]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_page.c
src.sys.obj.mk: Export OBJTOP
[FreeBSD/FreeBSD.git] / sys / vm / vm_page.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35
36 /*-
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Resident memory management module.
65  */
66
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/counter.h>
73 #include <sys/domainset.h>
74 #include <sys/kernel.h>
75 #include <sys/limits.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/mman.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/rwlock.h>
84 #include <sys/sleepqueue.h>
85 #include <sys/sbuf.h>
86 #include <sys/sched.h>
87 #include <sys/smp.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_param.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_dumpset.h>
108 #include <vm/uma.h>
109 #include <vm/uma_int.h>
110
111 #include <machine/md_var.h>
112
113 struct vm_domain vm_dom[MAXMEMDOM];
114
115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
116
117 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
118
119 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
120 /* The following fields are protected by the domainset lock. */
121 domainset_t __exclusive_cache_line vm_min_domains;
122 domainset_t __exclusive_cache_line vm_severe_domains;
123 static int vm_min_waiters;
124 static int vm_severe_waiters;
125 static int vm_pageproc_waiters;
126
127 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
128     "VM page statistics");
129
130 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
131 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
132     CTLFLAG_RD, &pqstate_commit_retries,
133     "Number of failed per-page atomic queue state updates");
134
135 static COUNTER_U64_DEFINE_EARLY(queue_ops);
136 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
137     CTLFLAG_RD, &queue_ops,
138     "Number of batched queue operations");
139
140 static COUNTER_U64_DEFINE_EARLY(queue_nops);
141 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
142     CTLFLAG_RD, &queue_nops,
143     "Number of batched queue operations with no effects");
144
145 /*
146  * bogus page -- for I/O to/from partially complete buffers,
147  * or for paging into sparsely invalid regions.
148  */
149 vm_page_t bogus_page;
150
151 vm_page_t vm_page_array;
152 long vm_page_array_size;
153 long first_page;
154
155 struct bitset *vm_page_dump;
156 long vm_page_dump_pages;
157
158 static TAILQ_HEAD(, vm_page) blacklist_head;
159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
161     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
162
163 static uma_zone_t fakepg_zone;
164
165 static void vm_page_alloc_check(vm_page_t m);
166 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
167     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
168 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
169 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
170 static bool vm_page_free_prep(vm_page_t m);
171 static void vm_page_free_toq(vm_page_t m);
172 static void vm_page_init(void *dummy);
173 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
174     vm_pindex_t pindex, vm_page_t mpred);
175 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
176     vm_page_t mpred);
177 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
178     const uint16_t nflag);
179 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
180     vm_page_t m_run, vm_paddr_t high);
181 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
182 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
183     int req);
184 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
185     int flags);
186 static void vm_page_zone_release(void *arg, void **store, int cnt);
187
188 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
189
190 static void
191 vm_page_init(void *dummy)
192 {
193
194         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
195             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
196         bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED);
197 }
198
199 static int pgcache_zone_max_pcpu;
200 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
201     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
202     "Per-CPU page cache size");
203
204 /*
205  * The cache page zone is initialized later since we need to be able to allocate
206  * pages before UMA is fully initialized.
207  */
208 static void
209 vm_page_init_cache_zones(void *dummy __unused)
210 {
211         struct vm_domain *vmd;
212         struct vm_pgcache *pgcache;
213         int cache, domain, maxcache, pool;
214
215         TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
216         maxcache = pgcache_zone_max_pcpu * mp_ncpus;
217         for (domain = 0; domain < vm_ndomains; domain++) {
218                 vmd = VM_DOMAIN(domain);
219                 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
220                         pgcache = &vmd->vmd_pgcache[pool];
221                         pgcache->domain = domain;
222                         pgcache->pool = pool;
223                         pgcache->zone = uma_zcache_create("vm pgcache",
224                             PAGE_SIZE, NULL, NULL, NULL, NULL,
225                             vm_page_zone_import, vm_page_zone_release, pgcache,
226                             UMA_ZONE_VM);
227
228                         /*
229                          * Limit each pool's zone to 0.1% of the pages in the
230                          * domain.
231                          */
232                         cache = maxcache != 0 ? maxcache :
233                             vmd->vmd_page_count / 1000;
234                         uma_zone_set_maxcache(pgcache->zone, cache);
235                 }
236         }
237 }
238 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
239
240 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
241 #if PAGE_SIZE == 32768
242 #ifdef CTASSERT
243 CTASSERT(sizeof(u_long) >= 8);
244 #endif
245 #endif
246
247 /*
248  *      vm_set_page_size:
249  *
250  *      Sets the page size, perhaps based upon the memory
251  *      size.  Must be called before any use of page-size
252  *      dependent functions.
253  */
254 void
255 vm_set_page_size(void)
256 {
257         if (vm_cnt.v_page_size == 0)
258                 vm_cnt.v_page_size = PAGE_SIZE;
259         if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
260                 panic("vm_set_page_size: page size not a power of two");
261 }
262
263 /*
264  *      vm_page_blacklist_next:
265  *
266  *      Find the next entry in the provided string of blacklist
267  *      addresses.  Entries are separated by space, comma, or newline.
268  *      If an invalid integer is encountered then the rest of the
269  *      string is skipped.  Updates the list pointer to the next
270  *      character, or NULL if the string is exhausted or invalid.
271  */
272 static vm_paddr_t
273 vm_page_blacklist_next(char **list, char *end)
274 {
275         vm_paddr_t bad;
276         char *cp, *pos;
277
278         if (list == NULL || *list == NULL)
279                 return (0);
280         if (**list =='\0') {
281                 *list = NULL;
282                 return (0);
283         }
284
285         /*
286          * If there's no end pointer then the buffer is coming from
287          * the kenv and we know it's null-terminated.
288          */
289         if (end == NULL)
290                 end = *list + strlen(*list);
291
292         /* Ensure that strtoq() won't walk off the end */
293         if (*end != '\0') {
294                 if (*end == '\n' || *end == ' ' || *end  == ',')
295                         *end = '\0';
296                 else {
297                         printf("Blacklist not terminated, skipping\n");
298                         *list = NULL;
299                         return (0);
300                 }
301         }
302
303         for (pos = *list; *pos != '\0'; pos = cp) {
304                 bad = strtoq(pos, &cp, 0);
305                 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
306                         if (bad == 0) {
307                                 if (++cp < end)
308                                         continue;
309                                 else
310                                         break;
311                         }
312                 } else
313                         break;
314                 if (*cp == '\0' || ++cp >= end)
315                         *list = NULL;
316                 else
317                         *list = cp;
318                 return (trunc_page(bad));
319         }
320         printf("Garbage in RAM blacklist, skipping\n");
321         *list = NULL;
322         return (0);
323 }
324
325 bool
326 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
327 {
328         struct vm_domain *vmd;
329         vm_page_t m;
330         bool found;
331
332         m = vm_phys_paddr_to_vm_page(pa);
333         if (m == NULL)
334                 return (true); /* page does not exist, no failure */
335
336         vmd = vm_pagequeue_domain(m);
337         vm_domain_free_lock(vmd);
338         found = vm_phys_unfree_page(m);
339         vm_domain_free_unlock(vmd);
340         if (found) {
341                 vm_domain_freecnt_inc(vmd, -1);
342                 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
343                 if (verbose)
344                         printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
345         }
346         return (found);
347 }
348
349 /*
350  *      vm_page_blacklist_check:
351  *
352  *      Iterate through the provided string of blacklist addresses, pulling
353  *      each entry out of the physical allocator free list and putting it
354  *      onto a list for reporting via the vm.page_blacklist sysctl.
355  */
356 static void
357 vm_page_blacklist_check(char *list, char *end)
358 {
359         vm_paddr_t pa;
360         char *next;
361
362         next = list;
363         while (next != NULL) {
364                 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
365                         continue;
366                 vm_page_blacklist_add(pa, bootverbose);
367         }
368 }
369
370 /*
371  *      vm_page_blacklist_load:
372  *
373  *      Search for a special module named "ram_blacklist".  It'll be a
374  *      plain text file provided by the user via the loader directive
375  *      of the same name.
376  */
377 static void
378 vm_page_blacklist_load(char **list, char **end)
379 {
380         void *mod;
381         u_char *ptr;
382         u_int len;
383
384         mod = NULL;
385         ptr = NULL;
386
387         mod = preload_search_by_type("ram_blacklist");
388         if (mod != NULL) {
389                 ptr = preload_fetch_addr(mod);
390                 len = preload_fetch_size(mod);
391         }
392         *list = ptr;
393         if (ptr != NULL)
394                 *end = ptr + len;
395         else
396                 *end = NULL;
397         return;
398 }
399
400 static int
401 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
402 {
403         vm_page_t m;
404         struct sbuf sbuf;
405         int error, first;
406
407         first = 1;
408         error = sysctl_wire_old_buffer(req, 0);
409         if (error != 0)
410                 return (error);
411         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
412         TAILQ_FOREACH(m, &blacklist_head, listq) {
413                 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
414                     (uintmax_t)m->phys_addr);
415                 first = 0;
416         }
417         error = sbuf_finish(&sbuf);
418         sbuf_delete(&sbuf);
419         return (error);
420 }
421
422 /*
423  * Initialize a dummy page for use in scans of the specified paging queue.
424  * In principle, this function only needs to set the flag PG_MARKER.
425  * Nonetheless, it write busies the page as a safety precaution.
426  */
427 void
428 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
429 {
430
431         bzero(marker, sizeof(*marker));
432         marker->flags = PG_MARKER;
433         marker->a.flags = aflags;
434         marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
435         marker->a.queue = queue;
436 }
437
438 static void
439 vm_page_domain_init(int domain)
440 {
441         struct vm_domain *vmd;
442         struct vm_pagequeue *pq;
443         int i;
444
445         vmd = VM_DOMAIN(domain);
446         bzero(vmd, sizeof(*vmd));
447         *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
448             "vm inactive pagequeue";
449         *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
450             "vm active pagequeue";
451         *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
452             "vm laundry pagequeue";
453         *__DECONST(const char **,
454             &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
455             "vm unswappable pagequeue";
456         vmd->vmd_domain = domain;
457         vmd->vmd_page_count = 0;
458         vmd->vmd_free_count = 0;
459         vmd->vmd_segs = 0;
460         vmd->vmd_oom = FALSE;
461         for (i = 0; i < PQ_COUNT; i++) {
462                 pq = &vmd->vmd_pagequeues[i];
463                 TAILQ_INIT(&pq->pq_pl);
464                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
465                     MTX_DEF | MTX_DUPOK);
466                 pq->pq_pdpages = 0;
467                 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
468         }
469         mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
470         mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
471         snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
472
473         /*
474          * inacthead is used to provide FIFO ordering for LRU-bypassing
475          * insertions.
476          */
477         vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
478         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
479             &vmd->vmd_inacthead, plinks.q);
480
481         /*
482          * The clock pages are used to implement active queue scanning without
483          * requeues.  Scans start at clock[0], which is advanced after the scan
484          * ends.  When the two clock hands meet, they are reset and scanning
485          * resumes from the head of the queue.
486          */
487         vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
488         vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
489         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
490             &vmd->vmd_clock[0], plinks.q);
491         TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
492             &vmd->vmd_clock[1], plinks.q);
493 }
494
495 /*
496  * Initialize a physical page in preparation for adding it to the free
497  * lists.
498  */
499 void
500 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
501 {
502
503         m->object = NULL;
504         m->ref_count = 0;
505         m->busy_lock = VPB_FREED;
506         m->flags = m->a.flags = 0;
507         m->phys_addr = pa;
508         m->a.queue = PQ_NONE;
509         m->psind = 0;
510         m->segind = segind;
511         m->order = VM_NFREEORDER;
512         m->pool = VM_FREEPOOL_DEFAULT;
513         m->valid = m->dirty = 0;
514         pmap_page_init(m);
515 }
516
517 #ifndef PMAP_HAS_PAGE_ARRAY
518 static vm_paddr_t
519 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
520 {
521         vm_paddr_t new_end;
522
523         /*
524          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
525          * However, because this page is allocated from KVM, out-of-bounds
526          * accesses using the direct map will not be trapped.
527          */
528         *vaddr += PAGE_SIZE;
529
530         /*
531          * Allocate physical memory for the page structures, and map it.
532          */
533         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
534         vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
535             VM_PROT_READ | VM_PROT_WRITE);
536         vm_page_array_size = page_range;
537
538         return (new_end);
539 }
540 #endif
541
542 /*
543  *      vm_page_startup:
544  *
545  *      Initializes the resident memory module.  Allocates physical memory for
546  *      bootstrapping UMA and some data structures that are used to manage
547  *      physical pages.  Initializes these structures, and populates the free
548  *      page queues.
549  */
550 vm_offset_t
551 vm_page_startup(vm_offset_t vaddr)
552 {
553         struct vm_phys_seg *seg;
554         struct vm_domain *vmd;
555         vm_page_t m;
556         char *list, *listend;
557         vm_paddr_t end, high_avail, low_avail, new_end, size;
558         vm_paddr_t page_range __unused;
559         vm_paddr_t last_pa, pa, startp, endp;
560         u_long pagecount;
561 #if MINIDUMP_PAGE_TRACKING
562         u_long vm_page_dump_size;
563 #endif
564         int biggestone, i, segind;
565 #ifdef WITNESS
566         vm_offset_t mapped;
567         int witness_size;
568 #endif
569 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
570         long ii;
571 #endif
572
573         vaddr = round_page(vaddr);
574
575         vm_phys_early_startup();
576         biggestone = vm_phys_avail_largest();
577         end = phys_avail[biggestone+1];
578
579         /*
580          * Initialize the page and queue locks.
581          */
582         mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
583         for (i = 0; i < PA_LOCK_COUNT; i++)
584                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
585         for (i = 0; i < vm_ndomains; i++)
586                 vm_page_domain_init(i);
587
588         new_end = end;
589 #ifdef WITNESS
590         witness_size = round_page(witness_startup_count());
591         new_end -= witness_size;
592         mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
593             VM_PROT_READ | VM_PROT_WRITE);
594         bzero((void *)mapped, witness_size);
595         witness_startup((void *)mapped);
596 #endif
597
598 #if MINIDUMP_PAGE_TRACKING
599         /*
600          * Allocate a bitmap to indicate that a random physical page
601          * needs to be included in a minidump.
602          *
603          * The amd64 port needs this to indicate which direct map pages
604          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
605          *
606          * However, i386 still needs this workspace internally within the
607          * minidump code.  In theory, they are not needed on i386, but are
608          * included should the sf_buf code decide to use them.
609          */
610         last_pa = 0;
611         vm_page_dump_pages = 0;
612         for (i = 0; dump_avail[i + 1] != 0; i += 2) {
613                 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
614                     dump_avail[i] / PAGE_SIZE;
615                 if (dump_avail[i + 1] > last_pa)
616                         last_pa = dump_avail[i + 1];
617         }
618         vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
619         new_end -= vm_page_dump_size;
620         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
621             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
622         bzero((void *)vm_page_dump, vm_page_dump_size);
623 #if MINIDUMP_STARTUP_PAGE_TRACKING
624         /*
625          * Include the UMA bootstrap pages, witness pages and vm_page_dump
626          * in a crash dump.  When pmap_map() uses the direct map, they are
627          * not automatically included.
628          */
629         for (pa = new_end; pa < end; pa += PAGE_SIZE)
630                 dump_add_page(pa);
631 #endif
632 #else
633         (void)last_pa;
634 #endif
635         phys_avail[biggestone + 1] = new_end;
636 #ifdef __amd64__
637         /*
638          * Request that the physical pages underlying the message buffer be
639          * included in a crash dump.  Since the message buffer is accessed
640          * through the direct map, they are not automatically included.
641          */
642         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
643         last_pa = pa + round_page(msgbufsize);
644         while (pa < last_pa) {
645                 dump_add_page(pa);
646                 pa += PAGE_SIZE;
647         }
648 #endif
649         /*
650          * Compute the number of pages of memory that will be available for
651          * use, taking into account the overhead of a page structure per page.
652          * In other words, solve
653          *      "available physical memory" - round_page(page_range *
654          *          sizeof(struct vm_page)) = page_range * PAGE_SIZE 
655          * for page_range.  
656          */
657         low_avail = phys_avail[0];
658         high_avail = phys_avail[1];
659         for (i = 0; i < vm_phys_nsegs; i++) {
660                 if (vm_phys_segs[i].start < low_avail)
661                         low_avail = vm_phys_segs[i].start;
662                 if (vm_phys_segs[i].end > high_avail)
663                         high_avail = vm_phys_segs[i].end;
664         }
665         /* Skip the first chunk.  It is already accounted for. */
666         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
667                 if (phys_avail[i] < low_avail)
668                         low_avail = phys_avail[i];
669                 if (phys_avail[i + 1] > high_avail)
670                         high_avail = phys_avail[i + 1];
671         }
672         first_page = low_avail / PAGE_SIZE;
673 #ifdef VM_PHYSSEG_SPARSE
674         size = 0;
675         for (i = 0; i < vm_phys_nsegs; i++)
676                 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
677         for (i = 0; phys_avail[i + 1] != 0; i += 2)
678                 size += phys_avail[i + 1] - phys_avail[i];
679 #elif defined(VM_PHYSSEG_DENSE)
680         size = high_avail - low_avail;
681 #else
682 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
683 #endif
684
685 #ifdef PMAP_HAS_PAGE_ARRAY
686         pmap_page_array_startup(size / PAGE_SIZE);
687         biggestone = vm_phys_avail_largest();
688         end = new_end = phys_avail[biggestone + 1];
689 #else
690 #ifdef VM_PHYSSEG_DENSE
691         /*
692          * In the VM_PHYSSEG_DENSE case, the number of pages can account for
693          * the overhead of a page structure per page only if vm_page_array is
694          * allocated from the last physical memory chunk.  Otherwise, we must
695          * allocate page structures representing the physical memory
696          * underlying vm_page_array, even though they will not be used.
697          */
698         if (new_end != high_avail)
699                 page_range = size / PAGE_SIZE;
700         else
701 #endif
702         {
703                 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
704
705                 /*
706                  * If the partial bytes remaining are large enough for
707                  * a page (PAGE_SIZE) without a corresponding
708                  * 'struct vm_page', then new_end will contain an
709                  * extra page after subtracting the length of the VM
710                  * page array.  Compensate by subtracting an extra
711                  * page from new_end.
712                  */
713                 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
714                         if (new_end == high_avail)
715                                 high_avail -= PAGE_SIZE;
716                         new_end -= PAGE_SIZE;
717                 }
718         }
719         end = new_end;
720         new_end = vm_page_array_alloc(&vaddr, end, page_range);
721 #endif
722
723 #if VM_NRESERVLEVEL > 0
724         /*
725          * Allocate physical memory for the reservation management system's
726          * data structures, and map it.
727          */
728         new_end = vm_reserv_startup(&vaddr, new_end);
729 #endif
730 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
731         /*
732          * Include vm_page_array and vm_reserv_array in a crash dump.
733          */
734         for (pa = new_end; pa < end; pa += PAGE_SIZE)
735                 dump_add_page(pa);
736 #endif
737         phys_avail[biggestone + 1] = new_end;
738
739         /*
740          * Add physical memory segments corresponding to the available
741          * physical pages.
742          */
743         for (i = 0; phys_avail[i + 1] != 0; i += 2)
744                 if (vm_phys_avail_size(i) != 0)
745                         vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
746
747         /*
748          * Initialize the physical memory allocator.
749          */
750         vm_phys_init();
751
752         /*
753          * Initialize the page structures and add every available page to the
754          * physical memory allocator's free lists.
755          */
756 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
757         for (ii = 0; ii < vm_page_array_size; ii++) {
758                 m = &vm_page_array[ii];
759                 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
760                 m->flags = PG_FICTITIOUS;
761         }
762 #endif
763         vm_cnt.v_page_count = 0;
764         for (segind = 0; segind < vm_phys_nsegs; segind++) {
765                 seg = &vm_phys_segs[segind];
766                 for (m = seg->first_page, pa = seg->start; pa < seg->end;
767                     m++, pa += PAGE_SIZE)
768                         vm_page_init_page(m, pa, segind);
769
770                 /*
771                  * Add the segment's pages that are covered by one of
772                  * phys_avail's ranges to the free lists.
773                  */
774                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
775                         if (seg->end <= phys_avail[i] ||
776                             seg->start >= phys_avail[i + 1])
777                                 continue;
778
779                         startp = MAX(seg->start, phys_avail[i]);
780                         endp = MIN(seg->end, phys_avail[i + 1]);
781                         pagecount = (u_long)atop(endp - startp);
782                         if (pagecount == 0)
783                                 continue;
784
785                         m = seg->first_page + atop(startp - seg->start);
786                         vmd = VM_DOMAIN(seg->domain);
787                         vm_domain_free_lock(vmd);
788                         vm_phys_enqueue_contig(m, pagecount);
789                         vm_domain_free_unlock(vmd);
790                         vm_domain_freecnt_inc(vmd, pagecount);
791                         vm_cnt.v_page_count += (u_int)pagecount;
792                         vmd->vmd_page_count += (u_int)pagecount;
793                         vmd->vmd_segs |= 1UL << segind;
794                 }
795         }
796
797         /*
798          * Remove blacklisted pages from the physical memory allocator.
799          */
800         TAILQ_INIT(&blacklist_head);
801         vm_page_blacklist_load(&list, &listend);
802         vm_page_blacklist_check(list, listend);
803
804         list = kern_getenv("vm.blacklist");
805         vm_page_blacklist_check(list, NULL);
806
807         freeenv(list);
808 #if VM_NRESERVLEVEL > 0
809         /*
810          * Initialize the reservation management system.
811          */
812         vm_reserv_init();
813 #endif
814
815         return (vaddr);
816 }
817
818 void
819 vm_page_reference(vm_page_t m)
820 {
821
822         vm_page_aflag_set(m, PGA_REFERENCED);
823 }
824
825 /*
826  *      vm_page_trybusy
827  *
828  *      Helper routine for grab functions to trylock busy.
829  *
830  *      Returns true on success and false on failure.
831  */
832 static bool
833 vm_page_trybusy(vm_page_t m, int allocflags)
834 {
835
836         if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
837                 return (vm_page_trysbusy(m));
838         else
839                 return (vm_page_tryxbusy(m));
840 }
841
842 /*
843  *      vm_page_tryacquire
844  *
845  *      Helper routine for grab functions to trylock busy and wire.
846  *
847  *      Returns true on success and false on failure.
848  */
849 static inline bool
850 vm_page_tryacquire(vm_page_t m, int allocflags)
851 {
852         bool locked;
853
854         locked = vm_page_trybusy(m, allocflags);
855         if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
856                 vm_page_wire(m);
857         return (locked);
858 }
859
860 /*
861  *      vm_page_busy_acquire:
862  *
863  *      Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
864  *      and drop the object lock if necessary.
865  */
866 bool
867 vm_page_busy_acquire(vm_page_t m, int allocflags)
868 {
869         vm_object_t obj;
870         bool locked;
871
872         /*
873          * The page-specific object must be cached because page
874          * identity can change during the sleep, causing the
875          * re-lock of a different object.
876          * It is assumed that a reference to the object is already
877          * held by the callers.
878          */
879         obj = atomic_load_ptr(&m->object);
880         for (;;) {
881                 if (vm_page_tryacquire(m, allocflags))
882                         return (true);
883                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
884                         return (false);
885                 if (obj != NULL)
886                         locked = VM_OBJECT_WOWNED(obj);
887                 else
888                         locked = false;
889                 MPASS(locked || vm_page_wired(m));
890                 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
891                     locked) && locked)
892                         VM_OBJECT_WLOCK(obj);
893                 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
894                         return (false);
895                 KASSERT(m->object == obj || m->object == NULL,
896                     ("vm_page_busy_acquire: page %p does not belong to %p",
897                     m, obj));
898         }
899 }
900
901 /*
902  *      vm_page_busy_downgrade:
903  *
904  *      Downgrade an exclusive busy page into a single shared busy page.
905  */
906 void
907 vm_page_busy_downgrade(vm_page_t m)
908 {
909         u_int x;
910
911         vm_page_assert_xbusied(m);
912
913         x = vm_page_busy_fetch(m);
914         for (;;) {
915                 if (atomic_fcmpset_rel_int(&m->busy_lock,
916                     &x, VPB_SHARERS_WORD(1)))
917                         break;
918         }
919         if ((x & VPB_BIT_WAITERS) != 0)
920                 wakeup(m);
921 }
922
923 /*
924  *
925  *      vm_page_busy_tryupgrade:
926  *
927  *      Attempt to upgrade a single shared busy into an exclusive busy.
928  */
929 int
930 vm_page_busy_tryupgrade(vm_page_t m)
931 {
932         u_int ce, x;
933
934         vm_page_assert_sbusied(m);
935
936         x = vm_page_busy_fetch(m);
937         ce = VPB_CURTHREAD_EXCLUSIVE;
938         for (;;) {
939                 if (VPB_SHARERS(x) > 1)
940                         return (0);
941                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
942                     ("vm_page_busy_tryupgrade: invalid lock state"));
943                 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
944                     ce | (x & VPB_BIT_WAITERS)))
945                         continue;
946                 return (1);
947         }
948 }
949
950 /*
951  *      vm_page_sbusied:
952  *
953  *      Return a positive value if the page is shared busied, 0 otherwise.
954  */
955 int
956 vm_page_sbusied(vm_page_t m)
957 {
958         u_int x;
959
960         x = vm_page_busy_fetch(m);
961         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
962 }
963
964 /*
965  *      vm_page_sunbusy:
966  *
967  *      Shared unbusy a page.
968  */
969 void
970 vm_page_sunbusy(vm_page_t m)
971 {
972         u_int x;
973
974         vm_page_assert_sbusied(m);
975
976         x = vm_page_busy_fetch(m);
977         for (;;) {
978                 KASSERT(x != VPB_FREED,
979                     ("vm_page_sunbusy: Unlocking freed page."));
980                 if (VPB_SHARERS(x) > 1) {
981                         if (atomic_fcmpset_int(&m->busy_lock, &x,
982                             x - VPB_ONE_SHARER))
983                                 break;
984                         continue;
985                 }
986                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
987                     ("vm_page_sunbusy: invalid lock state"));
988                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
989                         continue;
990                 if ((x & VPB_BIT_WAITERS) == 0)
991                         break;
992                 wakeup(m);
993                 break;
994         }
995 }
996
997 /*
998  *      vm_page_busy_sleep:
999  *
1000  *      Sleep if the page is busy, using the page pointer as wchan.
1001  *      This is used to implement the hard-path of the busying mechanism.
1002  *
1003  *      If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1004  *      will not sleep if the page is shared-busy.
1005  *
1006  *      The object lock must be held on entry.
1007  *
1008  *      Returns true if it slept and dropped the object lock, or false
1009  *      if there was no sleep and the lock is still held.
1010  */
1011 bool
1012 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1013 {
1014         vm_object_t obj;
1015
1016         obj = m->object;
1017         VM_OBJECT_ASSERT_LOCKED(obj);
1018
1019         return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1020             true));
1021 }
1022
1023 /*
1024  *      vm_page_busy_sleep_unlocked:
1025  *
1026  *      Sleep if the page is busy, using the page pointer as wchan.
1027  *      This is used to implement the hard-path of busying mechanism.
1028  *
1029  *      If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1030  *      will not sleep if the page is shared-busy.
1031  *
1032  *      The object lock must not be held on entry.  The operation will
1033  *      return if the page changes identity.
1034  */
1035 void
1036 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1037     const char *wmesg, int allocflags)
1038 {
1039         VM_OBJECT_ASSERT_UNLOCKED(obj);
1040
1041         (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1042 }
1043
1044 /*
1045  *      _vm_page_busy_sleep:
1046  *
1047  *      Internal busy sleep function.  Verifies the page identity and
1048  *      lockstate against parameters.  Returns true if it sleeps and
1049  *      false otherwise.
1050  *
1051  *      allocflags uses VM_ALLOC_* flags to specify the lock required.
1052  *
1053  *      If locked is true the lock will be dropped for any true returns
1054  *      and held for any false returns.
1055  */
1056 static bool
1057 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1058     const char *wmesg, int allocflags, bool locked)
1059 {
1060         bool xsleep;
1061         u_int x;
1062
1063         /*
1064          * If the object is busy we must wait for that to drain to zero
1065          * before trying the page again.
1066          */
1067         if (obj != NULL && vm_object_busied(obj)) {
1068                 if (locked)
1069                         VM_OBJECT_DROP(obj);
1070                 vm_object_busy_wait(obj, wmesg);
1071                 return (true);
1072         }
1073
1074         if (!vm_page_busied(m))
1075                 return (false);
1076
1077         xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1078         sleepq_lock(m);
1079         x = vm_page_busy_fetch(m);
1080         do {
1081                 /*
1082                  * If the page changes objects or becomes unlocked we can
1083                  * simply return.
1084                  */
1085                 if (x == VPB_UNBUSIED ||
1086                     (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1087                     m->object != obj || m->pindex != pindex) {
1088                         sleepq_release(m);
1089                         return (false);
1090                 }
1091                 if ((x & VPB_BIT_WAITERS) != 0)
1092                         break;
1093         } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1094         if (locked)
1095                 VM_OBJECT_DROP(obj);
1096         DROP_GIANT();
1097         sleepq_add(m, NULL, wmesg, 0, 0);
1098         sleepq_wait(m, PVM);
1099         PICKUP_GIANT();
1100         return (true);
1101 }
1102
1103 /*
1104  *      vm_page_trysbusy:
1105  *
1106  *      Try to shared busy a page.
1107  *      If the operation succeeds 1 is returned otherwise 0.
1108  *      The operation never sleeps.
1109  */
1110 int
1111 vm_page_trysbusy(vm_page_t m)
1112 {
1113         vm_object_t obj;
1114         u_int x;
1115
1116         obj = m->object;
1117         x = vm_page_busy_fetch(m);
1118         for (;;) {
1119                 if ((x & VPB_BIT_SHARED) == 0)
1120                         return (0);
1121                 /*
1122                  * Reduce the window for transient busies that will trigger
1123                  * false negatives in vm_page_ps_test().
1124                  */
1125                 if (obj != NULL && vm_object_busied(obj))
1126                         return (0);
1127                 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1128                     x + VPB_ONE_SHARER))
1129                         break;
1130         }
1131
1132         /* Refetch the object now that we're guaranteed that it is stable. */
1133         obj = m->object;
1134         if (obj != NULL && vm_object_busied(obj)) {
1135                 vm_page_sunbusy(m);
1136                 return (0);
1137         }
1138         return (1);
1139 }
1140
1141 /*
1142  *      vm_page_tryxbusy:
1143  *
1144  *      Try to exclusive busy a page.
1145  *      If the operation succeeds 1 is returned otherwise 0.
1146  *      The operation never sleeps.
1147  */
1148 int
1149 vm_page_tryxbusy(vm_page_t m)
1150 {
1151         vm_object_t obj;
1152
1153         if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1154             VPB_CURTHREAD_EXCLUSIVE) == 0)
1155                 return (0);
1156
1157         obj = m->object;
1158         if (obj != NULL && vm_object_busied(obj)) {
1159                 vm_page_xunbusy(m);
1160                 return (0);
1161         }
1162         return (1);
1163 }
1164
1165 static void
1166 vm_page_xunbusy_hard_tail(vm_page_t m)
1167 {
1168         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1169         /* Wake the waiter. */
1170         wakeup(m);
1171 }
1172
1173 /*
1174  *      vm_page_xunbusy_hard:
1175  *
1176  *      Called when unbusy has failed because there is a waiter.
1177  */
1178 void
1179 vm_page_xunbusy_hard(vm_page_t m)
1180 {
1181         vm_page_assert_xbusied(m);
1182         vm_page_xunbusy_hard_tail(m);
1183 }
1184
1185 void
1186 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1187 {
1188         vm_page_assert_xbusied_unchecked(m);
1189         vm_page_xunbusy_hard_tail(m);
1190 }
1191
1192 static void
1193 vm_page_busy_free(vm_page_t m)
1194 {
1195         u_int x;
1196
1197         atomic_thread_fence_rel();
1198         x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1199         if ((x & VPB_BIT_WAITERS) != 0)
1200                 wakeup(m);
1201 }
1202
1203 /*
1204  *      vm_page_unhold_pages:
1205  *
1206  *      Unhold each of the pages that is referenced by the given array.
1207  */
1208 void
1209 vm_page_unhold_pages(vm_page_t *ma, int count)
1210 {
1211
1212         for (; count != 0; count--) {
1213                 vm_page_unwire(*ma, PQ_ACTIVE);
1214                 ma++;
1215         }
1216 }
1217
1218 vm_page_t
1219 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1220 {
1221         vm_page_t m;
1222
1223 #ifdef VM_PHYSSEG_SPARSE
1224         m = vm_phys_paddr_to_vm_page(pa);
1225         if (m == NULL)
1226                 m = vm_phys_fictitious_to_vm_page(pa);
1227         return (m);
1228 #elif defined(VM_PHYSSEG_DENSE)
1229         long pi;
1230
1231         pi = atop(pa);
1232         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1233                 m = &vm_page_array[pi - first_page];
1234                 return (m);
1235         }
1236         return (vm_phys_fictitious_to_vm_page(pa));
1237 #else
1238 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1239 #endif
1240 }
1241
1242 /*
1243  *      vm_page_getfake:
1244  *
1245  *      Create a fictitious page with the specified physical address and
1246  *      memory attribute.  The memory attribute is the only the machine-
1247  *      dependent aspect of a fictitious page that must be initialized.
1248  */
1249 vm_page_t
1250 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1251 {
1252         vm_page_t m;
1253
1254         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1255         vm_page_initfake(m, paddr, memattr);
1256         return (m);
1257 }
1258
1259 void
1260 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1261 {
1262
1263         if ((m->flags & PG_FICTITIOUS) != 0) {
1264                 /*
1265                  * The page's memattr might have changed since the
1266                  * previous initialization.  Update the pmap to the
1267                  * new memattr.
1268                  */
1269                 goto memattr;
1270         }
1271         m->phys_addr = paddr;
1272         m->a.queue = PQ_NONE;
1273         /* Fictitious pages don't use "segind". */
1274         m->flags = PG_FICTITIOUS;
1275         /* Fictitious pages don't use "order" or "pool". */
1276         m->oflags = VPO_UNMANAGED;
1277         m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1278         /* Fictitious pages are unevictable. */
1279         m->ref_count = 1;
1280         pmap_page_init(m);
1281 memattr:
1282         pmap_page_set_memattr(m, memattr);
1283 }
1284
1285 /*
1286  *      vm_page_putfake:
1287  *
1288  *      Release a fictitious page.
1289  */
1290 void
1291 vm_page_putfake(vm_page_t m)
1292 {
1293
1294         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1295         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1296             ("vm_page_putfake: bad page %p", m));
1297         vm_page_assert_xbusied(m);
1298         vm_page_busy_free(m);
1299         uma_zfree(fakepg_zone, m);
1300 }
1301
1302 /*
1303  *      vm_page_updatefake:
1304  *
1305  *      Update the given fictitious page to the specified physical address and
1306  *      memory attribute.
1307  */
1308 void
1309 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1310 {
1311
1312         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1313             ("vm_page_updatefake: bad page %p", m));
1314         m->phys_addr = paddr;
1315         pmap_page_set_memattr(m, memattr);
1316 }
1317
1318 /*
1319  *      vm_page_free:
1320  *
1321  *      Free a page.
1322  */
1323 void
1324 vm_page_free(vm_page_t m)
1325 {
1326
1327         m->flags &= ~PG_ZERO;
1328         vm_page_free_toq(m);
1329 }
1330
1331 /*
1332  *      vm_page_free_zero:
1333  *
1334  *      Free a page to the zerod-pages queue
1335  */
1336 void
1337 vm_page_free_zero(vm_page_t m)
1338 {
1339
1340         m->flags |= PG_ZERO;
1341         vm_page_free_toq(m);
1342 }
1343
1344 /*
1345  * Unbusy and handle the page queueing for a page from a getpages request that
1346  * was optionally read ahead or behind.
1347  */
1348 void
1349 vm_page_readahead_finish(vm_page_t m)
1350 {
1351
1352         /* We shouldn't put invalid pages on queues. */
1353         KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1354
1355         /*
1356          * Since the page is not the actually needed one, whether it should
1357          * be activated or deactivated is not obvious.  Empirical results
1358          * have shown that deactivating the page is usually the best choice,
1359          * unless the page is wanted by another thread.
1360          */
1361         if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1362                 vm_page_activate(m);
1363         else
1364                 vm_page_deactivate(m);
1365         vm_page_xunbusy_unchecked(m);
1366 }
1367
1368 /*
1369  * Destroy the identity of an invalid page and free it if possible.
1370  * This is intended to be used when reading a page from backing store fails.
1371  */
1372 void
1373 vm_page_free_invalid(vm_page_t m)
1374 {
1375
1376         KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1377         KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1378         KASSERT(m->object != NULL, ("page %p has no object", m));
1379         VM_OBJECT_ASSERT_WLOCKED(m->object);
1380
1381         /*
1382          * We may be attempting to free the page as part of the handling for an
1383          * I/O error, in which case the page was xbusied by a different thread.
1384          */
1385         vm_page_xbusy_claim(m);
1386
1387         /*
1388          * If someone has wired this page while the object lock
1389          * was not held, then the thread that unwires is responsible
1390          * for freeing the page.  Otherwise just free the page now.
1391          * The wire count of this unmapped page cannot change while
1392          * we have the page xbusy and the page's object wlocked.
1393          */
1394         if (vm_page_remove(m))
1395                 vm_page_free(m);
1396 }
1397
1398 /*
1399  *      vm_page_dirty_KBI:              [ internal use only ]
1400  *
1401  *      Set all bits in the page's dirty field.
1402  *
1403  *      The object containing the specified page must be locked if the
1404  *      call is made from the machine-independent layer.
1405  *
1406  *      See vm_page_clear_dirty_mask().
1407  *
1408  *      This function should only be called by vm_page_dirty().
1409  */
1410 void
1411 vm_page_dirty_KBI(vm_page_t m)
1412 {
1413
1414         /* Refer to this operation by its public name. */
1415         KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1416         m->dirty = VM_PAGE_BITS_ALL;
1417 }
1418
1419 /*
1420  *      vm_page_insert:         [ internal use only ]
1421  *
1422  *      Inserts the given mem entry into the object and object list.
1423  *
1424  *      The object must be locked.
1425  */
1426 int
1427 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1428 {
1429         vm_page_t mpred;
1430
1431         VM_OBJECT_ASSERT_WLOCKED(object);
1432         mpred = vm_radix_lookup_le(&object->rtree, pindex);
1433         return (vm_page_insert_after(m, object, pindex, mpred));
1434 }
1435
1436 /*
1437  *      vm_page_insert_after:
1438  *
1439  *      Inserts the page "m" into the specified object at offset "pindex".
1440  *
1441  *      The page "mpred" must immediately precede the offset "pindex" within
1442  *      the specified object.
1443  *
1444  *      The object must be locked.
1445  */
1446 static int
1447 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1448     vm_page_t mpred)
1449 {
1450         vm_page_t msucc;
1451
1452         VM_OBJECT_ASSERT_WLOCKED(object);
1453         KASSERT(m->object == NULL,
1454             ("vm_page_insert_after: page already inserted"));
1455         if (mpred != NULL) {
1456                 KASSERT(mpred->object == object,
1457                     ("vm_page_insert_after: object doesn't contain mpred"));
1458                 KASSERT(mpred->pindex < pindex,
1459                     ("vm_page_insert_after: mpred doesn't precede pindex"));
1460                 msucc = TAILQ_NEXT(mpred, listq);
1461         } else
1462                 msucc = TAILQ_FIRST(&object->memq);
1463         if (msucc != NULL)
1464                 KASSERT(msucc->pindex > pindex,
1465                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
1466
1467         /*
1468          * Record the object/offset pair in this page.
1469          */
1470         m->object = object;
1471         m->pindex = pindex;
1472         m->ref_count |= VPRC_OBJREF;
1473
1474         /*
1475          * Now link into the object's ordered list of backed pages.
1476          */
1477         if (vm_radix_insert(&object->rtree, m)) {
1478                 m->object = NULL;
1479                 m->pindex = 0;
1480                 m->ref_count &= ~VPRC_OBJREF;
1481                 return (1);
1482         }
1483         vm_page_insert_radixdone(m, object, mpred);
1484         vm_pager_page_inserted(object, m);
1485         return (0);
1486 }
1487
1488 /*
1489  *      vm_page_insert_radixdone:
1490  *
1491  *      Complete page "m" insertion into the specified object after the
1492  *      radix trie hooking.
1493  *
1494  *      The page "mpred" must precede the offset "m->pindex" within the
1495  *      specified object.
1496  *
1497  *      The object must be locked.
1498  */
1499 static void
1500 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1501 {
1502
1503         VM_OBJECT_ASSERT_WLOCKED(object);
1504         KASSERT(object != NULL && m->object == object,
1505             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1506         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1507             ("vm_page_insert_radixdone: page %p is missing object ref", m));
1508         if (mpred != NULL) {
1509                 KASSERT(mpred->object == object,
1510                     ("vm_page_insert_radixdone: object doesn't contain mpred"));
1511                 KASSERT(mpred->pindex < m->pindex,
1512                     ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1513         }
1514
1515         if (mpred != NULL)
1516                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1517         else
1518                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1519
1520         /*
1521          * Show that the object has one more resident page.
1522          */
1523         object->resident_page_count++;
1524
1525         /*
1526          * Hold the vnode until the last page is released.
1527          */
1528         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1529                 vhold(object->handle);
1530
1531         /*
1532          * Since we are inserting a new and possibly dirty page,
1533          * update the object's generation count.
1534          */
1535         if (pmap_page_is_write_mapped(m))
1536                 vm_object_set_writeable_dirty(object);
1537 }
1538
1539 /*
1540  * Do the work to remove a page from its object.  The caller is responsible for
1541  * updating the page's fields to reflect this removal.
1542  */
1543 static void
1544 vm_page_object_remove(vm_page_t m)
1545 {
1546         vm_object_t object;
1547         vm_page_t mrem __diagused;
1548
1549         vm_page_assert_xbusied(m);
1550         object = m->object;
1551         VM_OBJECT_ASSERT_WLOCKED(object);
1552         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1553             ("page %p is missing its object ref", m));
1554
1555         /* Deferred free of swap space. */
1556         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1557                 vm_pager_page_unswapped(m);
1558
1559         vm_pager_page_removed(object, m);
1560
1561         m->object = NULL;
1562         mrem = vm_radix_remove(&object->rtree, m->pindex);
1563         KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1564
1565         /*
1566          * Now remove from the object's list of backed pages.
1567          */
1568         TAILQ_REMOVE(&object->memq, m, listq);
1569
1570         /*
1571          * And show that the object has one fewer resident page.
1572          */
1573         object->resident_page_count--;
1574
1575         /*
1576          * The vnode may now be recycled.
1577          */
1578         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1579                 vdrop(object->handle);
1580 }
1581
1582 /*
1583  *      vm_page_remove:
1584  *
1585  *      Removes the specified page from its containing object, but does not
1586  *      invalidate any backing storage.  Returns true if the object's reference
1587  *      was the last reference to the page, and false otherwise.
1588  *
1589  *      The object must be locked and the page must be exclusively busied.
1590  *      The exclusive busy will be released on return.  If this is not the
1591  *      final ref and the caller does not hold a wire reference it may not
1592  *      continue to access the page.
1593  */
1594 bool
1595 vm_page_remove(vm_page_t m)
1596 {
1597         bool dropped;
1598
1599         dropped = vm_page_remove_xbusy(m);
1600         vm_page_xunbusy(m);
1601
1602         return (dropped);
1603 }
1604
1605 /*
1606  *      vm_page_remove_xbusy
1607  *
1608  *      Removes the page but leaves the xbusy held.  Returns true if this
1609  *      removed the final ref and false otherwise.
1610  */
1611 bool
1612 vm_page_remove_xbusy(vm_page_t m)
1613 {
1614
1615         vm_page_object_remove(m);
1616         return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1617 }
1618
1619 /*
1620  *      vm_page_lookup:
1621  *
1622  *      Returns the page associated with the object/offset
1623  *      pair specified; if none is found, NULL is returned.
1624  *
1625  *      The object must be locked.
1626  */
1627 vm_page_t
1628 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1629 {
1630
1631         VM_OBJECT_ASSERT_LOCKED(object);
1632         return (vm_radix_lookup(&object->rtree, pindex));
1633 }
1634
1635 /*
1636  *      vm_page_lookup_unlocked:
1637  *
1638  *      Returns the page associated with the object/offset pair specified;
1639  *      if none is found, NULL is returned.  The page may be no longer be
1640  *      present in the object at the time that this function returns.  Only
1641  *      useful for opportunistic checks such as inmem().
1642  */
1643 vm_page_t
1644 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1645 {
1646
1647         return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1648 }
1649
1650 /*
1651  *      vm_page_relookup:
1652  *
1653  *      Returns a page that must already have been busied by
1654  *      the caller.  Used for bogus page replacement.
1655  */
1656 vm_page_t
1657 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1658 {
1659         vm_page_t m;
1660
1661         m = vm_radix_lookup_unlocked(&object->rtree, pindex);
1662         KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1663             m->object == object && m->pindex == pindex,
1664             ("vm_page_relookup: Invalid page %p", m));
1665         return (m);
1666 }
1667
1668 /*
1669  * This should only be used by lockless functions for releasing transient
1670  * incorrect acquires.  The page may have been freed after we acquired a
1671  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
1672  * further to do.
1673  */
1674 static void
1675 vm_page_busy_release(vm_page_t m)
1676 {
1677         u_int x;
1678
1679         x = vm_page_busy_fetch(m);
1680         for (;;) {
1681                 if (x == VPB_FREED)
1682                         break;
1683                 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1684                         if (atomic_fcmpset_int(&m->busy_lock, &x,
1685                             x - VPB_ONE_SHARER))
1686                                 break;
1687                         continue;
1688                 }
1689                 KASSERT((x & VPB_BIT_SHARED) != 0 ||
1690                     (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1691                     ("vm_page_busy_release: %p xbusy not owned.", m));
1692                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1693                         continue;
1694                 if ((x & VPB_BIT_WAITERS) != 0)
1695                         wakeup(m);
1696                 break;
1697         }
1698 }
1699
1700 /*
1701  *      vm_page_find_least:
1702  *
1703  *      Returns the page associated with the object with least pindex
1704  *      greater than or equal to the parameter pindex, or NULL.
1705  *
1706  *      The object must be locked.
1707  */
1708 vm_page_t
1709 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1710 {
1711         vm_page_t m;
1712
1713         VM_OBJECT_ASSERT_LOCKED(object);
1714         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1715                 m = vm_radix_lookup_ge(&object->rtree, pindex);
1716         return (m);
1717 }
1718
1719 /*
1720  * Returns the given page's successor (by pindex) within the object if it is
1721  * resident; if none is found, NULL is returned.
1722  *
1723  * The object must be locked.
1724  */
1725 vm_page_t
1726 vm_page_next(vm_page_t m)
1727 {
1728         vm_page_t next;
1729
1730         VM_OBJECT_ASSERT_LOCKED(m->object);
1731         if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1732                 MPASS(next->object == m->object);
1733                 if (next->pindex != m->pindex + 1)
1734                         next = NULL;
1735         }
1736         return (next);
1737 }
1738
1739 /*
1740  * Returns the given page's predecessor (by pindex) within the object if it is
1741  * resident; if none is found, NULL is returned.
1742  *
1743  * The object must be locked.
1744  */
1745 vm_page_t
1746 vm_page_prev(vm_page_t m)
1747 {
1748         vm_page_t prev;
1749
1750         VM_OBJECT_ASSERT_LOCKED(m->object);
1751         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1752                 MPASS(prev->object == m->object);
1753                 if (prev->pindex != m->pindex - 1)
1754                         prev = NULL;
1755         }
1756         return (prev);
1757 }
1758
1759 /*
1760  * Uses the page mnew as a replacement for an existing page at index
1761  * pindex which must be already present in the object.
1762  *
1763  * Both pages must be exclusively busied on enter.  The old page is
1764  * unbusied on exit.
1765  *
1766  * A return value of true means mold is now free.  If this is not the
1767  * final ref and the caller does not hold a wire reference it may not
1768  * continue to access the page.
1769  */
1770 static bool
1771 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1772     vm_page_t mold)
1773 {
1774         vm_page_t mret __diagused;
1775         bool dropped;
1776
1777         VM_OBJECT_ASSERT_WLOCKED(object);
1778         vm_page_assert_xbusied(mold);
1779         KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1780             ("vm_page_replace: page %p already in object", mnew));
1781
1782         /*
1783          * This function mostly follows vm_page_insert() and
1784          * vm_page_remove() without the radix, object count and vnode
1785          * dance.  Double check such functions for more comments.
1786          */
1787
1788         mnew->object = object;
1789         mnew->pindex = pindex;
1790         atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1791         mret = vm_radix_replace(&object->rtree, mnew);
1792         KASSERT(mret == mold,
1793             ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1794         KASSERT((mold->oflags & VPO_UNMANAGED) ==
1795             (mnew->oflags & VPO_UNMANAGED),
1796             ("vm_page_replace: mismatched VPO_UNMANAGED"));
1797
1798         /* Keep the resident page list in sorted order. */
1799         TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1800         TAILQ_REMOVE(&object->memq, mold, listq);
1801         mold->object = NULL;
1802
1803         /*
1804          * The object's resident_page_count does not change because we have
1805          * swapped one page for another, but the generation count should
1806          * change if the page is dirty.
1807          */
1808         if (pmap_page_is_write_mapped(mnew))
1809                 vm_object_set_writeable_dirty(object);
1810         dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1811         vm_page_xunbusy(mold);
1812
1813         return (dropped);
1814 }
1815
1816 void
1817 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1818     vm_page_t mold)
1819 {
1820
1821         vm_page_assert_xbusied(mnew);
1822
1823         if (vm_page_replace_hold(mnew, object, pindex, mold))
1824                 vm_page_free(mold);
1825 }
1826
1827 /*
1828  *      vm_page_rename:
1829  *
1830  *      Move the given memory entry from its
1831  *      current object to the specified target object/offset.
1832  *
1833  *      Note: swap associated with the page must be invalidated by the move.  We
1834  *            have to do this for several reasons:  (1) we aren't freeing the
1835  *            page, (2) we are dirtying the page, (3) the VM system is probably
1836  *            moving the page from object A to B, and will then later move
1837  *            the backing store from A to B and we can't have a conflict.
1838  *
1839  *      Note: we *always* dirty the page.  It is necessary both for the
1840  *            fact that we moved it, and because we may be invalidating
1841  *            swap.
1842  *
1843  *      The objects must be locked.
1844  */
1845 int
1846 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1847 {
1848         vm_page_t mpred;
1849         vm_pindex_t opidx;
1850
1851         VM_OBJECT_ASSERT_WLOCKED(new_object);
1852
1853         KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1854         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1855         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1856             ("vm_page_rename: pindex already renamed"));
1857
1858         /*
1859          * Create a custom version of vm_page_insert() which does not depend
1860          * by m_prev and can cheat on the implementation aspects of the
1861          * function.
1862          */
1863         opidx = m->pindex;
1864         m->pindex = new_pindex;
1865         if (vm_radix_insert(&new_object->rtree, m)) {
1866                 m->pindex = opidx;
1867                 return (1);
1868         }
1869
1870         /*
1871          * The operation cannot fail anymore.  The removal must happen before
1872          * the listq iterator is tainted.
1873          */
1874         m->pindex = opidx;
1875         vm_page_object_remove(m);
1876
1877         /* Return back to the new pindex to complete vm_page_insert(). */
1878         m->pindex = new_pindex;
1879         m->object = new_object;
1880
1881         vm_page_insert_radixdone(m, new_object, mpred);
1882         vm_page_dirty(m);
1883         vm_pager_page_inserted(new_object, m);
1884         return (0);
1885 }
1886
1887 /*
1888  *      vm_page_alloc:
1889  *
1890  *      Allocate and return a page that is associated with the specified
1891  *      object and offset pair.  By default, this page is exclusive busied.
1892  *
1893  *      The caller must always specify an allocation class.
1894  *
1895  *      allocation classes:
1896  *      VM_ALLOC_NORMAL         normal process request
1897  *      VM_ALLOC_SYSTEM         system *really* needs a page
1898  *      VM_ALLOC_INTERRUPT      interrupt time request
1899  *
1900  *      optional allocation flags:
1901  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
1902  *                              intends to allocate
1903  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1904  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1905  *      VM_ALLOC_SBUSY          shared busy the allocated page
1906  *      VM_ALLOC_WIRED          wire the allocated page
1907  *      VM_ALLOC_ZERO           prefer a zeroed page
1908  */
1909 vm_page_t
1910 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1911 {
1912
1913         return (vm_page_alloc_after(object, pindex, req,
1914             vm_radix_lookup_le(&object->rtree, pindex)));
1915 }
1916
1917 vm_page_t
1918 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1919     int req)
1920 {
1921
1922         return (vm_page_alloc_domain_after(object, pindex, domain, req,
1923             vm_radix_lookup_le(&object->rtree, pindex)));
1924 }
1925
1926 /*
1927  * Allocate a page in the specified object with the given page index.  To
1928  * optimize insertion of the page into the object, the caller must also specifiy
1929  * the resident page in the object with largest index smaller than the given
1930  * page index, or NULL if no such page exists.
1931  */
1932 vm_page_t
1933 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1934     int req, vm_page_t mpred)
1935 {
1936         struct vm_domainset_iter di;
1937         vm_page_t m;
1938         int domain;
1939
1940         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1941         do {
1942                 m = vm_page_alloc_domain_after(object, pindex, domain, req,
1943                     mpred);
1944                 if (m != NULL)
1945                         break;
1946         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
1947
1948         return (m);
1949 }
1950
1951 /*
1952  * Returns true if the number of free pages exceeds the minimum
1953  * for the request class and false otherwise.
1954  */
1955 static int
1956 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1957 {
1958         u_int limit, old, new;
1959
1960         if (req_class == VM_ALLOC_INTERRUPT)
1961                 limit = 0;
1962         else if (req_class == VM_ALLOC_SYSTEM)
1963                 limit = vmd->vmd_interrupt_free_min;
1964         else
1965                 limit = vmd->vmd_free_reserved;
1966
1967         /*
1968          * Attempt to reserve the pages.  Fail if we're below the limit.
1969          */
1970         limit += npages;
1971         old = vmd->vmd_free_count;
1972         do {
1973                 if (old < limit)
1974                         return (0);
1975                 new = old - npages;
1976         } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1977
1978         /* Wake the page daemon if we've crossed the threshold. */
1979         if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1980                 pagedaemon_wakeup(vmd->vmd_domain);
1981
1982         /* Only update bitsets on transitions. */
1983         if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1984             (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1985                 vm_domain_set(vmd);
1986
1987         return (1);
1988 }
1989
1990 int
1991 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1992 {
1993         int req_class;
1994
1995         /*
1996          * The page daemon is allowed to dig deeper into the free page list.
1997          */
1998         req_class = req & VM_ALLOC_CLASS_MASK;
1999         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2000                 req_class = VM_ALLOC_SYSTEM;
2001         return (_vm_domain_allocate(vmd, req_class, npages));
2002 }
2003
2004 vm_page_t
2005 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2006     int req, vm_page_t mpred)
2007 {
2008         struct vm_domain *vmd;
2009         vm_page_t m;
2010         int flags;
2011
2012 #define VPA_FLAGS       (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |      \
2013                          VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY |            \
2014                          VM_ALLOC_SBUSY | VM_ALLOC_WIRED |              \
2015                          VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
2016         KASSERT((req & ~VPA_FLAGS) == 0,
2017             ("invalid request %#x", req));
2018         KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2019             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2020             ("invalid request %#x", req));
2021         KASSERT(mpred == NULL || mpred->pindex < pindex,
2022             ("mpred %p doesn't precede pindex 0x%jx", mpred,
2023             (uintmax_t)pindex));
2024         VM_OBJECT_ASSERT_WLOCKED(object);
2025
2026         flags = 0;
2027         m = NULL;
2028         if (!vm_pager_can_alloc_page(object, pindex))
2029                 return (NULL);
2030 again:
2031 #if VM_NRESERVLEVEL > 0
2032         /*
2033          * Can we allocate the page from a reservation?
2034          */
2035         if (vm_object_reserv(object) &&
2036             (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2037             NULL) {
2038                 goto found;
2039         }
2040 #endif
2041         vmd = VM_DOMAIN(domain);
2042         if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2043                 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2044                     M_NOWAIT | M_NOVM);
2045                 if (m != NULL) {
2046                         flags |= PG_PCPU_CACHE;
2047                         goto found;
2048                 }
2049         }
2050         if (vm_domain_allocate(vmd, req, 1)) {
2051                 /*
2052                  * If not, allocate it from the free page queues.
2053                  */
2054                 vm_domain_free_lock(vmd);
2055                 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2056                 vm_domain_free_unlock(vmd);
2057                 if (m == NULL) {
2058                         vm_domain_freecnt_inc(vmd, 1);
2059 #if VM_NRESERVLEVEL > 0
2060                         if (vm_reserv_reclaim_inactive(domain))
2061                                 goto again;
2062 #endif
2063                 }
2064         }
2065         if (m == NULL) {
2066                 /*
2067                  * Not allocatable, give up.
2068                  */
2069                 if (vm_domain_alloc_fail(vmd, object, req))
2070                         goto again;
2071                 return (NULL);
2072         }
2073
2074         /*
2075          * At this point we had better have found a good page.
2076          */
2077 found:
2078         vm_page_dequeue(m);
2079         vm_page_alloc_check(m);
2080
2081         /*
2082          * Initialize the page.  Only the PG_ZERO flag is inherited.
2083          */
2084         flags |= m->flags & PG_ZERO;
2085         if ((req & VM_ALLOC_NODUMP) != 0)
2086                 flags |= PG_NODUMP;
2087         m->flags = flags;
2088         m->a.flags = 0;
2089         m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2090         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2091                 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2092         else if ((req & VM_ALLOC_SBUSY) != 0)
2093                 m->busy_lock = VPB_SHARERS_WORD(1);
2094         else
2095                 m->busy_lock = VPB_UNBUSIED;
2096         if (req & VM_ALLOC_WIRED) {
2097                 vm_wire_add(1);
2098                 m->ref_count = 1;
2099         }
2100         m->a.act_count = 0;
2101
2102         if (vm_page_insert_after(m, object, pindex, mpred)) {
2103                 if (req & VM_ALLOC_WIRED) {
2104                         vm_wire_sub(1);
2105                         m->ref_count = 0;
2106                 }
2107                 KASSERT(m->object == NULL, ("page %p has object", m));
2108                 m->oflags = VPO_UNMANAGED;
2109                 m->busy_lock = VPB_UNBUSIED;
2110                 /* Don't change PG_ZERO. */
2111                 vm_page_free_toq(m);
2112                 if (req & VM_ALLOC_WAITFAIL) {
2113                         VM_OBJECT_WUNLOCK(object);
2114                         vm_radix_wait();
2115                         VM_OBJECT_WLOCK(object);
2116                 }
2117                 return (NULL);
2118         }
2119
2120         /* Ignore device objects; the pager sets "memattr" for them. */
2121         if (object->memattr != VM_MEMATTR_DEFAULT &&
2122             (object->flags & OBJ_FICTITIOUS) == 0)
2123                 pmap_page_set_memattr(m, object->memattr);
2124
2125         return (m);
2126 }
2127
2128 /*
2129  *      vm_page_alloc_contig:
2130  *
2131  *      Allocate a contiguous set of physical pages of the given size "npages"
2132  *      from the free lists.  All of the physical pages must be at or above
2133  *      the given physical address "low" and below the given physical address
2134  *      "high".  The given value "alignment" determines the alignment of the
2135  *      first physical page in the set.  If the given value "boundary" is
2136  *      non-zero, then the set of physical pages cannot cross any physical
2137  *      address boundary that is a multiple of that value.  Both "alignment"
2138  *      and "boundary" must be a power of two.
2139  *
2140  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2141  *      then the memory attribute setting for the physical pages is configured
2142  *      to the object's memory attribute setting.  Otherwise, the memory
2143  *      attribute setting for the physical pages is configured to "memattr",
2144  *      overriding the object's memory attribute setting.  However, if the
2145  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2146  *      memory attribute setting for the physical pages cannot be configured
2147  *      to VM_MEMATTR_DEFAULT.
2148  *
2149  *      The specified object may not contain fictitious pages.
2150  *
2151  *      The caller must always specify an allocation class.
2152  *
2153  *      allocation classes:
2154  *      VM_ALLOC_NORMAL         normal process request
2155  *      VM_ALLOC_SYSTEM         system *really* needs a page
2156  *      VM_ALLOC_INTERRUPT      interrupt time request
2157  *
2158  *      optional allocation flags:
2159  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
2160  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
2161  *      VM_ALLOC_SBUSY          shared busy the allocated page
2162  *      VM_ALLOC_WIRED          wire the allocated page
2163  *      VM_ALLOC_ZERO           prefer a zeroed page
2164  */
2165 vm_page_t
2166 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2167     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2168     vm_paddr_t boundary, vm_memattr_t memattr)
2169 {
2170         struct vm_domainset_iter di;
2171         vm_page_t bounds[2];
2172         vm_page_t m;
2173         int domain;
2174         int start_segind;
2175
2176         start_segind = -1;
2177
2178         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2179         do {
2180                 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2181                     npages, low, high, alignment, boundary, memattr);
2182                 if (m != NULL)
2183                         break;
2184                 if (start_segind == -1)
2185                         start_segind = vm_phys_lookup_segind(low);
2186                 if (vm_phys_find_range(bounds, start_segind, domain,
2187                     npages, low, high) == -1) {
2188                         vm_domainset_iter_ignore(&di, domain);
2189                 }
2190         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2191
2192         return (m);
2193 }
2194
2195 static vm_page_t
2196 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2197     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2198 {
2199         struct vm_domain *vmd;
2200         vm_page_t m_ret;
2201
2202         /*
2203          * Can we allocate the pages without the number of free pages falling
2204          * below the lower bound for the allocation class?
2205          */
2206         vmd = VM_DOMAIN(domain);
2207         if (!vm_domain_allocate(vmd, req, npages))
2208                 return (NULL);
2209         /*
2210          * Try to allocate the pages from the free page queues.
2211          */
2212         vm_domain_free_lock(vmd);
2213         m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2214             alignment, boundary);
2215         vm_domain_free_unlock(vmd);
2216         if (m_ret != NULL)
2217                 return (m_ret);
2218 #if VM_NRESERVLEVEL > 0
2219         /*
2220          * Try to break a reservation to allocate the pages.
2221          */
2222         if ((req & VM_ALLOC_NORECLAIM) == 0) {
2223                 m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2224                     high, alignment, boundary);
2225                 if (m_ret != NULL)
2226                         return (m_ret);
2227         }
2228 #endif
2229         vm_domain_freecnt_inc(vmd, npages);
2230         return (NULL);
2231 }
2232
2233 vm_page_t
2234 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2235     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2236     vm_paddr_t boundary, vm_memattr_t memattr)
2237 {
2238         vm_page_t m, m_ret, mpred;
2239         u_int busy_lock, flags, oflags;
2240
2241 #define VPAC_FLAGS      (VPA_FLAGS | VM_ALLOC_NORECLAIM)
2242         KASSERT((req & ~VPAC_FLAGS) == 0,
2243             ("invalid request %#x", req));
2244         KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2245             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2246             ("invalid request %#x", req));
2247         KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2248             (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2249             ("invalid request %#x", req));
2250         VM_OBJECT_ASSERT_WLOCKED(object);
2251         KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2252             ("vm_page_alloc_contig: object %p has fictitious pages",
2253             object));
2254         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2255
2256         mpred = vm_radix_lookup_le(&object->rtree, pindex);
2257         KASSERT(mpred == NULL || mpred->pindex != pindex,
2258             ("vm_page_alloc_contig: pindex already allocated"));
2259         for (;;) {
2260 #if VM_NRESERVLEVEL > 0
2261                 /*
2262                  * Can we allocate the pages from a reservation?
2263                  */
2264                 if (vm_object_reserv(object) &&
2265                     (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2266                     mpred, npages, low, high, alignment, boundary)) != NULL) {
2267                         break;
2268                 }
2269 #endif
2270                 if ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2271                     low, high, alignment, boundary)) != NULL)
2272                         break;
2273                 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req))
2274                         return (NULL);
2275         }
2276         for (m = m_ret; m < &m_ret[npages]; m++) {
2277                 vm_page_dequeue(m);
2278                 vm_page_alloc_check(m);
2279         }
2280
2281         /*
2282          * Initialize the pages.  Only the PG_ZERO flag is inherited.
2283          */
2284         flags = PG_ZERO;
2285         if ((req & VM_ALLOC_NODUMP) != 0)
2286                 flags |= PG_NODUMP;
2287         oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2288         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2289                 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2290         else if ((req & VM_ALLOC_SBUSY) != 0)
2291                 busy_lock = VPB_SHARERS_WORD(1);
2292         else
2293                 busy_lock = VPB_UNBUSIED;
2294         if ((req & VM_ALLOC_WIRED) != 0)
2295                 vm_wire_add(npages);
2296         if (object->memattr != VM_MEMATTR_DEFAULT &&
2297             memattr == VM_MEMATTR_DEFAULT)
2298                 memattr = object->memattr;
2299         for (m = m_ret; m < &m_ret[npages]; m++) {
2300                 m->a.flags = 0;
2301                 m->flags = (m->flags | PG_NODUMP) & flags;
2302                 m->busy_lock = busy_lock;
2303                 if ((req & VM_ALLOC_WIRED) != 0)
2304                         m->ref_count = 1;
2305                 m->a.act_count = 0;
2306                 m->oflags = oflags;
2307                 if (vm_page_insert_after(m, object, pindex, mpred)) {
2308                         if ((req & VM_ALLOC_WIRED) != 0)
2309                                 vm_wire_sub(npages);
2310                         KASSERT(m->object == NULL,
2311                             ("page %p has object", m));
2312                         mpred = m;
2313                         for (m = m_ret; m < &m_ret[npages]; m++) {
2314                                 if (m <= mpred &&
2315                                     (req & VM_ALLOC_WIRED) != 0)
2316                                         m->ref_count = 0;
2317                                 m->oflags = VPO_UNMANAGED;
2318                                 m->busy_lock = VPB_UNBUSIED;
2319                                 /* Don't change PG_ZERO. */
2320                                 vm_page_free_toq(m);
2321                         }
2322                         if (req & VM_ALLOC_WAITFAIL) {
2323                                 VM_OBJECT_WUNLOCK(object);
2324                                 vm_radix_wait();
2325                                 VM_OBJECT_WLOCK(object);
2326                         }
2327                         return (NULL);
2328                 }
2329                 mpred = m;
2330                 if (memattr != VM_MEMATTR_DEFAULT)
2331                         pmap_page_set_memattr(m, memattr);
2332                 pindex++;
2333         }
2334         return (m_ret);
2335 }
2336
2337 /*
2338  * Allocate a physical page that is not intended to be inserted into a VM
2339  * object.  If the "freelist" parameter is not equal to VM_NFREELIST, then only
2340  * pages from the specified vm_phys freelist will be returned.
2341  */
2342 static __always_inline vm_page_t
2343 _vm_page_alloc_noobj_domain(int domain, const int freelist, int req)
2344 {
2345         struct vm_domain *vmd;
2346         vm_page_t m;
2347         int flags;
2348
2349 #define VPAN_FLAGS      (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL |      \
2350                          VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |            \
2351                          VM_ALLOC_NOBUSY | VM_ALLOC_WIRED |             \
2352                          VM_ALLOC_NODUMP | VM_ALLOC_ZERO | VM_ALLOC_COUNT_MASK)
2353         KASSERT((req & ~VPAN_FLAGS) == 0,
2354             ("invalid request %#x", req));
2355
2356         flags = (req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0;
2357         vmd = VM_DOMAIN(domain);
2358 again:
2359         if (freelist == VM_NFREELIST &&
2360             vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2361                 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2362                     M_NOWAIT | M_NOVM);
2363                 if (m != NULL) {
2364                         flags |= PG_PCPU_CACHE;
2365                         goto found;
2366                 }
2367         }
2368
2369         if (vm_domain_allocate(vmd, req, 1)) {
2370                 vm_domain_free_lock(vmd);
2371                 if (freelist == VM_NFREELIST)
2372                         m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2373                 else
2374                         m = vm_phys_alloc_freelist_pages(domain, freelist,
2375                             VM_FREEPOOL_DIRECT, 0);
2376                 vm_domain_free_unlock(vmd);
2377                 if (m == NULL) {
2378                         vm_domain_freecnt_inc(vmd, 1);
2379 #if VM_NRESERVLEVEL > 0
2380                         if (freelist == VM_NFREELIST &&
2381                             vm_reserv_reclaim_inactive(domain))
2382                                 goto again;
2383 #endif
2384                 }
2385         }
2386         if (m == NULL) {
2387                 if (vm_domain_alloc_fail(vmd, NULL, req))
2388                         goto again;
2389                 return (NULL);
2390         }
2391
2392 found:
2393         vm_page_dequeue(m);
2394         vm_page_alloc_check(m);
2395
2396         /*
2397          * Consumers should not rely on a useful default pindex value.
2398          */
2399         m->pindex = 0xdeadc0dedeadc0de;
2400         m->flags = (m->flags & PG_ZERO) | flags;
2401         m->a.flags = 0;
2402         m->oflags = VPO_UNMANAGED;
2403         m->busy_lock = VPB_UNBUSIED;
2404         if ((req & VM_ALLOC_WIRED) != 0) {
2405                 vm_wire_add(1);
2406                 m->ref_count = 1;
2407         }
2408
2409         if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2410                 pmap_zero_page(m);
2411
2412         return (m);
2413 }
2414
2415 vm_page_t
2416 vm_page_alloc_freelist(int freelist, int req)
2417 {
2418         struct vm_domainset_iter di;
2419         vm_page_t m;
2420         int domain;
2421
2422         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2423         do {
2424                 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2425                 if (m != NULL)
2426                         break;
2427         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2428
2429         return (m);
2430 }
2431
2432 vm_page_t
2433 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2434 {
2435         KASSERT(freelist >= 0 && freelist < VM_NFREELIST,
2436             ("%s: invalid freelist %d", __func__, freelist));
2437
2438         return (_vm_page_alloc_noobj_domain(domain, freelist, req));
2439 }
2440
2441 vm_page_t
2442 vm_page_alloc_noobj(int req)
2443 {
2444         struct vm_domainset_iter di;
2445         vm_page_t m;
2446         int domain;
2447
2448         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2449         do {
2450                 m = vm_page_alloc_noobj_domain(domain, req);
2451                 if (m != NULL)
2452                         break;
2453         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2454
2455         return (m);
2456 }
2457
2458 vm_page_t
2459 vm_page_alloc_noobj_domain(int domain, int req)
2460 {
2461         return (_vm_page_alloc_noobj_domain(domain, VM_NFREELIST, req));
2462 }
2463
2464 vm_page_t
2465 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2466     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2467     vm_memattr_t memattr)
2468 {
2469         struct vm_domainset_iter di;
2470         vm_page_t m;
2471         int domain;
2472
2473         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2474         do {
2475                 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2476                     high, alignment, boundary, memattr);
2477                 if (m != NULL)
2478                         break;
2479         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2480
2481         return (m);
2482 }
2483
2484 vm_page_t
2485 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2486     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2487     vm_memattr_t memattr)
2488 {
2489         vm_page_t m, m_ret;
2490         u_int flags;
2491
2492 #define VPANC_FLAGS     (VPAN_FLAGS | VM_ALLOC_NORECLAIM)
2493         KASSERT((req & ~VPANC_FLAGS) == 0,
2494             ("invalid request %#x", req));
2495         KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2496             (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2497             ("invalid request %#x", req));
2498         KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2499             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2500             ("invalid request %#x", req));
2501         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2502
2503         while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2504             low, high, alignment, boundary)) == NULL) {
2505                 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2506                         return (NULL);
2507         }
2508
2509         /*
2510          * Initialize the pages.  Only the PG_ZERO flag is inherited.
2511          */
2512         flags = PG_ZERO;
2513         if ((req & VM_ALLOC_NODUMP) != 0)
2514                 flags |= PG_NODUMP;
2515         if ((req & VM_ALLOC_WIRED) != 0)
2516                 vm_wire_add(npages);
2517         for (m = m_ret; m < &m_ret[npages]; m++) {
2518                 vm_page_dequeue(m);
2519                 vm_page_alloc_check(m);
2520
2521                 /*
2522                  * Consumers should not rely on a useful default pindex value.
2523                  */
2524                 m->pindex = 0xdeadc0dedeadc0de;
2525                 m->a.flags = 0;
2526                 m->flags = (m->flags | PG_NODUMP) & flags;
2527                 m->busy_lock = VPB_UNBUSIED;
2528                 if ((req & VM_ALLOC_WIRED) != 0)
2529                         m->ref_count = 1;
2530                 m->a.act_count = 0;
2531                 m->oflags = VPO_UNMANAGED;
2532
2533                 /*
2534                  * Zero the page before updating any mappings since the page is
2535                  * not yet shared with any devices which might require the
2536                  * non-default memory attribute.  pmap_page_set_memattr()
2537                  * flushes data caches before returning.
2538                  */
2539                 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2540                         pmap_zero_page(m);
2541                 if (memattr != VM_MEMATTR_DEFAULT)
2542                         pmap_page_set_memattr(m, memattr);
2543         }
2544         return (m_ret);
2545 }
2546
2547 /*
2548  * Check a page that has been freshly dequeued from a freelist.
2549  */
2550 static void
2551 vm_page_alloc_check(vm_page_t m)
2552 {
2553
2554         KASSERT(m->object == NULL, ("page %p has object", m));
2555         KASSERT(m->a.queue == PQ_NONE &&
2556             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2557             ("page %p has unexpected queue %d, flags %#x",
2558             m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2559         KASSERT(m->ref_count == 0, ("page %p has references", m));
2560         KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2561         KASSERT(m->dirty == 0, ("page %p is dirty", m));
2562         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2563             ("page %p has unexpected memattr %d",
2564             m, pmap_page_get_memattr(m)));
2565         KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2566         pmap_vm_page_alloc_check(m);
2567 }
2568
2569 static int
2570 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2571 {
2572         struct vm_domain *vmd;
2573         struct vm_pgcache *pgcache;
2574         int i;
2575
2576         pgcache = arg;
2577         vmd = VM_DOMAIN(pgcache->domain);
2578
2579         /*
2580          * The page daemon should avoid creating extra memory pressure since its
2581          * main purpose is to replenish the store of free pages.
2582          */
2583         if (vmd->vmd_severeset || curproc == pageproc ||
2584             !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2585                 return (0);
2586         domain = vmd->vmd_domain;
2587         vm_domain_free_lock(vmd);
2588         i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2589             (vm_page_t *)store);
2590         vm_domain_free_unlock(vmd);
2591         if (cnt != i)
2592                 vm_domain_freecnt_inc(vmd, cnt - i);
2593
2594         return (i);
2595 }
2596
2597 static void
2598 vm_page_zone_release(void *arg, void **store, int cnt)
2599 {
2600         struct vm_domain *vmd;
2601         struct vm_pgcache *pgcache;
2602         vm_page_t m;
2603         int i;
2604
2605         pgcache = arg;
2606         vmd = VM_DOMAIN(pgcache->domain);
2607         vm_domain_free_lock(vmd);
2608         for (i = 0; i < cnt; i++) {
2609                 m = (vm_page_t)store[i];
2610                 vm_phys_free_pages(m, 0);
2611         }
2612         vm_domain_free_unlock(vmd);
2613         vm_domain_freecnt_inc(vmd, cnt);
2614 }
2615
2616 #define VPSC_ANY        0       /* No restrictions. */
2617 #define VPSC_NORESERV   1       /* Skip reservations; implies VPSC_NOSUPER. */
2618 #define VPSC_NOSUPER    2       /* Skip superpages. */
2619
2620 /*
2621  *      vm_page_scan_contig:
2622  *
2623  *      Scan vm_page_array[] between the specified entries "m_start" and
2624  *      "m_end" for a run of contiguous physical pages that satisfy the
2625  *      specified conditions, and return the lowest page in the run.  The
2626  *      specified "alignment" determines the alignment of the lowest physical
2627  *      page in the run.  If the specified "boundary" is non-zero, then the
2628  *      run of physical pages cannot span a physical address that is a
2629  *      multiple of "boundary".
2630  *
2631  *      "m_end" is never dereferenced, so it need not point to a vm_page
2632  *      structure within vm_page_array[].
2633  *
2634  *      "npages" must be greater than zero.  "m_start" and "m_end" must not
2635  *      span a hole (or discontiguity) in the physical address space.  Both
2636  *      "alignment" and "boundary" must be a power of two.
2637  */
2638 static vm_page_t
2639 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2640     u_long alignment, vm_paddr_t boundary, int options)
2641 {
2642         vm_object_t object;
2643         vm_paddr_t pa;
2644         vm_page_t m, m_run;
2645 #if VM_NRESERVLEVEL > 0
2646         int level;
2647 #endif
2648         int m_inc, order, run_ext, run_len;
2649
2650         KASSERT(npages > 0, ("npages is 0"));
2651         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2652         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2653         m_run = NULL;
2654         run_len = 0;
2655         for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2656                 KASSERT((m->flags & PG_MARKER) == 0,
2657                     ("page %p is PG_MARKER", m));
2658                 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2659                     ("fictitious page %p has invalid ref count", m));
2660
2661                 /*
2662                  * If the current page would be the start of a run, check its
2663                  * physical address against the end, alignment, and boundary
2664                  * conditions.  If it doesn't satisfy these conditions, either
2665                  * terminate the scan or advance to the next page that
2666                  * satisfies the failed condition.
2667                  */
2668                 if (run_len == 0) {
2669                         KASSERT(m_run == NULL, ("m_run != NULL"));
2670                         if (m + npages > m_end)
2671                                 break;
2672                         pa = VM_PAGE_TO_PHYS(m);
2673                         if (!vm_addr_align_ok(pa, alignment)) {
2674                                 m_inc = atop(roundup2(pa, alignment) - pa);
2675                                 continue;
2676                         }
2677                         if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2678                                 m_inc = atop(roundup2(pa, boundary) - pa);
2679                                 continue;
2680                         }
2681                 } else
2682                         KASSERT(m_run != NULL, ("m_run == NULL"));
2683
2684 retry:
2685                 m_inc = 1;
2686                 if (vm_page_wired(m))
2687                         run_ext = 0;
2688 #if VM_NRESERVLEVEL > 0
2689                 else if ((level = vm_reserv_level(m)) >= 0 &&
2690                     (options & VPSC_NORESERV) != 0) {
2691                         run_ext = 0;
2692                         /* Advance to the end of the reservation. */
2693                         pa = VM_PAGE_TO_PHYS(m);
2694                         m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2695                             pa);
2696                 }
2697 #endif
2698                 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2699                         /*
2700                          * The page is considered eligible for relocation if
2701                          * and only if it could be laundered or reclaimed by
2702                          * the page daemon.
2703                          */
2704                         VM_OBJECT_RLOCK(object);
2705                         if (object != m->object) {
2706                                 VM_OBJECT_RUNLOCK(object);
2707                                 goto retry;
2708                         }
2709                         /* Don't care: PG_NODUMP, PG_ZERO. */
2710                         if ((object->flags & OBJ_SWAP) == 0 &&
2711                             object->type != OBJT_VNODE) {
2712                                 run_ext = 0;
2713 #if VM_NRESERVLEVEL > 0
2714                         } else if ((options & VPSC_NOSUPER) != 0 &&
2715                             (level = vm_reserv_level_iffullpop(m)) >= 0) {
2716                                 run_ext = 0;
2717                                 /* Advance to the end of the superpage. */
2718                                 pa = VM_PAGE_TO_PHYS(m);
2719                                 m_inc = atop(roundup2(pa + 1,
2720                                     vm_reserv_size(level)) - pa);
2721 #endif
2722                         } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2723                             vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2724                                 /*
2725                                  * The page is allocated but eligible for
2726                                  * relocation.  Extend the current run by one
2727                                  * page.
2728                                  */
2729                                 KASSERT(pmap_page_get_memattr(m) ==
2730                                     VM_MEMATTR_DEFAULT,
2731                                     ("page %p has an unexpected memattr", m));
2732                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2733                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2734                                     ("page %p has unexpected oflags", m));
2735                                 /* Don't care: PGA_NOSYNC. */
2736                                 run_ext = 1;
2737                         } else
2738                                 run_ext = 0;
2739                         VM_OBJECT_RUNLOCK(object);
2740 #if VM_NRESERVLEVEL > 0
2741                 } else if (level >= 0) {
2742                         /*
2743                          * The page is reserved but not yet allocated.  In
2744                          * other words, it is still free.  Extend the current
2745                          * run by one page.
2746                          */
2747                         run_ext = 1;
2748 #endif
2749                 } else if ((order = m->order) < VM_NFREEORDER) {
2750                         /*
2751                          * The page is enqueued in the physical memory
2752                          * allocator's free page queues.  Moreover, it is the
2753                          * first page in a power-of-two-sized run of
2754                          * contiguous free pages.  Add these pages to the end
2755                          * of the current run, and jump ahead.
2756                          */
2757                         run_ext = 1 << order;
2758                         m_inc = 1 << order;
2759                 } else {
2760                         /*
2761                          * Skip the page for one of the following reasons: (1)
2762                          * It is enqueued in the physical memory allocator's
2763                          * free page queues.  However, it is not the first
2764                          * page in a run of contiguous free pages.  (This case
2765                          * rarely occurs because the scan is performed in
2766                          * ascending order.) (2) It is not reserved, and it is
2767                          * transitioning from free to allocated.  (Conversely,
2768                          * the transition from allocated to free for managed
2769                          * pages is blocked by the page busy lock.) (3) It is
2770                          * allocated but not contained by an object and not
2771                          * wired, e.g., allocated by Xen's balloon driver.
2772                          */
2773                         run_ext = 0;
2774                 }
2775
2776                 /*
2777                  * Extend or reset the current run of pages.
2778                  */
2779                 if (run_ext > 0) {
2780                         if (run_len == 0)
2781                                 m_run = m;
2782                         run_len += run_ext;
2783                 } else {
2784                         if (run_len > 0) {
2785                                 m_run = NULL;
2786                                 run_len = 0;
2787                         }
2788                 }
2789         }
2790         if (run_len >= npages)
2791                 return (m_run);
2792         return (NULL);
2793 }
2794
2795 /*
2796  *      vm_page_reclaim_run:
2797  *
2798  *      Try to relocate each of the allocated virtual pages within the
2799  *      specified run of physical pages to a new physical address.  Free the
2800  *      physical pages underlying the relocated virtual pages.  A virtual page
2801  *      is relocatable if and only if it could be laundered or reclaimed by
2802  *      the page daemon.  Whenever possible, a virtual page is relocated to a
2803  *      physical address above "high".
2804  *
2805  *      Returns 0 if every physical page within the run was already free or
2806  *      just freed by a successful relocation.  Otherwise, returns a non-zero
2807  *      value indicating why the last attempt to relocate a virtual page was
2808  *      unsuccessful.
2809  *
2810  *      "req_class" must be an allocation class.
2811  */
2812 static int
2813 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2814     vm_paddr_t high)
2815 {
2816         struct vm_domain *vmd;
2817         struct spglist free;
2818         vm_object_t object;
2819         vm_paddr_t pa;
2820         vm_page_t m, m_end, m_new;
2821         int error, order, req;
2822
2823         KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2824             ("req_class is not an allocation class"));
2825         SLIST_INIT(&free);
2826         error = 0;
2827         m = m_run;
2828         m_end = m_run + npages;
2829         for (; error == 0 && m < m_end; m++) {
2830                 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2831                     ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2832
2833                 /*
2834                  * Racily check for wirings.  Races are handled once the object
2835                  * lock is held and the page is unmapped.
2836                  */
2837                 if (vm_page_wired(m))
2838                         error = EBUSY;
2839                 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2840                         /*
2841                          * The page is relocated if and only if it could be
2842                          * laundered or reclaimed by the page daemon.
2843                          */
2844                         VM_OBJECT_WLOCK(object);
2845                         /* Don't care: PG_NODUMP, PG_ZERO. */
2846                         if (m->object != object ||
2847                             ((object->flags & OBJ_SWAP) == 0 &&
2848                             object->type != OBJT_VNODE))
2849                                 error = EINVAL;
2850                         else if (object->memattr != VM_MEMATTR_DEFAULT)
2851                                 error = EINVAL;
2852                         else if (vm_page_queue(m) != PQ_NONE &&
2853                             vm_page_tryxbusy(m) != 0) {
2854                                 if (vm_page_wired(m)) {
2855                                         vm_page_xunbusy(m);
2856                                         error = EBUSY;
2857                                         goto unlock;
2858                                 }
2859                                 KASSERT(pmap_page_get_memattr(m) ==
2860                                     VM_MEMATTR_DEFAULT,
2861                                     ("page %p has an unexpected memattr", m));
2862                                 KASSERT(m->oflags == 0,
2863                                     ("page %p has unexpected oflags", m));
2864                                 /* Don't care: PGA_NOSYNC. */
2865                                 if (!vm_page_none_valid(m)) {
2866                                         /*
2867                                          * First, try to allocate a new page
2868                                          * that is above "high".  Failing
2869                                          * that, try to allocate a new page
2870                                          * that is below "m_run".  Allocate
2871                                          * the new page between the end of
2872                                          * "m_run" and "high" only as a last
2873                                          * resort.
2874                                          */
2875                                         req = req_class;
2876                                         if ((m->flags & PG_NODUMP) != 0)
2877                                                 req |= VM_ALLOC_NODUMP;
2878                                         if (trunc_page(high) !=
2879                                             ~(vm_paddr_t)PAGE_MASK) {
2880                                                 m_new =
2881                                                     vm_page_alloc_noobj_contig(
2882                                                     req, 1, round_page(high),
2883                                                     ~(vm_paddr_t)0, PAGE_SIZE,
2884                                                     0, VM_MEMATTR_DEFAULT);
2885                                         } else
2886                                                 m_new = NULL;
2887                                         if (m_new == NULL) {
2888                                                 pa = VM_PAGE_TO_PHYS(m_run);
2889                                                 m_new =
2890                                                     vm_page_alloc_noobj_contig(
2891                                                     req, 1, 0, pa - 1,
2892                                                     PAGE_SIZE, 0,
2893                                                     VM_MEMATTR_DEFAULT);
2894                                         }
2895                                         if (m_new == NULL) {
2896                                                 pa += ptoa(npages);
2897                                                 m_new =
2898                                                     vm_page_alloc_noobj_contig(
2899                                                     req, 1, pa, high, PAGE_SIZE,
2900                                                     0, VM_MEMATTR_DEFAULT);
2901                                         }
2902                                         if (m_new == NULL) {
2903                                                 vm_page_xunbusy(m);
2904                                                 error = ENOMEM;
2905                                                 goto unlock;
2906                                         }
2907
2908                                         /*
2909                                          * Unmap the page and check for new
2910                                          * wirings that may have been acquired
2911                                          * through a pmap lookup.
2912                                          */
2913                                         if (object->ref_count != 0 &&
2914                                             !vm_page_try_remove_all(m)) {
2915                                                 vm_page_xunbusy(m);
2916                                                 vm_page_free(m_new);
2917                                                 error = EBUSY;
2918                                                 goto unlock;
2919                                         }
2920
2921                                         /*
2922                                          * Replace "m" with the new page.  For
2923                                          * vm_page_replace(), "m" must be busy
2924                                          * and dequeued.  Finally, change "m"
2925                                          * as if vm_page_free() was called.
2926                                          */
2927                                         m_new->a.flags = m->a.flags &
2928                                             ~PGA_QUEUE_STATE_MASK;
2929                                         KASSERT(m_new->oflags == VPO_UNMANAGED,
2930                                             ("page %p is managed", m_new));
2931                                         m_new->oflags = 0;
2932                                         pmap_copy_page(m, m_new);
2933                                         m_new->valid = m->valid;
2934                                         m_new->dirty = m->dirty;
2935                                         m->flags &= ~PG_ZERO;
2936                                         vm_page_dequeue(m);
2937                                         if (vm_page_replace_hold(m_new, object,
2938                                             m->pindex, m) &&
2939                                             vm_page_free_prep(m))
2940                                                 SLIST_INSERT_HEAD(&free, m,
2941                                                     plinks.s.ss);
2942
2943                                         /*
2944                                          * The new page must be deactivated
2945                                          * before the object is unlocked.
2946                                          */
2947                                         vm_page_deactivate(m_new);
2948                                 } else {
2949                                         m->flags &= ~PG_ZERO;
2950                                         vm_page_dequeue(m);
2951                                         if (vm_page_free_prep(m))
2952                                                 SLIST_INSERT_HEAD(&free, m,
2953                                                     plinks.s.ss);
2954                                         KASSERT(m->dirty == 0,
2955                                             ("page %p is dirty", m));
2956                                 }
2957                         } else
2958                                 error = EBUSY;
2959 unlock:
2960                         VM_OBJECT_WUNLOCK(object);
2961                 } else {
2962                         MPASS(vm_page_domain(m) == domain);
2963                         vmd = VM_DOMAIN(domain);
2964                         vm_domain_free_lock(vmd);
2965                         order = m->order;
2966                         if (order < VM_NFREEORDER) {
2967                                 /*
2968                                  * The page is enqueued in the physical memory
2969                                  * allocator's free page queues.  Moreover, it
2970                                  * is the first page in a power-of-two-sized
2971                                  * run of contiguous free pages.  Jump ahead
2972                                  * to the last page within that run, and
2973                                  * continue from there.
2974                                  */
2975                                 m += (1 << order) - 1;
2976                         }
2977 #if VM_NRESERVLEVEL > 0
2978                         else if (vm_reserv_is_page_free(m))
2979                                 order = 0;
2980 #endif
2981                         vm_domain_free_unlock(vmd);
2982                         if (order == VM_NFREEORDER)
2983                                 error = EINVAL;
2984                 }
2985         }
2986         if ((m = SLIST_FIRST(&free)) != NULL) {
2987                 int cnt;
2988
2989                 vmd = VM_DOMAIN(domain);
2990                 cnt = 0;
2991                 vm_domain_free_lock(vmd);
2992                 do {
2993                         MPASS(vm_page_domain(m) == domain);
2994                         SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2995                         vm_phys_free_pages(m, 0);
2996                         cnt++;
2997                 } while ((m = SLIST_FIRST(&free)) != NULL);
2998                 vm_domain_free_unlock(vmd);
2999                 vm_domain_freecnt_inc(vmd, cnt);
3000         }
3001         return (error);
3002 }
3003
3004 #define NRUNS   16
3005
3006 #define RUN_INDEX(count, nruns) ((count) % (nruns))
3007
3008 #define MIN_RECLAIM     8
3009
3010 /*
3011  *      vm_page_reclaim_contig:
3012  *
3013  *      Reclaim allocated, contiguous physical memory satisfying the specified
3014  *      conditions by relocating the virtual pages using that physical memory.
3015  *      Returns 0 if reclamation is successful, ERANGE if the specified domain
3016  *      can't possibly satisfy the reclamation request, or ENOMEM if not
3017  *      currently able to reclaim the requested number of pages.  Since
3018  *      relocation requires the allocation of physical pages, reclamation may
3019  *      fail with ENOMEM due to a shortage of free pages.  When reclamation
3020  *      fails in this manner, callers are expected to perform vm_wait() before
3021  *      retrying a failed allocation operation, e.g., vm_page_alloc_contig().
3022  *
3023  *      The caller must always specify an allocation class through "req".
3024  *
3025  *      allocation classes:
3026  *      VM_ALLOC_NORMAL         normal process request
3027  *      VM_ALLOC_SYSTEM         system *really* needs a page
3028  *      VM_ALLOC_INTERRUPT      interrupt time request
3029  *
3030  *      The optional allocation flags are ignored.
3031  *
3032  *      "npages" must be greater than zero.  Both "alignment" and "boundary"
3033  *      must be a power of two.
3034  */
3035 int
3036 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3037     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3038     int desired_runs)
3039 {
3040         struct vm_domain *vmd;
3041         vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3042         u_long count, minalign, reclaimed;
3043         int error, i, min_reclaim, nruns, options, req_class;
3044         int segind, start_segind;
3045         int ret;
3046
3047         KASSERT(npages > 0, ("npages is 0"));
3048         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3049         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3050
3051         ret = ENOMEM;
3052
3053         /*
3054          * If the caller wants to reclaim multiple runs, try to allocate
3055          * space to store the runs.  If that fails, fall back to the old
3056          * behavior of just reclaiming MIN_RECLAIM pages.
3057          */
3058         if (desired_runs > 1)
3059                 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3060                     M_TEMP, M_NOWAIT);
3061         else
3062                 m_runs = NULL;
3063
3064         if (m_runs == NULL) {
3065                 m_runs = _m_runs;
3066                 nruns = NRUNS;
3067         } else {
3068                 nruns = NRUNS + desired_runs - 1;
3069         }
3070         min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3071
3072         /*
3073          * The caller will attempt an allocation after some runs have been
3074          * reclaimed and added to the vm_phys buddy lists.  Due to limitations
3075          * of vm_phys_alloc_contig(), round up the requested length to the next
3076          * power of two or maximum chunk size, and ensure that each run is
3077          * suitably aligned.
3078          */
3079         minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3080         npages = roundup2(npages, minalign);
3081         if (alignment < ptoa(minalign))
3082                 alignment = ptoa(minalign);
3083
3084         /*
3085          * The page daemon is allowed to dig deeper into the free page list.
3086          */
3087         req_class = req & VM_ALLOC_CLASS_MASK;
3088         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3089                 req_class = VM_ALLOC_SYSTEM;
3090
3091         start_segind = vm_phys_lookup_segind(low);
3092
3093         /*
3094          * Return if the number of free pages cannot satisfy the requested
3095          * allocation.
3096          */
3097         vmd = VM_DOMAIN(domain);
3098         count = vmd->vmd_free_count;
3099         if (count < npages + vmd->vmd_free_reserved || (count < npages +
3100             vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3101             (count < npages && req_class == VM_ALLOC_INTERRUPT))
3102                 goto done;
3103
3104         /*
3105          * Scan up to three times, relaxing the restrictions ("options") on
3106          * the reclamation of reservations and superpages each time.
3107          */
3108         for (options = VPSC_NORESERV;;) {
3109                 bool phys_range_exists = false;
3110
3111                 /*
3112                  * Find the highest runs that satisfy the given constraints
3113                  * and restrictions, and record them in "m_runs".
3114                  */
3115                 count = 0;
3116                 segind = start_segind;
3117                 while ((segind = vm_phys_find_range(bounds, segind, domain,
3118                     npages, low, high)) != -1) {
3119                         phys_range_exists = true;
3120                         while ((m_run = vm_page_scan_contig(npages, bounds[0],
3121                             bounds[1], alignment, boundary, options))) {
3122                                 bounds[0] = m_run + npages;
3123                                 m_runs[RUN_INDEX(count, nruns)] = m_run;
3124                                 count++;
3125                         }
3126                         segind++;
3127                 }
3128
3129                 if (!phys_range_exists) {
3130                         ret = ERANGE;
3131                         goto done;
3132                 }
3133
3134                 /*
3135                  * Reclaim the highest runs in LIFO (descending) order until
3136                  * the number of reclaimed pages, "reclaimed", is at least
3137                  * "min_reclaim".  Reset "reclaimed" each time because each
3138                  * reclamation is idempotent, and runs will (likely) recur
3139                  * from one scan to the next as restrictions are relaxed.
3140                  */
3141                 reclaimed = 0;
3142                 for (i = 0; count > 0 && i < nruns; i++) {
3143                         count--;
3144                         m_run = m_runs[RUN_INDEX(count, nruns)];
3145                         error = vm_page_reclaim_run(req_class, domain, npages,
3146                             m_run, high);
3147                         if (error == 0) {
3148                                 reclaimed += npages;
3149                                 if (reclaimed >= min_reclaim) {
3150                                         ret = 0;
3151                                         goto done;
3152                                 }
3153                         }
3154                 }
3155
3156                 /*
3157                  * Either relax the restrictions on the next scan or return if
3158                  * the last scan had no restrictions.
3159                  */
3160                 if (options == VPSC_NORESERV)
3161                         options = VPSC_NOSUPER;
3162                 else if (options == VPSC_NOSUPER)
3163                         options = VPSC_ANY;
3164                 else if (options == VPSC_ANY) {
3165                         if (reclaimed != 0)
3166                                 ret = 0;
3167                         goto done;
3168                 }
3169         }
3170 done:
3171         if (m_runs != _m_runs)
3172                 free(m_runs, M_TEMP);
3173         return (ret);
3174 }
3175
3176 int
3177 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3178     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3179 {
3180         return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low, high,
3181             alignment, boundary, 1));
3182 }
3183
3184 int
3185 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3186     u_long alignment, vm_paddr_t boundary)
3187 {
3188         struct vm_domainset_iter di;
3189         int domain, ret, status;
3190
3191         ret = ERANGE;
3192
3193         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3194         do {
3195                 status = vm_page_reclaim_contig_domain(domain, req, npages, low,
3196                     high, alignment, boundary);
3197                 if (status == 0)
3198                         return (0);
3199                 else if (status == ERANGE)
3200                         vm_domainset_iter_ignore(&di, domain);
3201                 else {
3202                         KASSERT(status == ENOMEM, ("Unrecognized error %d "
3203                             "from vm_page_reclaim_contig_domain()", status));
3204                         ret = ENOMEM;
3205                 }
3206         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3207
3208         return (ret);
3209 }
3210
3211 /*
3212  * Set the domain in the appropriate page level domainset.
3213  */
3214 void
3215 vm_domain_set(struct vm_domain *vmd)
3216 {
3217
3218         mtx_lock(&vm_domainset_lock);
3219         if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3220                 vmd->vmd_minset = 1;
3221                 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3222         }
3223         if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3224                 vmd->vmd_severeset = 1;
3225                 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3226         }
3227         mtx_unlock(&vm_domainset_lock);
3228 }
3229
3230 /*
3231  * Clear the domain from the appropriate page level domainset.
3232  */
3233 void
3234 vm_domain_clear(struct vm_domain *vmd)
3235 {
3236
3237         mtx_lock(&vm_domainset_lock);
3238         if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3239                 vmd->vmd_minset = 0;
3240                 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3241                 if (vm_min_waiters != 0) {
3242                         vm_min_waiters = 0;
3243                         wakeup(&vm_min_domains);
3244                 }
3245         }
3246         if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3247                 vmd->vmd_severeset = 0;
3248                 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3249                 if (vm_severe_waiters != 0) {
3250                         vm_severe_waiters = 0;
3251                         wakeup(&vm_severe_domains);
3252                 }
3253         }
3254
3255         /*
3256          * If pageout daemon needs pages, then tell it that there are
3257          * some free.
3258          */
3259         if (vmd->vmd_pageout_pages_needed &&
3260             vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3261                 wakeup(&vmd->vmd_pageout_pages_needed);
3262                 vmd->vmd_pageout_pages_needed = 0;
3263         }
3264
3265         /* See comments in vm_wait_doms(). */
3266         if (vm_pageproc_waiters) {
3267                 vm_pageproc_waiters = 0;
3268                 wakeup(&vm_pageproc_waiters);
3269         }
3270         mtx_unlock(&vm_domainset_lock);
3271 }
3272
3273 /*
3274  * Wait for free pages to exceed the min threshold globally.
3275  */
3276 void
3277 vm_wait_min(void)
3278 {
3279
3280         mtx_lock(&vm_domainset_lock);
3281         while (vm_page_count_min()) {
3282                 vm_min_waiters++;
3283                 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3284         }
3285         mtx_unlock(&vm_domainset_lock);
3286 }
3287
3288 /*
3289  * Wait for free pages to exceed the severe threshold globally.
3290  */
3291 void
3292 vm_wait_severe(void)
3293 {
3294
3295         mtx_lock(&vm_domainset_lock);
3296         while (vm_page_count_severe()) {
3297                 vm_severe_waiters++;
3298                 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3299                     "vmwait", 0);
3300         }
3301         mtx_unlock(&vm_domainset_lock);
3302 }
3303
3304 u_int
3305 vm_wait_count(void)
3306 {
3307
3308         return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3309 }
3310
3311 int
3312 vm_wait_doms(const domainset_t *wdoms, int mflags)
3313 {
3314         int error;
3315
3316         error = 0;
3317
3318         /*
3319          * We use racey wakeup synchronization to avoid expensive global
3320          * locking for the pageproc when sleeping with a non-specific vm_wait.
3321          * To handle this, we only sleep for one tick in this instance.  It
3322          * is expected that most allocations for the pageproc will come from
3323          * kmem or vm_page_grab* which will use the more specific and
3324          * race-free vm_wait_domain().
3325          */
3326         if (curproc == pageproc) {
3327                 mtx_lock(&vm_domainset_lock);
3328                 vm_pageproc_waiters++;
3329                 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3330                     PVM | PDROP | mflags, "pageprocwait", 1);
3331         } else {
3332                 /*
3333                  * XXX Ideally we would wait only until the allocation could
3334                  * be satisfied.  This condition can cause new allocators to
3335                  * consume all freed pages while old allocators wait.
3336                  */
3337                 mtx_lock(&vm_domainset_lock);
3338                 if (vm_page_count_min_set(wdoms)) {
3339                         if (pageproc == NULL)
3340                                 panic("vm_wait in early boot");
3341                         vm_min_waiters++;
3342                         error = msleep(&vm_min_domains, &vm_domainset_lock,
3343                             PVM | PDROP | mflags, "vmwait", 0);
3344                 } else
3345                         mtx_unlock(&vm_domainset_lock);
3346         }
3347         return (error);
3348 }
3349
3350 /*
3351  *      vm_wait_domain:
3352  *
3353  *      Sleep until free pages are available for allocation.
3354  *      - Called in various places after failed memory allocations.
3355  */
3356 void
3357 vm_wait_domain(int domain)
3358 {
3359         struct vm_domain *vmd;
3360         domainset_t wdom;
3361
3362         vmd = VM_DOMAIN(domain);
3363         vm_domain_free_assert_unlocked(vmd);
3364
3365         if (curproc == pageproc) {
3366                 mtx_lock(&vm_domainset_lock);
3367                 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3368                         vmd->vmd_pageout_pages_needed = 1;
3369                         msleep(&vmd->vmd_pageout_pages_needed,
3370                             &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3371                 } else
3372                         mtx_unlock(&vm_domainset_lock);
3373         } else {
3374                 DOMAINSET_ZERO(&wdom);
3375                 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3376                 vm_wait_doms(&wdom, 0);
3377         }
3378 }
3379
3380 static int
3381 vm_wait_flags(vm_object_t obj, int mflags)
3382 {
3383         struct domainset *d;
3384
3385         d = NULL;
3386
3387         /*
3388          * Carefully fetch pointers only once: the struct domainset
3389          * itself is ummutable but the pointer might change.
3390          */
3391         if (obj != NULL)
3392                 d = obj->domain.dr_policy;
3393         if (d == NULL)
3394                 d = curthread->td_domain.dr_policy;
3395
3396         return (vm_wait_doms(&d->ds_mask, mflags));
3397 }
3398
3399 /*
3400  *      vm_wait:
3401  *
3402  *      Sleep until free pages are available for allocation in the
3403  *      affinity domains of the obj.  If obj is NULL, the domain set
3404  *      for the calling thread is used.
3405  *      Called in various places after failed memory allocations.
3406  */
3407 void
3408 vm_wait(vm_object_t obj)
3409 {
3410         (void)vm_wait_flags(obj, 0);
3411 }
3412
3413 int
3414 vm_wait_intr(vm_object_t obj)
3415 {
3416         return (vm_wait_flags(obj, PCATCH));
3417 }
3418
3419 /*
3420  *      vm_domain_alloc_fail:
3421  *
3422  *      Called when a page allocation function fails.  Informs the
3423  *      pagedaemon and performs the requested wait.  Requires the
3424  *      domain_free and object lock on entry.  Returns with the
3425  *      object lock held and free lock released.  Returns an error when
3426  *      retry is necessary.
3427  *
3428  */
3429 static int
3430 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3431 {
3432
3433         vm_domain_free_assert_unlocked(vmd);
3434
3435         atomic_add_int(&vmd->vmd_pageout_deficit,
3436             max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3437         if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3438                 if (object != NULL) 
3439                         VM_OBJECT_WUNLOCK(object);
3440                 vm_wait_domain(vmd->vmd_domain);
3441                 if (object != NULL) 
3442                         VM_OBJECT_WLOCK(object);
3443                 if (req & VM_ALLOC_WAITOK)
3444                         return (EAGAIN);
3445         }
3446
3447         return (0);
3448 }
3449
3450 /*
3451  *      vm_waitpfault:
3452  *
3453  *      Sleep until free pages are available for allocation.
3454  *      - Called only in vm_fault so that processes page faulting
3455  *        can be easily tracked.
3456  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3457  *        processes will be able to grab memory first.  Do not change
3458  *        this balance without careful testing first.
3459  */
3460 void
3461 vm_waitpfault(struct domainset *dset, int timo)
3462 {
3463
3464         /*
3465          * XXX Ideally we would wait only until the allocation could
3466          * be satisfied.  This condition can cause new allocators to
3467          * consume all freed pages while old allocators wait.
3468          */
3469         mtx_lock(&vm_domainset_lock);
3470         if (vm_page_count_min_set(&dset->ds_mask)) {
3471                 vm_min_waiters++;
3472                 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3473                     "pfault", timo);
3474         } else
3475                 mtx_unlock(&vm_domainset_lock);
3476 }
3477
3478 static struct vm_pagequeue *
3479 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3480 {
3481
3482         return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3483 }
3484
3485 #ifdef INVARIANTS
3486 static struct vm_pagequeue *
3487 vm_page_pagequeue(vm_page_t m)
3488 {
3489
3490         return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3491 }
3492 #endif
3493
3494 static __always_inline bool
3495 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3496 {
3497         vm_page_astate_t tmp;
3498
3499         tmp = *old;
3500         do {
3501                 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3502                         return (true);
3503                 counter_u64_add(pqstate_commit_retries, 1);
3504         } while (old->_bits == tmp._bits);
3505
3506         return (false);
3507 }
3508
3509 /*
3510  * Do the work of committing a queue state update that moves the page out of
3511  * its current queue.
3512  */
3513 static bool
3514 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3515     vm_page_astate_t *old, vm_page_astate_t new)
3516 {
3517         vm_page_t next;
3518
3519         vm_pagequeue_assert_locked(pq);
3520         KASSERT(vm_page_pagequeue(m) == pq,
3521             ("%s: queue %p does not match page %p", __func__, pq, m));
3522         KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3523             ("%s: invalid queue indices %d %d",
3524             __func__, old->queue, new.queue));
3525
3526         /*
3527          * Once the queue index of the page changes there is nothing
3528          * synchronizing with further updates to the page's physical
3529          * queue state.  Therefore we must speculatively remove the page
3530          * from the queue now and be prepared to roll back if the queue
3531          * state update fails.  If the page is not physically enqueued then
3532          * we just update its queue index.
3533          */
3534         if ((old->flags & PGA_ENQUEUED) != 0) {
3535                 new.flags &= ~PGA_ENQUEUED;
3536                 next = TAILQ_NEXT(m, plinks.q);
3537                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3538                 vm_pagequeue_cnt_dec(pq);
3539                 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3540                         if (next == NULL)
3541                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3542                         else
3543                                 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3544                         vm_pagequeue_cnt_inc(pq);
3545                         return (false);
3546                 } else {
3547                         return (true);
3548                 }
3549         } else {
3550                 return (vm_page_pqstate_fcmpset(m, old, new));
3551         }
3552 }
3553
3554 static bool
3555 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3556     vm_page_astate_t new)
3557 {
3558         struct vm_pagequeue *pq;
3559         vm_page_astate_t as;
3560         bool ret;
3561
3562         pq = _vm_page_pagequeue(m, old->queue);
3563
3564         /*
3565          * The queue field and PGA_ENQUEUED flag are stable only so long as the
3566          * corresponding page queue lock is held.
3567          */
3568         vm_pagequeue_lock(pq);
3569         as = vm_page_astate_load(m);
3570         if (__predict_false(as._bits != old->_bits)) {
3571                 *old = as;
3572                 ret = false;
3573         } else {
3574                 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3575         }
3576         vm_pagequeue_unlock(pq);
3577         return (ret);
3578 }
3579
3580 /*
3581  * Commit a queue state update that enqueues or requeues a page.
3582  */
3583 static bool
3584 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3585     vm_page_astate_t *old, vm_page_astate_t new)
3586 {
3587         struct vm_domain *vmd;
3588
3589         vm_pagequeue_assert_locked(pq);
3590         KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3591             ("%s: invalid queue indices %d %d",
3592             __func__, old->queue, new.queue));
3593
3594         new.flags |= PGA_ENQUEUED;
3595         if (!vm_page_pqstate_fcmpset(m, old, new))
3596                 return (false);
3597
3598         if ((old->flags & PGA_ENQUEUED) != 0)
3599                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3600         else
3601                 vm_pagequeue_cnt_inc(pq);
3602
3603         /*
3604          * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3605          * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3606          * applied, even if it was set first.
3607          */
3608         if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3609                 vmd = vm_pagequeue_domain(m);
3610                 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3611                     ("%s: invalid page queue for page %p", __func__, m));
3612                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3613         } else {
3614                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3615         }
3616         return (true);
3617 }
3618
3619 /*
3620  * Commit a queue state update that encodes a request for a deferred queue
3621  * operation.
3622  */
3623 static bool
3624 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3625     vm_page_astate_t new)
3626 {
3627
3628         KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3629             ("%s: invalid state, queue %d flags %x",
3630             __func__, new.queue, new.flags));
3631
3632         if (old->_bits != new._bits &&
3633             !vm_page_pqstate_fcmpset(m, old, new))
3634                 return (false);
3635         vm_page_pqbatch_submit(m, new.queue);
3636         return (true);
3637 }
3638
3639 /*
3640  * A generic queue state update function.  This handles more cases than the
3641  * specialized functions above.
3642  */
3643 bool
3644 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3645 {
3646
3647         if (old->_bits == new._bits)
3648                 return (true);
3649
3650         if (old->queue != PQ_NONE && new.queue != old->queue) {
3651                 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3652                         return (false);
3653                 if (new.queue != PQ_NONE)
3654                         vm_page_pqbatch_submit(m, new.queue);
3655         } else {
3656                 if (!vm_page_pqstate_fcmpset(m, old, new))
3657                         return (false);
3658                 if (new.queue != PQ_NONE &&
3659                     ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3660                         vm_page_pqbatch_submit(m, new.queue);
3661         }
3662         return (true);
3663 }
3664
3665 /*
3666  * Apply deferred queue state updates to a page.
3667  */
3668 static inline void
3669 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3670 {
3671         vm_page_astate_t new, old;
3672
3673         CRITICAL_ASSERT(curthread);
3674         vm_pagequeue_assert_locked(pq);
3675         KASSERT(queue < PQ_COUNT,
3676             ("%s: invalid queue index %d", __func__, queue));
3677         KASSERT(pq == _vm_page_pagequeue(m, queue),
3678             ("%s: page %p does not belong to queue %p", __func__, m, pq));
3679
3680         for (old = vm_page_astate_load(m);;) {
3681                 if (__predict_false(old.queue != queue ||
3682                     (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3683                         counter_u64_add(queue_nops, 1);
3684                         break;
3685                 }
3686                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3687                     ("%s: page %p is unmanaged", __func__, m));
3688
3689                 new = old;
3690                 if ((old.flags & PGA_DEQUEUE) != 0) {
3691                         new.flags &= ~PGA_QUEUE_OP_MASK;
3692                         new.queue = PQ_NONE;
3693                         if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3694                             m, &old, new))) {
3695                                 counter_u64_add(queue_ops, 1);
3696                                 break;
3697                         }
3698                 } else {
3699                         new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3700                         if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3701                             m, &old, new))) {
3702                                 counter_u64_add(queue_ops, 1);
3703                                 break;
3704                         }
3705                 }
3706         }
3707 }
3708
3709 static void
3710 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3711     uint8_t queue)
3712 {
3713         int i;
3714
3715         for (i = 0; i < bq->bq_cnt; i++)
3716                 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3717         vm_batchqueue_init(bq);
3718 }
3719
3720 /*
3721  *      vm_page_pqbatch_submit:         [ internal use only ]
3722  *
3723  *      Enqueue a page in the specified page queue's batched work queue.
3724  *      The caller must have encoded the requested operation in the page
3725  *      structure's a.flags field.
3726  */
3727 void
3728 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3729 {
3730         struct vm_batchqueue *bq;
3731         struct vm_pagequeue *pq;
3732         int domain, slots_remaining;
3733
3734         KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3735
3736         domain = vm_page_domain(m);
3737         critical_enter();
3738         bq = DPCPU_PTR(pqbatch[domain][queue]);
3739         slots_remaining = vm_batchqueue_insert(bq, m);
3740         if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
3741                 /* keep building the bq */
3742                 critical_exit();
3743                 return;
3744         } else if (slots_remaining > 0 ) {
3745                 /* Try to process the bq if we can get the lock */
3746                 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3747                 if (vm_pagequeue_trylock(pq)) {
3748                         vm_pqbatch_process(pq, bq, queue);
3749                         vm_pagequeue_unlock(pq);
3750                 }
3751                 critical_exit();
3752                 return;
3753         }
3754         critical_exit();
3755
3756         /* if we make it here, the bq is full so wait for the lock */
3757
3758         pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3759         vm_pagequeue_lock(pq);
3760         critical_enter();
3761         bq = DPCPU_PTR(pqbatch[domain][queue]);
3762         vm_pqbatch_process(pq, bq, queue);
3763         vm_pqbatch_process_page(pq, m, queue);
3764         vm_pagequeue_unlock(pq);
3765         critical_exit();
3766 }
3767
3768 /*
3769  *      vm_page_pqbatch_drain:          [ internal use only ]
3770  *
3771  *      Force all per-CPU page queue batch queues to be drained.  This is
3772  *      intended for use in severe memory shortages, to ensure that pages
3773  *      do not remain stuck in the batch queues.
3774  */
3775 void
3776 vm_page_pqbatch_drain(void)
3777 {
3778         struct thread *td;
3779         struct vm_domain *vmd;
3780         struct vm_pagequeue *pq;
3781         int cpu, domain, queue;
3782
3783         td = curthread;
3784         CPU_FOREACH(cpu) {
3785                 thread_lock(td);
3786                 sched_bind(td, cpu);
3787                 thread_unlock(td);
3788
3789                 for (domain = 0; domain < vm_ndomains; domain++) {
3790                         vmd = VM_DOMAIN(domain);
3791                         for (queue = 0; queue < PQ_COUNT; queue++) {
3792                                 pq = &vmd->vmd_pagequeues[queue];
3793                                 vm_pagequeue_lock(pq);
3794                                 critical_enter();
3795                                 vm_pqbatch_process(pq,
3796                                     DPCPU_PTR(pqbatch[domain][queue]), queue);
3797                                 critical_exit();
3798                                 vm_pagequeue_unlock(pq);
3799                         }
3800                 }
3801         }
3802         thread_lock(td);
3803         sched_unbind(td);
3804         thread_unlock(td);
3805 }
3806
3807 /*
3808  *      vm_page_dequeue_deferred:       [ internal use only ]
3809  *
3810  *      Request removal of the given page from its current page
3811  *      queue.  Physical removal from the queue may be deferred
3812  *      indefinitely.
3813  */
3814 void
3815 vm_page_dequeue_deferred(vm_page_t m)
3816 {
3817         vm_page_astate_t new, old;
3818
3819         old = vm_page_astate_load(m);
3820         do {
3821                 if (old.queue == PQ_NONE) {
3822                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3823                             ("%s: page %p has unexpected queue state",
3824                             __func__, m));
3825                         break;
3826                 }
3827                 new = old;
3828                 new.flags |= PGA_DEQUEUE;
3829         } while (!vm_page_pqstate_commit_request(m, &old, new));
3830 }
3831
3832 /*
3833  *      vm_page_dequeue:
3834  *
3835  *      Remove the page from whichever page queue it's in, if any, before
3836  *      returning.
3837  */
3838 void
3839 vm_page_dequeue(vm_page_t m)
3840 {
3841         vm_page_astate_t new, old;
3842
3843         old = vm_page_astate_load(m);
3844         do {
3845                 if (old.queue == PQ_NONE) {
3846                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3847                             ("%s: page %p has unexpected queue state",
3848                             __func__, m));
3849                         break;
3850                 }
3851                 new = old;
3852                 new.flags &= ~PGA_QUEUE_OP_MASK;
3853                 new.queue = PQ_NONE;
3854         } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3855
3856 }
3857
3858 /*
3859  * Schedule the given page for insertion into the specified page queue.
3860  * Physical insertion of the page may be deferred indefinitely.
3861  */
3862 static void
3863 vm_page_enqueue(vm_page_t m, uint8_t queue)
3864 {
3865
3866         KASSERT(m->a.queue == PQ_NONE &&
3867             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3868             ("%s: page %p is already enqueued", __func__, m));
3869         KASSERT(m->ref_count > 0,
3870             ("%s: page %p does not carry any references", __func__, m));
3871
3872         m->a.queue = queue;
3873         if ((m->a.flags & PGA_REQUEUE) == 0)
3874                 vm_page_aflag_set(m, PGA_REQUEUE);
3875         vm_page_pqbatch_submit(m, queue);
3876 }
3877
3878 /*
3879  *      vm_page_free_prep:
3880  *
3881  *      Prepares the given page to be put on the free list,
3882  *      disassociating it from any VM object. The caller may return
3883  *      the page to the free list only if this function returns true.
3884  *
3885  *      The object, if it exists, must be locked, and then the page must
3886  *      be xbusy.  Otherwise the page must be not busied.  A managed
3887  *      page must be unmapped.
3888  */
3889 static bool
3890 vm_page_free_prep(vm_page_t m)
3891 {
3892
3893         /*
3894          * Synchronize with threads that have dropped a reference to this
3895          * page.
3896          */
3897         atomic_thread_fence_acq();
3898
3899 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3900         if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3901                 uint64_t *p;
3902                 int i;
3903                 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3904                 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3905                         KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3906                             m, i, (uintmax_t)*p));
3907         }
3908 #endif
3909         if ((m->oflags & VPO_UNMANAGED) == 0) {
3910                 KASSERT(!pmap_page_is_mapped(m),
3911                     ("vm_page_free_prep: freeing mapped page %p", m));
3912                 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3913                     ("vm_page_free_prep: mapping flags set in page %p", m));
3914         } else {
3915                 KASSERT(m->a.queue == PQ_NONE,
3916                     ("vm_page_free_prep: unmanaged page %p is queued", m));
3917         }
3918         VM_CNT_INC(v_tfree);
3919
3920         if (m->object != NULL) {
3921                 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3922                     ((m->object->flags & OBJ_UNMANAGED) != 0),
3923                     ("vm_page_free_prep: managed flag mismatch for page %p",
3924                     m));
3925                 vm_page_assert_xbusied(m);
3926
3927                 /*
3928                  * The object reference can be released without an atomic
3929                  * operation.
3930                  */
3931                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3932                     m->ref_count == VPRC_OBJREF,
3933                     ("vm_page_free_prep: page %p has unexpected ref_count %u",
3934                     m, m->ref_count));
3935                 vm_page_object_remove(m);
3936                 m->ref_count -= VPRC_OBJREF;
3937         } else
3938                 vm_page_assert_unbusied(m);
3939
3940         vm_page_busy_free(m);
3941
3942         /*
3943          * If fictitious remove object association and
3944          * return.
3945          */
3946         if ((m->flags & PG_FICTITIOUS) != 0) {
3947                 KASSERT(m->ref_count == 1,
3948                     ("fictitious page %p is referenced", m));
3949                 KASSERT(m->a.queue == PQ_NONE,
3950                     ("fictitious page %p is queued", m));
3951                 return (false);
3952         }
3953
3954         /*
3955          * Pages need not be dequeued before they are returned to the physical
3956          * memory allocator, but they must at least be marked for a deferred
3957          * dequeue.
3958          */
3959         if ((m->oflags & VPO_UNMANAGED) == 0)
3960                 vm_page_dequeue_deferred(m);
3961
3962         m->valid = 0;
3963         vm_page_undirty(m);
3964
3965         if (m->ref_count != 0)
3966                 panic("vm_page_free_prep: page %p has references", m);
3967
3968         /*
3969          * Restore the default memory attribute to the page.
3970          */
3971         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3972                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3973
3974 #if VM_NRESERVLEVEL > 0
3975         /*
3976          * Determine whether the page belongs to a reservation.  If the page was
3977          * allocated from a per-CPU cache, it cannot belong to a reservation, so
3978          * as an optimization, we avoid the check in that case.
3979          */
3980         if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3981                 return (false);
3982 #endif
3983
3984         return (true);
3985 }
3986
3987 /*
3988  *      vm_page_free_toq:
3989  *
3990  *      Returns the given page to the free list, disassociating it
3991  *      from any VM object.
3992  *
3993  *      The object must be locked.  The page must be exclusively busied if it
3994  *      belongs to an object.
3995  */
3996 static void
3997 vm_page_free_toq(vm_page_t m)
3998 {
3999         struct vm_domain *vmd;
4000         uma_zone_t zone;
4001
4002         if (!vm_page_free_prep(m))
4003                 return;
4004
4005         vmd = vm_pagequeue_domain(m);
4006         zone = vmd->vmd_pgcache[m->pool].zone;
4007         if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
4008                 uma_zfree(zone, m);
4009                 return;
4010         }
4011         vm_domain_free_lock(vmd);
4012         vm_phys_free_pages(m, 0);
4013         vm_domain_free_unlock(vmd);
4014         vm_domain_freecnt_inc(vmd, 1);
4015 }
4016
4017 /*
4018  *      vm_page_free_pages_toq:
4019  *
4020  *      Returns a list of pages to the free list, disassociating it
4021  *      from any VM object.  In other words, this is equivalent to
4022  *      calling vm_page_free_toq() for each page of a list of VM objects.
4023  */
4024 void
4025 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
4026 {
4027         vm_page_t m;
4028         int count;
4029
4030         if (SLIST_EMPTY(free))
4031                 return;
4032
4033         count = 0;
4034         while ((m = SLIST_FIRST(free)) != NULL) {
4035                 count++;
4036                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
4037                 vm_page_free_toq(m);
4038         }
4039
4040         if (update_wire_count)
4041                 vm_wire_sub(count);
4042 }
4043
4044 /*
4045  * Mark this page as wired down.  For managed pages, this prevents reclamation
4046  * by the page daemon, or when the containing object, if any, is destroyed.
4047  */
4048 void
4049 vm_page_wire(vm_page_t m)
4050 {
4051         u_int old;
4052
4053 #ifdef INVARIANTS
4054         if (m->object != NULL && !vm_page_busied(m) &&
4055             !vm_object_busied(m->object))
4056                 VM_OBJECT_ASSERT_LOCKED(m->object);
4057 #endif
4058         KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4059             VPRC_WIRE_COUNT(m->ref_count) >= 1,
4060             ("vm_page_wire: fictitious page %p has zero wirings", m));
4061
4062         old = atomic_fetchadd_int(&m->ref_count, 1);
4063         KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4064             ("vm_page_wire: counter overflow for page %p", m));
4065         if (VPRC_WIRE_COUNT(old) == 0) {
4066                 if ((m->oflags & VPO_UNMANAGED) == 0)
4067                         vm_page_aflag_set(m, PGA_DEQUEUE);
4068                 vm_wire_add(1);
4069         }
4070 }
4071
4072 /*
4073  * Attempt to wire a mapped page following a pmap lookup of that page.
4074  * This may fail if a thread is concurrently tearing down mappings of the page.
4075  * The transient failure is acceptable because it translates to the
4076  * failure of the caller pmap_extract_and_hold(), which should be then
4077  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4078  */
4079 bool
4080 vm_page_wire_mapped(vm_page_t m)
4081 {
4082         u_int old;
4083
4084         old = m->ref_count;
4085         do {
4086                 KASSERT(old > 0,
4087                     ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4088                 if ((old & VPRC_BLOCKED) != 0)
4089                         return (false);
4090         } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4091
4092         if (VPRC_WIRE_COUNT(old) == 0) {
4093                 if ((m->oflags & VPO_UNMANAGED) == 0)
4094                         vm_page_aflag_set(m, PGA_DEQUEUE);
4095                 vm_wire_add(1);
4096         }
4097         return (true);
4098 }
4099
4100 /*
4101  * Release a wiring reference to a managed page.  If the page still belongs to
4102  * an object, update its position in the page queues to reflect the reference.
4103  * If the wiring was the last reference to the page, free the page.
4104  */
4105 static void
4106 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4107 {
4108         u_int old;
4109
4110         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4111             ("%s: page %p is unmanaged", __func__, m));
4112
4113         /*
4114          * Update LRU state before releasing the wiring reference.
4115          * Use a release store when updating the reference count to
4116          * synchronize with vm_page_free_prep().
4117          */
4118         old = m->ref_count;
4119         do {
4120                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
4121                     ("vm_page_unwire: wire count underflow for page %p", m));
4122
4123                 if (old > VPRC_OBJREF + 1) {
4124                         /*
4125                          * The page has at least one other wiring reference.  An
4126                          * earlier iteration of this loop may have called
4127                          * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4128                          * re-set it if necessary.
4129                          */
4130                         if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4131                                 vm_page_aflag_set(m, PGA_DEQUEUE);
4132                 } else if (old == VPRC_OBJREF + 1) {
4133                         /*
4134                          * This is the last wiring.  Clear PGA_DEQUEUE and
4135                          * update the page's queue state to reflect the
4136                          * reference.  If the page does not belong to an object
4137                          * (i.e., the VPRC_OBJREF bit is clear), we only need to
4138                          * clear leftover queue state.
4139                          */
4140                         vm_page_release_toq(m, nqueue, noreuse);
4141                 } else if (old == 1) {
4142                         vm_page_aflag_clear(m, PGA_DEQUEUE);
4143                 }
4144         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4145
4146         if (VPRC_WIRE_COUNT(old) == 1) {
4147                 vm_wire_sub(1);
4148                 if (old == 1)
4149                         vm_page_free(m);
4150         }
4151 }
4152
4153 /*
4154  * Release one wiring of the specified page, potentially allowing it to be
4155  * paged out.
4156  *
4157  * Only managed pages belonging to an object can be paged out.  If the number
4158  * of wirings transitions to zero and the page is eligible for page out, then
4159  * the page is added to the specified paging queue.  If the released wiring
4160  * represented the last reference to the page, the page is freed.
4161  */
4162 void
4163 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4164 {
4165
4166         KASSERT(nqueue < PQ_COUNT,
4167             ("vm_page_unwire: invalid queue %u request for page %p",
4168             nqueue, m));
4169
4170         if ((m->oflags & VPO_UNMANAGED) != 0) {
4171                 if (vm_page_unwire_noq(m) && m->ref_count == 0)
4172                         vm_page_free(m);
4173                 return;
4174         }
4175         vm_page_unwire_managed(m, nqueue, false);
4176 }
4177
4178 /*
4179  * Unwire a page without (re-)inserting it into a page queue.  It is up
4180  * to the caller to enqueue, requeue, or free the page as appropriate.
4181  * In most cases involving managed pages, vm_page_unwire() should be used
4182  * instead.
4183  */
4184 bool
4185 vm_page_unwire_noq(vm_page_t m)
4186 {
4187         u_int old;
4188
4189         old = vm_page_drop(m, 1);
4190         KASSERT(VPRC_WIRE_COUNT(old) != 0,
4191             ("%s: counter underflow for page %p", __func__,  m));
4192         KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4193             ("%s: missing ref on fictitious page %p", __func__, m));
4194
4195         if (VPRC_WIRE_COUNT(old) > 1)
4196                 return (false);
4197         if ((m->oflags & VPO_UNMANAGED) == 0)
4198                 vm_page_aflag_clear(m, PGA_DEQUEUE);
4199         vm_wire_sub(1);
4200         return (true);
4201 }
4202
4203 /*
4204  * Ensure that the page ends up in the specified page queue.  If the page is
4205  * active or being moved to the active queue, ensure that its act_count is
4206  * at least ACT_INIT but do not otherwise mess with it.
4207  */
4208 static __always_inline void
4209 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4210 {
4211         vm_page_astate_t old, new;
4212
4213         KASSERT(m->ref_count > 0,
4214             ("%s: page %p does not carry any references", __func__, m));
4215         KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4216             ("%s: invalid flags %x", __func__, nflag));
4217
4218         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4219                 return;
4220
4221         old = vm_page_astate_load(m);
4222         do {
4223                 if ((old.flags & PGA_DEQUEUE) != 0)
4224                         break;
4225                 new = old;
4226                 new.flags &= ~PGA_QUEUE_OP_MASK;
4227                 if (nqueue == PQ_ACTIVE)
4228                         new.act_count = max(old.act_count, ACT_INIT);
4229                 if (old.queue == nqueue) {
4230                         /*
4231                          * There is no need to requeue pages already in the
4232                          * active queue.
4233                          */
4234                         if (nqueue != PQ_ACTIVE ||
4235                             (old.flags & PGA_ENQUEUED) == 0)
4236                                 new.flags |= nflag;
4237                 } else {
4238                         new.flags |= nflag;
4239                         new.queue = nqueue;
4240                 }
4241         } while (!vm_page_pqstate_commit(m, &old, new));
4242 }
4243
4244 /*
4245  * Put the specified page on the active list (if appropriate).
4246  */
4247 void
4248 vm_page_activate(vm_page_t m)
4249 {
4250
4251         vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4252 }
4253
4254 /*
4255  * Move the specified page to the tail of the inactive queue, or requeue
4256  * the page if it is already in the inactive queue.
4257  */
4258 void
4259 vm_page_deactivate(vm_page_t m)
4260 {
4261
4262         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4263 }
4264
4265 void
4266 vm_page_deactivate_noreuse(vm_page_t m)
4267 {
4268
4269         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4270 }
4271
4272 /*
4273  * Put a page in the laundry, or requeue it if it is already there.
4274  */
4275 void
4276 vm_page_launder(vm_page_t m)
4277 {
4278
4279         vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4280 }
4281
4282 /*
4283  * Put a page in the PQ_UNSWAPPABLE holding queue.
4284  */
4285 void
4286 vm_page_unswappable(vm_page_t m)
4287 {
4288
4289         VM_OBJECT_ASSERT_LOCKED(m->object);
4290         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4291             ("page %p already unswappable", m));
4292
4293         vm_page_dequeue(m);
4294         vm_page_enqueue(m, PQ_UNSWAPPABLE);
4295 }
4296
4297 /*
4298  * Release a page back to the page queues in preparation for unwiring.
4299  */
4300 static void
4301 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4302 {
4303         vm_page_astate_t old, new;
4304         uint16_t nflag;
4305
4306         /*
4307          * Use a check of the valid bits to determine whether we should
4308          * accelerate reclamation of the page.  The object lock might not be
4309          * held here, in which case the check is racy.  At worst we will either
4310          * accelerate reclamation of a valid page and violate LRU, or
4311          * unnecessarily defer reclamation of an invalid page.
4312          *
4313          * If we were asked to not cache the page, place it near the head of the
4314          * inactive queue so that is reclaimed sooner.
4315          */
4316         if (noreuse || vm_page_none_valid(m)) {
4317                 nqueue = PQ_INACTIVE;
4318                 nflag = PGA_REQUEUE_HEAD;
4319         } else {
4320                 nflag = PGA_REQUEUE;
4321         }
4322
4323         old = vm_page_astate_load(m);
4324         do {
4325                 new = old;
4326
4327                 /*
4328                  * If the page is already in the active queue and we are not
4329                  * trying to accelerate reclamation, simply mark it as
4330                  * referenced and avoid any queue operations.
4331                  */
4332                 new.flags &= ~PGA_QUEUE_OP_MASK;
4333                 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4334                     (old.flags & PGA_ENQUEUED) != 0)
4335                         new.flags |= PGA_REFERENCED;
4336                 else {
4337                         new.flags |= nflag;
4338                         new.queue = nqueue;
4339                 }
4340         } while (!vm_page_pqstate_commit(m, &old, new));
4341 }
4342
4343 /*
4344  * Unwire a page and either attempt to free it or re-add it to the page queues.
4345  */
4346 void
4347 vm_page_release(vm_page_t m, int flags)
4348 {
4349         vm_object_t object;
4350
4351         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4352             ("vm_page_release: page %p is unmanaged", m));
4353
4354         if ((flags & VPR_TRYFREE) != 0) {
4355                 for (;;) {
4356                         object = atomic_load_ptr(&m->object);
4357                         if (object == NULL)
4358                                 break;
4359                         /* Depends on type-stability. */
4360                         if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4361                                 break;
4362                         if (object == m->object) {
4363                                 vm_page_release_locked(m, flags);
4364                                 VM_OBJECT_WUNLOCK(object);
4365                                 return;
4366                         }
4367                         VM_OBJECT_WUNLOCK(object);
4368                 }
4369         }
4370         vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4371 }
4372
4373 /* See vm_page_release(). */
4374 void
4375 vm_page_release_locked(vm_page_t m, int flags)
4376 {
4377
4378         VM_OBJECT_ASSERT_WLOCKED(m->object);
4379         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4380             ("vm_page_release_locked: page %p is unmanaged", m));
4381
4382         if (vm_page_unwire_noq(m)) {
4383                 if ((flags & VPR_TRYFREE) != 0 &&
4384                     (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4385                     m->dirty == 0 && vm_page_tryxbusy(m)) {
4386                         /*
4387                          * An unlocked lookup may have wired the page before the
4388                          * busy lock was acquired, in which case the page must
4389                          * not be freed.
4390                          */
4391                         if (__predict_true(!vm_page_wired(m))) {
4392                                 vm_page_free(m);
4393                                 return;
4394                         }
4395                         vm_page_xunbusy(m);
4396                 } else {
4397                         vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4398                 }
4399         }
4400 }
4401
4402 static bool
4403 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4404 {
4405         u_int old;
4406
4407         KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4408             ("vm_page_try_blocked_op: page %p has no object", m));
4409         KASSERT(vm_page_busied(m),
4410             ("vm_page_try_blocked_op: page %p is not busy", m));
4411         VM_OBJECT_ASSERT_LOCKED(m->object);
4412
4413         old = m->ref_count;
4414         do {
4415                 KASSERT(old != 0,
4416                     ("vm_page_try_blocked_op: page %p has no references", m));
4417                 if (VPRC_WIRE_COUNT(old) != 0)
4418                         return (false);
4419         } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4420
4421         (op)(m);
4422
4423         /*
4424          * If the object is read-locked, new wirings may be created via an
4425          * object lookup.
4426          */
4427         old = vm_page_drop(m, VPRC_BLOCKED);
4428         KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4429             old == (VPRC_BLOCKED | VPRC_OBJREF),
4430             ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4431             old, m));
4432         return (true);
4433 }
4434
4435 /*
4436  * Atomically check for wirings and remove all mappings of the page.
4437  */
4438 bool
4439 vm_page_try_remove_all(vm_page_t m)
4440 {
4441
4442         return (vm_page_try_blocked_op(m, pmap_remove_all));
4443 }
4444
4445 /*
4446  * Atomically check for wirings and remove all writeable mappings of the page.
4447  */
4448 bool
4449 vm_page_try_remove_write(vm_page_t m)
4450 {
4451
4452         return (vm_page_try_blocked_op(m, pmap_remove_write));
4453 }
4454
4455 /*
4456  * vm_page_advise
4457  *
4458  *      Apply the specified advice to the given page.
4459  */
4460 void
4461 vm_page_advise(vm_page_t m, int advice)
4462 {
4463
4464         VM_OBJECT_ASSERT_WLOCKED(m->object);
4465         vm_page_assert_xbusied(m);
4466
4467         if (advice == MADV_FREE)
4468                 /*
4469                  * Mark the page clean.  This will allow the page to be freed
4470                  * without first paging it out.  MADV_FREE pages are often
4471                  * quickly reused by malloc(3), so we do not do anything that
4472                  * would result in a page fault on a later access.
4473                  */
4474                 vm_page_undirty(m);
4475         else if (advice != MADV_DONTNEED) {
4476                 if (advice == MADV_WILLNEED)
4477                         vm_page_activate(m);
4478                 return;
4479         }
4480
4481         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4482                 vm_page_dirty(m);
4483
4484         /*
4485          * Clear any references to the page.  Otherwise, the page daemon will
4486          * immediately reactivate the page.
4487          */
4488         vm_page_aflag_clear(m, PGA_REFERENCED);
4489
4490         /*
4491          * Place clean pages near the head of the inactive queue rather than
4492          * the tail, thus defeating the queue's LRU operation and ensuring that
4493          * the page will be reused quickly.  Dirty pages not already in the
4494          * laundry are moved there.
4495          */
4496         if (m->dirty == 0)
4497                 vm_page_deactivate_noreuse(m);
4498         else if (!vm_page_in_laundry(m))
4499                 vm_page_launder(m);
4500 }
4501
4502 /*
4503  *      vm_page_grab_release
4504  *
4505  *      Helper routine for grab functions to release busy on return.
4506  */
4507 static inline void
4508 vm_page_grab_release(vm_page_t m, int allocflags)
4509 {
4510
4511         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4512                 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4513                         vm_page_sunbusy(m);
4514                 else
4515                         vm_page_xunbusy(m);
4516         }
4517 }
4518
4519 /*
4520  *      vm_page_grab_sleep
4521  *
4522  *      Sleep for busy according to VM_ALLOC_ parameters.  Returns true
4523  *      if the caller should retry and false otherwise.
4524  *
4525  *      If the object is locked on entry the object will be unlocked with
4526  *      false returns and still locked but possibly having been dropped
4527  *      with true returns.
4528  */
4529 static bool
4530 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4531     const char *wmesg, int allocflags, bool locked)
4532 {
4533
4534         if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4535                 return (false);
4536
4537         /*
4538          * Reference the page before unlocking and sleeping so that
4539          * the page daemon is less likely to reclaim it.
4540          */
4541         if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4542                 vm_page_reference(m);
4543
4544         if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4545             locked)
4546                 VM_OBJECT_WLOCK(object);
4547         if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4548                 return (false);
4549
4550         return (true);
4551 }
4552
4553 /*
4554  * Assert that the grab flags are valid.
4555  */
4556 static inline void
4557 vm_page_grab_check(int allocflags)
4558 {
4559
4560         KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4561             (allocflags & VM_ALLOC_WIRED) != 0,
4562             ("vm_page_grab*: the pages must be busied or wired"));
4563
4564         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4565             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4566             ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4567 }
4568
4569 /*
4570  * Calculate the page allocation flags for grab.
4571  */
4572 static inline int
4573 vm_page_grab_pflags(int allocflags)
4574 {
4575         int pflags;
4576
4577         pflags = allocflags &
4578             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4579             VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4580         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4581                 pflags |= VM_ALLOC_WAITFAIL;
4582         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4583                 pflags |= VM_ALLOC_SBUSY;
4584
4585         return (pflags);
4586 }
4587
4588 /*
4589  * Grab a page, waiting until we are waken up due to the page
4590  * changing state.  We keep on waiting, if the page continues
4591  * to be in the object.  If the page doesn't exist, first allocate it
4592  * and then conditionally zero it.
4593  *
4594  * This routine may sleep.
4595  *
4596  * The object must be locked on entry.  The lock will, however, be released
4597  * and reacquired if the routine sleeps.
4598  */
4599 vm_page_t
4600 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4601 {
4602         vm_page_t m;
4603
4604         VM_OBJECT_ASSERT_WLOCKED(object);
4605         vm_page_grab_check(allocflags);
4606
4607 retrylookup:
4608         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4609                 if (!vm_page_tryacquire(m, allocflags)) {
4610                         if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4611                             allocflags, true))
4612                                 goto retrylookup;
4613                         return (NULL);
4614                 }
4615                 goto out;
4616         }
4617         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4618                 return (NULL);
4619         m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4620         if (m == NULL) {
4621                 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4622                         return (NULL);
4623                 goto retrylookup;
4624         }
4625         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4626                 pmap_zero_page(m);
4627
4628 out:
4629         vm_page_grab_release(m, allocflags);
4630
4631         return (m);
4632 }
4633
4634 /*
4635  * Locklessly attempt to acquire a page given a (object, pindex) tuple
4636  * and an optional previous page to avoid the radix lookup.  The resulting
4637  * page will be validated against the identity tuple and busied or wired
4638  * as requested.  A NULL *mp return guarantees that the page was not in
4639  * radix at the time of the call but callers must perform higher level
4640  * synchronization or retry the operation under a lock if they require
4641  * an atomic answer.  This is the only lock free validation routine,
4642  * other routines can depend on the resulting page state.
4643  *
4644  * The return value indicates whether the operation failed due to caller
4645  * flags.  The return is tri-state with mp:
4646  *
4647  * (true, *mp != NULL) - The operation was successful.
4648  * (true, *mp == NULL) - The page was not found in tree.
4649  * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition.
4650  */
4651 static bool
4652 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex,
4653     vm_page_t prev, vm_page_t *mp, int allocflags)
4654 {
4655         vm_page_t m;
4656
4657         vm_page_grab_check(allocflags);
4658         MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev));
4659
4660         *mp = NULL;
4661         for (;;) {
4662                 /*
4663                  * We may see a false NULL here because the previous page
4664                  * has been removed or just inserted and the list is loaded
4665                  * without barriers.  Switch to radix to verify.
4666                  */
4667                 if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL ||
4668                     QMD_IS_TRASHED(m) || m->pindex != pindex ||
4669                     atomic_load_ptr(&m->object) != object) {
4670                         prev = NULL;
4671                         /*
4672                          * This guarantees the result is instantaneously
4673                          * correct.
4674                          */
4675                         m = vm_radix_lookup_unlocked(&object->rtree, pindex);
4676                 }
4677                 if (m == NULL)
4678                         return (true);
4679                 if (vm_page_trybusy(m, allocflags)) {
4680                         if (m->object == object && m->pindex == pindex)
4681                                 break;
4682                         /* relookup. */
4683                         vm_page_busy_release(m);
4684                         cpu_spinwait();
4685                         continue;
4686                 }
4687                 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4688                     allocflags, false))
4689                         return (false);
4690         }
4691         if ((allocflags & VM_ALLOC_WIRED) != 0)
4692                 vm_page_wire(m);
4693         vm_page_grab_release(m, allocflags);
4694         *mp = m;
4695         return (true);
4696 }
4697
4698 /*
4699  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4700  * is not set.
4701  */
4702 vm_page_t
4703 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4704 {
4705         vm_page_t m;
4706
4707         vm_page_grab_check(allocflags);
4708
4709         if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags))
4710                 return (NULL);
4711         if (m != NULL)
4712                 return (m);
4713
4714         /*
4715          * The radix lockless lookup should never return a false negative
4716          * errors.  If the user specifies NOCREAT they are guaranteed there
4717          * was no page present at the instant of the call.  A NOCREAT caller
4718          * must handle create races gracefully.
4719          */
4720         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4721                 return (NULL);
4722
4723         VM_OBJECT_WLOCK(object);
4724         m = vm_page_grab(object, pindex, allocflags);
4725         VM_OBJECT_WUNLOCK(object);
4726
4727         return (m);
4728 }
4729
4730 /*
4731  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4732  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4733  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4734  * in simultaneously.  Additional pages will be left on a paging queue but
4735  * will neither be wired nor busy regardless of allocflags.
4736  */
4737 int
4738 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4739 {
4740         vm_page_t m;
4741         vm_page_t ma[VM_INITIAL_PAGEIN];
4742         int after, i, pflags, rv;
4743
4744         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4745             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4746             ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4747         KASSERT((allocflags &
4748             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4749             ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4750         VM_OBJECT_ASSERT_WLOCKED(object);
4751         pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4752             VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4753         pflags |= VM_ALLOC_WAITFAIL;
4754
4755 retrylookup:
4756         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4757                 /*
4758                  * If the page is fully valid it can only become invalid
4759                  * with the object lock held.  If it is not valid it can
4760                  * become valid with the busy lock held.  Therefore, we
4761                  * may unnecessarily lock the exclusive busy here if we
4762                  * race with I/O completion not using the object lock.
4763                  * However, we will not end up with an invalid page and a
4764                  * shared lock.
4765                  */
4766                 if (!vm_page_trybusy(m,
4767                     vm_page_all_valid(m) ? allocflags : 0)) {
4768                         (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4769                             allocflags, true);
4770                         goto retrylookup;
4771                 }
4772                 if (vm_page_all_valid(m))
4773                         goto out;
4774                 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4775                         vm_page_busy_release(m);
4776                         *mp = NULL;
4777                         return (VM_PAGER_FAIL);
4778                 }
4779         } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4780                 *mp = NULL;
4781                 return (VM_PAGER_FAIL);
4782         } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
4783                 if (!vm_pager_can_alloc_page(object, pindex)) {
4784                         *mp = NULL;
4785                         return (VM_PAGER_AGAIN);
4786                 }
4787                 goto retrylookup;
4788         }
4789
4790         vm_page_assert_xbusied(m);
4791         if (vm_pager_has_page(object, pindex, NULL, &after)) {
4792                 after = MIN(after, VM_INITIAL_PAGEIN);
4793                 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4794                 after = MAX(after, 1);
4795                 ma[0] = m;
4796                 for (i = 1; i < after; i++) {
4797                         if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4798                                 if (vm_page_any_valid(ma[i]) ||
4799                                     !vm_page_tryxbusy(ma[i]))
4800                                         break;
4801                         } else {
4802                                 ma[i] = vm_page_alloc(object, m->pindex + i,
4803                                     VM_ALLOC_NORMAL);
4804                                 if (ma[i] == NULL)
4805                                         break;
4806                         }
4807                 }
4808                 after = i;
4809                 vm_object_pip_add(object, after);
4810                 VM_OBJECT_WUNLOCK(object);
4811                 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4812                 VM_OBJECT_WLOCK(object);
4813                 vm_object_pip_wakeupn(object, after);
4814                 /* Pager may have replaced a page. */
4815                 m = ma[0];
4816                 if (rv != VM_PAGER_OK) {
4817                         for (i = 0; i < after; i++) {
4818                                 if (!vm_page_wired(ma[i]))
4819                                         vm_page_free(ma[i]);
4820                                 else
4821                                         vm_page_xunbusy(ma[i]);
4822                         }
4823                         *mp = NULL;
4824                         return (rv);
4825                 }
4826                 for (i = 1; i < after; i++)
4827                         vm_page_readahead_finish(ma[i]);
4828                 MPASS(vm_page_all_valid(m));
4829         } else {
4830                 vm_page_zero_invalid(m, TRUE);
4831         }
4832 out:
4833         if ((allocflags & VM_ALLOC_WIRED) != 0)
4834                 vm_page_wire(m);
4835         if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
4836                 vm_page_busy_downgrade(m);
4837         else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
4838                 vm_page_busy_release(m);
4839         *mp = m;
4840         return (VM_PAGER_OK);
4841 }
4842
4843 /*
4844  * Locklessly grab a valid page.  If the page is not valid or not yet
4845  * allocated this will fall back to the object lock method.
4846  */
4847 int
4848 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
4849     vm_pindex_t pindex, int allocflags)
4850 {
4851         vm_page_t m;
4852         int flags;
4853         int error;
4854
4855         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4856             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4857             ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4858             "mismatch"));
4859         KASSERT((allocflags &
4860             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4861             ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
4862
4863         /*
4864          * Attempt a lockless lookup and busy.  We need at least an sbusy
4865          * before we can inspect the valid field and return a wired page.
4866          */
4867         flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
4868         if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags))
4869                 return (VM_PAGER_FAIL);
4870         if ((m = *mp) != NULL) {
4871                 if (vm_page_all_valid(m)) {
4872                         if ((allocflags & VM_ALLOC_WIRED) != 0)
4873                                 vm_page_wire(m);
4874                         vm_page_grab_release(m, allocflags);
4875                         return (VM_PAGER_OK);
4876                 }
4877                 vm_page_busy_release(m);
4878         }
4879         if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4880                 *mp = NULL;
4881                 return (VM_PAGER_FAIL);
4882         }
4883         VM_OBJECT_WLOCK(object);
4884         error = vm_page_grab_valid(mp, object, pindex, allocflags);
4885         VM_OBJECT_WUNLOCK(object);
4886
4887         return (error);
4888 }
4889
4890 /*
4891  * Return the specified range of pages from the given object.  For each
4892  * page offset within the range, if a page already exists within the object
4893  * at that offset and it is busy, then wait for it to change state.  If,
4894  * instead, the page doesn't exist, then allocate it.
4895  *
4896  * The caller must always specify an allocation class.
4897  *
4898  * allocation classes:
4899  *      VM_ALLOC_NORMAL         normal process request
4900  *      VM_ALLOC_SYSTEM         system *really* needs the pages
4901  *
4902  * The caller must always specify that the pages are to be busied and/or
4903  * wired.
4904  *
4905  * optional allocation flags:
4906  *      VM_ALLOC_IGN_SBUSY      do not sleep on soft busy pages
4907  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
4908  *      VM_ALLOC_NOWAIT         do not sleep
4909  *      VM_ALLOC_SBUSY          set page to sbusy state
4910  *      VM_ALLOC_WIRED          wire the pages
4911  *      VM_ALLOC_ZERO           zero and validate any invalid pages
4912  *
4913  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4914  * may return a partial prefix of the requested range.
4915  */
4916 int
4917 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4918     vm_page_t *ma, int count)
4919 {
4920         vm_page_t m, mpred;
4921         int pflags;
4922         int i;
4923
4924         VM_OBJECT_ASSERT_WLOCKED(object);
4925         KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4926             ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4927         KASSERT(count > 0,
4928             ("vm_page_grab_pages: invalid page count %d", count));
4929         vm_page_grab_check(allocflags);
4930
4931         pflags = vm_page_grab_pflags(allocflags);
4932         i = 0;
4933 retrylookup:
4934         m = vm_radix_lookup_le(&object->rtree, pindex + i);
4935         if (m == NULL || m->pindex != pindex + i) {
4936                 mpred = m;
4937                 m = NULL;
4938         } else
4939                 mpred = TAILQ_PREV(m, pglist, listq);
4940         for (; i < count; i++) {
4941                 if (m != NULL) {
4942                         if (!vm_page_tryacquire(m, allocflags)) {
4943                                 if (vm_page_grab_sleep(object, m, pindex + i,
4944                                     "grbmaw", allocflags, true))
4945                                         goto retrylookup;
4946                                 break;
4947                         }
4948                 } else {
4949                         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4950                                 break;
4951                         m = vm_page_alloc_after(object, pindex + i,
4952                             pflags | VM_ALLOC_COUNT(count - i), mpred);
4953                         if (m == NULL) {
4954                                 if ((allocflags & (VM_ALLOC_NOWAIT |
4955                                     VM_ALLOC_WAITFAIL)) != 0)
4956                                         break;
4957                                 goto retrylookup;
4958                         }
4959                 }
4960                 if (vm_page_none_valid(m) &&
4961                     (allocflags & VM_ALLOC_ZERO) != 0) {
4962                         if ((m->flags & PG_ZERO) == 0)
4963                                 pmap_zero_page(m);
4964                         vm_page_valid(m);
4965                 }
4966                 vm_page_grab_release(m, allocflags);
4967                 ma[i] = mpred = m;
4968                 m = vm_page_next(m);
4969         }
4970         return (i);
4971 }
4972
4973 /*
4974  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
4975  * and will fall back to the locked variant to handle allocation.
4976  */
4977 int
4978 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
4979     int allocflags, vm_page_t *ma, int count)
4980 {
4981         vm_page_t m, pred;
4982         int flags;
4983         int i;
4984
4985         KASSERT(count > 0,
4986             ("vm_page_grab_pages_unlocked: invalid page count %d", count));
4987         vm_page_grab_check(allocflags);
4988
4989         /*
4990          * Modify flags for lockless acquire to hold the page until we
4991          * set it valid if necessary.
4992          */
4993         flags = allocflags & ~VM_ALLOC_NOBUSY;
4994         pred = NULL;
4995         for (i = 0; i < count; i++, pindex++) {
4996                 if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags))
4997                         return (i);
4998                 if (m == NULL)
4999                         break;
5000                 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
5001                         if ((m->flags & PG_ZERO) == 0)
5002                                 pmap_zero_page(m);
5003                         vm_page_valid(m);
5004                 }
5005                 /* m will still be wired or busy according to flags. */
5006                 vm_page_grab_release(m, allocflags);
5007                 pred = ma[i] = m;
5008         }
5009         if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
5010                 return (i);
5011         count -= i;
5012         VM_OBJECT_WLOCK(object);
5013         i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
5014         VM_OBJECT_WUNLOCK(object);
5015
5016         return (i);
5017 }
5018
5019 /*
5020  * Mapping function for valid or dirty bits in a page.
5021  *
5022  * Inputs are required to range within a page.
5023  */
5024 vm_page_bits_t
5025 vm_page_bits(int base, int size)
5026 {
5027         int first_bit;
5028         int last_bit;
5029
5030         KASSERT(
5031             base + size <= PAGE_SIZE,
5032             ("vm_page_bits: illegal base/size %d/%d", base, size)
5033         );
5034
5035         if (size == 0)          /* handle degenerate case */
5036                 return (0);
5037
5038         first_bit = base >> DEV_BSHIFT;
5039         last_bit = (base + size - 1) >> DEV_BSHIFT;
5040
5041         return (((vm_page_bits_t)2 << last_bit) -
5042             ((vm_page_bits_t)1 << first_bit));
5043 }
5044
5045 void
5046 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5047 {
5048
5049 #if PAGE_SIZE == 32768
5050         atomic_set_64((uint64_t *)bits, set);
5051 #elif PAGE_SIZE == 16384
5052         atomic_set_32((uint32_t *)bits, set);
5053 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5054         atomic_set_16((uint16_t *)bits, set);
5055 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5056         atomic_set_8((uint8_t *)bits, set);
5057 #else           /* PAGE_SIZE <= 8192 */
5058         uintptr_t addr;
5059         int shift;
5060
5061         addr = (uintptr_t)bits;
5062         /*
5063          * Use a trick to perform a 32-bit atomic on the
5064          * containing aligned word, to not depend on the existence
5065          * of atomic_{set, clear}_{8, 16}.
5066          */
5067         shift = addr & (sizeof(uint32_t) - 1);
5068 #if BYTE_ORDER == BIG_ENDIAN
5069         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5070 #else
5071         shift *= NBBY;
5072 #endif
5073         addr &= ~(sizeof(uint32_t) - 1);
5074         atomic_set_32((uint32_t *)addr, set << shift);
5075 #endif          /* PAGE_SIZE */
5076 }
5077
5078 static inline void
5079 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5080 {
5081
5082 #if PAGE_SIZE == 32768
5083         atomic_clear_64((uint64_t *)bits, clear);
5084 #elif PAGE_SIZE == 16384
5085         atomic_clear_32((uint32_t *)bits, clear);
5086 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5087         atomic_clear_16((uint16_t *)bits, clear);
5088 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5089         atomic_clear_8((uint8_t *)bits, clear);
5090 #else           /* PAGE_SIZE <= 8192 */
5091         uintptr_t addr;
5092         int shift;
5093
5094         addr = (uintptr_t)bits;
5095         /*
5096          * Use a trick to perform a 32-bit atomic on the
5097          * containing aligned word, to not depend on the existence
5098          * of atomic_{set, clear}_{8, 16}.
5099          */
5100         shift = addr & (sizeof(uint32_t) - 1);
5101 #if BYTE_ORDER == BIG_ENDIAN
5102         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5103 #else
5104         shift *= NBBY;
5105 #endif
5106         addr &= ~(sizeof(uint32_t) - 1);
5107         atomic_clear_32((uint32_t *)addr, clear << shift);
5108 #endif          /* PAGE_SIZE */
5109 }
5110
5111 static inline vm_page_bits_t
5112 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5113 {
5114 #if PAGE_SIZE == 32768
5115         uint64_t old;
5116
5117         old = *bits;
5118         while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5119         return (old);
5120 #elif PAGE_SIZE == 16384
5121         uint32_t old;
5122
5123         old = *bits;
5124         while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5125         return (old);
5126 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5127         uint16_t old;
5128
5129         old = *bits;
5130         while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5131         return (old);
5132 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5133         uint8_t old;
5134
5135         old = *bits;
5136         while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5137         return (old);
5138 #else           /* PAGE_SIZE <= 4096*/
5139         uintptr_t addr;
5140         uint32_t old, new, mask;
5141         int shift;
5142
5143         addr = (uintptr_t)bits;
5144         /*
5145          * Use a trick to perform a 32-bit atomic on the
5146          * containing aligned word, to not depend on the existence
5147          * of atomic_{set, swap, clear}_{8, 16}.
5148          */
5149         shift = addr & (sizeof(uint32_t) - 1);
5150 #if BYTE_ORDER == BIG_ENDIAN
5151         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5152 #else
5153         shift *= NBBY;
5154 #endif
5155         addr &= ~(sizeof(uint32_t) - 1);
5156         mask = VM_PAGE_BITS_ALL << shift;
5157
5158         old = *bits;
5159         do {
5160                 new = old & ~mask;
5161                 new |= newbits << shift;
5162         } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5163         return (old >> shift);
5164 #endif          /* PAGE_SIZE */
5165 }
5166
5167 /*
5168  *      vm_page_set_valid_range:
5169  *
5170  *      Sets portions of a page valid.  The arguments are expected
5171  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5172  *      of any partial chunks touched by the range.  The invalid portion of
5173  *      such chunks will be zeroed.
5174  *
5175  *      (base + size) must be less then or equal to PAGE_SIZE.
5176  */
5177 void
5178 vm_page_set_valid_range(vm_page_t m, int base, int size)
5179 {
5180         int endoff, frag;
5181         vm_page_bits_t pagebits;
5182
5183         vm_page_assert_busied(m);
5184         if (size == 0)  /* handle degenerate case */
5185                 return;
5186
5187         /*
5188          * If the base is not DEV_BSIZE aligned and the valid
5189          * bit is clear, we have to zero out a portion of the
5190          * first block.
5191          */
5192         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5193             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5194                 pmap_zero_page_area(m, frag, base - frag);
5195
5196         /*
5197          * If the ending offset is not DEV_BSIZE aligned and the
5198          * valid bit is clear, we have to zero out a portion of
5199          * the last block.
5200          */
5201         endoff = base + size;
5202         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5203             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5204                 pmap_zero_page_area(m, endoff,
5205                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5206
5207         /*
5208          * Assert that no previously invalid block that is now being validated
5209          * is already dirty.
5210          */
5211         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5212             ("vm_page_set_valid_range: page %p is dirty", m));
5213
5214         /*
5215          * Set valid bits inclusive of any overlap.
5216          */
5217         pagebits = vm_page_bits(base, size);
5218         if (vm_page_xbusied(m))
5219                 m->valid |= pagebits;
5220         else
5221                 vm_page_bits_set(m, &m->valid, pagebits);
5222 }
5223
5224 /*
5225  * Set the page dirty bits and free the invalid swap space if
5226  * present.  Returns the previous dirty bits.
5227  */
5228 vm_page_bits_t
5229 vm_page_set_dirty(vm_page_t m)
5230 {
5231         vm_page_bits_t old;
5232
5233         VM_PAGE_OBJECT_BUSY_ASSERT(m);
5234
5235         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5236                 old = m->dirty;
5237                 m->dirty = VM_PAGE_BITS_ALL;
5238         } else
5239                 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5240         if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5241                 vm_pager_page_unswapped(m);
5242
5243         return (old);
5244 }
5245
5246 /*
5247  * Clear the given bits from the specified page's dirty field.
5248  */
5249 static __inline void
5250 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5251 {
5252
5253         vm_page_assert_busied(m);
5254
5255         /*
5256          * If the page is xbusied and not write mapped we are the
5257          * only thread that can modify dirty bits.  Otherwise, The pmap
5258          * layer can call vm_page_dirty() without holding a distinguished
5259          * lock.  The combination of page busy and atomic operations
5260          * suffice to guarantee consistency of the page dirty field.
5261          */
5262         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5263                 m->dirty &= ~pagebits;
5264         else
5265                 vm_page_bits_clear(m, &m->dirty, pagebits);
5266 }
5267
5268 /*
5269  *      vm_page_set_validclean:
5270  *
5271  *      Sets portions of a page valid and clean.  The arguments are expected
5272  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5273  *      of any partial chunks touched by the range.  The invalid portion of
5274  *      such chunks will be zero'd.
5275  *
5276  *      (base + size) must be less then or equal to PAGE_SIZE.
5277  */
5278 void
5279 vm_page_set_validclean(vm_page_t m, int base, int size)
5280 {
5281         vm_page_bits_t oldvalid, pagebits;
5282         int endoff, frag;
5283
5284         vm_page_assert_busied(m);
5285         if (size == 0)  /* handle degenerate case */
5286                 return;
5287
5288         /*
5289          * If the base is not DEV_BSIZE aligned and the valid
5290          * bit is clear, we have to zero out a portion of the
5291          * first block.
5292          */
5293         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5294             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5295                 pmap_zero_page_area(m, frag, base - frag);
5296
5297         /*
5298          * If the ending offset is not DEV_BSIZE aligned and the
5299          * valid bit is clear, we have to zero out a portion of
5300          * the last block.
5301          */
5302         endoff = base + size;
5303         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5304             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5305                 pmap_zero_page_area(m, endoff,
5306                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5307
5308         /*
5309          * Set valid, clear dirty bits.  If validating the entire
5310          * page we can safely clear the pmap modify bit.  We also
5311          * use this opportunity to clear the PGA_NOSYNC flag.  If a process
5312          * takes a write fault on a MAP_NOSYNC memory area the flag will
5313          * be set again.
5314          *
5315          * We set valid bits inclusive of any overlap, but we can only
5316          * clear dirty bits for DEV_BSIZE chunks that are fully within
5317          * the range.
5318          */
5319         oldvalid = m->valid;
5320         pagebits = vm_page_bits(base, size);
5321         if (vm_page_xbusied(m))
5322                 m->valid |= pagebits;
5323         else
5324                 vm_page_bits_set(m, &m->valid, pagebits);
5325 #if 0   /* NOT YET */
5326         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5327                 frag = DEV_BSIZE - frag;
5328                 base += frag;
5329                 size -= frag;
5330                 if (size < 0)
5331                         size = 0;
5332         }
5333         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5334 #endif
5335         if (base == 0 && size == PAGE_SIZE) {
5336                 /*
5337                  * The page can only be modified within the pmap if it is
5338                  * mapped, and it can only be mapped if it was previously
5339                  * fully valid.
5340                  */
5341                 if (oldvalid == VM_PAGE_BITS_ALL)
5342                         /*
5343                          * Perform the pmap_clear_modify() first.  Otherwise,
5344                          * a concurrent pmap operation, such as
5345                          * pmap_protect(), could clear a modification in the
5346                          * pmap and set the dirty field on the page before
5347                          * pmap_clear_modify() had begun and after the dirty
5348                          * field was cleared here.
5349                          */
5350                         pmap_clear_modify(m);
5351                 m->dirty = 0;
5352                 vm_page_aflag_clear(m, PGA_NOSYNC);
5353         } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5354                 m->dirty &= ~pagebits;
5355         else
5356                 vm_page_clear_dirty_mask(m, pagebits);
5357 }
5358
5359 void
5360 vm_page_clear_dirty(vm_page_t m, int base, int size)
5361 {
5362
5363         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5364 }
5365
5366 /*
5367  *      vm_page_set_invalid:
5368  *
5369  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
5370  *      valid and dirty bits for the effected areas are cleared.
5371  */
5372 void
5373 vm_page_set_invalid(vm_page_t m, int base, int size)
5374 {
5375         vm_page_bits_t bits;
5376         vm_object_t object;
5377
5378         /*
5379          * The object lock is required so that pages can't be mapped
5380          * read-only while we're in the process of invalidating them.
5381          */
5382         object = m->object;
5383         VM_OBJECT_ASSERT_WLOCKED(object);
5384         vm_page_assert_busied(m);
5385
5386         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5387             size >= object->un_pager.vnp.vnp_size)
5388                 bits = VM_PAGE_BITS_ALL;
5389         else
5390                 bits = vm_page_bits(base, size);
5391         if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5392                 pmap_remove_all(m);
5393         KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5394             !pmap_page_is_mapped(m),
5395             ("vm_page_set_invalid: page %p is mapped", m));
5396         if (vm_page_xbusied(m)) {
5397                 m->valid &= ~bits;
5398                 m->dirty &= ~bits;
5399         } else {
5400                 vm_page_bits_clear(m, &m->valid, bits);
5401                 vm_page_bits_clear(m, &m->dirty, bits);
5402         }
5403 }
5404
5405 /*
5406  *      vm_page_invalid:
5407  *
5408  *      Invalidates the entire page.  The page must be busy, unmapped, and
5409  *      the enclosing object must be locked.  The object locks protects
5410  *      against concurrent read-only pmap enter which is done without
5411  *      busy.
5412  */
5413 void
5414 vm_page_invalid(vm_page_t m)
5415 {
5416
5417         vm_page_assert_busied(m);
5418         VM_OBJECT_ASSERT_WLOCKED(m->object);
5419         MPASS(!pmap_page_is_mapped(m));
5420
5421         if (vm_page_xbusied(m))
5422                 m->valid = 0;
5423         else
5424                 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5425 }
5426
5427 /*
5428  * vm_page_zero_invalid()
5429  *
5430  *      The kernel assumes that the invalid portions of a page contain
5431  *      garbage, but such pages can be mapped into memory by user code.
5432  *      When this occurs, we must zero out the non-valid portions of the
5433  *      page so user code sees what it expects.
5434  *
5435  *      Pages are most often semi-valid when the end of a file is mapped
5436  *      into memory and the file's size is not page aligned.
5437  */
5438 void
5439 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5440 {
5441         int b;
5442         int i;
5443
5444         /*
5445          * Scan the valid bits looking for invalid sections that
5446          * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
5447          * valid bit may be set ) have already been zeroed by
5448          * vm_page_set_validclean().
5449          */
5450         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5451                 if (i == (PAGE_SIZE / DEV_BSIZE) ||
5452                     (m->valid & ((vm_page_bits_t)1 << i))) {
5453                         if (i > b) {
5454                                 pmap_zero_page_area(m,
5455                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5456                         }
5457                         b = i + 1;
5458                 }
5459         }
5460
5461         /*
5462          * setvalid is TRUE when we can safely set the zero'd areas
5463          * as being valid.  We can do this if there are no cache consistency
5464          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5465          */
5466         if (setvalid)
5467                 vm_page_valid(m);
5468 }
5469
5470 /*
5471  *      vm_page_is_valid:
5472  *
5473  *      Is (partial) page valid?  Note that the case where size == 0
5474  *      will return FALSE in the degenerate case where the page is
5475  *      entirely invalid, and TRUE otherwise.
5476  *
5477  *      Some callers envoke this routine without the busy lock held and
5478  *      handle races via higher level locks.  Typical callers should
5479  *      hold a busy lock to prevent invalidation.
5480  */
5481 int
5482 vm_page_is_valid(vm_page_t m, int base, int size)
5483 {
5484         vm_page_bits_t bits;
5485
5486         bits = vm_page_bits(base, size);
5487         return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5488 }
5489
5490 /*
5491  * Returns true if all of the specified predicates are true for the entire
5492  * (super)page and false otherwise.
5493  */
5494 bool
5495 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5496 {
5497         vm_object_t object;
5498         int i, npages;
5499
5500         object = m->object;
5501         if (skip_m != NULL && skip_m->object != object)
5502                 return (false);
5503         VM_OBJECT_ASSERT_LOCKED(object);
5504         npages = atop(pagesizes[m->psind]);
5505
5506         /*
5507          * The physically contiguous pages that make up a superpage, i.e., a
5508          * page with a page size index ("psind") greater than zero, will
5509          * occupy adjacent entries in vm_page_array[].
5510          */
5511         for (i = 0; i < npages; i++) {
5512                 /* Always test object consistency, including "skip_m". */
5513                 if (m[i].object != object)
5514                         return (false);
5515                 if (&m[i] == skip_m)
5516                         continue;
5517                 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5518                         return (false);
5519                 if ((flags & PS_ALL_DIRTY) != 0) {
5520                         /*
5521                          * Calling vm_page_test_dirty() or pmap_is_modified()
5522                          * might stop this case from spuriously returning
5523                          * "false".  However, that would require a write lock
5524                          * on the object containing "m[i]".
5525                          */
5526                         if (m[i].dirty != VM_PAGE_BITS_ALL)
5527                                 return (false);
5528                 }
5529                 if ((flags & PS_ALL_VALID) != 0 &&
5530                     m[i].valid != VM_PAGE_BITS_ALL)
5531                         return (false);
5532         }
5533         return (true);
5534 }
5535
5536 /*
5537  * Set the page's dirty bits if the page is modified.
5538  */
5539 void
5540 vm_page_test_dirty(vm_page_t m)
5541 {
5542
5543         vm_page_assert_busied(m);
5544         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5545                 vm_page_dirty(m);
5546 }
5547
5548 void
5549 vm_page_valid(vm_page_t m)
5550 {
5551
5552         vm_page_assert_busied(m);
5553         if (vm_page_xbusied(m))
5554                 m->valid = VM_PAGE_BITS_ALL;
5555         else
5556                 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5557 }
5558
5559 void
5560 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5561 {
5562
5563         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5564 }
5565
5566 void
5567 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5568 {
5569
5570         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5571 }
5572
5573 int
5574 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5575 {
5576
5577         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5578 }
5579
5580 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5581 void
5582 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5583 {
5584
5585         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5586 }
5587
5588 void
5589 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5590 {
5591
5592         mtx_assert_(vm_page_lockptr(m), a, file, line);
5593 }
5594 #endif
5595
5596 #ifdef INVARIANTS
5597 void
5598 vm_page_object_busy_assert(vm_page_t m)
5599 {
5600
5601         /*
5602          * Certain of the page's fields may only be modified by the
5603          * holder of a page or object busy.
5604          */
5605         if (m->object != NULL && !vm_page_busied(m))
5606                 VM_OBJECT_ASSERT_BUSY(m->object);
5607 }
5608
5609 void
5610 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5611 {
5612
5613         if ((bits & PGA_WRITEABLE) == 0)
5614                 return;
5615
5616         /*
5617          * The PGA_WRITEABLE flag can only be set if the page is
5618          * managed, is exclusively busied or the object is locked.
5619          * Currently, this flag is only set by pmap_enter().
5620          */
5621         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5622             ("PGA_WRITEABLE on unmanaged page"));
5623         if (!vm_page_xbusied(m))
5624                 VM_OBJECT_ASSERT_BUSY(m->object);
5625 }
5626 #endif
5627
5628 #include "opt_ddb.h"
5629 #ifdef DDB
5630 #include <sys/kernel.h>
5631
5632 #include <ddb/ddb.h>
5633
5634 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5635 {
5636
5637         db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5638         db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5639         db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5640         db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5641         db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5642         db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5643         db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5644         db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5645         db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5646 }
5647
5648 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5649 {
5650         int dom;
5651
5652         db_printf("pq_free %d\n", vm_free_count());
5653         for (dom = 0; dom < vm_ndomains; dom++) {
5654                 db_printf(
5655     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5656                     dom,
5657                     vm_dom[dom].vmd_page_count,
5658                     vm_dom[dom].vmd_free_count,
5659                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5660                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5661                     vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5662                     vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5663         }
5664 }
5665
5666 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5667 {
5668         vm_page_t m;
5669         boolean_t phys, virt;
5670
5671         if (!have_addr) {
5672                 db_printf("show pginfo addr\n");
5673                 return;
5674         }
5675
5676         phys = strchr(modif, 'p') != NULL;
5677         virt = strchr(modif, 'v') != NULL;
5678         if (virt)
5679                 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5680         else if (phys)
5681                 m = PHYS_TO_VM_PAGE(addr);
5682         else
5683                 m = (vm_page_t)addr;
5684         db_printf(
5685     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5686     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5687             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5688             m->a.queue, m->ref_count, m->a.flags, m->oflags,
5689             m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5690 }
5691 #endif /* DDB */