]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_page.c
Merge OpenSSL 1.1.1h.
[FreeBSD/FreeBSD.git] / sys / vm / vm_page.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
36  */
37
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64
65 /*
66  *      Resident memory management module.
67  */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_vm.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113
114 #include <machine/md_var.h>
115
116 struct vm_domain vm_dom[MAXMEMDOM];
117
118 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
119
120 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
121
122 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
123 /* The following fields are protected by the domainset lock. */
124 domainset_t __exclusive_cache_line vm_min_domains;
125 domainset_t __exclusive_cache_line vm_severe_domains;
126 static int vm_min_waiters;
127 static int vm_severe_waiters;
128 static int vm_pageproc_waiters;
129
130 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
131     "VM page statistics");
132
133 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
134 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
135     CTLFLAG_RD, &pqstate_commit_retries,
136     "Number of failed per-page atomic queue state updates");
137
138 static COUNTER_U64_DEFINE_EARLY(queue_ops);
139 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
140     CTLFLAG_RD, &queue_ops,
141     "Number of batched queue operations");
142
143 static COUNTER_U64_DEFINE_EARLY(queue_nops);
144 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
145     CTLFLAG_RD, &queue_nops,
146     "Number of batched queue operations with no effects");
147
148 /*
149  * bogus page -- for I/O to/from partially complete buffers,
150  * or for paging into sparsely invalid regions.
151  */
152 vm_page_t bogus_page;
153
154 vm_page_t vm_page_array;
155 long vm_page_array_size;
156 long first_page;
157
158 struct bitset *vm_page_dump;
159 long vm_page_dump_pages;
160
161 static TAILQ_HEAD(, vm_page) blacklist_head;
162 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
163 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
164     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
165
166 static uma_zone_t fakepg_zone;
167
168 static void vm_page_alloc_check(vm_page_t m);
169 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
170     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
171 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
172 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
173 static bool vm_page_free_prep(vm_page_t m);
174 static void vm_page_free_toq(vm_page_t m);
175 static void vm_page_init(void *dummy);
176 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
177     vm_pindex_t pindex, vm_page_t mpred);
178 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
179     vm_page_t mpred);
180 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
181     const uint16_t nflag);
182 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
183     vm_page_t m_run, vm_paddr_t high);
184 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
185 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
186     int req);
187 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
188     int flags);
189 static void vm_page_zone_release(void *arg, void **store, int cnt);
190
191 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
192
193 static void
194 vm_page_init(void *dummy)
195 {
196
197         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
198             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
199         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
200             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
201 }
202
203 /*
204  * The cache page zone is initialized later since we need to be able to allocate
205  * pages before UMA is fully initialized.
206  */
207 static void
208 vm_page_init_cache_zones(void *dummy __unused)
209 {
210         struct vm_domain *vmd;
211         struct vm_pgcache *pgcache;
212         int cache, domain, maxcache, pool;
213
214         maxcache = 0;
215         TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
216         maxcache *= mp_ncpus;
217         for (domain = 0; domain < vm_ndomains; domain++) {
218                 vmd = VM_DOMAIN(domain);
219                 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
220                         pgcache = &vmd->vmd_pgcache[pool];
221                         pgcache->domain = domain;
222                         pgcache->pool = pool;
223                         pgcache->zone = uma_zcache_create("vm pgcache",
224                             PAGE_SIZE, NULL, NULL, NULL, NULL,
225                             vm_page_zone_import, vm_page_zone_release, pgcache,
226                             UMA_ZONE_VM);
227
228                         /*
229                          * Limit each pool's zone to 0.1% of the pages in the
230                          * domain.
231                          */
232                         cache = maxcache != 0 ? maxcache :
233                             vmd->vmd_page_count / 1000;
234                         uma_zone_set_maxcache(pgcache->zone, cache);
235                 }
236         }
237 }
238 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
239
240 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
241 #if PAGE_SIZE == 32768
242 #ifdef CTASSERT
243 CTASSERT(sizeof(u_long) >= 8);
244 #endif
245 #endif
246
247 /*
248  *      vm_set_page_size:
249  *
250  *      Sets the page size, perhaps based upon the memory
251  *      size.  Must be called before any use of page-size
252  *      dependent functions.
253  */
254 void
255 vm_set_page_size(void)
256 {
257         if (vm_cnt.v_page_size == 0)
258                 vm_cnt.v_page_size = PAGE_SIZE;
259         if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
260                 panic("vm_set_page_size: page size not a power of two");
261 }
262
263 /*
264  *      vm_page_blacklist_next:
265  *
266  *      Find the next entry in the provided string of blacklist
267  *      addresses.  Entries are separated by space, comma, or newline.
268  *      If an invalid integer is encountered then the rest of the
269  *      string is skipped.  Updates the list pointer to the next
270  *      character, or NULL if the string is exhausted or invalid.
271  */
272 static vm_paddr_t
273 vm_page_blacklist_next(char **list, char *end)
274 {
275         vm_paddr_t bad;
276         char *cp, *pos;
277
278         if (list == NULL || *list == NULL)
279                 return (0);
280         if (**list =='\0') {
281                 *list = NULL;
282                 return (0);
283         }
284
285         /*
286          * If there's no end pointer then the buffer is coming from
287          * the kenv and we know it's null-terminated.
288          */
289         if (end == NULL)
290                 end = *list + strlen(*list);
291
292         /* Ensure that strtoq() won't walk off the end */
293         if (*end != '\0') {
294                 if (*end == '\n' || *end == ' ' || *end  == ',')
295                         *end = '\0';
296                 else {
297                         printf("Blacklist not terminated, skipping\n");
298                         *list = NULL;
299                         return (0);
300                 }
301         }
302
303         for (pos = *list; *pos != '\0'; pos = cp) {
304                 bad = strtoq(pos, &cp, 0);
305                 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
306                         if (bad == 0) {
307                                 if (++cp < end)
308                                         continue;
309                                 else
310                                         break;
311                         }
312                 } else
313                         break;
314                 if (*cp == '\0' || ++cp >= end)
315                         *list = NULL;
316                 else
317                         *list = cp;
318                 return (trunc_page(bad));
319         }
320         printf("Garbage in RAM blacklist, skipping\n");
321         *list = NULL;
322         return (0);
323 }
324
325 bool
326 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
327 {
328         struct vm_domain *vmd;
329         vm_page_t m;
330         int ret;
331
332         m = vm_phys_paddr_to_vm_page(pa);
333         if (m == NULL)
334                 return (true); /* page does not exist, no failure */
335
336         vmd = vm_pagequeue_domain(m);
337         vm_domain_free_lock(vmd);
338         ret = vm_phys_unfree_page(m);
339         vm_domain_free_unlock(vmd);
340         if (ret != 0) {
341                 vm_domain_freecnt_inc(vmd, -1);
342                 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
343                 if (verbose)
344                         printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
345         }
346         return (ret);
347 }
348
349 /*
350  *      vm_page_blacklist_check:
351  *
352  *      Iterate through the provided string of blacklist addresses, pulling
353  *      each entry out of the physical allocator free list and putting it
354  *      onto a list for reporting via the vm.page_blacklist sysctl.
355  */
356 static void
357 vm_page_blacklist_check(char *list, char *end)
358 {
359         vm_paddr_t pa;
360         char *next;
361
362         next = list;
363         while (next != NULL) {
364                 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
365                         continue;
366                 vm_page_blacklist_add(pa, bootverbose);
367         }
368 }
369
370 /*
371  *      vm_page_blacklist_load:
372  *
373  *      Search for a special module named "ram_blacklist".  It'll be a
374  *      plain text file provided by the user via the loader directive
375  *      of the same name.
376  */
377 static void
378 vm_page_blacklist_load(char **list, char **end)
379 {
380         void *mod;
381         u_char *ptr;
382         u_int len;
383
384         mod = NULL;
385         ptr = NULL;
386
387         mod = preload_search_by_type("ram_blacklist");
388         if (mod != NULL) {
389                 ptr = preload_fetch_addr(mod);
390                 len = preload_fetch_size(mod);
391         }
392         *list = ptr;
393         if (ptr != NULL)
394                 *end = ptr + len;
395         else
396                 *end = NULL;
397         return;
398 }
399
400 static int
401 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
402 {
403         vm_page_t m;
404         struct sbuf sbuf;
405         int error, first;
406
407         first = 1;
408         error = sysctl_wire_old_buffer(req, 0);
409         if (error != 0)
410                 return (error);
411         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
412         TAILQ_FOREACH(m, &blacklist_head, listq) {
413                 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
414                     (uintmax_t)m->phys_addr);
415                 first = 0;
416         }
417         error = sbuf_finish(&sbuf);
418         sbuf_delete(&sbuf);
419         return (error);
420 }
421
422 /*
423  * Initialize a dummy page for use in scans of the specified paging queue.
424  * In principle, this function only needs to set the flag PG_MARKER.
425  * Nonetheless, it write busies the page as a safety precaution.
426  */
427 void
428 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
429 {
430
431         bzero(marker, sizeof(*marker));
432         marker->flags = PG_MARKER;
433         marker->a.flags = aflags;
434         marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
435         marker->a.queue = queue;
436 }
437
438 static void
439 vm_page_domain_init(int domain)
440 {
441         struct vm_domain *vmd;
442         struct vm_pagequeue *pq;
443         int i;
444
445         vmd = VM_DOMAIN(domain);
446         bzero(vmd, sizeof(*vmd));
447         *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
448             "vm inactive pagequeue";
449         *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
450             "vm active pagequeue";
451         *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
452             "vm laundry pagequeue";
453         *__DECONST(const char **,
454             &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
455             "vm unswappable pagequeue";
456         vmd->vmd_domain = domain;
457         vmd->vmd_page_count = 0;
458         vmd->vmd_free_count = 0;
459         vmd->vmd_segs = 0;
460         vmd->vmd_oom = FALSE;
461         for (i = 0; i < PQ_COUNT; i++) {
462                 pq = &vmd->vmd_pagequeues[i];
463                 TAILQ_INIT(&pq->pq_pl);
464                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
465                     MTX_DEF | MTX_DUPOK);
466                 pq->pq_pdpages = 0;
467                 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
468         }
469         mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
470         mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
471         snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
472
473         /*
474          * inacthead is used to provide FIFO ordering for LRU-bypassing
475          * insertions.
476          */
477         vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
478         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
479             &vmd->vmd_inacthead, plinks.q);
480
481         /*
482          * The clock pages are used to implement active queue scanning without
483          * requeues.  Scans start at clock[0], which is advanced after the scan
484          * ends.  When the two clock hands meet, they are reset and scanning
485          * resumes from the head of the queue.
486          */
487         vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
488         vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
489         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
490             &vmd->vmd_clock[0], plinks.q);
491         TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
492             &vmd->vmd_clock[1], plinks.q);
493 }
494
495 /*
496  * Initialize a physical page in preparation for adding it to the free
497  * lists.
498  */
499 static void
500 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
501 {
502
503         m->object = NULL;
504         m->ref_count = 0;
505         m->busy_lock = VPB_FREED;
506         m->flags = m->a.flags = 0;
507         m->phys_addr = pa;
508         m->a.queue = PQ_NONE;
509         m->psind = 0;
510         m->segind = segind;
511         m->order = VM_NFREEORDER;
512         m->pool = VM_FREEPOOL_DEFAULT;
513         m->valid = m->dirty = 0;
514         pmap_page_init(m);
515 }
516
517 #ifndef PMAP_HAS_PAGE_ARRAY
518 static vm_paddr_t
519 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
520 {
521         vm_paddr_t new_end;
522
523         /*
524          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
525          * However, because this page is allocated from KVM, out-of-bounds
526          * accesses using the direct map will not be trapped.
527          */
528         *vaddr += PAGE_SIZE;
529
530         /*
531          * Allocate physical memory for the page structures, and map it.
532          */
533         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
534         vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
535             VM_PROT_READ | VM_PROT_WRITE);
536         vm_page_array_size = page_range;
537
538         return (new_end);
539 }
540 #endif
541
542 /*
543  *      vm_page_startup:
544  *
545  *      Initializes the resident memory module.  Allocates physical memory for
546  *      bootstrapping UMA and some data structures that are used to manage
547  *      physical pages.  Initializes these structures, and populates the free
548  *      page queues.
549  */
550 vm_offset_t
551 vm_page_startup(vm_offset_t vaddr)
552 {
553         struct vm_phys_seg *seg;
554         vm_page_t m;
555         char *list, *listend;
556         vm_paddr_t end, high_avail, low_avail, new_end, size;
557         vm_paddr_t page_range __unused;
558         vm_paddr_t last_pa, pa;
559         u_long pagecount;
560 #if MINIDUMP_PAGE_TRACKING
561         u_long vm_page_dump_size;
562 #endif
563         int biggestone, i, segind;
564 #ifdef WITNESS
565         vm_offset_t mapped;
566         int witness_size;
567 #endif
568 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
569         long ii;
570 #endif
571
572         vaddr = round_page(vaddr);
573
574         vm_phys_early_startup();
575         biggestone = vm_phys_avail_largest();
576         end = phys_avail[biggestone+1];
577
578         /*
579          * Initialize the page and queue locks.
580          */
581         mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
582         for (i = 0; i < PA_LOCK_COUNT; i++)
583                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
584         for (i = 0; i < vm_ndomains; i++)
585                 vm_page_domain_init(i);
586
587         new_end = end;
588 #ifdef WITNESS
589         witness_size = round_page(witness_startup_count());
590         new_end -= witness_size;
591         mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
592             VM_PROT_READ | VM_PROT_WRITE);
593         bzero((void *)mapped, witness_size);
594         witness_startup((void *)mapped);
595 #endif
596
597 #if MINIDUMP_PAGE_TRACKING
598         /*
599          * Allocate a bitmap to indicate that a random physical page
600          * needs to be included in a minidump.
601          *
602          * The amd64 port needs this to indicate which direct map pages
603          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
604          *
605          * However, i386 still needs this workspace internally within the
606          * minidump code.  In theory, they are not needed on i386, but are
607          * included should the sf_buf code decide to use them.
608          */
609         last_pa = 0;
610         vm_page_dump_pages = 0;
611         for (i = 0; dump_avail[i + 1] != 0; i += 2) {
612                 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
613                     dump_avail[i] / PAGE_SIZE;
614                 if (dump_avail[i + 1] > last_pa)
615                         last_pa = dump_avail[i + 1];
616         }
617         vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
618         new_end -= vm_page_dump_size;
619         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
620             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
621         bzero((void *)vm_page_dump, vm_page_dump_size);
622 #else
623         (void)last_pa;
624 #endif
625 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
626     defined(__riscv) || defined(__powerpc64__)
627         /*
628          * Include the UMA bootstrap pages, witness pages and vm_page_dump
629          * in a crash dump.  When pmap_map() uses the direct map, they are
630          * not automatically included.
631          */
632         for (pa = new_end; pa < end; pa += PAGE_SIZE)
633                 dump_add_page(pa);
634 #endif
635         phys_avail[biggestone + 1] = new_end;
636 #ifdef __amd64__
637         /*
638          * Request that the physical pages underlying the message buffer be
639          * included in a crash dump.  Since the message buffer is accessed
640          * through the direct map, they are not automatically included.
641          */
642         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
643         last_pa = pa + round_page(msgbufsize);
644         while (pa < last_pa) {
645                 dump_add_page(pa);
646                 pa += PAGE_SIZE;
647         }
648 #endif
649         /*
650          * Compute the number of pages of memory that will be available for
651          * use, taking into account the overhead of a page structure per page.
652          * In other words, solve
653          *      "available physical memory" - round_page(page_range *
654          *          sizeof(struct vm_page)) = page_range * PAGE_SIZE 
655          * for page_range.  
656          */
657         low_avail = phys_avail[0];
658         high_avail = phys_avail[1];
659         for (i = 0; i < vm_phys_nsegs; i++) {
660                 if (vm_phys_segs[i].start < low_avail)
661                         low_avail = vm_phys_segs[i].start;
662                 if (vm_phys_segs[i].end > high_avail)
663                         high_avail = vm_phys_segs[i].end;
664         }
665         /* Skip the first chunk.  It is already accounted for. */
666         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
667                 if (phys_avail[i] < low_avail)
668                         low_avail = phys_avail[i];
669                 if (phys_avail[i + 1] > high_avail)
670                         high_avail = phys_avail[i + 1];
671         }
672         first_page = low_avail / PAGE_SIZE;
673 #ifdef VM_PHYSSEG_SPARSE
674         size = 0;
675         for (i = 0; i < vm_phys_nsegs; i++)
676                 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
677         for (i = 0; phys_avail[i + 1] != 0; i += 2)
678                 size += phys_avail[i + 1] - phys_avail[i];
679 #elif defined(VM_PHYSSEG_DENSE)
680         size = high_avail - low_avail;
681 #else
682 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
683 #endif
684
685 #ifdef PMAP_HAS_PAGE_ARRAY
686         pmap_page_array_startup(size / PAGE_SIZE);
687         biggestone = vm_phys_avail_largest();
688         end = new_end = phys_avail[biggestone + 1];
689 #else
690 #ifdef VM_PHYSSEG_DENSE
691         /*
692          * In the VM_PHYSSEG_DENSE case, the number of pages can account for
693          * the overhead of a page structure per page only if vm_page_array is
694          * allocated from the last physical memory chunk.  Otherwise, we must
695          * allocate page structures representing the physical memory
696          * underlying vm_page_array, even though they will not be used.
697          */
698         if (new_end != high_avail)
699                 page_range = size / PAGE_SIZE;
700         else
701 #endif
702         {
703                 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
704
705                 /*
706                  * If the partial bytes remaining are large enough for
707                  * a page (PAGE_SIZE) without a corresponding
708                  * 'struct vm_page', then new_end will contain an
709                  * extra page after subtracting the length of the VM
710                  * page array.  Compensate by subtracting an extra
711                  * page from new_end.
712                  */
713                 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
714                         if (new_end == high_avail)
715                                 high_avail -= PAGE_SIZE;
716                         new_end -= PAGE_SIZE;
717                 }
718         }
719         end = new_end;
720         new_end = vm_page_array_alloc(&vaddr, end, page_range);
721 #endif
722
723 #if VM_NRESERVLEVEL > 0
724         /*
725          * Allocate physical memory for the reservation management system's
726          * data structures, and map it.
727          */
728         new_end = vm_reserv_startup(&vaddr, new_end);
729 #endif
730 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
731     defined(__riscv) || defined(__powerpc64__)
732         /*
733          * Include vm_page_array and vm_reserv_array in a crash dump.
734          */
735         for (pa = new_end; pa < end; pa += PAGE_SIZE)
736                 dump_add_page(pa);
737 #endif
738         phys_avail[biggestone + 1] = new_end;
739
740         /*
741          * Add physical memory segments corresponding to the available
742          * physical pages.
743          */
744         for (i = 0; phys_avail[i + 1] != 0; i += 2)
745                 if (vm_phys_avail_size(i) != 0)
746                         vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
747
748         /*
749          * Initialize the physical memory allocator.
750          */
751         vm_phys_init();
752
753         /*
754          * Initialize the page structures and add every available page to the
755          * physical memory allocator's free lists.
756          */
757 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
758         for (ii = 0; ii < vm_page_array_size; ii++) {
759                 m = &vm_page_array[ii];
760                 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
761                 m->flags = PG_FICTITIOUS;
762         }
763 #endif
764         vm_cnt.v_page_count = 0;
765         for (segind = 0; segind < vm_phys_nsegs; segind++) {
766                 seg = &vm_phys_segs[segind];
767                 for (m = seg->first_page, pa = seg->start; pa < seg->end;
768                     m++, pa += PAGE_SIZE)
769                         vm_page_init_page(m, pa, segind);
770
771                 /*
772                  * Add the segment to the free lists only if it is covered by
773                  * one of the ranges in phys_avail.  Because we've added the
774                  * ranges to the vm_phys_segs array, we can assume that each
775                  * segment is either entirely contained in one of the ranges,
776                  * or doesn't overlap any of them.
777                  */
778                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
779                         struct vm_domain *vmd;
780
781                         if (seg->start < phys_avail[i] ||
782                             seg->end > phys_avail[i + 1])
783                                 continue;
784
785                         m = seg->first_page;
786                         pagecount = (u_long)atop(seg->end - seg->start);
787
788                         vmd = VM_DOMAIN(seg->domain);
789                         vm_domain_free_lock(vmd);
790                         vm_phys_enqueue_contig(m, pagecount);
791                         vm_domain_free_unlock(vmd);
792                         vm_domain_freecnt_inc(vmd, pagecount);
793                         vm_cnt.v_page_count += (u_int)pagecount;
794
795                         vmd = VM_DOMAIN(seg->domain);
796                         vmd->vmd_page_count += (u_int)pagecount;
797                         vmd->vmd_segs |= 1UL << m->segind;
798                         break;
799                 }
800         }
801
802         /*
803          * Remove blacklisted pages from the physical memory allocator.
804          */
805         TAILQ_INIT(&blacklist_head);
806         vm_page_blacklist_load(&list, &listend);
807         vm_page_blacklist_check(list, listend);
808
809         list = kern_getenv("vm.blacklist");
810         vm_page_blacklist_check(list, NULL);
811
812         freeenv(list);
813 #if VM_NRESERVLEVEL > 0
814         /*
815          * Initialize the reservation management system.
816          */
817         vm_reserv_init();
818 #endif
819
820         return (vaddr);
821 }
822
823 void
824 vm_page_reference(vm_page_t m)
825 {
826
827         vm_page_aflag_set(m, PGA_REFERENCED);
828 }
829
830 /*
831  *      vm_page_trybusy
832  *
833  *      Helper routine for grab functions to trylock busy.
834  *
835  *      Returns true on success and false on failure.
836  */
837 static bool
838 vm_page_trybusy(vm_page_t m, int allocflags)
839 {
840
841         if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
842                 return (vm_page_trysbusy(m));
843         else
844                 return (vm_page_tryxbusy(m));
845 }
846
847 /*
848  *      vm_page_tryacquire
849  *
850  *      Helper routine for grab functions to trylock busy and wire.
851  *
852  *      Returns true on success and false on failure.
853  */
854 static inline bool
855 vm_page_tryacquire(vm_page_t m, int allocflags)
856 {
857         bool locked;
858
859         locked = vm_page_trybusy(m, allocflags);
860         if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
861                 vm_page_wire(m);
862         return (locked);
863 }
864
865 /*
866  *      vm_page_busy_acquire:
867  *
868  *      Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
869  *      and drop the object lock if necessary.
870  */
871 bool
872 vm_page_busy_acquire(vm_page_t m, int allocflags)
873 {
874         vm_object_t obj;
875         bool locked;
876
877         /*
878          * The page-specific object must be cached because page
879          * identity can change during the sleep, causing the
880          * re-lock of a different object.
881          * It is assumed that a reference to the object is already
882          * held by the callers.
883          */
884         obj = m->object;
885         for (;;) {
886                 if (vm_page_tryacquire(m, allocflags))
887                         return (true);
888                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
889                         return (false);
890                 if (obj != NULL)
891                         locked = VM_OBJECT_WOWNED(obj);
892                 else
893                         locked = false;
894                 MPASS(locked || vm_page_wired(m));
895                 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
896                     locked) && locked)
897                         VM_OBJECT_WLOCK(obj);
898                 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
899                         return (false);
900                 KASSERT(m->object == obj || m->object == NULL,
901                     ("vm_page_busy_acquire: page %p does not belong to %p",
902                     m, obj));
903         }
904 }
905
906 /*
907  *      vm_page_busy_downgrade:
908  *
909  *      Downgrade an exclusive busy page into a single shared busy page.
910  */
911 void
912 vm_page_busy_downgrade(vm_page_t m)
913 {
914         u_int x;
915
916         vm_page_assert_xbusied(m);
917
918         x = vm_page_busy_fetch(m);
919         for (;;) {
920                 if (atomic_fcmpset_rel_int(&m->busy_lock,
921                     &x, VPB_SHARERS_WORD(1)))
922                         break;
923         }
924         if ((x & VPB_BIT_WAITERS) != 0)
925                 wakeup(m);
926 }
927
928 /*
929  *
930  *      vm_page_busy_tryupgrade:
931  *
932  *      Attempt to upgrade a single shared busy into an exclusive busy.
933  */
934 int
935 vm_page_busy_tryupgrade(vm_page_t m)
936 {
937         u_int ce, x;
938
939         vm_page_assert_sbusied(m);
940
941         x = vm_page_busy_fetch(m);
942         ce = VPB_CURTHREAD_EXCLUSIVE;
943         for (;;) {
944                 if (VPB_SHARERS(x) > 1)
945                         return (0);
946                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
947                     ("vm_page_busy_tryupgrade: invalid lock state"));
948                 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
949                     ce | (x & VPB_BIT_WAITERS)))
950                         continue;
951                 return (1);
952         }
953 }
954
955 /*
956  *      vm_page_sbusied:
957  *
958  *      Return a positive value if the page is shared busied, 0 otherwise.
959  */
960 int
961 vm_page_sbusied(vm_page_t m)
962 {
963         u_int x;
964
965         x = vm_page_busy_fetch(m);
966         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
967 }
968
969 /*
970  *      vm_page_sunbusy:
971  *
972  *      Shared unbusy a page.
973  */
974 void
975 vm_page_sunbusy(vm_page_t m)
976 {
977         u_int x;
978
979         vm_page_assert_sbusied(m);
980
981         x = vm_page_busy_fetch(m);
982         for (;;) {
983                 KASSERT(x != VPB_FREED,
984                     ("vm_page_sunbusy: Unlocking freed page."));
985                 if (VPB_SHARERS(x) > 1) {
986                         if (atomic_fcmpset_int(&m->busy_lock, &x,
987                             x - VPB_ONE_SHARER))
988                                 break;
989                         continue;
990                 }
991                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
992                     ("vm_page_sunbusy: invalid lock state"));
993                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
994                         continue;
995                 if ((x & VPB_BIT_WAITERS) == 0)
996                         break;
997                 wakeup(m);
998                 break;
999         }
1000 }
1001
1002 /*
1003  *      vm_page_busy_sleep:
1004  *
1005  *      Sleep if the page is busy, using the page pointer as wchan.
1006  *      This is used to implement the hard-path of busying mechanism.
1007  *
1008  *      If nonshared is true, sleep only if the page is xbusy.
1009  *
1010  *      The object lock must be held on entry and will be released on exit.
1011  */
1012 void
1013 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1014 {
1015         vm_object_t obj;
1016
1017         obj = m->object;
1018         VM_OBJECT_ASSERT_LOCKED(obj);
1019         vm_page_lock_assert(m, MA_NOTOWNED);
1020
1021         if (!_vm_page_busy_sleep(obj, m, m->pindex, wmesg,
1022             nonshared ? VM_ALLOC_SBUSY : 0 , true))
1023                 VM_OBJECT_DROP(obj);
1024 }
1025
1026 /*
1027  *      vm_page_busy_sleep_unlocked:
1028  *
1029  *      Sleep if the page is busy, using the page pointer as wchan.
1030  *      This is used to implement the hard-path of busying mechanism.
1031  *
1032  *      If nonshared is true, sleep only if the page is xbusy.
1033  *
1034  *      The object lock must not be held on entry.  The operation will
1035  *      return if the page changes identity.
1036  */
1037 void
1038 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1039     const char *wmesg, bool nonshared)
1040 {
1041
1042         VM_OBJECT_ASSERT_UNLOCKED(obj);
1043         vm_page_lock_assert(m, MA_NOTOWNED);
1044
1045         _vm_page_busy_sleep(obj, m, pindex, wmesg,
1046             nonshared ? VM_ALLOC_SBUSY : 0, false);
1047 }
1048
1049 /*
1050  *      _vm_page_busy_sleep:
1051  *
1052  *      Internal busy sleep function.  Verifies the page identity and
1053  *      lockstate against parameters.  Returns true if it sleeps and
1054  *      false otherwise.
1055  *
1056  *      If locked is true the lock will be dropped for any true returns
1057  *      and held for any false returns.
1058  */
1059 static bool
1060 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1061     const char *wmesg, int allocflags, bool locked)
1062 {
1063         bool xsleep;
1064         u_int x;
1065
1066         /*
1067          * If the object is busy we must wait for that to drain to zero
1068          * before trying the page again.
1069          */
1070         if (obj != NULL && vm_object_busied(obj)) {
1071                 if (locked)
1072                         VM_OBJECT_DROP(obj);
1073                 vm_object_busy_wait(obj, wmesg);
1074                 return (true);
1075         }
1076
1077         if (!vm_page_busied(m))
1078                 return (false);
1079
1080         xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1081         sleepq_lock(m);
1082         x = vm_page_busy_fetch(m);
1083         do {
1084                 /*
1085                  * If the page changes objects or becomes unlocked we can
1086                  * simply return.
1087                  */
1088                 if (x == VPB_UNBUSIED ||
1089                     (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1090                     m->object != obj || m->pindex != pindex) {
1091                         sleepq_release(m);
1092                         return (false);
1093                 }
1094                 if ((x & VPB_BIT_WAITERS) != 0)
1095                         break;
1096         } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1097         if (locked)
1098                 VM_OBJECT_DROP(obj);
1099         DROP_GIANT();
1100         sleepq_add(m, NULL, wmesg, 0, 0);
1101         sleepq_wait(m, PVM);
1102         PICKUP_GIANT();
1103         return (true);
1104 }
1105
1106 /*
1107  *      vm_page_trysbusy:
1108  *
1109  *      Try to shared busy a page.
1110  *      If the operation succeeds 1 is returned otherwise 0.
1111  *      The operation never sleeps.
1112  */
1113 int
1114 vm_page_trysbusy(vm_page_t m)
1115 {
1116         vm_object_t obj;
1117         u_int x;
1118
1119         obj = m->object;
1120         x = vm_page_busy_fetch(m);
1121         for (;;) {
1122                 if ((x & VPB_BIT_SHARED) == 0)
1123                         return (0);
1124                 /*
1125                  * Reduce the window for transient busies that will trigger
1126                  * false negatives in vm_page_ps_test().
1127                  */
1128                 if (obj != NULL && vm_object_busied(obj))
1129                         return (0);
1130                 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1131                     x + VPB_ONE_SHARER))
1132                         break;
1133         }
1134
1135         /* Refetch the object now that we're guaranteed that it is stable. */
1136         obj = m->object;
1137         if (obj != NULL && vm_object_busied(obj)) {
1138                 vm_page_sunbusy(m);
1139                 return (0);
1140         }
1141         return (1);
1142 }
1143
1144 /*
1145  *      vm_page_tryxbusy:
1146  *
1147  *      Try to exclusive busy a page.
1148  *      If the operation succeeds 1 is returned otherwise 0.
1149  *      The operation never sleeps.
1150  */
1151 int
1152 vm_page_tryxbusy(vm_page_t m)
1153 {
1154         vm_object_t obj;
1155
1156         if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1157             VPB_CURTHREAD_EXCLUSIVE) == 0)
1158                 return (0);
1159
1160         obj = m->object;
1161         if (obj != NULL && vm_object_busied(obj)) {
1162                 vm_page_xunbusy(m);
1163                 return (0);
1164         }
1165         return (1);
1166 }
1167
1168 static void
1169 vm_page_xunbusy_hard_tail(vm_page_t m)
1170 {
1171         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1172         /* Wake the waiter. */
1173         wakeup(m);
1174 }
1175
1176 /*
1177  *      vm_page_xunbusy_hard:
1178  *
1179  *      Called when unbusy has failed because there is a waiter.
1180  */
1181 void
1182 vm_page_xunbusy_hard(vm_page_t m)
1183 {
1184         vm_page_assert_xbusied(m);
1185         vm_page_xunbusy_hard_tail(m);
1186 }
1187
1188 void
1189 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1190 {
1191         vm_page_assert_xbusied_unchecked(m);
1192         vm_page_xunbusy_hard_tail(m);
1193 }
1194
1195 static void
1196 vm_page_busy_free(vm_page_t m)
1197 {
1198         u_int x;
1199
1200         atomic_thread_fence_rel();
1201         x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1202         if ((x & VPB_BIT_WAITERS) != 0)
1203                 wakeup(m);
1204 }
1205
1206 /*
1207  *      vm_page_unhold_pages:
1208  *
1209  *      Unhold each of the pages that is referenced by the given array.
1210  */
1211 void
1212 vm_page_unhold_pages(vm_page_t *ma, int count)
1213 {
1214
1215         for (; count != 0; count--) {
1216                 vm_page_unwire(*ma, PQ_ACTIVE);
1217                 ma++;
1218         }
1219 }
1220
1221 vm_page_t
1222 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1223 {
1224         vm_page_t m;
1225
1226 #ifdef VM_PHYSSEG_SPARSE
1227         m = vm_phys_paddr_to_vm_page(pa);
1228         if (m == NULL)
1229                 m = vm_phys_fictitious_to_vm_page(pa);
1230         return (m);
1231 #elif defined(VM_PHYSSEG_DENSE)
1232         long pi;
1233
1234         pi = atop(pa);
1235         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1236                 m = &vm_page_array[pi - first_page];
1237                 return (m);
1238         }
1239         return (vm_phys_fictitious_to_vm_page(pa));
1240 #else
1241 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1242 #endif
1243 }
1244
1245 /*
1246  *      vm_page_getfake:
1247  *
1248  *      Create a fictitious page with the specified physical address and
1249  *      memory attribute.  The memory attribute is the only the machine-
1250  *      dependent aspect of a fictitious page that must be initialized.
1251  */
1252 vm_page_t
1253 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1254 {
1255         vm_page_t m;
1256
1257         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1258         vm_page_initfake(m, paddr, memattr);
1259         return (m);
1260 }
1261
1262 void
1263 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1264 {
1265
1266         if ((m->flags & PG_FICTITIOUS) != 0) {
1267                 /*
1268                  * The page's memattr might have changed since the
1269                  * previous initialization.  Update the pmap to the
1270                  * new memattr.
1271                  */
1272                 goto memattr;
1273         }
1274         m->phys_addr = paddr;
1275         m->a.queue = PQ_NONE;
1276         /* Fictitious pages don't use "segind". */
1277         m->flags = PG_FICTITIOUS;
1278         /* Fictitious pages don't use "order" or "pool". */
1279         m->oflags = VPO_UNMANAGED;
1280         m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1281         /* Fictitious pages are unevictable. */
1282         m->ref_count = 1;
1283         pmap_page_init(m);
1284 memattr:
1285         pmap_page_set_memattr(m, memattr);
1286 }
1287
1288 /*
1289  *      vm_page_putfake:
1290  *
1291  *      Release a fictitious page.
1292  */
1293 void
1294 vm_page_putfake(vm_page_t m)
1295 {
1296
1297         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1298         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1299             ("vm_page_putfake: bad page %p", m));
1300         vm_page_assert_xbusied(m);
1301         vm_page_busy_free(m);
1302         uma_zfree(fakepg_zone, m);
1303 }
1304
1305 /*
1306  *      vm_page_updatefake:
1307  *
1308  *      Update the given fictitious page to the specified physical address and
1309  *      memory attribute.
1310  */
1311 void
1312 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1313 {
1314
1315         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1316             ("vm_page_updatefake: bad page %p", m));
1317         m->phys_addr = paddr;
1318         pmap_page_set_memattr(m, memattr);
1319 }
1320
1321 /*
1322  *      vm_page_free:
1323  *
1324  *      Free a page.
1325  */
1326 void
1327 vm_page_free(vm_page_t m)
1328 {
1329
1330         m->flags &= ~PG_ZERO;
1331         vm_page_free_toq(m);
1332 }
1333
1334 /*
1335  *      vm_page_free_zero:
1336  *
1337  *      Free a page to the zerod-pages queue
1338  */
1339 void
1340 vm_page_free_zero(vm_page_t m)
1341 {
1342
1343         m->flags |= PG_ZERO;
1344         vm_page_free_toq(m);
1345 }
1346
1347 /*
1348  * Unbusy and handle the page queueing for a page from a getpages request that
1349  * was optionally read ahead or behind.
1350  */
1351 void
1352 vm_page_readahead_finish(vm_page_t m)
1353 {
1354
1355         /* We shouldn't put invalid pages on queues. */
1356         KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1357
1358         /*
1359          * Since the page is not the actually needed one, whether it should
1360          * be activated or deactivated is not obvious.  Empirical results
1361          * have shown that deactivating the page is usually the best choice,
1362          * unless the page is wanted by another thread.
1363          */
1364         if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1365                 vm_page_activate(m);
1366         else
1367                 vm_page_deactivate(m);
1368         vm_page_xunbusy_unchecked(m);
1369 }
1370
1371 /*
1372  * Destroy the identity of an invalid page and free it if possible.
1373  * This is intended to be used when reading a page from backing store fails.
1374  */
1375 void
1376 vm_page_free_invalid(vm_page_t m)
1377 {
1378
1379         KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1380         KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1381         KASSERT(m->object != NULL, ("page %p has no object", m));
1382         VM_OBJECT_ASSERT_WLOCKED(m->object);
1383
1384         /*
1385          * We may be attempting to free the page as part of the handling for an
1386          * I/O error, in which case the page was xbusied by a different thread.
1387          */
1388         vm_page_xbusy_claim(m);
1389
1390         /*
1391          * If someone has wired this page while the object lock
1392          * was not held, then the thread that unwires is responsible
1393          * for freeing the page.  Otherwise just free the page now.
1394          * The wire count of this unmapped page cannot change while
1395          * we have the page xbusy and the page's object wlocked.
1396          */
1397         if (vm_page_remove(m))
1398                 vm_page_free(m);
1399 }
1400
1401 /*
1402  *      vm_page_sleep_if_busy:
1403  *
1404  *      Sleep and release the object lock if the page is busied.
1405  *      Returns TRUE if the thread slept.
1406  *
1407  *      The given page must be unlocked and object containing it must
1408  *      be locked.
1409  */
1410 int
1411 vm_page_sleep_if_busy(vm_page_t m, const char *wmesg)
1412 {
1413         vm_object_t obj;
1414
1415         vm_page_lock_assert(m, MA_NOTOWNED);
1416         VM_OBJECT_ASSERT_WLOCKED(m->object);
1417
1418         /*
1419          * The page-specific object must be cached because page
1420          * identity can change during the sleep, causing the
1421          * re-lock of a different object.
1422          * It is assumed that a reference to the object is already
1423          * held by the callers.
1424          */
1425         obj = m->object;
1426         if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, 0, true)) {
1427                 VM_OBJECT_WLOCK(obj);
1428                 return (TRUE);
1429         }
1430         return (FALSE);
1431 }
1432
1433 /*
1434  *      vm_page_sleep_if_xbusy:
1435  *
1436  *      Sleep and release the object lock if the page is xbusied.
1437  *      Returns TRUE if the thread slept.
1438  *
1439  *      The given page must be unlocked and object containing it must
1440  *      be locked.
1441  */
1442 int
1443 vm_page_sleep_if_xbusy(vm_page_t m, const char *wmesg)
1444 {
1445         vm_object_t obj;
1446
1447         vm_page_lock_assert(m, MA_NOTOWNED);
1448         VM_OBJECT_ASSERT_WLOCKED(m->object);
1449
1450         /*
1451          * The page-specific object must be cached because page
1452          * identity can change during the sleep, causing the
1453          * re-lock of a different object.
1454          * It is assumed that a reference to the object is already
1455          * held by the callers.
1456          */
1457         obj = m->object;
1458         if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, VM_ALLOC_SBUSY,
1459             true)) {
1460                 VM_OBJECT_WLOCK(obj);
1461                 return (TRUE);
1462         }
1463         return (FALSE);
1464 }
1465
1466 /*
1467  *      vm_page_dirty_KBI:              [ internal use only ]
1468  *
1469  *      Set all bits in the page's dirty field.
1470  *
1471  *      The object containing the specified page must be locked if the
1472  *      call is made from the machine-independent layer.
1473  *
1474  *      See vm_page_clear_dirty_mask().
1475  *
1476  *      This function should only be called by vm_page_dirty().
1477  */
1478 void
1479 vm_page_dirty_KBI(vm_page_t m)
1480 {
1481
1482         /* Refer to this operation by its public name. */
1483         KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1484         m->dirty = VM_PAGE_BITS_ALL;
1485 }
1486
1487 /*
1488  *      vm_page_insert:         [ internal use only ]
1489  *
1490  *      Inserts the given mem entry into the object and object list.
1491  *
1492  *      The object must be locked.
1493  */
1494 int
1495 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1496 {
1497         vm_page_t mpred;
1498
1499         VM_OBJECT_ASSERT_WLOCKED(object);
1500         mpred = vm_radix_lookup_le(&object->rtree, pindex);
1501         return (vm_page_insert_after(m, object, pindex, mpred));
1502 }
1503
1504 /*
1505  *      vm_page_insert_after:
1506  *
1507  *      Inserts the page "m" into the specified object at offset "pindex".
1508  *
1509  *      The page "mpred" must immediately precede the offset "pindex" within
1510  *      the specified object.
1511  *
1512  *      The object must be locked.
1513  */
1514 static int
1515 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1516     vm_page_t mpred)
1517 {
1518         vm_page_t msucc;
1519
1520         VM_OBJECT_ASSERT_WLOCKED(object);
1521         KASSERT(m->object == NULL,
1522             ("vm_page_insert_after: page already inserted"));
1523         if (mpred != NULL) {
1524                 KASSERT(mpred->object == object,
1525                     ("vm_page_insert_after: object doesn't contain mpred"));
1526                 KASSERT(mpred->pindex < pindex,
1527                     ("vm_page_insert_after: mpred doesn't precede pindex"));
1528                 msucc = TAILQ_NEXT(mpred, listq);
1529         } else
1530                 msucc = TAILQ_FIRST(&object->memq);
1531         if (msucc != NULL)
1532                 KASSERT(msucc->pindex > pindex,
1533                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
1534
1535         /*
1536          * Record the object/offset pair in this page.
1537          */
1538         m->object = object;
1539         m->pindex = pindex;
1540         m->ref_count |= VPRC_OBJREF;
1541
1542         /*
1543          * Now link into the object's ordered list of backed pages.
1544          */
1545         if (vm_radix_insert(&object->rtree, m)) {
1546                 m->object = NULL;
1547                 m->pindex = 0;
1548                 m->ref_count &= ~VPRC_OBJREF;
1549                 return (1);
1550         }
1551         vm_page_insert_radixdone(m, object, mpred);
1552         return (0);
1553 }
1554
1555 /*
1556  *      vm_page_insert_radixdone:
1557  *
1558  *      Complete page "m" insertion into the specified object after the
1559  *      radix trie hooking.
1560  *
1561  *      The page "mpred" must precede the offset "m->pindex" within the
1562  *      specified object.
1563  *
1564  *      The object must be locked.
1565  */
1566 static void
1567 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1568 {
1569
1570         VM_OBJECT_ASSERT_WLOCKED(object);
1571         KASSERT(object != NULL && m->object == object,
1572             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1573         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1574             ("vm_page_insert_radixdone: page %p is missing object ref", m));
1575         if (mpred != NULL) {
1576                 KASSERT(mpred->object == object,
1577                     ("vm_page_insert_radixdone: object doesn't contain mpred"));
1578                 KASSERT(mpred->pindex < m->pindex,
1579                     ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1580         }
1581
1582         if (mpred != NULL)
1583                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1584         else
1585                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1586
1587         /*
1588          * Show that the object has one more resident page.
1589          */
1590         object->resident_page_count++;
1591
1592         /*
1593          * Hold the vnode until the last page is released.
1594          */
1595         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1596                 vhold(object->handle);
1597
1598         /*
1599          * Since we are inserting a new and possibly dirty page,
1600          * update the object's generation count.
1601          */
1602         if (pmap_page_is_write_mapped(m))
1603                 vm_object_set_writeable_dirty(object);
1604 }
1605
1606 /*
1607  * Do the work to remove a page from its object.  The caller is responsible for
1608  * updating the page's fields to reflect this removal.
1609  */
1610 static void
1611 vm_page_object_remove(vm_page_t m)
1612 {
1613         vm_object_t object;
1614         vm_page_t mrem;
1615
1616         vm_page_assert_xbusied(m);
1617         object = m->object;
1618         VM_OBJECT_ASSERT_WLOCKED(object);
1619         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1620             ("page %p is missing its object ref", m));
1621
1622         /* Deferred free of swap space. */
1623         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1624                 vm_pager_page_unswapped(m);
1625
1626         m->object = NULL;
1627         mrem = vm_radix_remove(&object->rtree, m->pindex);
1628         KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1629
1630         /*
1631          * Now remove from the object's list of backed pages.
1632          */
1633         TAILQ_REMOVE(&object->memq, m, listq);
1634
1635         /*
1636          * And show that the object has one fewer resident page.
1637          */
1638         object->resident_page_count--;
1639
1640         /*
1641          * The vnode may now be recycled.
1642          */
1643         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1644                 vdrop(object->handle);
1645 }
1646
1647 /*
1648  *      vm_page_remove:
1649  *
1650  *      Removes the specified page from its containing object, but does not
1651  *      invalidate any backing storage.  Returns true if the object's reference
1652  *      was the last reference to the page, and false otherwise.
1653  *
1654  *      The object must be locked and the page must be exclusively busied.
1655  *      The exclusive busy will be released on return.  If this is not the
1656  *      final ref and the caller does not hold a wire reference it may not
1657  *      continue to access the page.
1658  */
1659 bool
1660 vm_page_remove(vm_page_t m)
1661 {
1662         bool dropped;
1663
1664         dropped = vm_page_remove_xbusy(m);
1665         vm_page_xunbusy(m);
1666
1667         return (dropped);
1668 }
1669
1670 /*
1671  *      vm_page_remove_xbusy
1672  *
1673  *      Removes the page but leaves the xbusy held.  Returns true if this
1674  *      removed the final ref and false otherwise.
1675  */
1676 bool
1677 vm_page_remove_xbusy(vm_page_t m)
1678 {
1679
1680         vm_page_object_remove(m);
1681         return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1682 }
1683
1684 /*
1685  *      vm_page_lookup:
1686  *
1687  *      Returns the page associated with the object/offset
1688  *      pair specified; if none is found, NULL is returned.
1689  *
1690  *      The object must be locked.
1691  */
1692 vm_page_t
1693 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1694 {
1695
1696         VM_OBJECT_ASSERT_LOCKED(object);
1697         return (vm_radix_lookup(&object->rtree, pindex));
1698 }
1699
1700 /*
1701  *      vm_page_relookup:
1702  *
1703  *      Returns a page that must already have been busied by
1704  *      the caller.  Used for bogus page replacement.
1705  */
1706 vm_page_t
1707 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1708 {
1709         vm_page_t m;
1710
1711         m = vm_radix_lookup_unlocked(&object->rtree, pindex);
1712         KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1713             m->object == object && m->pindex == pindex,
1714             ("vm_page_relookup: Invalid page %p", m));
1715         return (m);
1716 }
1717
1718 /*
1719  * This should only be used by lockless functions for releasing transient
1720  * incorrect acquires.  The page may have been freed after we acquired a
1721  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
1722  * further to do.
1723  */
1724 static void
1725 vm_page_busy_release(vm_page_t m)
1726 {
1727         u_int x;
1728
1729         x = vm_page_busy_fetch(m);
1730         for (;;) {
1731                 if (x == VPB_FREED)
1732                         break;
1733                 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1734                         if (atomic_fcmpset_int(&m->busy_lock, &x,
1735                             x - VPB_ONE_SHARER))
1736                                 break;
1737                         continue;
1738                 }
1739                 KASSERT((x & VPB_BIT_SHARED) != 0 ||
1740                     (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1741                     ("vm_page_busy_release: %p xbusy not owned.", m));
1742                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1743                         continue;
1744                 if ((x & VPB_BIT_WAITERS) != 0)
1745                         wakeup(m);
1746                 break;
1747         }
1748 }
1749
1750 /*
1751  *      vm_page_find_least:
1752  *
1753  *      Returns the page associated with the object with least pindex
1754  *      greater than or equal to the parameter pindex, or NULL.
1755  *
1756  *      The object must be locked.
1757  */
1758 vm_page_t
1759 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1760 {
1761         vm_page_t m;
1762
1763         VM_OBJECT_ASSERT_LOCKED(object);
1764         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1765                 m = vm_radix_lookup_ge(&object->rtree, pindex);
1766         return (m);
1767 }
1768
1769 /*
1770  * Returns the given page's successor (by pindex) within the object if it is
1771  * resident; if none is found, NULL is returned.
1772  *
1773  * The object must be locked.
1774  */
1775 vm_page_t
1776 vm_page_next(vm_page_t m)
1777 {
1778         vm_page_t next;
1779
1780         VM_OBJECT_ASSERT_LOCKED(m->object);
1781         if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1782                 MPASS(next->object == m->object);
1783                 if (next->pindex != m->pindex + 1)
1784                         next = NULL;
1785         }
1786         return (next);
1787 }
1788
1789 /*
1790  * Returns the given page's predecessor (by pindex) within the object if it is
1791  * resident; if none is found, NULL is returned.
1792  *
1793  * The object must be locked.
1794  */
1795 vm_page_t
1796 vm_page_prev(vm_page_t m)
1797 {
1798         vm_page_t prev;
1799
1800         VM_OBJECT_ASSERT_LOCKED(m->object);
1801         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1802                 MPASS(prev->object == m->object);
1803                 if (prev->pindex != m->pindex - 1)
1804                         prev = NULL;
1805         }
1806         return (prev);
1807 }
1808
1809 /*
1810  * Uses the page mnew as a replacement for an existing page at index
1811  * pindex which must be already present in the object.
1812  *
1813  * Both pages must be exclusively busied on enter.  The old page is
1814  * unbusied on exit.
1815  *
1816  * A return value of true means mold is now free.  If this is not the
1817  * final ref and the caller does not hold a wire reference it may not
1818  * continue to access the page.
1819  */
1820 static bool
1821 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1822     vm_page_t mold)
1823 {
1824         vm_page_t mret;
1825         bool dropped;
1826
1827         VM_OBJECT_ASSERT_WLOCKED(object);
1828         vm_page_assert_xbusied(mold);
1829         KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1830             ("vm_page_replace: page %p already in object", mnew));
1831
1832         /*
1833          * This function mostly follows vm_page_insert() and
1834          * vm_page_remove() without the radix, object count and vnode
1835          * dance.  Double check such functions for more comments.
1836          */
1837
1838         mnew->object = object;
1839         mnew->pindex = pindex;
1840         atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1841         mret = vm_radix_replace(&object->rtree, mnew);
1842         KASSERT(mret == mold,
1843             ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1844         KASSERT((mold->oflags & VPO_UNMANAGED) ==
1845             (mnew->oflags & VPO_UNMANAGED),
1846             ("vm_page_replace: mismatched VPO_UNMANAGED"));
1847
1848         /* Keep the resident page list in sorted order. */
1849         TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1850         TAILQ_REMOVE(&object->memq, mold, listq);
1851         mold->object = NULL;
1852
1853         /*
1854          * The object's resident_page_count does not change because we have
1855          * swapped one page for another, but the generation count should
1856          * change if the page is dirty.
1857          */
1858         if (pmap_page_is_write_mapped(mnew))
1859                 vm_object_set_writeable_dirty(object);
1860         dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1861         vm_page_xunbusy(mold);
1862
1863         return (dropped);
1864 }
1865
1866 void
1867 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1868     vm_page_t mold)
1869 {
1870
1871         vm_page_assert_xbusied(mnew);
1872
1873         if (vm_page_replace_hold(mnew, object, pindex, mold))
1874                 vm_page_free(mold);
1875 }
1876
1877 /*
1878  *      vm_page_rename:
1879  *
1880  *      Move the given memory entry from its
1881  *      current object to the specified target object/offset.
1882  *
1883  *      Note: swap associated with the page must be invalidated by the move.  We
1884  *            have to do this for several reasons:  (1) we aren't freeing the
1885  *            page, (2) we are dirtying the page, (3) the VM system is probably
1886  *            moving the page from object A to B, and will then later move
1887  *            the backing store from A to B and we can't have a conflict.
1888  *
1889  *      Note: we *always* dirty the page.  It is necessary both for the
1890  *            fact that we moved it, and because we may be invalidating
1891  *            swap.
1892  *
1893  *      The objects must be locked.
1894  */
1895 int
1896 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1897 {
1898         vm_page_t mpred;
1899         vm_pindex_t opidx;
1900
1901         VM_OBJECT_ASSERT_WLOCKED(new_object);
1902
1903         KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1904         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1905         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1906             ("vm_page_rename: pindex already renamed"));
1907
1908         /*
1909          * Create a custom version of vm_page_insert() which does not depend
1910          * by m_prev and can cheat on the implementation aspects of the
1911          * function.
1912          */
1913         opidx = m->pindex;
1914         m->pindex = new_pindex;
1915         if (vm_radix_insert(&new_object->rtree, m)) {
1916                 m->pindex = opidx;
1917                 return (1);
1918         }
1919
1920         /*
1921          * The operation cannot fail anymore.  The removal must happen before
1922          * the listq iterator is tainted.
1923          */
1924         m->pindex = opidx;
1925         vm_page_object_remove(m);
1926
1927         /* Return back to the new pindex to complete vm_page_insert(). */
1928         m->pindex = new_pindex;
1929         m->object = new_object;
1930
1931         vm_page_insert_radixdone(m, new_object, mpred);
1932         vm_page_dirty(m);
1933         return (0);
1934 }
1935
1936 /*
1937  *      vm_page_alloc:
1938  *
1939  *      Allocate and return a page that is associated with the specified
1940  *      object and offset pair.  By default, this page is exclusive busied.
1941  *
1942  *      The caller must always specify an allocation class.
1943  *
1944  *      allocation classes:
1945  *      VM_ALLOC_NORMAL         normal process request
1946  *      VM_ALLOC_SYSTEM         system *really* needs a page
1947  *      VM_ALLOC_INTERRUPT      interrupt time request
1948  *
1949  *      optional allocation flags:
1950  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
1951  *                              intends to allocate
1952  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1953  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1954  *      VM_ALLOC_NOOBJ          page is not associated with an object and
1955  *                              should not be exclusive busy
1956  *      VM_ALLOC_SBUSY          shared busy the allocated page
1957  *      VM_ALLOC_WIRED          wire the allocated page
1958  *      VM_ALLOC_ZERO           prefer a zeroed page
1959  */
1960 vm_page_t
1961 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1962 {
1963
1964         return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1965             vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1966 }
1967
1968 vm_page_t
1969 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1970     int req)
1971 {
1972
1973         return (vm_page_alloc_domain_after(object, pindex, domain, req,
1974             object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1975             NULL));
1976 }
1977
1978 /*
1979  * Allocate a page in the specified object with the given page index.  To
1980  * optimize insertion of the page into the object, the caller must also specifiy
1981  * the resident page in the object with largest index smaller than the given
1982  * page index, or NULL if no such page exists.
1983  */
1984 vm_page_t
1985 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1986     int req, vm_page_t mpred)
1987 {
1988         struct vm_domainset_iter di;
1989         vm_page_t m;
1990         int domain;
1991
1992         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1993         do {
1994                 m = vm_page_alloc_domain_after(object, pindex, domain, req,
1995                     mpred);
1996                 if (m != NULL)
1997                         break;
1998         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
1999
2000         return (m);
2001 }
2002
2003 /*
2004  * Returns true if the number of free pages exceeds the minimum
2005  * for the request class and false otherwise.
2006  */
2007 static int
2008 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2009 {
2010         u_int limit, old, new;
2011
2012         if (req_class == VM_ALLOC_INTERRUPT)
2013                 limit = 0;
2014         else if (req_class == VM_ALLOC_SYSTEM)
2015                 limit = vmd->vmd_interrupt_free_min;
2016         else
2017                 limit = vmd->vmd_free_reserved;
2018
2019         /*
2020          * Attempt to reserve the pages.  Fail if we're below the limit.
2021          */
2022         limit += npages;
2023         old = vmd->vmd_free_count;
2024         do {
2025                 if (old < limit)
2026                         return (0);
2027                 new = old - npages;
2028         } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2029
2030         /* Wake the page daemon if we've crossed the threshold. */
2031         if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2032                 pagedaemon_wakeup(vmd->vmd_domain);
2033
2034         /* Only update bitsets on transitions. */
2035         if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2036             (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2037                 vm_domain_set(vmd);
2038
2039         return (1);
2040 }
2041
2042 int
2043 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2044 {
2045         int req_class;
2046
2047         /*
2048          * The page daemon is allowed to dig deeper into the free page list.
2049          */
2050         req_class = req & VM_ALLOC_CLASS_MASK;
2051         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2052                 req_class = VM_ALLOC_SYSTEM;
2053         return (_vm_domain_allocate(vmd, req_class, npages));
2054 }
2055
2056 vm_page_t
2057 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2058     int req, vm_page_t mpred)
2059 {
2060         struct vm_domain *vmd;
2061         vm_page_t m;
2062         int flags, pool;
2063
2064         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2065             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2066             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2067             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2068             ("inconsistent object(%p)/req(%x)", object, req));
2069         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2070             ("Can't sleep and retry object insertion."));
2071         KASSERT(mpred == NULL || mpred->pindex < pindex,
2072             ("mpred %p doesn't precede pindex 0x%jx", mpred,
2073             (uintmax_t)pindex));
2074         if (object != NULL)
2075                 VM_OBJECT_ASSERT_WLOCKED(object);
2076
2077         flags = 0;
2078         m = NULL;
2079         pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
2080 again:
2081 #if VM_NRESERVLEVEL > 0
2082         /*
2083          * Can we allocate the page from a reservation?
2084          */
2085         if (vm_object_reserv(object) &&
2086             (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2087             NULL) {
2088                 goto found;
2089         }
2090 #endif
2091         vmd = VM_DOMAIN(domain);
2092         if (vmd->vmd_pgcache[pool].zone != NULL) {
2093                 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT | M_NOVM);
2094                 if (m != NULL) {
2095                         flags |= PG_PCPU_CACHE;
2096                         goto found;
2097                 }
2098         }
2099         if (vm_domain_allocate(vmd, req, 1)) {
2100                 /*
2101                  * If not, allocate it from the free page queues.
2102                  */
2103                 vm_domain_free_lock(vmd);
2104                 m = vm_phys_alloc_pages(domain, pool, 0);
2105                 vm_domain_free_unlock(vmd);
2106                 if (m == NULL) {
2107                         vm_domain_freecnt_inc(vmd, 1);
2108 #if VM_NRESERVLEVEL > 0
2109                         if (vm_reserv_reclaim_inactive(domain))
2110                                 goto again;
2111 #endif
2112                 }
2113         }
2114         if (m == NULL) {
2115                 /*
2116                  * Not allocatable, give up.
2117                  */
2118                 if (vm_domain_alloc_fail(vmd, object, req))
2119                         goto again;
2120                 return (NULL);
2121         }
2122
2123         /*
2124          * At this point we had better have found a good page.
2125          */
2126 found:
2127         vm_page_dequeue(m);
2128         vm_page_alloc_check(m);
2129
2130         /*
2131          * Initialize the page.  Only the PG_ZERO flag is inherited.
2132          */
2133         if ((req & VM_ALLOC_ZERO) != 0)
2134                 flags |= (m->flags & PG_ZERO);
2135         if ((req & VM_ALLOC_NODUMP) != 0)
2136                 flags |= PG_NODUMP;
2137         m->flags = flags;
2138         m->a.flags = 0;
2139         m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2140             VPO_UNMANAGED : 0;
2141         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2142                 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2143         else if ((req & VM_ALLOC_SBUSY) != 0)
2144                 m->busy_lock = VPB_SHARERS_WORD(1);
2145         else
2146                 m->busy_lock = VPB_UNBUSIED;
2147         if (req & VM_ALLOC_WIRED) {
2148                 vm_wire_add(1);
2149                 m->ref_count = 1;
2150         }
2151         m->a.act_count = 0;
2152
2153         if (object != NULL) {
2154                 if (vm_page_insert_after(m, object, pindex, mpred)) {
2155                         if (req & VM_ALLOC_WIRED) {
2156                                 vm_wire_sub(1);
2157                                 m->ref_count = 0;
2158                         }
2159                         KASSERT(m->object == NULL, ("page %p has object", m));
2160                         m->oflags = VPO_UNMANAGED;
2161                         m->busy_lock = VPB_UNBUSIED;
2162                         /* Don't change PG_ZERO. */
2163                         vm_page_free_toq(m);
2164                         if (req & VM_ALLOC_WAITFAIL) {
2165                                 VM_OBJECT_WUNLOCK(object);
2166                                 vm_radix_wait();
2167                                 VM_OBJECT_WLOCK(object);
2168                         }
2169                         return (NULL);
2170                 }
2171
2172                 /* Ignore device objects; the pager sets "memattr" for them. */
2173                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2174                     (object->flags & OBJ_FICTITIOUS) == 0)
2175                         pmap_page_set_memattr(m, object->memattr);
2176         } else
2177                 m->pindex = pindex;
2178
2179         return (m);
2180 }
2181
2182 /*
2183  *      vm_page_alloc_contig:
2184  *
2185  *      Allocate a contiguous set of physical pages of the given size "npages"
2186  *      from the free lists.  All of the physical pages must be at or above
2187  *      the given physical address "low" and below the given physical address
2188  *      "high".  The given value "alignment" determines the alignment of the
2189  *      first physical page in the set.  If the given value "boundary" is
2190  *      non-zero, then the set of physical pages cannot cross any physical
2191  *      address boundary that is a multiple of that value.  Both "alignment"
2192  *      and "boundary" must be a power of two.
2193  *
2194  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2195  *      then the memory attribute setting for the physical pages is configured
2196  *      to the object's memory attribute setting.  Otherwise, the memory
2197  *      attribute setting for the physical pages is configured to "memattr",
2198  *      overriding the object's memory attribute setting.  However, if the
2199  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2200  *      memory attribute setting for the physical pages cannot be configured
2201  *      to VM_MEMATTR_DEFAULT.
2202  *
2203  *      The specified object may not contain fictitious pages.
2204  *
2205  *      The caller must always specify an allocation class.
2206  *
2207  *      allocation classes:
2208  *      VM_ALLOC_NORMAL         normal process request
2209  *      VM_ALLOC_SYSTEM         system *really* needs a page
2210  *      VM_ALLOC_INTERRUPT      interrupt time request
2211  *
2212  *      optional allocation flags:
2213  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
2214  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
2215  *      VM_ALLOC_NOOBJ          page is not associated with an object and
2216  *                              should not be exclusive busy
2217  *      VM_ALLOC_SBUSY          shared busy the allocated page
2218  *      VM_ALLOC_WIRED          wire the allocated page
2219  *      VM_ALLOC_ZERO           prefer a zeroed page
2220  */
2221 vm_page_t
2222 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2223     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2224     vm_paddr_t boundary, vm_memattr_t memattr)
2225 {
2226         struct vm_domainset_iter di;
2227         vm_page_t m;
2228         int domain;
2229
2230         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2231         do {
2232                 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2233                     npages, low, high, alignment, boundary, memattr);
2234                 if (m != NULL)
2235                         break;
2236         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2237
2238         return (m);
2239 }
2240
2241 vm_page_t
2242 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2243     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2244     vm_paddr_t boundary, vm_memattr_t memattr)
2245 {
2246         struct vm_domain *vmd;
2247         vm_page_t m, m_ret, mpred;
2248         u_int busy_lock, flags, oflags;
2249
2250         mpred = NULL;   /* XXX: pacify gcc */
2251         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2252             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2253             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2254             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2255             ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2256             req));
2257         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2258             ("Can't sleep and retry object insertion."));
2259         if (object != NULL) {
2260                 VM_OBJECT_ASSERT_WLOCKED(object);
2261                 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2262                     ("vm_page_alloc_contig: object %p has fictitious pages",
2263                     object));
2264         }
2265         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2266
2267         if (object != NULL) {
2268                 mpred = vm_radix_lookup_le(&object->rtree, pindex);
2269                 KASSERT(mpred == NULL || mpred->pindex != pindex,
2270                     ("vm_page_alloc_contig: pindex already allocated"));
2271         }
2272
2273         /*
2274          * Can we allocate the pages without the number of free pages falling
2275          * below the lower bound for the allocation class?
2276          */
2277         m_ret = NULL;
2278 again:
2279 #if VM_NRESERVLEVEL > 0
2280         /*
2281          * Can we allocate the pages from a reservation?
2282          */
2283         if (vm_object_reserv(object) &&
2284             (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2285             mpred, npages, low, high, alignment, boundary)) != NULL) {
2286                 goto found;
2287         }
2288 #endif
2289         vmd = VM_DOMAIN(domain);
2290         if (vm_domain_allocate(vmd, req, npages)) {
2291                 /*
2292                  * allocate them from the free page queues.
2293                  */
2294                 vm_domain_free_lock(vmd);
2295                 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2296                     alignment, boundary);
2297                 vm_domain_free_unlock(vmd);
2298                 if (m_ret == NULL) {
2299                         vm_domain_freecnt_inc(vmd, npages);
2300 #if VM_NRESERVLEVEL > 0
2301                         if (vm_reserv_reclaim_contig(domain, npages, low,
2302                             high, alignment, boundary))
2303                                 goto again;
2304 #endif
2305                 }
2306         }
2307         if (m_ret == NULL) {
2308                 if (vm_domain_alloc_fail(vmd, object, req))
2309                         goto again;
2310                 return (NULL);
2311         }
2312 #if VM_NRESERVLEVEL > 0
2313 found:
2314 #endif
2315         for (m = m_ret; m < &m_ret[npages]; m++) {
2316                 vm_page_dequeue(m);
2317                 vm_page_alloc_check(m);
2318         }
2319
2320         /*
2321          * Initialize the pages.  Only the PG_ZERO flag is inherited.
2322          */
2323         flags = 0;
2324         if ((req & VM_ALLOC_ZERO) != 0)
2325                 flags = PG_ZERO;
2326         if ((req & VM_ALLOC_NODUMP) != 0)
2327                 flags |= PG_NODUMP;
2328         oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2329             VPO_UNMANAGED : 0;
2330         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2331                 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2332         else if ((req & VM_ALLOC_SBUSY) != 0)
2333                 busy_lock = VPB_SHARERS_WORD(1);
2334         else
2335                 busy_lock = VPB_UNBUSIED;
2336         if ((req & VM_ALLOC_WIRED) != 0)
2337                 vm_wire_add(npages);
2338         if (object != NULL) {
2339                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2340                     memattr == VM_MEMATTR_DEFAULT)
2341                         memattr = object->memattr;
2342         }
2343         for (m = m_ret; m < &m_ret[npages]; m++) {
2344                 m->a.flags = 0;
2345                 m->flags = (m->flags | PG_NODUMP) & flags;
2346                 m->busy_lock = busy_lock;
2347                 if ((req & VM_ALLOC_WIRED) != 0)
2348                         m->ref_count = 1;
2349                 m->a.act_count = 0;
2350                 m->oflags = oflags;
2351                 if (object != NULL) {
2352                         if (vm_page_insert_after(m, object, pindex, mpred)) {
2353                                 if ((req & VM_ALLOC_WIRED) != 0)
2354                                         vm_wire_sub(npages);
2355                                 KASSERT(m->object == NULL,
2356                                     ("page %p has object", m));
2357                                 mpred = m;
2358                                 for (m = m_ret; m < &m_ret[npages]; m++) {
2359                                         if (m <= mpred &&
2360                                             (req & VM_ALLOC_WIRED) != 0)
2361                                                 m->ref_count = 0;
2362                                         m->oflags = VPO_UNMANAGED;
2363                                         m->busy_lock = VPB_UNBUSIED;
2364                                         /* Don't change PG_ZERO. */
2365                                         vm_page_free_toq(m);
2366                                 }
2367                                 if (req & VM_ALLOC_WAITFAIL) {
2368                                         VM_OBJECT_WUNLOCK(object);
2369                                         vm_radix_wait();
2370                                         VM_OBJECT_WLOCK(object);
2371                                 }
2372                                 return (NULL);
2373                         }
2374                         mpred = m;
2375                 } else
2376                         m->pindex = pindex;
2377                 if (memattr != VM_MEMATTR_DEFAULT)
2378                         pmap_page_set_memattr(m, memattr);
2379                 pindex++;
2380         }
2381         return (m_ret);
2382 }
2383
2384 /*
2385  * Check a page that has been freshly dequeued from a freelist.
2386  */
2387 static void
2388 vm_page_alloc_check(vm_page_t m)
2389 {
2390
2391         KASSERT(m->object == NULL, ("page %p has object", m));
2392         KASSERT(m->a.queue == PQ_NONE &&
2393             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2394             ("page %p has unexpected queue %d, flags %#x",
2395             m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2396         KASSERT(m->ref_count == 0, ("page %p has references", m));
2397         KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2398         KASSERT(m->dirty == 0, ("page %p is dirty", m));
2399         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2400             ("page %p has unexpected memattr %d",
2401             m, pmap_page_get_memattr(m)));
2402         KASSERT(m->valid == 0, ("free page %p is valid", m));
2403 }
2404
2405 /*
2406  *      vm_page_alloc_freelist:
2407  *
2408  *      Allocate a physical page from the specified free page list.
2409  *
2410  *      The caller must always specify an allocation class.
2411  *
2412  *      allocation classes:
2413  *      VM_ALLOC_NORMAL         normal process request
2414  *      VM_ALLOC_SYSTEM         system *really* needs a page
2415  *      VM_ALLOC_INTERRUPT      interrupt time request
2416  *
2417  *      optional allocation flags:
2418  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
2419  *                              intends to allocate
2420  *      VM_ALLOC_WIRED          wire the allocated page
2421  *      VM_ALLOC_ZERO           prefer a zeroed page
2422  */
2423 vm_page_t
2424 vm_page_alloc_freelist(int freelist, int req)
2425 {
2426         struct vm_domainset_iter di;
2427         vm_page_t m;
2428         int domain;
2429
2430         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2431         do {
2432                 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2433                 if (m != NULL)
2434                         break;
2435         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2436
2437         return (m);
2438 }
2439
2440 vm_page_t
2441 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2442 {
2443         struct vm_domain *vmd;
2444         vm_page_t m;
2445         u_int flags;
2446
2447         m = NULL;
2448         vmd = VM_DOMAIN(domain);
2449 again:
2450         if (vm_domain_allocate(vmd, req, 1)) {
2451                 vm_domain_free_lock(vmd);
2452                 m = vm_phys_alloc_freelist_pages(domain, freelist,
2453                     VM_FREEPOOL_DIRECT, 0);
2454                 vm_domain_free_unlock(vmd);
2455                 if (m == NULL)
2456                         vm_domain_freecnt_inc(vmd, 1);
2457         }
2458         if (m == NULL) {
2459                 if (vm_domain_alloc_fail(vmd, NULL, req))
2460                         goto again;
2461                 return (NULL);
2462         }
2463         vm_page_dequeue(m);
2464         vm_page_alloc_check(m);
2465
2466         /*
2467          * Initialize the page.  Only the PG_ZERO flag is inherited.
2468          */
2469         m->a.flags = 0;
2470         flags = 0;
2471         if ((req & VM_ALLOC_ZERO) != 0)
2472                 flags = PG_ZERO;
2473         m->flags &= flags;
2474         if ((req & VM_ALLOC_WIRED) != 0) {
2475                 vm_wire_add(1);
2476                 m->ref_count = 1;
2477         }
2478         /* Unmanaged pages don't use "act_count". */
2479         m->oflags = VPO_UNMANAGED;
2480         return (m);
2481 }
2482
2483 static int
2484 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2485 {
2486         struct vm_domain *vmd;
2487         struct vm_pgcache *pgcache;
2488         int i;
2489
2490         pgcache = arg;
2491         vmd = VM_DOMAIN(pgcache->domain);
2492
2493         /*
2494          * The page daemon should avoid creating extra memory pressure since its
2495          * main purpose is to replenish the store of free pages.
2496          */
2497         if (vmd->vmd_severeset || curproc == pageproc ||
2498             !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2499                 return (0);
2500         domain = vmd->vmd_domain;
2501         vm_domain_free_lock(vmd);
2502         i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2503             (vm_page_t *)store);
2504         vm_domain_free_unlock(vmd);
2505         if (cnt != i)
2506                 vm_domain_freecnt_inc(vmd, cnt - i);
2507
2508         return (i);
2509 }
2510
2511 static void
2512 vm_page_zone_release(void *arg, void **store, int cnt)
2513 {
2514         struct vm_domain *vmd;
2515         struct vm_pgcache *pgcache;
2516         vm_page_t m;
2517         int i;
2518
2519         pgcache = arg;
2520         vmd = VM_DOMAIN(pgcache->domain);
2521         vm_domain_free_lock(vmd);
2522         for (i = 0; i < cnt; i++) {
2523                 m = (vm_page_t)store[i];
2524                 vm_phys_free_pages(m, 0);
2525         }
2526         vm_domain_free_unlock(vmd);
2527         vm_domain_freecnt_inc(vmd, cnt);
2528 }
2529
2530 #define VPSC_ANY        0       /* No restrictions. */
2531 #define VPSC_NORESERV   1       /* Skip reservations; implies VPSC_NOSUPER. */
2532 #define VPSC_NOSUPER    2       /* Skip superpages. */
2533
2534 /*
2535  *      vm_page_scan_contig:
2536  *
2537  *      Scan vm_page_array[] between the specified entries "m_start" and
2538  *      "m_end" for a run of contiguous physical pages that satisfy the
2539  *      specified conditions, and return the lowest page in the run.  The
2540  *      specified "alignment" determines the alignment of the lowest physical
2541  *      page in the run.  If the specified "boundary" is non-zero, then the
2542  *      run of physical pages cannot span a physical address that is a
2543  *      multiple of "boundary".
2544  *
2545  *      "m_end" is never dereferenced, so it need not point to a vm_page
2546  *      structure within vm_page_array[].
2547  *
2548  *      "npages" must be greater than zero.  "m_start" and "m_end" must not
2549  *      span a hole (or discontiguity) in the physical address space.  Both
2550  *      "alignment" and "boundary" must be a power of two.
2551  */
2552 vm_page_t
2553 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2554     u_long alignment, vm_paddr_t boundary, int options)
2555 {
2556         vm_object_t object;
2557         vm_paddr_t pa;
2558         vm_page_t m, m_run;
2559 #if VM_NRESERVLEVEL > 0
2560         int level;
2561 #endif
2562         int m_inc, order, run_ext, run_len;
2563
2564         KASSERT(npages > 0, ("npages is 0"));
2565         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2566         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2567         m_run = NULL;
2568         run_len = 0;
2569         for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2570                 KASSERT((m->flags & PG_MARKER) == 0,
2571                     ("page %p is PG_MARKER", m));
2572                 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2573                     ("fictitious page %p has invalid ref count", m));
2574
2575                 /*
2576                  * If the current page would be the start of a run, check its
2577                  * physical address against the end, alignment, and boundary
2578                  * conditions.  If it doesn't satisfy these conditions, either
2579                  * terminate the scan or advance to the next page that
2580                  * satisfies the failed condition.
2581                  */
2582                 if (run_len == 0) {
2583                         KASSERT(m_run == NULL, ("m_run != NULL"));
2584                         if (m + npages > m_end)
2585                                 break;
2586                         pa = VM_PAGE_TO_PHYS(m);
2587                         if ((pa & (alignment - 1)) != 0) {
2588                                 m_inc = atop(roundup2(pa, alignment) - pa);
2589                                 continue;
2590                         }
2591                         if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2592                             boundary) != 0) {
2593                                 m_inc = atop(roundup2(pa, boundary) - pa);
2594                                 continue;
2595                         }
2596                 } else
2597                         KASSERT(m_run != NULL, ("m_run == NULL"));
2598
2599 retry:
2600                 m_inc = 1;
2601                 if (vm_page_wired(m))
2602                         run_ext = 0;
2603 #if VM_NRESERVLEVEL > 0
2604                 else if ((level = vm_reserv_level(m)) >= 0 &&
2605                     (options & VPSC_NORESERV) != 0) {
2606                         run_ext = 0;
2607                         /* Advance to the end of the reservation. */
2608                         pa = VM_PAGE_TO_PHYS(m);
2609                         m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2610                             pa);
2611                 }
2612 #endif
2613                 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2614                         /*
2615                          * The page is considered eligible for relocation if
2616                          * and only if it could be laundered or reclaimed by
2617                          * the page daemon.
2618                          */
2619                         VM_OBJECT_RLOCK(object);
2620                         if (object != m->object) {
2621                                 VM_OBJECT_RUNLOCK(object);
2622                                 goto retry;
2623                         }
2624                         /* Don't care: PG_NODUMP, PG_ZERO. */
2625                         if (object->type != OBJT_DEFAULT &&
2626                             object->type != OBJT_SWAP &&
2627                             object->type != OBJT_VNODE) {
2628                                 run_ext = 0;
2629 #if VM_NRESERVLEVEL > 0
2630                         } else if ((options & VPSC_NOSUPER) != 0 &&
2631                             (level = vm_reserv_level_iffullpop(m)) >= 0) {
2632                                 run_ext = 0;
2633                                 /* Advance to the end of the superpage. */
2634                                 pa = VM_PAGE_TO_PHYS(m);
2635                                 m_inc = atop(roundup2(pa + 1,
2636                                     vm_reserv_size(level)) - pa);
2637 #endif
2638                         } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2639                             vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2640                                 /*
2641                                  * The page is allocated but eligible for
2642                                  * relocation.  Extend the current run by one
2643                                  * page.
2644                                  */
2645                                 KASSERT(pmap_page_get_memattr(m) ==
2646                                     VM_MEMATTR_DEFAULT,
2647                                     ("page %p has an unexpected memattr", m));
2648                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2649                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2650                                     ("page %p has unexpected oflags", m));
2651                                 /* Don't care: PGA_NOSYNC. */
2652                                 run_ext = 1;
2653                         } else
2654                                 run_ext = 0;
2655                         VM_OBJECT_RUNLOCK(object);
2656 #if VM_NRESERVLEVEL > 0
2657                 } else if (level >= 0) {
2658                         /*
2659                          * The page is reserved but not yet allocated.  In
2660                          * other words, it is still free.  Extend the current
2661                          * run by one page.
2662                          */
2663                         run_ext = 1;
2664 #endif
2665                 } else if ((order = m->order) < VM_NFREEORDER) {
2666                         /*
2667                          * The page is enqueued in the physical memory
2668                          * allocator's free page queues.  Moreover, it is the
2669                          * first page in a power-of-two-sized run of
2670                          * contiguous free pages.  Add these pages to the end
2671                          * of the current run, and jump ahead.
2672                          */
2673                         run_ext = 1 << order;
2674                         m_inc = 1 << order;
2675                 } else {
2676                         /*
2677                          * Skip the page for one of the following reasons: (1)
2678                          * It is enqueued in the physical memory allocator's
2679                          * free page queues.  However, it is not the first
2680                          * page in a run of contiguous free pages.  (This case
2681                          * rarely occurs because the scan is performed in
2682                          * ascending order.) (2) It is not reserved, and it is
2683                          * transitioning from free to allocated.  (Conversely,
2684                          * the transition from allocated to free for managed
2685                          * pages is blocked by the page busy lock.) (3) It is
2686                          * allocated but not contained by an object and not
2687                          * wired, e.g., allocated by Xen's balloon driver.
2688                          */
2689                         run_ext = 0;
2690                 }
2691
2692                 /*
2693                  * Extend or reset the current run of pages.
2694                  */
2695                 if (run_ext > 0) {
2696                         if (run_len == 0)
2697                                 m_run = m;
2698                         run_len += run_ext;
2699                 } else {
2700                         if (run_len > 0) {
2701                                 m_run = NULL;
2702                                 run_len = 0;
2703                         }
2704                 }
2705         }
2706         if (run_len >= npages)
2707                 return (m_run);
2708         return (NULL);
2709 }
2710
2711 /*
2712  *      vm_page_reclaim_run:
2713  *
2714  *      Try to relocate each of the allocated virtual pages within the
2715  *      specified run of physical pages to a new physical address.  Free the
2716  *      physical pages underlying the relocated virtual pages.  A virtual page
2717  *      is relocatable if and only if it could be laundered or reclaimed by
2718  *      the page daemon.  Whenever possible, a virtual page is relocated to a
2719  *      physical address above "high".
2720  *
2721  *      Returns 0 if every physical page within the run was already free or
2722  *      just freed by a successful relocation.  Otherwise, returns a non-zero
2723  *      value indicating why the last attempt to relocate a virtual page was
2724  *      unsuccessful.
2725  *
2726  *      "req_class" must be an allocation class.
2727  */
2728 static int
2729 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2730     vm_paddr_t high)
2731 {
2732         struct vm_domain *vmd;
2733         struct spglist free;
2734         vm_object_t object;
2735         vm_paddr_t pa;
2736         vm_page_t m, m_end, m_new;
2737         int error, order, req;
2738
2739         KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2740             ("req_class is not an allocation class"));
2741         SLIST_INIT(&free);
2742         error = 0;
2743         m = m_run;
2744         m_end = m_run + npages;
2745         for (; error == 0 && m < m_end; m++) {
2746                 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2747                     ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2748
2749                 /*
2750                  * Racily check for wirings.  Races are handled once the object
2751                  * lock is held and the page is unmapped.
2752                  */
2753                 if (vm_page_wired(m))
2754                         error = EBUSY;
2755                 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2756                         /*
2757                          * The page is relocated if and only if it could be
2758                          * laundered or reclaimed by the page daemon.
2759                          */
2760                         VM_OBJECT_WLOCK(object);
2761                         /* Don't care: PG_NODUMP, PG_ZERO. */
2762                         if (m->object != object ||
2763                             (object->type != OBJT_DEFAULT &&
2764                             object->type != OBJT_SWAP &&
2765                             object->type != OBJT_VNODE))
2766                                 error = EINVAL;
2767                         else if (object->memattr != VM_MEMATTR_DEFAULT)
2768                                 error = EINVAL;
2769                         else if (vm_page_queue(m) != PQ_NONE &&
2770                             vm_page_tryxbusy(m) != 0) {
2771                                 if (vm_page_wired(m)) {
2772                                         vm_page_xunbusy(m);
2773                                         error = EBUSY;
2774                                         goto unlock;
2775                                 }
2776                                 KASSERT(pmap_page_get_memattr(m) ==
2777                                     VM_MEMATTR_DEFAULT,
2778                                     ("page %p has an unexpected memattr", m));
2779                                 KASSERT(m->oflags == 0,
2780                                     ("page %p has unexpected oflags", m));
2781                                 /* Don't care: PGA_NOSYNC. */
2782                                 if (!vm_page_none_valid(m)) {
2783                                         /*
2784                                          * First, try to allocate a new page
2785                                          * that is above "high".  Failing
2786                                          * that, try to allocate a new page
2787                                          * that is below "m_run".  Allocate
2788                                          * the new page between the end of
2789                                          * "m_run" and "high" only as a last
2790                                          * resort.
2791                                          */
2792                                         req = req_class | VM_ALLOC_NOOBJ;
2793                                         if ((m->flags & PG_NODUMP) != 0)
2794                                                 req |= VM_ALLOC_NODUMP;
2795                                         if (trunc_page(high) !=
2796                                             ~(vm_paddr_t)PAGE_MASK) {
2797                                                 m_new = vm_page_alloc_contig(
2798                                                     NULL, 0, req, 1,
2799                                                     round_page(high),
2800                                                     ~(vm_paddr_t)0,
2801                                                     PAGE_SIZE, 0,
2802                                                     VM_MEMATTR_DEFAULT);
2803                                         } else
2804                                                 m_new = NULL;
2805                                         if (m_new == NULL) {
2806                                                 pa = VM_PAGE_TO_PHYS(m_run);
2807                                                 m_new = vm_page_alloc_contig(
2808                                                     NULL, 0, req, 1,
2809                                                     0, pa - 1, PAGE_SIZE, 0,
2810                                                     VM_MEMATTR_DEFAULT);
2811                                         }
2812                                         if (m_new == NULL) {
2813                                                 pa += ptoa(npages);
2814                                                 m_new = vm_page_alloc_contig(
2815                                                     NULL, 0, req, 1,
2816                                                     pa, high, PAGE_SIZE, 0,
2817                                                     VM_MEMATTR_DEFAULT);
2818                                         }
2819                                         if (m_new == NULL) {
2820                                                 vm_page_xunbusy(m);
2821                                                 error = ENOMEM;
2822                                                 goto unlock;
2823                                         }
2824
2825                                         /*
2826                                          * Unmap the page and check for new
2827                                          * wirings that may have been acquired
2828                                          * through a pmap lookup.
2829                                          */
2830                                         if (object->ref_count != 0 &&
2831                                             !vm_page_try_remove_all(m)) {
2832                                                 vm_page_xunbusy(m);
2833                                                 vm_page_free(m_new);
2834                                                 error = EBUSY;
2835                                                 goto unlock;
2836                                         }
2837
2838                                         /*
2839                                          * Replace "m" with the new page.  For
2840                                          * vm_page_replace(), "m" must be busy
2841                                          * and dequeued.  Finally, change "m"
2842                                          * as if vm_page_free() was called.
2843                                          */
2844                                         m_new->a.flags = m->a.flags &
2845                                             ~PGA_QUEUE_STATE_MASK;
2846                                         KASSERT(m_new->oflags == VPO_UNMANAGED,
2847                                             ("page %p is managed", m_new));
2848                                         m_new->oflags = 0;
2849                                         pmap_copy_page(m, m_new);
2850                                         m_new->valid = m->valid;
2851                                         m_new->dirty = m->dirty;
2852                                         m->flags &= ~PG_ZERO;
2853                                         vm_page_dequeue(m);
2854                                         if (vm_page_replace_hold(m_new, object,
2855                                             m->pindex, m) &&
2856                                             vm_page_free_prep(m))
2857                                                 SLIST_INSERT_HEAD(&free, m,
2858                                                     plinks.s.ss);
2859
2860                                         /*
2861                                          * The new page must be deactivated
2862                                          * before the object is unlocked.
2863                                          */
2864                                         vm_page_deactivate(m_new);
2865                                 } else {
2866                                         m->flags &= ~PG_ZERO;
2867                                         vm_page_dequeue(m);
2868                                         if (vm_page_free_prep(m))
2869                                                 SLIST_INSERT_HEAD(&free, m,
2870                                                     plinks.s.ss);
2871                                         KASSERT(m->dirty == 0,
2872                                             ("page %p is dirty", m));
2873                                 }
2874                         } else
2875                                 error = EBUSY;
2876 unlock:
2877                         VM_OBJECT_WUNLOCK(object);
2878                 } else {
2879                         MPASS(vm_phys_domain(m) == domain);
2880                         vmd = VM_DOMAIN(domain);
2881                         vm_domain_free_lock(vmd);
2882                         order = m->order;
2883                         if (order < VM_NFREEORDER) {
2884                                 /*
2885                                  * The page is enqueued in the physical memory
2886                                  * allocator's free page queues.  Moreover, it
2887                                  * is the first page in a power-of-two-sized
2888                                  * run of contiguous free pages.  Jump ahead
2889                                  * to the last page within that run, and
2890                                  * continue from there.
2891                                  */
2892                                 m += (1 << order) - 1;
2893                         }
2894 #if VM_NRESERVLEVEL > 0
2895                         else if (vm_reserv_is_page_free(m))
2896                                 order = 0;
2897 #endif
2898                         vm_domain_free_unlock(vmd);
2899                         if (order == VM_NFREEORDER)
2900                                 error = EINVAL;
2901                 }
2902         }
2903         if ((m = SLIST_FIRST(&free)) != NULL) {
2904                 int cnt;
2905
2906                 vmd = VM_DOMAIN(domain);
2907                 cnt = 0;
2908                 vm_domain_free_lock(vmd);
2909                 do {
2910                         MPASS(vm_phys_domain(m) == domain);
2911                         SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2912                         vm_phys_free_pages(m, 0);
2913                         cnt++;
2914                 } while ((m = SLIST_FIRST(&free)) != NULL);
2915                 vm_domain_free_unlock(vmd);
2916                 vm_domain_freecnt_inc(vmd, cnt);
2917         }
2918         return (error);
2919 }
2920
2921 #define NRUNS   16
2922
2923 CTASSERT(powerof2(NRUNS));
2924
2925 #define RUN_INDEX(count)        ((count) & (NRUNS - 1))
2926
2927 #define MIN_RECLAIM     8
2928
2929 /*
2930  *      vm_page_reclaim_contig:
2931  *
2932  *      Reclaim allocated, contiguous physical memory satisfying the specified
2933  *      conditions by relocating the virtual pages using that physical memory.
2934  *      Returns true if reclamation is successful and false otherwise.  Since
2935  *      relocation requires the allocation of physical pages, reclamation may
2936  *      fail due to a shortage of free pages.  When reclamation fails, callers
2937  *      are expected to perform vm_wait() before retrying a failed allocation
2938  *      operation, e.g., vm_page_alloc_contig().
2939  *
2940  *      The caller must always specify an allocation class through "req".
2941  *
2942  *      allocation classes:
2943  *      VM_ALLOC_NORMAL         normal process request
2944  *      VM_ALLOC_SYSTEM         system *really* needs a page
2945  *      VM_ALLOC_INTERRUPT      interrupt time request
2946  *
2947  *      The optional allocation flags are ignored.
2948  *
2949  *      "npages" must be greater than zero.  Both "alignment" and "boundary"
2950  *      must be a power of two.
2951  */
2952 bool
2953 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2954     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2955 {
2956         struct vm_domain *vmd;
2957         vm_paddr_t curr_low;
2958         vm_page_t m_run, m_runs[NRUNS];
2959         u_long count, reclaimed;
2960         int error, i, options, req_class;
2961
2962         KASSERT(npages > 0, ("npages is 0"));
2963         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2964         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2965         req_class = req & VM_ALLOC_CLASS_MASK;
2966
2967         /*
2968          * The page daemon is allowed to dig deeper into the free page list.
2969          */
2970         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2971                 req_class = VM_ALLOC_SYSTEM;
2972
2973         /*
2974          * Return if the number of free pages cannot satisfy the requested
2975          * allocation.
2976          */
2977         vmd = VM_DOMAIN(domain);
2978         count = vmd->vmd_free_count;
2979         if (count < npages + vmd->vmd_free_reserved || (count < npages +
2980             vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2981             (count < npages && req_class == VM_ALLOC_INTERRUPT))
2982                 return (false);
2983
2984         /*
2985          * Scan up to three times, relaxing the restrictions ("options") on
2986          * the reclamation of reservations and superpages each time.
2987          */
2988         for (options = VPSC_NORESERV;;) {
2989                 /*
2990                  * Find the highest runs that satisfy the given constraints
2991                  * and restrictions, and record them in "m_runs".
2992                  */
2993                 curr_low = low;
2994                 count = 0;
2995                 for (;;) {
2996                         m_run = vm_phys_scan_contig(domain, npages, curr_low,
2997                             high, alignment, boundary, options);
2998                         if (m_run == NULL)
2999                                 break;
3000                         curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
3001                         m_runs[RUN_INDEX(count)] = m_run;
3002                         count++;
3003                 }
3004
3005                 /*
3006                  * Reclaim the highest runs in LIFO (descending) order until
3007                  * the number of reclaimed pages, "reclaimed", is at least
3008                  * MIN_RECLAIM.  Reset "reclaimed" each time because each
3009                  * reclamation is idempotent, and runs will (likely) recur
3010                  * from one scan to the next as restrictions are relaxed.
3011                  */
3012                 reclaimed = 0;
3013                 for (i = 0; count > 0 && i < NRUNS; i++) {
3014                         count--;
3015                         m_run = m_runs[RUN_INDEX(count)];
3016                         error = vm_page_reclaim_run(req_class, domain, npages,
3017                             m_run, high);
3018                         if (error == 0) {
3019                                 reclaimed += npages;
3020                                 if (reclaimed >= MIN_RECLAIM)
3021                                         return (true);
3022                         }
3023                 }
3024
3025                 /*
3026                  * Either relax the restrictions on the next scan or return if
3027                  * the last scan had no restrictions.
3028                  */
3029                 if (options == VPSC_NORESERV)
3030                         options = VPSC_NOSUPER;
3031                 else if (options == VPSC_NOSUPER)
3032                         options = VPSC_ANY;
3033                 else if (options == VPSC_ANY)
3034                         return (reclaimed != 0);
3035         }
3036 }
3037
3038 bool
3039 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3040     u_long alignment, vm_paddr_t boundary)
3041 {
3042         struct vm_domainset_iter di;
3043         int domain;
3044         bool ret;
3045
3046         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3047         do {
3048                 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
3049                     high, alignment, boundary);
3050                 if (ret)
3051                         break;
3052         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3053
3054         return (ret);
3055 }
3056
3057 /*
3058  * Set the domain in the appropriate page level domainset.
3059  */
3060 void
3061 vm_domain_set(struct vm_domain *vmd)
3062 {
3063
3064         mtx_lock(&vm_domainset_lock);
3065         if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3066                 vmd->vmd_minset = 1;
3067                 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3068         }
3069         if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3070                 vmd->vmd_severeset = 1;
3071                 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3072         }
3073         mtx_unlock(&vm_domainset_lock);
3074 }
3075
3076 /*
3077  * Clear the domain from the appropriate page level domainset.
3078  */
3079 void
3080 vm_domain_clear(struct vm_domain *vmd)
3081 {
3082
3083         mtx_lock(&vm_domainset_lock);
3084         if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3085                 vmd->vmd_minset = 0;
3086                 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3087                 if (vm_min_waiters != 0) {
3088                         vm_min_waiters = 0;
3089                         wakeup(&vm_min_domains);
3090                 }
3091         }
3092         if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3093                 vmd->vmd_severeset = 0;
3094                 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3095                 if (vm_severe_waiters != 0) {
3096                         vm_severe_waiters = 0;
3097                         wakeup(&vm_severe_domains);
3098                 }
3099         }
3100
3101         /*
3102          * If pageout daemon needs pages, then tell it that there are
3103          * some free.
3104          */
3105         if (vmd->vmd_pageout_pages_needed &&
3106             vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3107                 wakeup(&vmd->vmd_pageout_pages_needed);
3108                 vmd->vmd_pageout_pages_needed = 0;
3109         }
3110
3111         /* See comments in vm_wait_doms(). */
3112         if (vm_pageproc_waiters) {
3113                 vm_pageproc_waiters = 0;
3114                 wakeup(&vm_pageproc_waiters);
3115         }
3116         mtx_unlock(&vm_domainset_lock);
3117 }
3118
3119 /*
3120  * Wait for free pages to exceed the min threshold globally.
3121  */
3122 void
3123 vm_wait_min(void)
3124 {
3125
3126         mtx_lock(&vm_domainset_lock);
3127         while (vm_page_count_min()) {
3128                 vm_min_waiters++;
3129                 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3130         }
3131         mtx_unlock(&vm_domainset_lock);
3132 }
3133
3134 /*
3135  * Wait for free pages to exceed the severe threshold globally.
3136  */
3137 void
3138 vm_wait_severe(void)
3139 {
3140
3141         mtx_lock(&vm_domainset_lock);
3142         while (vm_page_count_severe()) {
3143                 vm_severe_waiters++;
3144                 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3145                     "vmwait", 0);
3146         }
3147         mtx_unlock(&vm_domainset_lock);
3148 }
3149
3150 u_int
3151 vm_wait_count(void)
3152 {
3153
3154         return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3155 }
3156
3157 int
3158 vm_wait_doms(const domainset_t *wdoms, int mflags)
3159 {
3160         int error;
3161
3162         error = 0;
3163
3164         /*
3165          * We use racey wakeup synchronization to avoid expensive global
3166          * locking for the pageproc when sleeping with a non-specific vm_wait.
3167          * To handle this, we only sleep for one tick in this instance.  It
3168          * is expected that most allocations for the pageproc will come from
3169          * kmem or vm_page_grab* which will use the more specific and
3170          * race-free vm_wait_domain().
3171          */
3172         if (curproc == pageproc) {
3173                 mtx_lock(&vm_domainset_lock);
3174                 vm_pageproc_waiters++;
3175                 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3176                     PVM | PDROP | mflags, "pageprocwait", 1);
3177         } else {
3178                 /*
3179                  * XXX Ideally we would wait only until the allocation could
3180                  * be satisfied.  This condition can cause new allocators to
3181                  * consume all freed pages while old allocators wait.
3182                  */
3183                 mtx_lock(&vm_domainset_lock);
3184                 if (vm_page_count_min_set(wdoms)) {
3185                         vm_min_waiters++;
3186                         error = msleep(&vm_min_domains, &vm_domainset_lock,
3187                             PVM | PDROP | mflags, "vmwait", 0);
3188                 } else
3189                         mtx_unlock(&vm_domainset_lock);
3190         }
3191         return (error);
3192 }
3193
3194 /*
3195  *      vm_wait_domain:
3196  *
3197  *      Sleep until free pages are available for allocation.
3198  *      - Called in various places after failed memory allocations.
3199  */
3200 void
3201 vm_wait_domain(int domain)
3202 {
3203         struct vm_domain *vmd;
3204         domainset_t wdom;
3205
3206         vmd = VM_DOMAIN(domain);
3207         vm_domain_free_assert_unlocked(vmd);
3208
3209         if (curproc == pageproc) {
3210                 mtx_lock(&vm_domainset_lock);
3211                 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3212                         vmd->vmd_pageout_pages_needed = 1;
3213                         msleep(&vmd->vmd_pageout_pages_needed,
3214                             &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3215                 } else
3216                         mtx_unlock(&vm_domainset_lock);
3217         } else {
3218                 if (pageproc == NULL)
3219                         panic("vm_wait in early boot");
3220                 DOMAINSET_ZERO(&wdom);
3221                 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3222                 vm_wait_doms(&wdom, 0);
3223         }
3224 }
3225
3226 static int
3227 vm_wait_flags(vm_object_t obj, int mflags)
3228 {
3229         struct domainset *d;
3230
3231         d = NULL;
3232
3233         /*
3234          * Carefully fetch pointers only once: the struct domainset
3235          * itself is ummutable but the pointer might change.
3236          */
3237         if (obj != NULL)
3238                 d = obj->domain.dr_policy;
3239         if (d == NULL)
3240                 d = curthread->td_domain.dr_policy;
3241
3242         return (vm_wait_doms(&d->ds_mask, mflags));
3243 }
3244
3245 /*
3246  *      vm_wait:
3247  *
3248  *      Sleep until free pages are available for allocation in the
3249  *      affinity domains of the obj.  If obj is NULL, the domain set
3250  *      for the calling thread is used.
3251  *      Called in various places after failed memory allocations.
3252  */
3253 void
3254 vm_wait(vm_object_t obj)
3255 {
3256         (void)vm_wait_flags(obj, 0);
3257 }
3258
3259 int
3260 vm_wait_intr(vm_object_t obj)
3261 {
3262         return (vm_wait_flags(obj, PCATCH));
3263 }
3264
3265 /*
3266  *      vm_domain_alloc_fail:
3267  *
3268  *      Called when a page allocation function fails.  Informs the
3269  *      pagedaemon and performs the requested wait.  Requires the
3270  *      domain_free and object lock on entry.  Returns with the
3271  *      object lock held and free lock released.  Returns an error when
3272  *      retry is necessary.
3273  *
3274  */
3275 static int
3276 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3277 {
3278
3279         vm_domain_free_assert_unlocked(vmd);
3280
3281         atomic_add_int(&vmd->vmd_pageout_deficit,
3282             max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3283         if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3284                 if (object != NULL) 
3285                         VM_OBJECT_WUNLOCK(object);
3286                 vm_wait_domain(vmd->vmd_domain);
3287                 if (object != NULL) 
3288                         VM_OBJECT_WLOCK(object);
3289                 if (req & VM_ALLOC_WAITOK)
3290                         return (EAGAIN);
3291         }
3292
3293         return (0);
3294 }
3295
3296 /*
3297  *      vm_waitpfault:
3298  *
3299  *      Sleep until free pages are available for allocation.
3300  *      - Called only in vm_fault so that processes page faulting
3301  *        can be easily tracked.
3302  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3303  *        processes will be able to grab memory first.  Do not change
3304  *        this balance without careful testing first.
3305  */
3306 void
3307 vm_waitpfault(struct domainset *dset, int timo)
3308 {
3309
3310         /*
3311          * XXX Ideally we would wait only until the allocation could
3312          * be satisfied.  This condition can cause new allocators to
3313          * consume all freed pages while old allocators wait.
3314          */
3315         mtx_lock(&vm_domainset_lock);
3316         if (vm_page_count_min_set(&dset->ds_mask)) {
3317                 vm_min_waiters++;
3318                 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3319                     "pfault", timo);
3320         } else
3321                 mtx_unlock(&vm_domainset_lock);
3322 }
3323
3324 static struct vm_pagequeue *
3325 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3326 {
3327
3328         return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3329 }
3330
3331 #ifdef INVARIANTS
3332 static struct vm_pagequeue *
3333 vm_page_pagequeue(vm_page_t m)
3334 {
3335
3336         return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3337 }
3338 #endif
3339
3340 static __always_inline bool
3341 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3342 {
3343         vm_page_astate_t tmp;
3344
3345         tmp = *old;
3346         do {
3347                 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3348                         return (true);
3349                 counter_u64_add(pqstate_commit_retries, 1);
3350         } while (old->_bits == tmp._bits);
3351
3352         return (false);
3353 }
3354
3355 /*
3356  * Do the work of committing a queue state update that moves the page out of
3357  * its current queue.
3358  */
3359 static bool
3360 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3361     vm_page_astate_t *old, vm_page_astate_t new)
3362 {
3363         vm_page_t next;
3364
3365         vm_pagequeue_assert_locked(pq);
3366         KASSERT(vm_page_pagequeue(m) == pq,
3367             ("%s: queue %p does not match page %p", __func__, pq, m));
3368         KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3369             ("%s: invalid queue indices %d %d",
3370             __func__, old->queue, new.queue));
3371
3372         /*
3373          * Once the queue index of the page changes there is nothing
3374          * synchronizing with further updates to the page's physical
3375          * queue state.  Therefore we must speculatively remove the page
3376          * from the queue now and be prepared to roll back if the queue
3377          * state update fails.  If the page is not physically enqueued then
3378          * we just update its queue index.
3379          */
3380         if ((old->flags & PGA_ENQUEUED) != 0) {
3381                 new.flags &= ~PGA_ENQUEUED;
3382                 next = TAILQ_NEXT(m, plinks.q);
3383                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3384                 vm_pagequeue_cnt_dec(pq);
3385                 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3386                         if (next == NULL)
3387                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3388                         else
3389                                 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3390                         vm_pagequeue_cnt_inc(pq);
3391                         return (false);
3392                 } else {
3393                         return (true);
3394                 }
3395         } else {
3396                 return (vm_page_pqstate_fcmpset(m, old, new));
3397         }
3398 }
3399
3400 static bool
3401 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3402     vm_page_astate_t new)
3403 {
3404         struct vm_pagequeue *pq;
3405         vm_page_astate_t as;
3406         bool ret;
3407
3408         pq = _vm_page_pagequeue(m, old->queue);
3409
3410         /*
3411          * The queue field and PGA_ENQUEUED flag are stable only so long as the
3412          * corresponding page queue lock is held.
3413          */
3414         vm_pagequeue_lock(pq);
3415         as = vm_page_astate_load(m);
3416         if (__predict_false(as._bits != old->_bits)) {
3417                 *old = as;
3418                 ret = false;
3419         } else {
3420                 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3421         }
3422         vm_pagequeue_unlock(pq);
3423         return (ret);
3424 }
3425
3426 /*
3427  * Commit a queue state update that enqueues or requeues a page.
3428  */
3429 static bool
3430 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3431     vm_page_astate_t *old, vm_page_astate_t new)
3432 {
3433         struct vm_domain *vmd;
3434
3435         vm_pagequeue_assert_locked(pq);
3436         KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3437             ("%s: invalid queue indices %d %d",
3438             __func__, old->queue, new.queue));
3439
3440         new.flags |= PGA_ENQUEUED;
3441         if (!vm_page_pqstate_fcmpset(m, old, new))
3442                 return (false);
3443
3444         if ((old->flags & PGA_ENQUEUED) != 0)
3445                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3446         else
3447                 vm_pagequeue_cnt_inc(pq);
3448
3449         /*
3450          * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3451          * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3452          * applied, even if it was set first.
3453          */
3454         if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3455                 vmd = vm_pagequeue_domain(m);
3456                 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3457                     ("%s: invalid page queue for page %p", __func__, m));
3458                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3459         } else {
3460                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3461         }
3462         return (true);
3463 }
3464
3465 /*
3466  * Commit a queue state update that encodes a request for a deferred queue
3467  * operation.
3468  */
3469 static bool
3470 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3471     vm_page_astate_t new)
3472 {
3473
3474         KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3475             ("%s: invalid state, queue %d flags %x",
3476             __func__, new.queue, new.flags));
3477
3478         if (old->_bits != new._bits &&
3479             !vm_page_pqstate_fcmpset(m, old, new))
3480                 return (false);
3481         vm_page_pqbatch_submit(m, new.queue);
3482         return (true);
3483 }
3484
3485 /*
3486  * A generic queue state update function.  This handles more cases than the
3487  * specialized functions above.
3488  */
3489 bool
3490 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3491 {
3492
3493         if (old->_bits == new._bits)
3494                 return (true);
3495
3496         if (old->queue != PQ_NONE && new.queue != old->queue) {
3497                 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3498                         return (false);
3499                 if (new.queue != PQ_NONE)
3500                         vm_page_pqbatch_submit(m, new.queue);
3501         } else {
3502                 if (!vm_page_pqstate_fcmpset(m, old, new))
3503                         return (false);
3504                 if (new.queue != PQ_NONE &&
3505                     ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3506                         vm_page_pqbatch_submit(m, new.queue);
3507         }
3508         return (true);
3509 }
3510
3511 /*
3512  * Apply deferred queue state updates to a page.
3513  */
3514 static inline void
3515 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3516 {
3517         vm_page_astate_t new, old;
3518
3519         CRITICAL_ASSERT(curthread);
3520         vm_pagequeue_assert_locked(pq);
3521         KASSERT(queue < PQ_COUNT,
3522             ("%s: invalid queue index %d", __func__, queue));
3523         KASSERT(pq == _vm_page_pagequeue(m, queue),
3524             ("%s: page %p does not belong to queue %p", __func__, m, pq));
3525
3526         for (old = vm_page_astate_load(m);;) {
3527                 if (__predict_false(old.queue != queue ||
3528                     (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3529                         counter_u64_add(queue_nops, 1);
3530                         break;
3531                 }
3532                 KASSERT(old.queue != PQ_NONE || (old.flags & PGA_QUEUE_STATE_MASK) == 0,
3533                     ("%s: page %p has unexpected queue state", __func__, m));
3534
3535                 new = old;
3536                 if ((old.flags & PGA_DEQUEUE) != 0) {
3537                         new.flags &= ~PGA_QUEUE_OP_MASK;
3538                         new.queue = PQ_NONE;
3539                         if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3540                             m, &old, new))) {
3541                                 counter_u64_add(queue_ops, 1);
3542                                 break;
3543                         }
3544                 } else {
3545                         new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3546                         if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3547                             m, &old, new))) {
3548                                 counter_u64_add(queue_ops, 1);
3549                                 break;
3550                         }
3551                 }
3552         }
3553 }
3554
3555 static void
3556 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3557     uint8_t queue)
3558 {
3559         int i;
3560
3561         for (i = 0; i < bq->bq_cnt; i++)
3562                 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3563         vm_batchqueue_init(bq);
3564 }
3565
3566 /*
3567  *      vm_page_pqbatch_submit:         [ internal use only ]
3568  *
3569  *      Enqueue a page in the specified page queue's batched work queue.
3570  *      The caller must have encoded the requested operation in the page
3571  *      structure's a.flags field.
3572  */
3573 void
3574 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3575 {
3576         struct vm_batchqueue *bq;
3577         struct vm_pagequeue *pq;
3578         int domain;
3579
3580         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3581             ("page %p is unmanaged", m));
3582         KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3583
3584         domain = vm_phys_domain(m);
3585         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3586
3587         critical_enter();
3588         bq = DPCPU_PTR(pqbatch[domain][queue]);
3589         if (vm_batchqueue_insert(bq, m)) {
3590                 critical_exit();
3591                 return;
3592         }
3593         critical_exit();
3594         vm_pagequeue_lock(pq);
3595         critical_enter();
3596         bq = DPCPU_PTR(pqbatch[domain][queue]);
3597         vm_pqbatch_process(pq, bq, queue);
3598         vm_pqbatch_process_page(pq, m, queue);
3599         vm_pagequeue_unlock(pq);
3600         critical_exit();
3601 }
3602
3603 /*
3604  *      vm_page_pqbatch_drain:          [ internal use only ]
3605  *
3606  *      Force all per-CPU page queue batch queues to be drained.  This is
3607  *      intended for use in severe memory shortages, to ensure that pages
3608  *      do not remain stuck in the batch queues.
3609  */
3610 void
3611 vm_page_pqbatch_drain(void)
3612 {
3613         struct thread *td;
3614         struct vm_domain *vmd;
3615         struct vm_pagequeue *pq;
3616         int cpu, domain, queue;
3617
3618         td = curthread;
3619         CPU_FOREACH(cpu) {
3620                 thread_lock(td);
3621                 sched_bind(td, cpu);
3622                 thread_unlock(td);
3623
3624                 for (domain = 0; domain < vm_ndomains; domain++) {
3625                         vmd = VM_DOMAIN(domain);
3626                         for (queue = 0; queue < PQ_COUNT; queue++) {
3627                                 pq = &vmd->vmd_pagequeues[queue];
3628                                 vm_pagequeue_lock(pq);
3629                                 critical_enter();
3630                                 vm_pqbatch_process(pq,
3631                                     DPCPU_PTR(pqbatch[domain][queue]), queue);
3632                                 critical_exit();
3633                                 vm_pagequeue_unlock(pq);
3634                         }
3635                 }
3636         }
3637         thread_lock(td);
3638         sched_unbind(td);
3639         thread_unlock(td);
3640 }
3641
3642 /*
3643  *      vm_page_dequeue_deferred:       [ internal use only ]
3644  *
3645  *      Request removal of the given page from its current page
3646  *      queue.  Physical removal from the queue may be deferred
3647  *      indefinitely.
3648  */
3649 void
3650 vm_page_dequeue_deferred(vm_page_t m)
3651 {
3652         vm_page_astate_t new, old;
3653
3654         old = vm_page_astate_load(m);
3655         do {
3656                 if (old.queue == PQ_NONE) {
3657                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3658                             ("%s: page %p has unexpected queue state",
3659                             __func__, m));
3660                         break;
3661                 }
3662                 new = old;
3663                 new.flags |= PGA_DEQUEUE;
3664         } while (!vm_page_pqstate_commit_request(m, &old, new));
3665 }
3666
3667 /*
3668  *      vm_page_dequeue:
3669  *
3670  *      Remove the page from whichever page queue it's in, if any, before
3671  *      returning.
3672  */
3673 void
3674 vm_page_dequeue(vm_page_t m)
3675 {
3676         vm_page_astate_t new, old;
3677
3678         old = vm_page_astate_load(m);
3679         do {
3680                 if (old.queue == PQ_NONE) {
3681                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3682                             ("%s: page %p has unexpected queue state",
3683                             __func__, m));
3684                         break;
3685                 }
3686                 new = old;
3687                 new.flags &= ~PGA_QUEUE_OP_MASK;
3688                 new.queue = PQ_NONE;
3689         } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3690
3691 }
3692
3693 /*
3694  * Schedule the given page for insertion into the specified page queue.
3695  * Physical insertion of the page may be deferred indefinitely.
3696  */
3697 static void
3698 vm_page_enqueue(vm_page_t m, uint8_t queue)
3699 {
3700
3701         KASSERT(m->a.queue == PQ_NONE &&
3702             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3703             ("%s: page %p is already enqueued", __func__, m));
3704         KASSERT(m->ref_count > 0,
3705             ("%s: page %p does not carry any references", __func__, m));
3706
3707         m->a.queue = queue;
3708         if ((m->a.flags & PGA_REQUEUE) == 0)
3709                 vm_page_aflag_set(m, PGA_REQUEUE);
3710         vm_page_pqbatch_submit(m, queue);
3711 }
3712
3713 /*
3714  *      vm_page_free_prep:
3715  *
3716  *      Prepares the given page to be put on the free list,
3717  *      disassociating it from any VM object. The caller may return
3718  *      the page to the free list only if this function returns true.
3719  *
3720  *      The object, if it exists, must be locked, and then the page must
3721  *      be xbusy.  Otherwise the page must be not busied.  A managed
3722  *      page must be unmapped.
3723  */
3724 static bool
3725 vm_page_free_prep(vm_page_t m)
3726 {
3727
3728         /*
3729          * Synchronize with threads that have dropped a reference to this
3730          * page.
3731          */
3732         atomic_thread_fence_acq();
3733
3734 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3735         if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3736                 uint64_t *p;
3737                 int i;
3738                 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3739                 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3740                         KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3741                             m, i, (uintmax_t)*p));
3742         }
3743 #endif
3744         if ((m->oflags & VPO_UNMANAGED) == 0) {
3745                 KASSERT(!pmap_page_is_mapped(m),
3746                     ("vm_page_free_prep: freeing mapped page %p", m));
3747                 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3748                     ("vm_page_free_prep: mapping flags set in page %p", m));
3749         } else {
3750                 KASSERT(m->a.queue == PQ_NONE,
3751                     ("vm_page_free_prep: unmanaged page %p is queued", m));
3752         }
3753         VM_CNT_INC(v_tfree);
3754
3755         if (m->object != NULL) {
3756                 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3757                     ((m->object->flags & OBJ_UNMANAGED) != 0),
3758                     ("vm_page_free_prep: managed flag mismatch for page %p",
3759                     m));
3760                 vm_page_assert_xbusied(m);
3761
3762                 /*
3763                  * The object reference can be released without an atomic
3764                  * operation.
3765                  */
3766                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3767                     m->ref_count == VPRC_OBJREF,
3768                     ("vm_page_free_prep: page %p has unexpected ref_count %u",
3769                     m, m->ref_count));
3770                 vm_page_object_remove(m);
3771                 m->ref_count -= VPRC_OBJREF;
3772         } else
3773                 vm_page_assert_unbusied(m);
3774
3775         vm_page_busy_free(m);
3776
3777         /*
3778          * If fictitious remove object association and
3779          * return.
3780          */
3781         if ((m->flags & PG_FICTITIOUS) != 0) {
3782                 KASSERT(m->ref_count == 1,
3783                     ("fictitious page %p is referenced", m));
3784                 KASSERT(m->a.queue == PQ_NONE,
3785                     ("fictitious page %p is queued", m));
3786                 return (false);
3787         }
3788
3789         /*
3790          * Pages need not be dequeued before they are returned to the physical
3791          * memory allocator, but they must at least be marked for a deferred
3792          * dequeue.
3793          */
3794         if ((m->oflags & VPO_UNMANAGED) == 0)
3795                 vm_page_dequeue_deferred(m);
3796
3797         m->valid = 0;
3798         vm_page_undirty(m);
3799
3800         if (m->ref_count != 0)
3801                 panic("vm_page_free_prep: page %p has references", m);
3802
3803         /*
3804          * Restore the default memory attribute to the page.
3805          */
3806         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3807                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3808
3809 #if VM_NRESERVLEVEL > 0
3810         /*
3811          * Determine whether the page belongs to a reservation.  If the page was
3812          * allocated from a per-CPU cache, it cannot belong to a reservation, so
3813          * as an optimization, we avoid the check in that case.
3814          */
3815         if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3816                 return (false);
3817 #endif
3818
3819         return (true);
3820 }
3821
3822 /*
3823  *      vm_page_free_toq:
3824  *
3825  *      Returns the given page to the free list, disassociating it
3826  *      from any VM object.
3827  *
3828  *      The object must be locked.  The page must be exclusively busied if it
3829  *      belongs to an object.
3830  */
3831 static void
3832 vm_page_free_toq(vm_page_t m)
3833 {
3834         struct vm_domain *vmd;
3835         uma_zone_t zone;
3836
3837         if (!vm_page_free_prep(m))
3838                 return;
3839
3840         vmd = vm_pagequeue_domain(m);
3841         zone = vmd->vmd_pgcache[m->pool].zone;
3842         if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3843                 uma_zfree(zone, m);
3844                 return;
3845         }
3846         vm_domain_free_lock(vmd);
3847         vm_phys_free_pages(m, 0);
3848         vm_domain_free_unlock(vmd);
3849         vm_domain_freecnt_inc(vmd, 1);
3850 }
3851
3852 /*
3853  *      vm_page_free_pages_toq:
3854  *
3855  *      Returns a list of pages to the free list, disassociating it
3856  *      from any VM object.  In other words, this is equivalent to
3857  *      calling vm_page_free_toq() for each page of a list of VM objects.
3858  */
3859 void
3860 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3861 {
3862         vm_page_t m;
3863         int count;
3864
3865         if (SLIST_EMPTY(free))
3866                 return;
3867
3868         count = 0;
3869         while ((m = SLIST_FIRST(free)) != NULL) {
3870                 count++;
3871                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
3872                 vm_page_free_toq(m);
3873         }
3874
3875         if (update_wire_count)
3876                 vm_wire_sub(count);
3877 }
3878
3879 /*
3880  * Mark this page as wired down.  For managed pages, this prevents reclamation
3881  * by the page daemon, or when the containing object, if any, is destroyed.
3882  */
3883 void
3884 vm_page_wire(vm_page_t m)
3885 {
3886         u_int old;
3887
3888 #ifdef INVARIANTS
3889         if (m->object != NULL && !vm_page_busied(m) &&
3890             !vm_object_busied(m->object))
3891                 VM_OBJECT_ASSERT_LOCKED(m->object);
3892 #endif
3893         KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3894             VPRC_WIRE_COUNT(m->ref_count) >= 1,
3895             ("vm_page_wire: fictitious page %p has zero wirings", m));
3896
3897         old = atomic_fetchadd_int(&m->ref_count, 1);
3898         KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3899             ("vm_page_wire: counter overflow for page %p", m));
3900         if (VPRC_WIRE_COUNT(old) == 0) {
3901                 if ((m->oflags & VPO_UNMANAGED) == 0)
3902                         vm_page_aflag_set(m, PGA_DEQUEUE);
3903                 vm_wire_add(1);
3904         }
3905 }
3906
3907 /*
3908  * Attempt to wire a mapped page following a pmap lookup of that page.
3909  * This may fail if a thread is concurrently tearing down mappings of the page.
3910  * The transient failure is acceptable because it translates to the
3911  * failure of the caller pmap_extract_and_hold(), which should be then
3912  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3913  */
3914 bool
3915 vm_page_wire_mapped(vm_page_t m)
3916 {
3917         u_int old;
3918
3919         old = m->ref_count;
3920         do {
3921                 KASSERT(old > 0,
3922                     ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3923                 if ((old & VPRC_BLOCKED) != 0)
3924                         return (false);
3925         } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3926
3927         if (VPRC_WIRE_COUNT(old) == 0) {
3928                 if ((m->oflags & VPO_UNMANAGED) == 0)
3929                         vm_page_aflag_set(m, PGA_DEQUEUE);
3930                 vm_wire_add(1);
3931         }
3932         return (true);
3933 }
3934
3935 /*
3936  * Release a wiring reference to a managed page.  If the page still belongs to
3937  * an object, update its position in the page queues to reflect the reference.
3938  * If the wiring was the last reference to the page, free the page.
3939  */
3940 static void
3941 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
3942 {
3943         u_int old;
3944
3945         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3946             ("%s: page %p is unmanaged", __func__, m));
3947
3948         /*
3949          * Update LRU state before releasing the wiring reference.
3950          * Use a release store when updating the reference count to
3951          * synchronize with vm_page_free_prep().
3952          */
3953         old = m->ref_count;
3954         do {
3955                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
3956                     ("vm_page_unwire: wire count underflow for page %p", m));
3957
3958                 if (old > VPRC_OBJREF + 1) {
3959                         /*
3960                          * The page has at least one other wiring reference.  An
3961                          * earlier iteration of this loop may have called
3962                          * vm_page_release_toq() and cleared PGA_DEQUEUE, so
3963                          * re-set it if necessary.
3964                          */
3965                         if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
3966                                 vm_page_aflag_set(m, PGA_DEQUEUE);
3967                 } else if (old == VPRC_OBJREF + 1) {
3968                         /*
3969                          * This is the last wiring.  Clear PGA_DEQUEUE and
3970                          * update the page's queue state to reflect the
3971                          * reference.  If the page does not belong to an object
3972                          * (i.e., the VPRC_OBJREF bit is clear), we only need to
3973                          * clear leftover queue state.
3974                          */
3975                         vm_page_release_toq(m, nqueue, false);
3976                 } else if (old == 1) {
3977                         vm_page_aflag_clear(m, PGA_DEQUEUE);
3978                 }
3979         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3980
3981         if (VPRC_WIRE_COUNT(old) == 1) {
3982                 vm_wire_sub(1);
3983                 if (old == 1)
3984                         vm_page_free(m);
3985         }
3986 }
3987
3988 /*
3989  * Release one wiring of the specified page, potentially allowing it to be
3990  * paged out.
3991  *
3992  * Only managed pages belonging to an object can be paged out.  If the number
3993  * of wirings transitions to zero and the page is eligible for page out, then
3994  * the page is added to the specified paging queue.  If the released wiring
3995  * represented the last reference to the page, the page is freed.
3996  */
3997 void
3998 vm_page_unwire(vm_page_t m, uint8_t nqueue)
3999 {
4000
4001         KASSERT(nqueue < PQ_COUNT,
4002             ("vm_page_unwire: invalid queue %u request for page %p",
4003             nqueue, m));
4004
4005         if ((m->oflags & VPO_UNMANAGED) != 0) {
4006                 if (vm_page_unwire_noq(m) && m->ref_count == 0)
4007                         vm_page_free(m);
4008                 return;
4009         }
4010         vm_page_unwire_managed(m, nqueue, false);
4011 }
4012
4013 /*
4014  * Unwire a page without (re-)inserting it into a page queue.  It is up
4015  * to the caller to enqueue, requeue, or free the page as appropriate.
4016  * In most cases involving managed pages, vm_page_unwire() should be used
4017  * instead.
4018  */
4019 bool
4020 vm_page_unwire_noq(vm_page_t m)
4021 {
4022         u_int old;
4023
4024         old = vm_page_drop(m, 1);
4025         KASSERT(VPRC_WIRE_COUNT(old) != 0,
4026             ("vm_page_unref: counter underflow for page %p", m));
4027         KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4028             ("vm_page_unref: missing ref on fictitious page %p", m));
4029
4030         if (VPRC_WIRE_COUNT(old) > 1)
4031                 return (false);
4032         if ((m->oflags & VPO_UNMANAGED) == 0)
4033                 vm_page_aflag_clear(m, PGA_DEQUEUE);
4034         vm_wire_sub(1);
4035         return (true);
4036 }
4037
4038 /*
4039  * Ensure that the page ends up in the specified page queue.  If the page is
4040  * active or being moved to the active queue, ensure that its act_count is
4041  * at least ACT_INIT but do not otherwise mess with it.
4042  */
4043 static __always_inline void
4044 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4045 {
4046         vm_page_astate_t old, new;
4047
4048         KASSERT(m->ref_count > 0,
4049             ("%s: page %p does not carry any references", __func__, m));
4050         KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4051             ("%s: invalid flags %x", __func__, nflag));
4052
4053         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4054                 return;
4055
4056         old = vm_page_astate_load(m);
4057         do {
4058                 if ((old.flags & PGA_DEQUEUE) != 0)
4059                         break;
4060                 new = old;
4061                 new.flags &= ~PGA_QUEUE_OP_MASK;
4062                 if (nqueue == PQ_ACTIVE)
4063                         new.act_count = max(old.act_count, ACT_INIT);
4064                 if (old.queue == nqueue) {
4065                         if (nqueue != PQ_ACTIVE)
4066                                 new.flags |= nflag;
4067                 } else {
4068                         new.flags |= nflag;
4069                         new.queue = nqueue;
4070                 }
4071         } while (!vm_page_pqstate_commit(m, &old, new));
4072 }
4073
4074 /*
4075  * Put the specified page on the active list (if appropriate).
4076  */
4077 void
4078 vm_page_activate(vm_page_t m)
4079 {
4080
4081         vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4082 }
4083
4084 /*
4085  * Move the specified page to the tail of the inactive queue, or requeue
4086  * the page if it is already in the inactive queue.
4087  */
4088 void
4089 vm_page_deactivate(vm_page_t m)
4090 {
4091
4092         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4093 }
4094
4095 void
4096 vm_page_deactivate_noreuse(vm_page_t m)
4097 {
4098
4099         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4100 }
4101
4102 /*
4103  * Put a page in the laundry, or requeue it if it is already there.
4104  */
4105 void
4106 vm_page_launder(vm_page_t m)
4107 {
4108
4109         vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4110 }
4111
4112 /*
4113  * Put a page in the PQ_UNSWAPPABLE holding queue.
4114  */
4115 void
4116 vm_page_unswappable(vm_page_t m)
4117 {
4118
4119         KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4120             ("page %p already unswappable", m));
4121
4122         vm_page_dequeue(m);
4123         vm_page_enqueue(m, PQ_UNSWAPPABLE);
4124 }
4125
4126 /*
4127  * Release a page back to the page queues in preparation for unwiring.
4128  */
4129 static void
4130 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4131 {
4132         vm_page_astate_t old, new;
4133         uint16_t nflag;
4134
4135         /*
4136          * Use a check of the valid bits to determine whether we should
4137          * accelerate reclamation of the page.  The object lock might not be
4138          * held here, in which case the check is racy.  At worst we will either
4139          * accelerate reclamation of a valid page and violate LRU, or
4140          * unnecessarily defer reclamation of an invalid page.
4141          *
4142          * If we were asked to not cache the page, place it near the head of the
4143          * inactive queue so that is reclaimed sooner.
4144          */
4145         if (noreuse || m->valid == 0) {
4146                 nqueue = PQ_INACTIVE;
4147                 nflag = PGA_REQUEUE_HEAD;
4148         } else {
4149                 nflag = PGA_REQUEUE;
4150         }
4151
4152         old = vm_page_astate_load(m);
4153         do {
4154                 new = old;
4155
4156                 /*
4157                  * If the page is already in the active queue and we are not
4158                  * trying to accelerate reclamation, simply mark it as
4159                  * referenced and avoid any queue operations.
4160                  */
4161                 new.flags &= ~PGA_QUEUE_OP_MASK;
4162                 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE)
4163                         new.flags |= PGA_REFERENCED;
4164                 else {
4165                         new.flags |= nflag;
4166                         new.queue = nqueue;
4167                 }
4168         } while (!vm_page_pqstate_commit(m, &old, new));
4169 }
4170
4171 /*
4172  * Unwire a page and either attempt to free it or re-add it to the page queues.
4173  */
4174 void
4175 vm_page_release(vm_page_t m, int flags)
4176 {
4177         vm_object_t object;
4178
4179         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4180             ("vm_page_release: page %p is unmanaged", m));
4181
4182         if ((flags & VPR_TRYFREE) != 0) {
4183                 for (;;) {
4184                         object = atomic_load_ptr(&m->object);
4185                         if (object == NULL)
4186                                 break;
4187                         /* Depends on type-stability. */
4188                         if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4189                                 break;
4190                         if (object == m->object) {
4191                                 vm_page_release_locked(m, flags);
4192                                 VM_OBJECT_WUNLOCK(object);
4193                                 return;
4194                         }
4195                         VM_OBJECT_WUNLOCK(object);
4196                 }
4197         }
4198         vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4199 }
4200
4201 /* See vm_page_release(). */
4202 void
4203 vm_page_release_locked(vm_page_t m, int flags)
4204 {
4205
4206         VM_OBJECT_ASSERT_WLOCKED(m->object);
4207         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4208             ("vm_page_release_locked: page %p is unmanaged", m));
4209
4210         if (vm_page_unwire_noq(m)) {
4211                 if ((flags & VPR_TRYFREE) != 0 &&
4212                     (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4213                     m->dirty == 0 && vm_page_tryxbusy(m)) {
4214                         /*
4215                          * An unlocked lookup may have wired the page before the
4216                          * busy lock was acquired, in which case the page must
4217                          * not be freed.
4218                          */
4219                         if (__predict_true(!vm_page_wired(m))) {
4220                                 vm_page_free(m);
4221                                 return;
4222                         }
4223                         vm_page_xunbusy(m);
4224                 } else {
4225                         vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4226                 }
4227         }
4228 }
4229
4230 static bool
4231 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4232 {
4233         u_int old;
4234
4235         KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4236             ("vm_page_try_blocked_op: page %p has no object", m));
4237         KASSERT(vm_page_busied(m),
4238             ("vm_page_try_blocked_op: page %p is not busy", m));
4239         VM_OBJECT_ASSERT_LOCKED(m->object);
4240
4241         old = m->ref_count;
4242         do {
4243                 KASSERT(old != 0,
4244                     ("vm_page_try_blocked_op: page %p has no references", m));
4245                 if (VPRC_WIRE_COUNT(old) != 0)
4246                         return (false);
4247         } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4248
4249         (op)(m);
4250
4251         /*
4252          * If the object is read-locked, new wirings may be created via an
4253          * object lookup.
4254          */
4255         old = vm_page_drop(m, VPRC_BLOCKED);
4256         KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4257             old == (VPRC_BLOCKED | VPRC_OBJREF),
4258             ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4259             old, m));
4260         return (true);
4261 }
4262
4263 /*
4264  * Atomically check for wirings and remove all mappings of the page.
4265  */
4266 bool
4267 vm_page_try_remove_all(vm_page_t m)
4268 {
4269
4270         return (vm_page_try_blocked_op(m, pmap_remove_all));
4271 }
4272
4273 /*
4274  * Atomically check for wirings and remove all writeable mappings of the page.
4275  */
4276 bool
4277 vm_page_try_remove_write(vm_page_t m)
4278 {
4279
4280         return (vm_page_try_blocked_op(m, pmap_remove_write));
4281 }
4282
4283 /*
4284  * vm_page_advise
4285  *
4286  *      Apply the specified advice to the given page.
4287  */
4288 void
4289 vm_page_advise(vm_page_t m, int advice)
4290 {
4291
4292         VM_OBJECT_ASSERT_WLOCKED(m->object);
4293         vm_page_assert_xbusied(m);
4294
4295         if (advice == MADV_FREE)
4296                 /*
4297                  * Mark the page clean.  This will allow the page to be freed
4298                  * without first paging it out.  MADV_FREE pages are often
4299                  * quickly reused by malloc(3), so we do not do anything that
4300                  * would result in a page fault on a later access.
4301                  */
4302                 vm_page_undirty(m);
4303         else if (advice != MADV_DONTNEED) {
4304                 if (advice == MADV_WILLNEED)
4305                         vm_page_activate(m);
4306                 return;
4307         }
4308
4309         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4310                 vm_page_dirty(m);
4311
4312         /*
4313          * Clear any references to the page.  Otherwise, the page daemon will
4314          * immediately reactivate the page.
4315          */
4316         vm_page_aflag_clear(m, PGA_REFERENCED);
4317
4318         /*
4319          * Place clean pages near the head of the inactive queue rather than
4320          * the tail, thus defeating the queue's LRU operation and ensuring that
4321          * the page will be reused quickly.  Dirty pages not already in the
4322          * laundry are moved there.
4323          */
4324         if (m->dirty == 0)
4325                 vm_page_deactivate_noreuse(m);
4326         else if (!vm_page_in_laundry(m))
4327                 vm_page_launder(m);
4328 }
4329
4330 /*
4331  *      vm_page_grab_release
4332  *
4333  *      Helper routine for grab functions to release busy on return.
4334  */
4335 static inline void
4336 vm_page_grab_release(vm_page_t m, int allocflags)
4337 {
4338
4339         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4340                 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4341                         vm_page_sunbusy(m);
4342                 else
4343                         vm_page_xunbusy(m);
4344         }
4345 }
4346
4347 /*
4348  *      vm_page_grab_sleep
4349  *
4350  *      Sleep for busy according to VM_ALLOC_ parameters.  Returns true
4351  *      if the caller should retry and false otherwise.
4352  *
4353  *      If the object is locked on entry the object will be unlocked with
4354  *      false returns and still locked but possibly having been dropped
4355  *      with true returns.
4356  */
4357 static bool
4358 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4359     const char *wmesg, int allocflags, bool locked)
4360 {
4361
4362         if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4363                 return (false);
4364
4365         /*
4366          * Reference the page before unlocking and sleeping so that
4367          * the page daemon is less likely to reclaim it.
4368          */
4369         if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4370                 vm_page_reference(m);
4371
4372         if (_vm_page_busy_sleep(object, m, m->pindex, wmesg, allocflags,
4373             locked) && locked)
4374                 VM_OBJECT_WLOCK(object);
4375         if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4376                 return (false);
4377
4378         return (true);
4379 }
4380
4381 /*
4382  * Assert that the grab flags are valid.
4383  */
4384 static inline void
4385 vm_page_grab_check(int allocflags)
4386 {
4387
4388         KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4389             (allocflags & VM_ALLOC_WIRED) != 0,
4390             ("vm_page_grab*: the pages must be busied or wired"));
4391
4392         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4393             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4394             ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4395 }
4396
4397 /*
4398  * Calculate the page allocation flags for grab.
4399  */
4400 static inline int
4401 vm_page_grab_pflags(int allocflags)
4402 {
4403         int pflags;
4404
4405         pflags = allocflags &
4406             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4407             VM_ALLOC_NOBUSY);
4408         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4409                 pflags |= VM_ALLOC_WAITFAIL;
4410         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4411                 pflags |= VM_ALLOC_SBUSY;
4412
4413         return (pflags);
4414 }
4415
4416 /*
4417  * Grab a page, waiting until we are waken up due to the page
4418  * changing state.  We keep on waiting, if the page continues
4419  * to be in the object.  If the page doesn't exist, first allocate it
4420  * and then conditionally zero it.
4421  *
4422  * This routine may sleep.
4423  *
4424  * The object must be locked on entry.  The lock will, however, be released
4425  * and reacquired if the routine sleeps.
4426  */
4427 vm_page_t
4428 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4429 {
4430         vm_page_t m;
4431
4432         VM_OBJECT_ASSERT_WLOCKED(object);
4433         vm_page_grab_check(allocflags);
4434
4435 retrylookup:
4436         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4437                 if (!vm_page_tryacquire(m, allocflags)) {
4438                         if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4439                             allocflags, true))
4440                                 goto retrylookup;
4441                         return (NULL);
4442                 }
4443                 goto out;
4444         }
4445         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4446                 return (NULL);
4447         m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4448         if (m == NULL) {
4449                 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4450                         return (NULL);
4451                 goto retrylookup;
4452         }
4453         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4454                 pmap_zero_page(m);
4455
4456 out:
4457         vm_page_grab_release(m, allocflags);
4458
4459         return (m);
4460 }
4461
4462 /*
4463  * Locklessly attempt to acquire a page given a (object, pindex) tuple
4464  * and an optional previous page to avoid the radix lookup.  The resulting
4465  * page will be validated against the identity tuple and busied or wired
4466  * as requested.  A NULL *mp return guarantees that the page was not in
4467  * radix at the time of the call but callers must perform higher level
4468  * synchronization or retry the operation under a lock if they require
4469  * an atomic answer.  This is the only lock free validation routine,
4470  * other routines can depend on the resulting page state.
4471  *
4472  * The return value indicates whether the operation failed due to caller
4473  * flags.  The return is tri-state with mp:
4474  *
4475  * (true, *mp != NULL) - The operation was successful.
4476  * (true, *mp == NULL) - The page was not found in tree.
4477  * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition.
4478  */
4479 static bool
4480 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex,
4481     vm_page_t prev, vm_page_t *mp, int allocflags)
4482 {
4483         vm_page_t m;
4484
4485         vm_page_grab_check(allocflags);
4486         MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev));
4487
4488         *mp = NULL;
4489         for (;;) {
4490                 /*
4491                  * We may see a false NULL here because the previous page
4492                  * has been removed or just inserted and the list is loaded
4493                  * without barriers.  Switch to radix to verify.
4494                  */
4495                 if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL ||
4496                     QMD_IS_TRASHED(m) || m->pindex != pindex ||
4497                     atomic_load_ptr(&m->object) != object) {
4498                         prev = NULL;
4499                         /*
4500                          * This guarantees the result is instantaneously
4501                          * correct.
4502                          */
4503                         m = vm_radix_lookup_unlocked(&object->rtree, pindex);
4504                 }
4505                 if (m == NULL)
4506                         return (true);
4507                 if (vm_page_trybusy(m, allocflags)) {
4508                         if (m->object == object && m->pindex == pindex)
4509                                 break;
4510                         /* relookup. */
4511                         vm_page_busy_release(m);
4512                         cpu_spinwait();
4513                         continue;
4514                 }
4515                 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4516                     allocflags, false))
4517                         return (false);
4518         }
4519         if ((allocflags & VM_ALLOC_WIRED) != 0)
4520                 vm_page_wire(m);
4521         vm_page_grab_release(m, allocflags);
4522         *mp = m;
4523         return (true);
4524 }
4525
4526 /*
4527  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4528  * is not set.
4529  */
4530 vm_page_t
4531 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4532 {
4533         vm_page_t m;
4534
4535         vm_page_grab_check(allocflags);
4536
4537         if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags))
4538                 return (NULL);
4539         if (m != NULL)
4540                 return (m);
4541
4542         /*
4543          * The radix lockless lookup should never return a false negative
4544          * errors.  If the user specifies NOCREAT they are guaranteed there
4545          * was no page present at the instant of the call.  A NOCREAT caller
4546          * must handle create races gracefully.
4547          */
4548         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4549                 return (NULL);
4550
4551         VM_OBJECT_WLOCK(object);
4552         m = vm_page_grab(object, pindex, allocflags);
4553         VM_OBJECT_WUNLOCK(object);
4554
4555         return (m);
4556 }
4557
4558 /*
4559  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4560  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4561  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4562  * in simultaneously.  Additional pages will be left on a paging queue but
4563  * will neither be wired nor busy regardless of allocflags.
4564  */
4565 int
4566 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4567 {
4568         vm_page_t m;
4569         vm_page_t ma[VM_INITIAL_PAGEIN];
4570         int after, i, pflags, rv;
4571
4572         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4573             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4574             ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4575         KASSERT((allocflags &
4576             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4577             ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4578         VM_OBJECT_ASSERT_WLOCKED(object);
4579         pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4580             VM_ALLOC_WIRED);
4581         pflags |= VM_ALLOC_WAITFAIL;
4582
4583 retrylookup:
4584         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4585                 /*
4586                  * If the page is fully valid it can only become invalid
4587                  * with the object lock held.  If it is not valid it can
4588                  * become valid with the busy lock held.  Therefore, we
4589                  * may unnecessarily lock the exclusive busy here if we
4590                  * race with I/O completion not using the object lock.
4591                  * However, we will not end up with an invalid page and a
4592                  * shared lock.
4593                  */
4594                 if (!vm_page_trybusy(m,
4595                     vm_page_all_valid(m) ? allocflags : 0)) {
4596                         (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4597                             allocflags, true);
4598                         goto retrylookup;
4599                 }
4600                 if (vm_page_all_valid(m))
4601                         goto out;
4602                 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4603                         vm_page_busy_release(m);
4604                         *mp = NULL;
4605                         return (VM_PAGER_FAIL);
4606                 }
4607         } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4608                 *mp = NULL;
4609                 return (VM_PAGER_FAIL);
4610         } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
4611                 goto retrylookup;
4612         }
4613
4614         vm_page_assert_xbusied(m);
4615         if (vm_pager_has_page(object, pindex, NULL, &after)) {
4616                 after = MIN(after, VM_INITIAL_PAGEIN);
4617                 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4618                 after = MAX(after, 1);
4619                 ma[0] = m;
4620                 for (i = 1; i < after; i++) {
4621                         if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4622                                 if (ma[i]->valid || !vm_page_tryxbusy(ma[i]))
4623                                         break;
4624                         } else {
4625                                 ma[i] = vm_page_alloc(object, m->pindex + i,
4626                                     VM_ALLOC_NORMAL);
4627                                 if (ma[i] == NULL)
4628                                         break;
4629                         }
4630                 }
4631                 after = i;
4632                 vm_object_pip_add(object, after);
4633                 VM_OBJECT_WUNLOCK(object);
4634                 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4635                 VM_OBJECT_WLOCK(object);
4636                 vm_object_pip_wakeupn(object, after);
4637                 /* Pager may have replaced a page. */
4638                 m = ma[0];
4639                 if (rv != VM_PAGER_OK) {
4640                         for (i = 0; i < after; i++) {
4641                                 if (!vm_page_wired(ma[i]))
4642                                         vm_page_free(ma[i]);
4643                                 else
4644                                         vm_page_xunbusy(ma[i]);
4645                         }
4646                         *mp = NULL;
4647                         return (rv);
4648                 }
4649                 for (i = 1; i < after; i++)
4650                         vm_page_readahead_finish(ma[i]);
4651                 MPASS(vm_page_all_valid(m));
4652         } else {
4653                 vm_page_zero_invalid(m, TRUE);
4654         }
4655 out:
4656         if ((allocflags & VM_ALLOC_WIRED) != 0)
4657                 vm_page_wire(m);
4658         if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
4659                 vm_page_busy_downgrade(m);
4660         else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
4661                 vm_page_busy_release(m);
4662         *mp = m;
4663         return (VM_PAGER_OK);
4664 }
4665
4666 /*
4667  * Locklessly grab a valid page.  If the page is not valid or not yet
4668  * allocated this will fall back to the object lock method.
4669  */
4670 int
4671 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
4672     vm_pindex_t pindex, int allocflags)
4673 {
4674         vm_page_t m;
4675         int flags;
4676         int error;
4677
4678         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4679             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4680             ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4681             "mismatch"));
4682         KASSERT((allocflags &
4683             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4684             ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
4685
4686         /*
4687          * Attempt a lockless lookup and busy.  We need at least an sbusy
4688          * before we can inspect the valid field and return a wired page.
4689          */
4690         flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
4691         if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags))
4692                 return (VM_PAGER_FAIL);
4693         if ((m = *mp) != NULL) {
4694                 if (vm_page_all_valid(m)) {
4695                         if ((allocflags & VM_ALLOC_WIRED) != 0)
4696                                 vm_page_wire(m);
4697                         vm_page_grab_release(m, allocflags);
4698                         return (VM_PAGER_OK);
4699                 }
4700                 vm_page_busy_release(m);
4701         }
4702         if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4703                 *mp = NULL;
4704                 return (VM_PAGER_FAIL);
4705         }
4706         VM_OBJECT_WLOCK(object);
4707         error = vm_page_grab_valid(mp, object, pindex, allocflags);
4708         VM_OBJECT_WUNLOCK(object);
4709
4710         return (error);
4711 }
4712
4713 /*
4714  * Return the specified range of pages from the given object.  For each
4715  * page offset within the range, if a page already exists within the object
4716  * at that offset and it is busy, then wait for it to change state.  If,
4717  * instead, the page doesn't exist, then allocate it.
4718  *
4719  * The caller must always specify an allocation class.
4720  *
4721  * allocation classes:
4722  *      VM_ALLOC_NORMAL         normal process request
4723  *      VM_ALLOC_SYSTEM         system *really* needs the pages
4724  *
4725  * The caller must always specify that the pages are to be busied and/or
4726  * wired.
4727  *
4728  * optional allocation flags:
4729  *      VM_ALLOC_IGN_SBUSY      do not sleep on soft busy pages
4730  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
4731  *      VM_ALLOC_NOWAIT         do not sleep
4732  *      VM_ALLOC_SBUSY          set page to sbusy state
4733  *      VM_ALLOC_WIRED          wire the pages
4734  *      VM_ALLOC_ZERO           zero and validate any invalid pages
4735  *
4736  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4737  * may return a partial prefix of the requested range.
4738  */
4739 int
4740 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4741     vm_page_t *ma, int count)
4742 {
4743         vm_page_t m, mpred;
4744         int pflags;
4745         int i;
4746
4747         VM_OBJECT_ASSERT_WLOCKED(object);
4748         KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4749             ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4750         KASSERT(count > 0,
4751             ("vm_page_grab_pages: invalid page count %d", count));
4752         vm_page_grab_check(allocflags);
4753
4754         pflags = vm_page_grab_pflags(allocflags);
4755         i = 0;
4756 retrylookup:
4757         m = vm_radix_lookup_le(&object->rtree, pindex + i);
4758         if (m == NULL || m->pindex != pindex + i) {
4759                 mpred = m;
4760                 m = NULL;
4761         } else
4762                 mpred = TAILQ_PREV(m, pglist, listq);
4763         for (; i < count; i++) {
4764                 if (m != NULL) {
4765                         if (!vm_page_tryacquire(m, allocflags)) {
4766                                 if (vm_page_grab_sleep(object, m, pindex,
4767                                     "grbmaw", allocflags, true))
4768                                         goto retrylookup;
4769                                 break;
4770                         }
4771                 } else {
4772                         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4773                                 break;
4774                         m = vm_page_alloc_after(object, pindex + i,
4775                             pflags | VM_ALLOC_COUNT(count - i), mpred);
4776                         if (m == NULL) {
4777                                 if ((allocflags & (VM_ALLOC_NOWAIT |
4778                                     VM_ALLOC_WAITFAIL)) != 0)
4779                                         break;
4780                                 goto retrylookup;
4781                         }
4782                 }
4783                 if (vm_page_none_valid(m) &&
4784                     (allocflags & VM_ALLOC_ZERO) != 0) {
4785                         if ((m->flags & PG_ZERO) == 0)
4786                                 pmap_zero_page(m);
4787                         vm_page_valid(m);
4788                 }
4789                 vm_page_grab_release(m, allocflags);
4790                 ma[i] = mpred = m;
4791                 m = vm_page_next(m);
4792         }
4793         return (i);
4794 }
4795
4796 /*
4797  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
4798  * and will fall back to the locked variant to handle allocation.
4799  */
4800 int
4801 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
4802     int allocflags, vm_page_t *ma, int count)
4803 {
4804         vm_page_t m, pred;
4805         int flags;
4806         int i;
4807
4808         KASSERT(count > 0,
4809             ("vm_page_grab_pages_unlocked: invalid page count %d", count));
4810         vm_page_grab_check(allocflags);
4811
4812         /*
4813          * Modify flags for lockless acquire to hold the page until we
4814          * set it valid if necessary.
4815          */
4816         flags = allocflags & ~VM_ALLOC_NOBUSY;
4817         pred = NULL;
4818         for (i = 0; i < count; i++, pindex++) {
4819                 if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags))
4820                         return (i);
4821                 if (m == NULL)
4822                         break;
4823                 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
4824                         if ((m->flags & PG_ZERO) == 0)
4825                                 pmap_zero_page(m);
4826                         vm_page_valid(m);
4827                 }
4828                 /* m will still be wired or busy according to flags. */
4829                 vm_page_grab_release(m, allocflags);
4830                 pred = ma[i] = m;
4831         }
4832         if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
4833                 return (i);
4834         count -= i;
4835         VM_OBJECT_WLOCK(object);
4836         i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
4837         VM_OBJECT_WUNLOCK(object);
4838
4839         return (i);
4840 }
4841
4842 /*
4843  * Mapping function for valid or dirty bits in a page.
4844  *
4845  * Inputs are required to range within a page.
4846  */
4847 vm_page_bits_t
4848 vm_page_bits(int base, int size)
4849 {
4850         int first_bit;
4851         int last_bit;
4852
4853         KASSERT(
4854             base + size <= PAGE_SIZE,
4855             ("vm_page_bits: illegal base/size %d/%d", base, size)
4856         );
4857
4858         if (size == 0)          /* handle degenerate case */
4859                 return (0);
4860
4861         first_bit = base >> DEV_BSHIFT;
4862         last_bit = (base + size - 1) >> DEV_BSHIFT;
4863
4864         return (((vm_page_bits_t)2 << last_bit) -
4865             ((vm_page_bits_t)1 << first_bit));
4866 }
4867
4868 void
4869 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4870 {
4871
4872 #if PAGE_SIZE == 32768
4873         atomic_set_64((uint64_t *)bits, set);
4874 #elif PAGE_SIZE == 16384
4875         atomic_set_32((uint32_t *)bits, set);
4876 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4877         atomic_set_16((uint16_t *)bits, set);
4878 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4879         atomic_set_8((uint8_t *)bits, set);
4880 #else           /* PAGE_SIZE <= 8192 */
4881         uintptr_t addr;
4882         int shift;
4883
4884         addr = (uintptr_t)bits;
4885         /*
4886          * Use a trick to perform a 32-bit atomic on the
4887          * containing aligned word, to not depend on the existence
4888          * of atomic_{set, clear}_{8, 16}.
4889          */
4890         shift = addr & (sizeof(uint32_t) - 1);
4891 #if BYTE_ORDER == BIG_ENDIAN
4892         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4893 #else
4894         shift *= NBBY;
4895 #endif
4896         addr &= ~(sizeof(uint32_t) - 1);
4897         atomic_set_32((uint32_t *)addr, set << shift);
4898 #endif          /* PAGE_SIZE */
4899 }
4900
4901 static inline void
4902 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4903 {
4904
4905 #if PAGE_SIZE == 32768
4906         atomic_clear_64((uint64_t *)bits, clear);
4907 #elif PAGE_SIZE == 16384
4908         atomic_clear_32((uint32_t *)bits, clear);
4909 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4910         atomic_clear_16((uint16_t *)bits, clear);
4911 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4912         atomic_clear_8((uint8_t *)bits, clear);
4913 #else           /* PAGE_SIZE <= 8192 */
4914         uintptr_t addr;
4915         int shift;
4916
4917         addr = (uintptr_t)bits;
4918         /*
4919          * Use a trick to perform a 32-bit atomic on the
4920          * containing aligned word, to not depend on the existence
4921          * of atomic_{set, clear}_{8, 16}.
4922          */
4923         shift = addr & (sizeof(uint32_t) - 1);
4924 #if BYTE_ORDER == BIG_ENDIAN
4925         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4926 #else
4927         shift *= NBBY;
4928 #endif
4929         addr &= ~(sizeof(uint32_t) - 1);
4930         atomic_clear_32((uint32_t *)addr, clear << shift);
4931 #endif          /* PAGE_SIZE */
4932 }
4933
4934 static inline vm_page_bits_t
4935 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
4936 {
4937 #if PAGE_SIZE == 32768
4938         uint64_t old;
4939
4940         old = *bits;
4941         while (atomic_fcmpset_64(bits, &old, newbits) == 0);
4942         return (old);
4943 #elif PAGE_SIZE == 16384
4944         uint32_t old;
4945
4946         old = *bits;
4947         while (atomic_fcmpset_32(bits, &old, newbits) == 0);
4948         return (old);
4949 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
4950         uint16_t old;
4951
4952         old = *bits;
4953         while (atomic_fcmpset_16(bits, &old, newbits) == 0);
4954         return (old);
4955 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
4956         uint8_t old;
4957
4958         old = *bits;
4959         while (atomic_fcmpset_8(bits, &old, newbits) == 0);
4960         return (old);
4961 #else           /* PAGE_SIZE <= 4096*/
4962         uintptr_t addr;
4963         uint32_t old, new, mask;
4964         int shift;
4965
4966         addr = (uintptr_t)bits;
4967         /*
4968          * Use a trick to perform a 32-bit atomic on the
4969          * containing aligned word, to not depend on the existence
4970          * of atomic_{set, swap, clear}_{8, 16}.
4971          */
4972         shift = addr & (sizeof(uint32_t) - 1);
4973 #if BYTE_ORDER == BIG_ENDIAN
4974         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4975 #else
4976         shift *= NBBY;
4977 #endif
4978         addr &= ~(sizeof(uint32_t) - 1);
4979         mask = VM_PAGE_BITS_ALL << shift;
4980
4981         old = *bits;
4982         do {
4983                 new = old & ~mask;
4984                 new |= newbits << shift;
4985         } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
4986         return (old >> shift);
4987 #endif          /* PAGE_SIZE */
4988 }
4989
4990 /*
4991  *      vm_page_set_valid_range:
4992  *
4993  *      Sets portions of a page valid.  The arguments are expected
4994  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4995  *      of any partial chunks touched by the range.  The invalid portion of
4996  *      such chunks will be zeroed.
4997  *
4998  *      (base + size) must be less then or equal to PAGE_SIZE.
4999  */
5000 void
5001 vm_page_set_valid_range(vm_page_t m, int base, int size)
5002 {
5003         int endoff, frag;
5004         vm_page_bits_t pagebits;
5005
5006         vm_page_assert_busied(m);
5007         if (size == 0)  /* handle degenerate case */
5008                 return;
5009
5010         /*
5011          * If the base is not DEV_BSIZE aligned and the valid
5012          * bit is clear, we have to zero out a portion of the
5013          * first block.
5014          */
5015         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5016             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5017                 pmap_zero_page_area(m, frag, base - frag);
5018
5019         /*
5020          * If the ending offset is not DEV_BSIZE aligned and the
5021          * valid bit is clear, we have to zero out a portion of
5022          * the last block.
5023          */
5024         endoff = base + size;
5025         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5026             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5027                 pmap_zero_page_area(m, endoff,
5028                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5029
5030         /*
5031          * Assert that no previously invalid block that is now being validated
5032          * is already dirty.
5033          */
5034         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5035             ("vm_page_set_valid_range: page %p is dirty", m));
5036
5037         /*
5038          * Set valid bits inclusive of any overlap.
5039          */
5040         pagebits = vm_page_bits(base, size);
5041         if (vm_page_xbusied(m))
5042                 m->valid |= pagebits;
5043         else
5044                 vm_page_bits_set(m, &m->valid, pagebits);
5045 }
5046
5047 /*
5048  * Set the page dirty bits and free the invalid swap space if
5049  * present.  Returns the previous dirty bits.
5050  */
5051 vm_page_bits_t
5052 vm_page_set_dirty(vm_page_t m)
5053 {
5054         vm_page_bits_t old;
5055
5056         VM_PAGE_OBJECT_BUSY_ASSERT(m);
5057
5058         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5059                 old = m->dirty;
5060                 m->dirty = VM_PAGE_BITS_ALL;
5061         } else
5062                 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5063         if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5064                 vm_pager_page_unswapped(m);
5065
5066         return (old);
5067 }
5068
5069 /*
5070  * Clear the given bits from the specified page's dirty field.
5071  */
5072 static __inline void
5073 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5074 {
5075
5076         vm_page_assert_busied(m);
5077
5078         /*
5079          * If the page is xbusied and not write mapped we are the
5080          * only thread that can modify dirty bits.  Otherwise, The pmap
5081          * layer can call vm_page_dirty() without holding a distinguished
5082          * lock.  The combination of page busy and atomic operations
5083          * suffice to guarantee consistency of the page dirty field.
5084          */
5085         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5086                 m->dirty &= ~pagebits;
5087         else
5088                 vm_page_bits_clear(m, &m->dirty, pagebits);
5089 }
5090
5091 /*
5092  *      vm_page_set_validclean:
5093  *
5094  *      Sets portions of a page valid and clean.  The arguments are expected
5095  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5096  *      of any partial chunks touched by the range.  The invalid portion of
5097  *      such chunks will be zero'd.
5098  *
5099  *      (base + size) must be less then or equal to PAGE_SIZE.
5100  */
5101 void
5102 vm_page_set_validclean(vm_page_t m, int base, int size)
5103 {
5104         vm_page_bits_t oldvalid, pagebits;
5105         int endoff, frag;
5106
5107         vm_page_assert_busied(m);
5108         if (size == 0)  /* handle degenerate case */
5109                 return;
5110
5111         /*
5112          * If the base is not DEV_BSIZE aligned and the valid
5113          * bit is clear, we have to zero out a portion of the
5114          * first block.
5115          */
5116         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5117             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5118                 pmap_zero_page_area(m, frag, base - frag);
5119
5120         /*
5121          * If the ending offset is not DEV_BSIZE aligned and the
5122          * valid bit is clear, we have to zero out a portion of
5123          * the last block.
5124          */
5125         endoff = base + size;
5126         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5127             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5128                 pmap_zero_page_area(m, endoff,
5129                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5130
5131         /*
5132          * Set valid, clear dirty bits.  If validating the entire
5133          * page we can safely clear the pmap modify bit.  We also
5134          * use this opportunity to clear the PGA_NOSYNC flag.  If a process
5135          * takes a write fault on a MAP_NOSYNC memory area the flag will
5136          * be set again.
5137          *
5138          * We set valid bits inclusive of any overlap, but we can only
5139          * clear dirty bits for DEV_BSIZE chunks that are fully within
5140          * the range.
5141          */
5142         oldvalid = m->valid;
5143         pagebits = vm_page_bits(base, size);
5144         if (vm_page_xbusied(m))
5145                 m->valid |= pagebits;
5146         else
5147                 vm_page_bits_set(m, &m->valid, pagebits);
5148 #if 0   /* NOT YET */
5149         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5150                 frag = DEV_BSIZE - frag;
5151                 base += frag;
5152                 size -= frag;
5153                 if (size < 0)
5154                         size = 0;
5155         }
5156         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5157 #endif
5158         if (base == 0 && size == PAGE_SIZE) {
5159                 /*
5160                  * The page can only be modified within the pmap if it is
5161                  * mapped, and it can only be mapped if it was previously
5162                  * fully valid.
5163                  */
5164                 if (oldvalid == VM_PAGE_BITS_ALL)
5165                         /*
5166                          * Perform the pmap_clear_modify() first.  Otherwise,
5167                          * a concurrent pmap operation, such as
5168                          * pmap_protect(), could clear a modification in the
5169                          * pmap and set the dirty field on the page before
5170                          * pmap_clear_modify() had begun and after the dirty
5171                          * field was cleared here.
5172                          */
5173                         pmap_clear_modify(m);
5174                 m->dirty = 0;
5175                 vm_page_aflag_clear(m, PGA_NOSYNC);
5176         } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5177                 m->dirty &= ~pagebits;
5178         else
5179                 vm_page_clear_dirty_mask(m, pagebits);
5180 }
5181
5182 void
5183 vm_page_clear_dirty(vm_page_t m, int base, int size)
5184 {
5185
5186         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5187 }
5188
5189 /*
5190  *      vm_page_set_invalid:
5191  *
5192  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
5193  *      valid and dirty bits for the effected areas are cleared.
5194  */
5195 void
5196 vm_page_set_invalid(vm_page_t m, int base, int size)
5197 {
5198         vm_page_bits_t bits;
5199         vm_object_t object;
5200
5201         /*
5202          * The object lock is required so that pages can't be mapped
5203          * read-only while we're in the process of invalidating them.
5204          */
5205         object = m->object;
5206         VM_OBJECT_ASSERT_WLOCKED(object);
5207         vm_page_assert_busied(m);
5208
5209         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5210             size >= object->un_pager.vnp.vnp_size)
5211                 bits = VM_PAGE_BITS_ALL;
5212         else
5213                 bits = vm_page_bits(base, size);
5214         if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5215                 pmap_remove_all(m);
5216         KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5217             !pmap_page_is_mapped(m),
5218             ("vm_page_set_invalid: page %p is mapped", m));
5219         if (vm_page_xbusied(m)) {
5220                 m->valid &= ~bits;
5221                 m->dirty &= ~bits;
5222         } else {
5223                 vm_page_bits_clear(m, &m->valid, bits);
5224                 vm_page_bits_clear(m, &m->dirty, bits);
5225         }
5226 }
5227
5228 /*
5229  *      vm_page_invalid:
5230  *
5231  *      Invalidates the entire page.  The page must be busy, unmapped, and
5232  *      the enclosing object must be locked.  The object locks protects
5233  *      against concurrent read-only pmap enter which is done without
5234  *      busy.
5235  */
5236 void
5237 vm_page_invalid(vm_page_t m)
5238 {
5239
5240         vm_page_assert_busied(m);
5241         VM_OBJECT_ASSERT_LOCKED(m->object);
5242         MPASS(!pmap_page_is_mapped(m));
5243
5244         if (vm_page_xbusied(m))
5245                 m->valid = 0;
5246         else
5247                 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5248 }
5249
5250 /*
5251  * vm_page_zero_invalid()
5252  *
5253  *      The kernel assumes that the invalid portions of a page contain
5254  *      garbage, but such pages can be mapped into memory by user code.
5255  *      When this occurs, we must zero out the non-valid portions of the
5256  *      page so user code sees what it expects.
5257  *
5258  *      Pages are most often semi-valid when the end of a file is mapped
5259  *      into memory and the file's size is not page aligned.
5260  */
5261 void
5262 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5263 {
5264         int b;
5265         int i;
5266
5267         /*
5268          * Scan the valid bits looking for invalid sections that
5269          * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
5270          * valid bit may be set ) have already been zeroed by
5271          * vm_page_set_validclean().
5272          */
5273         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5274                 if (i == (PAGE_SIZE / DEV_BSIZE) ||
5275                     (m->valid & ((vm_page_bits_t)1 << i))) {
5276                         if (i > b) {
5277                                 pmap_zero_page_area(m,
5278                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5279                         }
5280                         b = i + 1;
5281                 }
5282         }
5283
5284         /*
5285          * setvalid is TRUE when we can safely set the zero'd areas
5286          * as being valid.  We can do this if there are no cache consistancy
5287          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5288          */
5289         if (setvalid)
5290                 vm_page_valid(m);
5291 }
5292
5293 /*
5294  *      vm_page_is_valid:
5295  *
5296  *      Is (partial) page valid?  Note that the case where size == 0
5297  *      will return FALSE in the degenerate case where the page is
5298  *      entirely invalid, and TRUE otherwise.
5299  *
5300  *      Some callers envoke this routine without the busy lock held and
5301  *      handle races via higher level locks.  Typical callers should
5302  *      hold a busy lock to prevent invalidation.
5303  */
5304 int
5305 vm_page_is_valid(vm_page_t m, int base, int size)
5306 {
5307         vm_page_bits_t bits;
5308
5309         bits = vm_page_bits(base, size);
5310         return (m->valid != 0 && (m->valid & bits) == bits);
5311 }
5312
5313 /*
5314  * Returns true if all of the specified predicates are true for the entire
5315  * (super)page and false otherwise.
5316  */
5317 bool
5318 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5319 {
5320         vm_object_t object;
5321         int i, npages;
5322
5323         object = m->object;
5324         if (skip_m != NULL && skip_m->object != object)
5325                 return (false);
5326         VM_OBJECT_ASSERT_LOCKED(object);
5327         npages = atop(pagesizes[m->psind]);
5328
5329         /*
5330          * The physically contiguous pages that make up a superpage, i.e., a
5331          * page with a page size index ("psind") greater than zero, will
5332          * occupy adjacent entries in vm_page_array[].
5333          */
5334         for (i = 0; i < npages; i++) {
5335                 /* Always test object consistency, including "skip_m". */
5336                 if (m[i].object != object)
5337                         return (false);
5338                 if (&m[i] == skip_m)
5339                         continue;
5340                 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5341                         return (false);
5342                 if ((flags & PS_ALL_DIRTY) != 0) {
5343                         /*
5344                          * Calling vm_page_test_dirty() or pmap_is_modified()
5345                          * might stop this case from spuriously returning
5346                          * "false".  However, that would require a write lock
5347                          * on the object containing "m[i]".
5348                          */
5349                         if (m[i].dirty != VM_PAGE_BITS_ALL)
5350                                 return (false);
5351                 }
5352                 if ((flags & PS_ALL_VALID) != 0 &&
5353                     m[i].valid != VM_PAGE_BITS_ALL)
5354                         return (false);
5355         }
5356         return (true);
5357 }
5358
5359 /*
5360  * Set the page's dirty bits if the page is modified.
5361  */
5362 void
5363 vm_page_test_dirty(vm_page_t m)
5364 {
5365
5366         vm_page_assert_busied(m);
5367         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5368                 vm_page_dirty(m);
5369 }
5370
5371 void
5372 vm_page_valid(vm_page_t m)
5373 {
5374
5375         vm_page_assert_busied(m);
5376         if (vm_page_xbusied(m))
5377                 m->valid = VM_PAGE_BITS_ALL;
5378         else
5379                 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5380 }
5381
5382 void
5383 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5384 {
5385
5386         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5387 }
5388
5389 void
5390 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5391 {
5392
5393         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5394 }
5395
5396 int
5397 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5398 {
5399
5400         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5401 }
5402
5403 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5404 void
5405 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5406 {
5407
5408         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5409 }
5410
5411 void
5412 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5413 {
5414
5415         mtx_assert_(vm_page_lockptr(m), a, file, line);
5416 }
5417 #endif
5418
5419 #ifdef INVARIANTS
5420 void
5421 vm_page_object_busy_assert(vm_page_t m)
5422 {
5423
5424         /*
5425          * Certain of the page's fields may only be modified by the
5426          * holder of a page or object busy.
5427          */
5428         if (m->object != NULL && !vm_page_busied(m))
5429                 VM_OBJECT_ASSERT_BUSY(m->object);
5430 }
5431
5432 void
5433 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5434 {
5435
5436         if ((bits & PGA_WRITEABLE) == 0)
5437                 return;
5438
5439         /*
5440          * The PGA_WRITEABLE flag can only be set if the page is
5441          * managed, is exclusively busied or the object is locked.
5442          * Currently, this flag is only set by pmap_enter().
5443          */
5444         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5445             ("PGA_WRITEABLE on unmanaged page"));
5446         if (!vm_page_xbusied(m))
5447                 VM_OBJECT_ASSERT_BUSY(m->object);
5448 }
5449 #endif
5450
5451 #include "opt_ddb.h"
5452 #ifdef DDB
5453 #include <sys/kernel.h>
5454
5455 #include <ddb/ddb.h>
5456
5457 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5458 {
5459
5460         db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5461         db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5462         db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5463         db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5464         db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5465         db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5466         db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5467         db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5468         db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5469 }
5470
5471 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5472 {
5473         int dom;
5474
5475         db_printf("pq_free %d\n", vm_free_count());
5476         for (dom = 0; dom < vm_ndomains; dom++) {
5477                 db_printf(
5478     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5479                     dom,
5480                     vm_dom[dom].vmd_page_count,
5481                     vm_dom[dom].vmd_free_count,
5482                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5483                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5484                     vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5485                     vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5486         }
5487 }
5488
5489 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5490 {
5491         vm_page_t m;
5492         boolean_t phys, virt;
5493
5494         if (!have_addr) {
5495                 db_printf("show pginfo addr\n");
5496                 return;
5497         }
5498
5499         phys = strchr(modif, 'p') != NULL;
5500         virt = strchr(modif, 'v') != NULL;
5501         if (virt)
5502                 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5503         else if (phys)
5504                 m = PHYS_TO_VM_PAGE(addr);
5505         else
5506                 m = (vm_page_t)addr;
5507         db_printf(
5508     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5509     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5510             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5511             m->a.queue, m->ref_count, m->a.flags, m->oflags,
5512             m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5513 }
5514 #endif /* DDB */