]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_page.c
bhnd(9): Fix a few mandoc related issues
[FreeBSD/FreeBSD.git] / sys / vm / vm_page.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
36  */
37
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64
65 /*
66  *      Resident memory management module.
67  */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_vm.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/vm_dumpset.h>
112 #include <vm/uma.h>
113 #include <vm/uma_int.h>
114
115 #include <machine/md_var.h>
116
117 struct vm_domain vm_dom[MAXMEMDOM];
118
119 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
120
121 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
122
123 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
124 /* The following fields are protected by the domainset lock. */
125 domainset_t __exclusive_cache_line vm_min_domains;
126 domainset_t __exclusive_cache_line vm_severe_domains;
127 static int vm_min_waiters;
128 static int vm_severe_waiters;
129 static int vm_pageproc_waiters;
130
131 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
132     "VM page statistics");
133
134 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
135 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
136     CTLFLAG_RD, &pqstate_commit_retries,
137     "Number of failed per-page atomic queue state updates");
138
139 static COUNTER_U64_DEFINE_EARLY(queue_ops);
140 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
141     CTLFLAG_RD, &queue_ops,
142     "Number of batched queue operations");
143
144 static COUNTER_U64_DEFINE_EARLY(queue_nops);
145 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
146     CTLFLAG_RD, &queue_nops,
147     "Number of batched queue operations with no effects");
148
149 /*
150  * bogus page -- for I/O to/from partially complete buffers,
151  * or for paging into sparsely invalid regions.
152  */
153 vm_page_t bogus_page;
154
155 vm_page_t vm_page_array;
156 long vm_page_array_size;
157 long first_page;
158
159 struct bitset *vm_page_dump;
160 long vm_page_dump_pages;
161
162 static TAILQ_HEAD(, vm_page) blacklist_head;
163 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
164 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
165     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
166
167 static uma_zone_t fakepg_zone;
168
169 static void vm_page_alloc_check(vm_page_t m);
170 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
171     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
172 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
173 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
174 static bool vm_page_free_prep(vm_page_t m);
175 static void vm_page_free_toq(vm_page_t m);
176 static void vm_page_init(void *dummy);
177 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
178     vm_pindex_t pindex, vm_page_t mpred);
179 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
180     vm_page_t mpred);
181 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
182     const uint16_t nflag);
183 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
184     vm_page_t m_run, vm_paddr_t high);
185 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
186 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
187     int req);
188 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
189     int flags);
190 static void vm_page_zone_release(void *arg, void **store, int cnt);
191
192 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
193
194 static void
195 vm_page_init(void *dummy)
196 {
197
198         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
199             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
200         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
201             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
202 }
203
204 /*
205  * The cache page zone is initialized later since we need to be able to allocate
206  * pages before UMA is fully initialized.
207  */
208 static void
209 vm_page_init_cache_zones(void *dummy __unused)
210 {
211         struct vm_domain *vmd;
212         struct vm_pgcache *pgcache;
213         int cache, domain, maxcache, pool;
214
215         maxcache = 0;
216         TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
217         maxcache *= mp_ncpus;
218         for (domain = 0; domain < vm_ndomains; domain++) {
219                 vmd = VM_DOMAIN(domain);
220                 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
221                         pgcache = &vmd->vmd_pgcache[pool];
222                         pgcache->domain = domain;
223                         pgcache->pool = pool;
224                         pgcache->zone = uma_zcache_create("vm pgcache",
225                             PAGE_SIZE, NULL, NULL, NULL, NULL,
226                             vm_page_zone_import, vm_page_zone_release, pgcache,
227                             UMA_ZONE_VM);
228
229                         /*
230                          * Limit each pool's zone to 0.1% of the pages in the
231                          * domain.
232                          */
233                         cache = maxcache != 0 ? maxcache :
234                             vmd->vmd_page_count / 1000;
235                         uma_zone_set_maxcache(pgcache->zone, cache);
236                 }
237         }
238 }
239 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
240
241 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
242 #if PAGE_SIZE == 32768
243 #ifdef CTASSERT
244 CTASSERT(sizeof(u_long) >= 8);
245 #endif
246 #endif
247
248 /*
249  *      vm_set_page_size:
250  *
251  *      Sets the page size, perhaps based upon the memory
252  *      size.  Must be called before any use of page-size
253  *      dependent functions.
254  */
255 void
256 vm_set_page_size(void)
257 {
258         if (vm_cnt.v_page_size == 0)
259                 vm_cnt.v_page_size = PAGE_SIZE;
260         if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
261                 panic("vm_set_page_size: page size not a power of two");
262 }
263
264 /*
265  *      vm_page_blacklist_next:
266  *
267  *      Find the next entry in the provided string of blacklist
268  *      addresses.  Entries are separated by space, comma, or newline.
269  *      If an invalid integer is encountered then the rest of the
270  *      string is skipped.  Updates the list pointer to the next
271  *      character, or NULL if the string is exhausted or invalid.
272  */
273 static vm_paddr_t
274 vm_page_blacklist_next(char **list, char *end)
275 {
276         vm_paddr_t bad;
277         char *cp, *pos;
278
279         if (list == NULL || *list == NULL)
280                 return (0);
281         if (**list =='\0') {
282                 *list = NULL;
283                 return (0);
284         }
285
286         /*
287          * If there's no end pointer then the buffer is coming from
288          * the kenv and we know it's null-terminated.
289          */
290         if (end == NULL)
291                 end = *list + strlen(*list);
292
293         /* Ensure that strtoq() won't walk off the end */
294         if (*end != '\0') {
295                 if (*end == '\n' || *end == ' ' || *end  == ',')
296                         *end = '\0';
297                 else {
298                         printf("Blacklist not terminated, skipping\n");
299                         *list = NULL;
300                         return (0);
301                 }
302         }
303
304         for (pos = *list; *pos != '\0'; pos = cp) {
305                 bad = strtoq(pos, &cp, 0);
306                 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
307                         if (bad == 0) {
308                                 if (++cp < end)
309                                         continue;
310                                 else
311                                         break;
312                         }
313                 } else
314                         break;
315                 if (*cp == '\0' || ++cp >= end)
316                         *list = NULL;
317                 else
318                         *list = cp;
319                 return (trunc_page(bad));
320         }
321         printf("Garbage in RAM blacklist, skipping\n");
322         *list = NULL;
323         return (0);
324 }
325
326 bool
327 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
328 {
329         struct vm_domain *vmd;
330         vm_page_t m;
331         int ret;
332
333         m = vm_phys_paddr_to_vm_page(pa);
334         if (m == NULL)
335                 return (true); /* page does not exist, no failure */
336
337         vmd = vm_pagequeue_domain(m);
338         vm_domain_free_lock(vmd);
339         ret = vm_phys_unfree_page(m);
340         vm_domain_free_unlock(vmd);
341         if (ret != 0) {
342                 vm_domain_freecnt_inc(vmd, -1);
343                 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
344                 if (verbose)
345                         printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
346         }
347         return (ret);
348 }
349
350 /*
351  *      vm_page_blacklist_check:
352  *
353  *      Iterate through the provided string of blacklist addresses, pulling
354  *      each entry out of the physical allocator free list and putting it
355  *      onto a list for reporting via the vm.page_blacklist sysctl.
356  */
357 static void
358 vm_page_blacklist_check(char *list, char *end)
359 {
360         vm_paddr_t pa;
361         char *next;
362
363         next = list;
364         while (next != NULL) {
365                 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
366                         continue;
367                 vm_page_blacklist_add(pa, bootverbose);
368         }
369 }
370
371 /*
372  *      vm_page_blacklist_load:
373  *
374  *      Search for a special module named "ram_blacklist".  It'll be a
375  *      plain text file provided by the user via the loader directive
376  *      of the same name.
377  */
378 static void
379 vm_page_blacklist_load(char **list, char **end)
380 {
381         void *mod;
382         u_char *ptr;
383         u_int len;
384
385         mod = NULL;
386         ptr = NULL;
387
388         mod = preload_search_by_type("ram_blacklist");
389         if (mod != NULL) {
390                 ptr = preload_fetch_addr(mod);
391                 len = preload_fetch_size(mod);
392         }
393         *list = ptr;
394         if (ptr != NULL)
395                 *end = ptr + len;
396         else
397                 *end = NULL;
398         return;
399 }
400
401 static int
402 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
403 {
404         vm_page_t m;
405         struct sbuf sbuf;
406         int error, first;
407
408         first = 1;
409         error = sysctl_wire_old_buffer(req, 0);
410         if (error != 0)
411                 return (error);
412         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
413         TAILQ_FOREACH(m, &blacklist_head, listq) {
414                 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
415                     (uintmax_t)m->phys_addr);
416                 first = 0;
417         }
418         error = sbuf_finish(&sbuf);
419         sbuf_delete(&sbuf);
420         return (error);
421 }
422
423 /*
424  * Initialize a dummy page for use in scans of the specified paging queue.
425  * In principle, this function only needs to set the flag PG_MARKER.
426  * Nonetheless, it write busies the page as a safety precaution.
427  */
428 void
429 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
430 {
431
432         bzero(marker, sizeof(*marker));
433         marker->flags = PG_MARKER;
434         marker->a.flags = aflags;
435         marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
436         marker->a.queue = queue;
437 }
438
439 static void
440 vm_page_domain_init(int domain)
441 {
442         struct vm_domain *vmd;
443         struct vm_pagequeue *pq;
444         int i;
445
446         vmd = VM_DOMAIN(domain);
447         bzero(vmd, sizeof(*vmd));
448         *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
449             "vm inactive pagequeue";
450         *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
451             "vm active pagequeue";
452         *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
453             "vm laundry pagequeue";
454         *__DECONST(const char **,
455             &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
456             "vm unswappable pagequeue";
457         vmd->vmd_domain = domain;
458         vmd->vmd_page_count = 0;
459         vmd->vmd_free_count = 0;
460         vmd->vmd_segs = 0;
461         vmd->vmd_oom = FALSE;
462         for (i = 0; i < PQ_COUNT; i++) {
463                 pq = &vmd->vmd_pagequeues[i];
464                 TAILQ_INIT(&pq->pq_pl);
465                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
466                     MTX_DEF | MTX_DUPOK);
467                 pq->pq_pdpages = 0;
468                 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
469         }
470         mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
471         mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
472         snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
473
474         /*
475          * inacthead is used to provide FIFO ordering for LRU-bypassing
476          * insertions.
477          */
478         vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
479         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
480             &vmd->vmd_inacthead, plinks.q);
481
482         /*
483          * The clock pages are used to implement active queue scanning without
484          * requeues.  Scans start at clock[0], which is advanced after the scan
485          * ends.  When the two clock hands meet, they are reset and scanning
486          * resumes from the head of the queue.
487          */
488         vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
489         vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
490         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
491             &vmd->vmd_clock[0], plinks.q);
492         TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
493             &vmd->vmd_clock[1], plinks.q);
494 }
495
496 /*
497  * Initialize a physical page in preparation for adding it to the free
498  * lists.
499  */
500 static void
501 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
502 {
503
504         m->object = NULL;
505         m->ref_count = 0;
506         m->busy_lock = VPB_FREED;
507         m->flags = m->a.flags = 0;
508         m->phys_addr = pa;
509         m->a.queue = PQ_NONE;
510         m->psind = 0;
511         m->segind = segind;
512         m->order = VM_NFREEORDER;
513         m->pool = VM_FREEPOOL_DEFAULT;
514         m->valid = m->dirty = 0;
515         pmap_page_init(m);
516 }
517
518 #ifndef PMAP_HAS_PAGE_ARRAY
519 static vm_paddr_t
520 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
521 {
522         vm_paddr_t new_end;
523
524         /*
525          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
526          * However, because this page is allocated from KVM, out-of-bounds
527          * accesses using the direct map will not be trapped.
528          */
529         *vaddr += PAGE_SIZE;
530
531         /*
532          * Allocate physical memory for the page structures, and map it.
533          */
534         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
535         vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
536             VM_PROT_READ | VM_PROT_WRITE);
537         vm_page_array_size = page_range;
538
539         return (new_end);
540 }
541 #endif
542
543 /*
544  *      vm_page_startup:
545  *
546  *      Initializes the resident memory module.  Allocates physical memory for
547  *      bootstrapping UMA and some data structures that are used to manage
548  *      physical pages.  Initializes these structures, and populates the free
549  *      page queues.
550  */
551 vm_offset_t
552 vm_page_startup(vm_offset_t vaddr)
553 {
554         struct vm_phys_seg *seg;
555         vm_page_t m;
556         char *list, *listend;
557         vm_paddr_t end, high_avail, low_avail, new_end, size;
558         vm_paddr_t page_range __unused;
559         vm_paddr_t last_pa, pa;
560         u_long pagecount;
561 #if MINIDUMP_PAGE_TRACKING
562         u_long vm_page_dump_size;
563 #endif
564         int biggestone, i, segind;
565 #ifdef WITNESS
566         vm_offset_t mapped;
567         int witness_size;
568 #endif
569 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
570         long ii;
571 #endif
572
573         vaddr = round_page(vaddr);
574
575         vm_phys_early_startup();
576         biggestone = vm_phys_avail_largest();
577         end = phys_avail[biggestone+1];
578
579         /*
580          * Initialize the page and queue locks.
581          */
582         mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
583         for (i = 0; i < PA_LOCK_COUNT; i++)
584                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
585         for (i = 0; i < vm_ndomains; i++)
586                 vm_page_domain_init(i);
587
588         new_end = end;
589 #ifdef WITNESS
590         witness_size = round_page(witness_startup_count());
591         new_end -= witness_size;
592         mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
593             VM_PROT_READ | VM_PROT_WRITE);
594         bzero((void *)mapped, witness_size);
595         witness_startup((void *)mapped);
596 #endif
597
598 #if MINIDUMP_PAGE_TRACKING
599         /*
600          * Allocate a bitmap to indicate that a random physical page
601          * needs to be included in a minidump.
602          *
603          * The amd64 port needs this to indicate which direct map pages
604          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
605          *
606          * However, i386 still needs this workspace internally within the
607          * minidump code.  In theory, they are not needed on i386, but are
608          * included should the sf_buf code decide to use them.
609          */
610         last_pa = 0;
611         vm_page_dump_pages = 0;
612         for (i = 0; dump_avail[i + 1] != 0; i += 2) {
613                 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
614                     dump_avail[i] / PAGE_SIZE;
615                 if (dump_avail[i + 1] > last_pa)
616                         last_pa = dump_avail[i + 1];
617         }
618         vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
619         new_end -= vm_page_dump_size;
620         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
621             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
622         bzero((void *)vm_page_dump, vm_page_dump_size);
623 #else
624         (void)last_pa;
625 #endif
626 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
627     defined(__riscv) || defined(__powerpc64__)
628         /*
629          * Include the UMA bootstrap pages, witness pages and vm_page_dump
630          * in a crash dump.  When pmap_map() uses the direct map, they are
631          * not automatically included.
632          */
633         for (pa = new_end; pa < end; pa += PAGE_SIZE)
634                 dump_add_page(pa);
635 #endif
636         phys_avail[biggestone + 1] = new_end;
637 #ifdef __amd64__
638         /*
639          * Request that the physical pages underlying the message buffer be
640          * included in a crash dump.  Since the message buffer is accessed
641          * through the direct map, they are not automatically included.
642          */
643         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
644         last_pa = pa + round_page(msgbufsize);
645         while (pa < last_pa) {
646                 dump_add_page(pa);
647                 pa += PAGE_SIZE;
648         }
649 #endif
650         /*
651          * Compute the number of pages of memory that will be available for
652          * use, taking into account the overhead of a page structure per page.
653          * In other words, solve
654          *      "available physical memory" - round_page(page_range *
655          *          sizeof(struct vm_page)) = page_range * PAGE_SIZE 
656          * for page_range.  
657          */
658         low_avail = phys_avail[0];
659         high_avail = phys_avail[1];
660         for (i = 0; i < vm_phys_nsegs; i++) {
661                 if (vm_phys_segs[i].start < low_avail)
662                         low_avail = vm_phys_segs[i].start;
663                 if (vm_phys_segs[i].end > high_avail)
664                         high_avail = vm_phys_segs[i].end;
665         }
666         /* Skip the first chunk.  It is already accounted for. */
667         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
668                 if (phys_avail[i] < low_avail)
669                         low_avail = phys_avail[i];
670                 if (phys_avail[i + 1] > high_avail)
671                         high_avail = phys_avail[i + 1];
672         }
673         first_page = low_avail / PAGE_SIZE;
674 #ifdef VM_PHYSSEG_SPARSE
675         size = 0;
676         for (i = 0; i < vm_phys_nsegs; i++)
677                 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
678         for (i = 0; phys_avail[i + 1] != 0; i += 2)
679                 size += phys_avail[i + 1] - phys_avail[i];
680 #elif defined(VM_PHYSSEG_DENSE)
681         size = high_avail - low_avail;
682 #else
683 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
684 #endif
685
686 #ifdef PMAP_HAS_PAGE_ARRAY
687         pmap_page_array_startup(size / PAGE_SIZE);
688         biggestone = vm_phys_avail_largest();
689         end = new_end = phys_avail[biggestone + 1];
690 #else
691 #ifdef VM_PHYSSEG_DENSE
692         /*
693          * In the VM_PHYSSEG_DENSE case, the number of pages can account for
694          * the overhead of a page structure per page only if vm_page_array is
695          * allocated from the last physical memory chunk.  Otherwise, we must
696          * allocate page structures representing the physical memory
697          * underlying vm_page_array, even though they will not be used.
698          */
699         if (new_end != high_avail)
700                 page_range = size / PAGE_SIZE;
701         else
702 #endif
703         {
704                 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
705
706                 /*
707                  * If the partial bytes remaining are large enough for
708                  * a page (PAGE_SIZE) without a corresponding
709                  * 'struct vm_page', then new_end will contain an
710                  * extra page after subtracting the length of the VM
711                  * page array.  Compensate by subtracting an extra
712                  * page from new_end.
713                  */
714                 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
715                         if (new_end == high_avail)
716                                 high_avail -= PAGE_SIZE;
717                         new_end -= PAGE_SIZE;
718                 }
719         }
720         end = new_end;
721         new_end = vm_page_array_alloc(&vaddr, end, page_range);
722 #endif
723
724 #if VM_NRESERVLEVEL > 0
725         /*
726          * Allocate physical memory for the reservation management system's
727          * data structures, and map it.
728          */
729         new_end = vm_reserv_startup(&vaddr, new_end);
730 #endif
731 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
732     defined(__riscv) || defined(__powerpc64__)
733         /*
734          * Include vm_page_array and vm_reserv_array in a crash dump.
735          */
736         for (pa = new_end; pa < end; pa += PAGE_SIZE)
737                 dump_add_page(pa);
738 #endif
739         phys_avail[biggestone + 1] = new_end;
740
741         /*
742          * Add physical memory segments corresponding to the available
743          * physical pages.
744          */
745         for (i = 0; phys_avail[i + 1] != 0; i += 2)
746                 if (vm_phys_avail_size(i) != 0)
747                         vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
748
749         /*
750          * Initialize the physical memory allocator.
751          */
752         vm_phys_init();
753
754         /*
755          * Initialize the page structures and add every available page to the
756          * physical memory allocator's free lists.
757          */
758 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
759         for (ii = 0; ii < vm_page_array_size; ii++) {
760                 m = &vm_page_array[ii];
761                 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
762                 m->flags = PG_FICTITIOUS;
763         }
764 #endif
765         vm_cnt.v_page_count = 0;
766         for (segind = 0; segind < vm_phys_nsegs; segind++) {
767                 seg = &vm_phys_segs[segind];
768                 for (m = seg->first_page, pa = seg->start; pa < seg->end;
769                     m++, pa += PAGE_SIZE)
770                         vm_page_init_page(m, pa, segind);
771
772                 /*
773                  * Add the segment to the free lists only if it is covered by
774                  * one of the ranges in phys_avail.  Because we've added the
775                  * ranges to the vm_phys_segs array, we can assume that each
776                  * segment is either entirely contained in one of the ranges,
777                  * or doesn't overlap any of them.
778                  */
779                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
780                         struct vm_domain *vmd;
781
782                         if (seg->start < phys_avail[i] ||
783                             seg->end > phys_avail[i + 1])
784                                 continue;
785
786                         m = seg->first_page;
787                         pagecount = (u_long)atop(seg->end - seg->start);
788
789                         vmd = VM_DOMAIN(seg->domain);
790                         vm_domain_free_lock(vmd);
791                         vm_phys_enqueue_contig(m, pagecount);
792                         vm_domain_free_unlock(vmd);
793                         vm_domain_freecnt_inc(vmd, pagecount);
794                         vm_cnt.v_page_count += (u_int)pagecount;
795
796                         vmd = VM_DOMAIN(seg->domain);
797                         vmd->vmd_page_count += (u_int)pagecount;
798                         vmd->vmd_segs |= 1UL << m->segind;
799                         break;
800                 }
801         }
802
803         /*
804          * Remove blacklisted pages from the physical memory allocator.
805          */
806         TAILQ_INIT(&blacklist_head);
807         vm_page_blacklist_load(&list, &listend);
808         vm_page_blacklist_check(list, listend);
809
810         list = kern_getenv("vm.blacklist");
811         vm_page_blacklist_check(list, NULL);
812
813         freeenv(list);
814 #if VM_NRESERVLEVEL > 0
815         /*
816          * Initialize the reservation management system.
817          */
818         vm_reserv_init();
819 #endif
820
821         return (vaddr);
822 }
823
824 void
825 vm_page_reference(vm_page_t m)
826 {
827
828         vm_page_aflag_set(m, PGA_REFERENCED);
829 }
830
831 /*
832  *      vm_page_trybusy
833  *
834  *      Helper routine for grab functions to trylock busy.
835  *
836  *      Returns true on success and false on failure.
837  */
838 static bool
839 vm_page_trybusy(vm_page_t m, int allocflags)
840 {
841
842         if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
843                 return (vm_page_trysbusy(m));
844         else
845                 return (vm_page_tryxbusy(m));
846 }
847
848 /*
849  *      vm_page_tryacquire
850  *
851  *      Helper routine for grab functions to trylock busy and wire.
852  *
853  *      Returns true on success and false on failure.
854  */
855 static inline bool
856 vm_page_tryacquire(vm_page_t m, int allocflags)
857 {
858         bool locked;
859
860         locked = vm_page_trybusy(m, allocflags);
861         if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
862                 vm_page_wire(m);
863         return (locked);
864 }
865
866 /*
867  *      vm_page_busy_acquire:
868  *
869  *      Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
870  *      and drop the object lock if necessary.
871  */
872 bool
873 vm_page_busy_acquire(vm_page_t m, int allocflags)
874 {
875         vm_object_t obj;
876         bool locked;
877
878         /*
879          * The page-specific object must be cached because page
880          * identity can change during the sleep, causing the
881          * re-lock of a different object.
882          * It is assumed that a reference to the object is already
883          * held by the callers.
884          */
885         obj = m->object;
886         for (;;) {
887                 if (vm_page_tryacquire(m, allocflags))
888                         return (true);
889                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
890                         return (false);
891                 if (obj != NULL)
892                         locked = VM_OBJECT_WOWNED(obj);
893                 else
894                         locked = false;
895                 MPASS(locked || vm_page_wired(m));
896                 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
897                     locked) && locked)
898                         VM_OBJECT_WLOCK(obj);
899                 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
900                         return (false);
901                 KASSERT(m->object == obj || m->object == NULL,
902                     ("vm_page_busy_acquire: page %p does not belong to %p",
903                     m, obj));
904         }
905 }
906
907 /*
908  *      vm_page_busy_downgrade:
909  *
910  *      Downgrade an exclusive busy page into a single shared busy page.
911  */
912 void
913 vm_page_busy_downgrade(vm_page_t m)
914 {
915         u_int x;
916
917         vm_page_assert_xbusied(m);
918
919         x = vm_page_busy_fetch(m);
920         for (;;) {
921                 if (atomic_fcmpset_rel_int(&m->busy_lock,
922                     &x, VPB_SHARERS_WORD(1)))
923                         break;
924         }
925         if ((x & VPB_BIT_WAITERS) != 0)
926                 wakeup(m);
927 }
928
929 /*
930  *
931  *      vm_page_busy_tryupgrade:
932  *
933  *      Attempt to upgrade a single shared busy into an exclusive busy.
934  */
935 int
936 vm_page_busy_tryupgrade(vm_page_t m)
937 {
938         u_int ce, x;
939
940         vm_page_assert_sbusied(m);
941
942         x = vm_page_busy_fetch(m);
943         ce = VPB_CURTHREAD_EXCLUSIVE;
944         for (;;) {
945                 if (VPB_SHARERS(x) > 1)
946                         return (0);
947                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
948                     ("vm_page_busy_tryupgrade: invalid lock state"));
949                 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
950                     ce | (x & VPB_BIT_WAITERS)))
951                         continue;
952                 return (1);
953         }
954 }
955
956 /*
957  *      vm_page_sbusied:
958  *
959  *      Return a positive value if the page is shared busied, 0 otherwise.
960  */
961 int
962 vm_page_sbusied(vm_page_t m)
963 {
964         u_int x;
965
966         x = vm_page_busy_fetch(m);
967         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
968 }
969
970 /*
971  *      vm_page_sunbusy:
972  *
973  *      Shared unbusy a page.
974  */
975 void
976 vm_page_sunbusy(vm_page_t m)
977 {
978         u_int x;
979
980         vm_page_assert_sbusied(m);
981
982         x = vm_page_busy_fetch(m);
983         for (;;) {
984                 KASSERT(x != VPB_FREED,
985                     ("vm_page_sunbusy: Unlocking freed page."));
986                 if (VPB_SHARERS(x) > 1) {
987                         if (atomic_fcmpset_int(&m->busy_lock, &x,
988                             x - VPB_ONE_SHARER))
989                                 break;
990                         continue;
991                 }
992                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
993                     ("vm_page_sunbusy: invalid lock state"));
994                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
995                         continue;
996                 if ((x & VPB_BIT_WAITERS) == 0)
997                         break;
998                 wakeup(m);
999                 break;
1000         }
1001 }
1002
1003 /*
1004  *      vm_page_busy_sleep:
1005  *
1006  *      Sleep if the page is busy, using the page pointer as wchan.
1007  *      This is used to implement the hard-path of busying mechanism.
1008  *
1009  *      If nonshared is true, sleep only if the page is xbusy.
1010  *
1011  *      The object lock must be held on entry and will be released on exit.
1012  */
1013 void
1014 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1015 {
1016         vm_object_t obj;
1017
1018         obj = m->object;
1019         VM_OBJECT_ASSERT_LOCKED(obj);
1020         vm_page_lock_assert(m, MA_NOTOWNED);
1021
1022         if (!_vm_page_busy_sleep(obj, m, m->pindex, wmesg,
1023             nonshared ? VM_ALLOC_SBUSY : 0 , true))
1024                 VM_OBJECT_DROP(obj);
1025 }
1026
1027 /*
1028  *      vm_page_busy_sleep_unlocked:
1029  *
1030  *      Sleep if the page is busy, using the page pointer as wchan.
1031  *      This is used to implement the hard-path of busying mechanism.
1032  *
1033  *      If nonshared is true, sleep only if the page is xbusy.
1034  *
1035  *      The object lock must not be held on entry.  The operation will
1036  *      return if the page changes identity.
1037  */
1038 void
1039 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1040     const char *wmesg, bool nonshared)
1041 {
1042
1043         VM_OBJECT_ASSERT_UNLOCKED(obj);
1044         vm_page_lock_assert(m, MA_NOTOWNED);
1045
1046         _vm_page_busy_sleep(obj, m, pindex, wmesg,
1047             nonshared ? VM_ALLOC_SBUSY : 0, false);
1048 }
1049
1050 /*
1051  *      _vm_page_busy_sleep:
1052  *
1053  *      Internal busy sleep function.  Verifies the page identity and
1054  *      lockstate against parameters.  Returns true if it sleeps and
1055  *      false otherwise.
1056  *
1057  *      If locked is true the lock will be dropped for any true returns
1058  *      and held for any false returns.
1059  */
1060 static bool
1061 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1062     const char *wmesg, int allocflags, bool locked)
1063 {
1064         bool xsleep;
1065         u_int x;
1066
1067         /*
1068          * If the object is busy we must wait for that to drain to zero
1069          * before trying the page again.
1070          */
1071         if (obj != NULL && vm_object_busied(obj)) {
1072                 if (locked)
1073                         VM_OBJECT_DROP(obj);
1074                 vm_object_busy_wait(obj, wmesg);
1075                 return (true);
1076         }
1077
1078         if (!vm_page_busied(m))
1079                 return (false);
1080
1081         xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1082         sleepq_lock(m);
1083         x = vm_page_busy_fetch(m);
1084         do {
1085                 /*
1086                  * If the page changes objects or becomes unlocked we can
1087                  * simply return.
1088                  */
1089                 if (x == VPB_UNBUSIED ||
1090                     (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1091                     m->object != obj || m->pindex != pindex) {
1092                         sleepq_release(m);
1093                         return (false);
1094                 }
1095                 if ((x & VPB_BIT_WAITERS) != 0)
1096                         break;
1097         } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1098         if (locked)
1099                 VM_OBJECT_DROP(obj);
1100         DROP_GIANT();
1101         sleepq_add(m, NULL, wmesg, 0, 0);
1102         sleepq_wait(m, PVM);
1103         PICKUP_GIANT();
1104         return (true);
1105 }
1106
1107 /*
1108  *      vm_page_trysbusy:
1109  *
1110  *      Try to shared busy a page.
1111  *      If the operation succeeds 1 is returned otherwise 0.
1112  *      The operation never sleeps.
1113  */
1114 int
1115 vm_page_trysbusy(vm_page_t m)
1116 {
1117         vm_object_t obj;
1118         u_int x;
1119
1120         obj = m->object;
1121         x = vm_page_busy_fetch(m);
1122         for (;;) {
1123                 if ((x & VPB_BIT_SHARED) == 0)
1124                         return (0);
1125                 /*
1126                  * Reduce the window for transient busies that will trigger
1127                  * false negatives in vm_page_ps_test().
1128                  */
1129                 if (obj != NULL && vm_object_busied(obj))
1130                         return (0);
1131                 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1132                     x + VPB_ONE_SHARER))
1133                         break;
1134         }
1135
1136         /* Refetch the object now that we're guaranteed that it is stable. */
1137         obj = m->object;
1138         if (obj != NULL && vm_object_busied(obj)) {
1139                 vm_page_sunbusy(m);
1140                 return (0);
1141         }
1142         return (1);
1143 }
1144
1145 /*
1146  *      vm_page_tryxbusy:
1147  *
1148  *      Try to exclusive busy a page.
1149  *      If the operation succeeds 1 is returned otherwise 0.
1150  *      The operation never sleeps.
1151  */
1152 int
1153 vm_page_tryxbusy(vm_page_t m)
1154 {
1155         vm_object_t obj;
1156
1157         if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1158             VPB_CURTHREAD_EXCLUSIVE) == 0)
1159                 return (0);
1160
1161         obj = m->object;
1162         if (obj != NULL && vm_object_busied(obj)) {
1163                 vm_page_xunbusy(m);
1164                 return (0);
1165         }
1166         return (1);
1167 }
1168
1169 static void
1170 vm_page_xunbusy_hard_tail(vm_page_t m)
1171 {
1172         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1173         /* Wake the waiter. */
1174         wakeup(m);
1175 }
1176
1177 /*
1178  *      vm_page_xunbusy_hard:
1179  *
1180  *      Called when unbusy has failed because there is a waiter.
1181  */
1182 void
1183 vm_page_xunbusy_hard(vm_page_t m)
1184 {
1185         vm_page_assert_xbusied(m);
1186         vm_page_xunbusy_hard_tail(m);
1187 }
1188
1189 void
1190 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1191 {
1192         vm_page_assert_xbusied_unchecked(m);
1193         vm_page_xunbusy_hard_tail(m);
1194 }
1195
1196 static void
1197 vm_page_busy_free(vm_page_t m)
1198 {
1199         u_int x;
1200
1201         atomic_thread_fence_rel();
1202         x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1203         if ((x & VPB_BIT_WAITERS) != 0)
1204                 wakeup(m);
1205 }
1206
1207 /*
1208  *      vm_page_unhold_pages:
1209  *
1210  *      Unhold each of the pages that is referenced by the given array.
1211  */
1212 void
1213 vm_page_unhold_pages(vm_page_t *ma, int count)
1214 {
1215
1216         for (; count != 0; count--) {
1217                 vm_page_unwire(*ma, PQ_ACTIVE);
1218                 ma++;
1219         }
1220 }
1221
1222 vm_page_t
1223 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1224 {
1225         vm_page_t m;
1226
1227 #ifdef VM_PHYSSEG_SPARSE
1228         m = vm_phys_paddr_to_vm_page(pa);
1229         if (m == NULL)
1230                 m = vm_phys_fictitious_to_vm_page(pa);
1231         return (m);
1232 #elif defined(VM_PHYSSEG_DENSE)
1233         long pi;
1234
1235         pi = atop(pa);
1236         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1237                 m = &vm_page_array[pi - first_page];
1238                 return (m);
1239         }
1240         return (vm_phys_fictitious_to_vm_page(pa));
1241 #else
1242 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1243 #endif
1244 }
1245
1246 /*
1247  *      vm_page_getfake:
1248  *
1249  *      Create a fictitious page with the specified physical address and
1250  *      memory attribute.  The memory attribute is the only the machine-
1251  *      dependent aspect of a fictitious page that must be initialized.
1252  */
1253 vm_page_t
1254 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1255 {
1256         vm_page_t m;
1257
1258         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1259         vm_page_initfake(m, paddr, memattr);
1260         return (m);
1261 }
1262
1263 void
1264 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1265 {
1266
1267         if ((m->flags & PG_FICTITIOUS) != 0) {
1268                 /*
1269                  * The page's memattr might have changed since the
1270                  * previous initialization.  Update the pmap to the
1271                  * new memattr.
1272                  */
1273                 goto memattr;
1274         }
1275         m->phys_addr = paddr;
1276         m->a.queue = PQ_NONE;
1277         /* Fictitious pages don't use "segind". */
1278         m->flags = PG_FICTITIOUS;
1279         /* Fictitious pages don't use "order" or "pool". */
1280         m->oflags = VPO_UNMANAGED;
1281         m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1282         /* Fictitious pages are unevictable. */
1283         m->ref_count = 1;
1284         pmap_page_init(m);
1285 memattr:
1286         pmap_page_set_memattr(m, memattr);
1287 }
1288
1289 /*
1290  *      vm_page_putfake:
1291  *
1292  *      Release a fictitious page.
1293  */
1294 void
1295 vm_page_putfake(vm_page_t m)
1296 {
1297
1298         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1299         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1300             ("vm_page_putfake: bad page %p", m));
1301         vm_page_assert_xbusied(m);
1302         vm_page_busy_free(m);
1303         uma_zfree(fakepg_zone, m);
1304 }
1305
1306 /*
1307  *      vm_page_updatefake:
1308  *
1309  *      Update the given fictitious page to the specified physical address and
1310  *      memory attribute.
1311  */
1312 void
1313 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1314 {
1315
1316         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1317             ("vm_page_updatefake: bad page %p", m));
1318         m->phys_addr = paddr;
1319         pmap_page_set_memattr(m, memattr);
1320 }
1321
1322 /*
1323  *      vm_page_free:
1324  *
1325  *      Free a page.
1326  */
1327 void
1328 vm_page_free(vm_page_t m)
1329 {
1330
1331         m->flags &= ~PG_ZERO;
1332         vm_page_free_toq(m);
1333 }
1334
1335 /*
1336  *      vm_page_free_zero:
1337  *
1338  *      Free a page to the zerod-pages queue
1339  */
1340 void
1341 vm_page_free_zero(vm_page_t m)
1342 {
1343
1344         m->flags |= PG_ZERO;
1345         vm_page_free_toq(m);
1346 }
1347
1348 /*
1349  * Unbusy and handle the page queueing for a page from a getpages request that
1350  * was optionally read ahead or behind.
1351  */
1352 void
1353 vm_page_readahead_finish(vm_page_t m)
1354 {
1355
1356         /* We shouldn't put invalid pages on queues. */
1357         KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1358
1359         /*
1360          * Since the page is not the actually needed one, whether it should
1361          * be activated or deactivated is not obvious.  Empirical results
1362          * have shown that deactivating the page is usually the best choice,
1363          * unless the page is wanted by another thread.
1364          */
1365         if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1366                 vm_page_activate(m);
1367         else
1368                 vm_page_deactivate(m);
1369         vm_page_xunbusy_unchecked(m);
1370 }
1371
1372 /*
1373  * Destroy the identity of an invalid page and free it if possible.
1374  * This is intended to be used when reading a page from backing store fails.
1375  */
1376 void
1377 vm_page_free_invalid(vm_page_t m)
1378 {
1379
1380         KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1381         KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1382         KASSERT(m->object != NULL, ("page %p has no object", m));
1383         VM_OBJECT_ASSERT_WLOCKED(m->object);
1384
1385         /*
1386          * We may be attempting to free the page as part of the handling for an
1387          * I/O error, in which case the page was xbusied by a different thread.
1388          */
1389         vm_page_xbusy_claim(m);
1390
1391         /*
1392          * If someone has wired this page while the object lock
1393          * was not held, then the thread that unwires is responsible
1394          * for freeing the page.  Otherwise just free the page now.
1395          * The wire count of this unmapped page cannot change while
1396          * we have the page xbusy and the page's object wlocked.
1397          */
1398         if (vm_page_remove(m))
1399                 vm_page_free(m);
1400 }
1401
1402 /*
1403  *      vm_page_sleep_if_busy:
1404  *
1405  *      Sleep and release the object lock if the page is busied.
1406  *      Returns TRUE if the thread slept.
1407  *
1408  *      The given page must be unlocked and object containing it must
1409  *      be locked.
1410  */
1411 int
1412 vm_page_sleep_if_busy(vm_page_t m, const char *wmesg)
1413 {
1414         vm_object_t obj;
1415
1416         vm_page_lock_assert(m, MA_NOTOWNED);
1417         VM_OBJECT_ASSERT_WLOCKED(m->object);
1418
1419         /*
1420          * The page-specific object must be cached because page
1421          * identity can change during the sleep, causing the
1422          * re-lock of a different object.
1423          * It is assumed that a reference to the object is already
1424          * held by the callers.
1425          */
1426         obj = m->object;
1427         if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, 0, true)) {
1428                 VM_OBJECT_WLOCK(obj);
1429                 return (TRUE);
1430         }
1431         return (FALSE);
1432 }
1433
1434 /*
1435  *      vm_page_sleep_if_xbusy:
1436  *
1437  *      Sleep and release the object lock if the page is xbusied.
1438  *      Returns TRUE if the thread slept.
1439  *
1440  *      The given page must be unlocked and object containing it must
1441  *      be locked.
1442  */
1443 int
1444 vm_page_sleep_if_xbusy(vm_page_t m, const char *wmesg)
1445 {
1446         vm_object_t obj;
1447
1448         vm_page_lock_assert(m, MA_NOTOWNED);
1449         VM_OBJECT_ASSERT_WLOCKED(m->object);
1450
1451         /*
1452          * The page-specific object must be cached because page
1453          * identity can change during the sleep, causing the
1454          * re-lock of a different object.
1455          * It is assumed that a reference to the object is already
1456          * held by the callers.
1457          */
1458         obj = m->object;
1459         if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, VM_ALLOC_SBUSY,
1460             true)) {
1461                 VM_OBJECT_WLOCK(obj);
1462                 return (TRUE);
1463         }
1464         return (FALSE);
1465 }
1466
1467 /*
1468  *      vm_page_dirty_KBI:              [ internal use only ]
1469  *
1470  *      Set all bits in the page's dirty field.
1471  *
1472  *      The object containing the specified page must be locked if the
1473  *      call is made from the machine-independent layer.
1474  *
1475  *      See vm_page_clear_dirty_mask().
1476  *
1477  *      This function should only be called by vm_page_dirty().
1478  */
1479 void
1480 vm_page_dirty_KBI(vm_page_t m)
1481 {
1482
1483         /* Refer to this operation by its public name. */
1484         KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1485         m->dirty = VM_PAGE_BITS_ALL;
1486 }
1487
1488 /*
1489  *      vm_page_insert:         [ internal use only ]
1490  *
1491  *      Inserts the given mem entry into the object and object list.
1492  *
1493  *      The object must be locked.
1494  */
1495 int
1496 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1497 {
1498         vm_page_t mpred;
1499
1500         VM_OBJECT_ASSERT_WLOCKED(object);
1501         mpred = vm_radix_lookup_le(&object->rtree, pindex);
1502         return (vm_page_insert_after(m, object, pindex, mpred));
1503 }
1504
1505 /*
1506  *      vm_page_insert_after:
1507  *
1508  *      Inserts the page "m" into the specified object at offset "pindex".
1509  *
1510  *      The page "mpred" must immediately precede the offset "pindex" within
1511  *      the specified object.
1512  *
1513  *      The object must be locked.
1514  */
1515 static int
1516 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1517     vm_page_t mpred)
1518 {
1519         vm_page_t msucc;
1520
1521         VM_OBJECT_ASSERT_WLOCKED(object);
1522         KASSERT(m->object == NULL,
1523             ("vm_page_insert_after: page already inserted"));
1524         if (mpred != NULL) {
1525                 KASSERT(mpred->object == object,
1526                     ("vm_page_insert_after: object doesn't contain mpred"));
1527                 KASSERT(mpred->pindex < pindex,
1528                     ("vm_page_insert_after: mpred doesn't precede pindex"));
1529                 msucc = TAILQ_NEXT(mpred, listq);
1530         } else
1531                 msucc = TAILQ_FIRST(&object->memq);
1532         if (msucc != NULL)
1533                 KASSERT(msucc->pindex > pindex,
1534                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
1535
1536         /*
1537          * Record the object/offset pair in this page.
1538          */
1539         m->object = object;
1540         m->pindex = pindex;
1541         m->ref_count |= VPRC_OBJREF;
1542
1543         /*
1544          * Now link into the object's ordered list of backed pages.
1545          */
1546         if (vm_radix_insert(&object->rtree, m)) {
1547                 m->object = NULL;
1548                 m->pindex = 0;
1549                 m->ref_count &= ~VPRC_OBJREF;
1550                 return (1);
1551         }
1552         vm_page_insert_radixdone(m, object, mpred);
1553         return (0);
1554 }
1555
1556 /*
1557  *      vm_page_insert_radixdone:
1558  *
1559  *      Complete page "m" insertion into the specified object after the
1560  *      radix trie hooking.
1561  *
1562  *      The page "mpred" must precede the offset "m->pindex" within the
1563  *      specified object.
1564  *
1565  *      The object must be locked.
1566  */
1567 static void
1568 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1569 {
1570
1571         VM_OBJECT_ASSERT_WLOCKED(object);
1572         KASSERT(object != NULL && m->object == object,
1573             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1574         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1575             ("vm_page_insert_radixdone: page %p is missing object ref", m));
1576         if (mpred != NULL) {
1577                 KASSERT(mpred->object == object,
1578                     ("vm_page_insert_radixdone: object doesn't contain mpred"));
1579                 KASSERT(mpred->pindex < m->pindex,
1580                     ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1581         }
1582
1583         if (mpred != NULL)
1584                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1585         else
1586                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1587
1588         /*
1589          * Show that the object has one more resident page.
1590          */
1591         object->resident_page_count++;
1592
1593         /*
1594          * Hold the vnode until the last page is released.
1595          */
1596         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1597                 vhold(object->handle);
1598
1599         /*
1600          * Since we are inserting a new and possibly dirty page,
1601          * update the object's generation count.
1602          */
1603         if (pmap_page_is_write_mapped(m))
1604                 vm_object_set_writeable_dirty(object);
1605 }
1606
1607 /*
1608  * Do the work to remove a page from its object.  The caller is responsible for
1609  * updating the page's fields to reflect this removal.
1610  */
1611 static void
1612 vm_page_object_remove(vm_page_t m)
1613 {
1614         vm_object_t object;
1615         vm_page_t mrem;
1616
1617         vm_page_assert_xbusied(m);
1618         object = m->object;
1619         VM_OBJECT_ASSERT_WLOCKED(object);
1620         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1621             ("page %p is missing its object ref", m));
1622
1623         /* Deferred free of swap space. */
1624         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1625                 vm_pager_page_unswapped(m);
1626
1627         m->object = NULL;
1628         mrem = vm_radix_remove(&object->rtree, m->pindex);
1629         KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1630
1631         /*
1632          * Now remove from the object's list of backed pages.
1633          */
1634         TAILQ_REMOVE(&object->memq, m, listq);
1635
1636         /*
1637          * And show that the object has one fewer resident page.
1638          */
1639         object->resident_page_count--;
1640
1641         /*
1642          * The vnode may now be recycled.
1643          */
1644         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1645                 vdrop(object->handle);
1646 }
1647
1648 /*
1649  *      vm_page_remove:
1650  *
1651  *      Removes the specified page from its containing object, but does not
1652  *      invalidate any backing storage.  Returns true if the object's reference
1653  *      was the last reference to the page, and false otherwise.
1654  *
1655  *      The object must be locked and the page must be exclusively busied.
1656  *      The exclusive busy will be released on return.  If this is not the
1657  *      final ref and the caller does not hold a wire reference it may not
1658  *      continue to access the page.
1659  */
1660 bool
1661 vm_page_remove(vm_page_t m)
1662 {
1663         bool dropped;
1664
1665         dropped = vm_page_remove_xbusy(m);
1666         vm_page_xunbusy(m);
1667
1668         return (dropped);
1669 }
1670
1671 /*
1672  *      vm_page_remove_xbusy
1673  *
1674  *      Removes the page but leaves the xbusy held.  Returns true if this
1675  *      removed the final ref and false otherwise.
1676  */
1677 bool
1678 vm_page_remove_xbusy(vm_page_t m)
1679 {
1680
1681         vm_page_object_remove(m);
1682         return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1683 }
1684
1685 /*
1686  *      vm_page_lookup:
1687  *
1688  *      Returns the page associated with the object/offset
1689  *      pair specified; if none is found, NULL is returned.
1690  *
1691  *      The object must be locked.
1692  */
1693 vm_page_t
1694 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1695 {
1696
1697         VM_OBJECT_ASSERT_LOCKED(object);
1698         return (vm_radix_lookup(&object->rtree, pindex));
1699 }
1700
1701 /*
1702  *      vm_page_lookup_unlocked:
1703  *
1704  *      Returns the page associated with the object/offset pair specified;
1705  *      if none is found, NULL is returned.  The page may be no longer be
1706  *      present in the object at the time that this function returns.  Only
1707  *      useful for opportunistic checks such as inmem().
1708  */
1709 vm_page_t
1710 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1711 {
1712
1713         return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1714 }
1715
1716 /*
1717  *      vm_page_relookup:
1718  *
1719  *      Returns a page that must already have been busied by
1720  *      the caller.  Used for bogus page replacement.
1721  */
1722 vm_page_t
1723 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1724 {
1725         vm_page_t m;
1726
1727         m = vm_radix_lookup_unlocked(&object->rtree, pindex);
1728         KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1729             m->object == object && m->pindex == pindex,
1730             ("vm_page_relookup: Invalid page %p", m));
1731         return (m);
1732 }
1733
1734 /*
1735  * This should only be used by lockless functions for releasing transient
1736  * incorrect acquires.  The page may have been freed after we acquired a
1737  * busy lock.  In this case busy_lock == VPB_FREED and we have nothing
1738  * further to do.
1739  */
1740 static void
1741 vm_page_busy_release(vm_page_t m)
1742 {
1743         u_int x;
1744
1745         x = vm_page_busy_fetch(m);
1746         for (;;) {
1747                 if (x == VPB_FREED)
1748                         break;
1749                 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1750                         if (atomic_fcmpset_int(&m->busy_lock, &x,
1751                             x - VPB_ONE_SHARER))
1752                                 break;
1753                         continue;
1754                 }
1755                 KASSERT((x & VPB_BIT_SHARED) != 0 ||
1756                     (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1757                     ("vm_page_busy_release: %p xbusy not owned.", m));
1758                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1759                         continue;
1760                 if ((x & VPB_BIT_WAITERS) != 0)
1761                         wakeup(m);
1762                 break;
1763         }
1764 }
1765
1766 /*
1767  *      vm_page_find_least:
1768  *
1769  *      Returns the page associated with the object with least pindex
1770  *      greater than or equal to the parameter pindex, or NULL.
1771  *
1772  *      The object must be locked.
1773  */
1774 vm_page_t
1775 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1776 {
1777         vm_page_t m;
1778
1779         VM_OBJECT_ASSERT_LOCKED(object);
1780         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1781                 m = vm_radix_lookup_ge(&object->rtree, pindex);
1782         return (m);
1783 }
1784
1785 /*
1786  * Returns the given page's successor (by pindex) within the object if it is
1787  * resident; if none is found, NULL is returned.
1788  *
1789  * The object must be locked.
1790  */
1791 vm_page_t
1792 vm_page_next(vm_page_t m)
1793 {
1794         vm_page_t next;
1795
1796         VM_OBJECT_ASSERT_LOCKED(m->object);
1797         if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1798                 MPASS(next->object == m->object);
1799                 if (next->pindex != m->pindex + 1)
1800                         next = NULL;
1801         }
1802         return (next);
1803 }
1804
1805 /*
1806  * Returns the given page's predecessor (by pindex) within the object if it is
1807  * resident; if none is found, NULL is returned.
1808  *
1809  * The object must be locked.
1810  */
1811 vm_page_t
1812 vm_page_prev(vm_page_t m)
1813 {
1814         vm_page_t prev;
1815
1816         VM_OBJECT_ASSERT_LOCKED(m->object);
1817         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1818                 MPASS(prev->object == m->object);
1819                 if (prev->pindex != m->pindex - 1)
1820                         prev = NULL;
1821         }
1822         return (prev);
1823 }
1824
1825 /*
1826  * Uses the page mnew as a replacement for an existing page at index
1827  * pindex which must be already present in the object.
1828  *
1829  * Both pages must be exclusively busied on enter.  The old page is
1830  * unbusied on exit.
1831  *
1832  * A return value of true means mold is now free.  If this is not the
1833  * final ref and the caller does not hold a wire reference it may not
1834  * continue to access the page.
1835  */
1836 static bool
1837 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1838     vm_page_t mold)
1839 {
1840         vm_page_t mret;
1841         bool dropped;
1842
1843         VM_OBJECT_ASSERT_WLOCKED(object);
1844         vm_page_assert_xbusied(mold);
1845         KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1846             ("vm_page_replace: page %p already in object", mnew));
1847
1848         /*
1849          * This function mostly follows vm_page_insert() and
1850          * vm_page_remove() without the radix, object count and vnode
1851          * dance.  Double check such functions for more comments.
1852          */
1853
1854         mnew->object = object;
1855         mnew->pindex = pindex;
1856         atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1857         mret = vm_radix_replace(&object->rtree, mnew);
1858         KASSERT(mret == mold,
1859             ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1860         KASSERT((mold->oflags & VPO_UNMANAGED) ==
1861             (mnew->oflags & VPO_UNMANAGED),
1862             ("vm_page_replace: mismatched VPO_UNMANAGED"));
1863
1864         /* Keep the resident page list in sorted order. */
1865         TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1866         TAILQ_REMOVE(&object->memq, mold, listq);
1867         mold->object = NULL;
1868
1869         /*
1870          * The object's resident_page_count does not change because we have
1871          * swapped one page for another, but the generation count should
1872          * change if the page is dirty.
1873          */
1874         if (pmap_page_is_write_mapped(mnew))
1875                 vm_object_set_writeable_dirty(object);
1876         dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1877         vm_page_xunbusy(mold);
1878
1879         return (dropped);
1880 }
1881
1882 void
1883 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1884     vm_page_t mold)
1885 {
1886
1887         vm_page_assert_xbusied(mnew);
1888
1889         if (vm_page_replace_hold(mnew, object, pindex, mold))
1890                 vm_page_free(mold);
1891 }
1892
1893 /*
1894  *      vm_page_rename:
1895  *
1896  *      Move the given memory entry from its
1897  *      current object to the specified target object/offset.
1898  *
1899  *      Note: swap associated with the page must be invalidated by the move.  We
1900  *            have to do this for several reasons:  (1) we aren't freeing the
1901  *            page, (2) we are dirtying the page, (3) the VM system is probably
1902  *            moving the page from object A to B, and will then later move
1903  *            the backing store from A to B and we can't have a conflict.
1904  *
1905  *      Note: we *always* dirty the page.  It is necessary both for the
1906  *            fact that we moved it, and because we may be invalidating
1907  *            swap.
1908  *
1909  *      The objects must be locked.
1910  */
1911 int
1912 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1913 {
1914         vm_page_t mpred;
1915         vm_pindex_t opidx;
1916
1917         VM_OBJECT_ASSERT_WLOCKED(new_object);
1918
1919         KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1920         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1921         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1922             ("vm_page_rename: pindex already renamed"));
1923
1924         /*
1925          * Create a custom version of vm_page_insert() which does not depend
1926          * by m_prev and can cheat on the implementation aspects of the
1927          * function.
1928          */
1929         opidx = m->pindex;
1930         m->pindex = new_pindex;
1931         if (vm_radix_insert(&new_object->rtree, m)) {
1932                 m->pindex = opidx;
1933                 return (1);
1934         }
1935
1936         /*
1937          * The operation cannot fail anymore.  The removal must happen before
1938          * the listq iterator is tainted.
1939          */
1940         m->pindex = opidx;
1941         vm_page_object_remove(m);
1942
1943         /* Return back to the new pindex to complete vm_page_insert(). */
1944         m->pindex = new_pindex;
1945         m->object = new_object;
1946
1947         vm_page_insert_radixdone(m, new_object, mpred);
1948         vm_page_dirty(m);
1949         return (0);
1950 }
1951
1952 /*
1953  *      vm_page_alloc:
1954  *
1955  *      Allocate and return a page that is associated with the specified
1956  *      object and offset pair.  By default, this page is exclusive busied.
1957  *
1958  *      The caller must always specify an allocation class.
1959  *
1960  *      allocation classes:
1961  *      VM_ALLOC_NORMAL         normal process request
1962  *      VM_ALLOC_SYSTEM         system *really* needs a page
1963  *      VM_ALLOC_INTERRUPT      interrupt time request
1964  *
1965  *      optional allocation flags:
1966  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
1967  *                              intends to allocate
1968  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1969  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1970  *      VM_ALLOC_NOOBJ          page is not associated with an object and
1971  *                              should not be exclusive busy
1972  *      VM_ALLOC_SBUSY          shared busy the allocated page
1973  *      VM_ALLOC_WIRED          wire the allocated page
1974  *      VM_ALLOC_ZERO           prefer a zeroed page
1975  */
1976 vm_page_t
1977 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1978 {
1979
1980         return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1981             vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1982 }
1983
1984 vm_page_t
1985 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1986     int req)
1987 {
1988
1989         return (vm_page_alloc_domain_after(object, pindex, domain, req,
1990             object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1991             NULL));
1992 }
1993
1994 /*
1995  * Allocate a page in the specified object with the given page index.  To
1996  * optimize insertion of the page into the object, the caller must also specifiy
1997  * the resident page in the object with largest index smaller than the given
1998  * page index, or NULL if no such page exists.
1999  */
2000 vm_page_t
2001 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
2002     int req, vm_page_t mpred)
2003 {
2004         struct vm_domainset_iter di;
2005         vm_page_t m;
2006         int domain;
2007
2008         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2009         do {
2010                 m = vm_page_alloc_domain_after(object, pindex, domain, req,
2011                     mpred);
2012                 if (m != NULL)
2013                         break;
2014         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2015
2016         return (m);
2017 }
2018
2019 /*
2020  * Returns true if the number of free pages exceeds the minimum
2021  * for the request class and false otherwise.
2022  */
2023 static int
2024 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2025 {
2026         u_int limit, old, new;
2027
2028         if (req_class == VM_ALLOC_INTERRUPT)
2029                 limit = 0;
2030         else if (req_class == VM_ALLOC_SYSTEM)
2031                 limit = vmd->vmd_interrupt_free_min;
2032         else
2033                 limit = vmd->vmd_free_reserved;
2034
2035         /*
2036          * Attempt to reserve the pages.  Fail if we're below the limit.
2037          */
2038         limit += npages;
2039         old = vmd->vmd_free_count;
2040         do {
2041                 if (old < limit)
2042                         return (0);
2043                 new = old - npages;
2044         } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2045
2046         /* Wake the page daemon if we've crossed the threshold. */
2047         if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2048                 pagedaemon_wakeup(vmd->vmd_domain);
2049
2050         /* Only update bitsets on transitions. */
2051         if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2052             (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2053                 vm_domain_set(vmd);
2054
2055         return (1);
2056 }
2057
2058 int
2059 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2060 {
2061         int req_class;
2062
2063         /*
2064          * The page daemon is allowed to dig deeper into the free page list.
2065          */
2066         req_class = req & VM_ALLOC_CLASS_MASK;
2067         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2068                 req_class = VM_ALLOC_SYSTEM;
2069         return (_vm_domain_allocate(vmd, req_class, npages));
2070 }
2071
2072 vm_page_t
2073 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
2074     int req, vm_page_t mpred)
2075 {
2076         struct vm_domain *vmd;
2077         vm_page_t m;
2078         int flags, pool;
2079
2080         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2081             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2082             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2083             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2084             ("inconsistent object(%p)/req(%x)", object, req));
2085         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2086             ("Can't sleep and retry object insertion."));
2087         KASSERT(mpred == NULL || mpred->pindex < pindex,
2088             ("mpred %p doesn't precede pindex 0x%jx", mpred,
2089             (uintmax_t)pindex));
2090         if (object != NULL)
2091                 VM_OBJECT_ASSERT_WLOCKED(object);
2092
2093         flags = 0;
2094         m = NULL;
2095         pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
2096 again:
2097 #if VM_NRESERVLEVEL > 0
2098         /*
2099          * Can we allocate the page from a reservation?
2100          */
2101         if (vm_object_reserv(object) &&
2102             (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2103             NULL) {
2104                 goto found;
2105         }
2106 #endif
2107         vmd = VM_DOMAIN(domain);
2108         if (vmd->vmd_pgcache[pool].zone != NULL) {
2109                 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT | M_NOVM);
2110                 if (m != NULL) {
2111                         flags |= PG_PCPU_CACHE;
2112                         goto found;
2113                 }
2114         }
2115         if (vm_domain_allocate(vmd, req, 1)) {
2116                 /*
2117                  * If not, allocate it from the free page queues.
2118                  */
2119                 vm_domain_free_lock(vmd);
2120                 m = vm_phys_alloc_pages(domain, pool, 0);
2121                 vm_domain_free_unlock(vmd);
2122                 if (m == NULL) {
2123                         vm_domain_freecnt_inc(vmd, 1);
2124 #if VM_NRESERVLEVEL > 0
2125                         if (vm_reserv_reclaim_inactive(domain))
2126                                 goto again;
2127 #endif
2128                 }
2129         }
2130         if (m == NULL) {
2131                 /*
2132                  * Not allocatable, give up.
2133                  */
2134                 if (vm_domain_alloc_fail(vmd, object, req))
2135                         goto again;
2136                 return (NULL);
2137         }
2138
2139         /*
2140          * At this point we had better have found a good page.
2141          */
2142 found:
2143         vm_page_dequeue(m);
2144         vm_page_alloc_check(m);
2145
2146         /*
2147          * Initialize the page.  Only the PG_ZERO flag is inherited.
2148          */
2149         if ((req & VM_ALLOC_ZERO) != 0)
2150                 flags |= (m->flags & PG_ZERO);
2151         if ((req & VM_ALLOC_NODUMP) != 0)
2152                 flags |= PG_NODUMP;
2153         m->flags = flags;
2154         m->a.flags = 0;
2155         m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2156             VPO_UNMANAGED : 0;
2157         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2158                 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2159         else if ((req & VM_ALLOC_SBUSY) != 0)
2160                 m->busy_lock = VPB_SHARERS_WORD(1);
2161         else
2162                 m->busy_lock = VPB_UNBUSIED;
2163         if (req & VM_ALLOC_WIRED) {
2164                 vm_wire_add(1);
2165                 m->ref_count = 1;
2166         }
2167         m->a.act_count = 0;
2168
2169         if (object != NULL) {
2170                 if (vm_page_insert_after(m, object, pindex, mpred)) {
2171                         if (req & VM_ALLOC_WIRED) {
2172                                 vm_wire_sub(1);
2173                                 m->ref_count = 0;
2174                         }
2175                         KASSERT(m->object == NULL, ("page %p has object", m));
2176                         m->oflags = VPO_UNMANAGED;
2177                         m->busy_lock = VPB_UNBUSIED;
2178                         /* Don't change PG_ZERO. */
2179                         vm_page_free_toq(m);
2180                         if (req & VM_ALLOC_WAITFAIL) {
2181                                 VM_OBJECT_WUNLOCK(object);
2182                                 vm_radix_wait();
2183                                 VM_OBJECT_WLOCK(object);
2184                         }
2185                         return (NULL);
2186                 }
2187
2188                 /* Ignore device objects; the pager sets "memattr" for them. */
2189                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2190                     (object->flags & OBJ_FICTITIOUS) == 0)
2191                         pmap_page_set_memattr(m, object->memattr);
2192         } else
2193                 m->pindex = pindex;
2194
2195         return (m);
2196 }
2197
2198 /*
2199  *      vm_page_alloc_contig:
2200  *
2201  *      Allocate a contiguous set of physical pages of the given size "npages"
2202  *      from the free lists.  All of the physical pages must be at or above
2203  *      the given physical address "low" and below the given physical address
2204  *      "high".  The given value "alignment" determines the alignment of the
2205  *      first physical page in the set.  If the given value "boundary" is
2206  *      non-zero, then the set of physical pages cannot cross any physical
2207  *      address boundary that is a multiple of that value.  Both "alignment"
2208  *      and "boundary" must be a power of two.
2209  *
2210  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2211  *      then the memory attribute setting for the physical pages is configured
2212  *      to the object's memory attribute setting.  Otherwise, the memory
2213  *      attribute setting for the physical pages is configured to "memattr",
2214  *      overriding the object's memory attribute setting.  However, if the
2215  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2216  *      memory attribute setting for the physical pages cannot be configured
2217  *      to VM_MEMATTR_DEFAULT.
2218  *
2219  *      The specified object may not contain fictitious pages.
2220  *
2221  *      The caller must always specify an allocation class.
2222  *
2223  *      allocation classes:
2224  *      VM_ALLOC_NORMAL         normal process request
2225  *      VM_ALLOC_SYSTEM         system *really* needs a page
2226  *      VM_ALLOC_INTERRUPT      interrupt time request
2227  *
2228  *      optional allocation flags:
2229  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
2230  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
2231  *      VM_ALLOC_NOOBJ          page is not associated with an object and
2232  *                              should not be exclusive busy
2233  *      VM_ALLOC_SBUSY          shared busy the allocated page
2234  *      VM_ALLOC_WIRED          wire the allocated page
2235  *      VM_ALLOC_ZERO           prefer a zeroed page
2236  */
2237 vm_page_t
2238 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2239     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2240     vm_paddr_t boundary, vm_memattr_t memattr)
2241 {
2242         struct vm_domainset_iter di;
2243         vm_page_t m;
2244         int domain;
2245
2246         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2247         do {
2248                 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2249                     npages, low, high, alignment, boundary, memattr);
2250                 if (m != NULL)
2251                         break;
2252         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2253
2254         return (m);
2255 }
2256
2257 vm_page_t
2258 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2259     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2260     vm_paddr_t boundary, vm_memattr_t memattr)
2261 {
2262         struct vm_domain *vmd;
2263         vm_page_t m, m_ret, mpred;
2264         u_int busy_lock, flags, oflags;
2265
2266         mpred = NULL;   /* XXX: pacify gcc */
2267         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2268             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2269             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2270             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2271             ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2272             req));
2273         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2274             ("Can't sleep and retry object insertion."));
2275         if (object != NULL) {
2276                 VM_OBJECT_ASSERT_WLOCKED(object);
2277                 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2278                     ("vm_page_alloc_contig: object %p has fictitious pages",
2279                     object));
2280         }
2281         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2282
2283         if (object != NULL) {
2284                 mpred = vm_radix_lookup_le(&object->rtree, pindex);
2285                 KASSERT(mpred == NULL || mpred->pindex != pindex,
2286                     ("vm_page_alloc_contig: pindex already allocated"));
2287         }
2288
2289         /*
2290          * Can we allocate the pages without the number of free pages falling
2291          * below the lower bound for the allocation class?
2292          */
2293         m_ret = NULL;
2294 again:
2295 #if VM_NRESERVLEVEL > 0
2296         /*
2297          * Can we allocate the pages from a reservation?
2298          */
2299         if (vm_object_reserv(object) &&
2300             (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2301             mpred, npages, low, high, alignment, boundary)) != NULL) {
2302                 goto found;
2303         }
2304 #endif
2305         vmd = VM_DOMAIN(domain);
2306         if (vm_domain_allocate(vmd, req, npages)) {
2307                 /*
2308                  * allocate them from the free page queues.
2309                  */
2310                 vm_domain_free_lock(vmd);
2311                 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2312                     alignment, boundary);
2313                 vm_domain_free_unlock(vmd);
2314                 if (m_ret == NULL) {
2315                         vm_domain_freecnt_inc(vmd, npages);
2316 #if VM_NRESERVLEVEL > 0
2317                         if (vm_reserv_reclaim_contig(domain, npages, low,
2318                             high, alignment, boundary))
2319                                 goto again;
2320 #endif
2321                 }
2322         }
2323         if (m_ret == NULL) {
2324                 if (vm_domain_alloc_fail(vmd, object, req))
2325                         goto again;
2326                 return (NULL);
2327         }
2328 #if VM_NRESERVLEVEL > 0
2329 found:
2330 #endif
2331         for (m = m_ret; m < &m_ret[npages]; m++) {
2332                 vm_page_dequeue(m);
2333                 vm_page_alloc_check(m);
2334         }
2335
2336         /*
2337          * Initialize the pages.  Only the PG_ZERO flag is inherited.
2338          */
2339         flags = 0;
2340         if ((req & VM_ALLOC_ZERO) != 0)
2341                 flags = PG_ZERO;
2342         if ((req & VM_ALLOC_NODUMP) != 0)
2343                 flags |= PG_NODUMP;
2344         oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2345             VPO_UNMANAGED : 0;
2346         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2347                 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2348         else if ((req & VM_ALLOC_SBUSY) != 0)
2349                 busy_lock = VPB_SHARERS_WORD(1);
2350         else
2351                 busy_lock = VPB_UNBUSIED;
2352         if ((req & VM_ALLOC_WIRED) != 0)
2353                 vm_wire_add(npages);
2354         if (object != NULL) {
2355                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2356                     memattr == VM_MEMATTR_DEFAULT)
2357                         memattr = object->memattr;
2358         }
2359         for (m = m_ret; m < &m_ret[npages]; m++) {
2360                 m->a.flags = 0;
2361                 m->flags = (m->flags | PG_NODUMP) & flags;
2362                 m->busy_lock = busy_lock;
2363                 if ((req & VM_ALLOC_WIRED) != 0)
2364                         m->ref_count = 1;
2365                 m->a.act_count = 0;
2366                 m->oflags = oflags;
2367                 if (object != NULL) {
2368                         if (vm_page_insert_after(m, object, pindex, mpred)) {
2369                                 if ((req & VM_ALLOC_WIRED) != 0)
2370                                         vm_wire_sub(npages);
2371                                 KASSERT(m->object == NULL,
2372                                     ("page %p has object", m));
2373                                 mpred = m;
2374                                 for (m = m_ret; m < &m_ret[npages]; m++) {
2375                                         if (m <= mpred &&
2376                                             (req & VM_ALLOC_WIRED) != 0)
2377                                                 m->ref_count = 0;
2378                                         m->oflags = VPO_UNMANAGED;
2379                                         m->busy_lock = VPB_UNBUSIED;
2380                                         /* Don't change PG_ZERO. */
2381                                         vm_page_free_toq(m);
2382                                 }
2383                                 if (req & VM_ALLOC_WAITFAIL) {
2384                                         VM_OBJECT_WUNLOCK(object);
2385                                         vm_radix_wait();
2386                                         VM_OBJECT_WLOCK(object);
2387                                 }
2388                                 return (NULL);
2389                         }
2390                         mpred = m;
2391                 } else
2392                         m->pindex = pindex;
2393                 if (memattr != VM_MEMATTR_DEFAULT)
2394                         pmap_page_set_memattr(m, memattr);
2395                 pindex++;
2396         }
2397         return (m_ret);
2398 }
2399
2400 /*
2401  * Check a page that has been freshly dequeued from a freelist.
2402  */
2403 static void
2404 vm_page_alloc_check(vm_page_t m)
2405 {
2406
2407         KASSERT(m->object == NULL, ("page %p has object", m));
2408         KASSERT(m->a.queue == PQ_NONE &&
2409             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2410             ("page %p has unexpected queue %d, flags %#x",
2411             m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2412         KASSERT(m->ref_count == 0, ("page %p has references", m));
2413         KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2414         KASSERT(m->dirty == 0, ("page %p is dirty", m));
2415         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2416             ("page %p has unexpected memattr %d",
2417             m, pmap_page_get_memattr(m)));
2418         KASSERT(m->valid == 0, ("free page %p is valid", m));
2419 }
2420
2421 /*
2422  *      vm_page_alloc_freelist:
2423  *
2424  *      Allocate a physical page from the specified free page list.
2425  *
2426  *      The caller must always specify an allocation class.
2427  *
2428  *      allocation classes:
2429  *      VM_ALLOC_NORMAL         normal process request
2430  *      VM_ALLOC_SYSTEM         system *really* needs a page
2431  *      VM_ALLOC_INTERRUPT      interrupt time request
2432  *
2433  *      optional allocation flags:
2434  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
2435  *                              intends to allocate
2436  *      VM_ALLOC_WIRED          wire the allocated page
2437  *      VM_ALLOC_ZERO           prefer a zeroed page
2438  */
2439 vm_page_t
2440 vm_page_alloc_freelist(int freelist, int req)
2441 {
2442         struct vm_domainset_iter di;
2443         vm_page_t m;
2444         int domain;
2445
2446         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2447         do {
2448                 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2449                 if (m != NULL)
2450                         break;
2451         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2452
2453         return (m);
2454 }
2455
2456 vm_page_t
2457 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2458 {
2459         struct vm_domain *vmd;
2460         vm_page_t m;
2461         u_int flags;
2462
2463         m = NULL;
2464         vmd = VM_DOMAIN(domain);
2465 again:
2466         if (vm_domain_allocate(vmd, req, 1)) {
2467                 vm_domain_free_lock(vmd);
2468                 m = vm_phys_alloc_freelist_pages(domain, freelist,
2469                     VM_FREEPOOL_DIRECT, 0);
2470                 vm_domain_free_unlock(vmd);
2471                 if (m == NULL)
2472                         vm_domain_freecnt_inc(vmd, 1);
2473         }
2474         if (m == NULL) {
2475                 if (vm_domain_alloc_fail(vmd, NULL, req))
2476                         goto again;
2477                 return (NULL);
2478         }
2479         vm_page_dequeue(m);
2480         vm_page_alloc_check(m);
2481
2482         /*
2483          * Initialize the page.  Only the PG_ZERO flag is inherited.
2484          */
2485         m->a.flags = 0;
2486         flags = 0;
2487         if ((req & VM_ALLOC_ZERO) != 0)
2488                 flags = PG_ZERO;
2489         m->flags &= flags;
2490         if ((req & VM_ALLOC_WIRED) != 0) {
2491                 vm_wire_add(1);
2492                 m->ref_count = 1;
2493         }
2494         /* Unmanaged pages don't use "act_count". */
2495         m->oflags = VPO_UNMANAGED;
2496         return (m);
2497 }
2498
2499 static int
2500 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2501 {
2502         struct vm_domain *vmd;
2503         struct vm_pgcache *pgcache;
2504         int i;
2505
2506         pgcache = arg;
2507         vmd = VM_DOMAIN(pgcache->domain);
2508
2509         /*
2510          * The page daemon should avoid creating extra memory pressure since its
2511          * main purpose is to replenish the store of free pages.
2512          */
2513         if (vmd->vmd_severeset || curproc == pageproc ||
2514             !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2515                 return (0);
2516         domain = vmd->vmd_domain;
2517         vm_domain_free_lock(vmd);
2518         i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2519             (vm_page_t *)store);
2520         vm_domain_free_unlock(vmd);
2521         if (cnt != i)
2522                 vm_domain_freecnt_inc(vmd, cnt - i);
2523
2524         return (i);
2525 }
2526
2527 static void
2528 vm_page_zone_release(void *arg, void **store, int cnt)
2529 {
2530         struct vm_domain *vmd;
2531         struct vm_pgcache *pgcache;
2532         vm_page_t m;
2533         int i;
2534
2535         pgcache = arg;
2536         vmd = VM_DOMAIN(pgcache->domain);
2537         vm_domain_free_lock(vmd);
2538         for (i = 0; i < cnt; i++) {
2539                 m = (vm_page_t)store[i];
2540                 vm_phys_free_pages(m, 0);
2541         }
2542         vm_domain_free_unlock(vmd);
2543         vm_domain_freecnt_inc(vmd, cnt);
2544 }
2545
2546 #define VPSC_ANY        0       /* No restrictions. */
2547 #define VPSC_NORESERV   1       /* Skip reservations; implies VPSC_NOSUPER. */
2548 #define VPSC_NOSUPER    2       /* Skip superpages. */
2549
2550 /*
2551  *      vm_page_scan_contig:
2552  *
2553  *      Scan vm_page_array[] between the specified entries "m_start" and
2554  *      "m_end" for a run of contiguous physical pages that satisfy the
2555  *      specified conditions, and return the lowest page in the run.  The
2556  *      specified "alignment" determines the alignment of the lowest physical
2557  *      page in the run.  If the specified "boundary" is non-zero, then the
2558  *      run of physical pages cannot span a physical address that is a
2559  *      multiple of "boundary".
2560  *
2561  *      "m_end" is never dereferenced, so it need not point to a vm_page
2562  *      structure within vm_page_array[].
2563  *
2564  *      "npages" must be greater than zero.  "m_start" and "m_end" must not
2565  *      span a hole (or discontiguity) in the physical address space.  Both
2566  *      "alignment" and "boundary" must be a power of two.
2567  */
2568 vm_page_t
2569 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2570     u_long alignment, vm_paddr_t boundary, int options)
2571 {
2572         vm_object_t object;
2573         vm_paddr_t pa;
2574         vm_page_t m, m_run;
2575 #if VM_NRESERVLEVEL > 0
2576         int level;
2577 #endif
2578         int m_inc, order, run_ext, run_len;
2579
2580         KASSERT(npages > 0, ("npages is 0"));
2581         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2582         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2583         m_run = NULL;
2584         run_len = 0;
2585         for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2586                 KASSERT((m->flags & PG_MARKER) == 0,
2587                     ("page %p is PG_MARKER", m));
2588                 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2589                     ("fictitious page %p has invalid ref count", m));
2590
2591                 /*
2592                  * If the current page would be the start of a run, check its
2593                  * physical address against the end, alignment, and boundary
2594                  * conditions.  If it doesn't satisfy these conditions, either
2595                  * terminate the scan or advance to the next page that
2596                  * satisfies the failed condition.
2597                  */
2598                 if (run_len == 0) {
2599                         KASSERT(m_run == NULL, ("m_run != NULL"));
2600                         if (m + npages > m_end)
2601                                 break;
2602                         pa = VM_PAGE_TO_PHYS(m);
2603                         if ((pa & (alignment - 1)) != 0) {
2604                                 m_inc = atop(roundup2(pa, alignment) - pa);
2605                                 continue;
2606                         }
2607                         if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2608                             boundary) != 0) {
2609                                 m_inc = atop(roundup2(pa, boundary) - pa);
2610                                 continue;
2611                         }
2612                 } else
2613                         KASSERT(m_run != NULL, ("m_run == NULL"));
2614
2615 retry:
2616                 m_inc = 1;
2617                 if (vm_page_wired(m))
2618                         run_ext = 0;
2619 #if VM_NRESERVLEVEL > 0
2620                 else if ((level = vm_reserv_level(m)) >= 0 &&
2621                     (options & VPSC_NORESERV) != 0) {
2622                         run_ext = 0;
2623                         /* Advance to the end of the reservation. */
2624                         pa = VM_PAGE_TO_PHYS(m);
2625                         m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2626                             pa);
2627                 }
2628 #endif
2629                 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2630                         /*
2631                          * The page is considered eligible for relocation if
2632                          * and only if it could be laundered or reclaimed by
2633                          * the page daemon.
2634                          */
2635                         VM_OBJECT_RLOCK(object);
2636                         if (object != m->object) {
2637                                 VM_OBJECT_RUNLOCK(object);
2638                                 goto retry;
2639                         }
2640                         /* Don't care: PG_NODUMP, PG_ZERO. */
2641                         if (object->type != OBJT_DEFAULT &&
2642                             object->type != OBJT_SWAP &&
2643                             object->type != OBJT_VNODE) {
2644                                 run_ext = 0;
2645 #if VM_NRESERVLEVEL > 0
2646                         } else if ((options & VPSC_NOSUPER) != 0 &&
2647                             (level = vm_reserv_level_iffullpop(m)) >= 0) {
2648                                 run_ext = 0;
2649                                 /* Advance to the end of the superpage. */
2650                                 pa = VM_PAGE_TO_PHYS(m);
2651                                 m_inc = atop(roundup2(pa + 1,
2652                                     vm_reserv_size(level)) - pa);
2653 #endif
2654                         } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2655                             vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2656                                 /*
2657                                  * The page is allocated but eligible for
2658                                  * relocation.  Extend the current run by one
2659                                  * page.
2660                                  */
2661                                 KASSERT(pmap_page_get_memattr(m) ==
2662                                     VM_MEMATTR_DEFAULT,
2663                                     ("page %p has an unexpected memattr", m));
2664                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2665                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2666                                     ("page %p has unexpected oflags", m));
2667                                 /* Don't care: PGA_NOSYNC. */
2668                                 run_ext = 1;
2669                         } else
2670                                 run_ext = 0;
2671                         VM_OBJECT_RUNLOCK(object);
2672 #if VM_NRESERVLEVEL > 0
2673                 } else if (level >= 0) {
2674                         /*
2675                          * The page is reserved but not yet allocated.  In
2676                          * other words, it is still free.  Extend the current
2677                          * run by one page.
2678                          */
2679                         run_ext = 1;
2680 #endif
2681                 } else if ((order = m->order) < VM_NFREEORDER) {
2682                         /*
2683                          * The page is enqueued in the physical memory
2684                          * allocator's free page queues.  Moreover, it is the
2685                          * first page in a power-of-two-sized run of
2686                          * contiguous free pages.  Add these pages to the end
2687                          * of the current run, and jump ahead.
2688                          */
2689                         run_ext = 1 << order;
2690                         m_inc = 1 << order;
2691                 } else {
2692                         /*
2693                          * Skip the page for one of the following reasons: (1)
2694                          * It is enqueued in the physical memory allocator's
2695                          * free page queues.  However, it is not the first
2696                          * page in a run of contiguous free pages.  (This case
2697                          * rarely occurs because the scan is performed in
2698                          * ascending order.) (2) It is not reserved, and it is
2699                          * transitioning from free to allocated.  (Conversely,
2700                          * the transition from allocated to free for managed
2701                          * pages is blocked by the page busy lock.) (3) It is
2702                          * allocated but not contained by an object and not
2703                          * wired, e.g., allocated by Xen's balloon driver.
2704                          */
2705                         run_ext = 0;
2706                 }
2707
2708                 /*
2709                  * Extend or reset the current run of pages.
2710                  */
2711                 if (run_ext > 0) {
2712                         if (run_len == 0)
2713                                 m_run = m;
2714                         run_len += run_ext;
2715                 } else {
2716                         if (run_len > 0) {
2717                                 m_run = NULL;
2718                                 run_len = 0;
2719                         }
2720                 }
2721         }
2722         if (run_len >= npages)
2723                 return (m_run);
2724         return (NULL);
2725 }
2726
2727 /*
2728  *      vm_page_reclaim_run:
2729  *
2730  *      Try to relocate each of the allocated virtual pages within the
2731  *      specified run of physical pages to a new physical address.  Free the
2732  *      physical pages underlying the relocated virtual pages.  A virtual page
2733  *      is relocatable if and only if it could be laundered or reclaimed by
2734  *      the page daemon.  Whenever possible, a virtual page is relocated to a
2735  *      physical address above "high".
2736  *
2737  *      Returns 0 if every physical page within the run was already free or
2738  *      just freed by a successful relocation.  Otherwise, returns a non-zero
2739  *      value indicating why the last attempt to relocate a virtual page was
2740  *      unsuccessful.
2741  *
2742  *      "req_class" must be an allocation class.
2743  */
2744 static int
2745 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2746     vm_paddr_t high)
2747 {
2748         struct vm_domain *vmd;
2749         struct spglist free;
2750         vm_object_t object;
2751         vm_paddr_t pa;
2752         vm_page_t m, m_end, m_new;
2753         int error, order, req;
2754
2755         KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2756             ("req_class is not an allocation class"));
2757         SLIST_INIT(&free);
2758         error = 0;
2759         m = m_run;
2760         m_end = m_run + npages;
2761         for (; error == 0 && m < m_end; m++) {
2762                 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2763                     ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2764
2765                 /*
2766                  * Racily check for wirings.  Races are handled once the object
2767                  * lock is held and the page is unmapped.
2768                  */
2769                 if (vm_page_wired(m))
2770                         error = EBUSY;
2771                 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2772                         /*
2773                          * The page is relocated if and only if it could be
2774                          * laundered or reclaimed by the page daemon.
2775                          */
2776                         VM_OBJECT_WLOCK(object);
2777                         /* Don't care: PG_NODUMP, PG_ZERO. */
2778                         if (m->object != object ||
2779                             (object->type != OBJT_DEFAULT &&
2780                             object->type != OBJT_SWAP &&
2781                             object->type != OBJT_VNODE))
2782                                 error = EINVAL;
2783                         else if (object->memattr != VM_MEMATTR_DEFAULT)
2784                                 error = EINVAL;
2785                         else if (vm_page_queue(m) != PQ_NONE &&
2786                             vm_page_tryxbusy(m) != 0) {
2787                                 if (vm_page_wired(m)) {
2788                                         vm_page_xunbusy(m);
2789                                         error = EBUSY;
2790                                         goto unlock;
2791                                 }
2792                                 KASSERT(pmap_page_get_memattr(m) ==
2793                                     VM_MEMATTR_DEFAULT,
2794                                     ("page %p has an unexpected memattr", m));
2795                                 KASSERT(m->oflags == 0,
2796                                     ("page %p has unexpected oflags", m));
2797                                 /* Don't care: PGA_NOSYNC. */
2798                                 if (!vm_page_none_valid(m)) {
2799                                         /*
2800                                          * First, try to allocate a new page
2801                                          * that is above "high".  Failing
2802                                          * that, try to allocate a new page
2803                                          * that is below "m_run".  Allocate
2804                                          * the new page between the end of
2805                                          * "m_run" and "high" only as a last
2806                                          * resort.
2807                                          */
2808                                         req = req_class | VM_ALLOC_NOOBJ;
2809                                         if ((m->flags & PG_NODUMP) != 0)
2810                                                 req |= VM_ALLOC_NODUMP;
2811                                         if (trunc_page(high) !=
2812                                             ~(vm_paddr_t)PAGE_MASK) {
2813                                                 m_new = vm_page_alloc_contig(
2814                                                     NULL, 0, req, 1,
2815                                                     round_page(high),
2816                                                     ~(vm_paddr_t)0,
2817                                                     PAGE_SIZE, 0,
2818                                                     VM_MEMATTR_DEFAULT);
2819                                         } else
2820                                                 m_new = NULL;
2821                                         if (m_new == NULL) {
2822                                                 pa = VM_PAGE_TO_PHYS(m_run);
2823                                                 m_new = vm_page_alloc_contig(
2824                                                     NULL, 0, req, 1,
2825                                                     0, pa - 1, PAGE_SIZE, 0,
2826                                                     VM_MEMATTR_DEFAULT);
2827                                         }
2828                                         if (m_new == NULL) {
2829                                                 pa += ptoa(npages);
2830                                                 m_new = vm_page_alloc_contig(
2831                                                     NULL, 0, req, 1,
2832                                                     pa, high, PAGE_SIZE, 0,
2833                                                     VM_MEMATTR_DEFAULT);
2834                                         }
2835                                         if (m_new == NULL) {
2836                                                 vm_page_xunbusy(m);
2837                                                 error = ENOMEM;
2838                                                 goto unlock;
2839                                         }
2840
2841                                         /*
2842                                          * Unmap the page and check for new
2843                                          * wirings that may have been acquired
2844                                          * through a pmap lookup.
2845                                          */
2846                                         if (object->ref_count != 0 &&
2847                                             !vm_page_try_remove_all(m)) {
2848                                                 vm_page_xunbusy(m);
2849                                                 vm_page_free(m_new);
2850                                                 error = EBUSY;
2851                                                 goto unlock;
2852                                         }
2853
2854                                         /*
2855                                          * Replace "m" with the new page.  For
2856                                          * vm_page_replace(), "m" must be busy
2857                                          * and dequeued.  Finally, change "m"
2858                                          * as if vm_page_free() was called.
2859                                          */
2860                                         m_new->a.flags = m->a.flags &
2861                                             ~PGA_QUEUE_STATE_MASK;
2862                                         KASSERT(m_new->oflags == VPO_UNMANAGED,
2863                                             ("page %p is managed", m_new));
2864                                         m_new->oflags = 0;
2865                                         pmap_copy_page(m, m_new);
2866                                         m_new->valid = m->valid;
2867                                         m_new->dirty = m->dirty;
2868                                         m->flags &= ~PG_ZERO;
2869                                         vm_page_dequeue(m);
2870                                         if (vm_page_replace_hold(m_new, object,
2871                                             m->pindex, m) &&
2872                                             vm_page_free_prep(m))
2873                                                 SLIST_INSERT_HEAD(&free, m,
2874                                                     plinks.s.ss);
2875
2876                                         /*
2877                                          * The new page must be deactivated
2878                                          * before the object is unlocked.
2879                                          */
2880                                         vm_page_deactivate(m_new);
2881                                 } else {
2882                                         m->flags &= ~PG_ZERO;
2883                                         vm_page_dequeue(m);
2884                                         if (vm_page_free_prep(m))
2885                                                 SLIST_INSERT_HEAD(&free, m,
2886                                                     plinks.s.ss);
2887                                         KASSERT(m->dirty == 0,
2888                                             ("page %p is dirty", m));
2889                                 }
2890                         } else
2891                                 error = EBUSY;
2892 unlock:
2893                         VM_OBJECT_WUNLOCK(object);
2894                 } else {
2895                         MPASS(vm_page_domain(m) == domain);
2896                         vmd = VM_DOMAIN(domain);
2897                         vm_domain_free_lock(vmd);
2898                         order = m->order;
2899                         if (order < VM_NFREEORDER) {
2900                                 /*
2901                                  * The page is enqueued in the physical memory
2902                                  * allocator's free page queues.  Moreover, it
2903                                  * is the first page in a power-of-two-sized
2904                                  * run of contiguous free pages.  Jump ahead
2905                                  * to the last page within that run, and
2906                                  * continue from there.
2907                                  */
2908                                 m += (1 << order) - 1;
2909                         }
2910 #if VM_NRESERVLEVEL > 0
2911                         else if (vm_reserv_is_page_free(m))
2912                                 order = 0;
2913 #endif
2914                         vm_domain_free_unlock(vmd);
2915                         if (order == VM_NFREEORDER)
2916                                 error = EINVAL;
2917                 }
2918         }
2919         if ((m = SLIST_FIRST(&free)) != NULL) {
2920                 int cnt;
2921
2922                 vmd = VM_DOMAIN(domain);
2923                 cnt = 0;
2924                 vm_domain_free_lock(vmd);
2925                 do {
2926                         MPASS(vm_page_domain(m) == domain);
2927                         SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2928                         vm_phys_free_pages(m, 0);
2929                         cnt++;
2930                 } while ((m = SLIST_FIRST(&free)) != NULL);
2931                 vm_domain_free_unlock(vmd);
2932                 vm_domain_freecnt_inc(vmd, cnt);
2933         }
2934         return (error);
2935 }
2936
2937 #define NRUNS   16
2938
2939 CTASSERT(powerof2(NRUNS));
2940
2941 #define RUN_INDEX(count)        ((count) & (NRUNS - 1))
2942
2943 #define MIN_RECLAIM     8
2944
2945 /*
2946  *      vm_page_reclaim_contig:
2947  *
2948  *      Reclaim allocated, contiguous physical memory satisfying the specified
2949  *      conditions by relocating the virtual pages using that physical memory.
2950  *      Returns true if reclamation is successful and false otherwise.  Since
2951  *      relocation requires the allocation of physical pages, reclamation may
2952  *      fail due to a shortage of free pages.  When reclamation fails, callers
2953  *      are expected to perform vm_wait() before retrying a failed allocation
2954  *      operation, e.g., vm_page_alloc_contig().
2955  *
2956  *      The caller must always specify an allocation class through "req".
2957  *
2958  *      allocation classes:
2959  *      VM_ALLOC_NORMAL         normal process request
2960  *      VM_ALLOC_SYSTEM         system *really* needs a page
2961  *      VM_ALLOC_INTERRUPT      interrupt time request
2962  *
2963  *      The optional allocation flags are ignored.
2964  *
2965  *      "npages" must be greater than zero.  Both "alignment" and "boundary"
2966  *      must be a power of two.
2967  */
2968 bool
2969 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2970     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2971 {
2972         struct vm_domain *vmd;
2973         vm_paddr_t curr_low;
2974         vm_page_t m_run, m_runs[NRUNS];
2975         u_long count, reclaimed;
2976         int error, i, options, req_class;
2977
2978         KASSERT(npages > 0, ("npages is 0"));
2979         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2980         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2981         req_class = req & VM_ALLOC_CLASS_MASK;
2982
2983         /*
2984          * The page daemon is allowed to dig deeper into the free page list.
2985          */
2986         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2987                 req_class = VM_ALLOC_SYSTEM;
2988
2989         /*
2990          * Return if the number of free pages cannot satisfy the requested
2991          * allocation.
2992          */
2993         vmd = VM_DOMAIN(domain);
2994         count = vmd->vmd_free_count;
2995         if (count < npages + vmd->vmd_free_reserved || (count < npages +
2996             vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2997             (count < npages && req_class == VM_ALLOC_INTERRUPT))
2998                 return (false);
2999
3000         /*
3001          * Scan up to three times, relaxing the restrictions ("options") on
3002          * the reclamation of reservations and superpages each time.
3003          */
3004         for (options = VPSC_NORESERV;;) {
3005                 /*
3006                  * Find the highest runs that satisfy the given constraints
3007                  * and restrictions, and record them in "m_runs".
3008                  */
3009                 curr_low = low;
3010                 count = 0;
3011                 for (;;) {
3012                         m_run = vm_phys_scan_contig(domain, npages, curr_low,
3013                             high, alignment, boundary, options);
3014                         if (m_run == NULL)
3015                                 break;
3016                         curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
3017                         m_runs[RUN_INDEX(count)] = m_run;
3018                         count++;
3019                 }
3020
3021                 /*
3022                  * Reclaim the highest runs in LIFO (descending) order until
3023                  * the number of reclaimed pages, "reclaimed", is at least
3024                  * MIN_RECLAIM.  Reset "reclaimed" each time because each
3025                  * reclamation is idempotent, and runs will (likely) recur
3026                  * from one scan to the next as restrictions are relaxed.
3027                  */
3028                 reclaimed = 0;
3029                 for (i = 0; count > 0 && i < NRUNS; i++) {
3030                         count--;
3031                         m_run = m_runs[RUN_INDEX(count)];
3032                         error = vm_page_reclaim_run(req_class, domain, npages,
3033                             m_run, high);
3034                         if (error == 0) {
3035                                 reclaimed += npages;
3036                                 if (reclaimed >= MIN_RECLAIM)
3037                                         return (true);
3038                         }
3039                 }
3040
3041                 /*
3042                  * Either relax the restrictions on the next scan or return if
3043                  * the last scan had no restrictions.
3044                  */
3045                 if (options == VPSC_NORESERV)
3046                         options = VPSC_NOSUPER;
3047                 else if (options == VPSC_NOSUPER)
3048                         options = VPSC_ANY;
3049                 else if (options == VPSC_ANY)
3050                         return (reclaimed != 0);
3051         }
3052 }
3053
3054 bool
3055 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3056     u_long alignment, vm_paddr_t boundary)
3057 {
3058         struct vm_domainset_iter di;
3059         int domain;
3060         bool ret;
3061
3062         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3063         do {
3064                 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
3065                     high, alignment, boundary);
3066                 if (ret)
3067                         break;
3068         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3069
3070         return (ret);
3071 }
3072
3073 /*
3074  * Set the domain in the appropriate page level domainset.
3075  */
3076 void
3077 vm_domain_set(struct vm_domain *vmd)
3078 {
3079
3080         mtx_lock(&vm_domainset_lock);
3081         if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3082                 vmd->vmd_minset = 1;
3083                 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3084         }
3085         if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3086                 vmd->vmd_severeset = 1;
3087                 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3088         }
3089         mtx_unlock(&vm_domainset_lock);
3090 }
3091
3092 /*
3093  * Clear the domain from the appropriate page level domainset.
3094  */
3095 void
3096 vm_domain_clear(struct vm_domain *vmd)
3097 {
3098
3099         mtx_lock(&vm_domainset_lock);
3100         if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3101                 vmd->vmd_minset = 0;
3102                 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3103                 if (vm_min_waiters != 0) {
3104                         vm_min_waiters = 0;
3105                         wakeup(&vm_min_domains);
3106                 }
3107         }
3108         if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3109                 vmd->vmd_severeset = 0;
3110                 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3111                 if (vm_severe_waiters != 0) {
3112                         vm_severe_waiters = 0;
3113                         wakeup(&vm_severe_domains);
3114                 }
3115         }
3116
3117         /*
3118          * If pageout daemon needs pages, then tell it that there are
3119          * some free.
3120          */
3121         if (vmd->vmd_pageout_pages_needed &&
3122             vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3123                 wakeup(&vmd->vmd_pageout_pages_needed);
3124                 vmd->vmd_pageout_pages_needed = 0;
3125         }
3126
3127         /* See comments in vm_wait_doms(). */
3128         if (vm_pageproc_waiters) {
3129                 vm_pageproc_waiters = 0;
3130                 wakeup(&vm_pageproc_waiters);
3131         }
3132         mtx_unlock(&vm_domainset_lock);
3133 }
3134
3135 /*
3136  * Wait for free pages to exceed the min threshold globally.
3137  */
3138 void
3139 vm_wait_min(void)
3140 {
3141
3142         mtx_lock(&vm_domainset_lock);
3143         while (vm_page_count_min()) {
3144                 vm_min_waiters++;
3145                 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3146         }
3147         mtx_unlock(&vm_domainset_lock);
3148 }
3149
3150 /*
3151  * Wait for free pages to exceed the severe threshold globally.
3152  */
3153 void
3154 vm_wait_severe(void)
3155 {
3156
3157         mtx_lock(&vm_domainset_lock);
3158         while (vm_page_count_severe()) {
3159                 vm_severe_waiters++;
3160                 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3161                     "vmwait", 0);
3162         }
3163         mtx_unlock(&vm_domainset_lock);
3164 }
3165
3166 u_int
3167 vm_wait_count(void)
3168 {
3169
3170         return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3171 }
3172
3173 int
3174 vm_wait_doms(const domainset_t *wdoms, int mflags)
3175 {
3176         int error;
3177
3178         error = 0;
3179
3180         /*
3181          * We use racey wakeup synchronization to avoid expensive global
3182          * locking for the pageproc when sleeping with a non-specific vm_wait.
3183          * To handle this, we only sleep for one tick in this instance.  It
3184          * is expected that most allocations for the pageproc will come from
3185          * kmem or vm_page_grab* which will use the more specific and
3186          * race-free vm_wait_domain().
3187          */
3188         if (curproc == pageproc) {
3189                 mtx_lock(&vm_domainset_lock);
3190                 vm_pageproc_waiters++;
3191                 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3192                     PVM | PDROP | mflags, "pageprocwait", 1);
3193         } else {
3194                 /*
3195                  * XXX Ideally we would wait only until the allocation could
3196                  * be satisfied.  This condition can cause new allocators to
3197                  * consume all freed pages while old allocators wait.
3198                  */
3199                 mtx_lock(&vm_domainset_lock);
3200                 if (vm_page_count_min_set(wdoms)) {
3201                         vm_min_waiters++;
3202                         error = msleep(&vm_min_domains, &vm_domainset_lock,
3203                             PVM | PDROP | mflags, "vmwait", 0);
3204                 } else
3205                         mtx_unlock(&vm_domainset_lock);
3206         }
3207         return (error);
3208 }
3209
3210 /*
3211  *      vm_wait_domain:
3212  *
3213  *      Sleep until free pages are available for allocation.
3214  *      - Called in various places after failed memory allocations.
3215  */
3216 void
3217 vm_wait_domain(int domain)
3218 {
3219         struct vm_domain *vmd;
3220         domainset_t wdom;
3221
3222         vmd = VM_DOMAIN(domain);
3223         vm_domain_free_assert_unlocked(vmd);
3224
3225         if (curproc == pageproc) {
3226                 mtx_lock(&vm_domainset_lock);
3227                 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3228                         vmd->vmd_pageout_pages_needed = 1;
3229                         msleep(&vmd->vmd_pageout_pages_needed,
3230                             &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3231                 } else
3232                         mtx_unlock(&vm_domainset_lock);
3233         } else {
3234                 if (pageproc == NULL)
3235                         panic("vm_wait in early boot");
3236                 DOMAINSET_ZERO(&wdom);
3237                 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3238                 vm_wait_doms(&wdom, 0);
3239         }
3240 }
3241
3242 static int
3243 vm_wait_flags(vm_object_t obj, int mflags)
3244 {
3245         struct domainset *d;
3246
3247         d = NULL;
3248
3249         /*
3250          * Carefully fetch pointers only once: the struct domainset
3251          * itself is ummutable but the pointer might change.
3252          */
3253         if (obj != NULL)
3254                 d = obj->domain.dr_policy;
3255         if (d == NULL)
3256                 d = curthread->td_domain.dr_policy;
3257
3258         return (vm_wait_doms(&d->ds_mask, mflags));
3259 }
3260
3261 /*
3262  *      vm_wait:
3263  *
3264  *      Sleep until free pages are available for allocation in the
3265  *      affinity domains of the obj.  If obj is NULL, the domain set
3266  *      for the calling thread is used.
3267  *      Called in various places after failed memory allocations.
3268  */
3269 void
3270 vm_wait(vm_object_t obj)
3271 {
3272         (void)vm_wait_flags(obj, 0);
3273 }
3274
3275 int
3276 vm_wait_intr(vm_object_t obj)
3277 {
3278         return (vm_wait_flags(obj, PCATCH));
3279 }
3280
3281 /*
3282  *      vm_domain_alloc_fail:
3283  *
3284  *      Called when a page allocation function fails.  Informs the
3285  *      pagedaemon and performs the requested wait.  Requires the
3286  *      domain_free and object lock on entry.  Returns with the
3287  *      object lock held and free lock released.  Returns an error when
3288  *      retry is necessary.
3289  *
3290  */
3291 static int
3292 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3293 {
3294
3295         vm_domain_free_assert_unlocked(vmd);
3296
3297         atomic_add_int(&vmd->vmd_pageout_deficit,
3298             max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3299         if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3300                 if (object != NULL) 
3301                         VM_OBJECT_WUNLOCK(object);
3302                 vm_wait_domain(vmd->vmd_domain);
3303                 if (object != NULL) 
3304                         VM_OBJECT_WLOCK(object);
3305                 if (req & VM_ALLOC_WAITOK)
3306                         return (EAGAIN);
3307         }
3308
3309         return (0);
3310 }
3311
3312 /*
3313  *      vm_waitpfault:
3314  *
3315  *      Sleep until free pages are available for allocation.
3316  *      - Called only in vm_fault so that processes page faulting
3317  *        can be easily tracked.
3318  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3319  *        processes will be able to grab memory first.  Do not change
3320  *        this balance without careful testing first.
3321  */
3322 void
3323 vm_waitpfault(struct domainset *dset, int timo)
3324 {
3325
3326         /*
3327          * XXX Ideally we would wait only until the allocation could
3328          * be satisfied.  This condition can cause new allocators to
3329          * consume all freed pages while old allocators wait.
3330          */
3331         mtx_lock(&vm_domainset_lock);
3332         if (vm_page_count_min_set(&dset->ds_mask)) {
3333                 vm_min_waiters++;
3334                 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3335                     "pfault", timo);
3336         } else
3337                 mtx_unlock(&vm_domainset_lock);
3338 }
3339
3340 static struct vm_pagequeue *
3341 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3342 {
3343
3344         return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3345 }
3346
3347 #ifdef INVARIANTS
3348 static struct vm_pagequeue *
3349 vm_page_pagequeue(vm_page_t m)
3350 {
3351
3352         return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3353 }
3354 #endif
3355
3356 static __always_inline bool
3357 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3358 {
3359         vm_page_astate_t tmp;
3360
3361         tmp = *old;
3362         do {
3363                 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3364                         return (true);
3365                 counter_u64_add(pqstate_commit_retries, 1);
3366         } while (old->_bits == tmp._bits);
3367
3368         return (false);
3369 }
3370
3371 /*
3372  * Do the work of committing a queue state update that moves the page out of
3373  * its current queue.
3374  */
3375 static bool
3376 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3377     vm_page_astate_t *old, vm_page_astate_t new)
3378 {
3379         vm_page_t next;
3380
3381         vm_pagequeue_assert_locked(pq);
3382         KASSERT(vm_page_pagequeue(m) == pq,
3383             ("%s: queue %p does not match page %p", __func__, pq, m));
3384         KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3385             ("%s: invalid queue indices %d %d",
3386             __func__, old->queue, new.queue));
3387
3388         /*
3389          * Once the queue index of the page changes there is nothing
3390          * synchronizing with further updates to the page's physical
3391          * queue state.  Therefore we must speculatively remove the page
3392          * from the queue now and be prepared to roll back if the queue
3393          * state update fails.  If the page is not physically enqueued then
3394          * we just update its queue index.
3395          */
3396         if ((old->flags & PGA_ENQUEUED) != 0) {
3397                 new.flags &= ~PGA_ENQUEUED;
3398                 next = TAILQ_NEXT(m, plinks.q);
3399                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3400                 vm_pagequeue_cnt_dec(pq);
3401                 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3402                         if (next == NULL)
3403                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3404                         else
3405                                 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3406                         vm_pagequeue_cnt_inc(pq);
3407                         return (false);
3408                 } else {
3409                         return (true);
3410                 }
3411         } else {
3412                 return (vm_page_pqstate_fcmpset(m, old, new));
3413         }
3414 }
3415
3416 static bool
3417 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3418     vm_page_astate_t new)
3419 {
3420         struct vm_pagequeue *pq;
3421         vm_page_astate_t as;
3422         bool ret;
3423
3424         pq = _vm_page_pagequeue(m, old->queue);
3425
3426         /*
3427          * The queue field and PGA_ENQUEUED flag are stable only so long as the
3428          * corresponding page queue lock is held.
3429          */
3430         vm_pagequeue_lock(pq);
3431         as = vm_page_astate_load(m);
3432         if (__predict_false(as._bits != old->_bits)) {
3433                 *old = as;
3434                 ret = false;
3435         } else {
3436                 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3437         }
3438         vm_pagequeue_unlock(pq);
3439         return (ret);
3440 }
3441
3442 /*
3443  * Commit a queue state update that enqueues or requeues a page.
3444  */
3445 static bool
3446 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3447     vm_page_astate_t *old, vm_page_astate_t new)
3448 {
3449         struct vm_domain *vmd;
3450
3451         vm_pagequeue_assert_locked(pq);
3452         KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3453             ("%s: invalid queue indices %d %d",
3454             __func__, old->queue, new.queue));
3455
3456         new.flags |= PGA_ENQUEUED;
3457         if (!vm_page_pqstate_fcmpset(m, old, new))
3458                 return (false);
3459
3460         if ((old->flags & PGA_ENQUEUED) != 0)
3461                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3462         else
3463                 vm_pagequeue_cnt_inc(pq);
3464
3465         /*
3466          * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3467          * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3468          * applied, even if it was set first.
3469          */
3470         if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3471                 vmd = vm_pagequeue_domain(m);
3472                 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3473                     ("%s: invalid page queue for page %p", __func__, m));
3474                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3475         } else {
3476                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3477         }
3478         return (true);
3479 }
3480
3481 /*
3482  * Commit a queue state update that encodes a request for a deferred queue
3483  * operation.
3484  */
3485 static bool
3486 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3487     vm_page_astate_t new)
3488 {
3489
3490         KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3491             ("%s: invalid state, queue %d flags %x",
3492             __func__, new.queue, new.flags));
3493
3494         if (old->_bits != new._bits &&
3495             !vm_page_pqstate_fcmpset(m, old, new))
3496                 return (false);
3497         vm_page_pqbatch_submit(m, new.queue);
3498         return (true);
3499 }
3500
3501 /*
3502  * A generic queue state update function.  This handles more cases than the
3503  * specialized functions above.
3504  */
3505 bool
3506 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3507 {
3508
3509         if (old->_bits == new._bits)
3510                 return (true);
3511
3512         if (old->queue != PQ_NONE && new.queue != old->queue) {
3513                 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3514                         return (false);
3515                 if (new.queue != PQ_NONE)
3516                         vm_page_pqbatch_submit(m, new.queue);
3517         } else {
3518                 if (!vm_page_pqstate_fcmpset(m, old, new))
3519                         return (false);
3520                 if (new.queue != PQ_NONE &&
3521                     ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3522                         vm_page_pqbatch_submit(m, new.queue);
3523         }
3524         return (true);
3525 }
3526
3527 /*
3528  * Apply deferred queue state updates to a page.
3529  */
3530 static inline void
3531 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3532 {
3533         vm_page_astate_t new, old;
3534
3535         CRITICAL_ASSERT(curthread);
3536         vm_pagequeue_assert_locked(pq);
3537         KASSERT(queue < PQ_COUNT,
3538             ("%s: invalid queue index %d", __func__, queue));
3539         KASSERT(pq == _vm_page_pagequeue(m, queue),
3540             ("%s: page %p does not belong to queue %p", __func__, m, pq));
3541
3542         for (old = vm_page_astate_load(m);;) {
3543                 if (__predict_false(old.queue != queue ||
3544                     (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3545                         counter_u64_add(queue_nops, 1);
3546                         break;
3547                 }
3548                 KASSERT(old.queue != PQ_NONE ||
3549                     (old.flags & PGA_QUEUE_STATE_MASK) == 0,
3550                     ("%s: page %p has unexpected queue state", __func__, m));
3551
3552                 new = old;
3553                 if ((old.flags & PGA_DEQUEUE) != 0) {
3554                         new.flags &= ~PGA_QUEUE_OP_MASK;
3555                         new.queue = PQ_NONE;
3556                         if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3557                             m, &old, new))) {
3558                                 counter_u64_add(queue_ops, 1);
3559                                 break;
3560                         }
3561                 } else {
3562                         new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3563                         if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3564                             m, &old, new))) {
3565                                 counter_u64_add(queue_ops, 1);
3566                                 break;
3567                         }
3568                 }
3569         }
3570 }
3571
3572 static void
3573 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3574     uint8_t queue)
3575 {
3576         int i;
3577
3578         for (i = 0; i < bq->bq_cnt; i++)
3579                 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3580         vm_batchqueue_init(bq);
3581 }
3582
3583 /*
3584  *      vm_page_pqbatch_submit:         [ internal use only ]
3585  *
3586  *      Enqueue a page in the specified page queue's batched work queue.
3587  *      The caller must have encoded the requested operation in the page
3588  *      structure's a.flags field.
3589  */
3590 void
3591 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3592 {
3593         struct vm_batchqueue *bq;
3594         struct vm_pagequeue *pq;
3595         int domain;
3596
3597         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3598             ("page %p is unmanaged", m));
3599         KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3600
3601         domain = vm_page_domain(m);
3602         critical_enter();
3603         bq = DPCPU_PTR(pqbatch[domain][queue]);
3604         if (vm_batchqueue_insert(bq, m)) {
3605                 critical_exit();
3606                 return;
3607         }
3608         critical_exit();
3609
3610         pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3611         vm_pagequeue_lock(pq);
3612         critical_enter();
3613         bq = DPCPU_PTR(pqbatch[domain][queue]);
3614         vm_pqbatch_process(pq, bq, queue);
3615         vm_pqbatch_process_page(pq, m, queue);
3616         vm_pagequeue_unlock(pq);
3617         critical_exit();
3618 }
3619
3620 /*
3621  *      vm_page_pqbatch_drain:          [ internal use only ]
3622  *
3623  *      Force all per-CPU page queue batch queues to be drained.  This is
3624  *      intended for use in severe memory shortages, to ensure that pages
3625  *      do not remain stuck in the batch queues.
3626  */
3627 void
3628 vm_page_pqbatch_drain(void)
3629 {
3630         struct thread *td;
3631         struct vm_domain *vmd;
3632         struct vm_pagequeue *pq;
3633         int cpu, domain, queue;
3634
3635         td = curthread;
3636         CPU_FOREACH(cpu) {
3637                 thread_lock(td);
3638                 sched_bind(td, cpu);
3639                 thread_unlock(td);
3640
3641                 for (domain = 0; domain < vm_ndomains; domain++) {
3642                         vmd = VM_DOMAIN(domain);
3643                         for (queue = 0; queue < PQ_COUNT; queue++) {
3644                                 pq = &vmd->vmd_pagequeues[queue];
3645                                 vm_pagequeue_lock(pq);
3646                                 critical_enter();
3647                                 vm_pqbatch_process(pq,
3648                                     DPCPU_PTR(pqbatch[domain][queue]), queue);
3649                                 critical_exit();
3650                                 vm_pagequeue_unlock(pq);
3651                         }
3652                 }
3653         }
3654         thread_lock(td);
3655         sched_unbind(td);
3656         thread_unlock(td);
3657 }
3658
3659 /*
3660  *      vm_page_dequeue_deferred:       [ internal use only ]
3661  *
3662  *      Request removal of the given page from its current page
3663  *      queue.  Physical removal from the queue may be deferred
3664  *      indefinitely.
3665  */
3666 void
3667 vm_page_dequeue_deferred(vm_page_t m)
3668 {
3669         vm_page_astate_t new, old;
3670
3671         old = vm_page_astate_load(m);
3672         do {
3673                 if (old.queue == PQ_NONE) {
3674                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3675                             ("%s: page %p has unexpected queue state",
3676                             __func__, m));
3677                         break;
3678                 }
3679                 new = old;
3680                 new.flags |= PGA_DEQUEUE;
3681         } while (!vm_page_pqstate_commit_request(m, &old, new));
3682 }
3683
3684 /*
3685  *      vm_page_dequeue:
3686  *
3687  *      Remove the page from whichever page queue it's in, if any, before
3688  *      returning.
3689  */
3690 void
3691 vm_page_dequeue(vm_page_t m)
3692 {
3693         vm_page_astate_t new, old;
3694
3695         old = vm_page_astate_load(m);
3696         do {
3697                 if (old.queue == PQ_NONE) {
3698                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3699                             ("%s: page %p has unexpected queue state",
3700                             __func__, m));
3701                         break;
3702                 }
3703                 new = old;
3704                 new.flags &= ~PGA_QUEUE_OP_MASK;
3705                 new.queue = PQ_NONE;
3706         } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3707
3708 }
3709
3710 /*
3711  * Schedule the given page for insertion into the specified page queue.
3712  * Physical insertion of the page may be deferred indefinitely.
3713  */
3714 static void
3715 vm_page_enqueue(vm_page_t m, uint8_t queue)
3716 {
3717
3718         KASSERT(m->a.queue == PQ_NONE &&
3719             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3720             ("%s: page %p is already enqueued", __func__, m));
3721         KASSERT(m->ref_count > 0,
3722             ("%s: page %p does not carry any references", __func__, m));
3723
3724         m->a.queue = queue;
3725         if ((m->a.flags & PGA_REQUEUE) == 0)
3726                 vm_page_aflag_set(m, PGA_REQUEUE);
3727         vm_page_pqbatch_submit(m, queue);
3728 }
3729
3730 /*
3731  *      vm_page_free_prep:
3732  *
3733  *      Prepares the given page to be put on the free list,
3734  *      disassociating it from any VM object. The caller may return
3735  *      the page to the free list only if this function returns true.
3736  *
3737  *      The object, if it exists, must be locked, and then the page must
3738  *      be xbusy.  Otherwise the page must be not busied.  A managed
3739  *      page must be unmapped.
3740  */
3741 static bool
3742 vm_page_free_prep(vm_page_t m)
3743 {
3744
3745         /*
3746          * Synchronize with threads that have dropped a reference to this
3747          * page.
3748          */
3749         atomic_thread_fence_acq();
3750
3751 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3752         if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3753                 uint64_t *p;
3754                 int i;
3755                 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3756                 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3757                         KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3758                             m, i, (uintmax_t)*p));
3759         }
3760 #endif
3761         if ((m->oflags & VPO_UNMANAGED) == 0) {
3762                 KASSERT(!pmap_page_is_mapped(m),
3763                     ("vm_page_free_prep: freeing mapped page %p", m));
3764                 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3765                     ("vm_page_free_prep: mapping flags set in page %p", m));
3766         } else {
3767                 KASSERT(m->a.queue == PQ_NONE,
3768                     ("vm_page_free_prep: unmanaged page %p is queued", m));
3769         }
3770         VM_CNT_INC(v_tfree);
3771
3772         if (m->object != NULL) {
3773                 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3774                     ((m->object->flags & OBJ_UNMANAGED) != 0),
3775                     ("vm_page_free_prep: managed flag mismatch for page %p",
3776                     m));
3777                 vm_page_assert_xbusied(m);
3778
3779                 /*
3780                  * The object reference can be released without an atomic
3781                  * operation.
3782                  */
3783                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3784                     m->ref_count == VPRC_OBJREF,
3785                     ("vm_page_free_prep: page %p has unexpected ref_count %u",
3786                     m, m->ref_count));
3787                 vm_page_object_remove(m);
3788                 m->ref_count -= VPRC_OBJREF;
3789         } else
3790                 vm_page_assert_unbusied(m);
3791
3792         vm_page_busy_free(m);
3793
3794         /*
3795          * If fictitious remove object association and
3796          * return.
3797          */
3798         if ((m->flags & PG_FICTITIOUS) != 0) {
3799                 KASSERT(m->ref_count == 1,
3800                     ("fictitious page %p is referenced", m));
3801                 KASSERT(m->a.queue == PQ_NONE,
3802                     ("fictitious page %p is queued", m));
3803                 return (false);
3804         }
3805
3806         /*
3807          * Pages need not be dequeued before they are returned to the physical
3808          * memory allocator, but they must at least be marked for a deferred
3809          * dequeue.
3810          */
3811         if ((m->oflags & VPO_UNMANAGED) == 0)
3812                 vm_page_dequeue_deferred(m);
3813
3814         m->valid = 0;
3815         vm_page_undirty(m);
3816
3817         if (m->ref_count != 0)
3818                 panic("vm_page_free_prep: page %p has references", m);
3819
3820         /*
3821          * Restore the default memory attribute to the page.
3822          */
3823         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3824                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3825
3826 #if VM_NRESERVLEVEL > 0
3827         /*
3828          * Determine whether the page belongs to a reservation.  If the page was
3829          * allocated from a per-CPU cache, it cannot belong to a reservation, so
3830          * as an optimization, we avoid the check in that case.
3831          */
3832         if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3833                 return (false);
3834 #endif
3835
3836         return (true);
3837 }
3838
3839 /*
3840  *      vm_page_free_toq:
3841  *
3842  *      Returns the given page to the free list, disassociating it
3843  *      from any VM object.
3844  *
3845  *      The object must be locked.  The page must be exclusively busied if it
3846  *      belongs to an object.
3847  */
3848 static void
3849 vm_page_free_toq(vm_page_t m)
3850 {
3851         struct vm_domain *vmd;
3852         uma_zone_t zone;
3853
3854         if (!vm_page_free_prep(m))
3855                 return;
3856
3857         vmd = vm_pagequeue_domain(m);
3858         zone = vmd->vmd_pgcache[m->pool].zone;
3859         if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3860                 uma_zfree(zone, m);
3861                 return;
3862         }
3863         vm_domain_free_lock(vmd);
3864         vm_phys_free_pages(m, 0);
3865         vm_domain_free_unlock(vmd);
3866         vm_domain_freecnt_inc(vmd, 1);
3867 }
3868
3869 /*
3870  *      vm_page_free_pages_toq:
3871  *
3872  *      Returns a list of pages to the free list, disassociating it
3873  *      from any VM object.  In other words, this is equivalent to
3874  *      calling vm_page_free_toq() for each page of a list of VM objects.
3875  */
3876 void
3877 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3878 {
3879         vm_page_t m;
3880         int count;
3881
3882         if (SLIST_EMPTY(free))
3883                 return;
3884
3885         count = 0;
3886         while ((m = SLIST_FIRST(free)) != NULL) {
3887                 count++;
3888                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
3889                 vm_page_free_toq(m);
3890         }
3891
3892         if (update_wire_count)
3893                 vm_wire_sub(count);
3894 }
3895
3896 /*
3897  * Mark this page as wired down.  For managed pages, this prevents reclamation
3898  * by the page daemon, or when the containing object, if any, is destroyed.
3899  */
3900 void
3901 vm_page_wire(vm_page_t m)
3902 {
3903         u_int old;
3904
3905 #ifdef INVARIANTS
3906         if (m->object != NULL && !vm_page_busied(m) &&
3907             !vm_object_busied(m->object))
3908                 VM_OBJECT_ASSERT_LOCKED(m->object);
3909 #endif
3910         KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3911             VPRC_WIRE_COUNT(m->ref_count) >= 1,
3912             ("vm_page_wire: fictitious page %p has zero wirings", m));
3913
3914         old = atomic_fetchadd_int(&m->ref_count, 1);
3915         KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3916             ("vm_page_wire: counter overflow for page %p", m));
3917         if (VPRC_WIRE_COUNT(old) == 0) {
3918                 if ((m->oflags & VPO_UNMANAGED) == 0)
3919                         vm_page_aflag_set(m, PGA_DEQUEUE);
3920                 vm_wire_add(1);
3921         }
3922 }
3923
3924 /*
3925  * Attempt to wire a mapped page following a pmap lookup of that page.
3926  * This may fail if a thread is concurrently tearing down mappings of the page.
3927  * The transient failure is acceptable because it translates to the
3928  * failure of the caller pmap_extract_and_hold(), which should be then
3929  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3930  */
3931 bool
3932 vm_page_wire_mapped(vm_page_t m)
3933 {
3934         u_int old;
3935
3936         old = m->ref_count;
3937         do {
3938                 KASSERT(old > 0,
3939                     ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3940                 if ((old & VPRC_BLOCKED) != 0)
3941                         return (false);
3942         } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3943
3944         if (VPRC_WIRE_COUNT(old) == 0) {
3945                 if ((m->oflags & VPO_UNMANAGED) == 0)
3946                         vm_page_aflag_set(m, PGA_DEQUEUE);
3947                 vm_wire_add(1);
3948         }
3949         return (true);
3950 }
3951
3952 /*
3953  * Release a wiring reference to a managed page.  If the page still belongs to
3954  * an object, update its position in the page queues to reflect the reference.
3955  * If the wiring was the last reference to the page, free the page.
3956  */
3957 static void
3958 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
3959 {
3960         u_int old;
3961
3962         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3963             ("%s: page %p is unmanaged", __func__, m));
3964
3965         /*
3966          * Update LRU state before releasing the wiring reference.
3967          * Use a release store when updating the reference count to
3968          * synchronize with vm_page_free_prep().
3969          */
3970         old = m->ref_count;
3971         do {
3972                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
3973                     ("vm_page_unwire: wire count underflow for page %p", m));
3974
3975                 if (old > VPRC_OBJREF + 1) {
3976                         /*
3977                          * The page has at least one other wiring reference.  An
3978                          * earlier iteration of this loop may have called
3979                          * vm_page_release_toq() and cleared PGA_DEQUEUE, so
3980                          * re-set it if necessary.
3981                          */
3982                         if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
3983                                 vm_page_aflag_set(m, PGA_DEQUEUE);
3984                 } else if (old == VPRC_OBJREF + 1) {
3985                         /*
3986                          * This is the last wiring.  Clear PGA_DEQUEUE and
3987                          * update the page's queue state to reflect the
3988                          * reference.  If the page does not belong to an object
3989                          * (i.e., the VPRC_OBJREF bit is clear), we only need to
3990                          * clear leftover queue state.
3991                          */
3992                         vm_page_release_toq(m, nqueue, false);
3993                 } else if (old == 1) {
3994                         vm_page_aflag_clear(m, PGA_DEQUEUE);
3995                 }
3996         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3997
3998         if (VPRC_WIRE_COUNT(old) == 1) {
3999                 vm_wire_sub(1);
4000                 if (old == 1)
4001                         vm_page_free(m);
4002         }
4003 }
4004
4005 /*
4006  * Release one wiring of the specified page, potentially allowing it to be
4007  * paged out.
4008  *
4009  * Only managed pages belonging to an object can be paged out.  If the number
4010  * of wirings transitions to zero and the page is eligible for page out, then
4011  * the page is added to the specified paging queue.  If the released wiring
4012  * represented the last reference to the page, the page is freed.
4013  */
4014 void
4015 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4016 {
4017
4018         KASSERT(nqueue < PQ_COUNT,
4019             ("vm_page_unwire: invalid queue %u request for page %p",
4020             nqueue, m));
4021
4022         if ((m->oflags & VPO_UNMANAGED) != 0) {
4023                 if (vm_page_unwire_noq(m) && m->ref_count == 0)
4024                         vm_page_free(m);
4025                 return;
4026         }
4027         vm_page_unwire_managed(m, nqueue, false);
4028 }
4029
4030 /*
4031  * Unwire a page without (re-)inserting it into a page queue.  It is up
4032  * to the caller to enqueue, requeue, or free the page as appropriate.
4033  * In most cases involving managed pages, vm_page_unwire() should be used
4034  * instead.
4035  */
4036 bool
4037 vm_page_unwire_noq(vm_page_t m)
4038 {
4039         u_int old;
4040
4041         old = vm_page_drop(m, 1);
4042         KASSERT(VPRC_WIRE_COUNT(old) != 0,
4043             ("vm_page_unref: counter underflow for page %p", m));
4044         KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4045             ("vm_page_unref: missing ref on fictitious page %p", m));
4046
4047         if (VPRC_WIRE_COUNT(old) > 1)
4048                 return (false);
4049         if ((m->oflags & VPO_UNMANAGED) == 0)
4050                 vm_page_aflag_clear(m, PGA_DEQUEUE);
4051         vm_wire_sub(1);
4052         return (true);
4053 }
4054
4055 /*
4056  * Ensure that the page ends up in the specified page queue.  If the page is
4057  * active or being moved to the active queue, ensure that its act_count is
4058  * at least ACT_INIT but do not otherwise mess with it.
4059  */
4060 static __always_inline void
4061 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4062 {
4063         vm_page_astate_t old, new;
4064
4065         KASSERT(m->ref_count > 0,
4066             ("%s: page %p does not carry any references", __func__, m));
4067         KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4068             ("%s: invalid flags %x", __func__, nflag));
4069
4070         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4071                 return;
4072
4073         old = vm_page_astate_load(m);
4074         do {
4075                 if ((old.flags & PGA_DEQUEUE) != 0)
4076                         break;
4077                 new = old;
4078                 new.flags &= ~PGA_QUEUE_OP_MASK;
4079                 if (nqueue == PQ_ACTIVE)
4080                         new.act_count = max(old.act_count, ACT_INIT);
4081                 if (old.queue == nqueue) {
4082                         if (nqueue != PQ_ACTIVE)
4083                                 new.flags |= nflag;
4084                 } else {
4085                         new.flags |= nflag;
4086                         new.queue = nqueue;
4087                 }
4088         } while (!vm_page_pqstate_commit(m, &old, new));
4089 }
4090
4091 /*
4092  * Put the specified page on the active list (if appropriate).
4093  */
4094 void
4095 vm_page_activate(vm_page_t m)
4096 {
4097
4098         vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4099 }
4100
4101 /*
4102  * Move the specified page to the tail of the inactive queue, or requeue
4103  * the page if it is already in the inactive queue.
4104  */
4105 void
4106 vm_page_deactivate(vm_page_t m)
4107 {
4108
4109         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4110 }
4111
4112 void
4113 vm_page_deactivate_noreuse(vm_page_t m)
4114 {
4115
4116         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4117 }
4118
4119 /*
4120  * Put a page in the laundry, or requeue it if it is already there.
4121  */
4122 void
4123 vm_page_launder(vm_page_t m)
4124 {
4125
4126         vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4127 }
4128
4129 /*
4130  * Put a page in the PQ_UNSWAPPABLE holding queue.
4131  */
4132 void
4133 vm_page_unswappable(vm_page_t m)
4134 {
4135
4136         KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4137             ("page %p already unswappable", m));
4138
4139         vm_page_dequeue(m);
4140         vm_page_enqueue(m, PQ_UNSWAPPABLE);
4141 }
4142
4143 /*
4144  * Release a page back to the page queues in preparation for unwiring.
4145  */
4146 static void
4147 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4148 {
4149         vm_page_astate_t old, new;
4150         uint16_t nflag;
4151
4152         /*
4153          * Use a check of the valid bits to determine whether we should
4154          * accelerate reclamation of the page.  The object lock might not be
4155          * held here, in which case the check is racy.  At worst we will either
4156          * accelerate reclamation of a valid page and violate LRU, or
4157          * unnecessarily defer reclamation of an invalid page.
4158          *
4159          * If we were asked to not cache the page, place it near the head of the
4160          * inactive queue so that is reclaimed sooner.
4161          */
4162         if (noreuse || m->valid == 0) {
4163                 nqueue = PQ_INACTIVE;
4164                 nflag = PGA_REQUEUE_HEAD;
4165         } else {
4166                 nflag = PGA_REQUEUE;
4167         }
4168
4169         old = vm_page_astate_load(m);
4170         do {
4171                 new = old;
4172
4173                 /*
4174                  * If the page is already in the active queue and we are not
4175                  * trying to accelerate reclamation, simply mark it as
4176                  * referenced and avoid any queue operations.
4177                  */
4178                 new.flags &= ~PGA_QUEUE_OP_MASK;
4179                 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE)
4180                         new.flags |= PGA_REFERENCED;
4181                 else {
4182                         new.flags |= nflag;
4183                         new.queue = nqueue;
4184                 }
4185         } while (!vm_page_pqstate_commit(m, &old, new));
4186 }
4187
4188 /*
4189  * Unwire a page and either attempt to free it or re-add it to the page queues.
4190  */
4191 void
4192 vm_page_release(vm_page_t m, int flags)
4193 {
4194         vm_object_t object;
4195
4196         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4197             ("vm_page_release: page %p is unmanaged", m));
4198
4199         if ((flags & VPR_TRYFREE) != 0) {
4200                 for (;;) {
4201                         object = atomic_load_ptr(&m->object);
4202                         if (object == NULL)
4203                                 break;
4204                         /* Depends on type-stability. */
4205                         if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4206                                 break;
4207                         if (object == m->object) {
4208                                 vm_page_release_locked(m, flags);
4209                                 VM_OBJECT_WUNLOCK(object);
4210                                 return;
4211                         }
4212                         VM_OBJECT_WUNLOCK(object);
4213                 }
4214         }
4215         vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4216 }
4217
4218 /* See vm_page_release(). */
4219 void
4220 vm_page_release_locked(vm_page_t m, int flags)
4221 {
4222
4223         VM_OBJECT_ASSERT_WLOCKED(m->object);
4224         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4225             ("vm_page_release_locked: page %p is unmanaged", m));
4226
4227         if (vm_page_unwire_noq(m)) {
4228                 if ((flags & VPR_TRYFREE) != 0 &&
4229                     (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4230                     m->dirty == 0 && vm_page_tryxbusy(m)) {
4231                         /*
4232                          * An unlocked lookup may have wired the page before the
4233                          * busy lock was acquired, in which case the page must
4234                          * not be freed.
4235                          */
4236                         if (__predict_true(!vm_page_wired(m))) {
4237                                 vm_page_free(m);
4238                                 return;
4239                         }
4240                         vm_page_xunbusy(m);
4241                 } else {
4242                         vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4243                 }
4244         }
4245 }
4246
4247 static bool
4248 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4249 {
4250         u_int old;
4251
4252         KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4253             ("vm_page_try_blocked_op: page %p has no object", m));
4254         KASSERT(vm_page_busied(m),
4255             ("vm_page_try_blocked_op: page %p is not busy", m));
4256         VM_OBJECT_ASSERT_LOCKED(m->object);
4257
4258         old = m->ref_count;
4259         do {
4260                 KASSERT(old != 0,
4261                     ("vm_page_try_blocked_op: page %p has no references", m));
4262                 if (VPRC_WIRE_COUNT(old) != 0)
4263                         return (false);
4264         } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4265
4266         (op)(m);
4267
4268         /*
4269          * If the object is read-locked, new wirings may be created via an
4270          * object lookup.
4271          */
4272         old = vm_page_drop(m, VPRC_BLOCKED);
4273         KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4274             old == (VPRC_BLOCKED | VPRC_OBJREF),
4275             ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4276             old, m));
4277         return (true);
4278 }
4279
4280 /*
4281  * Atomically check for wirings and remove all mappings of the page.
4282  */
4283 bool
4284 vm_page_try_remove_all(vm_page_t m)
4285 {
4286
4287         return (vm_page_try_blocked_op(m, pmap_remove_all));
4288 }
4289
4290 /*
4291  * Atomically check for wirings and remove all writeable mappings of the page.
4292  */
4293 bool
4294 vm_page_try_remove_write(vm_page_t m)
4295 {
4296
4297         return (vm_page_try_blocked_op(m, pmap_remove_write));
4298 }
4299
4300 /*
4301  * vm_page_advise
4302  *
4303  *      Apply the specified advice to the given page.
4304  */
4305 void
4306 vm_page_advise(vm_page_t m, int advice)
4307 {
4308
4309         VM_OBJECT_ASSERT_WLOCKED(m->object);
4310         vm_page_assert_xbusied(m);
4311
4312         if (advice == MADV_FREE)
4313                 /*
4314                  * Mark the page clean.  This will allow the page to be freed
4315                  * without first paging it out.  MADV_FREE pages are often
4316                  * quickly reused by malloc(3), so we do not do anything that
4317                  * would result in a page fault on a later access.
4318                  */
4319                 vm_page_undirty(m);
4320         else if (advice != MADV_DONTNEED) {
4321                 if (advice == MADV_WILLNEED)
4322                         vm_page_activate(m);
4323                 return;
4324         }
4325
4326         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4327                 vm_page_dirty(m);
4328
4329         /*
4330          * Clear any references to the page.  Otherwise, the page daemon will
4331          * immediately reactivate the page.
4332          */
4333         vm_page_aflag_clear(m, PGA_REFERENCED);
4334
4335         /*
4336          * Place clean pages near the head of the inactive queue rather than
4337          * the tail, thus defeating the queue's LRU operation and ensuring that
4338          * the page will be reused quickly.  Dirty pages not already in the
4339          * laundry are moved there.
4340          */
4341         if (m->dirty == 0)
4342                 vm_page_deactivate_noreuse(m);
4343         else if (!vm_page_in_laundry(m))
4344                 vm_page_launder(m);
4345 }
4346
4347 /*
4348  *      vm_page_grab_release
4349  *
4350  *      Helper routine for grab functions to release busy on return.
4351  */
4352 static inline void
4353 vm_page_grab_release(vm_page_t m, int allocflags)
4354 {
4355
4356         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4357                 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4358                         vm_page_sunbusy(m);
4359                 else
4360                         vm_page_xunbusy(m);
4361         }
4362 }
4363
4364 /*
4365  *      vm_page_grab_sleep
4366  *
4367  *      Sleep for busy according to VM_ALLOC_ parameters.  Returns true
4368  *      if the caller should retry and false otherwise.
4369  *
4370  *      If the object is locked on entry the object will be unlocked with
4371  *      false returns and still locked but possibly having been dropped
4372  *      with true returns.
4373  */
4374 static bool
4375 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4376     const char *wmesg, int allocflags, bool locked)
4377 {
4378
4379         if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4380                 return (false);
4381
4382         /*
4383          * Reference the page before unlocking and sleeping so that
4384          * the page daemon is less likely to reclaim it.
4385          */
4386         if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4387                 vm_page_reference(m);
4388
4389         if (_vm_page_busy_sleep(object, m, m->pindex, wmesg, allocflags,
4390             locked) && locked)
4391                 VM_OBJECT_WLOCK(object);
4392         if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4393                 return (false);
4394
4395         return (true);
4396 }
4397
4398 /*
4399  * Assert that the grab flags are valid.
4400  */
4401 static inline void
4402 vm_page_grab_check(int allocflags)
4403 {
4404
4405         KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4406             (allocflags & VM_ALLOC_WIRED) != 0,
4407             ("vm_page_grab*: the pages must be busied or wired"));
4408
4409         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4410             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4411             ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4412 }
4413
4414 /*
4415  * Calculate the page allocation flags for grab.
4416  */
4417 static inline int
4418 vm_page_grab_pflags(int allocflags)
4419 {
4420         int pflags;
4421
4422         pflags = allocflags &
4423             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4424             VM_ALLOC_NOBUSY);
4425         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4426                 pflags |= VM_ALLOC_WAITFAIL;
4427         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4428                 pflags |= VM_ALLOC_SBUSY;
4429
4430         return (pflags);
4431 }
4432
4433 /*
4434  * Grab a page, waiting until we are waken up due to the page
4435  * changing state.  We keep on waiting, if the page continues
4436  * to be in the object.  If the page doesn't exist, first allocate it
4437  * and then conditionally zero it.
4438  *
4439  * This routine may sleep.
4440  *
4441  * The object must be locked on entry.  The lock will, however, be released
4442  * and reacquired if the routine sleeps.
4443  */
4444 vm_page_t
4445 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4446 {
4447         vm_page_t m;
4448
4449         VM_OBJECT_ASSERT_WLOCKED(object);
4450         vm_page_grab_check(allocflags);
4451
4452 retrylookup:
4453         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4454                 if (!vm_page_tryacquire(m, allocflags)) {
4455                         if (vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4456                             allocflags, true))
4457                                 goto retrylookup;
4458                         return (NULL);
4459                 }
4460                 goto out;
4461         }
4462         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4463                 return (NULL);
4464         m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags));
4465         if (m == NULL) {
4466                 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4467                         return (NULL);
4468                 goto retrylookup;
4469         }
4470         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4471                 pmap_zero_page(m);
4472
4473 out:
4474         vm_page_grab_release(m, allocflags);
4475
4476         return (m);
4477 }
4478
4479 /*
4480  * Locklessly attempt to acquire a page given a (object, pindex) tuple
4481  * and an optional previous page to avoid the radix lookup.  The resulting
4482  * page will be validated against the identity tuple and busied or wired
4483  * as requested.  A NULL *mp return guarantees that the page was not in
4484  * radix at the time of the call but callers must perform higher level
4485  * synchronization or retry the operation under a lock if they require
4486  * an atomic answer.  This is the only lock free validation routine,
4487  * other routines can depend on the resulting page state.
4488  *
4489  * The return value indicates whether the operation failed due to caller
4490  * flags.  The return is tri-state with mp:
4491  *
4492  * (true, *mp != NULL) - The operation was successful.
4493  * (true, *mp == NULL) - The page was not found in tree.
4494  * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition.
4495  */
4496 static bool
4497 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex,
4498     vm_page_t prev, vm_page_t *mp, int allocflags)
4499 {
4500         vm_page_t m;
4501
4502         vm_page_grab_check(allocflags);
4503         MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev));
4504
4505         *mp = NULL;
4506         for (;;) {
4507                 /*
4508                  * We may see a false NULL here because the previous page
4509                  * has been removed or just inserted and the list is loaded
4510                  * without barriers.  Switch to radix to verify.
4511                  */
4512                 if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL ||
4513                     QMD_IS_TRASHED(m) || m->pindex != pindex ||
4514                     atomic_load_ptr(&m->object) != object) {
4515                         prev = NULL;
4516                         /*
4517                          * This guarantees the result is instantaneously
4518                          * correct.
4519                          */
4520                         m = vm_radix_lookup_unlocked(&object->rtree, pindex);
4521                 }
4522                 if (m == NULL)
4523                         return (true);
4524                 if (vm_page_trybusy(m, allocflags)) {
4525                         if (m->object == object && m->pindex == pindex)
4526                                 break;
4527                         /* relookup. */
4528                         vm_page_busy_release(m);
4529                         cpu_spinwait();
4530                         continue;
4531                 }
4532                 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4533                     allocflags, false))
4534                         return (false);
4535         }
4536         if ((allocflags & VM_ALLOC_WIRED) != 0)
4537                 vm_page_wire(m);
4538         vm_page_grab_release(m, allocflags);
4539         *mp = m;
4540         return (true);
4541 }
4542
4543 /*
4544  * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4545  * is not set.
4546  */
4547 vm_page_t
4548 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4549 {
4550         vm_page_t m;
4551
4552         vm_page_grab_check(allocflags);
4553
4554         if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags))
4555                 return (NULL);
4556         if (m != NULL)
4557                 return (m);
4558
4559         /*
4560          * The radix lockless lookup should never return a false negative
4561          * errors.  If the user specifies NOCREAT they are guaranteed there
4562          * was no page present at the instant of the call.  A NOCREAT caller
4563          * must handle create races gracefully.
4564          */
4565         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4566                 return (NULL);
4567
4568         VM_OBJECT_WLOCK(object);
4569         m = vm_page_grab(object, pindex, allocflags);
4570         VM_OBJECT_WUNLOCK(object);
4571
4572         return (m);
4573 }
4574
4575 /*
4576  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4577  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4578  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4579  * in simultaneously.  Additional pages will be left on a paging queue but
4580  * will neither be wired nor busy regardless of allocflags.
4581  */
4582 int
4583 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4584 {
4585         vm_page_t m;
4586         vm_page_t ma[VM_INITIAL_PAGEIN];
4587         int after, i, pflags, rv;
4588
4589         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4590             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4591             ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4592         KASSERT((allocflags &
4593             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4594             ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4595         VM_OBJECT_ASSERT_WLOCKED(object);
4596         pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4597             VM_ALLOC_WIRED);
4598         pflags |= VM_ALLOC_WAITFAIL;
4599
4600 retrylookup:
4601         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4602                 /*
4603                  * If the page is fully valid it can only become invalid
4604                  * with the object lock held.  If it is not valid it can
4605                  * become valid with the busy lock held.  Therefore, we
4606                  * may unnecessarily lock the exclusive busy here if we
4607                  * race with I/O completion not using the object lock.
4608                  * However, we will not end up with an invalid page and a
4609                  * shared lock.
4610                  */
4611                 if (!vm_page_trybusy(m,
4612                     vm_page_all_valid(m) ? allocflags : 0)) {
4613                         (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4614                             allocflags, true);
4615                         goto retrylookup;
4616                 }
4617                 if (vm_page_all_valid(m))
4618                         goto out;
4619                 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4620                         vm_page_busy_release(m);
4621                         *mp = NULL;
4622                         return (VM_PAGER_FAIL);
4623                 }
4624         } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4625                 *mp = NULL;
4626                 return (VM_PAGER_FAIL);
4627         } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) {
4628                 goto retrylookup;
4629         }
4630
4631         vm_page_assert_xbusied(m);
4632         if (vm_pager_has_page(object, pindex, NULL, &after)) {
4633                 after = MIN(after, VM_INITIAL_PAGEIN);
4634                 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4635                 after = MAX(after, 1);
4636                 ma[0] = m;
4637                 for (i = 1; i < after; i++) {
4638                         if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4639                                 if (ma[i]->valid || !vm_page_tryxbusy(ma[i]))
4640                                         break;
4641                         } else {
4642                                 ma[i] = vm_page_alloc(object, m->pindex + i,
4643                                     VM_ALLOC_NORMAL);
4644                                 if (ma[i] == NULL)
4645                                         break;
4646                         }
4647                 }
4648                 after = i;
4649                 vm_object_pip_add(object, after);
4650                 VM_OBJECT_WUNLOCK(object);
4651                 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4652                 VM_OBJECT_WLOCK(object);
4653                 vm_object_pip_wakeupn(object, after);
4654                 /* Pager may have replaced a page. */
4655                 m = ma[0];
4656                 if (rv != VM_PAGER_OK) {
4657                         for (i = 0; i < after; i++) {
4658                                 if (!vm_page_wired(ma[i]))
4659                                         vm_page_free(ma[i]);
4660                                 else
4661                                         vm_page_xunbusy(ma[i]);
4662                         }
4663                         *mp = NULL;
4664                         return (rv);
4665                 }
4666                 for (i = 1; i < after; i++)
4667                         vm_page_readahead_finish(ma[i]);
4668                 MPASS(vm_page_all_valid(m));
4669         } else {
4670                 vm_page_zero_invalid(m, TRUE);
4671         }
4672 out:
4673         if ((allocflags & VM_ALLOC_WIRED) != 0)
4674                 vm_page_wire(m);
4675         if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
4676                 vm_page_busy_downgrade(m);
4677         else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
4678                 vm_page_busy_release(m);
4679         *mp = m;
4680         return (VM_PAGER_OK);
4681 }
4682
4683 /*
4684  * Locklessly grab a valid page.  If the page is not valid or not yet
4685  * allocated this will fall back to the object lock method.
4686  */
4687 int
4688 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
4689     vm_pindex_t pindex, int allocflags)
4690 {
4691         vm_page_t m;
4692         int flags;
4693         int error;
4694
4695         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4696             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4697             ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4698             "mismatch"));
4699         KASSERT((allocflags &
4700             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4701             ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
4702
4703         /*
4704          * Attempt a lockless lookup and busy.  We need at least an sbusy
4705          * before we can inspect the valid field and return a wired page.
4706          */
4707         flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
4708         if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags))
4709                 return (VM_PAGER_FAIL);
4710         if ((m = *mp) != NULL) {
4711                 if (vm_page_all_valid(m)) {
4712                         if ((allocflags & VM_ALLOC_WIRED) != 0)
4713                                 vm_page_wire(m);
4714                         vm_page_grab_release(m, allocflags);
4715                         return (VM_PAGER_OK);
4716                 }
4717                 vm_page_busy_release(m);
4718         }
4719         if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4720                 *mp = NULL;
4721                 return (VM_PAGER_FAIL);
4722         }
4723         VM_OBJECT_WLOCK(object);
4724         error = vm_page_grab_valid(mp, object, pindex, allocflags);
4725         VM_OBJECT_WUNLOCK(object);
4726
4727         return (error);
4728 }
4729
4730 /*
4731  * Return the specified range of pages from the given object.  For each
4732  * page offset within the range, if a page already exists within the object
4733  * at that offset and it is busy, then wait for it to change state.  If,
4734  * instead, the page doesn't exist, then allocate it.
4735  *
4736  * The caller must always specify an allocation class.
4737  *
4738  * allocation classes:
4739  *      VM_ALLOC_NORMAL         normal process request
4740  *      VM_ALLOC_SYSTEM         system *really* needs the pages
4741  *
4742  * The caller must always specify that the pages are to be busied and/or
4743  * wired.
4744  *
4745  * optional allocation flags:
4746  *      VM_ALLOC_IGN_SBUSY      do not sleep on soft busy pages
4747  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
4748  *      VM_ALLOC_NOWAIT         do not sleep
4749  *      VM_ALLOC_SBUSY          set page to sbusy state
4750  *      VM_ALLOC_WIRED          wire the pages
4751  *      VM_ALLOC_ZERO           zero and validate any invalid pages
4752  *
4753  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4754  * may return a partial prefix of the requested range.
4755  */
4756 int
4757 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4758     vm_page_t *ma, int count)
4759 {
4760         vm_page_t m, mpred;
4761         int pflags;
4762         int i;
4763
4764         VM_OBJECT_ASSERT_WLOCKED(object);
4765         KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4766             ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4767         KASSERT(count > 0,
4768             ("vm_page_grab_pages: invalid page count %d", count));
4769         vm_page_grab_check(allocflags);
4770
4771         pflags = vm_page_grab_pflags(allocflags);
4772         i = 0;
4773 retrylookup:
4774         m = vm_radix_lookup_le(&object->rtree, pindex + i);
4775         if (m == NULL || m->pindex != pindex + i) {
4776                 mpred = m;
4777                 m = NULL;
4778         } else
4779                 mpred = TAILQ_PREV(m, pglist, listq);
4780         for (; i < count; i++) {
4781                 if (m != NULL) {
4782                         if (!vm_page_tryacquire(m, allocflags)) {
4783                                 if (vm_page_grab_sleep(object, m, pindex,
4784                                     "grbmaw", allocflags, true))
4785                                         goto retrylookup;
4786                                 break;
4787                         }
4788                 } else {
4789                         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4790                                 break;
4791                         m = vm_page_alloc_after(object, pindex + i,
4792                             pflags | VM_ALLOC_COUNT(count - i), mpred);
4793                         if (m == NULL) {
4794                                 if ((allocflags & (VM_ALLOC_NOWAIT |
4795                                     VM_ALLOC_WAITFAIL)) != 0)
4796                                         break;
4797                                 goto retrylookup;
4798                         }
4799                 }
4800                 if (vm_page_none_valid(m) &&
4801                     (allocflags & VM_ALLOC_ZERO) != 0) {
4802                         if ((m->flags & PG_ZERO) == 0)
4803                                 pmap_zero_page(m);
4804                         vm_page_valid(m);
4805                 }
4806                 vm_page_grab_release(m, allocflags);
4807                 ma[i] = mpred = m;
4808                 m = vm_page_next(m);
4809         }
4810         return (i);
4811 }
4812
4813 /*
4814  * Unlocked variant of vm_page_grab_pages().  This accepts the same flags
4815  * and will fall back to the locked variant to handle allocation.
4816  */
4817 int
4818 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
4819     int allocflags, vm_page_t *ma, int count)
4820 {
4821         vm_page_t m, pred;
4822         int flags;
4823         int i;
4824
4825         KASSERT(count > 0,
4826             ("vm_page_grab_pages_unlocked: invalid page count %d", count));
4827         vm_page_grab_check(allocflags);
4828
4829         /*
4830          * Modify flags for lockless acquire to hold the page until we
4831          * set it valid if necessary.
4832          */
4833         flags = allocflags & ~VM_ALLOC_NOBUSY;
4834         pred = NULL;
4835         for (i = 0; i < count; i++, pindex++) {
4836                 if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags))
4837                         return (i);
4838                 if (m == NULL)
4839                         break;
4840                 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
4841                         if ((m->flags & PG_ZERO) == 0)
4842                                 pmap_zero_page(m);
4843                         vm_page_valid(m);
4844                 }
4845                 /* m will still be wired or busy according to flags. */
4846                 vm_page_grab_release(m, allocflags);
4847                 pred = ma[i] = m;
4848         }
4849         if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
4850                 return (i);
4851         count -= i;
4852         VM_OBJECT_WLOCK(object);
4853         i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
4854         VM_OBJECT_WUNLOCK(object);
4855
4856         return (i);
4857 }
4858
4859 /*
4860  * Mapping function for valid or dirty bits in a page.
4861  *
4862  * Inputs are required to range within a page.
4863  */
4864 vm_page_bits_t
4865 vm_page_bits(int base, int size)
4866 {
4867         int first_bit;
4868         int last_bit;
4869
4870         KASSERT(
4871             base + size <= PAGE_SIZE,
4872             ("vm_page_bits: illegal base/size %d/%d", base, size)
4873         );
4874
4875         if (size == 0)          /* handle degenerate case */
4876                 return (0);
4877
4878         first_bit = base >> DEV_BSHIFT;
4879         last_bit = (base + size - 1) >> DEV_BSHIFT;
4880
4881         return (((vm_page_bits_t)2 << last_bit) -
4882             ((vm_page_bits_t)1 << first_bit));
4883 }
4884
4885 void
4886 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4887 {
4888
4889 #if PAGE_SIZE == 32768
4890         atomic_set_64((uint64_t *)bits, set);
4891 #elif PAGE_SIZE == 16384
4892         atomic_set_32((uint32_t *)bits, set);
4893 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4894         atomic_set_16((uint16_t *)bits, set);
4895 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4896         atomic_set_8((uint8_t *)bits, set);
4897 #else           /* PAGE_SIZE <= 8192 */
4898         uintptr_t addr;
4899         int shift;
4900
4901         addr = (uintptr_t)bits;
4902         /*
4903          * Use a trick to perform a 32-bit atomic on the
4904          * containing aligned word, to not depend on the existence
4905          * of atomic_{set, clear}_{8, 16}.
4906          */
4907         shift = addr & (sizeof(uint32_t) - 1);
4908 #if BYTE_ORDER == BIG_ENDIAN
4909         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4910 #else
4911         shift *= NBBY;
4912 #endif
4913         addr &= ~(sizeof(uint32_t) - 1);
4914         atomic_set_32((uint32_t *)addr, set << shift);
4915 #endif          /* PAGE_SIZE */
4916 }
4917
4918 static inline void
4919 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4920 {
4921
4922 #if PAGE_SIZE == 32768
4923         atomic_clear_64((uint64_t *)bits, clear);
4924 #elif PAGE_SIZE == 16384
4925         atomic_clear_32((uint32_t *)bits, clear);
4926 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4927         atomic_clear_16((uint16_t *)bits, clear);
4928 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4929         atomic_clear_8((uint8_t *)bits, clear);
4930 #else           /* PAGE_SIZE <= 8192 */
4931         uintptr_t addr;
4932         int shift;
4933
4934         addr = (uintptr_t)bits;
4935         /*
4936          * Use a trick to perform a 32-bit atomic on the
4937          * containing aligned word, to not depend on the existence
4938          * of atomic_{set, clear}_{8, 16}.
4939          */
4940         shift = addr & (sizeof(uint32_t) - 1);
4941 #if BYTE_ORDER == BIG_ENDIAN
4942         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4943 #else
4944         shift *= NBBY;
4945 #endif
4946         addr &= ~(sizeof(uint32_t) - 1);
4947         atomic_clear_32((uint32_t *)addr, clear << shift);
4948 #endif          /* PAGE_SIZE */
4949 }
4950
4951 static inline vm_page_bits_t
4952 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
4953 {
4954 #if PAGE_SIZE == 32768
4955         uint64_t old;
4956
4957         old = *bits;
4958         while (atomic_fcmpset_64(bits, &old, newbits) == 0);
4959         return (old);
4960 #elif PAGE_SIZE == 16384
4961         uint32_t old;
4962
4963         old = *bits;
4964         while (atomic_fcmpset_32(bits, &old, newbits) == 0);
4965         return (old);
4966 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
4967         uint16_t old;
4968
4969         old = *bits;
4970         while (atomic_fcmpset_16(bits, &old, newbits) == 0);
4971         return (old);
4972 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
4973         uint8_t old;
4974
4975         old = *bits;
4976         while (atomic_fcmpset_8(bits, &old, newbits) == 0);
4977         return (old);
4978 #else           /* PAGE_SIZE <= 4096*/
4979         uintptr_t addr;
4980         uint32_t old, new, mask;
4981         int shift;
4982
4983         addr = (uintptr_t)bits;
4984         /*
4985          * Use a trick to perform a 32-bit atomic on the
4986          * containing aligned word, to not depend on the existence
4987          * of atomic_{set, swap, clear}_{8, 16}.
4988          */
4989         shift = addr & (sizeof(uint32_t) - 1);
4990 #if BYTE_ORDER == BIG_ENDIAN
4991         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4992 #else
4993         shift *= NBBY;
4994 #endif
4995         addr &= ~(sizeof(uint32_t) - 1);
4996         mask = VM_PAGE_BITS_ALL << shift;
4997
4998         old = *bits;
4999         do {
5000                 new = old & ~mask;
5001                 new |= newbits << shift;
5002         } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5003         return (old >> shift);
5004 #endif          /* PAGE_SIZE */
5005 }
5006
5007 /*
5008  *      vm_page_set_valid_range:
5009  *
5010  *      Sets portions of a page valid.  The arguments are expected
5011  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5012  *      of any partial chunks touched by the range.  The invalid portion of
5013  *      such chunks will be zeroed.
5014  *
5015  *      (base + size) must be less then or equal to PAGE_SIZE.
5016  */
5017 void
5018 vm_page_set_valid_range(vm_page_t m, int base, int size)
5019 {
5020         int endoff, frag;
5021         vm_page_bits_t pagebits;
5022
5023         vm_page_assert_busied(m);
5024         if (size == 0)  /* handle degenerate case */
5025                 return;
5026
5027         /*
5028          * If the base is not DEV_BSIZE aligned and the valid
5029          * bit is clear, we have to zero out a portion of the
5030          * first block.
5031          */
5032         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5033             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5034                 pmap_zero_page_area(m, frag, base - frag);
5035
5036         /*
5037          * If the ending offset is not DEV_BSIZE aligned and the
5038          * valid bit is clear, we have to zero out a portion of
5039          * the last block.
5040          */
5041         endoff = base + size;
5042         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5043             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5044                 pmap_zero_page_area(m, endoff,
5045                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5046
5047         /*
5048          * Assert that no previously invalid block that is now being validated
5049          * is already dirty.
5050          */
5051         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5052             ("vm_page_set_valid_range: page %p is dirty", m));
5053
5054         /*
5055          * Set valid bits inclusive of any overlap.
5056          */
5057         pagebits = vm_page_bits(base, size);
5058         if (vm_page_xbusied(m))
5059                 m->valid |= pagebits;
5060         else
5061                 vm_page_bits_set(m, &m->valid, pagebits);
5062 }
5063
5064 /*
5065  * Set the page dirty bits and free the invalid swap space if
5066  * present.  Returns the previous dirty bits.
5067  */
5068 vm_page_bits_t
5069 vm_page_set_dirty(vm_page_t m)
5070 {
5071         vm_page_bits_t old;
5072
5073         VM_PAGE_OBJECT_BUSY_ASSERT(m);
5074
5075         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5076                 old = m->dirty;
5077                 m->dirty = VM_PAGE_BITS_ALL;
5078         } else
5079                 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5080         if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5081                 vm_pager_page_unswapped(m);
5082
5083         return (old);
5084 }
5085
5086 /*
5087  * Clear the given bits from the specified page's dirty field.
5088  */
5089 static __inline void
5090 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5091 {
5092
5093         vm_page_assert_busied(m);
5094
5095         /*
5096          * If the page is xbusied and not write mapped we are the
5097          * only thread that can modify dirty bits.  Otherwise, The pmap
5098          * layer can call vm_page_dirty() without holding a distinguished
5099          * lock.  The combination of page busy and atomic operations
5100          * suffice to guarantee consistency of the page dirty field.
5101          */
5102         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5103                 m->dirty &= ~pagebits;
5104         else
5105                 vm_page_bits_clear(m, &m->dirty, pagebits);
5106 }
5107
5108 /*
5109  *      vm_page_set_validclean:
5110  *
5111  *      Sets portions of a page valid and clean.  The arguments are expected
5112  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5113  *      of any partial chunks touched by the range.  The invalid portion of
5114  *      such chunks will be zero'd.
5115  *
5116  *      (base + size) must be less then or equal to PAGE_SIZE.
5117  */
5118 void
5119 vm_page_set_validclean(vm_page_t m, int base, int size)
5120 {
5121         vm_page_bits_t oldvalid, pagebits;
5122         int endoff, frag;
5123
5124         vm_page_assert_busied(m);
5125         if (size == 0)  /* handle degenerate case */
5126                 return;
5127
5128         /*
5129          * If the base is not DEV_BSIZE aligned and the valid
5130          * bit is clear, we have to zero out a portion of the
5131          * first block.
5132          */
5133         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5134             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5135                 pmap_zero_page_area(m, frag, base - frag);
5136
5137         /*
5138          * If the ending offset is not DEV_BSIZE aligned and the
5139          * valid bit is clear, we have to zero out a portion of
5140          * the last block.
5141          */
5142         endoff = base + size;
5143         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5144             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5145                 pmap_zero_page_area(m, endoff,
5146                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5147
5148         /*
5149          * Set valid, clear dirty bits.  If validating the entire
5150          * page we can safely clear the pmap modify bit.  We also
5151          * use this opportunity to clear the PGA_NOSYNC flag.  If a process
5152          * takes a write fault on a MAP_NOSYNC memory area the flag will
5153          * be set again.
5154          *
5155          * We set valid bits inclusive of any overlap, but we can only
5156          * clear dirty bits for DEV_BSIZE chunks that are fully within
5157          * the range.
5158          */
5159         oldvalid = m->valid;
5160         pagebits = vm_page_bits(base, size);
5161         if (vm_page_xbusied(m))
5162                 m->valid |= pagebits;
5163         else
5164                 vm_page_bits_set(m, &m->valid, pagebits);
5165 #if 0   /* NOT YET */
5166         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5167                 frag = DEV_BSIZE - frag;
5168                 base += frag;
5169                 size -= frag;
5170                 if (size < 0)
5171                         size = 0;
5172         }
5173         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5174 #endif
5175         if (base == 0 && size == PAGE_SIZE) {
5176                 /*
5177                  * The page can only be modified within the pmap if it is
5178                  * mapped, and it can only be mapped if it was previously
5179                  * fully valid.
5180                  */
5181                 if (oldvalid == VM_PAGE_BITS_ALL)
5182                         /*
5183                          * Perform the pmap_clear_modify() first.  Otherwise,
5184                          * a concurrent pmap operation, such as
5185                          * pmap_protect(), could clear a modification in the
5186                          * pmap and set the dirty field on the page before
5187                          * pmap_clear_modify() had begun and after the dirty
5188                          * field was cleared here.
5189                          */
5190                         pmap_clear_modify(m);
5191                 m->dirty = 0;
5192                 vm_page_aflag_clear(m, PGA_NOSYNC);
5193         } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5194                 m->dirty &= ~pagebits;
5195         else
5196                 vm_page_clear_dirty_mask(m, pagebits);
5197 }
5198
5199 void
5200 vm_page_clear_dirty(vm_page_t m, int base, int size)
5201 {
5202
5203         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5204 }
5205
5206 /*
5207  *      vm_page_set_invalid:
5208  *
5209  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
5210  *      valid and dirty bits for the effected areas are cleared.
5211  */
5212 void
5213 vm_page_set_invalid(vm_page_t m, int base, int size)
5214 {
5215         vm_page_bits_t bits;
5216         vm_object_t object;
5217
5218         /*
5219          * The object lock is required so that pages can't be mapped
5220          * read-only while we're in the process of invalidating them.
5221          */
5222         object = m->object;
5223         VM_OBJECT_ASSERT_WLOCKED(object);
5224         vm_page_assert_busied(m);
5225
5226         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5227             size >= object->un_pager.vnp.vnp_size)
5228                 bits = VM_PAGE_BITS_ALL;
5229         else
5230                 bits = vm_page_bits(base, size);
5231         if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5232                 pmap_remove_all(m);
5233         KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5234             !pmap_page_is_mapped(m),
5235             ("vm_page_set_invalid: page %p is mapped", m));
5236         if (vm_page_xbusied(m)) {
5237                 m->valid &= ~bits;
5238                 m->dirty &= ~bits;
5239         } else {
5240                 vm_page_bits_clear(m, &m->valid, bits);
5241                 vm_page_bits_clear(m, &m->dirty, bits);
5242         }
5243 }
5244
5245 /*
5246  *      vm_page_invalid:
5247  *
5248  *      Invalidates the entire page.  The page must be busy, unmapped, and
5249  *      the enclosing object must be locked.  The object locks protects
5250  *      against concurrent read-only pmap enter which is done without
5251  *      busy.
5252  */
5253 void
5254 vm_page_invalid(vm_page_t m)
5255 {
5256
5257         vm_page_assert_busied(m);
5258         VM_OBJECT_ASSERT_LOCKED(m->object);
5259         MPASS(!pmap_page_is_mapped(m));
5260
5261         if (vm_page_xbusied(m))
5262                 m->valid = 0;
5263         else
5264                 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5265 }
5266
5267 /*
5268  * vm_page_zero_invalid()
5269  *
5270  *      The kernel assumes that the invalid portions of a page contain
5271  *      garbage, but such pages can be mapped into memory by user code.
5272  *      When this occurs, we must zero out the non-valid portions of the
5273  *      page so user code sees what it expects.
5274  *
5275  *      Pages are most often semi-valid when the end of a file is mapped
5276  *      into memory and the file's size is not page aligned.
5277  */
5278 void
5279 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5280 {
5281         int b;
5282         int i;
5283
5284         /*
5285          * Scan the valid bits looking for invalid sections that
5286          * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
5287          * valid bit may be set ) have already been zeroed by
5288          * vm_page_set_validclean().
5289          */
5290         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5291                 if (i == (PAGE_SIZE / DEV_BSIZE) ||
5292                     (m->valid & ((vm_page_bits_t)1 << i))) {
5293                         if (i > b) {
5294                                 pmap_zero_page_area(m,
5295                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5296                         }
5297                         b = i + 1;
5298                 }
5299         }
5300
5301         /*
5302          * setvalid is TRUE when we can safely set the zero'd areas
5303          * as being valid.  We can do this if there are no cache consistancy
5304          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
5305          */
5306         if (setvalid)
5307                 vm_page_valid(m);
5308 }
5309
5310 /*
5311  *      vm_page_is_valid:
5312  *
5313  *      Is (partial) page valid?  Note that the case where size == 0
5314  *      will return FALSE in the degenerate case where the page is
5315  *      entirely invalid, and TRUE otherwise.
5316  *
5317  *      Some callers envoke this routine without the busy lock held and
5318  *      handle races via higher level locks.  Typical callers should
5319  *      hold a busy lock to prevent invalidation.
5320  */
5321 int
5322 vm_page_is_valid(vm_page_t m, int base, int size)
5323 {
5324         vm_page_bits_t bits;
5325
5326         bits = vm_page_bits(base, size);
5327         return (m->valid != 0 && (m->valid & bits) == bits);
5328 }
5329
5330 /*
5331  * Returns true if all of the specified predicates are true for the entire
5332  * (super)page and false otherwise.
5333  */
5334 bool
5335 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5336 {
5337         vm_object_t object;
5338         int i, npages;
5339
5340         object = m->object;
5341         if (skip_m != NULL && skip_m->object != object)
5342                 return (false);
5343         VM_OBJECT_ASSERT_LOCKED(object);
5344         npages = atop(pagesizes[m->psind]);
5345
5346         /*
5347          * The physically contiguous pages that make up a superpage, i.e., a
5348          * page with a page size index ("psind") greater than zero, will
5349          * occupy adjacent entries in vm_page_array[].
5350          */
5351         for (i = 0; i < npages; i++) {
5352                 /* Always test object consistency, including "skip_m". */
5353                 if (m[i].object != object)
5354                         return (false);
5355                 if (&m[i] == skip_m)
5356                         continue;
5357                 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5358                         return (false);
5359                 if ((flags & PS_ALL_DIRTY) != 0) {
5360                         /*
5361                          * Calling vm_page_test_dirty() or pmap_is_modified()
5362                          * might stop this case from spuriously returning
5363                          * "false".  However, that would require a write lock
5364                          * on the object containing "m[i]".
5365                          */
5366                         if (m[i].dirty != VM_PAGE_BITS_ALL)
5367                                 return (false);
5368                 }
5369                 if ((flags & PS_ALL_VALID) != 0 &&
5370                     m[i].valid != VM_PAGE_BITS_ALL)
5371                         return (false);
5372         }
5373         return (true);
5374 }
5375
5376 /*
5377  * Set the page's dirty bits if the page is modified.
5378  */
5379 void
5380 vm_page_test_dirty(vm_page_t m)
5381 {
5382
5383         vm_page_assert_busied(m);
5384         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5385                 vm_page_dirty(m);
5386 }
5387
5388 void
5389 vm_page_valid(vm_page_t m)
5390 {
5391
5392         vm_page_assert_busied(m);
5393         if (vm_page_xbusied(m))
5394                 m->valid = VM_PAGE_BITS_ALL;
5395         else
5396                 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5397 }
5398
5399 void
5400 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5401 {
5402
5403         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5404 }
5405
5406 void
5407 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5408 {
5409
5410         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5411 }
5412
5413 int
5414 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5415 {
5416
5417         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5418 }
5419
5420 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5421 void
5422 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5423 {
5424
5425         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5426 }
5427
5428 void
5429 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5430 {
5431
5432         mtx_assert_(vm_page_lockptr(m), a, file, line);
5433 }
5434 #endif
5435
5436 #ifdef INVARIANTS
5437 void
5438 vm_page_object_busy_assert(vm_page_t m)
5439 {
5440
5441         /*
5442          * Certain of the page's fields may only be modified by the
5443          * holder of a page or object busy.
5444          */
5445         if (m->object != NULL && !vm_page_busied(m))
5446                 VM_OBJECT_ASSERT_BUSY(m->object);
5447 }
5448
5449 void
5450 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5451 {
5452
5453         if ((bits & PGA_WRITEABLE) == 0)
5454                 return;
5455
5456         /*
5457          * The PGA_WRITEABLE flag can only be set if the page is
5458          * managed, is exclusively busied or the object is locked.
5459          * Currently, this flag is only set by pmap_enter().
5460          */
5461         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5462             ("PGA_WRITEABLE on unmanaged page"));
5463         if (!vm_page_xbusied(m))
5464                 VM_OBJECT_ASSERT_BUSY(m->object);
5465 }
5466 #endif
5467
5468 #include "opt_ddb.h"
5469 #ifdef DDB
5470 #include <sys/kernel.h>
5471
5472 #include <ddb/ddb.h>
5473
5474 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5475 {
5476
5477         db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5478         db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5479         db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5480         db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5481         db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5482         db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5483         db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5484         db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5485         db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5486 }
5487
5488 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5489 {
5490         int dom;
5491
5492         db_printf("pq_free %d\n", vm_free_count());
5493         for (dom = 0; dom < vm_ndomains; dom++) {
5494                 db_printf(
5495     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5496                     dom,
5497                     vm_dom[dom].vmd_page_count,
5498                     vm_dom[dom].vmd_free_count,
5499                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5500                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5501                     vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5502                     vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5503         }
5504 }
5505
5506 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5507 {
5508         vm_page_t m;
5509         boolean_t phys, virt;
5510
5511         if (!have_addr) {
5512                 db_printf("show pginfo addr\n");
5513                 return;
5514         }
5515
5516         phys = strchr(modif, 'p') != NULL;
5517         virt = strchr(modif, 'v') != NULL;
5518         if (virt)
5519                 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5520         else if (phys)
5521                 m = PHYS_TO_VM_PAGE(addr);
5522         else
5523                 m = (vm_page_t)addr;
5524         db_printf(
5525     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5526     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5527             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5528             m->a.queue, m->ref_count, m->a.flags, m->oflags,
5529             m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5530 }
5531 #endif /* DDB */