]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_page.c
Fix TCP IPv6 SYN cache kernel information disclosure.
[FreeBSD/FreeBSD.git] / sys / vm / vm_page.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
36  */
37
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64
65 /*
66  *      Resident memory management module.
67  */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_vm.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/lock.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/malloc.h>
82 #include <sys/mman.h>
83 #include <sys/msgbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/rwlock.h>
87 #include <sys/sbuf.h>
88 #include <sys/sched.h>
89 #include <sys/smp.h>
90 #include <sys/sysctl.h>
91 #include <sys/vmmeter.h>
92 #include <sys/vnode.h>
93
94 #include <vm/vm.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_param.h>
97 #include <vm/vm_domainset.h>
98 #include <vm/vm_kern.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_phys.h>
104 #include <vm/vm_pagequeue.h>
105 #include <vm/vm_pager.h>
106 #include <vm/vm_radix.h>
107 #include <vm/vm_reserv.h>
108 #include <vm/vm_extern.h>
109 #include <vm/uma.h>
110 #include <vm/uma_int.h>
111
112 #include <machine/md_var.h>
113
114 extern int      uma_startup_count(int);
115 extern void     uma_startup(void *, int);
116 extern int      vmem_startup_count(void);
117
118 struct vm_domain vm_dom[MAXMEMDOM];
119
120 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
121
122 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
123
124 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
125 /* The following fields are protected by the domainset lock. */
126 domainset_t __exclusive_cache_line vm_min_domains;
127 domainset_t __exclusive_cache_line vm_severe_domains;
128 static int vm_min_waiters;
129 static int vm_severe_waiters;
130 static int vm_pageproc_waiters;
131
132 /*
133  * bogus page -- for I/O to/from partially complete buffers,
134  * or for paging into sparsely invalid regions.
135  */
136 vm_page_t bogus_page;
137
138 vm_page_t vm_page_array;
139 long vm_page_array_size;
140 long first_page;
141
142 static int boot_pages;
143 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
144     &boot_pages, 0,
145     "number of pages allocated for bootstrapping the VM system");
146
147 static int pa_tryrelock_restart;
148 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
149     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
150
151 static TAILQ_HEAD(, vm_page) blacklist_head;
152 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
153 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
154     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
155
156 static uma_zone_t fakepg_zone;
157
158 static void vm_page_alloc_check(vm_page_t m);
159 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
160 static void vm_page_dequeue_complete(vm_page_t m);
161 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
162 static void vm_page_init(void *dummy);
163 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
164     vm_pindex_t pindex, vm_page_t mpred);
165 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
166     vm_page_t mpred);
167 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
168     vm_page_t m_run, vm_paddr_t high);
169 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
170     int req);
171 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
172     int flags);
173 static void vm_page_zone_release(void *arg, void **store, int cnt);
174
175 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
176
177 static void
178 vm_page_init(void *dummy)
179 {
180
181         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
182             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
183         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
184             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
185 }
186
187 /*
188  * The cache page zone is initialized later since we need to be able to allocate
189  * pages before UMA is fully initialized.
190  */
191 static void
192 vm_page_init_cache_zones(void *dummy __unused)
193 {
194         struct vm_domain *vmd;
195         struct vm_pgcache *pgcache;
196         int domain, pool;
197
198         for (domain = 0; domain < vm_ndomains; domain++) {
199                 vmd = VM_DOMAIN(domain);
200
201                 /*
202                  * Don't allow the page caches to take up more than .25% of
203                  * memory.
204                  */
205                 if (vmd->vmd_page_count / 400 < 256 * mp_ncpus * VM_NFREEPOOL)
206                         continue;
207                 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
208                         pgcache = &vmd->vmd_pgcache[pool];
209                         pgcache->domain = domain;
210                         pgcache->pool = pool;
211                         pgcache->zone = uma_zcache_create("vm pgcache",
212                             sizeof(struct vm_page), NULL, NULL, NULL, NULL,
213                             vm_page_zone_import, vm_page_zone_release, pgcache,
214                             UMA_ZONE_NOBUCKETCACHE | UMA_ZONE_MAXBUCKET |
215                             UMA_ZONE_VM);
216                 }
217         }
218 }
219 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
220
221 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
222 #if PAGE_SIZE == 32768
223 #ifdef CTASSERT
224 CTASSERT(sizeof(u_long) >= 8);
225 #endif
226 #endif
227
228 /*
229  * Try to acquire a physical address lock while a pmap is locked.  If we
230  * fail to trylock we unlock and lock the pmap directly and cache the
231  * locked pa in *locked.  The caller should then restart their loop in case
232  * the virtual to physical mapping has changed.
233  */
234 int
235 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
236 {
237         vm_paddr_t lockpa;
238
239         lockpa = *locked;
240         *locked = pa;
241         if (lockpa) {
242                 PA_LOCK_ASSERT(lockpa, MA_OWNED);
243                 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
244                         return (0);
245                 PA_UNLOCK(lockpa);
246         }
247         if (PA_TRYLOCK(pa))
248                 return (0);
249         PMAP_UNLOCK(pmap);
250         atomic_add_int(&pa_tryrelock_restart, 1);
251         PA_LOCK(pa);
252         PMAP_LOCK(pmap);
253         return (EAGAIN);
254 }
255
256 /*
257  *      vm_set_page_size:
258  *
259  *      Sets the page size, perhaps based upon the memory
260  *      size.  Must be called before any use of page-size
261  *      dependent functions.
262  */
263 void
264 vm_set_page_size(void)
265 {
266         if (vm_cnt.v_page_size == 0)
267                 vm_cnt.v_page_size = PAGE_SIZE;
268         if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
269                 panic("vm_set_page_size: page size not a power of two");
270 }
271
272 /*
273  *      vm_page_blacklist_next:
274  *
275  *      Find the next entry in the provided string of blacklist
276  *      addresses.  Entries are separated by space, comma, or newline.
277  *      If an invalid integer is encountered then the rest of the
278  *      string is skipped.  Updates the list pointer to the next
279  *      character, or NULL if the string is exhausted or invalid.
280  */
281 static vm_paddr_t
282 vm_page_blacklist_next(char **list, char *end)
283 {
284         vm_paddr_t bad;
285         char *cp, *pos;
286
287         if (list == NULL || *list == NULL)
288                 return (0);
289         if (**list =='\0') {
290                 *list = NULL;
291                 return (0);
292         }
293
294         /*
295          * If there's no end pointer then the buffer is coming from
296          * the kenv and we know it's null-terminated.
297          */
298         if (end == NULL)
299                 end = *list + strlen(*list);
300
301         /* Ensure that strtoq() won't walk off the end */
302         if (*end != '\0') {
303                 if (*end == '\n' || *end == ' ' || *end  == ',')
304                         *end = '\0';
305                 else {
306                         printf("Blacklist not terminated, skipping\n");
307                         *list = NULL;
308                         return (0);
309                 }
310         }
311
312         for (pos = *list; *pos != '\0'; pos = cp) {
313                 bad = strtoq(pos, &cp, 0);
314                 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
315                         if (bad == 0) {
316                                 if (++cp < end)
317                                         continue;
318                                 else
319                                         break;
320                         }
321                 } else
322                         break;
323                 if (*cp == '\0' || ++cp >= end)
324                         *list = NULL;
325                 else
326                         *list = cp;
327                 return (trunc_page(bad));
328         }
329         printf("Garbage in RAM blacklist, skipping\n");
330         *list = NULL;
331         return (0);
332 }
333
334 bool
335 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
336 {
337         struct vm_domain *vmd;
338         vm_page_t m;
339         int ret;
340
341         m = vm_phys_paddr_to_vm_page(pa);
342         if (m == NULL)
343                 return (true); /* page does not exist, no failure */
344
345         vmd = vm_pagequeue_domain(m);
346         vm_domain_free_lock(vmd);
347         ret = vm_phys_unfree_page(m);
348         vm_domain_free_unlock(vmd);
349         if (ret != 0) {
350                 vm_domain_freecnt_inc(vmd, -1);
351                 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
352                 if (verbose)
353                         printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
354         }
355         return (ret);
356 }
357
358 /*
359  *      vm_page_blacklist_check:
360  *
361  *      Iterate through the provided string of blacklist addresses, pulling
362  *      each entry out of the physical allocator free list and putting it
363  *      onto a list for reporting via the vm.page_blacklist sysctl.
364  */
365 static void
366 vm_page_blacklist_check(char *list, char *end)
367 {
368         vm_paddr_t pa;
369         char *next;
370
371         next = list;
372         while (next != NULL) {
373                 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
374                         continue;
375                 vm_page_blacklist_add(pa, bootverbose);
376         }
377 }
378
379 /*
380  *      vm_page_blacklist_load:
381  *
382  *      Search for a special module named "ram_blacklist".  It'll be a
383  *      plain text file provided by the user via the loader directive
384  *      of the same name.
385  */
386 static void
387 vm_page_blacklist_load(char **list, char **end)
388 {
389         void *mod;
390         u_char *ptr;
391         u_int len;
392
393         mod = NULL;
394         ptr = NULL;
395
396         mod = preload_search_by_type("ram_blacklist");
397         if (mod != NULL) {
398                 ptr = preload_fetch_addr(mod);
399                 len = preload_fetch_size(mod);
400         }
401         *list = ptr;
402         if (ptr != NULL)
403                 *end = ptr + len;
404         else
405                 *end = NULL;
406         return;
407 }
408
409 static int
410 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
411 {
412         vm_page_t m;
413         struct sbuf sbuf;
414         int error, first;
415
416         first = 1;
417         error = sysctl_wire_old_buffer(req, 0);
418         if (error != 0)
419                 return (error);
420         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
421         TAILQ_FOREACH(m, &blacklist_head, listq) {
422                 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
423                     (uintmax_t)m->phys_addr);
424                 first = 0;
425         }
426         error = sbuf_finish(&sbuf);
427         sbuf_delete(&sbuf);
428         return (error);
429 }
430
431 /*
432  * Initialize a dummy page for use in scans of the specified paging queue.
433  * In principle, this function only needs to set the flag PG_MARKER.
434  * Nonetheless, it write busies and initializes the hold count to one as
435  * safety precautions.
436  */
437 static void
438 vm_page_init_marker(vm_page_t marker, int queue, uint8_t aflags)
439 {
440
441         bzero(marker, sizeof(*marker));
442         marker->flags = PG_MARKER;
443         marker->aflags = aflags;
444         marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
445         marker->queue = queue;
446         marker->hold_count = 1;
447 }
448
449 static void
450 vm_page_domain_init(int domain)
451 {
452         struct vm_domain *vmd;
453         struct vm_pagequeue *pq;
454         int i;
455
456         vmd = VM_DOMAIN(domain);
457         bzero(vmd, sizeof(*vmd));
458         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
459             "vm inactive pagequeue";
460         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
461             "vm active pagequeue";
462         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
463             "vm laundry pagequeue";
464         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
465             "vm unswappable pagequeue";
466         vmd->vmd_domain = domain;
467         vmd->vmd_page_count = 0;
468         vmd->vmd_free_count = 0;
469         vmd->vmd_segs = 0;
470         vmd->vmd_oom = FALSE;
471         for (i = 0; i < PQ_COUNT; i++) {
472                 pq = &vmd->vmd_pagequeues[i];
473                 TAILQ_INIT(&pq->pq_pl);
474                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
475                     MTX_DEF | MTX_DUPOK);
476                 pq->pq_pdpages = 0;
477                 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
478         }
479         mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
480         mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
481         snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
482
483         /*
484          * inacthead is used to provide FIFO ordering for LRU-bypassing
485          * insertions.
486          */
487         vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
488         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
489             &vmd->vmd_inacthead, plinks.q);
490
491         /*
492          * The clock pages are used to implement active queue scanning without
493          * requeues.  Scans start at clock[0], which is advanced after the scan
494          * ends.  When the two clock hands meet, they are reset and scanning
495          * resumes from the head of the queue.
496          */
497         vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
498         vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
499         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
500             &vmd->vmd_clock[0], plinks.q);
501         TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
502             &vmd->vmd_clock[1], plinks.q);
503 }
504
505 /*
506  * Initialize a physical page in preparation for adding it to the free
507  * lists.
508  */
509 static void
510 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
511 {
512
513         m->object = NULL;
514         m->wire_count = 0;
515         m->busy_lock = VPB_UNBUSIED;
516         m->hold_count = 0;
517         m->flags = m->aflags = 0;
518         m->phys_addr = pa;
519         m->queue = PQ_NONE;
520         m->psind = 0;
521         m->segind = segind;
522         m->order = VM_NFREEORDER;
523         m->pool = VM_FREEPOOL_DEFAULT;
524         m->valid = m->dirty = 0;
525         pmap_page_init(m);
526 }
527
528 /*
529  *      vm_page_startup:
530  *
531  *      Initializes the resident memory module.  Allocates physical memory for
532  *      bootstrapping UMA and some data structures that are used to manage
533  *      physical pages.  Initializes these structures, and populates the free
534  *      page queues.
535  */
536 vm_offset_t
537 vm_page_startup(vm_offset_t vaddr)
538 {
539         struct vm_phys_seg *seg;
540         vm_page_t m;
541         char *list, *listend;
542         vm_offset_t mapped;
543         vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
544         vm_paddr_t biggestsize, last_pa, pa;
545         u_long pagecount;
546         int biggestone, i, segind;
547 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
548         long ii;
549 #endif
550
551         biggestsize = 0;
552         biggestone = 0;
553         vaddr = round_page(vaddr);
554
555         for (i = 0; phys_avail[i + 1]; i += 2) {
556                 phys_avail[i] = round_page(phys_avail[i]);
557                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
558         }
559         for (i = 0; phys_avail[i + 1]; i += 2) {
560                 size = phys_avail[i + 1] - phys_avail[i];
561                 if (size > biggestsize) {
562                         biggestone = i;
563                         biggestsize = size;
564                 }
565         }
566
567         end = phys_avail[biggestone+1];
568
569         /*
570          * Initialize the page and queue locks.
571          */
572         mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
573         for (i = 0; i < PA_LOCK_COUNT; i++)
574                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
575         for (i = 0; i < vm_ndomains; i++)
576                 vm_page_domain_init(i);
577
578         /*
579          * Allocate memory for use when boot strapping the kernel memory
580          * allocator.  Tell UMA how many zones we are going to create
581          * before going fully functional.  UMA will add its zones.
582          *
583          * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP,
584          * KMAP ENTRY, MAP ENTRY, VMSPACE.
585          */
586         boot_pages = uma_startup_count(8);
587
588 #ifndef UMA_MD_SMALL_ALLOC
589         /* vmem_startup() calls uma_prealloc(). */
590         boot_pages += vmem_startup_count();
591         /* vm_map_startup() calls uma_prealloc(). */
592         boot_pages += howmany(MAX_KMAP,
593             UMA_SLAB_SPACE / sizeof(struct vm_map));
594
595         /*
596          * Before going fully functional kmem_init() does allocation
597          * from "KMAP ENTRY" and vmem_create() does allocation from "vmem".
598          */
599         boot_pages += 2;
600 #endif
601         /*
602          * CTFLAG_RDTUN doesn't work during the early boot process, so we must
603          * manually fetch the value.
604          */
605         TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
606         new_end = end - (boot_pages * UMA_SLAB_SIZE);
607         new_end = trunc_page(new_end);
608         mapped = pmap_map(&vaddr, new_end, end,
609             VM_PROT_READ | VM_PROT_WRITE);
610         bzero((void *)mapped, end - new_end);
611         uma_startup((void *)mapped, boot_pages);
612
613 #ifdef WITNESS
614         end = new_end;
615         new_end = end - round_page(witness_startup_count());
616         mapped = pmap_map(&vaddr, new_end, end,
617             VM_PROT_READ | VM_PROT_WRITE);
618         bzero((void *)mapped, end - new_end);
619         witness_startup((void *)mapped);
620 #endif
621
622 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
623     defined(__i386__) || defined(__mips__) || defined(__riscv)
624         /*
625          * Allocate a bitmap to indicate that a random physical page
626          * needs to be included in a minidump.
627          *
628          * The amd64 port needs this to indicate which direct map pages
629          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
630          *
631          * However, i386 still needs this workspace internally within the
632          * minidump code.  In theory, they are not needed on i386, but are
633          * included should the sf_buf code decide to use them.
634          */
635         last_pa = 0;
636         for (i = 0; dump_avail[i + 1] != 0; i += 2)
637                 if (dump_avail[i + 1] > last_pa)
638                         last_pa = dump_avail[i + 1];
639         page_range = last_pa / PAGE_SIZE;
640         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
641         new_end -= vm_page_dump_size;
642         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
643             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
644         bzero((void *)vm_page_dump, vm_page_dump_size);
645 #else
646         (void)last_pa;
647 #endif
648 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
649     defined(__riscv)
650         /*
651          * Include the UMA bootstrap pages and vm_page_dump in a crash dump.
652          * When pmap_map() uses the direct map, they are not automatically 
653          * included.
654          */
655         for (pa = new_end; pa < end; pa += PAGE_SIZE)
656                 dump_add_page(pa);
657 #endif
658         phys_avail[biggestone + 1] = new_end;
659 #ifdef __amd64__
660         /*
661          * Request that the physical pages underlying the message buffer be
662          * included in a crash dump.  Since the message buffer is accessed
663          * through the direct map, they are not automatically included.
664          */
665         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
666         last_pa = pa + round_page(msgbufsize);
667         while (pa < last_pa) {
668                 dump_add_page(pa);
669                 pa += PAGE_SIZE;
670         }
671 #endif
672         /*
673          * Compute the number of pages of memory that will be available for
674          * use, taking into account the overhead of a page structure per page.
675          * In other words, solve
676          *      "available physical memory" - round_page(page_range *
677          *          sizeof(struct vm_page)) = page_range * PAGE_SIZE 
678          * for page_range.  
679          */
680         low_avail = phys_avail[0];
681         high_avail = phys_avail[1];
682         for (i = 0; i < vm_phys_nsegs; i++) {
683                 if (vm_phys_segs[i].start < low_avail)
684                         low_avail = vm_phys_segs[i].start;
685                 if (vm_phys_segs[i].end > high_avail)
686                         high_avail = vm_phys_segs[i].end;
687         }
688         /* Skip the first chunk.  It is already accounted for. */
689         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
690                 if (phys_avail[i] < low_avail)
691                         low_avail = phys_avail[i];
692                 if (phys_avail[i + 1] > high_avail)
693                         high_avail = phys_avail[i + 1];
694         }
695         first_page = low_avail / PAGE_SIZE;
696 #ifdef VM_PHYSSEG_SPARSE
697         size = 0;
698         for (i = 0; i < vm_phys_nsegs; i++)
699                 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
700         for (i = 0; phys_avail[i + 1] != 0; i += 2)
701                 size += phys_avail[i + 1] - phys_avail[i];
702 #elif defined(VM_PHYSSEG_DENSE)
703         size = high_avail - low_avail;
704 #else
705 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
706 #endif
707
708 #ifdef VM_PHYSSEG_DENSE
709         /*
710          * In the VM_PHYSSEG_DENSE case, the number of pages can account for
711          * the overhead of a page structure per page only if vm_page_array is
712          * allocated from the last physical memory chunk.  Otherwise, we must
713          * allocate page structures representing the physical memory
714          * underlying vm_page_array, even though they will not be used.
715          */
716         if (new_end != high_avail)
717                 page_range = size / PAGE_SIZE;
718         else
719 #endif
720         {
721                 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
722
723                 /*
724                  * If the partial bytes remaining are large enough for
725                  * a page (PAGE_SIZE) without a corresponding
726                  * 'struct vm_page', then new_end will contain an
727                  * extra page after subtracting the length of the VM
728                  * page array.  Compensate by subtracting an extra
729                  * page from new_end.
730                  */
731                 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
732                         if (new_end == high_avail)
733                                 high_avail -= PAGE_SIZE;
734                         new_end -= PAGE_SIZE;
735                 }
736         }
737         end = new_end;
738
739         /*
740          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
741          * However, because this page is allocated from KVM, out-of-bounds
742          * accesses using the direct map will not be trapped.
743          */
744         vaddr += PAGE_SIZE;
745
746         /*
747          * Allocate physical memory for the page structures, and map it.
748          */
749         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
750         mapped = pmap_map(&vaddr, new_end, end,
751             VM_PROT_READ | VM_PROT_WRITE);
752         vm_page_array = (vm_page_t)mapped;
753         vm_page_array_size = page_range;
754
755 #if VM_NRESERVLEVEL > 0
756         /*
757          * Allocate physical memory for the reservation management system's
758          * data structures, and map it.
759          */
760         if (high_avail == end)
761                 high_avail = new_end;
762         new_end = vm_reserv_startup(&vaddr, new_end, high_avail);
763 #endif
764 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
765     defined(__riscv)
766         /*
767          * Include vm_page_array and vm_reserv_array in a crash dump.
768          */
769         for (pa = new_end; pa < end; pa += PAGE_SIZE)
770                 dump_add_page(pa);
771 #endif
772         phys_avail[biggestone + 1] = new_end;
773
774         /*
775          * Add physical memory segments corresponding to the available
776          * physical pages.
777          */
778         for (i = 0; phys_avail[i + 1] != 0; i += 2)
779                 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
780
781         /*
782          * Initialize the physical memory allocator.
783          */
784         vm_phys_init();
785
786         /*
787          * Initialize the page structures and add every available page to the
788          * physical memory allocator's free lists.
789          */
790 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
791         for (ii = 0; ii < vm_page_array_size; ii++) {
792                 m = &vm_page_array[ii];
793                 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
794                 m->flags = PG_FICTITIOUS;
795         }
796 #endif
797         vm_cnt.v_page_count = 0;
798         for (segind = 0; segind < vm_phys_nsegs; segind++) {
799                 seg = &vm_phys_segs[segind];
800                 for (m = seg->first_page, pa = seg->start; pa < seg->end;
801                     m++, pa += PAGE_SIZE)
802                         vm_page_init_page(m, pa, segind);
803
804                 /*
805                  * Add the segment to the free lists only if it is covered by
806                  * one of the ranges in phys_avail.  Because we've added the
807                  * ranges to the vm_phys_segs array, we can assume that each
808                  * segment is either entirely contained in one of the ranges,
809                  * or doesn't overlap any of them.
810                  */
811                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
812                         struct vm_domain *vmd;
813
814                         if (seg->start < phys_avail[i] ||
815                             seg->end > phys_avail[i + 1])
816                                 continue;
817
818                         m = seg->first_page;
819                         pagecount = (u_long)atop(seg->end - seg->start);
820
821                         vmd = VM_DOMAIN(seg->domain);
822                         vm_domain_free_lock(vmd);
823                         vm_phys_free_contig(m, pagecount);
824                         vm_domain_free_unlock(vmd);
825                         vm_domain_freecnt_inc(vmd, pagecount);
826                         vm_cnt.v_page_count += (u_int)pagecount;
827
828                         vmd = VM_DOMAIN(seg->domain);
829                         vmd->vmd_page_count += (u_int)pagecount;
830                         vmd->vmd_segs |= 1UL << m->segind;
831                         break;
832                 }
833         }
834
835         /*
836          * Remove blacklisted pages from the physical memory allocator.
837          */
838         TAILQ_INIT(&blacklist_head);
839         vm_page_blacklist_load(&list, &listend);
840         vm_page_blacklist_check(list, listend);
841
842         list = kern_getenv("vm.blacklist");
843         vm_page_blacklist_check(list, NULL);
844
845         freeenv(list);
846 #if VM_NRESERVLEVEL > 0
847         /*
848          * Initialize the reservation management system.
849          */
850         vm_reserv_init();
851 #endif
852
853         return (vaddr);
854 }
855
856 void
857 vm_page_reference(vm_page_t m)
858 {
859
860         vm_page_aflag_set(m, PGA_REFERENCED);
861 }
862
863 /*
864  *      vm_page_busy_downgrade:
865  *
866  *      Downgrade an exclusive busy page into a single shared busy page.
867  */
868 void
869 vm_page_busy_downgrade(vm_page_t m)
870 {
871         u_int x;
872         bool locked;
873
874         vm_page_assert_xbusied(m);
875         locked = mtx_owned(vm_page_lockptr(m));
876
877         for (;;) {
878                 x = m->busy_lock;
879                 x &= VPB_BIT_WAITERS;
880                 if (x != 0 && !locked)
881                         vm_page_lock(m);
882                 if (atomic_cmpset_rel_int(&m->busy_lock,
883                     VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
884                         break;
885                 if (x != 0 && !locked)
886                         vm_page_unlock(m);
887         }
888         if (x != 0) {
889                 wakeup(m);
890                 if (!locked)
891                         vm_page_unlock(m);
892         }
893 }
894
895 /*
896  *      vm_page_sbusied:
897  *
898  *      Return a positive value if the page is shared busied, 0 otherwise.
899  */
900 int
901 vm_page_sbusied(vm_page_t m)
902 {
903         u_int x;
904
905         x = m->busy_lock;
906         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
907 }
908
909 /*
910  *      vm_page_sunbusy:
911  *
912  *      Shared unbusy a page.
913  */
914 void
915 vm_page_sunbusy(vm_page_t m)
916 {
917         u_int x;
918
919         vm_page_lock_assert(m, MA_NOTOWNED);
920         vm_page_assert_sbusied(m);
921
922         for (;;) {
923                 x = m->busy_lock;
924                 if (VPB_SHARERS(x) > 1) {
925                         if (atomic_cmpset_int(&m->busy_lock, x,
926                             x - VPB_ONE_SHARER))
927                                 break;
928                         continue;
929                 }
930                 if ((x & VPB_BIT_WAITERS) == 0) {
931                         KASSERT(x == VPB_SHARERS_WORD(1),
932                             ("vm_page_sunbusy: invalid lock state"));
933                         if (atomic_cmpset_int(&m->busy_lock,
934                             VPB_SHARERS_WORD(1), VPB_UNBUSIED))
935                                 break;
936                         continue;
937                 }
938                 KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
939                     ("vm_page_sunbusy: invalid lock state for waiters"));
940
941                 vm_page_lock(m);
942                 if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
943                         vm_page_unlock(m);
944                         continue;
945                 }
946                 wakeup(m);
947                 vm_page_unlock(m);
948                 break;
949         }
950 }
951
952 /*
953  *      vm_page_busy_sleep:
954  *
955  *      Sleep and release the page lock, using the page pointer as wchan.
956  *      This is used to implement the hard-path of busying mechanism.
957  *
958  *      The given page must be locked.
959  *
960  *      If nonshared is true, sleep only if the page is xbusy.
961  */
962 void
963 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
964 {
965         u_int x;
966
967         vm_page_assert_locked(m);
968
969         x = m->busy_lock;
970         if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
971             ((x & VPB_BIT_WAITERS) == 0 &&
972             !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
973                 vm_page_unlock(m);
974                 return;
975         }
976         msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
977 }
978
979 /*
980  *      vm_page_trysbusy:
981  *
982  *      Try to shared busy a page.
983  *      If the operation succeeds 1 is returned otherwise 0.
984  *      The operation never sleeps.
985  */
986 int
987 vm_page_trysbusy(vm_page_t m)
988 {
989         u_int x;
990
991         for (;;) {
992                 x = m->busy_lock;
993                 if ((x & VPB_BIT_SHARED) == 0)
994                         return (0);
995                 if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
996                         return (1);
997         }
998 }
999
1000 static void
1001 vm_page_xunbusy_locked(vm_page_t m)
1002 {
1003
1004         vm_page_assert_xbusied(m);
1005         vm_page_assert_locked(m);
1006
1007         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1008         /* There is a waiter, do wakeup() instead of vm_page_flash(). */
1009         wakeup(m);
1010 }
1011
1012 void
1013 vm_page_xunbusy_maybelocked(vm_page_t m)
1014 {
1015         bool lockacq;
1016
1017         vm_page_assert_xbusied(m);
1018
1019         /*
1020          * Fast path for unbusy.  If it succeeds, we know that there
1021          * are no waiters, so we do not need a wakeup.
1022          */
1023         if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
1024             VPB_UNBUSIED))
1025                 return;
1026
1027         lockacq = !mtx_owned(vm_page_lockptr(m));
1028         if (lockacq)
1029                 vm_page_lock(m);
1030         vm_page_xunbusy_locked(m);
1031         if (lockacq)
1032                 vm_page_unlock(m);
1033 }
1034
1035 /*
1036  *      vm_page_xunbusy_hard:
1037  *
1038  *      Called after the first try the exclusive unbusy of a page failed.
1039  *      It is assumed that the waiters bit is on.
1040  */
1041 void
1042 vm_page_xunbusy_hard(vm_page_t m)
1043 {
1044
1045         vm_page_assert_xbusied(m);
1046
1047         vm_page_lock(m);
1048         vm_page_xunbusy_locked(m);
1049         vm_page_unlock(m);
1050 }
1051
1052 /*
1053  *      vm_page_flash:
1054  *
1055  *      Wakeup anyone waiting for the page.
1056  *      The ownership bits do not change.
1057  *
1058  *      The given page must be locked.
1059  */
1060 void
1061 vm_page_flash(vm_page_t m)
1062 {
1063         u_int x;
1064
1065         vm_page_lock_assert(m, MA_OWNED);
1066
1067         for (;;) {
1068                 x = m->busy_lock;
1069                 if ((x & VPB_BIT_WAITERS) == 0)
1070                         return;
1071                 if (atomic_cmpset_int(&m->busy_lock, x,
1072                     x & (~VPB_BIT_WAITERS)))
1073                         break;
1074         }
1075         wakeup(m);
1076 }
1077
1078 /*
1079  * Avoid releasing and reacquiring the same page lock.
1080  */
1081 void
1082 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
1083 {
1084         struct mtx *mtx1;
1085
1086         mtx1 = vm_page_lockptr(m);
1087         if (*mtx == mtx1)
1088                 return;
1089         if (*mtx != NULL)
1090                 mtx_unlock(*mtx);
1091         *mtx = mtx1;
1092         mtx_lock(mtx1);
1093 }
1094
1095 /*
1096  * Keep page from being freed by the page daemon
1097  * much of the same effect as wiring, except much lower
1098  * overhead and should be used only for *very* temporary
1099  * holding ("wiring").
1100  */
1101 void
1102 vm_page_hold(vm_page_t mem)
1103 {
1104
1105         vm_page_lock_assert(mem, MA_OWNED);
1106         mem->hold_count++;
1107 }
1108
1109 void
1110 vm_page_unhold(vm_page_t mem)
1111 {
1112
1113         vm_page_lock_assert(mem, MA_OWNED);
1114         KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
1115         --mem->hold_count;
1116         if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
1117                 vm_page_free_toq(mem);
1118 }
1119
1120 /*
1121  *      vm_page_unhold_pages:
1122  *
1123  *      Unhold each of the pages that is referenced by the given array.
1124  */
1125 void
1126 vm_page_unhold_pages(vm_page_t *ma, int count)
1127 {
1128         struct mtx *mtx;
1129
1130         mtx = NULL;
1131         for (; count != 0; count--) {
1132                 vm_page_change_lock(*ma, &mtx);
1133                 vm_page_unhold(*ma);
1134                 ma++;
1135         }
1136         if (mtx != NULL)
1137                 mtx_unlock(mtx);
1138 }
1139
1140 vm_page_t
1141 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1142 {
1143         vm_page_t m;
1144
1145 #ifdef VM_PHYSSEG_SPARSE
1146         m = vm_phys_paddr_to_vm_page(pa);
1147         if (m == NULL)
1148                 m = vm_phys_fictitious_to_vm_page(pa);
1149         return (m);
1150 #elif defined(VM_PHYSSEG_DENSE)
1151         long pi;
1152
1153         pi = atop(pa);
1154         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1155                 m = &vm_page_array[pi - first_page];
1156                 return (m);
1157         }
1158         return (vm_phys_fictitious_to_vm_page(pa));
1159 #else
1160 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1161 #endif
1162 }
1163
1164 /*
1165  *      vm_page_getfake:
1166  *
1167  *      Create a fictitious page with the specified physical address and
1168  *      memory attribute.  The memory attribute is the only the machine-
1169  *      dependent aspect of a fictitious page that must be initialized.
1170  */
1171 vm_page_t
1172 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1173 {
1174         vm_page_t m;
1175
1176         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1177         vm_page_initfake(m, paddr, memattr);
1178         return (m);
1179 }
1180
1181 void
1182 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1183 {
1184
1185         if ((m->flags & PG_FICTITIOUS) != 0) {
1186                 /*
1187                  * The page's memattr might have changed since the
1188                  * previous initialization.  Update the pmap to the
1189                  * new memattr.
1190                  */
1191                 goto memattr;
1192         }
1193         m->phys_addr = paddr;
1194         m->queue = PQ_NONE;
1195         /* Fictitious pages don't use "segind". */
1196         m->flags = PG_FICTITIOUS;
1197         /* Fictitious pages don't use "order" or "pool". */
1198         m->oflags = VPO_UNMANAGED;
1199         m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1200         m->wire_count = 1;
1201         pmap_page_init(m);
1202 memattr:
1203         pmap_page_set_memattr(m, memattr);
1204 }
1205
1206 /*
1207  *      vm_page_putfake:
1208  *
1209  *      Release a fictitious page.
1210  */
1211 void
1212 vm_page_putfake(vm_page_t m)
1213 {
1214
1215         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1216         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1217             ("vm_page_putfake: bad page %p", m));
1218         uma_zfree(fakepg_zone, m);
1219 }
1220
1221 /*
1222  *      vm_page_updatefake:
1223  *
1224  *      Update the given fictitious page to the specified physical address and
1225  *      memory attribute.
1226  */
1227 void
1228 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1229 {
1230
1231         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1232             ("vm_page_updatefake: bad page %p", m));
1233         m->phys_addr = paddr;
1234         pmap_page_set_memattr(m, memattr);
1235 }
1236
1237 /*
1238  *      vm_page_free:
1239  *
1240  *      Free a page.
1241  */
1242 void
1243 vm_page_free(vm_page_t m)
1244 {
1245
1246         m->flags &= ~PG_ZERO;
1247         vm_page_free_toq(m);
1248 }
1249
1250 /*
1251  *      vm_page_free_zero:
1252  *
1253  *      Free a page to the zerod-pages queue
1254  */
1255 void
1256 vm_page_free_zero(vm_page_t m)
1257 {
1258
1259         m->flags |= PG_ZERO;
1260         vm_page_free_toq(m);
1261 }
1262
1263 /*
1264  * Unbusy and handle the page queueing for a page from a getpages request that
1265  * was optionally read ahead or behind.
1266  */
1267 void
1268 vm_page_readahead_finish(vm_page_t m)
1269 {
1270
1271         /* We shouldn't put invalid pages on queues. */
1272         KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1273
1274         /*
1275          * Since the page is not the actually needed one, whether it should
1276          * be activated or deactivated is not obvious.  Empirical results
1277          * have shown that deactivating the page is usually the best choice,
1278          * unless the page is wanted by another thread.
1279          */
1280         vm_page_lock(m);
1281         if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1282                 vm_page_activate(m);
1283         else
1284                 vm_page_deactivate(m);
1285         vm_page_unlock(m);
1286         vm_page_xunbusy(m);
1287 }
1288
1289 /*
1290  *      vm_page_sleep_if_busy:
1291  *
1292  *      Sleep and release the page queues lock if the page is busied.
1293  *      Returns TRUE if the thread slept.
1294  *
1295  *      The given page must be unlocked and object containing it must
1296  *      be locked.
1297  */
1298 int
1299 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1300 {
1301         vm_object_t obj;
1302
1303         vm_page_lock_assert(m, MA_NOTOWNED);
1304         VM_OBJECT_ASSERT_WLOCKED(m->object);
1305
1306         if (vm_page_busied(m)) {
1307                 /*
1308                  * The page-specific object must be cached because page
1309                  * identity can change during the sleep, causing the
1310                  * re-lock of a different object.
1311                  * It is assumed that a reference to the object is already
1312                  * held by the callers.
1313                  */
1314                 obj = m->object;
1315                 vm_page_lock(m);
1316                 VM_OBJECT_WUNLOCK(obj);
1317                 vm_page_busy_sleep(m, msg, false);
1318                 VM_OBJECT_WLOCK(obj);
1319                 return (TRUE);
1320         }
1321         return (FALSE);
1322 }
1323
1324 /*
1325  *      vm_page_dirty_KBI:              [ internal use only ]
1326  *
1327  *      Set all bits in the page's dirty field.
1328  *
1329  *      The object containing the specified page must be locked if the
1330  *      call is made from the machine-independent layer.
1331  *
1332  *      See vm_page_clear_dirty_mask().
1333  *
1334  *      This function should only be called by vm_page_dirty().
1335  */
1336 void
1337 vm_page_dirty_KBI(vm_page_t m)
1338 {
1339
1340         /* Refer to this operation by its public name. */
1341         KASSERT(m->valid == VM_PAGE_BITS_ALL,
1342             ("vm_page_dirty: page is invalid!"));
1343         m->dirty = VM_PAGE_BITS_ALL;
1344 }
1345
1346 /*
1347  *      vm_page_insert:         [ internal use only ]
1348  *
1349  *      Inserts the given mem entry into the object and object list.
1350  *
1351  *      The object must be locked.
1352  */
1353 int
1354 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1355 {
1356         vm_page_t mpred;
1357
1358         VM_OBJECT_ASSERT_WLOCKED(object);
1359         mpred = vm_radix_lookup_le(&object->rtree, pindex);
1360         return (vm_page_insert_after(m, object, pindex, mpred));
1361 }
1362
1363 /*
1364  *      vm_page_insert_after:
1365  *
1366  *      Inserts the page "m" into the specified object at offset "pindex".
1367  *
1368  *      The page "mpred" must immediately precede the offset "pindex" within
1369  *      the specified object.
1370  *
1371  *      The object must be locked.
1372  */
1373 static int
1374 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1375     vm_page_t mpred)
1376 {
1377         vm_page_t msucc;
1378
1379         VM_OBJECT_ASSERT_WLOCKED(object);
1380         KASSERT(m->object == NULL,
1381             ("vm_page_insert_after: page already inserted"));
1382         if (mpred != NULL) {
1383                 KASSERT(mpred->object == object,
1384                     ("vm_page_insert_after: object doesn't contain mpred"));
1385                 KASSERT(mpred->pindex < pindex,
1386                     ("vm_page_insert_after: mpred doesn't precede pindex"));
1387                 msucc = TAILQ_NEXT(mpred, listq);
1388         } else
1389                 msucc = TAILQ_FIRST(&object->memq);
1390         if (msucc != NULL)
1391                 KASSERT(msucc->pindex > pindex,
1392                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
1393
1394         /*
1395          * Record the object/offset pair in this page
1396          */
1397         m->object = object;
1398         m->pindex = pindex;
1399
1400         /*
1401          * Now link into the object's ordered list of backed pages.
1402          */
1403         if (vm_radix_insert(&object->rtree, m)) {
1404                 m->object = NULL;
1405                 m->pindex = 0;
1406                 return (1);
1407         }
1408         vm_page_insert_radixdone(m, object, mpred);
1409         return (0);
1410 }
1411
1412 /*
1413  *      vm_page_insert_radixdone:
1414  *
1415  *      Complete page "m" insertion into the specified object after the
1416  *      radix trie hooking.
1417  *
1418  *      The page "mpred" must precede the offset "m->pindex" within the
1419  *      specified object.
1420  *
1421  *      The object must be locked.
1422  */
1423 static void
1424 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1425 {
1426
1427         VM_OBJECT_ASSERT_WLOCKED(object);
1428         KASSERT(object != NULL && m->object == object,
1429             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1430         if (mpred != NULL) {
1431                 KASSERT(mpred->object == object,
1432                     ("vm_page_insert_after: object doesn't contain mpred"));
1433                 KASSERT(mpred->pindex < m->pindex,
1434                     ("vm_page_insert_after: mpred doesn't precede pindex"));
1435         }
1436
1437         if (mpred != NULL)
1438                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1439         else
1440                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1441
1442         /*
1443          * Show that the object has one more resident page.
1444          */
1445         object->resident_page_count++;
1446
1447         /*
1448          * Hold the vnode until the last page is released.
1449          */
1450         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1451                 vhold(object->handle);
1452
1453         /*
1454          * Since we are inserting a new and possibly dirty page,
1455          * update the object's OBJ_MIGHTBEDIRTY flag.
1456          */
1457         if (pmap_page_is_write_mapped(m))
1458                 vm_object_set_writeable_dirty(object);
1459 }
1460
1461 /*
1462  *      vm_page_remove:
1463  *
1464  *      Removes the specified page from its containing object, but does not
1465  *      invalidate any backing storage.  Return true if the page may be safely
1466  *      freed and false otherwise.
1467  *
1468  *      The object must be locked.  The page must be locked if it is managed.
1469  */
1470 bool
1471 vm_page_remove(vm_page_t m)
1472 {
1473         vm_object_t object;
1474         vm_page_t mrem;
1475
1476         object = m->object;
1477
1478         if ((m->oflags & VPO_UNMANAGED) == 0)
1479                 vm_page_assert_locked(m);
1480         VM_OBJECT_ASSERT_WLOCKED(object);
1481         if (vm_page_xbusied(m))
1482                 vm_page_xunbusy_maybelocked(m);
1483         mrem = vm_radix_remove(&object->rtree, m->pindex);
1484         KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1485
1486         /*
1487          * Now remove from the object's list of backed pages.
1488          */
1489         TAILQ_REMOVE(&object->memq, m, listq);
1490
1491         /*
1492          * And show that the object has one fewer resident page.
1493          */
1494         object->resident_page_count--;
1495
1496         /*
1497          * The vnode may now be recycled.
1498          */
1499         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1500                 vdrop(object->handle);
1501
1502         m->object = NULL;
1503         return (!vm_page_wired(m));
1504 }
1505
1506 /*
1507  *      vm_page_lookup:
1508  *
1509  *      Returns the page associated with the object/offset
1510  *      pair specified; if none is found, NULL is returned.
1511  *
1512  *      The object must be locked.
1513  */
1514 vm_page_t
1515 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1516 {
1517
1518         VM_OBJECT_ASSERT_LOCKED(object);
1519         return (vm_radix_lookup(&object->rtree, pindex));
1520 }
1521
1522 /*
1523  *      vm_page_find_least:
1524  *
1525  *      Returns the page associated with the object with least pindex
1526  *      greater than or equal to the parameter pindex, or NULL.
1527  *
1528  *      The object must be locked.
1529  */
1530 vm_page_t
1531 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1532 {
1533         vm_page_t m;
1534
1535         VM_OBJECT_ASSERT_LOCKED(object);
1536         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1537                 m = vm_radix_lookup_ge(&object->rtree, pindex);
1538         return (m);
1539 }
1540
1541 /*
1542  * Returns the given page's successor (by pindex) within the object if it is
1543  * resident; if none is found, NULL is returned.
1544  *
1545  * The object must be locked.
1546  */
1547 vm_page_t
1548 vm_page_next(vm_page_t m)
1549 {
1550         vm_page_t next;
1551
1552         VM_OBJECT_ASSERT_LOCKED(m->object);
1553         if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1554                 MPASS(next->object == m->object);
1555                 if (next->pindex != m->pindex + 1)
1556                         next = NULL;
1557         }
1558         return (next);
1559 }
1560
1561 /*
1562  * Returns the given page's predecessor (by pindex) within the object if it is
1563  * resident; if none is found, NULL is returned.
1564  *
1565  * The object must be locked.
1566  */
1567 vm_page_t
1568 vm_page_prev(vm_page_t m)
1569 {
1570         vm_page_t prev;
1571
1572         VM_OBJECT_ASSERT_LOCKED(m->object);
1573         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1574                 MPASS(prev->object == m->object);
1575                 if (prev->pindex != m->pindex - 1)
1576                         prev = NULL;
1577         }
1578         return (prev);
1579 }
1580
1581 /*
1582  * Uses the page mnew as a replacement for an existing page at index
1583  * pindex which must be already present in the object.
1584  *
1585  * The existing page must not be on a paging queue.
1586  */
1587 vm_page_t
1588 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1589 {
1590         vm_page_t mold;
1591
1592         VM_OBJECT_ASSERT_WLOCKED(object);
1593         KASSERT(mnew->object == NULL,
1594             ("vm_page_replace: page %p already in object", mnew));
1595         KASSERT(mnew->queue == PQ_NONE,
1596             ("vm_page_replace: new page %p is on a paging queue", mnew));
1597
1598         /*
1599          * This function mostly follows vm_page_insert() and
1600          * vm_page_remove() without the radix, object count and vnode
1601          * dance.  Double check such functions for more comments.
1602          */
1603
1604         mnew->object = object;
1605         mnew->pindex = pindex;
1606         mold = vm_radix_replace(&object->rtree, mnew);
1607         KASSERT(mold->queue == PQ_NONE,
1608             ("vm_page_replace: old page %p is on a paging queue", mold));
1609
1610         /* Keep the resident page list in sorted order. */
1611         TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1612         TAILQ_REMOVE(&object->memq, mold, listq);
1613
1614         mold->object = NULL;
1615         vm_page_xunbusy_maybelocked(mold);
1616
1617         /*
1618          * The object's resident_page_count does not change because we have
1619          * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1620          */
1621         if (pmap_page_is_write_mapped(mnew))
1622                 vm_object_set_writeable_dirty(object);
1623         return (mold);
1624 }
1625
1626 /*
1627  *      vm_page_rename:
1628  *
1629  *      Move the given memory entry from its
1630  *      current object to the specified target object/offset.
1631  *
1632  *      Note: swap associated with the page must be invalidated by the move.  We
1633  *            have to do this for several reasons:  (1) we aren't freeing the
1634  *            page, (2) we are dirtying the page, (3) the VM system is probably
1635  *            moving the page from object A to B, and will then later move
1636  *            the backing store from A to B and we can't have a conflict.
1637  *
1638  *      Note: we *always* dirty the page.  It is necessary both for the
1639  *            fact that we moved it, and because we may be invalidating
1640  *            swap.
1641  *
1642  *      The objects must be locked.
1643  */
1644 int
1645 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1646 {
1647         vm_page_t mpred;
1648         vm_pindex_t opidx;
1649
1650         VM_OBJECT_ASSERT_WLOCKED(new_object);
1651
1652         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1653         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1654             ("vm_page_rename: pindex already renamed"));
1655
1656         /*
1657          * Create a custom version of vm_page_insert() which does not depend
1658          * by m_prev and can cheat on the implementation aspects of the
1659          * function.
1660          */
1661         opidx = m->pindex;
1662         m->pindex = new_pindex;
1663         if (vm_radix_insert(&new_object->rtree, m)) {
1664                 m->pindex = opidx;
1665                 return (1);
1666         }
1667
1668         /*
1669          * The operation cannot fail anymore.  The removal must happen before
1670          * the listq iterator is tainted.
1671          */
1672         m->pindex = opidx;
1673         vm_page_lock(m);
1674         (void)vm_page_remove(m);
1675
1676         /* Return back to the new pindex to complete vm_page_insert(). */
1677         m->pindex = new_pindex;
1678         m->object = new_object;
1679         vm_page_unlock(m);
1680         vm_page_insert_radixdone(m, new_object, mpred);
1681         vm_page_dirty(m);
1682         return (0);
1683 }
1684
1685 /*
1686  *      vm_page_alloc:
1687  *
1688  *      Allocate and return a page that is associated with the specified
1689  *      object and offset pair.  By default, this page is exclusive busied.
1690  *
1691  *      The caller must always specify an allocation class.
1692  *
1693  *      allocation classes:
1694  *      VM_ALLOC_NORMAL         normal process request
1695  *      VM_ALLOC_SYSTEM         system *really* needs a page
1696  *      VM_ALLOC_INTERRUPT      interrupt time request
1697  *
1698  *      optional allocation flags:
1699  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
1700  *                              intends to allocate
1701  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1702  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1703  *      VM_ALLOC_NOOBJ          page is not associated with an object and
1704  *                              should not be exclusive busy
1705  *      VM_ALLOC_SBUSY          shared busy the allocated page
1706  *      VM_ALLOC_WIRED          wire the allocated page
1707  *      VM_ALLOC_ZERO           prefer a zeroed page
1708  */
1709 vm_page_t
1710 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1711 {
1712
1713         return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1714             vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1715 }
1716
1717 vm_page_t
1718 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1719     int req)
1720 {
1721
1722         return (vm_page_alloc_domain_after(object, pindex, domain, req,
1723             object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1724             NULL));
1725 }
1726
1727 /*
1728  * Allocate a page in the specified object with the given page index.  To
1729  * optimize insertion of the page into the object, the caller must also specifiy
1730  * the resident page in the object with largest index smaller than the given
1731  * page index, or NULL if no such page exists.
1732  */
1733 vm_page_t
1734 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1735     int req, vm_page_t mpred)
1736 {
1737         struct vm_domainset_iter di;
1738         vm_page_t m;
1739         int domain;
1740
1741         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1742         do {
1743                 m = vm_page_alloc_domain_after(object, pindex, domain, req,
1744                     mpred);
1745                 if (m != NULL)
1746                         break;
1747         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
1748
1749         return (m);
1750 }
1751
1752 /*
1753  * Returns true if the number of free pages exceeds the minimum
1754  * for the request class and false otherwise.
1755  */
1756 int
1757 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1758 {
1759         u_int limit, old, new;
1760
1761         req = req & VM_ALLOC_CLASS_MASK;
1762
1763         /*
1764          * The page daemon is allowed to dig deeper into the free page list.
1765          */
1766         if (curproc == pageproc && req != VM_ALLOC_INTERRUPT)
1767                 req = VM_ALLOC_SYSTEM;
1768         if (req == VM_ALLOC_INTERRUPT)
1769                 limit = 0;
1770         else if (req == VM_ALLOC_SYSTEM)
1771                 limit = vmd->vmd_interrupt_free_min;
1772         else
1773                 limit = vmd->vmd_free_reserved;
1774
1775         /*
1776          * Attempt to reserve the pages.  Fail if we're below the limit.
1777          */
1778         limit += npages;
1779         old = vmd->vmd_free_count;
1780         do {
1781                 if (old < limit)
1782                         return (0);
1783                 new = old - npages;
1784         } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1785
1786         /* Wake the page daemon if we've crossed the threshold. */
1787         if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1788                 pagedaemon_wakeup(vmd->vmd_domain);
1789
1790         /* Only update bitsets on transitions. */
1791         if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1792             (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1793                 vm_domain_set(vmd);
1794
1795         return (1);
1796 }
1797
1798 vm_page_t
1799 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1800     int req, vm_page_t mpred)
1801 {
1802         struct vm_domain *vmd;
1803         vm_page_t m;
1804         int flags, pool;
1805
1806         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1807             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1808             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1809             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1810             ("inconsistent object(%p)/req(%x)", object, req));
1811         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1812             ("Can't sleep and retry object insertion."));
1813         KASSERT(mpred == NULL || mpred->pindex < pindex,
1814             ("mpred %p doesn't precede pindex 0x%jx", mpred,
1815             (uintmax_t)pindex));
1816         if (object != NULL)
1817                 VM_OBJECT_ASSERT_WLOCKED(object);
1818
1819         flags = 0;
1820         m = NULL;
1821         pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
1822 again:
1823 #if VM_NRESERVLEVEL > 0
1824         /*
1825          * Can we allocate the page from a reservation?
1826          */
1827         if (vm_object_reserv(object) &&
1828             ((m = vm_reserv_extend(req, object, pindex, domain, mpred)) != NULL ||
1829             (m = vm_reserv_alloc_page(req, object, pindex, domain, mpred)) != NULL)) {
1830                 domain = vm_phys_domain(m);
1831                 vmd = VM_DOMAIN(domain);
1832                 goto found;
1833         }
1834 #endif
1835         vmd = VM_DOMAIN(domain);
1836         if (vmd->vmd_pgcache[pool].zone != NULL) {
1837                 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
1838                 if (m != NULL) {
1839                         flags |= PG_PCPU_CACHE;
1840                         goto found;
1841                 }
1842         }
1843         if (vm_domain_allocate(vmd, req, 1)) {
1844                 /*
1845                  * If not, allocate it from the free page queues.
1846                  */
1847                 vm_domain_free_lock(vmd);
1848                 m = vm_phys_alloc_pages(domain, pool, 0);
1849                 vm_domain_free_unlock(vmd);
1850                 if (m == NULL) {
1851                         vm_domain_freecnt_inc(vmd, 1);
1852 #if VM_NRESERVLEVEL > 0
1853                         if (vm_reserv_reclaim_inactive(domain))
1854                                 goto again;
1855 #endif
1856                 }
1857         }
1858         if (m == NULL) {
1859                 /*
1860                  * Not allocatable, give up.
1861                  */
1862                 if (vm_domain_alloc_fail(vmd, object, req))
1863                         goto again;
1864                 return (NULL);
1865         }
1866
1867         /*
1868          * At this point we had better have found a good page.
1869          */
1870 found:
1871         vm_page_dequeue(m);
1872         vm_page_alloc_check(m);
1873
1874         /*
1875          * Initialize the page.  Only the PG_ZERO flag is inherited.
1876          */
1877         if ((req & VM_ALLOC_ZERO) != 0)
1878                 flags |= (m->flags & PG_ZERO);
1879         if ((req & VM_ALLOC_NODUMP) != 0)
1880                 flags |= PG_NODUMP;
1881         m->flags = flags;
1882         m->aflags = 0;
1883         m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1884             VPO_UNMANAGED : 0;
1885         m->busy_lock = VPB_UNBUSIED;
1886         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1887                 m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1888         if ((req & VM_ALLOC_SBUSY) != 0)
1889                 m->busy_lock = VPB_SHARERS_WORD(1);
1890         if (req & VM_ALLOC_WIRED) {
1891                 /*
1892                  * The page lock is not required for wiring a page until that
1893                  * page is inserted into the object.
1894                  */
1895                 vm_wire_add(1);
1896                 m->wire_count = 1;
1897         }
1898         m->act_count = 0;
1899
1900         if (object != NULL) {
1901                 if (vm_page_insert_after(m, object, pindex, mpred)) {
1902                         if (req & VM_ALLOC_WIRED) {
1903                                 vm_wire_sub(1);
1904                                 m->wire_count = 0;
1905                         }
1906                         KASSERT(m->object == NULL, ("page %p has object", m));
1907                         m->oflags = VPO_UNMANAGED;
1908                         m->busy_lock = VPB_UNBUSIED;
1909                         /* Don't change PG_ZERO. */
1910                         vm_page_free_toq(m);
1911                         if (req & VM_ALLOC_WAITFAIL) {
1912                                 VM_OBJECT_WUNLOCK(object);
1913                                 vm_radix_wait();
1914                                 VM_OBJECT_WLOCK(object);
1915                         }
1916                         return (NULL);
1917                 }
1918
1919                 /* Ignore device objects; the pager sets "memattr" for them. */
1920                 if (object->memattr != VM_MEMATTR_DEFAULT &&
1921                     (object->flags & OBJ_FICTITIOUS) == 0)
1922                         pmap_page_set_memattr(m, object->memattr);
1923         } else
1924                 m->pindex = pindex;
1925
1926         return (m);
1927 }
1928
1929 /*
1930  *      vm_page_alloc_contig:
1931  *
1932  *      Allocate a contiguous set of physical pages of the given size "npages"
1933  *      from the free lists.  All of the physical pages must be at or above
1934  *      the given physical address "low" and below the given physical address
1935  *      "high".  The given value "alignment" determines the alignment of the
1936  *      first physical page in the set.  If the given value "boundary" is
1937  *      non-zero, then the set of physical pages cannot cross any physical
1938  *      address boundary that is a multiple of that value.  Both "alignment"
1939  *      and "boundary" must be a power of two.
1940  *
1941  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1942  *      then the memory attribute setting for the physical pages is configured
1943  *      to the object's memory attribute setting.  Otherwise, the memory
1944  *      attribute setting for the physical pages is configured to "memattr",
1945  *      overriding the object's memory attribute setting.  However, if the
1946  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1947  *      memory attribute setting for the physical pages cannot be configured
1948  *      to VM_MEMATTR_DEFAULT.
1949  *
1950  *      The specified object may not contain fictitious pages.
1951  *
1952  *      The caller must always specify an allocation class.
1953  *
1954  *      allocation classes:
1955  *      VM_ALLOC_NORMAL         normal process request
1956  *      VM_ALLOC_SYSTEM         system *really* needs a page
1957  *      VM_ALLOC_INTERRUPT      interrupt time request
1958  *
1959  *      optional allocation flags:
1960  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1961  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1962  *      VM_ALLOC_NOOBJ          page is not associated with an object and
1963  *                              should not be exclusive busy
1964  *      VM_ALLOC_SBUSY          shared busy the allocated page
1965  *      VM_ALLOC_WIRED          wire the allocated page
1966  *      VM_ALLOC_ZERO           prefer a zeroed page
1967  */
1968 vm_page_t
1969 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1970     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1971     vm_paddr_t boundary, vm_memattr_t memattr)
1972 {
1973         struct vm_domainset_iter di;
1974         vm_page_t m;
1975         int domain;
1976
1977         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1978         do {
1979                 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
1980                     npages, low, high, alignment, boundary, memattr);
1981                 if (m != NULL)
1982                         break;
1983         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
1984
1985         return (m);
1986 }
1987
1988 vm_page_t
1989 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1990     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1991     vm_paddr_t boundary, vm_memattr_t memattr)
1992 {
1993         struct vm_domain *vmd;
1994         vm_page_t m, m_ret, mpred;
1995         u_int busy_lock, flags, oflags;
1996
1997         mpred = NULL;   /* XXX: pacify gcc */
1998         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1999             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2000             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2001             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2002             ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2003             req));
2004         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2005             ("Can't sleep and retry object insertion."));
2006         if (object != NULL) {
2007                 VM_OBJECT_ASSERT_WLOCKED(object);
2008                 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2009                     ("vm_page_alloc_contig: object %p has fictitious pages",
2010                     object));
2011         }
2012         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2013
2014         if (object != NULL) {
2015                 mpred = vm_radix_lookup_le(&object->rtree, pindex);
2016                 KASSERT(mpred == NULL || mpred->pindex != pindex,
2017                     ("vm_page_alloc_contig: pindex already allocated"));
2018         }
2019
2020         /*
2021          * Can we allocate the pages without the number of free pages falling
2022          * below the lower bound for the allocation class?
2023          */
2024         m_ret = NULL;
2025 again:
2026 #if VM_NRESERVLEVEL > 0
2027         /*
2028          * Can we allocate the pages from a reservation?
2029          */
2030         if (vm_object_reserv(object) &&
2031             ((m_ret = vm_reserv_extend_contig(req, object, pindex, domain,
2032             npages, low, high, alignment, boundary, mpred)) != NULL ||
2033             (m_ret = vm_reserv_alloc_contig(req, object, pindex, domain,
2034             npages, low, high, alignment, boundary, mpred)) != NULL)) {
2035                 domain = vm_phys_domain(m_ret);
2036                 vmd = VM_DOMAIN(domain);
2037                 goto found;
2038         }
2039 #endif
2040         vmd = VM_DOMAIN(domain);
2041         if (vm_domain_allocate(vmd, req, npages)) {
2042                 /*
2043                  * allocate them from the free page queues.
2044                  */
2045                 vm_domain_free_lock(vmd);
2046                 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2047                     alignment, boundary);
2048                 vm_domain_free_unlock(vmd);
2049                 if (m_ret == NULL) {
2050                         vm_domain_freecnt_inc(vmd, npages);
2051 #if VM_NRESERVLEVEL > 0
2052                         if (vm_reserv_reclaim_contig(domain, npages, low,
2053                             high, alignment, boundary))
2054                                 goto again;
2055 #endif
2056                 }
2057         }
2058         if (m_ret == NULL) {
2059                 if (vm_domain_alloc_fail(vmd, object, req))
2060                         goto again;
2061                 return (NULL);
2062         }
2063 #if VM_NRESERVLEVEL > 0
2064 found:
2065 #endif
2066         for (m = m_ret; m < &m_ret[npages]; m++) {
2067                 vm_page_dequeue(m);
2068                 vm_page_alloc_check(m);
2069         }
2070
2071         /*
2072          * Initialize the pages.  Only the PG_ZERO flag is inherited.
2073          */
2074         flags = 0;
2075         if ((req & VM_ALLOC_ZERO) != 0)
2076                 flags = PG_ZERO;
2077         if ((req & VM_ALLOC_NODUMP) != 0)
2078                 flags |= PG_NODUMP;
2079         oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2080             VPO_UNMANAGED : 0;
2081         busy_lock = VPB_UNBUSIED;
2082         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2083                 busy_lock = VPB_SINGLE_EXCLUSIVER;
2084         if ((req & VM_ALLOC_SBUSY) != 0)
2085                 busy_lock = VPB_SHARERS_WORD(1);
2086         if ((req & VM_ALLOC_WIRED) != 0)
2087                 vm_wire_add(npages);
2088         if (object != NULL) {
2089                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2090                     memattr == VM_MEMATTR_DEFAULT)
2091                         memattr = object->memattr;
2092         }
2093         for (m = m_ret; m < &m_ret[npages]; m++) {
2094                 m->aflags = 0;
2095                 m->flags = (m->flags | PG_NODUMP) & flags;
2096                 m->busy_lock = busy_lock;
2097                 if ((req & VM_ALLOC_WIRED) != 0)
2098                         m->wire_count = 1;
2099                 m->act_count = 0;
2100                 m->oflags = oflags;
2101                 if (object != NULL) {
2102                         if (vm_page_insert_after(m, object, pindex, mpred)) {
2103                                 if ((req & VM_ALLOC_WIRED) != 0)
2104                                         vm_wire_sub(npages);
2105                                 KASSERT(m->object == NULL,
2106                                     ("page %p has object", m));
2107                                 mpred = m;
2108                                 for (m = m_ret; m < &m_ret[npages]; m++) {
2109                                         if (m <= mpred &&
2110                                             (req & VM_ALLOC_WIRED) != 0)
2111                                                 m->wire_count = 0;
2112                                         m->oflags = VPO_UNMANAGED;
2113                                         m->busy_lock = VPB_UNBUSIED;
2114                                         /* Don't change PG_ZERO. */
2115                                         vm_page_free_toq(m);
2116                                 }
2117                                 if (req & VM_ALLOC_WAITFAIL) {
2118                                         VM_OBJECT_WUNLOCK(object);
2119                                         vm_radix_wait();
2120                                         VM_OBJECT_WLOCK(object);
2121                                 }
2122                                 return (NULL);
2123                         }
2124                         mpred = m;
2125                 } else
2126                         m->pindex = pindex;
2127                 if (memattr != VM_MEMATTR_DEFAULT)
2128                         pmap_page_set_memattr(m, memattr);
2129                 pindex++;
2130         }
2131         return (m_ret);
2132 }
2133
2134 /*
2135  * Check a page that has been freshly dequeued from a freelist.
2136  */
2137 static void
2138 vm_page_alloc_check(vm_page_t m)
2139 {
2140
2141         KASSERT(m->object == NULL, ("page %p has object", m));
2142         KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
2143             ("page %p has unexpected queue %d, flags %#x",
2144             m, m->queue, (m->aflags & PGA_QUEUE_STATE_MASK)));
2145         KASSERT(!vm_page_held(m), ("page %p is held", m));
2146         KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2147         KASSERT(m->dirty == 0, ("page %p is dirty", m));
2148         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2149             ("page %p has unexpected memattr %d",
2150             m, pmap_page_get_memattr(m)));
2151         KASSERT(m->valid == 0, ("free page %p is valid", m));
2152 }
2153
2154 /*
2155  *      vm_page_alloc_freelist:
2156  *
2157  *      Allocate a physical page from the specified free page list.
2158  *
2159  *      The caller must always specify an allocation class.
2160  *
2161  *      allocation classes:
2162  *      VM_ALLOC_NORMAL         normal process request
2163  *      VM_ALLOC_SYSTEM         system *really* needs a page
2164  *      VM_ALLOC_INTERRUPT      interrupt time request
2165  *
2166  *      optional allocation flags:
2167  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
2168  *                              intends to allocate
2169  *      VM_ALLOC_WIRED          wire the allocated page
2170  *      VM_ALLOC_ZERO           prefer a zeroed page
2171  */
2172 vm_page_t
2173 vm_page_alloc_freelist(int freelist, int req)
2174 {
2175         struct vm_domainset_iter di;
2176         vm_page_t m;
2177         int domain;
2178
2179         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2180         do {
2181                 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2182                 if (m != NULL)
2183                         break;
2184         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2185
2186         return (m);
2187 }
2188
2189 vm_page_t
2190 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2191 {
2192         struct vm_domain *vmd;
2193         vm_page_t m;
2194         u_int flags;
2195
2196         m = NULL;
2197         vmd = VM_DOMAIN(domain);
2198 again:
2199         if (vm_domain_allocate(vmd, req, 1)) {
2200                 vm_domain_free_lock(vmd);
2201                 m = vm_phys_alloc_freelist_pages(domain, freelist,
2202                     VM_FREEPOOL_DIRECT, 0);
2203                 vm_domain_free_unlock(vmd);
2204                 if (m == NULL)
2205                         vm_domain_freecnt_inc(vmd, 1);
2206         }
2207         if (m == NULL) {
2208                 if (vm_domain_alloc_fail(vmd, NULL, req))
2209                         goto again;
2210                 return (NULL);
2211         }
2212         vm_page_dequeue(m);
2213         vm_page_alloc_check(m);
2214
2215         /*
2216          * Initialize the page.  Only the PG_ZERO flag is inherited.
2217          */
2218         m->aflags = 0;
2219         flags = 0;
2220         if ((req & VM_ALLOC_ZERO) != 0)
2221                 flags = PG_ZERO;
2222         m->flags &= flags;
2223         if ((req & VM_ALLOC_WIRED) != 0) {
2224                 /*
2225                  * The page lock is not required for wiring a page that does
2226                  * not belong to an object.
2227                  */
2228                 vm_wire_add(1);
2229                 m->wire_count = 1;
2230         }
2231         /* Unmanaged pages don't use "act_count". */
2232         m->oflags = VPO_UNMANAGED;
2233         return (m);
2234 }
2235
2236 static int
2237 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2238 {
2239         struct vm_domain *vmd;
2240         struct vm_pgcache *pgcache;
2241         int i;
2242
2243         pgcache = arg;
2244         vmd = VM_DOMAIN(pgcache->domain);
2245         /* Only import if we can bring in a full bucket. */
2246         if (cnt == 1 || !vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2247                 return (0);
2248         domain = vmd->vmd_domain;
2249         vm_domain_free_lock(vmd);
2250         i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2251             (vm_page_t *)store);
2252         vm_domain_free_unlock(vmd);
2253         if (cnt != i)
2254                 vm_domain_freecnt_inc(vmd, cnt - i);
2255
2256         return (i);
2257 }
2258
2259 static void
2260 vm_page_zone_release(void *arg, void **store, int cnt)
2261 {
2262         struct vm_domain *vmd;
2263         struct vm_pgcache *pgcache;
2264         vm_page_t m;
2265         int i;
2266
2267         pgcache = arg;
2268         vmd = VM_DOMAIN(pgcache->domain);
2269         vm_domain_free_lock(vmd);
2270         for (i = 0; i < cnt; i++) {
2271                 m = (vm_page_t)store[i];
2272                 vm_phys_free_pages(m, 0);
2273         }
2274         vm_domain_free_unlock(vmd);
2275         vm_domain_freecnt_inc(vmd, cnt);
2276 }
2277
2278 #define VPSC_ANY        0       /* No restrictions. */
2279 #define VPSC_NORESERV   1       /* Skip reservations; implies VPSC_NOSUPER. */
2280 #define VPSC_NOSUPER    2       /* Skip superpages. */
2281
2282 /*
2283  *      vm_page_scan_contig:
2284  *
2285  *      Scan vm_page_array[] between the specified entries "m_start" and
2286  *      "m_end" for a run of contiguous physical pages that satisfy the
2287  *      specified conditions, and return the lowest page in the run.  The
2288  *      specified "alignment" determines the alignment of the lowest physical
2289  *      page in the run.  If the specified "boundary" is non-zero, then the
2290  *      run of physical pages cannot span a physical address that is a
2291  *      multiple of "boundary".
2292  *
2293  *      "m_end" is never dereferenced, so it need not point to a vm_page
2294  *      structure within vm_page_array[].
2295  *
2296  *      "npages" must be greater than zero.  "m_start" and "m_end" must not
2297  *      span a hole (or discontiguity) in the physical address space.  Both
2298  *      "alignment" and "boundary" must be a power of two.
2299  */
2300 vm_page_t
2301 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2302     u_long alignment, vm_paddr_t boundary, int options)
2303 {
2304         struct mtx *m_mtx;
2305         vm_object_t object;
2306         vm_paddr_t pa;
2307         vm_page_t m, m_run;
2308 #if VM_NRESERVLEVEL > 0
2309         int level;
2310 #endif
2311         int m_inc, order, run_ext, run_len;
2312
2313         KASSERT(npages > 0, ("npages is 0"));
2314         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2315         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2316         m_run = NULL;
2317         run_len = 0;
2318         m_mtx = NULL;
2319         for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2320                 KASSERT((m->flags & PG_MARKER) == 0,
2321                     ("page %p is PG_MARKER", m));
2322                 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1,
2323                     ("fictitious page %p has invalid wire count", m));
2324
2325                 /*
2326                  * If the current page would be the start of a run, check its
2327                  * physical address against the end, alignment, and boundary
2328                  * conditions.  If it doesn't satisfy these conditions, either
2329                  * terminate the scan or advance to the next page that
2330                  * satisfies the failed condition.
2331                  */
2332                 if (run_len == 0) {
2333                         KASSERT(m_run == NULL, ("m_run != NULL"));
2334                         if (m + npages > m_end)
2335                                 break;
2336                         pa = VM_PAGE_TO_PHYS(m);
2337                         if ((pa & (alignment - 1)) != 0) {
2338                                 m_inc = atop(roundup2(pa, alignment) - pa);
2339                                 continue;
2340                         }
2341                         if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2342                             boundary) != 0) {
2343                                 m_inc = atop(roundup2(pa, boundary) - pa);
2344                                 continue;
2345                         }
2346                 } else
2347                         KASSERT(m_run != NULL, ("m_run == NULL"));
2348
2349                 vm_page_change_lock(m, &m_mtx);
2350                 m_inc = 1;
2351 retry:
2352                 if (vm_page_held(m))
2353                         run_ext = 0;
2354 #if VM_NRESERVLEVEL > 0
2355                 else if ((level = vm_reserv_level(m)) >= 0 &&
2356                     (options & VPSC_NORESERV) != 0) {
2357                         run_ext = 0;
2358                         /* Advance to the end of the reservation. */
2359                         pa = VM_PAGE_TO_PHYS(m);
2360                         m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2361                             pa);
2362                 }
2363 #endif
2364                 else if ((object = m->object) != NULL) {
2365                         /*
2366                          * The page is considered eligible for relocation if
2367                          * and only if it could be laundered or reclaimed by
2368                          * the page daemon.
2369                          */
2370                         if (!VM_OBJECT_TRYRLOCK(object)) {
2371                                 mtx_unlock(m_mtx);
2372                                 VM_OBJECT_RLOCK(object);
2373                                 mtx_lock(m_mtx);
2374                                 if (m->object != object) {
2375                                         /*
2376                                          * The page may have been freed.
2377                                          */
2378                                         VM_OBJECT_RUNLOCK(object);
2379                                         goto retry;
2380                                 } else if (vm_page_held(m)) {
2381                                         run_ext = 0;
2382                                         goto unlock;
2383                                 }
2384                         }
2385                         KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2386                             ("page %p is PG_UNHOLDFREE", m));
2387                         /* Don't care: PG_NODUMP, PG_ZERO. */
2388                         if (object->type != OBJT_DEFAULT &&
2389                             object->type != OBJT_SWAP &&
2390                             object->type != OBJT_VNODE) {
2391                                 run_ext = 0;
2392 #if VM_NRESERVLEVEL > 0
2393                         } else if ((options & VPSC_NOSUPER) != 0 &&
2394                             (level = vm_reserv_level_iffullpop(m)) >= 0) {
2395                                 run_ext = 0;
2396                                 /* Advance to the end of the superpage. */
2397                                 pa = VM_PAGE_TO_PHYS(m);
2398                                 m_inc = atop(roundup2(pa + 1,
2399                                     vm_reserv_size(level)) - pa);
2400 #endif
2401                         } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2402                             vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2403                                 /*
2404                                  * The page is allocated but eligible for
2405                                  * relocation.  Extend the current run by one
2406                                  * page.
2407                                  */
2408                                 KASSERT(pmap_page_get_memattr(m) ==
2409                                     VM_MEMATTR_DEFAULT,
2410                                     ("page %p has an unexpected memattr", m));
2411                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2412                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2413                                     ("page %p has unexpected oflags", m));
2414                                 /* Don't care: VPO_NOSYNC. */
2415                                 run_ext = 1;
2416                         } else
2417                                 run_ext = 0;
2418 unlock:
2419                         VM_OBJECT_RUNLOCK(object);
2420 #if VM_NRESERVLEVEL > 0
2421                 } else if (level >= 0) {
2422                         /*
2423                          * The page is reserved but not yet allocated.  In
2424                          * other words, it is still free.  Extend the current
2425                          * run by one page.
2426                          */
2427                         run_ext = 1;
2428 #endif
2429                 } else if ((order = m->order) < VM_NFREEORDER) {
2430                         /*
2431                          * The page is enqueued in the physical memory
2432                          * allocator's free page queues.  Moreover, it is the
2433                          * first page in a power-of-two-sized run of
2434                          * contiguous free pages.  Add these pages to the end
2435                          * of the current run, and jump ahead.
2436                          */
2437                         run_ext = 1 << order;
2438                         m_inc = 1 << order;
2439                 } else {
2440                         /*
2441                          * Skip the page for one of the following reasons: (1)
2442                          * It is enqueued in the physical memory allocator's
2443                          * free page queues.  However, it is not the first
2444                          * page in a run of contiguous free pages.  (This case
2445                          * rarely occurs because the scan is performed in
2446                          * ascending order.) (2) It is not reserved, and it is
2447                          * transitioning from free to allocated.  (Conversely,
2448                          * the transition from allocated to free for managed
2449                          * pages is blocked by the page lock.) (3) It is
2450                          * allocated but not contained by an object and not
2451                          * wired, e.g., allocated by Xen's balloon driver.
2452                          */
2453                         run_ext = 0;
2454                 }
2455
2456                 /*
2457                  * Extend or reset the current run of pages.
2458                  */
2459                 if (run_ext > 0) {
2460                         if (run_len == 0)
2461                                 m_run = m;
2462                         run_len += run_ext;
2463                 } else {
2464                         if (run_len > 0) {
2465                                 m_run = NULL;
2466                                 run_len = 0;
2467                         }
2468                 }
2469         }
2470         if (m_mtx != NULL)
2471                 mtx_unlock(m_mtx);
2472         if (run_len >= npages)
2473                 return (m_run);
2474         return (NULL);
2475 }
2476
2477 /*
2478  *      vm_page_reclaim_run:
2479  *
2480  *      Try to relocate each of the allocated virtual pages within the
2481  *      specified run of physical pages to a new physical address.  Free the
2482  *      physical pages underlying the relocated virtual pages.  A virtual page
2483  *      is relocatable if and only if it could be laundered or reclaimed by
2484  *      the page daemon.  Whenever possible, a virtual page is relocated to a
2485  *      physical address above "high".
2486  *
2487  *      Returns 0 if every physical page within the run was already free or
2488  *      just freed by a successful relocation.  Otherwise, returns a non-zero
2489  *      value indicating why the last attempt to relocate a virtual page was
2490  *      unsuccessful.
2491  *
2492  *      "req_class" must be an allocation class.
2493  */
2494 static int
2495 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2496     vm_paddr_t high)
2497 {
2498         struct vm_domain *vmd;
2499         struct mtx *m_mtx;
2500         struct spglist free;
2501         vm_object_t object;
2502         vm_paddr_t pa;
2503         vm_page_t m, m_end, m_new;
2504         int error, order, req;
2505
2506         KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2507             ("req_class is not an allocation class"));
2508         SLIST_INIT(&free);
2509         error = 0;
2510         m = m_run;
2511         m_end = m_run + npages;
2512         m_mtx = NULL;
2513         for (; error == 0 && m < m_end; m++) {
2514                 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2515                     ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2516
2517                 /*
2518                  * Avoid releasing and reacquiring the same page lock.
2519                  */
2520                 vm_page_change_lock(m, &m_mtx);
2521 retry:
2522                 if (vm_page_held(m))
2523                         error = EBUSY;
2524                 else if ((object = m->object) != NULL) {
2525                         /*
2526                          * The page is relocated if and only if it could be
2527                          * laundered or reclaimed by the page daemon.
2528                          */
2529                         if (!VM_OBJECT_TRYWLOCK(object)) {
2530                                 mtx_unlock(m_mtx);
2531                                 VM_OBJECT_WLOCK(object);
2532                                 mtx_lock(m_mtx);
2533                                 if (m->object != object) {
2534                                         /*
2535                                          * The page may have been freed.
2536                                          */
2537                                         VM_OBJECT_WUNLOCK(object);
2538                                         goto retry;
2539                                 } else if (vm_page_held(m)) {
2540                                         error = EBUSY;
2541                                         goto unlock;
2542                                 }
2543                         }
2544                         KASSERT((m->flags & PG_UNHOLDFREE) == 0,
2545                             ("page %p is PG_UNHOLDFREE", m));
2546                         /* Don't care: PG_NODUMP, PG_ZERO. */
2547                         if (object->type != OBJT_DEFAULT &&
2548                             object->type != OBJT_SWAP &&
2549                             object->type != OBJT_VNODE)
2550                                 error = EINVAL;
2551                         else if (object->memattr != VM_MEMATTR_DEFAULT)
2552                                 error = EINVAL;
2553                         else if (vm_page_queue(m) != PQ_NONE &&
2554                             !vm_page_busied(m)) {
2555                                 KASSERT(pmap_page_get_memattr(m) ==
2556                                     VM_MEMATTR_DEFAULT,
2557                                     ("page %p has an unexpected memattr", m));
2558                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2559                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2560                                     ("page %p has unexpected oflags", m));
2561                                 /* Don't care: VPO_NOSYNC. */
2562                                 if (m->valid != 0) {
2563                                         /*
2564                                          * First, try to allocate a new page
2565                                          * that is above "high".  Failing
2566                                          * that, try to allocate a new page
2567                                          * that is below "m_run".  Allocate
2568                                          * the new page between the end of
2569                                          * "m_run" and "high" only as a last
2570                                          * resort.
2571                                          */
2572                                         req = req_class | VM_ALLOC_NOOBJ;
2573                                         if ((m->flags & PG_NODUMP) != 0)
2574                                                 req |= VM_ALLOC_NODUMP;
2575                                         if (trunc_page(high) !=
2576                                             ~(vm_paddr_t)PAGE_MASK) {
2577                                                 m_new = vm_page_alloc_contig(
2578                                                     NULL, 0, req, 1,
2579                                                     round_page(high),
2580                                                     ~(vm_paddr_t)0,
2581                                                     PAGE_SIZE, 0,
2582                                                     VM_MEMATTR_DEFAULT);
2583                                         } else
2584                                                 m_new = NULL;
2585                                         if (m_new == NULL) {
2586                                                 pa = VM_PAGE_TO_PHYS(m_run);
2587                                                 m_new = vm_page_alloc_contig(
2588                                                     NULL, 0, req, 1,
2589                                                     0, pa - 1, PAGE_SIZE, 0,
2590                                                     VM_MEMATTR_DEFAULT);
2591                                         }
2592                                         if (m_new == NULL) {
2593                                                 pa += ptoa(npages);
2594                                                 m_new = vm_page_alloc_contig(
2595                                                     NULL, 0, req, 1,
2596                                                     pa, high, PAGE_SIZE, 0,
2597                                                     VM_MEMATTR_DEFAULT);
2598                                         }
2599                                         if (m_new == NULL) {
2600                                                 error = ENOMEM;
2601                                                 goto unlock;
2602                                         }
2603                                         KASSERT(!vm_page_wired(m_new),
2604                                             ("page %p is wired", m_new));
2605
2606                                         /*
2607                                          * Replace "m" with the new page.  For
2608                                          * vm_page_replace(), "m" must be busy
2609                                          * and dequeued.  Finally, change "m"
2610                                          * as if vm_page_free() was called.
2611                                          */
2612                                         if (object->ref_count != 0)
2613                                                 pmap_remove_all(m);
2614                                         m_new->aflags = m->aflags &
2615                                             ~PGA_QUEUE_STATE_MASK;
2616                                         KASSERT(m_new->oflags == VPO_UNMANAGED,
2617                                             ("page %p is managed", m_new));
2618                                         m_new->oflags = m->oflags & VPO_NOSYNC;
2619                                         pmap_copy_page(m, m_new);
2620                                         m_new->valid = m->valid;
2621                                         m_new->dirty = m->dirty;
2622                                         m->flags &= ~PG_ZERO;
2623                                         vm_page_xbusy(m);
2624                                         vm_page_dequeue(m);
2625                                         vm_page_replace_checked(m_new, object,
2626                                             m->pindex, m);
2627                                         if (vm_page_free_prep(m))
2628                                                 SLIST_INSERT_HEAD(&free, m,
2629                                                     plinks.s.ss);
2630
2631                                         /*
2632                                          * The new page must be deactivated
2633                                          * before the object is unlocked.
2634                                          */
2635                                         vm_page_change_lock(m_new, &m_mtx);
2636                                         vm_page_deactivate(m_new);
2637                                 } else {
2638                                         m->flags &= ~PG_ZERO;
2639                                         vm_page_dequeue(m);
2640                                         if (vm_page_free_prep(m))
2641                                                 SLIST_INSERT_HEAD(&free, m,
2642                                                     plinks.s.ss);
2643                                         KASSERT(m->dirty == 0,
2644                                             ("page %p is dirty", m));
2645                                 }
2646                         } else
2647                                 error = EBUSY;
2648 unlock:
2649                         VM_OBJECT_WUNLOCK(object);
2650                 } else {
2651                         MPASS(vm_phys_domain(m) == domain);
2652                         vmd = VM_DOMAIN(domain);
2653                         vm_domain_free_lock(vmd);
2654                         order = m->order;
2655                         if (order < VM_NFREEORDER) {
2656                                 /*
2657                                  * The page is enqueued in the physical memory
2658                                  * allocator's free page queues.  Moreover, it
2659                                  * is the first page in a power-of-two-sized
2660                                  * run of contiguous free pages.  Jump ahead
2661                                  * to the last page within that run, and
2662                                  * continue from there.
2663                                  */
2664                                 m += (1 << order) - 1;
2665                         }
2666 #if VM_NRESERVLEVEL > 0
2667                         else if (vm_reserv_is_page_free(m))
2668                                 order = 0;
2669 #endif
2670                         vm_domain_free_unlock(vmd);
2671                         if (order == VM_NFREEORDER)
2672                                 error = EINVAL;
2673                 }
2674         }
2675         if (m_mtx != NULL)
2676                 mtx_unlock(m_mtx);
2677         if ((m = SLIST_FIRST(&free)) != NULL) {
2678                 int cnt;
2679
2680                 vmd = VM_DOMAIN(domain);
2681                 cnt = 0;
2682                 vm_domain_free_lock(vmd);
2683                 do {
2684                         MPASS(vm_phys_domain(m) == domain);
2685                         SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2686                         vm_phys_free_pages(m, 0);
2687                         cnt++;
2688                 } while ((m = SLIST_FIRST(&free)) != NULL);
2689                 vm_domain_free_unlock(vmd);
2690                 vm_domain_freecnt_inc(vmd, cnt);
2691         }
2692         return (error);
2693 }
2694
2695 #define NRUNS   16
2696
2697 CTASSERT(powerof2(NRUNS));
2698
2699 #define RUN_INDEX(count)        ((count) & (NRUNS - 1))
2700
2701 #define MIN_RECLAIM     8
2702
2703 /*
2704  *      vm_page_reclaim_contig:
2705  *
2706  *      Reclaim allocated, contiguous physical memory satisfying the specified
2707  *      conditions by relocating the virtual pages using that physical memory.
2708  *      Returns true if reclamation is successful and false otherwise.  Since
2709  *      relocation requires the allocation of physical pages, reclamation may
2710  *      fail due to a shortage of free pages.  When reclamation fails, callers
2711  *      are expected to perform vm_wait() before retrying a failed allocation
2712  *      operation, e.g., vm_page_alloc_contig().
2713  *
2714  *      The caller must always specify an allocation class through "req".
2715  *
2716  *      allocation classes:
2717  *      VM_ALLOC_NORMAL         normal process request
2718  *      VM_ALLOC_SYSTEM         system *really* needs a page
2719  *      VM_ALLOC_INTERRUPT      interrupt time request
2720  *
2721  *      The optional allocation flags are ignored.
2722  *
2723  *      "npages" must be greater than zero.  Both "alignment" and "boundary"
2724  *      must be a power of two.
2725  */
2726 bool
2727 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2728     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2729 {
2730         struct vm_domain *vmd;
2731         vm_paddr_t curr_low;
2732         vm_page_t m_run, m_runs[NRUNS];
2733         u_long count, reclaimed;
2734         int error, i, options, req_class;
2735
2736         KASSERT(npages > 0, ("npages is 0"));
2737         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2738         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2739         req_class = req & VM_ALLOC_CLASS_MASK;
2740
2741         /*
2742          * The page daemon is allowed to dig deeper into the free page list.
2743          */
2744         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2745                 req_class = VM_ALLOC_SYSTEM;
2746
2747         /*
2748          * Return if the number of free pages cannot satisfy the requested
2749          * allocation.
2750          */
2751         vmd = VM_DOMAIN(domain);
2752         count = vmd->vmd_free_count;
2753         if (count < npages + vmd->vmd_free_reserved || (count < npages +
2754             vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2755             (count < npages && req_class == VM_ALLOC_INTERRUPT))
2756                 return (false);
2757
2758         /*
2759          * Scan up to three times, relaxing the restrictions ("options") on
2760          * the reclamation of reservations and superpages each time.
2761          */
2762         for (options = VPSC_NORESERV;;) {
2763                 /*
2764                  * Find the highest runs that satisfy the given constraints
2765                  * and restrictions, and record them in "m_runs".
2766                  */
2767                 curr_low = low;
2768                 count = 0;
2769                 for (;;) {
2770                         m_run = vm_phys_scan_contig(domain, npages, curr_low,
2771                             high, alignment, boundary, options);
2772                         if (m_run == NULL)
2773                                 break;
2774                         curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2775                         m_runs[RUN_INDEX(count)] = m_run;
2776                         count++;
2777                 }
2778
2779                 /*
2780                  * Reclaim the highest runs in LIFO (descending) order until
2781                  * the number of reclaimed pages, "reclaimed", is at least
2782                  * MIN_RECLAIM.  Reset "reclaimed" each time because each
2783                  * reclamation is idempotent, and runs will (likely) recur
2784                  * from one scan to the next as restrictions are relaxed.
2785                  */
2786                 reclaimed = 0;
2787                 for (i = 0; count > 0 && i < NRUNS; i++) {
2788                         count--;
2789                         m_run = m_runs[RUN_INDEX(count)];
2790                         error = vm_page_reclaim_run(req_class, domain, npages,
2791                             m_run, high);
2792                         if (error == 0) {
2793                                 reclaimed += npages;
2794                                 if (reclaimed >= MIN_RECLAIM)
2795                                         return (true);
2796                         }
2797                 }
2798
2799                 /*
2800                  * Either relax the restrictions on the next scan or return if
2801                  * the last scan had no restrictions.
2802                  */
2803                 if (options == VPSC_NORESERV)
2804                         options = VPSC_NOSUPER;
2805                 else if (options == VPSC_NOSUPER)
2806                         options = VPSC_ANY;
2807                 else if (options == VPSC_ANY)
2808                         return (reclaimed != 0);
2809         }
2810 }
2811
2812 bool
2813 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2814     u_long alignment, vm_paddr_t boundary)
2815 {
2816         struct vm_domainset_iter di;
2817         int domain;
2818         bool ret;
2819
2820         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2821         do {
2822                 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2823                     high, alignment, boundary);
2824                 if (ret)
2825                         break;
2826         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2827
2828         return (ret);
2829 }
2830
2831 /*
2832  * Set the domain in the appropriate page level domainset.
2833  */
2834 void
2835 vm_domain_set(struct vm_domain *vmd)
2836 {
2837
2838         mtx_lock(&vm_domainset_lock);
2839         if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2840                 vmd->vmd_minset = 1;
2841                 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2842         }
2843         if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2844                 vmd->vmd_severeset = 1;
2845                 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
2846         }
2847         mtx_unlock(&vm_domainset_lock);
2848 }
2849
2850 /*
2851  * Clear the domain from the appropriate page level domainset.
2852  */
2853 void
2854 vm_domain_clear(struct vm_domain *vmd)
2855 {
2856
2857         mtx_lock(&vm_domainset_lock);
2858         if (vmd->vmd_minset && !vm_paging_min(vmd)) {
2859                 vmd->vmd_minset = 0;
2860                 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
2861                 if (vm_min_waiters != 0) {
2862                         vm_min_waiters = 0;
2863                         wakeup(&vm_min_domains);
2864                 }
2865         }
2866         if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
2867                 vmd->vmd_severeset = 0;
2868                 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
2869                 if (vm_severe_waiters != 0) {
2870                         vm_severe_waiters = 0;
2871                         wakeup(&vm_severe_domains);
2872                 }
2873         }
2874
2875         /*
2876          * If pageout daemon needs pages, then tell it that there are
2877          * some free.
2878          */
2879         if (vmd->vmd_pageout_pages_needed &&
2880             vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
2881                 wakeup(&vmd->vmd_pageout_pages_needed);
2882                 vmd->vmd_pageout_pages_needed = 0;
2883         }
2884
2885         /* See comments in vm_wait_doms(). */
2886         if (vm_pageproc_waiters) {
2887                 vm_pageproc_waiters = 0;
2888                 wakeup(&vm_pageproc_waiters);
2889         }
2890         mtx_unlock(&vm_domainset_lock);
2891 }
2892
2893 /*
2894  * Wait for free pages to exceed the min threshold globally.
2895  */
2896 void
2897 vm_wait_min(void)
2898 {
2899
2900         mtx_lock(&vm_domainset_lock);
2901         while (vm_page_count_min()) {
2902                 vm_min_waiters++;
2903                 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
2904         }
2905         mtx_unlock(&vm_domainset_lock);
2906 }
2907
2908 /*
2909  * Wait for free pages to exceed the severe threshold globally.
2910  */
2911 void
2912 vm_wait_severe(void)
2913 {
2914
2915         mtx_lock(&vm_domainset_lock);
2916         while (vm_page_count_severe()) {
2917                 vm_severe_waiters++;
2918                 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
2919                     "vmwait", 0);
2920         }
2921         mtx_unlock(&vm_domainset_lock);
2922 }
2923
2924 u_int
2925 vm_wait_count(void)
2926 {
2927
2928         return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
2929 }
2930
2931 void
2932 vm_wait_doms(const domainset_t *wdoms)
2933 {
2934
2935         /*
2936          * We use racey wakeup synchronization to avoid expensive global
2937          * locking for the pageproc when sleeping with a non-specific vm_wait.
2938          * To handle this, we only sleep for one tick in this instance.  It
2939          * is expected that most allocations for the pageproc will come from
2940          * kmem or vm_page_grab* which will use the more specific and
2941          * race-free vm_wait_domain().
2942          */
2943         if (curproc == pageproc) {
2944                 mtx_lock(&vm_domainset_lock);
2945                 vm_pageproc_waiters++;
2946                 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
2947                     "pageprocwait", 1);
2948         } else {
2949                 /*
2950                  * XXX Ideally we would wait only until the allocation could
2951                  * be satisfied.  This condition can cause new allocators to
2952                  * consume all freed pages while old allocators wait.
2953                  */
2954                 mtx_lock(&vm_domainset_lock);
2955                 if (vm_page_count_min_set(wdoms)) {
2956                         vm_min_waiters++;
2957                         msleep(&vm_min_domains, &vm_domainset_lock,
2958                             PVM | PDROP, "vmwait", 0);
2959                 } else
2960                         mtx_unlock(&vm_domainset_lock);
2961         }
2962 }
2963
2964 /*
2965  *      vm_wait_domain:
2966  *
2967  *      Sleep until free pages are available for allocation.
2968  *      - Called in various places after failed memory allocations.
2969  */
2970 void
2971 vm_wait_domain(int domain)
2972 {
2973         struct vm_domain *vmd;
2974         domainset_t wdom;
2975
2976         vmd = VM_DOMAIN(domain);
2977         vm_domain_free_assert_unlocked(vmd);
2978
2979         if (curproc == pageproc) {
2980                 mtx_lock(&vm_domainset_lock);
2981                 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
2982                         vmd->vmd_pageout_pages_needed = 1;
2983                         msleep(&vmd->vmd_pageout_pages_needed,
2984                             &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
2985                 } else
2986                         mtx_unlock(&vm_domainset_lock);
2987         } else {
2988                 if (pageproc == NULL)
2989                         panic("vm_wait in early boot");
2990                 DOMAINSET_ZERO(&wdom);
2991                 DOMAINSET_SET(vmd->vmd_domain, &wdom);
2992                 vm_wait_doms(&wdom);
2993         }
2994 }
2995
2996 /*
2997  *      vm_wait:
2998  *
2999  *      Sleep until free pages are available for allocation in the
3000  *      affinity domains of the obj.  If obj is NULL, the domain set
3001  *      for the calling thread is used.
3002  *      Called in various places after failed memory allocations.
3003  */
3004 void
3005 vm_wait(vm_object_t obj)
3006 {
3007         struct domainset *d;
3008
3009         d = NULL;
3010
3011         /*
3012          * Carefully fetch pointers only once: the struct domainset
3013          * itself is ummutable but the pointer might change.
3014          */
3015         if (obj != NULL)
3016                 d = obj->domain.dr_policy;
3017         if (d == NULL)
3018                 d = curthread->td_domain.dr_policy;
3019
3020         vm_wait_doms(&d->ds_mask);
3021 }
3022
3023 /*
3024  *      vm_domain_alloc_fail:
3025  *
3026  *      Called when a page allocation function fails.  Informs the
3027  *      pagedaemon and performs the requested wait.  Requires the
3028  *      domain_free and object lock on entry.  Returns with the
3029  *      object lock held and free lock released.  Returns an error when
3030  *      retry is necessary.
3031  *
3032  */
3033 static int
3034 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3035 {
3036
3037         vm_domain_free_assert_unlocked(vmd);
3038
3039         atomic_add_int(&vmd->vmd_pageout_deficit,
3040             max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3041         if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3042                 if (object != NULL) 
3043                         VM_OBJECT_WUNLOCK(object);
3044                 vm_wait_domain(vmd->vmd_domain);
3045                 if (object != NULL) 
3046                         VM_OBJECT_WLOCK(object);
3047                 if (req & VM_ALLOC_WAITOK)
3048                         return (EAGAIN);
3049         }
3050
3051         return (0);
3052 }
3053
3054 /*
3055  *      vm_waitpfault:
3056  *
3057  *      Sleep until free pages are available for allocation.
3058  *      - Called only in vm_fault so that processes page faulting
3059  *        can be easily tracked.
3060  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3061  *        processes will be able to grab memory first.  Do not change
3062  *        this balance without careful testing first.
3063  */
3064 void
3065 vm_waitpfault(struct domainset *dset, int timo)
3066 {
3067
3068         /*
3069          * XXX Ideally we would wait only until the allocation could
3070          * be satisfied.  This condition can cause new allocators to
3071          * consume all freed pages while old allocators wait.
3072          */
3073         mtx_lock(&vm_domainset_lock);
3074         if (vm_page_count_min_set(&dset->ds_mask)) {
3075                 vm_min_waiters++;
3076                 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3077                     "pfault", timo);
3078         } else
3079                 mtx_unlock(&vm_domainset_lock);
3080 }
3081
3082 static struct vm_pagequeue *
3083 vm_page_pagequeue(vm_page_t m)
3084 {
3085
3086         uint8_t queue;
3087
3088         if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3089                 return (NULL);
3090         return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3091 }
3092
3093 static inline void
3094 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m)
3095 {
3096         struct vm_domain *vmd;
3097         uint8_t qflags;
3098
3099         CRITICAL_ASSERT(curthread);
3100         vm_pagequeue_assert_locked(pq);
3101
3102         /*
3103          * The page daemon is allowed to set m->queue = PQ_NONE without
3104          * the page queue lock held.  In this case it is about to free the page,
3105          * which must not have any queue state.
3106          */
3107         qflags = atomic_load_8(&m->aflags);
3108         KASSERT(pq == vm_page_pagequeue(m) ||
3109             (qflags & PGA_QUEUE_STATE_MASK) == 0,
3110             ("page %p doesn't belong to queue %p but has aflags %#x",
3111             m, pq, qflags));
3112
3113         if ((qflags & PGA_DEQUEUE) != 0) {
3114                 if (__predict_true((qflags & PGA_ENQUEUED) != 0))
3115                         vm_pagequeue_remove(pq, m);
3116                 vm_page_dequeue_complete(m);
3117         } else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) {
3118                 if ((qflags & PGA_ENQUEUED) != 0)
3119                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3120                 else {
3121                         vm_pagequeue_cnt_inc(pq);
3122                         vm_page_aflag_set(m, PGA_ENQUEUED);
3123                 }
3124
3125                 /*
3126                  * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.
3127                  * In particular, if both flags are set in close succession,
3128                  * only PGA_REQUEUE_HEAD will be applied, even if it was set
3129                  * first.
3130                  */
3131                 if ((qflags & PGA_REQUEUE_HEAD) != 0) {
3132                         KASSERT(m->queue == PQ_INACTIVE,
3133                             ("head enqueue not supported for page %p", m));
3134                         vmd = vm_pagequeue_domain(m);
3135                         TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3136                 } else
3137                         TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3138
3139                 vm_page_aflag_clear(m, qflags & (PGA_REQUEUE |
3140                     PGA_REQUEUE_HEAD));
3141         }
3142 }
3143
3144 static void
3145 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3146     uint8_t queue)
3147 {
3148         vm_page_t m;
3149         int i;
3150
3151         for (i = 0; i < bq->bq_cnt; i++) {
3152                 m = bq->bq_pa[i];
3153                 if (__predict_false(m->queue != queue))
3154                         continue;
3155                 vm_pqbatch_process_page(pq, m);
3156         }
3157         vm_batchqueue_init(bq);
3158 }
3159
3160 static void
3161 vm_pqbatch_submit_page(vm_page_t m, uint8_t queue)
3162 {
3163         struct vm_batchqueue *bq;
3164         struct vm_pagequeue *pq;
3165         int domain;
3166
3167         vm_page_assert_locked(m);
3168         KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3169
3170         domain = vm_phys_domain(m);
3171         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3172
3173         critical_enter();
3174         bq = DPCPU_PTR(pqbatch[domain][queue]);
3175         if (vm_batchqueue_insert(bq, m)) {
3176                 critical_exit();
3177                 return;
3178         }
3179         if (!vm_pagequeue_trylock(pq)) {
3180                 critical_exit();
3181                 vm_pagequeue_lock(pq);
3182                 critical_enter();
3183                 bq = DPCPU_PTR(pqbatch[domain][queue]);
3184         }
3185         vm_pqbatch_process(pq, bq, queue);
3186
3187         /*
3188          * The page may have been logically dequeued before we acquired the
3189          * page queue lock.  In this case, the page lock prevents the page
3190          * from being logically enqueued elsewhere.
3191          */
3192         if (__predict_true(m->queue == queue))
3193                 vm_pqbatch_process_page(pq, m);
3194         else {
3195                 KASSERT(m->queue == PQ_NONE,
3196                     ("invalid queue transition for page %p", m));
3197                 KASSERT((m->aflags & PGA_ENQUEUED) == 0,
3198                     ("page %p is enqueued with invalid queue index", m));
3199                 vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK);
3200         }
3201         vm_pagequeue_unlock(pq);
3202         critical_exit();
3203 }
3204
3205 /*
3206  *      vm_page_drain_pqbatch:          [ internal use only ]
3207  *
3208  *      Force all per-CPU page queue batch queues to be drained.  This is
3209  *      intended for use in severe memory shortages, to ensure that pages
3210  *      do not remain stuck in the batch queues.
3211  */
3212 void
3213 vm_page_drain_pqbatch(void)
3214 {
3215         struct thread *td;
3216         struct vm_domain *vmd;
3217         struct vm_pagequeue *pq;
3218         int cpu, domain, queue;
3219
3220         td = curthread;
3221         CPU_FOREACH(cpu) {
3222                 thread_lock(td);
3223                 sched_bind(td, cpu);
3224                 thread_unlock(td);
3225
3226                 for (domain = 0; domain < vm_ndomains; domain++) {
3227                         vmd = VM_DOMAIN(domain);
3228                         for (queue = 0; queue < PQ_COUNT; queue++) {
3229                                 pq = &vmd->vmd_pagequeues[queue];
3230                                 vm_pagequeue_lock(pq);
3231                                 critical_enter();
3232                                 vm_pqbatch_process(pq,
3233                                     DPCPU_PTR(pqbatch[domain][queue]), queue);
3234                                 critical_exit();
3235                                 vm_pagequeue_unlock(pq);
3236                         }
3237                 }
3238         }
3239         thread_lock(td);
3240         sched_unbind(td);
3241         thread_unlock(td);
3242 }
3243
3244 /*
3245  * Complete the logical removal of a page from a page queue.  We must be
3246  * careful to synchronize with the page daemon, which may be concurrently
3247  * examining the page with only the page lock held.  The page must not be
3248  * in a state where it appears to be logically enqueued.
3249  */
3250 static void
3251 vm_page_dequeue_complete(vm_page_t m)
3252 {
3253
3254         m->queue = PQ_NONE;
3255         atomic_thread_fence_rel();
3256         vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK);
3257 }
3258
3259 /*
3260  *      vm_page_dequeue_deferred:       [ internal use only ]
3261  *
3262  *      Request removal of the given page from its current page
3263  *      queue.  Physical removal from the queue may be deferred
3264  *      indefinitely.
3265  *
3266  *      The page must be locked.
3267  */
3268 void
3269 vm_page_dequeue_deferred(vm_page_t m)
3270 {
3271         uint8_t queue;
3272
3273         vm_page_assert_locked(m);
3274
3275         if ((queue = vm_page_queue(m)) == PQ_NONE)
3276                 return;
3277         vm_page_aflag_set(m, PGA_DEQUEUE);
3278         vm_pqbatch_submit_page(m, queue);
3279 }
3280
3281 /*
3282  *      vm_page_dequeue:
3283  *
3284  *      Remove the page from whichever page queue it's in, if any.
3285  *      The page must either be locked or unallocated.  This constraint
3286  *      ensures that the queue state of the page will remain consistent
3287  *      after this function returns.
3288  */
3289 void
3290 vm_page_dequeue(vm_page_t m)
3291 {
3292         struct vm_pagequeue *pq, *pq1;
3293         uint8_t aflags;
3294
3295         KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL,
3296             ("page %p is allocated and unlocked", m));
3297
3298         for (pq = vm_page_pagequeue(m);; pq = pq1) {
3299                 if (pq == NULL) {
3300                         /*
3301                          * A thread may be concurrently executing
3302                          * vm_page_dequeue_complete().  Ensure that all queue
3303                          * state is cleared before we return.
3304                          */
3305                         aflags = atomic_load_8(&m->aflags);
3306                         if ((aflags & PGA_QUEUE_STATE_MASK) == 0)
3307                                 return;
3308                         KASSERT((aflags & PGA_DEQUEUE) != 0,
3309                             ("page %p has unexpected queue state flags %#x",
3310                             m, aflags));
3311
3312                         /*
3313                          * Busy wait until the thread updating queue state is
3314                          * finished.  Such a thread must be executing in a
3315                          * critical section.
3316                          */
3317                         cpu_spinwait();
3318                         pq1 = vm_page_pagequeue(m);
3319                         continue;
3320                 }
3321                 vm_pagequeue_lock(pq);
3322                 if ((pq1 = vm_page_pagequeue(m)) == pq)
3323                         break;
3324                 vm_pagequeue_unlock(pq);
3325         }
3326         KASSERT(pq == vm_page_pagequeue(m),
3327             ("%s: page %p migrated directly between queues", __func__, m));
3328         KASSERT((m->aflags & PGA_DEQUEUE) != 0 ||
3329             mtx_owned(vm_page_lockptr(m)),
3330             ("%s: queued unlocked page %p", __func__, m));
3331
3332         if ((m->aflags & PGA_ENQUEUED) != 0)
3333                 vm_pagequeue_remove(pq, m);
3334         vm_page_dequeue_complete(m);
3335         vm_pagequeue_unlock(pq);
3336 }
3337
3338 /*
3339  * Schedule the given page for insertion into the specified page queue.
3340  * Physical insertion of the page may be deferred indefinitely.
3341  */
3342 static void
3343 vm_page_enqueue(vm_page_t m, uint8_t queue)
3344 {
3345
3346         vm_page_assert_locked(m);
3347         KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
3348             ("%s: page %p is already enqueued", __func__, m));
3349
3350         m->queue = queue;
3351         if ((m->aflags & PGA_REQUEUE) == 0)
3352                 vm_page_aflag_set(m, PGA_REQUEUE);
3353         vm_pqbatch_submit_page(m, queue);
3354 }
3355
3356 /*
3357  *      vm_page_requeue:                [ internal use only ]
3358  *
3359  *      Schedule a requeue of the given page.
3360  *
3361  *      The page must be locked.
3362  */
3363 void
3364 vm_page_requeue(vm_page_t m)
3365 {
3366
3367         vm_page_assert_locked(m);
3368         KASSERT(vm_page_queue(m) != PQ_NONE,
3369             ("%s: page %p is not logically enqueued", __func__, m));
3370
3371         if ((m->aflags & PGA_REQUEUE) == 0)
3372                 vm_page_aflag_set(m, PGA_REQUEUE);
3373         vm_pqbatch_submit_page(m, atomic_load_8(&m->queue));
3374 }
3375
3376 /*
3377  *      vm_page_free_prep:
3378  *
3379  *      Prepares the given page to be put on the free list,
3380  *      disassociating it from any VM object. The caller may return
3381  *      the page to the free list only if this function returns true.
3382  *
3383  *      The object must be locked.  The page must be locked if it is
3384  *      managed.
3385  */
3386 bool
3387 vm_page_free_prep(vm_page_t m)
3388 {
3389
3390 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3391         if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3392                 uint64_t *p;
3393                 int i;
3394                 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3395                 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3396                         KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3397                             m, i, (uintmax_t)*p));
3398         }
3399 #endif
3400         if ((m->oflags & VPO_UNMANAGED) == 0) {
3401                 vm_page_lock_assert(m, MA_OWNED);
3402                 KASSERT(!pmap_page_is_mapped(m),
3403                     ("vm_page_free_prep: freeing mapped page %p", m));
3404         } else
3405                 KASSERT(m->queue == PQ_NONE,
3406                     ("vm_page_free_prep: unmanaged page %p is queued", m));
3407         VM_CNT_INC(v_tfree);
3408
3409         if (vm_page_sbusied(m))
3410                 panic("vm_page_free_prep: freeing busy page %p", m);
3411
3412         if (m->object != NULL)
3413                 (void)vm_page_remove(m);
3414
3415         /*
3416          * If fictitious remove object association and
3417          * return.
3418          */
3419         if ((m->flags & PG_FICTITIOUS) != 0) {
3420                 KASSERT(m->wire_count == 1,
3421                     ("fictitious page %p is not wired", m));
3422                 KASSERT(m->queue == PQ_NONE,
3423                     ("fictitious page %p is queued", m));
3424                 return (false);
3425         }
3426
3427         /*
3428          * Pages need not be dequeued before they are returned to the physical
3429          * memory allocator, but they must at least be marked for a deferred
3430          * dequeue.
3431          */
3432         if ((m->oflags & VPO_UNMANAGED) == 0)
3433                 vm_page_dequeue_deferred(m);
3434
3435         m->valid = 0;
3436         vm_page_undirty(m);
3437
3438         if (vm_page_wired(m) != 0)
3439                 panic("vm_page_free_prep: freeing wired page %p", m);
3440         if (m->hold_count != 0) {
3441                 m->flags &= ~PG_ZERO;
3442                 KASSERT((m->flags & PG_UNHOLDFREE) == 0,
3443                     ("vm_page_free_prep: freeing PG_UNHOLDFREE page %p", m));
3444                 m->flags |= PG_UNHOLDFREE;
3445                 return (false);
3446         }
3447
3448         /*
3449          * Restore the default memory attribute to the page.
3450          */
3451         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3452                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3453
3454 #if VM_NRESERVLEVEL > 0
3455         /*
3456          * Determine whether the page belongs to a reservation.  If the page was
3457          * allocated from a per-CPU cache, it cannot belong to a reservation, so
3458          * as an optimization, we avoid the check in that case.
3459          */
3460         if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3461                 return (false);
3462 #endif
3463
3464         return (true);
3465 }
3466
3467 /*
3468  *      vm_page_free_toq:
3469  *
3470  *      Returns the given page to the free list, disassociating it
3471  *      from any VM object.
3472  *
3473  *      The object must be locked.  The page must be locked if it is
3474  *      managed.
3475  */
3476 void
3477 vm_page_free_toq(vm_page_t m)
3478 {
3479         struct vm_domain *vmd;
3480         uma_zone_t zone;
3481
3482         if (!vm_page_free_prep(m))
3483                 return;
3484
3485         vmd = vm_pagequeue_domain(m);
3486         zone = vmd->vmd_pgcache[m->pool].zone;
3487         if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3488                 uma_zfree(zone, m);
3489                 return;
3490         }
3491         vm_domain_free_lock(vmd);
3492         vm_phys_free_pages(m, 0);
3493         vm_domain_free_unlock(vmd);
3494         vm_domain_freecnt_inc(vmd, 1);
3495 }
3496
3497 /*
3498  *      vm_page_free_pages_toq:
3499  *
3500  *      Returns a list of pages to the free list, disassociating it
3501  *      from any VM object.  In other words, this is equivalent to
3502  *      calling vm_page_free_toq() for each page of a list of VM objects.
3503  *
3504  *      The objects must be locked.  The pages must be locked if it is
3505  *      managed.
3506  */
3507 void
3508 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3509 {
3510         vm_page_t m;
3511         int count;
3512
3513         if (SLIST_EMPTY(free))
3514                 return;
3515
3516         count = 0;
3517         while ((m = SLIST_FIRST(free)) != NULL) {
3518                 count++;
3519                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
3520                 vm_page_free_toq(m);
3521         }
3522
3523         if (update_wire_count)
3524                 vm_wire_sub(count);
3525 }
3526
3527 /*
3528  *      vm_page_wire:
3529  *
3530  * Mark this page as wired down.  If the page is fictitious, then
3531  * its wire count must remain one.
3532  *
3533  * The page must be locked.
3534  */
3535 void
3536 vm_page_wire(vm_page_t m)
3537 {
3538
3539         vm_page_assert_locked(m);
3540         if ((m->flags & PG_FICTITIOUS) != 0) {
3541                 KASSERT(m->wire_count == 1,
3542                     ("vm_page_wire: fictitious page %p's wire count isn't one",
3543                     m));
3544                 return;
3545         }
3546         if (!vm_page_wired(m)) {
3547                 KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
3548                     m->queue == PQ_NONE,
3549                     ("vm_page_wire: unmanaged page %p is queued", m));
3550                 vm_wire_add(1);
3551         }
3552         m->wire_count++;
3553         KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
3554 }
3555
3556 /*
3557  * vm_page_unwire:
3558  *
3559  * Release one wiring of the specified page, potentially allowing it to be
3560  * paged out.  Returns TRUE if the number of wirings transitions to zero and
3561  * FALSE otherwise.
3562  *
3563  * Only managed pages belonging to an object can be paged out.  If the number
3564  * of wirings transitions to zero and the page is eligible for page out, then
3565  * the page is added to the specified paging queue (unless PQ_NONE is
3566  * specified, in which case the page is dequeued if it belongs to a paging
3567  * queue).
3568  *
3569  * If a page is fictitious, then its wire count must always be one.
3570  *
3571  * A managed page must be locked.
3572  */
3573 bool
3574 vm_page_unwire(vm_page_t m, uint8_t queue)
3575 {
3576         bool unwired;
3577
3578         KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
3579             ("vm_page_unwire: invalid queue %u request for page %p",
3580             queue, m));
3581         if ((m->oflags & VPO_UNMANAGED) == 0)
3582                 vm_page_assert_locked(m);
3583
3584         unwired = vm_page_unwire_noq(m);
3585         if (!unwired || (m->oflags & VPO_UNMANAGED) != 0 || m->object == NULL)
3586                 return (unwired);
3587
3588         if (vm_page_queue(m) == queue) {
3589                 if (queue == PQ_ACTIVE)
3590                         vm_page_reference(m);
3591                 else if (queue != PQ_NONE)
3592                         vm_page_requeue(m);
3593         } else {
3594                 vm_page_dequeue(m);
3595                 if (queue != PQ_NONE) {
3596                         vm_page_enqueue(m, queue);
3597                         if (queue == PQ_ACTIVE)
3598                                 /* Initialize act_count. */
3599                                 vm_page_activate(m);
3600                 }
3601         }
3602         return (unwired);
3603 }
3604
3605 /*
3606  *
3607  * vm_page_unwire_noq:
3608  *
3609  * Unwire a page without (re-)inserting it into a page queue.  It is up
3610  * to the caller to enqueue, requeue, or free the page as appropriate.
3611  * In most cases, vm_page_unwire() should be used instead.
3612  */
3613 bool
3614 vm_page_unwire_noq(vm_page_t m)
3615 {
3616
3617         if ((m->oflags & VPO_UNMANAGED) == 0)
3618                 vm_page_assert_locked(m);
3619         if ((m->flags & PG_FICTITIOUS) != 0) {
3620                 KASSERT(m->wire_count == 1,
3621             ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
3622                 return (false);
3623         }
3624         if (!vm_page_wired(m))
3625                 panic("vm_page_unwire: page %p's wire count is zero", m);
3626         m->wire_count--;
3627         if (m->wire_count == 0) {
3628                 vm_wire_sub(1);
3629                 return (true);
3630         } else
3631                 return (false);
3632 }
3633
3634 /*
3635  *      vm_page_activate:
3636  *
3637  *      Put the specified page on the active list (if appropriate).
3638  *      Ensure that act_count is at least ACT_INIT but do not otherwise
3639  *      mess with it.
3640  *
3641  *      The page must be locked.
3642  */
3643 void
3644 vm_page_activate(vm_page_t m)
3645 {
3646
3647         vm_page_assert_locked(m);
3648
3649         if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0)
3650                 return;
3651         if (vm_page_queue(m) == PQ_ACTIVE) {
3652                 if (m->act_count < ACT_INIT)
3653                         m->act_count = ACT_INIT;
3654                 return;
3655         }
3656
3657         vm_page_dequeue(m);
3658         if (m->act_count < ACT_INIT)
3659                 m->act_count = ACT_INIT;
3660         vm_page_enqueue(m, PQ_ACTIVE);
3661 }
3662
3663 /*
3664  * Move the specified page to the tail of the inactive queue, or requeue
3665  * the page if it is already in the inactive queue.
3666  *
3667  * The page must be locked.
3668  */
3669 void
3670 vm_page_deactivate(vm_page_t m)
3671 {
3672
3673         vm_page_assert_locked(m);
3674
3675         if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0)
3676                 return;
3677
3678         if (!vm_page_inactive(m)) {
3679                 vm_page_dequeue(m);
3680                 vm_page_enqueue(m, PQ_INACTIVE);
3681         } else
3682                 vm_page_requeue(m);
3683 }
3684
3685 /*
3686  * Move the specified page close to the head of the inactive queue,
3687  * bypassing LRU.  A marker page is used to maintain FIFO ordering.
3688  * As with regular enqueues, we use a per-CPU batch queue to reduce
3689  * contention on the page queue lock.
3690  *
3691  * The page must be locked.
3692  */
3693 void
3694 vm_page_deactivate_noreuse(vm_page_t m)
3695 {
3696
3697         vm_page_assert_locked(m);
3698
3699         if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0)
3700                 return;
3701
3702         if (!vm_page_inactive(m)) {
3703                 vm_page_dequeue(m);
3704                 m->queue = PQ_INACTIVE;
3705         }
3706         if ((m->aflags & PGA_REQUEUE_HEAD) == 0)
3707                 vm_page_aflag_set(m, PGA_REQUEUE_HEAD);
3708         vm_pqbatch_submit_page(m, PQ_INACTIVE);
3709 }
3710
3711 /*
3712  * vm_page_launder
3713  *
3714  *      Put a page in the laundry, or requeue it if it is already there.
3715  */
3716 void
3717 vm_page_launder(vm_page_t m)
3718 {
3719
3720         vm_page_assert_locked(m);
3721         if (vm_page_wired(m) || (m->oflags & VPO_UNMANAGED) != 0)
3722                 return;
3723
3724         if (vm_page_in_laundry(m))
3725                 vm_page_requeue(m);
3726         else {
3727                 vm_page_dequeue(m);
3728                 vm_page_enqueue(m, PQ_LAUNDRY);
3729         }
3730 }
3731
3732 /*
3733  * vm_page_unswappable
3734  *
3735  *      Put a page in the PQ_UNSWAPPABLE holding queue.
3736  */
3737 void
3738 vm_page_unswappable(vm_page_t m)
3739 {
3740
3741         vm_page_assert_locked(m);
3742         KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
3743             ("page %p already unswappable", m));
3744
3745         vm_page_dequeue(m);
3746         vm_page_enqueue(m, PQ_UNSWAPPABLE);
3747 }
3748
3749 static void
3750 vm_page_release_toq(vm_page_t m, int flags)
3751 {
3752
3753         /*
3754          * Use a check of the valid bits to determine whether we should
3755          * accelerate reclamation of the page.  The object lock might not be
3756          * held here, in which case the check is racy.  At worst we will either
3757          * accelerate reclamation of a valid page and violate LRU, or
3758          * unnecessarily defer reclamation of an invalid page.
3759          *
3760          * If we were asked to not cache the page, place it near the head of the
3761          * inactive queue so that is reclaimed sooner.
3762          */
3763         if ((flags & (VPR_TRYFREE | VPR_NOREUSE)) != 0 || m->valid == 0)
3764                 vm_page_deactivate_noreuse(m);
3765         else if (vm_page_active(m))
3766                 vm_page_reference(m);
3767         else
3768                 vm_page_deactivate(m);
3769 }
3770
3771 /*
3772  * Unwire a page and either attempt to free it or re-add it to the page queues.
3773  */
3774 void
3775 vm_page_release(vm_page_t m, int flags)
3776 {
3777         vm_object_t object;
3778         bool freed;
3779
3780         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3781             ("vm_page_release: page %p is unmanaged", m));
3782
3783         vm_page_lock(m);
3784         if (m->object != NULL)
3785                 VM_OBJECT_ASSERT_UNLOCKED(m->object);
3786         if (vm_page_unwire_noq(m)) {
3787                 if ((object = m->object) == NULL) {
3788                         vm_page_free(m);
3789                 } else {
3790                         freed = false;
3791                         if ((flags & VPR_TRYFREE) != 0 && !vm_page_busied(m) &&
3792                             /* Depends on type stability. */
3793                             VM_OBJECT_TRYWLOCK(object)) {
3794                                 /*
3795                                  * Only free unmapped pages.  The busy test from
3796                                  * before the object was locked cannot be relied
3797                                  * upon.
3798                                  */
3799                                 if ((object->ref_count == 0 ||
3800                                     !pmap_page_is_mapped(m)) && m->dirty == 0 &&
3801                                     !vm_page_busied(m)) {
3802                                         vm_page_free(m);
3803                                         freed = true;
3804                                 }
3805                                 VM_OBJECT_WUNLOCK(object);
3806                         }
3807
3808                         if (!freed)
3809                                 vm_page_release_toq(m, flags);
3810                 }
3811         }
3812         vm_page_unlock(m);
3813 }
3814
3815 /* See vm_page_release(). */
3816 void
3817 vm_page_release_locked(vm_page_t m, int flags)
3818 {
3819
3820         VM_OBJECT_ASSERT_WLOCKED(m->object);
3821         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3822             ("vm_page_release_locked: page %p is unmanaged", m));
3823
3824         vm_page_lock(m);
3825         if (vm_page_unwire_noq(m)) {
3826                 if ((flags & VPR_TRYFREE) != 0 &&
3827                     (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
3828                     m->dirty == 0 && !vm_page_busied(m)) {
3829                         vm_page_free(m);
3830                 } else {
3831                         vm_page_release_toq(m, flags);
3832                 }
3833         }
3834         vm_page_unlock(m);
3835 }
3836
3837 /*
3838  * vm_page_advise
3839  *
3840  *      Apply the specified advice to the given page.
3841  *
3842  *      The object and page must be locked.
3843  */
3844 void
3845 vm_page_advise(vm_page_t m, int advice)
3846 {
3847
3848         vm_page_assert_locked(m);
3849         VM_OBJECT_ASSERT_WLOCKED(m->object);
3850         if (advice == MADV_FREE)
3851                 /*
3852                  * Mark the page clean.  This will allow the page to be freed
3853                  * without first paging it out.  MADV_FREE pages are often
3854                  * quickly reused by malloc(3), so we do not do anything that
3855                  * would result in a page fault on a later access.
3856                  */
3857                 vm_page_undirty(m);
3858         else if (advice != MADV_DONTNEED) {
3859                 if (advice == MADV_WILLNEED)
3860                         vm_page_activate(m);
3861                 return;
3862         }
3863
3864         /*
3865          * Clear any references to the page.  Otherwise, the page daemon will
3866          * immediately reactivate the page.
3867          */
3868         vm_page_aflag_clear(m, PGA_REFERENCED);
3869
3870         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
3871                 vm_page_dirty(m);
3872
3873         /*
3874          * Place clean pages near the head of the inactive queue rather than
3875          * the tail, thus defeating the queue's LRU operation and ensuring that
3876          * the page will be reused quickly.  Dirty pages not already in the
3877          * laundry are moved there.
3878          */
3879         if (m->dirty == 0)
3880                 vm_page_deactivate_noreuse(m);
3881         else if (!vm_page_in_laundry(m))
3882                 vm_page_launder(m);
3883 }
3884
3885 /*
3886  * Grab a page, waiting until we are waken up due to the page
3887  * changing state.  We keep on waiting, if the page continues
3888  * to be in the object.  If the page doesn't exist, first allocate it
3889  * and then conditionally zero it.
3890  *
3891  * This routine may sleep.
3892  *
3893  * The object must be locked on entry.  The lock will, however, be released
3894  * and reacquired if the routine sleeps.
3895  */
3896 vm_page_t
3897 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
3898 {
3899         vm_page_t m;
3900         int sleep;
3901         int pflags;
3902
3903         VM_OBJECT_ASSERT_WLOCKED(object);
3904         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3905             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3906             ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
3907         pflags = allocflags &
3908             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
3909         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
3910                 pflags |= VM_ALLOC_WAITFAIL;
3911 retrylookup:
3912         if ((m = vm_page_lookup(object, pindex)) != NULL) {
3913                 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
3914                     vm_page_xbusied(m) : vm_page_busied(m);
3915                 if (sleep) {
3916                         if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3917                                 return (NULL);
3918                         /*
3919                          * Reference the page before unlocking and
3920                          * sleeping so that the page daemon is less
3921                          * likely to reclaim it.
3922                          */
3923                         vm_page_aflag_set(m, PGA_REFERENCED);
3924                         vm_page_lock(m);
3925                         VM_OBJECT_WUNLOCK(object);
3926                         vm_page_busy_sleep(m, "pgrbwt", (allocflags &
3927                             VM_ALLOC_IGN_SBUSY) != 0);
3928                         VM_OBJECT_WLOCK(object);
3929                         goto retrylookup;
3930                 } else {
3931                         if ((allocflags & VM_ALLOC_WIRED) != 0) {
3932                                 vm_page_lock(m);
3933                                 vm_page_wire(m);
3934                                 vm_page_unlock(m);
3935                         }
3936                         if ((allocflags &
3937                             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
3938                                 vm_page_xbusy(m);
3939                         if ((allocflags & VM_ALLOC_SBUSY) != 0)
3940                                 vm_page_sbusy(m);
3941                         return (m);
3942                 }
3943         }
3944         m = vm_page_alloc(object, pindex, pflags);
3945         if (m == NULL) {
3946                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
3947                         return (NULL);
3948                 goto retrylookup;
3949         }
3950         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
3951                 pmap_zero_page(m);
3952         return (m);
3953 }
3954
3955 /*
3956  * Return the specified range of pages from the given object.  For each
3957  * page offset within the range, if a page already exists within the object
3958  * at that offset and it is busy, then wait for it to change state.  If,
3959  * instead, the page doesn't exist, then allocate it.
3960  *
3961  * The caller must always specify an allocation class.
3962  *
3963  * allocation classes:
3964  *      VM_ALLOC_NORMAL         normal process request
3965  *      VM_ALLOC_SYSTEM         system *really* needs the pages
3966  *
3967  * The caller must always specify that the pages are to be busied and/or
3968  * wired.
3969  *
3970  * optional allocation flags:
3971  *      VM_ALLOC_IGN_SBUSY      do not sleep on soft busy pages
3972  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
3973  *      VM_ALLOC_NOWAIT         do not sleep
3974  *      VM_ALLOC_SBUSY          set page to sbusy state
3975  *      VM_ALLOC_WIRED          wire the pages
3976  *      VM_ALLOC_ZERO           zero and validate any invalid pages
3977  *
3978  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
3979  * may return a partial prefix of the requested range.
3980  */
3981 int
3982 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
3983     vm_page_t *ma, int count)
3984 {
3985         vm_page_t m, mpred;
3986         int pflags;
3987         int i;
3988         bool sleep;
3989
3990         VM_OBJECT_ASSERT_WLOCKED(object);
3991         KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
3992             ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
3993         KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
3994             (allocflags & VM_ALLOC_WIRED) != 0,
3995             ("vm_page_grab_pages: the pages must be busied or wired"));
3996         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
3997             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
3998             ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
3999         if (count == 0)
4000                 return (0);
4001         pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |
4002             VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY);
4003         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4004                 pflags |= VM_ALLOC_WAITFAIL;
4005         i = 0;
4006 retrylookup:
4007         m = vm_radix_lookup_le(&object->rtree, pindex + i);
4008         if (m == NULL || m->pindex != pindex + i) {
4009                 mpred = m;
4010                 m = NULL;
4011         } else
4012                 mpred = TAILQ_PREV(m, pglist, listq);
4013         for (; i < count; i++) {
4014                 if (m != NULL) {
4015                         sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
4016                             vm_page_xbusied(m) : vm_page_busied(m);
4017                         if (sleep) {
4018                                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4019                                         break;
4020                                 /*
4021                                  * Reference the page before unlocking and
4022                                  * sleeping so that the page daemon is less
4023                                  * likely to reclaim it.
4024                                  */
4025                                 vm_page_aflag_set(m, PGA_REFERENCED);
4026                                 vm_page_lock(m);
4027                                 VM_OBJECT_WUNLOCK(object);
4028                                 vm_page_busy_sleep(m, "grbmaw", (allocflags &
4029                                     VM_ALLOC_IGN_SBUSY) != 0);
4030                                 VM_OBJECT_WLOCK(object);
4031                                 goto retrylookup;
4032                         }
4033                         if ((allocflags & VM_ALLOC_WIRED) != 0) {
4034                                 vm_page_lock(m);
4035                                 vm_page_wire(m);
4036                                 vm_page_unlock(m);
4037                         }
4038                         if ((allocflags & (VM_ALLOC_NOBUSY |
4039                             VM_ALLOC_SBUSY)) == 0)
4040                                 vm_page_xbusy(m);
4041                         if ((allocflags & VM_ALLOC_SBUSY) != 0)
4042                                 vm_page_sbusy(m);
4043                 } else {
4044                         m = vm_page_alloc_after(object, pindex + i,
4045                             pflags | VM_ALLOC_COUNT(count - i), mpred);
4046                         if (m == NULL) {
4047                                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4048                                         break;
4049                                 goto retrylookup;
4050                         }
4051                 }
4052                 if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) {
4053                         if ((m->flags & PG_ZERO) == 0)
4054                                 pmap_zero_page(m);
4055                         m->valid = VM_PAGE_BITS_ALL;
4056                 }
4057                 ma[i] = mpred = m;
4058                 m = vm_page_next(m);
4059         }
4060         return (i);
4061 }
4062
4063 /*
4064  * Mapping function for valid or dirty bits in a page.
4065  *
4066  * Inputs are required to range within a page.
4067  */
4068 vm_page_bits_t
4069 vm_page_bits(int base, int size)
4070 {
4071         int first_bit;
4072         int last_bit;
4073
4074         KASSERT(
4075             base + size <= PAGE_SIZE,
4076             ("vm_page_bits: illegal base/size %d/%d", base, size)
4077         );
4078
4079         if (size == 0)          /* handle degenerate case */
4080                 return (0);
4081
4082         first_bit = base >> DEV_BSHIFT;
4083         last_bit = (base + size - 1) >> DEV_BSHIFT;
4084
4085         return (((vm_page_bits_t)2 << last_bit) -
4086             ((vm_page_bits_t)1 << first_bit));
4087 }
4088
4089 /*
4090  *      vm_page_set_valid_range:
4091  *
4092  *      Sets portions of a page valid.  The arguments are expected
4093  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4094  *      of any partial chunks touched by the range.  The invalid portion of
4095  *      such chunks will be zeroed.
4096  *
4097  *      (base + size) must be less then or equal to PAGE_SIZE.
4098  */
4099 void
4100 vm_page_set_valid_range(vm_page_t m, int base, int size)
4101 {
4102         int endoff, frag;
4103
4104         VM_OBJECT_ASSERT_WLOCKED(m->object);
4105         if (size == 0)  /* handle degenerate case */
4106                 return;
4107
4108         /*
4109          * If the base is not DEV_BSIZE aligned and the valid
4110          * bit is clear, we have to zero out a portion of the
4111          * first block.
4112          */
4113         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4114             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4115                 pmap_zero_page_area(m, frag, base - frag);
4116
4117         /*
4118          * If the ending offset is not DEV_BSIZE aligned and the
4119          * valid bit is clear, we have to zero out a portion of
4120          * the last block.
4121          */
4122         endoff = base + size;
4123         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4124             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4125                 pmap_zero_page_area(m, endoff,
4126                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4127
4128         /*
4129          * Assert that no previously invalid block that is now being validated
4130          * is already dirty.
4131          */
4132         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4133             ("vm_page_set_valid_range: page %p is dirty", m));
4134
4135         /*
4136          * Set valid bits inclusive of any overlap.
4137          */
4138         m->valid |= vm_page_bits(base, size);
4139 }
4140
4141 /*
4142  * Clear the given bits from the specified page's dirty field.
4143  */
4144 static __inline void
4145 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4146 {
4147         uintptr_t addr;
4148 #if PAGE_SIZE < 16384
4149         int shift;
4150 #endif
4151
4152         /*
4153          * If the object is locked and the page is neither exclusive busy nor
4154          * write mapped, then the page's dirty field cannot possibly be
4155          * set by a concurrent pmap operation.
4156          */
4157         VM_OBJECT_ASSERT_WLOCKED(m->object);
4158         if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4159                 m->dirty &= ~pagebits;
4160         else {
4161                 /*
4162                  * The pmap layer can call vm_page_dirty() without
4163                  * holding a distinguished lock.  The combination of
4164                  * the object's lock and an atomic operation suffice
4165                  * to guarantee consistency of the page dirty field.
4166                  *
4167                  * For PAGE_SIZE == 32768 case, compiler already
4168                  * properly aligns the dirty field, so no forcible
4169                  * alignment is needed. Only require existence of
4170                  * atomic_clear_64 when page size is 32768.
4171                  */
4172                 addr = (uintptr_t)&m->dirty;
4173 #if PAGE_SIZE == 32768
4174                 atomic_clear_64((uint64_t *)addr, pagebits);
4175 #elif PAGE_SIZE == 16384
4176                 atomic_clear_32((uint32_t *)addr, pagebits);
4177 #else           /* PAGE_SIZE <= 8192 */
4178                 /*
4179                  * Use a trick to perform a 32-bit atomic on the
4180                  * containing aligned word, to not depend on the existence
4181                  * of atomic_clear_{8, 16}.
4182                  */
4183                 shift = addr & (sizeof(uint32_t) - 1);
4184 #if BYTE_ORDER == BIG_ENDIAN
4185                 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
4186 #else
4187                 shift *= NBBY;
4188 #endif
4189                 addr &= ~(sizeof(uint32_t) - 1);
4190                 atomic_clear_32((uint32_t *)addr, pagebits << shift);
4191 #endif          /* PAGE_SIZE */
4192         }
4193 }
4194
4195 /*
4196  *      vm_page_set_validclean:
4197  *
4198  *      Sets portions of a page valid and clean.  The arguments are expected
4199  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4200  *      of any partial chunks touched by the range.  The invalid portion of
4201  *      such chunks will be zero'd.
4202  *
4203  *      (base + size) must be less then or equal to PAGE_SIZE.
4204  */
4205 void
4206 vm_page_set_validclean(vm_page_t m, int base, int size)
4207 {
4208         vm_page_bits_t oldvalid, pagebits;
4209         int endoff, frag;
4210
4211         VM_OBJECT_ASSERT_WLOCKED(m->object);
4212         if (size == 0)  /* handle degenerate case */
4213                 return;
4214
4215         /*
4216          * If the base is not DEV_BSIZE aligned and the valid
4217          * bit is clear, we have to zero out a portion of the
4218          * first block.
4219          */
4220         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4221             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4222                 pmap_zero_page_area(m, frag, base - frag);
4223
4224         /*
4225          * If the ending offset is not DEV_BSIZE aligned and the
4226          * valid bit is clear, we have to zero out a portion of
4227          * the last block.
4228          */
4229         endoff = base + size;
4230         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4231             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4232                 pmap_zero_page_area(m, endoff,
4233                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4234
4235         /*
4236          * Set valid, clear dirty bits.  If validating the entire
4237          * page we can safely clear the pmap modify bit.  We also
4238          * use this opportunity to clear the VPO_NOSYNC flag.  If a process
4239          * takes a write fault on a MAP_NOSYNC memory area the flag will
4240          * be set again.
4241          *
4242          * We set valid bits inclusive of any overlap, but we can only
4243          * clear dirty bits for DEV_BSIZE chunks that are fully within
4244          * the range.
4245          */
4246         oldvalid = m->valid;
4247         pagebits = vm_page_bits(base, size);
4248         m->valid |= pagebits;
4249 #if 0   /* NOT YET */
4250         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4251                 frag = DEV_BSIZE - frag;
4252                 base += frag;
4253                 size -= frag;
4254                 if (size < 0)
4255                         size = 0;
4256         }
4257         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4258 #endif
4259         if (base == 0 && size == PAGE_SIZE) {
4260                 /*
4261                  * The page can only be modified within the pmap if it is
4262                  * mapped, and it can only be mapped if it was previously
4263                  * fully valid.
4264                  */
4265                 if (oldvalid == VM_PAGE_BITS_ALL)
4266                         /*
4267                          * Perform the pmap_clear_modify() first.  Otherwise,
4268                          * a concurrent pmap operation, such as
4269                          * pmap_protect(), could clear a modification in the
4270                          * pmap and set the dirty field on the page before
4271                          * pmap_clear_modify() had begun and after the dirty
4272                          * field was cleared here.
4273                          */
4274                         pmap_clear_modify(m);
4275                 m->dirty = 0;
4276                 m->oflags &= ~VPO_NOSYNC;
4277         } else if (oldvalid != VM_PAGE_BITS_ALL)
4278                 m->dirty &= ~pagebits;
4279         else
4280                 vm_page_clear_dirty_mask(m, pagebits);
4281 }
4282
4283 void
4284 vm_page_clear_dirty(vm_page_t m, int base, int size)
4285 {
4286
4287         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4288 }
4289
4290 /*
4291  *      vm_page_set_invalid:
4292  *
4293  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
4294  *      valid and dirty bits for the effected areas are cleared.
4295  */
4296 void
4297 vm_page_set_invalid(vm_page_t m, int base, int size)
4298 {
4299         vm_page_bits_t bits;
4300         vm_object_t object;
4301
4302         object = m->object;
4303         VM_OBJECT_ASSERT_WLOCKED(object);
4304         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4305             size >= object->un_pager.vnp.vnp_size)
4306                 bits = VM_PAGE_BITS_ALL;
4307         else
4308                 bits = vm_page_bits(base, size);
4309         if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
4310             bits != 0)
4311                 pmap_remove_all(m);
4312         KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
4313             !pmap_page_is_mapped(m),
4314             ("vm_page_set_invalid: page %p is mapped", m));
4315         m->valid &= ~bits;
4316         m->dirty &= ~bits;
4317 }
4318
4319 /*
4320  * vm_page_zero_invalid()
4321  *
4322  *      The kernel assumes that the invalid portions of a page contain
4323  *      garbage, but such pages can be mapped into memory by user code.
4324  *      When this occurs, we must zero out the non-valid portions of the
4325  *      page so user code sees what it expects.
4326  *
4327  *      Pages are most often semi-valid when the end of a file is mapped
4328  *      into memory and the file's size is not page aligned.
4329  */
4330 void
4331 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4332 {
4333         int b;
4334         int i;
4335
4336         VM_OBJECT_ASSERT_WLOCKED(m->object);
4337         /*
4338          * Scan the valid bits looking for invalid sections that
4339          * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4340          * valid bit may be set ) have already been zeroed by
4341          * vm_page_set_validclean().
4342          */
4343         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4344                 if (i == (PAGE_SIZE / DEV_BSIZE) ||
4345                     (m->valid & ((vm_page_bits_t)1 << i))) {
4346                         if (i > b) {
4347                                 pmap_zero_page_area(m,
4348                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4349                         }
4350                         b = i + 1;
4351                 }
4352         }
4353
4354         /*
4355          * setvalid is TRUE when we can safely set the zero'd areas
4356          * as being valid.  We can do this if there are no cache consistancy
4357          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4358          */
4359         if (setvalid)
4360                 m->valid = VM_PAGE_BITS_ALL;
4361 }
4362
4363 /*
4364  *      vm_page_is_valid:
4365  *
4366  *      Is (partial) page valid?  Note that the case where size == 0
4367  *      will return FALSE in the degenerate case where the page is
4368  *      entirely invalid, and TRUE otherwise.
4369  */
4370 int
4371 vm_page_is_valid(vm_page_t m, int base, int size)
4372 {
4373         vm_page_bits_t bits;
4374
4375         VM_OBJECT_ASSERT_LOCKED(m->object);
4376         bits = vm_page_bits(base, size);
4377         return (m->valid != 0 && (m->valid & bits) == bits);
4378 }
4379
4380 /*
4381  * Returns true if all of the specified predicates are true for the entire
4382  * (super)page and false otherwise.
4383  */
4384 bool
4385 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
4386 {
4387         vm_object_t object;
4388         int i, npages;
4389
4390         object = m->object;
4391         if (skip_m != NULL && skip_m->object != object)
4392                 return (false);
4393         VM_OBJECT_ASSERT_LOCKED(object);
4394         npages = atop(pagesizes[m->psind]);
4395
4396         /*
4397          * The physically contiguous pages that make up a superpage, i.e., a
4398          * page with a page size index ("psind") greater than zero, will
4399          * occupy adjacent entries in vm_page_array[].
4400          */
4401         for (i = 0; i < npages; i++) {
4402                 /* Always test object consistency, including "skip_m". */
4403                 if (m[i].object != object)
4404                         return (false);
4405                 if (&m[i] == skip_m)
4406                         continue;
4407                 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
4408                         return (false);
4409                 if ((flags & PS_ALL_DIRTY) != 0) {
4410                         /*
4411                          * Calling vm_page_test_dirty() or pmap_is_modified()
4412                          * might stop this case from spuriously returning
4413                          * "false".  However, that would require a write lock
4414                          * on the object containing "m[i]".
4415                          */
4416                         if (m[i].dirty != VM_PAGE_BITS_ALL)
4417                                 return (false);
4418                 }
4419                 if ((flags & PS_ALL_VALID) != 0 &&
4420                     m[i].valid != VM_PAGE_BITS_ALL)
4421                         return (false);
4422         }
4423         return (true);
4424 }
4425
4426 /*
4427  * Set the page's dirty bits if the page is modified.
4428  */
4429 void
4430 vm_page_test_dirty(vm_page_t m)
4431 {
4432
4433         VM_OBJECT_ASSERT_WLOCKED(m->object);
4434         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
4435                 vm_page_dirty(m);
4436 }
4437
4438 void
4439 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
4440 {
4441
4442         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
4443 }
4444
4445 void
4446 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
4447 {
4448
4449         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
4450 }
4451
4452 int
4453 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
4454 {
4455
4456         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
4457 }
4458
4459 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
4460 void
4461 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
4462 {
4463
4464         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
4465 }
4466
4467 void
4468 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
4469 {
4470
4471         mtx_assert_(vm_page_lockptr(m), a, file, line);
4472 }
4473 #endif
4474
4475 #ifdef INVARIANTS
4476 void
4477 vm_page_object_lock_assert(vm_page_t m)
4478 {
4479
4480         /*
4481          * Certain of the page's fields may only be modified by the
4482          * holder of the containing object's lock or the exclusive busy.
4483          * holder.  Unfortunately, the holder of the write busy is
4484          * not recorded, and thus cannot be checked here.
4485          */
4486         if (m->object != NULL && !vm_page_xbusied(m))
4487                 VM_OBJECT_ASSERT_WLOCKED(m->object);
4488 }
4489
4490 void
4491 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
4492 {
4493
4494         if ((bits & PGA_WRITEABLE) == 0)
4495                 return;
4496
4497         /*
4498          * The PGA_WRITEABLE flag can only be set if the page is
4499          * managed, is exclusively busied or the object is locked.
4500          * Currently, this flag is only set by pmap_enter().
4501          */
4502         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4503             ("PGA_WRITEABLE on unmanaged page"));
4504         if (!vm_page_xbusied(m))
4505                 VM_OBJECT_ASSERT_LOCKED(m->object);
4506 }
4507 #endif
4508
4509 #include "opt_ddb.h"
4510 #ifdef DDB
4511 #include <sys/kernel.h>
4512
4513 #include <ddb/ddb.h>
4514
4515 DB_SHOW_COMMAND(page, vm_page_print_page_info)
4516 {
4517
4518         db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
4519         db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
4520         db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
4521         db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
4522         db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
4523         db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
4524         db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
4525         db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
4526         db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
4527 }
4528
4529 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
4530 {
4531         int dom;
4532
4533         db_printf("pq_free %d\n", vm_free_count());
4534         for (dom = 0; dom < vm_ndomains; dom++) {
4535                 db_printf(
4536     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
4537                     dom,
4538                     vm_dom[dom].vmd_page_count,
4539                     vm_dom[dom].vmd_free_count,
4540                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
4541                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
4542                     vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
4543                     vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
4544         }
4545 }
4546
4547 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
4548 {
4549         vm_page_t m;
4550         boolean_t phys, virt;
4551
4552         if (!have_addr) {
4553                 db_printf("show pginfo addr\n");
4554                 return;
4555         }
4556
4557         phys = strchr(modif, 'p') != NULL;
4558         virt = strchr(modif, 'v') != NULL;
4559         if (virt)
4560                 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
4561         else if (phys)
4562                 m = PHYS_TO_VM_PAGE(addr);
4563         else
4564                 m = (vm_page_t)addr;
4565         db_printf(
4566     "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
4567     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
4568             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
4569             m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
4570             m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
4571 }
4572 #endif /* DDB */