
2491                                 pa = VM_PAGE_TO_PHYS(m);
2492                                 m_inc = atop(roundup2(pa + 1,
2493                                     vm_reserv_size(level)) - pa);
2494 #endif
2495                         } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2496                             vm_page_queue(m) != PQ_NONE && !vm_page_busied(m) &&
2497                             !vm_page_wired(m)) {
2498                                 /*
2499                                  * The page is allocated but eligible for
2500                                  * relocation.  Extend the current run by one
2501                                  * page.
2502                                  */
2503                                 KASSERT(pmap_page_get_memattr(m) ==
2504                                     VM_MEMATTR_DEFAULT,
2505                                     ("page %p has an unexpected memattr", m));
2506                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2507                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2508                                     ("page %p has unexpected oflags", m));
2509                                 /* Don't care: PGA_NOSYNC. */
2510                                 run_ext = 1;
2511                         } else
2512                                 run_ext = 0;
2513                         VM_OBJECT_RUNLOCK(object);
2514 #if VM_NRESERVLEVEL > 0
2515                 } else if (level >= 0) {
2516                         /*
2517                          * The page is reserved but not yet allocated.  In
2518                          * other words, it is still free.  Extend the current
2519                          * run by one page.
2520                          */
2521                         run_ext = 1;
2522 #endif
2523                 } else if ((order = m->order) < VM_NFREEORDER) {
2524                         /*
2525                          * The page is enqueued in the physical memory
2526                          * allocator's free page queues.  Moreover, it is the
2527                          * first page in a power-of-two-sized run of
2528                          * contiguous free pages.  Add these pages to the end
2529                          * of the current run, and jump ahead.
2530                          */
2531                         run_ext = 1 << order;
2532                         m_inc = 1 << order;
2533                 } else {
2534                         /*
2535                          * Skip the page for one of the following reasons: (1)
2536                          * It is enqueued in the physical memory allocator's
2537                          * free page queues.  However, it is not the first
2538                          * page in a run of contiguous free pages.  (This case
2539                          * rarely occurs because the scan is performed in
2540                          * ascending order.) (2) It is not reserved, and it is
2541                          * transitioning from free to allocated.  (Conversely,
2542                          * the transition from allocated to free for managed
2543                          * pages is blocked by the page lock.) (3) It is
2544                          * allocated but not contained by an object and not
2545                          * wired, e.g., allocated by Xen's balloon driver.
2546                          */
2547                         run_ext = 0;
2548                 }
2549
2550                 /*
2551                  * Extend or reset the current run of pages.
2552                  */
2553                 if (run_ext > 0) {
2554                         if (run_len == 0)
2555                                 m_run = m;
2556                         run_len += run_ext;
2557                 } else {
2558                         if (run_len > 0) {
2559                                 m_run = NULL;
2560                                 run_len = 0;
2561                         }
2562                 }
2563         }
2564         if (m_mtx != NULL)
2565                 mtx_unlock(m_mtx);
2566         if (run_len >= npages)
2567                 return (m_run);
2568         return (NULL);
2569 }
2570
2571 /*
2572  *      vm_page_reclaim_run:
2573  *
2574  *      Try to relocate each of the allocated virtual pages within the
2575  *      specified run of physical pages to a new physical address.  Free the
2576  *      physical pages underlying the relocated virtual pages.  A virtual page
2577  *      is relocatable if and only if it could be laundered or reclaimed by
2578  *      the page daemon.  Whenever possible, a virtual page is relocated to a
2579  *      physical address above "high".
2580  *
2581  *      Returns 0 if every physical page within the run was already free or
2582  *      just freed by a successful relocation.  Otherwise, returns a non-zero
2583  *      value indicating why the last attempt to relocate a virtual page was
2584  *      unsuccessful.
2585  *
2586  *      "req_class" must be an allocation class.
2587  */
2588 static int
2589 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2590     vm_paddr_t high)
2591 {
2592         struct vm_domain *vmd;
2593         struct mtx *m_mtx;
2594         struct spglist free;
2595         vm_object_t object;
2596         vm_paddr_t pa;
2597         vm_page_t m, m_end, m_new;
2598         int error, order, req;
2599
2600         KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2601             ("req_class is not an allocation class"));
2602         SLIST_INIT(&free);
2603         error = 0;
2604         m = m_run;
2605         m_end = m_run + npages;
2606         m_mtx = NULL;
2607         for (; error == 0 && m < m_end; m++) {
2608                 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2609                     ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2610
2611                 /*
2612                  * Avoid releasing and reacquiring the same page lock.
2613                  */
2614                 vm_page_change_lock(m, &m_mtx);
2615 retry:
2616                 /*
2617                  * Racily check for wirings.  Races are handled below.
2618                  */
2619                 if (vm_page_wired(m))
2620                         error = EBUSY;
2621                 else if ((object = m->object) != NULL) {
2622                         /*
2623                          * The page is relocated if and only if it could be
2624                          * laundered or reclaimed by the page daemon.
2625                          */
2626                         if (!VM_OBJECT_TRYWLOCK(object)) {
2627                                 mtx_unlock(m_mtx);
2628                                 VM_OBJECT_WLOCK(object);
2629                                 mtx_lock(m_mtx);
2630                                 if (m->object != object) {
2631                                         /*
2632                                          * The page may have been freed.
2633                                          */
2634                                         VM_OBJECT_WUNLOCK(object);
2635                                         goto retry;
2636                                 }
2637                         }
2638                         /* Don't care: PG_NODUMP, PG_ZERO. */
2639                         if (object->type != OBJT_DEFAULT &&
2640                             object->type != OBJT_SWAP &&
2641                             object->type != OBJT_VNODE)
2642                                 error = EINVAL;
2643                         else if (object->memattr != VM_MEMATTR_DEFAULT)
2644                                 error = EINVAL;
2645                         else if (vm_page_queue(m) != PQ_NONE &&
2646                             vm_page_tryxbusy(m) != 0) {
2647                                 if (vm_page_wired(m)) {
2648                                         vm_page_xunbusy(m);
2649                                         error = EBUSY;
2650                                         goto unlock;
2651                                 }
2652                                 KASSERT(pmap_page_get_memattr(m) ==
2653                                     VM_MEMATTR_DEFAULT,
2654                                     ("page %p has an unexpected memattr", m));
2655                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2656                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2657                                     ("page %p has unexpected oflags", m));
2658                                 /* Don't care: PGA_NOSYNC. */
2659                                 if (!vm_page_none_valid(m)) {
2660                                         /*
2661                                          * First, try to allocate a new page
2662                                          * that is above "high".  Failing
2663                                          * that, try to allocate a new page
2664                                          * that is below "m_run".  Allocate
2665                                          * the new page between the end of
2666                                          * "m_run" and "high" only as a last
2667                                          * resort.
2668                                          */
2669                                         req = req_class | VM_ALLOC_NOOBJ;
2670                                         if ((m->flags & PG_NODUMP) != 0)
2671                                                 req |= VM_ALLOC_NODUMP;
2672                                         if (trunc_page(high) !=
2673                                             ~(vm_paddr_t)PAGE_MASK) {
2674                                                 m_new = vm_page_alloc_contig(
2675                                                     NULL, 0, req, 1,
2676                                                     round_page(high),
2677                                                     ~(vm_paddr_t)0,
2678                                                     PAGE_SIZE, 0,
2679                                                     VM_MEMATTR_DEFAULT);
2680                                         } else
2681                                                 m_new = NULL;
2682                                         if (m_new == NULL) {
2683                                                 pa = VM_PAGE_TO_PHYS(m_run);
2684                                                 m_new = vm_page_alloc_contig(
2685                                                     NULL, 0, req, 1,
2686                                                     0, pa - 1, PAGE_SIZE, 0,
2687                                                     VM_MEMATTR_DEFAULT);
2688                                         }
2689                                         if (m_new == NULL) {
2690                                                 pa += ptoa(npages);
2691                                                 m_new = vm_page_alloc_contig(
2692                                                     NULL, 0, req, 1,
2693                                                     pa, high, PAGE_SIZE, 0,
2694                                                     VM_MEMATTR_DEFAULT);
2695                                         }
2696                                         if (m_new == NULL) {
2697                                                 vm_page_xunbusy(m);
2698                                                 error = ENOMEM;
2699                                                 goto unlock;
2700                                         }
2701
2702                                         /*
2703                                          * Unmap the page and check for new
2704                                          * wirings that may have been acquired
2705                                          * through a pmap lookup.
2706                                          */
2707                                         if (object->ref_count != 0 &&
2708                                             !vm_page_try_remove_all(m)) {
2709                                                 vm_page_free(m_new);
2710                                                 error = EBUSY;
2711                                                 goto unlock;
2712                                         }
2713
2714                                         /*
2715                                          * Replace "m" with the new page.  For
2716                                          * vm_page_replace(), "m" must be busy
2717                                          * and dequeued.  Finally, change "m"
2718                                          * as if vm_page_free() was called.
2719                                          */
2720                                         m_new->aflags = m->aflags &
2721                                             ~PGA_QUEUE_STATE_MASK;
2722                                         KASSERT(m_new->oflags == VPO_UNMANAGED,
2723                                             ("page %p is managed", m_new));
2724                                         pmap_copy_page(m, m_new);
2725                                         m_new->valid = m->valid;
2726                                         m_new->dirty = m->dirty;
2727                                         m->flags &= ~PG_ZERO;
2728                                         vm_page_dequeue(m);
2729                                         vm_page_replace_checked(m_new, object,
2730                                             m->pindex, m);
2731                                         if (vm_page_free_prep(m))
2732                                                 SLIST_INSERT_HEAD(&free, m,
2733                                                     plinks.s.ss);
2734
2735                                         /*
2736                                          * The new page must be deactivated
2737                                          * before the object is unlocked.
2738                                          */
2739                                         vm_page_change_lock(m_new, &m_mtx);
2740                                         vm_page_deactivate(m_new);
2741                                 } else {
2742                                         m->flags &= ~PG_ZERO;
2743                                         vm_page_dequeue(m);
2744                                         if (vm_page_free_prep(m))
2745                                                 SLIST_INSERT_HEAD(&free, m,
2746                                                     plinks.s.ss);
2747                                         KASSERT(m->dirty == 0,
2748                                             ("page %p is dirty", m));
2749                                 }
2750                         } else
2751                                 error = EBUSY;
2752 unlock:
2753                         VM_OBJECT_WUNLOCK(object);
2754                 } else {
2755                         MPASS(vm_phys_domain(m) == domain);
2756                         vmd = VM_DOMAIN(domain);
2757                         vm_domain_free_lock(vmd);
2758                         order = m->order;
2759                         if (order < VM_NFREEORDER) {
2760                                 /*
2761                                  * The page is enqueued in the physical memory
2762                                  * allocator's free page queues.  Moreover, it
2763                                  * is the first page in a power-of-two-sized
2764                                  * run of contiguous free pages.  Jump ahead
2765                                  * to the last page within that run, and
2766                                  * continue from there.
2767                                  */
2768                                 m += (1 << order) - 1;
2769                         }
2770 #if VM_NRESERVLEVEL > 0
2771                         else if (vm_reserv_is_page_free(m))
2772                                 order = 0;
2773 #endif
2774                         vm_domain_free_unlock(vmd);
2775                         if (order == VM_NFREEORDER)
2776                                 error = EINVAL;
2777                 }
2778         }
2779         if (m_mtx != NULL)
2780                 mtx_unlock(m_mtx);
2781         if ((m = SLIST_FIRST(&free)) != NULL) {
2782                 int cnt;
2783
2784                 vmd = VM_DOMAIN(domain);
2785                 cnt = 0;
2786                 vm_domain_free_lock(vmd);
2787                 do {
2788                         MPASS(vm_phys_domain(m) == domain);
2789                         SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2790                         vm_phys_free_pages(m, 0);
2791                         cnt++;
2792                 } while ((m = SLIST_FIRST(&free)) != NULL);
2793                 vm_domain_free_unlock(vmd);
2794                 vm_domain_freecnt_inc(vmd, cnt);
2795         }
2796         return (error);
2797 }
2798
2799 #define NRUNS   16
2800
2801 CTASSERT(powerof2(NRUNS));
2802
2803 #define RUN_INDEX(count)        ((count) & (NRUNS - 1))
2804
2805 #define MIN_RECLAIM     8
2806
2807 /*
2808  *      vm_page_reclaim_contig:
2809  *
2810  *      Reclaim allocated, contiguous physical memory satisfying the specified
2811  *      conditions by relocating the virtual pages using that physical memory.
2812  *      Returns true if reclamation is successful and false otherwise.  Since
2813  *      relocation requires the allocation of physical pages, reclamation may
2814  *      fail due to a shortage of free pages.  When reclamation fails, callers
2815  *      are expected to perform vm_wait() before retrying a failed allocation
2816  *      operation, e.g., vm_page_alloc_contig().
2817  *
2818  *      The caller must always specify an allocation class through "req".
2819  *
2820  *      allocation classes:
2821  *      VM_ALLOC_NORMAL         normal process request
2822  *      VM_ALLOC_SYSTEM         system *really* needs a page
2823  *      VM_ALLOC_INTERRUPT      interrupt time request
2824  *
2825  *      The optional allocation flags are ignored.
2826  *
2827  *      "npages" must be greater than zero.  Both "alignment" and "boundary"
2828  *      must be a power of two.
2829  */
2830 bool
2831 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2832     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2833 {
2834         struct vm_domain *vmd;
2835         vm_paddr_t curr_low;
2836         vm_page_t m_run, m_runs[NRUNS];
2837         u_long count, reclaimed;
2838         int error, i, options, req_class;
2839
2840         KASSERT(npages > 0, ("npages is 0"));
2841         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2842         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2843         req_class = req & VM_ALLOC_CLASS_MASK;
2844
2845         /*
2846          * The page daemon is allowed to dig deeper into the free page list.
2847          */
2848         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2849                 req_class = VM_ALLOC_SYSTEM;
2850
2851         /*
2852          * Return if the number of free pages cannot satisfy the requested
2853          * allocation.
2854          */
2855         vmd = VM_DOMAIN(domain);
2856         count = vmd->vmd_free_count;
2857         if (count < npages + vmd->vmd_free_reserved || (count < npages +
2858             vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2859             (count < npages && req_class == VM_ALLOC_INTERRUPT))
2860                 return (false);
2861
2862         /*
2863          * Scan up to three times, relaxing the restrictions ("options") on
2864          * the reclamation of reservations and superpages each time.
2865          */
2866         for (options = VPSC_NORESERV;;) {
2867                 /*
2868                  * Find the highest runs that satisfy the given constraints
2869                  * and restrictions, and record them in "m_runs".
2870                  */
2871                 curr_low = low;
2872                 count = 0;
2873                 for (;;) {
2874                         m_run = vm_phys_scan_contig(domain, npages, curr_low,
2875                             high, alignment, boundary, options);
2876                         if (m_run == NULL)
2877                                 break;
2878                         curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2879                         m_runs[RUN_INDEX(count)] = m_run;
2880                         count++;
2881                 }
2882
2883                 /*
2884                  * Reclaim the highest runs in LIFO (descending) order until
2885                  * the number of reclaimed pages, "reclaimed", is at least
2886                  * MIN_RECLAIM.  Reset "reclaimed" each time because each
2887                  * reclamation is idempotent, and runs will (likely) recur
2888                  * from one scan to the next as restrictions are relaxed.
2889                  */
2890                 reclaimed = 0;
2891                 for (i = 0; count > 0 && i < NRUNS; i++) {
2892                         count--;
2893                         m_run = m_runs[RUN_INDEX(count)];
2894                         error = vm_page_reclaim_run(req_class, domain, npages,
2895                             m_run, high);
2896                         if (error == 0) {
2897                                 reclaimed += npages;
2898                                 if (reclaimed >= MIN_RECLAIM)
2899                                         return (true);
2900                         }
2901                 }
2902
2903                 /*
2904                  * Either relax the restrictions on the next scan or return if
2905                  * the last scan had no restrictions.
2906                  */
2907                 if (options == VPSC_NORESERV)
2908                         options = VPSC_NOSUPER;
2909                 else if (options == VPSC_NOSUPER)
2910                         options = VPSC_ANY;
2911                 else if (options == VPSC_ANY)
2912                         return (reclaimed != 0);
2913         }
2914 }
2915
2916 bool
2917 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2918     u_long alignment, vm_paddr_t boundary)
2919 {
2920         struct vm_domainset_iter di;
2921         int domain;
2922         bool ret;
2923
2924         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2925         do {
2926                 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2927                     high, alignment, boundary);
2928                 if (ret)
2929                         break;
2930         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2931
2932         return (ret);
2933 }
2934
2935 /*
2936  * Set the domain in the appropriate page level domainset.
2937  */
2938 void
2939 vm_domain_set(struct vm_domain *vmd)
2940 {
2941
2942         mtx_lock(&vm_domainset_lock);
2943         if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2944                 vmd->vmd_minset = 1;
2945                 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2946         }
2947         if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2948                 vmd->vmd_severeset = 1;
2949                 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
2950         }
2951         mtx_unlock(&vm_domainset_lock);
2952 }
2953
2954 /*
2955  * Clear the domain from the appropriate page level domainset.
2956  */
2957 void
2958 vm_domain_clear(struct vm_domain *vmd)
2959 {
2960
2961         mtx_lock(&vm_domainset_lock);
2962         if (vmd->vmd_minset && !vm_paging_min(vmd)) {
2963                 vmd->vmd_minset = 0;
2964                 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
2965                 if (vm_min_waiters != 0) {
2966                         vm_min_waiters = 0;
2967                         wakeup(&vm_min_domains);
2968                 }
2969         }
2970         if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
2971                 vmd->vmd_severeset = 0;
2972                 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
2973                 if (vm_severe_waiters != 0) {
2974                         vm_severe_waiters = 0;
2975                         wakeup(&vm_severe_domains);
2976                 }
2977         }
2978
2979         /*
2980          * If pageout daemon needs pages, then tell it that there are
2981          * some free.
2982          */
2983         if (vmd->vmd_pageout_pages_needed &&
2984             vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
2985                 wakeup(&vmd->vmd_pageout_pages_needed);
2986                 vmd->vmd_pageout_pages_needed = 0;
2987         }
2988
2989         /* See comments in vm_wait_doms(). */
2990         if (vm_pageproc_waiters) {
2991                 vm_pageproc_waiters = 0;
2992                 wakeup(&vm_pageproc_waiters);
2993         }
2994         mtx_unlock(&vm_domainset_lock);
2995 }
2996
2997 /*
2998  * Wait for free pages to exceed the min threshold globally.
2999  */
3000 void
3001 vm_wait_min(void)
3002 {
3003
3004         mtx_lock(&vm_domainset_lock);
3005         while (vm_page_count_min()) {
3006                 vm_min_waiters++;
3007                 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3008         }
3009         mtx_unlock(&vm_domainset_lock);
3010 }
3011
3012 /*
3013  * Wait for free pages to exceed the severe threshold globally.
3014  */
3015 void
3016 vm_wait_severe(void)
3017 {
3018
3019         mtx_lock(&vm_domainset_lock);
3020         while (vm_page_count_severe()) {
3021                 vm_severe_waiters++;
3022                 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3023                     "vmwait", 0);
3024         }
3025         mtx_unlock(&vm_domainset_lock);
3026 }
3027
3028 u_int
3029 vm_wait_count(void)
3030 {
3031
3032         return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3033 }
3034
3035 void
3036 vm_wait_doms(const domainset_t *wdoms)
3037 {
3038
3039         /*
3040          * We use racey wakeup synchronization to avoid expensive global
3041          * locking for the pageproc when sleeping with a non-specific vm_wait.
3042          * To handle this, we only sleep for one tick in this instance.  It
3043          * is expected that most allocations for the pageproc will come from
3044          * kmem or vm_page_grab* which will use the more specific and
3045          * race-free vm_wait_domain().
3046          */
3047         if (curproc == pageproc) {
3048                 mtx_lock(&vm_domainset_lock);
3049                 vm_pageproc_waiters++;
3050                 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3051                     "pageprocwait", 1);
3052         } else {
3053                 /*
3054                  * XXX Ideally we would wait only until the allocation could
3055                  * be satisfied.  This condition can cause new allocators to
3056                  * consume all freed pages while old allocators wait.
3057                  */
3058                 mtx_lock(&vm_domainset_lock);
3059                 if (vm_page_count_min_set(wdoms)) {
3060                         vm_min_waiters++;
3061                         msleep(&vm_min_domains, &vm_domainset_lock,
3062                             PVM | PDROP, "vmwait", 0);
3063                 } else
3064                         mtx_unlock(&vm_domainset_lock);
3065         }
3066 }
3067
3068 /*
3069  *      vm_wait_domain:
3070  *
3071  *      Sleep until free pages are available for allocation.
3072  *      - Called in various places after failed memory allocations.
3073  */
3074 void
3075 vm_wait_domain(int domain)
3076 {
3077         struct vm_domain *vmd;
3078         domainset_t wdom;
3079
3080         vmd = VM_DOMAIN(domain);
3081         vm_domain_free_assert_unlocked(vmd);
3082
3083         if (curproc == pageproc) {
3084                 mtx_lock(&vm_domainset_lock);
3085                 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3086                         vmd->vmd_pageout_pages_needed = 1;
3087                         msleep(&vmd->vmd_pageout_pages_needed,
3088                             &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3089                 } else
3090                         mtx_unlock(&vm_domainset_lock);
3091         } else {
3092                 if (pageproc == NULL)
3093                         panic("vm_wait in early boot");
3094                 DOMAINSET_ZERO(&wdom);
3095                 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3096                 vm_wait_doms(&wdom);
3097         }
3098 }
3099
3100 /*
3101  *      vm_wait:
3102  *
3103  *      Sleep until free pages are available for allocation in the
3104  *      affinity domains of the obj.  If obj is NULL, the domain set
3105  *      for the calling thread is used.
3106  *      Called in various places after failed memory allocations.
3107  */
3108 void
3109 vm_wait(vm_object_t obj)
3110 {
3111         struct domainset *d;
3112
3113         d = NULL;
3114
3115         /*
3116          * Carefully fetch pointers only once: the struct domainset
3117          * itself is ummutable but the pointer might change.
3118          */
3119         if (obj != NULL)
3120                 d = obj->domain.dr_policy;
3121         if (d == NULL)
3122                 d = curthread->td_domain.dr_policy;
3123
3124         vm_wait_doms(&d->ds_mask);
3125 }
3126
3127 /*
3128  *      vm_domain_alloc_fail:
3129  *
3130  *      Called when a page allocation function fails.  Informs the
3131  *      pagedaemon and performs the requested wait.  Requires the
3132  *      domain_free and object lock on entry.  Returns with the
3133  *      object lock held and free lock released.  Returns an error when
3134  *      retry is necessary.
3135  *
3136  */
3137 static int
3138 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3139 {
3140
3141         vm_domain_free_assert_unlocked(vmd);
3142
3143         atomic_add_int(&vmd->vmd_pageout_deficit,
3144             max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3145         if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3146                 if (object != NULL) 
3147                         VM_OBJECT_WUNLOCK(object);
3148                 vm_wait_domain(vmd->vmd_domain);
3149                 if (object != NULL) 
3150                         VM_OBJECT_WLOCK(object);
3151                 if (req & VM_ALLOC_WAITOK)
3152                         return (EAGAIN);
3153         }
3154
3155         return (0);
3156 }
3157
3158 /*
3159  *      vm_waitpfault:
3160  *
3161  *      Sleep until free pages are available for allocation.
3162  *      - Called only in vm_fault so that processes page faulting
3163  *        can be easily tracked.
3164  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3165  *        processes will be able to grab memory first.  Do not change
3166  *        this balance without careful testing first.
3167  */
3168 void
3169 vm_waitpfault(struct domainset *dset, int timo)
3170 {
3171
3172         /*
3173          * XXX Ideally we would wait only until the allocation could
3174          * be satisfied.  This condition can cause new allocators to
3175          * consume all freed pages while old allocators wait.
3176          */
3177         mtx_lock(&vm_domainset_lock);
3178         if (vm_page_count_min_set(&dset->ds_mask)) {
3179                 vm_min_waiters++;
3180                 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3181                     "pfault", timo);
3182         } else
3183                 mtx_unlock(&vm_domainset_lock);
3184 }
3185
3186 static struct vm_pagequeue *
3187 vm_page_pagequeue(vm_page_t m)
3188 {
3189
3190         uint8_t queue;
3191
3192         if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3193                 return (NULL);
3194         return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3195 }
3196
3197 static inline void
3198 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m)
3199 {
3200         struct vm_domain *vmd;
3201         uint8_t qflags;
3202
3203         CRITICAL_ASSERT(curthread);
3204         vm_pagequeue_assert_locked(pq);
3205
3206         /*
3207          * The page daemon is allowed to set m->queue = PQ_NONE without
3208          * the page queue lock held.  In this case it is about to free the page,
3209          * which must not have any queue state.
3210          */
3211         qflags = atomic_load_8(&m->aflags);
3212         KASSERT(pq == vm_page_pagequeue(m) ||
3213             (qflags & PGA_QUEUE_STATE_MASK) == 0,
3214             ("page %p doesn't belong to queue %p but has aflags %#x",
3215             m, pq, qflags));
3216
3217         if ((qflags & PGA_DEQUEUE) != 0) {
3218                 if (__predict_true((qflags & PGA_ENQUEUED) != 0))
3219                         vm_pagequeue_remove(pq, m);
3220                 vm_page_dequeue_complete(m);
3221                 counter_u64_add(queue_ops, 1);
3222         } else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) {
3223                 if ((qflags & PGA_ENQUEUED) != 0)
3224                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3225                 else {
3226                         vm_pagequeue_cnt_inc(pq);
3227                         vm_page_aflag_set(m, PGA_ENQUEUED);
3228                 }
3229
3230                 /*
3231                  * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.
3232                  * In particular, if both flags are set in close succession,
3233                  * only PGA_REQUEUE_HEAD will be applied, even if it was set
3234                  * first.
3235                  */
3236                 if ((qflags & PGA_REQUEUE_HEAD) != 0) {
3237                         KASSERT(m->queue == PQ_INACTIVE,
3238                             ("head enqueue not supported for page %p", m));
3239                         vmd = vm_pagequeue_domain(m);
3240                         TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3241                 } else
3242                         TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3243
3244                 vm_page_aflag_clear(m, qflags & (PGA_REQUEUE |
3245                     PGA_REQUEUE_HEAD));
3246                 counter_u64_add(queue_ops, 1);
3247         } else {
3248                 counter_u64_add(queue_nops, 1);
3249         }
3250 }
3251
3252 static void
3253 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3254     uint8_t queue)
3255 {
3256         vm_page_t m;
3257         int i;
3258
3259         for (i = 0; i < bq->bq_cnt; i++) {
3260                 m = bq->bq_pa[i];
3261                 if (__predict_false(m->queue != queue))
3262                         continue;
3263                 vm_pqbatch_process_page(pq, m);
3264         }
3265         vm_batchqueue_init(bq);
3266 }
3267
3268 /*
3269  *      vm_page_pqbatch_submit:         [ internal use only ]
3270  *
3271  *      Enqueue a page in the specified page queue's batched work queue.
3272  *      The caller must have encoded the requested operation in the page
3273  *      structure's aflags field.
3274  */
3275 void
3276 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3277 {
3278         struct vm_batchqueue *bq;
3279         struct vm_pagequeue *pq;
3280         int domain;
3281
3282         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3283             ("page %p is unmanaged", m));
3284         KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL,
3285             ("missing synchronization for page %p", m));
3286         KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3287
3288         domain = vm_phys_domain(m);
3289         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3290
3291         critical_enter();
3292         bq = DPCPU_PTR(pqbatch[domain][queue]);
3293         if (vm_batchqueue_insert(bq, m)) {
3294                 critical_exit();
3295                 return;
3296         }
3297         critical_exit();
3298         vm_pagequeue_lock(pq);
3299         critical_enter();
3300         bq = DPCPU_PTR(pqbatch[domain][queue]);
3301         vm_pqbatch_process(pq, bq, queue);
3302
3303         /*
3304          * The page may have been logically dequeued before we acquired the
3305          * page queue lock.  In this case, since we either hold the page lock
3306          * or the page is being freed, a different thread cannot be concurrently
3307          * enqueuing the page.
3308          */
3309         if (__predict_true(m->queue == queue))
3310                 vm_pqbatch_process_page(pq, m);
3311         else {
3312                 KASSERT(m->queue == PQ_NONE,
3313                     ("invalid queue transition for page %p", m));
3314                 KASSERT((m->aflags & PGA_ENQUEUED) == 0,
3315                     ("page %p is enqueued with invalid queue index", m));
3316         }
3317         vm_pagequeue_unlock(pq);
3318         critical_exit();
3319 }
3320
3321 /*
3322  *      vm_page_pqbatch_drain:          [ internal use only ]
3323  *
3324  *      Force all per-CPU page queue batch queues to be drained.  This is
3325  *      intended for use in severe memory shortages, to ensure that pages
3326  *      do not remain stuck in the batch queues.
3327  */
3328 void
3329 vm_page_pqbatch_drain(void)
3330 {
3331         struct thread *td;
3332         struct vm_domain *vmd;
3333         struct vm_pagequeue *pq;
3334         int cpu, domain, queue;
3335
3336         td = curthread;
3337         CPU_FOREACH(cpu) {
3338                 thread_lock(td);
3339                 sched_bind(td, cpu);
3340                 thread_unlock(td);
3341
3342                 for (domain = 0; domain < vm_ndomains; domain++) {
3343                         vmd = VM_DOMAIN(domain);
3344                         for (queue = 0; queue < PQ_COUNT; queue++) {
3345                                 pq = &vmd->vmd_pagequeues[queue];
3346                                 vm_pagequeue_lock(pq);
3347                                 critical_enter();
3348                                 vm_pqbatch_process(pq,
3349                                     DPCPU_PTR(pqbatch[domain][queue]), queue);
3350                                 critical_exit();
3351                                 vm_pagequeue_unlock(pq);
3352                         }
3353                 }
3354         }
3355         thread_lock(td);
3356         sched_unbind(td);
3357         thread_unlock(td);
3358 }
3359
3360 /*
3361  * Complete the logical removal of a page from a page queue.  We must be
3362  * careful to synchronize with the page daemon, which may be concurrently
3363  * examining the page with only the page lock held.  The page must not be
3364  * in a state where it appears to be logically enqueued.
3365  */
3366 static void
3367 vm_page_dequeue_complete(vm_page_t m)
3368 {
3369
3370         m->queue = PQ_NONE;
3371         atomic_thread_fence_rel();
3372         vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK);
3373 }
3374
3375 /*
3376  *      vm_page_dequeue_deferred:       [ internal use only ]
3377  *
3378  *      Request removal of the given page from its current page
3379  *      queue.  Physical removal from the queue may be deferred
3380  *      indefinitely.
3381  *
3382  *      The page must be locked.
3383  */
3384 void
3385 vm_page_dequeue_deferred(vm_page_t m)
3386 {
3387         uint8_t queue;
3388
3389         vm_page_assert_locked(m);
3390
3391         if ((queue = vm_page_queue(m)) == PQ_NONE)
3392                 return;
3393
3394         /*
3395          * Set PGA_DEQUEUE if it is not already set to handle a concurrent call
3396          * to vm_page_dequeue_deferred_free().  In particular, avoid modifying
3397          * the page's queue state once vm_page_dequeue_deferred_free() has been
3398          * called.  In the event of a race, two batch queue entries for the page
3399          * will be created, but the second will have no effect.
3400          */
3401         if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE, PGA_DEQUEUE))
3402                 vm_page_pqbatch_submit(m, queue);
3403 }
3404
3405 /*
3406  * A variant of vm_page_dequeue_deferred() that does not assert the page
3407  * lock and is only to be called from vm_page_free_prep().  Because the
3408  * page is being freed, we can assume that nothing other than the page
3409  * daemon is scheduling queue operations on this page, so we get for
3410  * free the mutual exclusion that is otherwise provided by the page lock.
3411  * To handle races, the page daemon must take care to atomically check
3412  * for PGA_DEQUEUE when updating queue state.
3413  */
3414 static void
3415 vm_page_dequeue_deferred_free(vm_page_t m)
3416 {
3417         uint8_t queue;
3418
3419         KASSERT(m->ref_count == 0, ("page %p has references", m));
3420
3421         for (;;) {
3422                 if ((m->aflags & PGA_DEQUEUE) != 0)
3423                         return;
3424                 atomic_thread_fence_acq();
3425                 if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3426                         return;
3427                 if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE,
3428                     PGA_DEQUEUE)) {
3429                         vm_page_pqbatch_submit(m, queue);
3430                         break;
3431                 }
3432         }
3433 }
3434
3435 /*
3436  *      vm_page_dequeue:
3437  *
3438  *      Remove the page from whichever page queue it's in, if any.
3439  *      The page must either be locked or unallocated.  This constraint
3440  *      ensures that the queue state of the page will remain consistent
3441  *      after this function returns.
3442  */
3443 void
3444 vm_page_dequeue(vm_page_t m)
3445 {
3446         struct vm_pagequeue *pq, *pq1;
3447         uint8_t aflags;
3448
3449         KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL,
3450             ("page %p is allocated and unlocked", m));
3451
3452         for (pq = vm_page_pagequeue(m);; pq = pq1) {
3453                 if (pq == NULL) {
3454                         /*
3455                          * A thread may be concurrently executing
3456                          * vm_page_dequeue_complete().  Ensure that all queue
3457                          * state is cleared before we return.
3458                          */
3459                         aflags = atomic_load_8(&m->aflags);
3460                         if ((aflags & PGA_QUEUE_STATE_MASK) == 0)
3461                                 return;
3462                         KASSERT((aflags & PGA_DEQUEUE) != 0,
3463                             ("page %p has unexpected queue state flags %#x",
3464                             m, aflags));
3465
3466                         /*
3467                          * Busy wait until the thread updating queue state is
3468                          * finished.  Such a thread must be executing in a
3469                          * critical section.
3470                          */
3471                         cpu_spinwait();
3472                         pq1 = vm_page_pagequeue(m);
3473                         continue;
3474                 }
3475                 vm_pagequeue_lock(pq);
3476                 if ((pq1 = vm_page_pagequeue(m)) == pq)
3477                         break;
3478                 vm_pagequeue_unlock(pq);
3479         }
3480         KASSERT(pq == vm_page_pagequeue(m),
3481             ("%s: page %p migrated directly between queues", __func__, m));
3482         KASSERT((m->aflags & PGA_DEQUEUE) != 0 ||
3483             mtx_owned(vm_page_lockptr(m)),
3484             ("%s: queued unlocked page %p", __func__, m));
3485
3486         if ((m->aflags & PGA_ENQUEUED) != 0)
3487                 vm_pagequeue_remove(pq, m);
3488         vm_page_dequeue_complete(m);
3489         vm_pagequeue_unlock(pq);
3490 }
3491
3492 /*
3493  * Schedule the given page for insertion into the specified page queue.
3494  * Physical insertion of the page may be deferred indefinitely.
3495  */
3496 static void
3497 vm_page_enqueue(vm_page_t m, uint8_t queue)
3498 {
3499
3500         vm_page_assert_locked(m);
3501         KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
3502             ("%s: page %p is already enqueued", __func__, m));
3503
3504         m->queue = queue;
3505         if ((m->aflags & PGA_REQUEUE) == 0)
3506                 vm_page_aflag_set(m, PGA_REQUEUE);
3507         vm_page_pqbatch_submit(m, queue);
3508 }
3509
3510 /*
3511  *      vm_page_requeue:                [ internal use only ]
3512  *
3513  *      Schedule a requeue of the given page.
3514  *
3515  *      The page must be locked.
3516  */
3517 void
3518 vm_page_requeue(vm_page_t m)
3519 {
3520
3521         vm_page_assert_locked(m);
3522         KASSERT(vm_page_queue(m) != PQ_NONE,
3523             ("%s: page %p is not logically enqueued", __func__, m));
3524
3525         if ((m->aflags & PGA_REQUEUE) == 0)
3526                 vm_page_aflag_set(m, PGA_REQUEUE);
3527         vm_page_pqbatch_submit(m, atomic_load_8(&m->queue));
3528 }
3529
3530 /*
3531  *      vm_page_swapqueue:              [ internal use only ]
3532  *
3533  *      Move the page from one queue to another, or to the tail of its
3534  *      current queue, in the face of a possible concurrent call to
3535  *      vm_page_dequeue_deferred_free().
3536  */
3537 void
3538 vm_page_swapqueue(vm_page_t m, uint8_t oldq, uint8_t newq)
3539 {
3540         struct vm_pagequeue *pq;
3541         vm_page_t next;
3542         bool queued;
3543
3544         KASSERT(oldq < PQ_COUNT && newq < PQ_COUNT && oldq != newq,
3545             ("vm_page_swapqueue: invalid queues (%d, %d)", oldq, newq));
3546         vm_page_assert_locked(m);
3547
3548         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[oldq];
3549         vm_pagequeue_lock(pq);
3550
3551         /*
3552          * The physical queue state might change at any point before the page
3553          * queue lock is acquired, so we must verify that we hold the correct
3554          * lock before proceeding.
3555          */
3556         if (__predict_false(m->queue != oldq)) {
3557                 vm_pagequeue_unlock(pq);
3558                 return;
3559         }
3560
3561         /*
3562          * Once the queue index of the page changes, there is nothing
3563          * synchronizing with further updates to the physical queue state.
3564          * Therefore we must remove the page from the queue now in anticipation
3565          * of a successful commit, and be prepared to roll back.
3566          */
3567         if (__predict_true((m->aflags & PGA_ENQUEUED) != 0)) {
3568                 next = TAILQ_NEXT(m, plinks.q);
3569                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3570                 vm_page_aflag_clear(m, PGA_ENQUEUED);
3571                 queued = true;
3572         } else {
3573                 queued = false;
3574         }
3575
3576         /*
3577          * Atomically update the queue field and set PGA_REQUEUE while
3578          * ensuring that PGA_DEQUEUE has not been set.
3579          */
3580         if (__predict_false(!vm_page_pqstate_cmpset(m, oldq, newq, PGA_DEQUEUE,
3581             PGA_REQUEUE))) {
3582                 if (queued) {
3583                         vm_page_aflag_set(m, PGA_ENQUEUED);
3584                         if (next != NULL)
3585                                 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3586                         else
3587                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3588                 }
3589                 vm_pagequeue_unlock(pq);
3590                 return;
3591         }
3592         vm_pagequeue_cnt_dec(pq);
3593         vm_pagequeue_unlock(pq);
3594         vm_page_pqbatch_submit(m, newq);
3595 }
3596
3597 /*
3598  *      vm_page_free_prep:
3599  *
3600  *      Prepares the given page to be put on the free list,
3601  *      disassociating it from any VM object. The caller may return
3602  *      the page to the free list only if this function returns true.
3603  *
3604  *      The object must be locked.  The page must be locked if it is
3605  *      managed.
3606  */
3607 bool
3608 vm_page_free_prep(vm_page_t m)
3609 {
3610
3611         /*
3612          * Synchronize with threads that have dropped a reference to this
3613          * page.
3614          */
3615         atomic_thread_fence_acq();
3616
3617 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3618         if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3619                 uint64_t *p;
3620                 int i;
3621                 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3622                 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3623                         KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3624                             m, i, (uintmax_t)*p));
3625         }
3626 #endif
3627         if ((m->oflags & VPO_UNMANAGED) == 0) {
3628                 KASSERT(!pmap_page_is_mapped(m),
3629                     ("vm_page_free_prep: freeing mapped page %p", m));
3630                 KASSERT((m->aflags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3631                     ("vm_page_free_prep: mapping flags set in page %p", m));
3632         } else {
3633                 KASSERT(m->queue == PQ_NONE,
3634                     ("vm_page_free_prep: unmanaged page %p is queued", m));
3635         }
3636         VM_CNT_INC(v_tfree);
3637
3638         if (vm_page_sbusied(m))
3639                 panic("vm_page_free_prep: freeing shared busy page %p", m);
3640
3641         if (m->object != NULL) {
3642                 vm_page_object_remove(m);
3643
3644                 /*
3645                  * The object reference can be released without an atomic
3646                  * operation.
3647                  */
3648                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3649                     m->ref_count == VPRC_OBJREF,
3650                     ("vm_page_free_prep: page %p has unexpected ref_count %u",
3651                     m, m->ref_count));
3652                 m->object = NULL;
3653                 m->ref_count -= VPRC_OBJREF;
3654         }
3655
3656         if (vm_page_xbusied(m))
3657                 vm_page_xunbusy(m);
3658
3659         /*
3660          * If fictitious remove object association and
3661          * return.
3662          */
3663         if ((m->flags & PG_FICTITIOUS) != 0) {
3664                 KASSERT(m->ref_count == 1,
3665                     ("fictitious page %p is referenced", m));
3666                 KASSERT(m->queue == PQ_NONE,
3667                     ("fictitious page %p is queued", m));
3668                 return (false);
3669         }
3670
3671         /*
3672          * Pages need not be dequeued before they are returned to the physical
3673          * memory allocator, but they must at least be marked for a deferred
3674          * dequeue.
3675          */
3676         if ((m->oflags & VPO_UNMANAGED) == 0)
3677                 vm_page_dequeue_deferred_free(m);
3678
3679         m->valid = 0;
3680         vm_page_undirty(m);
3681
3682         if (m->ref_count != 0)
3683                 panic("vm_page_free_prep: page %p has references", m);
3684
3685         /*
3686          * Restore the default memory attribute to the page.
3687          */
3688         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3689                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3690
3691 #if VM_NRESERVLEVEL > 0
3692         /*
3693          * Determine whether the page belongs to a reservation.  If the page was
3694          * allocated from a per-CPU cache, it cannot belong to a reservation, so
3695          * as an optimization, we avoid the check in that case.
3696          */
3697         if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3698                 return (false);
3699 #endif
3700
3701         return (true);
3702 }
3703
3704 /*
3705  *      vm_page_free_toq:
3706  *
3707  *      Returns the given page to the free list, disassociating it
3708  *      from any VM object.
3709  *
3710  *      The object must be locked.  The page must be locked if it is
3711  *      managed.
3712  */
3713 void
3714 vm_page_free_toq(vm_page_t m)
3715 {
3716         struct vm_domain *vmd;
3717         uma_zone_t zone;
3718
3719         if (!vm_page_free_prep(m))
3720                 return;
3721
3722         vmd = vm_pagequeue_domain(m);
3723         zone = vmd->vmd_pgcache[m->pool].zone;
3724         if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3725                 uma_zfree(zone, m);
3726                 return;
3727         }
3728         vm_domain_free_lock(vmd);
3729         vm_phys_free_pages(m, 0);
3730         vm_domain_free_unlock(vmd);
3731         vm_domain_freecnt_inc(vmd, 1);
3732 }
3733
3734 /*
3735  *      vm_page_free_pages_toq:
3736  *
3737  *      Returns a list of pages to the free list, disassociating it
3738  *      from any VM object.  In other words, this is equivalent to
3739  *      calling vm_page_free_toq() for each page of a list of VM objects.
3740  *
3741  *      The objects must be locked.  The pages must be locked if it is
3742  *      managed.
3743  */
3744 void
3745 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3746 {
3747         vm_page_t m;
3748         int count;
3749
3750         if (SLIST_EMPTY(free))
3751                 return;
3752
3753         count = 0;
3754         while ((m = SLIST_FIRST(free)) != NULL) {
3755                 count++;
3756                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
3757                 vm_page_free_toq(m);
3758         }
3759
3760         if (update_wire_count)
3761                 vm_wire_sub(count);
3762 }
3763
3764 /*
3765  * Mark this page as wired down, preventing reclamation by the page daemon
3766  * or when the containing object is destroyed.
3767  */
3768 void
3769 vm_page_wire(vm_page_t m)
3770 {
3771         u_int old;
3772
3773         KASSERT(m->object != NULL,
3774             ("vm_page_wire: page %p does not belong to an object", m));
3775         if (!vm_page_busied(m))
3776                 VM_OBJECT_ASSERT_LOCKED(m->object);
3777         KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3778             VPRC_WIRE_COUNT(m->ref_count) >= 1,
3779             ("vm_page_wire: fictitious page %p has zero wirings", m));
3780
3781         old = atomic_fetchadd_int(&m->ref_count, 1);
3782         KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3783             ("vm_page_wire: counter overflow for page %p", m));
3784         if (VPRC_WIRE_COUNT(old) == 0)
3785                 vm_wire_add(1);
3786 }
3787
3788 /*
3789  * Attempt to wire a mapped page following a pmap lookup of that page.
3790  * This may fail if a thread is concurrently tearing down mappings of the page.
3791  */
3792 bool
3793 vm_page_wire_mapped(vm_page_t m)
3794 {
3795         u_int old;
3796
3797         old = m->ref_count;
3798         do {
3799                 KASSERT(old > 0,
3800                     ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3801                 if ((old & VPRC_BLOCKED) != 0)
3802                         return (false);
3803         } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3804
3805         if (VPRC_WIRE_COUNT(old) == 0)
3806                 vm_wire_add(1);
3807         return (true);
3808 }
3809
3810 /*
3811  * Release one wiring of the specified page, potentially allowing it to be
3812  * paged out.
3813  *
3814  * Only managed pages belonging to an object can be paged out.  If the number
3815  * of wirings transitions to zero and the page is eligible for page out, then
3816  * the page is added to the specified paging queue.  If the released wiring
3817  * represented the last reference to the page, the page is freed.
3818  *
3819  * A managed page must be locked.
3820  */
3821 void
3822 vm_page_unwire(vm_page_t m, uint8_t queue)
3823 {
3824         u_int old;
3825         bool locked;
3826
3827         KASSERT(queue < PQ_COUNT,
3828             ("vm_page_unwire: invalid queue %u request for page %p", queue, m));
3829
3830         if ((m->oflags & VPO_UNMANAGED) != 0) {
3831                 if (vm_page_unwire_noq(m) && m->ref_count == 0)
3832                         vm_page_free(m);
3833                 return;
3834         }
3835
3836         /*
3837          * Update LRU state before releasing the wiring reference.
3838          * We only need to do this once since we hold the page lock.
3839          * Use a release store when updating the reference count to
3840          * synchronize with vm_page_free_prep().
3841          */
3842         old = m->ref_count;
3843         locked = false;
3844         do {
3845                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
3846                     ("vm_page_unwire: wire count underflow for page %p", m));
3847                 if (!locked && VPRC_WIRE_COUNT(old) == 1) {
3848                         vm_page_lock(m);
3849                         locked = true;
3850                         if (queue == PQ_ACTIVE && vm_page_queue(m) == PQ_ACTIVE)
3851                                 vm_page_reference(m);
3852                         else
3853                                 vm_page_mvqueue(m, queue);
3854                 }
3855         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3856
3857         /*
3858          * Release the lock only after the wiring is released, to ensure that
3859          * the page daemon does not encounter and dequeue the page while it is
3860          * still wired.
3861          */
3862         if (locked)
3863                 vm_page_unlock(m);
3864
3865         if (VPRC_WIRE_COUNT(old) == 1) {
3866                 vm_wire_sub(1);
3867                 if (old == 1)
3868                         vm_page_free(m);
3869         }
3870 }
3871
3872 /*
3873  * Unwire a page without (re-)inserting it into a page queue.  It is up
3874  * to the caller to enqueue, requeue, or free the page as appropriate.
3875  * In most cases involving managed pages, vm_page_unwire() should be used
3876  * instead.
3877  */
3878 bool
3879 vm_page_unwire_noq(vm_page_t m)
3880 {
3881         u_int old;
3882
3883         old = vm_page_drop(m, 1);
3884         KASSERT(VPRC_WIRE_COUNT(old) != 0,
3885             ("vm_page_unref: counter underflow for page %p", m));
3886         KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3887             ("vm_page_unref: missing ref on fictitious page %p", m));
3888
3889         if (VPRC_WIRE_COUNT(old) > 1)
3890                 return (false);
3891         vm_wire_sub(1);
3892         return (true);
3893 }
3894
3895 /*
3896  * Ensure that the page is in the specified page queue.  If the page is
3897  * active or being moved to the active queue, ensure that its act_count is
3898  * at least ACT_INIT but do not otherwise mess with it.  Otherwise, ensure that
3899  * the page is at the tail of its page queue.
3900  *
3901  * The page may be wired.  The caller should release its wiring reference
3902  * before releasing the page lock, otherwise the page daemon may immediately
3903  * dequeue the page.
3904  *
3905  * A managed page must be locked.
3906  */
3907 static __always_inline void
3908 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue)
3909 {
3910
3911         vm_page_assert_locked(m);
3912         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3913             ("vm_page_mvqueue: page %p is unmanaged", m));
3914
3915         if (vm_page_queue(m) != nqueue) {
3916                 vm_page_dequeue(m);
3917                 vm_page_enqueue(m, nqueue);
3918         } else if (nqueue != PQ_ACTIVE) {
3919                 vm_page_requeue(m);
3920         }
3921
3922         if (nqueue == PQ_ACTIVE && m->act_count < ACT_INIT)
3923                 m->act_count = ACT_INIT;
3924 }
3925
3926 /*
3927  * Put the specified page on the active list (if appropriate).
3928  */
3929 void
3930 vm_page_activate(vm_page_t m)
3931 {
3932
3933         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3934                 return;
3935         vm_page_mvqueue(m, PQ_ACTIVE);
3936 }
3937
3938 /*
3939  * Move the specified page to the tail of the inactive queue, or requeue
3940  * the page if it is already in the inactive queue.
3941  */
3942 void
3943 vm_page_deactivate(vm_page_t m)
3944 {
3945
3946         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3947                 return;
3948         vm_page_mvqueue(m, PQ_INACTIVE);
3949 }
3950
3951 /*
3952  * Move the specified page close to the head of the inactive queue,
3953  * bypassing LRU.  A marker page is used to maintain FIFO ordering.
3954  * As with regular enqueues, we use a per-CPU batch queue to reduce
3955  * contention on the page queue lock.
3956  */
3957 static void
3958 _vm_page_deactivate_noreuse(vm_page_t m)
3959 {
3960
3961         vm_page_assert_locked(m);
3962
3963         if (!vm_page_inactive(m)) {
3964                 vm_page_dequeue(m);
3965                 m->queue = PQ_INACTIVE;
3966         }
3967         if ((m->aflags & PGA_REQUEUE_HEAD) == 0)
3968                 vm_page_aflag_set(m, PGA_REQUEUE_HEAD);
3969         vm_page_pqbatch_submit(m, PQ_INACTIVE);
3970 }
3971
3972 void
3973 vm_page_deactivate_noreuse(vm_page_t m)
3974 {
3975
3976         KASSERT(m->object != NULL,
3977             ("vm_page_deactivate_noreuse: page %p has no object", m));
3978
3979         if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_wired(m))
3980                 _vm_page_deactivate_noreuse(m);
3981 }
3982
3983 /*
3984  * Put a page in the laundry, or requeue it if it is already there.
3985  */
3986 void
3987 vm_page_launder(vm_page_t m)
3988 {
3989
3990         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3991                 return;
3992         vm_page_mvqueue(m, PQ_LAUNDRY);
3993 }
3994
3995 /*
3996  * Put a page in the PQ_UNSWAPPABLE holding queue.
3997  */
3998 void
3999 vm_page_unswappable(vm_page_t m)
4000 {
4001
4002         vm_page_assert_locked(m);
4003         KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4004             ("page %p already unswappable", m));
4005
4006         vm_page_dequeue(m);
4007         vm_page_enqueue(m, PQ_UNSWAPPABLE);
4008 }
4009
4010 static void
4011 vm_page_release_toq(vm_page_t m, int flags)
4012 {
4013
4014         vm_page_assert_locked(m);
4015
4016         /*
4017          * Use a check of the valid bits to determine whether we should
4018          * accelerate reclamation of the page.  The object lock might not be
4019          * held here, in which case the check is racy.  At worst we will either
4020          * accelerate reclamation of a valid page and violate LRU, or
4021          * unnecessarily defer reclamation of an invalid page.
4022          *
4023          * If we were asked to not cache the page, place it near the head of the
4024          * inactive queue so that is reclaimed sooner.
4025          */
4026         if ((flags & (VPR_TRYFREE | VPR_NOREUSE)) != 0 || m->valid == 0)
4027                 _vm_page_deactivate_noreuse(m);
4028         else if (vm_page_active(m))
4029                 vm_page_reference(m);
4030         else
4031                 vm_page_mvqueue(m, PQ_INACTIVE);
4032 }
4033
4034 /*
4035  * Unwire a page and either attempt to free it or re-add it to the page queues.
4036  */
4037 void
4038 vm_page_release(vm_page_t m, int flags)
4039 {
4040         vm_object_t object;
4041         u_int old;
4042         bool locked;
4043
4044         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4045             ("vm_page_release: page %p is unmanaged", m));
4046
4047         if ((flags & VPR_TRYFREE) != 0) {
4048                 for (;;) {
4049                         object = (vm_object_t)atomic_load_ptr(&m->object);
4050                         if (object == NULL)
4051                                 break;
4052                         /* Depends on type-stability. */
4053                         if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) {
4054                                 object = NULL;
4055                                 break;
4056                         }
4057                         if (object == m->object)
4058                                 break;
4059                         VM_OBJECT_WUNLOCK(object);
4060                 }
4061                 if (__predict_true(object != NULL)) {
4062                         vm_page_release_locked(m, flags);
4063                         VM_OBJECT_WUNLOCK(object);
4064                         return;
4065                 }
4066         }
4067
4068         /*
4069          * Update LRU state before releasing the wiring reference.
4070          * Use a release store when updating the reference count to
4071          * synchronize with vm_page_free_prep().
4072          */
4073         old = m->ref_count;
4074         locked = false;
4075         do {
4076                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
4077                     ("vm_page_unwire: wire count underflow for page %p", m));
4078                 if (!locked && VPRC_WIRE_COUNT(old) == 1) {
4079                         vm_page_lock(m);
4080                         locked = true;
4081                         vm_page_release_toq(m, flags);
4082                 }
4083         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4084
4085         /*
4086          * Release the lock only after the wiring is released, to ensure that
4087          * the page daemon does not encounter and dequeue the page while it is
4088          * still wired.
4089          */
4090         if (locked)
4091                 vm_page_unlock(m);
4092
4093         if (VPRC_WIRE_COUNT(old) == 1) {
4094                 vm_wire_sub(1);
4095                 if (old == 1)
4096                         vm_page_free(m);
4097         }
4098 }
4099
4100 /* See vm_page_release(). */
4101 void
4102 vm_page_release_locked(vm_page_t m, int flags)
4103 {
4104
4105         VM_OBJECT_ASSERT_WLOCKED(m->object);
4106         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4107             ("vm_page_release_locked: page %p is unmanaged", m));
4108
4109         if (vm_page_unwire_noq(m)) {
4110                 if ((flags & VPR_TRYFREE) != 0 &&
4111                     (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4112                     m->dirty == 0 && !vm_page_busied(m)) {
4113                         vm_page_free(m);
4114                 } else {
4115                         vm_page_lock(m);
4116                         vm_page_release_toq(m, flags);
4117                         vm_page_unlock(m);
4118                 }
4119         }
4120 }
4121
4122 static bool
4123 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4124 {
4125         u_int old;
4126
4127         KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4128             ("vm_page_try_blocked_op: page %p has no object", m));
4129         KASSERT(vm_page_busied(m),
4130             ("vm_page_try_blocked_op: page %p is not busy", m));
4131         VM_OBJECT_ASSERT_LOCKED(m->object);
4132
4133         old = m->ref_count;
4134         do {
4135                 KASSERT(old != 0,
4136                     ("vm_page_try_blocked_op: page %p has no references", m));
4137                 if (VPRC_WIRE_COUNT(old) != 0)
4138                         return (false);
4139         } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4140
4141         (op)(m);
4142
4143         /*
4144          * If the object is read-locked, new wirings may be created via an
4145          * object lookup.
4146          */
4147         old = vm_page_drop(m, VPRC_BLOCKED);
4148         KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4149             old == (VPRC_BLOCKED | VPRC_OBJREF),
4150             ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4151             old, m));
4152         return (true);
4153 }
4154
4155 /*
4156  * Atomically check for wirings and remove all mappings of the page.
4157  */
4158 bool
4159 vm_page_try_remove_all(vm_page_t m)
4160 {
4161
4162         return (vm_page_try_blocked_op(m, pmap_remove_all));
4163 }
4164
4165 /*
4166  * Atomically check for wirings and remove all writeable mappings of the page.
4167  */
4168 bool
4169 vm_page_try_remove_write(vm_page_t m)
4170 {
4171
4172         return (vm_page_try_blocked_op(m, pmap_remove_write));
4173 }
4174
4175 /*
4176  * vm_page_advise
4177  *
4178  *      Apply the specified advice to the given page.
4179  *
4180  *      The object and page must be locked.
4181  */
4182 void
4183 vm_page_advise(vm_page_t m, int advice)
4184 {
4185
4186         vm_page_assert_locked(m);
4187         VM_OBJECT_ASSERT_WLOCKED(m->object);
4188         if (advice == MADV_FREE)
4189                 /*
4190                  * Mark the page clean.  This will allow the page to be freed
4191                  * without first paging it out.  MADV_FREE pages are often
4192                  * quickly reused by malloc(3), so we do not do anything that
4193                  * would result in a page fault on a later access.
4194                  */
4195                 vm_page_undirty(m);
4196         else if (advice != MADV_DONTNEED) {
4197                 if (advice == MADV_WILLNEED)
4198                         vm_page_activate(m);
4199                 return;
4200         }
4201
4202         /*
4203          * Clear any references to the page.  Otherwise, the page daemon will
4204          * immediately reactivate the page.
4205          */
4206         vm_page_aflag_clear(m, PGA_REFERENCED);
4207
4208         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4209                 vm_page_dirty(m);
4210
4211         /*
4212          * Place clean pages near the head of the inactive queue rather than
4213          * the tail, thus defeating the queue's LRU operation and ensuring that
4214          * the page will be reused quickly.  Dirty pages not already in the
4215          * laundry are moved there.
4216          */
4217         if (m->dirty == 0)
4218                 vm_page_deactivate_noreuse(m);
4219         else if (!vm_page_in_laundry(m))
4220                 vm_page_launder(m);
4221 }
4222
4223 /*
4224  * Grab a page, waiting until we are waken up due to the page
4225  * changing state.  We keep on waiting, if the page continues
4226  * to be in the object.  If the page doesn't exist, first allocate it
4227  * and then conditionally zero it.
4228  *
4229  * This routine may sleep.
4230  *
4231  * The object must be locked on entry.  The lock will, however, be released
4232  * and reacquired if the routine sleeps.
4233  */
4234 vm_page_t
4235 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4236 {
4237         vm_page_t m;
4238         int sleep;
4239         int pflags;
4240
4241         VM_OBJECT_ASSERT_WLOCKED(object);
4242         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4243             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4244             ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4245         pflags = allocflags &
4246             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4247             VM_ALLOC_NOBUSY);
4248         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4249                 pflags |= VM_ALLOC_WAITFAIL;
4250         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4251                 pflags |= VM_ALLOC_SBUSY;
4252 retrylookup:
4253         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4254                 if ((allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) != 0)
4255                         sleep = !vm_page_trysbusy(m);
4256                 else
4257                         sleep = !vm_page_tryxbusy(m);
4258                 if (sleep) {
4259                         if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4260                                 return (NULL);
4261                         /*
4262                          * Reference the page before unlocking and
4263                          * sleeping so that the page daemon is less
4264                          * likely to reclaim it.
4265                          */
4266                         if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4267                                 vm_page_aflag_set(m, PGA_REFERENCED);
4268                         vm_page_busy_sleep(m, "pgrbwt", (allocflags &
4269                             VM_ALLOC_IGN_SBUSY) != 0);
4270                         VM_OBJECT_WLOCK(object);
4271                         if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4272                                 return (NULL);
4273                         goto retrylookup;
4274                 } else {
4275                         if ((allocflags & VM_ALLOC_WIRED) != 0)
4276                                 vm_page_wire(m);
4277                         goto out;
4278                 }
4279         }
4280         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4281                 return (NULL);
4282         m = vm_page_alloc(object, pindex, pflags);
4283         if (m == NULL) {
4284                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4285                         return (NULL);
4286                 goto retrylookup;
4287         }
4288         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4289                 pmap_zero_page(m);
4290
4291 out:
4292         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4293                 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4294                         vm_page_sunbusy(m);
4295                 else
4296                         vm_page_xunbusy(m);
4297         }
4298         return (m);
4299 }
4300
4301 /*
4302  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4303  * their pager are zero filled and validated.
4304  */
4305 int
4306 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4307 {
4308         vm_page_t m;
4309         bool sleep, xbusy;
4310         int pflags;
4311         int rv;
4312
4313         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4314             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4315             ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4316         KASSERT((allocflags &
4317             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4318             ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4319         VM_OBJECT_ASSERT_WLOCKED(object);
4320         pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY);
4321         pflags |= VM_ALLOC_WAITFAIL;
4322
4323 retrylookup:
4324         xbusy = false;
4325         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4326                 /*
4327                  * If the page is fully valid it can only become invalid
4328                  * with the object lock held.  If it is not valid it can
4329                  * become valid with the busy lock held.  Therefore, we
4330                  * may unnecessarily lock the exclusive busy here if we
4331                  * race with I/O completion not using the object lock.
4332                  * However, we will not end up with an invalid page and a
4333                  * shared lock.
4334                  */
4335                 if (!vm_page_all_valid(m) ||
4336                     (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) {
4337                         sleep = !vm_page_tryxbusy(m);
4338                         xbusy = true;
4339                 } else
4340                         sleep = !vm_page_trysbusy(m);
4341                 if (sleep) {
4342                         /*
4343                          * Reference the page before unlocking and
4344                          * sleeping so that the page daemon is less
4345                          * likely to reclaim it.
4346                          */
4347                         if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4348                                 vm_page_aflag_set(m, PGA_REFERENCED);
4349                         vm_page_busy_sleep(m, "pgrbwt", (allocflags &
4350                             VM_ALLOC_IGN_SBUSY) != 0);
4351                         VM_OBJECT_WLOCK(object);
4352                         goto retrylookup;
4353                 }
4354                 if ((allocflags & VM_ALLOC_NOCREAT) != 0 &&
4355                    !vm_page_all_valid(m)) {
4356                         if (xbusy)
4357                                 vm_page_xunbusy(m);
4358                         else
4359                                 vm_page_sunbusy(m);
4360                         *mp = NULL;
4361                         return (VM_PAGER_FAIL);
4362                 }
4363                 if ((allocflags & VM_ALLOC_WIRED) != 0)
4364                         vm_page_wire(m);
4365                 if (vm_page_all_valid(m))
4366                         goto out;
4367         } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4368                 *mp = NULL;
4369                 return (VM_PAGER_FAIL);
4370         } else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) {
4371                 xbusy = true;
4372         } else {
4373                 goto retrylookup;
4374         }
4375
4376         vm_page_assert_xbusied(m);
4377         MPASS(xbusy);
4378         if (vm_pager_has_page(object, pindex, NULL, NULL)) {
4379                 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
4380                 if (rv != VM_PAGER_OK) {
4381                         if (allocflags & VM_ALLOC_WIRED)
4382                                 vm_page_unwire_noq(m);
4383                         vm_page_free(m);
4384                         *mp = NULL;
4385                         return (rv);
4386                 }
4387                 MPASS(vm_page_all_valid(m));
4388         } else {
4389                 vm_page_zero_invalid(m, TRUE);
4390         }
4391 out:
4392         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4393                 if (xbusy)
4394                         vm_page_xunbusy(m);
4395                 else
4396                         vm_page_sunbusy(m);
4397         }
4398         if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy)
4399                 vm_page_busy_downgrade(m);
4400         *mp = m;
4401         return (VM_PAGER_OK);
4402 }
4403
4404 /*
4405  * Return the specified range of pages from the given object.  For each
4406  * page offset within the range, if a page already exists within the object
4407  * at that offset and it is busy, then wait for it to change state.  If,
4408  * instead, the page doesn't exist, then allocate it.
4409  *
4410  * The caller must always specify an allocation class.
4411  *
4412  * allocation classes:
4413  *      VM_ALLOC_NORMAL         normal process request
4414  *      VM_ALLOC_SYSTEM         system *really* needs the pages
4415  *
4416  * The caller must always specify that the pages are to be busied and/or
4417  * wired.
4418  *
4419  * optional allocation flags:
4420  *      VM_ALLOC_IGN_SBUSY      do not sleep on soft busy pages
4421  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
4422  *      VM_ALLOC_NOWAIT         do not sleep
4423  *      VM_ALLOC_SBUSY          set page to sbusy state
4424  *      VM_ALLOC_WIRED          wire the pages
4425  *      VM_ALLOC_ZERO           zero and validate any invalid pages
4426  *
4427  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4428  * may return a partial prefix of the requested range.
4429  */
4430 int
4431 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4432     vm_page_t *ma, int count)
4433 {
4434         vm_page_t m, mpred;
4435         int pflags;
4436         int i;
4437         bool sleep;
4438
4439         VM_OBJECT_ASSERT_WLOCKED(object);
4440         KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4441             ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4442         KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4443             (allocflags & VM_ALLOC_WIRED) != 0,
4444             ("vm_page_grab_pages: the pages must be busied or wired"));
4445         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4446             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4447             ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
4448         if (count == 0)
4449                 return (0);
4450         pflags = allocflags &
4451             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4452             VM_ALLOC_NOBUSY);
4453         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4454                 pflags |= VM_ALLOC_WAITFAIL;
4455         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4456                 pflags |= VM_ALLOC_SBUSY;
4457         i = 0;
4458 retrylookup:
4459         m = vm_radix_lookup_le(&object->rtree, pindex + i);
4460         if (m == NULL || m->pindex != pindex + i) {
4461                 mpred = m;
4462                 m = NULL;
4463         } else
4464                 mpred = TAILQ_PREV(m, pglist, listq);
4465         for (; i < count; i++) {
4466                 if (m != NULL) {
4467                         if ((allocflags &
4468                             (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
4469                                 sleep = !vm_page_trysbusy(m);
4470                         else
4471                                 sleep = !vm_page_tryxbusy(m);
4472                         if (sleep) {
4473                                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4474                                         break;
4475                                 /*
4476                                  * Reference the page before unlocking and
4477                                  * sleeping so that the page daemon is less
4478                                  * likely to reclaim it.
4479                                  */
4480                                 if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4481                                         vm_page_aflag_set(m, PGA_REFERENCED);
4482                                 vm_page_busy_sleep(m, "grbmaw", (allocflags &
4483                                     VM_ALLOC_IGN_SBUSY) != 0);
4484                                 VM_OBJECT_WLOCK(object);
4485                                 goto retrylookup;
4486                         }
4487                         if ((allocflags & VM_ALLOC_WIRED) != 0)
4488                                 vm_page_wire(m);
4489                 } else {
4490                         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4491                                 break;
4492                         m = vm_page_alloc_after(object, pindex + i,
4493                             pflags | VM_ALLOC_COUNT(count - i), mpred);
4494                         if (m == NULL) {
4495                                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4496                                         break;
4497                                 goto retrylookup;
4498                         }
4499                 }
4500                 if (vm_page_none_valid(m) &&
4501                     (allocflags & VM_ALLOC_ZERO) != 0) {
4502                         if ((m->flags & PG_ZERO) == 0)
4503                                 pmap_zero_page(m);
4504                         vm_page_valid(m);
4505                 }
4506                 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4507                         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4508                                 vm_page_sunbusy(m);
4509                         else
4510                                 vm_page_xunbusy(m);
4511                 }
4512                 ma[i] = mpred = m;
4513                 m = vm_page_next(m);
4514         }
4515         return (i);
4516 }
4517
4518 /*
4519  * Mapping function for valid or dirty bits in a page.
4520  *
4521  * Inputs are required to range within a page.
4522  */
4523 vm_page_bits_t
4524 vm_page_bits(int base, int size)
4525 {
4526         int first_bit;
4527         int last_bit;
4528
4529         KASSERT(
4530             base + size <= PAGE_SIZE,
4531             ("vm_page_bits: illegal base/size %d/%d", base, size)
4532         );
4533
4534         if (size == 0)          /* handle degenerate case */
4535                 return (0);
4536
4537         first_bit = base >> DEV_BSHIFT;
4538         last_bit = (base + size - 1) >> DEV_BSHIFT;
4539
4540         return (((vm_page_bits_t)2 << last_bit) -
4541             ((vm_page_bits_t)1 << first_bit));
4542 }
4543
4544 static inline void
4545 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4546 {
4547
4548 #if PAGE_SIZE == 32768
4549         atomic_set_64((uint64_t *)bits, set);
4550 #elif PAGE_SIZE == 16384
4551         atomic_set_32((uint32_t *)bits, set);
4552 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4553         atomic_set_16((uint16_t *)bits, set);
4554 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4555         atomic_set_8((uint8_t *)bits, set);
4556 #else           /* PAGE_SIZE <= 8192 */
4557         uintptr_t addr;
4558         int shift;
4559
4560         addr = (uintptr_t)bits;
4561         /*
4562          * Use a trick to perform a 32-bit atomic on the
4563          * containing aligned word, to not depend on the existence
4564          * of atomic_{set, clear}_{8, 16}.
4565          */
4566         shift = addr & (sizeof(uint32_t) - 1);
4567 #if BYTE_ORDER == BIG_ENDIAN
4568         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4569 #else
4570         shift *= NBBY;
4571 #endif
4572         addr &= ~(sizeof(uint32_t) - 1);
4573         atomic_set_32((uint32_t *)addr, set << shift);
4574 #endif          /* PAGE_SIZE */
4575 }
4576
4577 static inline void
4578 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4579 {
4580
4581 #if PAGE_SIZE == 32768
4582         atomic_clear_64((uint64_t *)bits, clear);
4583 #elif PAGE_SIZE == 16384
4584         atomic_clear_32((uint32_t *)bits, clear);
4585 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4586         atomic_clear_16((uint16_t *)bits, clear);
4587 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4588         atomic_clear_8((uint8_t *)bits, clear);
4589 #else           /* PAGE_SIZE <= 8192 */
4590         uintptr_t addr;
4591         int shift;
4592
4593         addr = (uintptr_t)bits;
4594         /*
4595          * Use a trick to perform a 32-bit atomic on the
4596          * containing aligned word, to not depend on the existence
4597          * of atomic_{set, clear}_{8, 16}.
4598          */
4599         shift = addr & (sizeof(uint32_t) - 1);
4600 #if BYTE_ORDER == BIG_ENDIAN
4601         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4602 #else
4603         shift *= NBBY;
4604 #endif
4605         addr &= ~(sizeof(uint32_t) - 1);
4606         atomic_clear_32((uint32_t *)addr, clear << shift);
4607 #endif          /* PAGE_SIZE */
4608 }
4609
4610 /*
4611  *      vm_page_set_valid_range:
4612  *
4613  *      Sets portions of a page valid.  The arguments are expected
4614  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4615  *      of any partial chunks touched by the range.  The invalid portion of
4616  *      such chunks will be zeroed.
4617  *
4618  *      (base + size) must be less then or equal to PAGE_SIZE.
4619  */
4620 void
4621 vm_page_set_valid_range(vm_page_t m, int base, int size)
4622 {
4623         int endoff, frag;
4624         vm_page_bits_t pagebits;
4625
4626         vm_page_assert_busied(m);
4627         if (size == 0)  /* handle degenerate case */
4628                 return;
4629
4630         /*
4631          * If the base is not DEV_BSIZE aligned and the valid
4632          * bit is clear, we have to zero out a portion of the
4633          * first block.
4634          */
4635         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4636             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4637                 pmap_zero_page_area(m, frag, base - frag);
4638
4639         /*
4640          * If the ending offset is not DEV_BSIZE aligned and the
4641          * valid bit is clear, we have to zero out a portion of
4642          * the last block.
4643          */
4644         endoff = base + size;
4645         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4646             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4647                 pmap_zero_page_area(m, endoff,
4648                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4649
4650         /*
4651          * Assert that no previously invalid block that is now being validated
4652          * is already dirty.
4653          */
4654         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4655             ("vm_page_set_valid_range: page %p is dirty", m));
4656
4657         /*
4658          * Set valid bits inclusive of any overlap.
4659          */
4660         pagebits = vm_page_bits(base, size);
4661         if (vm_page_xbusied(m))
4662                 m->valid |= pagebits;
4663         else
4664                 vm_page_bits_set(m, &m->valid, pagebits);
4665 }
4666
4667 /*
4668  * Clear the given bits from the specified page's dirty field.
4669  */
4670 static __inline void
4671 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4672 {
4673
4674         vm_page_assert_busied(m);
4675
4676         /*
4677          * If the page is xbusied and not write mapped we are the
4678          * only thread that can modify dirty bits.  Otherwise, The pmap
4679          * layer can call vm_page_dirty() without holding a distinguished
4680          * lock.  The combination of page busy and atomic operations
4681          * suffice to guarantee consistency of the page dirty field.
4682          */
4683         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4684                 m->dirty &= ~pagebits;
4685         else
4686                 vm_page_bits_clear(m, &m->dirty, pagebits);
4687 }
4688
4689 /*
4690  *      vm_page_set_validclean:
4691  *
4692  *      Sets portions of a page valid and clean.  The arguments are expected
4693  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4694  *      of any partial chunks touched by the range.  The invalid portion of
4695  *      such chunks will be zero'd.
4696  *
4697  *      (base + size) must be less then or equal to PAGE_SIZE.
4698  */
4699 void
4700 vm_page_set_validclean(vm_page_t m, int base, int size)
4701 {
4702         vm_page_bits_t oldvalid, pagebits;
4703         int endoff, frag;
4704
4705         vm_page_assert_busied(m);
4706         if (size == 0)  /* handle degenerate case */
4707                 return;
4708
4709         /*
4710          * If the base is not DEV_BSIZE aligned and the valid
4711          * bit is clear, we have to zero out a portion of the
4712          * first block.
4713          */
4714         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4715             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4716                 pmap_zero_page_area(m, frag, base - frag);
4717
4718         /*
4719          * If the ending offset is not DEV_BSIZE aligned and the
4720          * valid bit is clear, we have to zero out a portion of
4721          * the last block.
4722          */
4723         endoff = base + size;
4724         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4725             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4726                 pmap_zero_page_area(m, endoff,
4727                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4728
4729         /*
4730          * Set valid, clear dirty bits.  If validating the entire
4731          * page we can safely clear the pmap modify bit.  We also
4732          * use this opportunity to clear the PGA_NOSYNC flag.  If a process
4733          * takes a write fault on a MAP_NOSYNC memory area the flag will
4734          * be set again.
4735          *
4736          * We set valid bits inclusive of any overlap, but we can only
4737          * clear dirty bits for DEV_BSIZE chunks that are fully within
4738          * the range.
4739          */
4740         oldvalid = m->valid;
4741         pagebits = vm_page_bits(base, size);
4742         if (vm_page_xbusied(m))
4743                 m->valid |= pagebits;
4744         else
4745                 vm_page_bits_set(m, &m->valid, pagebits);
4746 #if 0   /* NOT YET */
4747         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4748                 frag = DEV_BSIZE - frag;
4749                 base += frag;
4750                 size -= frag;
4751                 if (size < 0)
4752                         size = 0;
4753         }
4754         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4755 #endif
4756         if (base == 0 && size == PAGE_SIZE) {
4757                 /*
4758                  * The page can only be modified within the pmap if it is
4759                  * mapped, and it can only be mapped if it was previously
4760                  * fully valid.
4761                  */
4762                 if (oldvalid == VM_PAGE_BITS_ALL)
4763                         /*
4764                          * Perform the pmap_clear_modify() first.  Otherwise,
4765                          * a concurrent pmap operation, such as
4766                          * pmap_protect(), could clear a modification in the
4767                          * pmap and set the dirty field on the page before
4768                          * pmap_clear_modify() had begun and after the dirty
4769                          * field was cleared here.
4770                          */
4771                         pmap_clear_modify(m);
4772                 m->dirty = 0;
4773                 vm_page_aflag_clear(m, PGA_NOSYNC);
4774         } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
4775                 m->dirty &= ~pagebits;
4776         else
4777                 vm_page_clear_dirty_mask(m, pagebits);
4778 }
4779
4780 void
4781 vm_page_clear_dirty(vm_page_t m, int base, int size)
4782 {
4783
4784         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4785 }
4786
4787 /*
4788  *      vm_page_set_invalid:
4789  *
4790  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
4791  *      valid and dirty bits for the effected areas are cleared.
4792  */
4793 void
4794 vm_page_set_invalid(vm_page_t m, int base, int size)
4795 {
4796         vm_page_bits_t bits;
4797         vm_object_t object;
4798
4799         /*
4800          * The object lock is required so that pages can't be mapped
4801          * read-only while we're in the process of invalidating them.
4802          */
4803         object = m->object;
4804         VM_OBJECT_ASSERT_WLOCKED(object);
4805         vm_page_assert_busied(m);
4806
4807         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4808             size >= object->un_pager.vnp.vnp_size)
4809                 bits = VM_PAGE_BITS_ALL;
4810         else
4811                 bits = vm_page_bits(base, size);
4812         if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
4813                 pmap_remove_all(m);
4814         KASSERT((bits == 0 && vm_page_all_valid(m)) ||
4815             !pmap_page_is_mapped(m),
4816             ("vm_page_set_invalid: page %p is mapped", m));
4817         if (vm_page_xbusied(m)) {
4818                 m->valid &= ~bits;
4819                 m->dirty &= ~bits;
4820         } else {
4821                 vm_page_bits_clear(m, &m->valid, bits);
4822                 vm_page_bits_clear(m, &m->dirty, bits);
4823         }
4824 }
4825
4826 /*
4827  *      vm_page_invalid:
4828  *
4829  *      Invalidates the entire page.  The page must be busy, unmapped, and
4830  *      the enclosing object must be locked.  The object locks protects
4831  *      against concurrent read-only pmap enter which is done without
4832  *      busy.
4833  */
4834 void
4835 vm_page_invalid(vm_page_t m)
4836 {
4837
4838         vm_page_assert_busied(m);
4839         VM_OBJECT_ASSERT_LOCKED(m->object);
4840         MPASS(!pmap_page_is_mapped(m));
4841
4842         if (vm_page_xbusied(m))
4843                 m->valid = 0;
4844         else
4845                 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
4846 }
4847
4848 /*
4849  * vm_page_zero_invalid()
4850  *
4851  *      The kernel assumes that the invalid portions of a page contain
4852  *      garbage, but such pages can be mapped into memory by user code.
4853  *      When this occurs, we must zero out the non-valid portions of the
4854  *      page so user code sees what it expects.
4855  *
4856  *      Pages are most often semi-valid when the end of a file is mapped
4857  *      into memory and the file's size is not page aligned.
4858  */
4859 void
4860 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4861 {
4862         int b;
4863         int i;
4864
4865         /*
4866          * Scan the valid bits looking for invalid sections that
4867          * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4868          * valid bit may be set ) have already been zeroed by
4869          * vm_page_set_validclean().
4870          */
4871         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4872                 if (i == (PAGE_SIZE / DEV_BSIZE) ||
4873                     (m->valid & ((vm_page_bits_t)1 << i))) {
4874                         if (i > b) {
4875                                 pmap_zero_page_area(m,
4876                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4877                         }
4878                         b = i + 1;
4879                 }
4880         }
4881
4882         /*
4883          * setvalid is TRUE when we can safely set the zero'd areas
4884          * as being valid.  We can do this if there are no cache consistancy
4885          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4886          */
4887         if (setvalid)
4888                 vm_page_valid(m);
4889 }
4890
4891 /*
4892  *      vm_page_is_valid:
4893  *
4894  *      Is (partial) page valid?  Note that the case where size == 0
4895  *      will return FALSE in the degenerate case where the page is
4896  *      entirely invalid, and TRUE otherwise.
4897  *
4898  *      Some callers envoke this routine without the busy lock held and
4899  *      handle races via higher level locks.  Typical callers should
4900  *      hold a busy lock to prevent invalidation.
4901  */
4902 int
4903 vm_page_is_valid(vm_page_t m, int base, int size)
4904 {
4905         vm_page_bits_t bits;
4906
4907         bits = vm_page_bits(base, size);
4908         return (m->valid != 0 && (m->valid & bits) == bits);
4909 }
4910
4911 /*
4912  * Returns true if all of the specified predicates are true for the entire
4913  * (super)page and false otherwise.
4914  */
4915 bool
4916 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
4917 {
4918         vm_object_t object;
4919         int i, npages;
4920
4921         object = m->object;
4922         if (skip_m != NULL && skip_m->object != object)
4923                 return (false);
4924         VM_OBJECT_ASSERT_LOCKED(object);
4925         npages = atop(pagesizes[m->psind]);
4926
4927         /*
4928          * The physically contiguous pages that make up a superpage, i.e., a
4929          * page with a page size index ("psind") greater than zero, will
4930          * occupy adjacent entries in vm_page_array[].
4931          */
4932         for (i = 0; i < npages; i++) {
4933                 /* Always test object consistency, including "skip_m". */
4934                 if (m[i].object != object)
4935                         return (false);
4936                 if (&m[i] == skip_m)
4937                         continue;
4938                 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
4939                         return (false);
4940                 if ((flags & PS_ALL_DIRTY) != 0) {
4941                         /*
4942                          * Calling vm_page_test_dirty() or pmap_is_modified()
4943                          * might stop this case from spuriously returning
4944                          * "false".  However, that would require a write lock
4945                          * on the object containing "m[i]".
4946                          */
4947                         if (m[i].dirty != VM_PAGE_BITS_ALL)
4948                                 return (false);
4949                 }
4950                 if ((flags & PS_ALL_VALID) != 0 &&
4951                     m[i].valid != VM_PAGE_BITS_ALL)
4952                         return (false);
4953         }
4954         return (true);
4955 }
4956
4957 /*
4958  * Set the page's dirty bits if the page is modified.
4959  */
4960 void
4961 vm_page_test_dirty(vm_page_t m)
4962 {
4963
4964         vm_page_assert_busied(m);
4965         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
4966                 vm_page_dirty(m);
4967 }
4968
4969 void
4970 vm_page_valid(vm_page_t m)
4971 {
4972
4973         vm_page_assert_busied(m);
4974         if (vm_page_xbusied(m))
4975                 m->valid = VM_PAGE_BITS_ALL;
4976         else
4977                 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
4978 }
4979
4980 void
4981 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
4982 {
4983
4984         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
4985 }
4986
4987 void
4988 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
4989 {
4990
4991         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
4992 }
4993
4994 int
4995 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
4996 {
4997
4998         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
4999 }
5000
5001 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5002 void
5003 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5004 {
5005
5006         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5007 }
5008
5009 void
5010 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5011 {
5012
5013         mtx_assert_(vm_page_lockptr(m), a, file, line);
5014 }
5015 #endif
5016
5017 #ifdef INVARIANTS
5018 void
5019 vm_page_object_busy_assert(vm_page_t m)
5020 {
5021
5022         /*
5023          * Certain of the page's fields may only be modified by the
5024          * holder of a page or object busy.
5025          */
5026         if (m->object != NULL && !vm_page_busied(m))
5027                 VM_OBJECT_ASSERT_BUSY(m->object);
5028 }
5029
5030 void
5031 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
5032 {
5033
5034         if ((bits & PGA_WRITEABLE) == 0)
5035                 return;
5036
5037         /*
5038          * The PGA_WRITEABLE flag can only be set if the page is
5039          * managed, is exclusively busied or the object is locked.
5040          * Currently, this flag is only set by pmap_enter().
5041          */
5042         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5043             ("PGA_WRITEABLE on unmanaged page"));
5044         if (!vm_page_xbusied(m))
5045                 VM_OBJECT_ASSERT_BUSY(m->object);
5046 }
5047 #endif
5048
5049 #include "opt_ddb.h"
5050 #ifdef DDB
5051 #include <sys/kernel.h>
5052
5053 #include <ddb/ddb.h>
5054
5055 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5056 {
5057
5058         db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5059         db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5060         db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5061         db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5062         db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5063         db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5064         db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5065         db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5066         db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5067 }
5068
5069 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5070 {
5071         int dom;
5072
5073         db_printf("pq_free %d\n", vm_free_count());
5074         for (dom = 0; dom < vm_ndomains; dom++) {
5075                 db_printf(
5076     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5077                     dom,
5078                     vm_dom[dom].vmd_page_count,
5079                     vm_dom[dom].vmd_free_count,
5080                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5081                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5082                     vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5083                     vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5084         }
5085 }
5086
5087 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5088 {
5089         vm_page_t m;
5090         boolean_t phys, virt;
5091
5092         if (!have_addr) {
5093                 db_printf("show pginfo addr\n");
5094                 return;
5095         }
5096
5097         phys = strchr(modif, 'p') != NULL;
5098         virt = strchr(modif, 'v') != NULL;
5099         if (virt)
5100                 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5101         else if (phys)
5102                 m = PHYS_TO_VM_PAGE(addr);
5103         else
5104                 m = (vm_page_t)addr;
5105         db_printf(
5106     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
5107     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5108             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5109             m->queue, m->ref_count, m->aflags, m->oflags,
5110             m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
5111 }
5112 #endif /* DDB */