]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_page.c
Merge diff elimination updates from r355953 into vendor/llvm-project.
[FreeBSD/FreeBSD.git] / sys / vm / vm_page.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
36  */
37
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64
65 /*
66  *      Resident memory management module.
67  */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_vm.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113
114 #include <machine/md_var.h>
115
116 extern int      uma_startup_count(int);
117 extern void     uma_startup(void *, int);
118 extern int      vmem_startup_count(void);
119
120 struct vm_domain vm_dom[MAXMEMDOM];
121
122 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
123
124 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
125
126 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
127 /* The following fields are protected by the domainset lock. */
128 domainset_t __exclusive_cache_line vm_min_domains;
129 domainset_t __exclusive_cache_line vm_severe_domains;
130 static int vm_min_waiters;
131 static int vm_severe_waiters;
132 static int vm_pageproc_waiters;
133
134 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0,
135     "VM page statistics");
136
137 static counter_u64_t queue_ops = EARLY_COUNTER;
138 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
139     CTLFLAG_RD, &queue_ops,
140     "Number of batched queue operations");
141
142 static counter_u64_t queue_nops = EARLY_COUNTER;
143 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
144     CTLFLAG_RD, &queue_nops,
145     "Number of batched queue operations with no effects");
146
147 static void
148 counter_startup(void)
149 {
150
151         queue_ops = counter_u64_alloc(M_WAITOK);
152         queue_nops = counter_u64_alloc(M_WAITOK);
153 }
154 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
155
156 /*
157  * bogus page -- for I/O to/from partially complete buffers,
158  * or for paging into sparsely invalid regions.
159  */
160 vm_page_t bogus_page;
161
162 vm_page_t vm_page_array;
163 long vm_page_array_size;
164 long first_page;
165
166 static int boot_pages;
167 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
168     &boot_pages, 0,
169     "number of pages allocated for bootstrapping the VM system");
170
171 static TAILQ_HEAD(, vm_page) blacklist_head;
172 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
173 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
174     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
175
176 static uma_zone_t fakepg_zone;
177
178 static void vm_page_alloc_check(vm_page_t m);
179 static void _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
180     const char *wmesg, bool nonshared, bool locked);
181 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
182 static void vm_page_dequeue_complete(vm_page_t m);
183 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
184 static void vm_page_init(void *dummy);
185 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
186     vm_pindex_t pindex, vm_page_t mpred);
187 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
188     vm_page_t mpred);
189 static void vm_page_mvqueue(vm_page_t m, uint8_t queue);
190 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
191     vm_page_t m_run, vm_paddr_t high);
192 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
193     int req);
194 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
195     int flags);
196 static void vm_page_zone_release(void *arg, void **store, int cnt);
197
198 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
199
200 static void
201 vm_page_init(void *dummy)
202 {
203
204         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
205             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
206         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
207             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
208 }
209
210 /*
211  * The cache page zone is initialized later since we need to be able to allocate
212  * pages before UMA is fully initialized.
213  */
214 static void
215 vm_page_init_cache_zones(void *dummy __unused)
216 {
217         struct vm_domain *vmd;
218         struct vm_pgcache *pgcache;
219         int cache, domain, maxcache, pool;
220
221         maxcache = 0;
222         TUNABLE_INT_FETCH("vm.pgcache_zone_max", &maxcache);
223         for (domain = 0; domain < vm_ndomains; domain++) {
224                 vmd = VM_DOMAIN(domain);
225                 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
226                         pgcache = &vmd->vmd_pgcache[pool];
227                         pgcache->domain = domain;
228                         pgcache->pool = pool;
229                         pgcache->zone = uma_zcache_create("vm pgcache",
230                             PAGE_SIZE, NULL, NULL, NULL, NULL,
231                             vm_page_zone_import, vm_page_zone_release, pgcache,
232                             UMA_ZONE_VM);
233
234                         /*
235                          * Limit each pool's zone to 0.1% of the pages in the
236                          * domain.
237                          */
238                         cache = maxcache != 0 ? maxcache :
239                             vmd->vmd_page_count / 1000;
240                         uma_zone_set_maxcache(pgcache->zone, cache);
241                 }
242         }
243 }
244 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
245
246 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
247 #if PAGE_SIZE == 32768
248 #ifdef CTASSERT
249 CTASSERT(sizeof(u_long) >= 8);
250 #endif
251 #endif
252
253 /*
254  *      vm_set_page_size:
255  *
256  *      Sets the page size, perhaps based upon the memory
257  *      size.  Must be called before any use of page-size
258  *      dependent functions.
259  */
260 void
261 vm_set_page_size(void)
262 {
263         if (vm_cnt.v_page_size == 0)
264                 vm_cnt.v_page_size = PAGE_SIZE;
265         if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
266                 panic("vm_set_page_size: page size not a power of two");
267 }
268
269 /*
270  *      vm_page_blacklist_next:
271  *
272  *      Find the next entry in the provided string of blacklist
273  *      addresses.  Entries are separated by space, comma, or newline.
274  *      If an invalid integer is encountered then the rest of the
275  *      string is skipped.  Updates the list pointer to the next
276  *      character, or NULL if the string is exhausted or invalid.
277  */
278 static vm_paddr_t
279 vm_page_blacklist_next(char **list, char *end)
280 {
281         vm_paddr_t bad;
282         char *cp, *pos;
283
284         if (list == NULL || *list == NULL)
285                 return (0);
286         if (**list =='\0') {
287                 *list = NULL;
288                 return (0);
289         }
290
291         /*
292          * If there's no end pointer then the buffer is coming from
293          * the kenv and we know it's null-terminated.
294          */
295         if (end == NULL)
296                 end = *list + strlen(*list);
297
298         /* Ensure that strtoq() won't walk off the end */
299         if (*end != '\0') {
300                 if (*end == '\n' || *end == ' ' || *end  == ',')
301                         *end = '\0';
302                 else {
303                         printf("Blacklist not terminated, skipping\n");
304                         *list = NULL;
305                         return (0);
306                 }
307         }
308
309         for (pos = *list; *pos != '\0'; pos = cp) {
310                 bad = strtoq(pos, &cp, 0);
311                 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
312                         if (bad == 0) {
313                                 if (++cp < end)
314                                         continue;
315                                 else
316                                         break;
317                         }
318                 } else
319                         break;
320                 if (*cp == '\0' || ++cp >= end)
321                         *list = NULL;
322                 else
323                         *list = cp;
324                 return (trunc_page(bad));
325         }
326         printf("Garbage in RAM blacklist, skipping\n");
327         *list = NULL;
328         return (0);
329 }
330
331 bool
332 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
333 {
334         struct vm_domain *vmd;
335         vm_page_t m;
336         int ret;
337
338         m = vm_phys_paddr_to_vm_page(pa);
339         if (m == NULL)
340                 return (true); /* page does not exist, no failure */
341
342         vmd = vm_pagequeue_domain(m);
343         vm_domain_free_lock(vmd);
344         ret = vm_phys_unfree_page(m);
345         vm_domain_free_unlock(vmd);
346         if (ret != 0) {
347                 vm_domain_freecnt_inc(vmd, -1);
348                 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
349                 if (verbose)
350                         printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
351         }
352         return (ret);
353 }
354
355 /*
356  *      vm_page_blacklist_check:
357  *
358  *      Iterate through the provided string of blacklist addresses, pulling
359  *      each entry out of the physical allocator free list and putting it
360  *      onto a list for reporting via the vm.page_blacklist sysctl.
361  */
362 static void
363 vm_page_blacklist_check(char *list, char *end)
364 {
365         vm_paddr_t pa;
366         char *next;
367
368         next = list;
369         while (next != NULL) {
370                 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
371                         continue;
372                 vm_page_blacklist_add(pa, bootverbose);
373         }
374 }
375
376 /*
377  *      vm_page_blacklist_load:
378  *
379  *      Search for a special module named "ram_blacklist".  It'll be a
380  *      plain text file provided by the user via the loader directive
381  *      of the same name.
382  */
383 static void
384 vm_page_blacklist_load(char **list, char **end)
385 {
386         void *mod;
387         u_char *ptr;
388         u_int len;
389
390         mod = NULL;
391         ptr = NULL;
392
393         mod = preload_search_by_type("ram_blacklist");
394         if (mod != NULL) {
395                 ptr = preload_fetch_addr(mod);
396                 len = preload_fetch_size(mod);
397         }
398         *list = ptr;
399         if (ptr != NULL)
400                 *end = ptr + len;
401         else
402                 *end = NULL;
403         return;
404 }
405
406 static int
407 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
408 {
409         vm_page_t m;
410         struct sbuf sbuf;
411         int error, first;
412
413         first = 1;
414         error = sysctl_wire_old_buffer(req, 0);
415         if (error != 0)
416                 return (error);
417         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
418         TAILQ_FOREACH(m, &blacklist_head, listq) {
419                 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
420                     (uintmax_t)m->phys_addr);
421                 first = 0;
422         }
423         error = sbuf_finish(&sbuf);
424         sbuf_delete(&sbuf);
425         return (error);
426 }
427
428 /*
429  * Initialize a dummy page for use in scans of the specified paging queue.
430  * In principle, this function only needs to set the flag PG_MARKER.
431  * Nonetheless, it write busies the page as a safety precaution.
432  */
433 static void
434 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
435 {
436
437         bzero(marker, sizeof(*marker));
438         marker->flags = PG_MARKER;
439         marker->a.flags = aflags;
440         marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
441         marker->a.queue = queue;
442 }
443
444 static void
445 vm_page_domain_init(int domain)
446 {
447         struct vm_domain *vmd;
448         struct vm_pagequeue *pq;
449         int i;
450
451         vmd = VM_DOMAIN(domain);
452         bzero(vmd, sizeof(*vmd));
453         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
454             "vm inactive pagequeue";
455         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
456             "vm active pagequeue";
457         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
458             "vm laundry pagequeue";
459         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
460             "vm unswappable pagequeue";
461         vmd->vmd_domain = domain;
462         vmd->vmd_page_count = 0;
463         vmd->vmd_free_count = 0;
464         vmd->vmd_segs = 0;
465         vmd->vmd_oom = FALSE;
466         for (i = 0; i < PQ_COUNT; i++) {
467                 pq = &vmd->vmd_pagequeues[i];
468                 TAILQ_INIT(&pq->pq_pl);
469                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
470                     MTX_DEF | MTX_DUPOK);
471                 pq->pq_pdpages = 0;
472                 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
473         }
474         mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
475         mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
476         snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
477
478         /*
479          * inacthead is used to provide FIFO ordering for LRU-bypassing
480          * insertions.
481          */
482         vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
483         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
484             &vmd->vmd_inacthead, plinks.q);
485
486         /*
487          * The clock pages are used to implement active queue scanning without
488          * requeues.  Scans start at clock[0], which is advanced after the scan
489          * ends.  When the two clock hands meet, they are reset and scanning
490          * resumes from the head of the queue.
491          */
492         vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
493         vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
494         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
495             &vmd->vmd_clock[0], plinks.q);
496         TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
497             &vmd->vmd_clock[1], plinks.q);
498 }
499
500 /*
501  * Initialize a physical page in preparation for adding it to the free
502  * lists.
503  */
504 static void
505 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
506 {
507
508         m->object = NULL;
509         m->ref_count = 0;
510         m->busy_lock = VPB_UNBUSIED;
511         m->flags = m->a.flags = 0;
512         m->phys_addr = pa;
513         m->a.queue = PQ_NONE;
514         m->psind = 0;
515         m->segind = segind;
516         m->order = VM_NFREEORDER;
517         m->pool = VM_FREEPOOL_DEFAULT;
518         m->valid = m->dirty = 0;
519         pmap_page_init(m);
520 }
521
522 #ifndef PMAP_HAS_PAGE_ARRAY
523 static vm_paddr_t
524 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
525 {
526         vm_paddr_t new_end;
527
528         /*
529          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
530          * However, because this page is allocated from KVM, out-of-bounds
531          * accesses using the direct map will not be trapped.
532          */
533         *vaddr += PAGE_SIZE;
534
535         /*
536          * Allocate physical memory for the page structures, and map it.
537          */
538         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
539         vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
540             VM_PROT_READ | VM_PROT_WRITE);
541         vm_page_array_size = page_range;
542
543         return (new_end);
544 }
545 #endif
546
547 /*
548  *      vm_page_startup:
549  *
550  *      Initializes the resident memory module.  Allocates physical memory for
551  *      bootstrapping UMA and some data structures that are used to manage
552  *      physical pages.  Initializes these structures, and populates the free
553  *      page queues.
554  */
555 vm_offset_t
556 vm_page_startup(vm_offset_t vaddr)
557 {
558         struct vm_phys_seg *seg;
559         vm_page_t m;
560         char *list, *listend;
561         vm_offset_t mapped;
562         vm_paddr_t end, high_avail, low_avail, new_end, size;
563         vm_paddr_t page_range __unused;
564         vm_paddr_t last_pa, pa;
565         u_long pagecount;
566         int biggestone, i, segind;
567 #ifdef WITNESS
568         int witness_size;
569 #endif
570 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
571         long ii;
572 #endif
573
574         vaddr = round_page(vaddr);
575
576         vm_phys_early_startup();
577         biggestone = vm_phys_avail_largest();
578         end = phys_avail[biggestone+1];
579
580         /*
581          * Initialize the page and queue locks.
582          */
583         mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
584         for (i = 0; i < PA_LOCK_COUNT; i++)
585                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
586         for (i = 0; i < vm_ndomains; i++)
587                 vm_page_domain_init(i);
588
589         /*
590          * Allocate memory for use when boot strapping the kernel memory
591          * allocator.  Tell UMA how many zones we are going to create
592          * before going fully functional.  UMA will add its zones.
593          *
594          * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP,
595          * KMAP ENTRY, MAP ENTRY, VMSPACE.
596          */
597         boot_pages = uma_startup_count(8);
598
599 #ifndef UMA_MD_SMALL_ALLOC
600         /* vmem_startup() calls uma_prealloc(). */
601         boot_pages += vmem_startup_count();
602         /* vm_map_startup() calls uma_prealloc(). */
603         boot_pages += howmany(MAX_KMAP,
604             slab_ipers(sizeof(struct vm_map), UMA_ALIGN_PTR));
605
606         /*
607          * Before going fully functional kmem_init() does allocation
608          * from "KMAP ENTRY" and vmem_create() does allocation from "vmem".
609          */
610         boot_pages += 2;
611 #endif
612         /*
613          * CTFLAG_RDTUN doesn't work during the early boot process, so we must
614          * manually fetch the value.
615          */
616         TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
617         new_end = end - (boot_pages * UMA_SLAB_SIZE);
618         new_end = trunc_page(new_end);
619         mapped = pmap_map(&vaddr, new_end, end,
620             VM_PROT_READ | VM_PROT_WRITE);
621         bzero((void *)mapped, end - new_end);
622         uma_startup((void *)mapped, boot_pages);
623
624 #ifdef WITNESS
625         witness_size = round_page(witness_startup_count());
626         new_end -= witness_size;
627         mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
628             VM_PROT_READ | VM_PROT_WRITE);
629         bzero((void *)mapped, witness_size);
630         witness_startup((void *)mapped);
631 #endif
632
633 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
634     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
635     defined(__powerpc64__)
636         /*
637          * Allocate a bitmap to indicate that a random physical page
638          * needs to be included in a minidump.
639          *
640          * The amd64 port needs this to indicate which direct map pages
641          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
642          *
643          * However, i386 still needs this workspace internally within the
644          * minidump code.  In theory, they are not needed on i386, but are
645          * included should the sf_buf code decide to use them.
646          */
647         last_pa = 0;
648         for (i = 0; dump_avail[i + 1] != 0; i += 2)
649                 if (dump_avail[i + 1] > last_pa)
650                         last_pa = dump_avail[i + 1];
651         page_range = last_pa / PAGE_SIZE;
652         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
653         new_end -= vm_page_dump_size;
654         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
655             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
656         bzero((void *)vm_page_dump, vm_page_dump_size);
657 #else
658         (void)last_pa;
659 #endif
660 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
661     defined(__riscv) || defined(__powerpc64__)
662         /*
663          * Include the UMA bootstrap pages, witness pages and vm_page_dump
664          * in a crash dump.  When pmap_map() uses the direct map, they are
665          * not automatically included.
666          */
667         for (pa = new_end; pa < end; pa += PAGE_SIZE)
668                 dump_add_page(pa);
669 #endif
670         phys_avail[biggestone + 1] = new_end;
671 #ifdef __amd64__
672         /*
673          * Request that the physical pages underlying the message buffer be
674          * included in a crash dump.  Since the message buffer is accessed
675          * through the direct map, they are not automatically included.
676          */
677         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
678         last_pa = pa + round_page(msgbufsize);
679         while (pa < last_pa) {
680                 dump_add_page(pa);
681                 pa += PAGE_SIZE;
682         }
683 #endif
684         /*
685          * Compute the number of pages of memory that will be available for
686          * use, taking into account the overhead of a page structure per page.
687          * In other words, solve
688          *      "available physical memory" - round_page(page_range *
689          *          sizeof(struct vm_page)) = page_range * PAGE_SIZE 
690          * for page_range.  
691          */
692         low_avail = phys_avail[0];
693         high_avail = phys_avail[1];
694         for (i = 0; i < vm_phys_nsegs; i++) {
695                 if (vm_phys_segs[i].start < low_avail)
696                         low_avail = vm_phys_segs[i].start;
697                 if (vm_phys_segs[i].end > high_avail)
698                         high_avail = vm_phys_segs[i].end;
699         }
700         /* Skip the first chunk.  It is already accounted for. */
701         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
702                 if (phys_avail[i] < low_avail)
703                         low_avail = phys_avail[i];
704                 if (phys_avail[i + 1] > high_avail)
705                         high_avail = phys_avail[i + 1];
706         }
707         first_page = low_avail / PAGE_SIZE;
708 #ifdef VM_PHYSSEG_SPARSE
709         size = 0;
710         for (i = 0; i < vm_phys_nsegs; i++)
711                 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
712         for (i = 0; phys_avail[i + 1] != 0; i += 2)
713                 size += phys_avail[i + 1] - phys_avail[i];
714 #elif defined(VM_PHYSSEG_DENSE)
715         size = high_avail - low_avail;
716 #else
717 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
718 #endif
719
720 #ifdef PMAP_HAS_PAGE_ARRAY
721         pmap_page_array_startup(size / PAGE_SIZE);
722         biggestone = vm_phys_avail_largest();
723         end = new_end = phys_avail[biggestone + 1];
724 #else
725 #ifdef VM_PHYSSEG_DENSE
726         /*
727          * In the VM_PHYSSEG_DENSE case, the number of pages can account for
728          * the overhead of a page structure per page only if vm_page_array is
729          * allocated from the last physical memory chunk.  Otherwise, we must
730          * allocate page structures representing the physical memory
731          * underlying vm_page_array, even though they will not be used.
732          */
733         if (new_end != high_avail)
734                 page_range = size / PAGE_SIZE;
735         else
736 #endif
737         {
738                 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
739
740                 /*
741                  * If the partial bytes remaining are large enough for
742                  * a page (PAGE_SIZE) without a corresponding
743                  * 'struct vm_page', then new_end will contain an
744                  * extra page after subtracting the length of the VM
745                  * page array.  Compensate by subtracting an extra
746                  * page from new_end.
747                  */
748                 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
749                         if (new_end == high_avail)
750                                 high_avail -= PAGE_SIZE;
751                         new_end -= PAGE_SIZE;
752                 }
753         }
754         end = new_end;
755         new_end = vm_page_array_alloc(&vaddr, end, page_range);
756 #endif
757
758 #if VM_NRESERVLEVEL > 0
759         /*
760          * Allocate physical memory for the reservation management system's
761          * data structures, and map it.
762          */
763         new_end = vm_reserv_startup(&vaddr, new_end);
764 #endif
765 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
766     defined(__riscv) || defined(__powerpc64__)
767         /*
768          * Include vm_page_array and vm_reserv_array in a crash dump.
769          */
770         for (pa = new_end; pa < end; pa += PAGE_SIZE)
771                 dump_add_page(pa);
772 #endif
773         phys_avail[biggestone + 1] = new_end;
774
775         /*
776          * Add physical memory segments corresponding to the available
777          * physical pages.
778          */
779         for (i = 0; phys_avail[i + 1] != 0; i += 2)
780                 if (vm_phys_avail_size(i) != 0)
781                         vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
782
783         /*
784          * Initialize the physical memory allocator.
785          */
786         vm_phys_init();
787
788         /*
789          * Initialize the page structures and add every available page to the
790          * physical memory allocator's free lists.
791          */
792 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
793         for (ii = 0; ii < vm_page_array_size; ii++) {
794                 m = &vm_page_array[ii];
795                 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
796                 m->flags = PG_FICTITIOUS;
797         }
798 #endif
799         vm_cnt.v_page_count = 0;
800         for (segind = 0; segind < vm_phys_nsegs; segind++) {
801                 seg = &vm_phys_segs[segind];
802                 for (m = seg->first_page, pa = seg->start; pa < seg->end;
803                     m++, pa += PAGE_SIZE)
804                         vm_page_init_page(m, pa, segind);
805
806                 /*
807                  * Add the segment to the free lists only if it is covered by
808                  * one of the ranges in phys_avail.  Because we've added the
809                  * ranges to the vm_phys_segs array, we can assume that each
810                  * segment is either entirely contained in one of the ranges,
811                  * or doesn't overlap any of them.
812                  */
813                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
814                         struct vm_domain *vmd;
815
816                         if (seg->start < phys_avail[i] ||
817                             seg->end > phys_avail[i + 1])
818                                 continue;
819
820                         m = seg->first_page;
821                         pagecount = (u_long)atop(seg->end - seg->start);
822
823                         vmd = VM_DOMAIN(seg->domain);
824                         vm_domain_free_lock(vmd);
825                         vm_phys_enqueue_contig(m, pagecount);
826                         vm_domain_free_unlock(vmd);
827                         vm_domain_freecnt_inc(vmd, pagecount);
828                         vm_cnt.v_page_count += (u_int)pagecount;
829
830                         vmd = VM_DOMAIN(seg->domain);
831                         vmd->vmd_page_count += (u_int)pagecount;
832                         vmd->vmd_segs |= 1UL << m->segind;
833                         break;
834                 }
835         }
836
837         /*
838          * Remove blacklisted pages from the physical memory allocator.
839          */
840         TAILQ_INIT(&blacklist_head);
841         vm_page_blacklist_load(&list, &listend);
842         vm_page_blacklist_check(list, listend);
843
844         list = kern_getenv("vm.blacklist");
845         vm_page_blacklist_check(list, NULL);
846
847         freeenv(list);
848 #if VM_NRESERVLEVEL > 0
849         /*
850          * Initialize the reservation management system.
851          */
852         vm_reserv_init();
853 #endif
854
855         return (vaddr);
856 }
857
858 void
859 vm_page_reference(vm_page_t m)
860 {
861
862         vm_page_aflag_set(m, PGA_REFERENCED);
863 }
864
865 static bool
866 vm_page_acquire_flags(vm_page_t m, int allocflags)
867 {
868         bool locked;
869
870         if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
871                 locked = vm_page_trysbusy(m);
872         else
873                 locked = vm_page_tryxbusy(m);
874         if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
875                 vm_page_wire(m);
876         return (locked);
877 }
878
879 static bool
880 vm_page_busy_sleep_flags(vm_object_t object, vm_page_t m, const char *wchan,
881     int allocflags)
882 {
883
884         if ((allocflags & VM_ALLOC_NOWAIT) != 0)
885                 return (false);
886         /*
887          * Reference the page before unlocking and
888          * sleeping so that the page daemon is less
889          * likely to reclaim it.
890          */
891         if ((allocflags & VM_ALLOC_NOCREAT) == 0)
892                 vm_page_aflag_set(m, PGA_REFERENCED);
893         vm_page_busy_sleep(m, wchan, (allocflags &
894             VM_ALLOC_IGN_SBUSY) != 0);
895         VM_OBJECT_WLOCK(object);
896         if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
897                 return (false);
898         return (true);
899 }
900
901 /*
902  *      vm_page_busy_acquire:
903  *
904  *      Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
905  *      and drop the object lock if necessary.
906  */
907 bool
908 vm_page_busy_acquire(vm_page_t m, int allocflags)
909 {
910         vm_object_t obj;
911         bool locked;
912
913         /*
914          * The page-specific object must be cached because page
915          * identity can change during the sleep, causing the
916          * re-lock of a different object.
917          * It is assumed that a reference to the object is already
918          * held by the callers.
919          */
920         obj = m->object;
921         for (;;) {
922                 if (vm_page_acquire_flags(m, allocflags))
923                         return (true);
924                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
925                         return (false);
926                 if (obj != NULL)
927                         locked = VM_OBJECT_WOWNED(obj);
928                 else
929                         locked = false;
930                 MPASS(locked || vm_page_wired(m));
931                 _vm_page_busy_sleep(obj, m, "vmpba",
932                     (allocflags & VM_ALLOC_SBUSY) != 0, locked);
933                 if (locked)
934                         VM_OBJECT_WLOCK(obj);
935                 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
936                         return (false);
937                 KASSERT(m->object == obj || m->object == NULL,
938                     ("vm_page_busy_acquire: page %p does not belong to %p",
939                     m, obj));
940         }
941 }
942
943 /*
944  *      vm_page_busy_downgrade:
945  *
946  *      Downgrade an exclusive busy page into a single shared busy page.
947  */
948 void
949 vm_page_busy_downgrade(vm_page_t m)
950 {
951         u_int x;
952
953         vm_page_assert_xbusied(m);
954
955         x = m->busy_lock;
956         for (;;) {
957                 if (atomic_fcmpset_rel_int(&m->busy_lock,
958                     &x, VPB_SHARERS_WORD(1)))
959                         break;
960         }
961         if ((x & VPB_BIT_WAITERS) != 0)
962                 wakeup(m);
963 }
964
965 /*
966  *
967  *      vm_page_busy_tryupgrade:
968  *
969  *      Attempt to upgrade a single shared busy into an exclusive busy.
970  */
971 int
972 vm_page_busy_tryupgrade(vm_page_t m)
973 {
974         u_int ce, x;
975
976         vm_page_assert_sbusied(m);
977
978         x = m->busy_lock;
979         ce = VPB_CURTHREAD_EXCLUSIVE;
980         for (;;) {
981                 if (VPB_SHARERS(x) > 1)
982                         return (0);
983                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
984                     ("vm_page_busy_tryupgrade: invalid lock state"));
985                 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
986                     ce | (x & VPB_BIT_WAITERS)))
987                         continue;
988                 return (1);
989         }
990 }
991
992 /*
993  *      vm_page_sbusied:
994  *
995  *      Return a positive value if the page is shared busied, 0 otherwise.
996  */
997 int
998 vm_page_sbusied(vm_page_t m)
999 {
1000         u_int x;
1001
1002         x = m->busy_lock;
1003         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1004 }
1005
1006 /*
1007  *      vm_page_sunbusy:
1008  *
1009  *      Shared unbusy a page.
1010  */
1011 void
1012 vm_page_sunbusy(vm_page_t m)
1013 {
1014         u_int x;
1015
1016         vm_page_assert_sbusied(m);
1017
1018         x = m->busy_lock;
1019         for (;;) {
1020                 if (VPB_SHARERS(x) > 1) {
1021                         if (atomic_fcmpset_int(&m->busy_lock, &x,
1022                             x - VPB_ONE_SHARER))
1023                                 break;
1024                         continue;
1025                 }
1026                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1027                     ("vm_page_sunbusy: invalid lock state"));
1028                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1029                         continue;
1030                 if ((x & VPB_BIT_WAITERS) == 0)
1031                         break;
1032                 wakeup(m);
1033                 break;
1034         }
1035 }
1036
1037 /*
1038  *      vm_page_busy_sleep:
1039  *
1040  *      Sleep if the page is busy, using the page pointer as wchan.
1041  *      This is used to implement the hard-path of busying mechanism.
1042  *
1043  *      If nonshared is true, sleep only if the page is xbusy.
1044  *
1045  *      The object lock must be held on entry and will be released on exit.
1046  */
1047 void
1048 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1049 {
1050         vm_object_t obj;
1051
1052         obj = m->object;
1053         VM_OBJECT_ASSERT_LOCKED(obj);
1054         vm_page_lock_assert(m, MA_NOTOWNED);
1055
1056         _vm_page_busy_sleep(obj, m, wmesg, nonshared, true);
1057 }
1058
1059 static void
1060 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg,
1061     bool nonshared, bool locked)
1062 {
1063         u_int x;
1064
1065         /*
1066          * If the object is busy we must wait for that to drain to zero
1067          * before trying the page again.
1068          */
1069         if (obj != NULL && vm_object_busied(obj)) {
1070                 if (locked)
1071                         VM_OBJECT_DROP(obj);
1072                 vm_object_busy_wait(obj, wmesg);
1073                 return;
1074         }
1075         sleepq_lock(m);
1076         x = m->busy_lock;
1077         if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
1078             ((x & VPB_BIT_WAITERS) == 0 &&
1079             !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
1080                 if (locked)
1081                         VM_OBJECT_DROP(obj);
1082                 sleepq_release(m);
1083                 return;
1084         }
1085         if (locked)
1086                 VM_OBJECT_DROP(obj);
1087         DROP_GIANT();
1088         sleepq_add(m, NULL, wmesg, 0, 0);
1089         sleepq_wait(m, PVM);
1090         PICKUP_GIANT();
1091 }
1092
1093 /*
1094  *      vm_page_trysbusy:
1095  *
1096  *      Try to shared busy a page.
1097  *      If the operation succeeds 1 is returned otherwise 0.
1098  *      The operation never sleeps.
1099  */
1100 int
1101 vm_page_trysbusy(vm_page_t m)
1102 {
1103         vm_object_t obj;
1104         u_int x;
1105
1106         obj = m->object;
1107         x = m->busy_lock;
1108         for (;;) {
1109                 if ((x & VPB_BIT_SHARED) == 0)
1110                         return (0);
1111                 /*
1112                  * Reduce the window for transient busies that will trigger
1113                  * false negatives in vm_page_ps_test().
1114                  */
1115                 if (obj != NULL && vm_object_busied(obj))
1116                         return (0);
1117                 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1118                     x + VPB_ONE_SHARER))
1119                         break;
1120         }
1121
1122         /* Refetch the object now that we're guaranteed that it is stable. */
1123         obj = m->object;
1124         if (obj != NULL && vm_object_busied(obj)) {
1125                 vm_page_sunbusy(m);
1126                 return (0);
1127         }
1128         return (1);
1129 }
1130
1131 /*
1132  *      vm_page_tryxbusy:
1133  *
1134  *      Try to exclusive busy a page.
1135  *      If the operation succeeds 1 is returned otherwise 0.
1136  *      The operation never sleeps.
1137  */
1138 int
1139 vm_page_tryxbusy(vm_page_t m)
1140 {
1141         vm_object_t obj;
1142
1143         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1144             VPB_CURTHREAD_EXCLUSIVE) == 0)
1145                 return (0);
1146
1147         obj = m->object;
1148         if (obj != NULL && vm_object_busied(obj)) {
1149                 vm_page_xunbusy(m);
1150                 return (0);
1151         }
1152         return (1);
1153 }
1154
1155 static void
1156 vm_page_xunbusy_hard_tail(vm_page_t m)
1157 {
1158         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1159         /* Wake the waiter. */
1160         wakeup(m);
1161 }
1162
1163 /*
1164  *      vm_page_xunbusy_hard:
1165  *
1166  *      Called when unbusy has failed because there is a waiter.
1167  */
1168 void
1169 vm_page_xunbusy_hard(vm_page_t m)
1170 {
1171         vm_page_assert_xbusied(m);
1172         vm_page_xunbusy_hard_tail(m);
1173 }
1174
1175 void
1176 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1177 {
1178         vm_page_assert_xbusied_unchecked(m);
1179         vm_page_xunbusy_hard_tail(m);
1180 }
1181
1182 /*
1183  * Avoid releasing and reacquiring the same page lock.
1184  */
1185 void
1186 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
1187 {
1188         struct mtx *mtx1;
1189
1190         mtx1 = vm_page_lockptr(m);
1191         if (*mtx == mtx1)
1192                 return;
1193         if (*mtx != NULL)
1194                 mtx_unlock(*mtx);
1195         *mtx = mtx1;
1196         mtx_lock(mtx1);
1197 }
1198
1199 /*
1200  *      vm_page_unhold_pages:
1201  *
1202  *      Unhold each of the pages that is referenced by the given array.
1203  */
1204 void
1205 vm_page_unhold_pages(vm_page_t *ma, int count)
1206 {
1207
1208         for (; count != 0; count--) {
1209                 vm_page_unwire(*ma, PQ_ACTIVE);
1210                 ma++;
1211         }
1212 }
1213
1214 vm_page_t
1215 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1216 {
1217         vm_page_t m;
1218
1219 #ifdef VM_PHYSSEG_SPARSE
1220         m = vm_phys_paddr_to_vm_page(pa);
1221         if (m == NULL)
1222                 m = vm_phys_fictitious_to_vm_page(pa);
1223         return (m);
1224 #elif defined(VM_PHYSSEG_DENSE)
1225         long pi;
1226
1227         pi = atop(pa);
1228         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1229                 m = &vm_page_array[pi - first_page];
1230                 return (m);
1231         }
1232         return (vm_phys_fictitious_to_vm_page(pa));
1233 #else
1234 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1235 #endif
1236 }
1237
1238 /*
1239  *      vm_page_getfake:
1240  *
1241  *      Create a fictitious page with the specified physical address and
1242  *      memory attribute.  The memory attribute is the only the machine-
1243  *      dependent aspect of a fictitious page that must be initialized.
1244  */
1245 vm_page_t
1246 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1247 {
1248         vm_page_t m;
1249
1250         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1251         vm_page_initfake(m, paddr, memattr);
1252         return (m);
1253 }
1254
1255 void
1256 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1257 {
1258
1259         if ((m->flags & PG_FICTITIOUS) != 0) {
1260                 /*
1261                  * The page's memattr might have changed since the
1262                  * previous initialization.  Update the pmap to the
1263                  * new memattr.
1264                  */
1265                 goto memattr;
1266         }
1267         m->phys_addr = paddr;
1268         m->a.queue = PQ_NONE;
1269         /* Fictitious pages don't use "segind". */
1270         m->flags = PG_FICTITIOUS;
1271         /* Fictitious pages don't use "order" or "pool". */
1272         m->oflags = VPO_UNMANAGED;
1273         m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1274         /* Fictitious pages are unevictable. */
1275         m->ref_count = 1;
1276         pmap_page_init(m);
1277 memattr:
1278         pmap_page_set_memattr(m, memattr);
1279 }
1280
1281 /*
1282  *      vm_page_putfake:
1283  *
1284  *      Release a fictitious page.
1285  */
1286 void
1287 vm_page_putfake(vm_page_t m)
1288 {
1289
1290         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1291         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1292             ("vm_page_putfake: bad page %p", m));
1293         if (vm_page_xbusied(m))
1294                 vm_page_xunbusy(m);
1295         uma_zfree(fakepg_zone, m);
1296 }
1297
1298 /*
1299  *      vm_page_updatefake:
1300  *
1301  *      Update the given fictitious page to the specified physical address and
1302  *      memory attribute.
1303  */
1304 void
1305 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1306 {
1307
1308         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1309             ("vm_page_updatefake: bad page %p", m));
1310         m->phys_addr = paddr;
1311         pmap_page_set_memattr(m, memattr);
1312 }
1313
1314 /*
1315  *      vm_page_free:
1316  *
1317  *      Free a page.
1318  */
1319 void
1320 vm_page_free(vm_page_t m)
1321 {
1322
1323         m->flags &= ~PG_ZERO;
1324         vm_page_free_toq(m);
1325 }
1326
1327 /*
1328  *      vm_page_free_zero:
1329  *
1330  *      Free a page to the zerod-pages queue
1331  */
1332 void
1333 vm_page_free_zero(vm_page_t m)
1334 {
1335
1336         m->flags |= PG_ZERO;
1337         vm_page_free_toq(m);
1338 }
1339
1340 /*
1341  * Unbusy and handle the page queueing for a page from a getpages request that
1342  * was optionally read ahead or behind.
1343  */
1344 void
1345 vm_page_readahead_finish(vm_page_t m)
1346 {
1347
1348         /* We shouldn't put invalid pages on queues. */
1349         KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1350
1351         /*
1352          * Since the page is not the actually needed one, whether it should
1353          * be activated or deactivated is not obvious.  Empirical results
1354          * have shown that deactivating the page is usually the best choice,
1355          * unless the page is wanted by another thread.
1356          */
1357         vm_page_lock(m);
1358         if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1359                 vm_page_activate(m);
1360         else
1361                 vm_page_deactivate(m);
1362         vm_page_unlock(m);
1363         vm_page_xunbusy_unchecked(m);
1364 }
1365
1366 /*
1367  *      vm_page_sleep_if_busy:
1368  *
1369  *      Sleep and release the object lock if the page is busied.
1370  *      Returns TRUE if the thread slept.
1371  *
1372  *      The given page must be unlocked and object containing it must
1373  *      be locked.
1374  */
1375 int
1376 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1377 {
1378         vm_object_t obj;
1379
1380         vm_page_lock_assert(m, MA_NOTOWNED);
1381         VM_OBJECT_ASSERT_WLOCKED(m->object);
1382
1383         /*
1384          * The page-specific object must be cached because page
1385          * identity can change during the sleep, causing the
1386          * re-lock of a different object.
1387          * It is assumed that a reference to the object is already
1388          * held by the callers.
1389          */
1390         obj = m->object;
1391         if (vm_page_busied(m) || (obj != NULL && obj->busy)) {
1392                 vm_page_busy_sleep(m, msg, false);
1393                 VM_OBJECT_WLOCK(obj);
1394                 return (TRUE);
1395         }
1396         return (FALSE);
1397 }
1398
1399 /*
1400  *      vm_page_sleep_if_xbusy:
1401  *
1402  *      Sleep and release the object lock if the page is xbusied.
1403  *      Returns TRUE if the thread slept.
1404  *
1405  *      The given page must be unlocked and object containing it must
1406  *      be locked.
1407  */
1408 int
1409 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg)
1410 {
1411         vm_object_t obj;
1412
1413         vm_page_lock_assert(m, MA_NOTOWNED);
1414         VM_OBJECT_ASSERT_WLOCKED(m->object);
1415
1416         /*
1417          * The page-specific object must be cached because page
1418          * identity can change during the sleep, causing the
1419          * re-lock of a different object.
1420          * It is assumed that a reference to the object is already
1421          * held by the callers.
1422          */
1423         obj = m->object;
1424         if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) {
1425                 vm_page_busy_sleep(m, msg, true);
1426                 VM_OBJECT_WLOCK(obj);
1427                 return (TRUE);
1428         }
1429         return (FALSE);
1430 }
1431
1432 /*
1433  *      vm_page_dirty_KBI:              [ internal use only ]
1434  *
1435  *      Set all bits in the page's dirty field.
1436  *
1437  *      The object containing the specified page must be locked if the
1438  *      call is made from the machine-independent layer.
1439  *
1440  *      See vm_page_clear_dirty_mask().
1441  *
1442  *      This function should only be called by vm_page_dirty().
1443  */
1444 void
1445 vm_page_dirty_KBI(vm_page_t m)
1446 {
1447
1448         /* Refer to this operation by its public name. */
1449         KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1450         m->dirty = VM_PAGE_BITS_ALL;
1451 }
1452
1453 /*
1454  *      vm_page_insert:         [ internal use only ]
1455  *
1456  *      Inserts the given mem entry into the object and object list.
1457  *
1458  *      The object must be locked.
1459  */
1460 int
1461 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1462 {
1463         vm_page_t mpred;
1464
1465         VM_OBJECT_ASSERT_WLOCKED(object);
1466         mpred = vm_radix_lookup_le(&object->rtree, pindex);
1467         return (vm_page_insert_after(m, object, pindex, mpred));
1468 }
1469
1470 /*
1471  *      vm_page_insert_after:
1472  *
1473  *      Inserts the page "m" into the specified object at offset "pindex".
1474  *
1475  *      The page "mpred" must immediately precede the offset "pindex" within
1476  *      the specified object.
1477  *
1478  *      The object must be locked.
1479  */
1480 static int
1481 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1482     vm_page_t mpred)
1483 {
1484         vm_page_t msucc;
1485
1486         VM_OBJECT_ASSERT_WLOCKED(object);
1487         KASSERT(m->object == NULL,
1488             ("vm_page_insert_after: page already inserted"));
1489         if (mpred != NULL) {
1490                 KASSERT(mpred->object == object,
1491                     ("vm_page_insert_after: object doesn't contain mpred"));
1492                 KASSERT(mpred->pindex < pindex,
1493                     ("vm_page_insert_after: mpred doesn't precede pindex"));
1494                 msucc = TAILQ_NEXT(mpred, listq);
1495         } else
1496                 msucc = TAILQ_FIRST(&object->memq);
1497         if (msucc != NULL)
1498                 KASSERT(msucc->pindex > pindex,
1499                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
1500
1501         /*
1502          * Record the object/offset pair in this page.
1503          */
1504         m->object = object;
1505         m->pindex = pindex;
1506         m->ref_count |= VPRC_OBJREF;
1507
1508         /*
1509          * Now link into the object's ordered list of backed pages.
1510          */
1511         if (vm_radix_insert(&object->rtree, m)) {
1512                 m->object = NULL;
1513                 m->pindex = 0;
1514                 m->ref_count &= ~VPRC_OBJREF;
1515                 return (1);
1516         }
1517         vm_page_insert_radixdone(m, object, mpred);
1518         return (0);
1519 }
1520
1521 /*
1522  *      vm_page_insert_radixdone:
1523  *
1524  *      Complete page "m" insertion into the specified object after the
1525  *      radix trie hooking.
1526  *
1527  *      The page "mpred" must precede the offset "m->pindex" within the
1528  *      specified object.
1529  *
1530  *      The object must be locked.
1531  */
1532 static void
1533 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1534 {
1535
1536         VM_OBJECT_ASSERT_WLOCKED(object);
1537         KASSERT(object != NULL && m->object == object,
1538             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1539         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1540             ("vm_page_insert_radixdone: page %p is missing object ref", m));
1541         if (mpred != NULL) {
1542                 KASSERT(mpred->object == object,
1543                     ("vm_page_insert_radixdone: object doesn't contain mpred"));
1544                 KASSERT(mpred->pindex < m->pindex,
1545                     ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1546         }
1547
1548         if (mpred != NULL)
1549                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1550         else
1551                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1552
1553         /*
1554          * Show that the object has one more resident page.
1555          */
1556         object->resident_page_count++;
1557
1558         /*
1559          * Hold the vnode until the last page is released.
1560          */
1561         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1562                 vhold(object->handle);
1563
1564         /*
1565          * Since we are inserting a new and possibly dirty page,
1566          * update the object's generation count.
1567          */
1568         if (pmap_page_is_write_mapped(m))
1569                 vm_object_set_writeable_dirty(object);
1570 }
1571
1572 /*
1573  * Do the work to remove a page from its object.  The caller is responsible for
1574  * updating the page's fields to reflect this removal.
1575  */
1576 static void
1577 vm_page_object_remove(vm_page_t m)
1578 {
1579         vm_object_t object;
1580         vm_page_t mrem;
1581
1582         object = m->object;
1583         VM_OBJECT_ASSERT_WLOCKED(object);
1584         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1585             ("page %p is missing its object ref", m));
1586
1587         /* Deferred free of swap space. */
1588         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1589                 vm_pager_page_unswapped(m);
1590
1591         mrem = vm_radix_remove(&object->rtree, m->pindex);
1592         KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1593
1594         /*
1595          * Now remove from the object's list of backed pages.
1596          */
1597         TAILQ_REMOVE(&object->memq, m, listq);
1598
1599         /*
1600          * And show that the object has one fewer resident page.
1601          */
1602         object->resident_page_count--;
1603
1604         /*
1605          * The vnode may now be recycled.
1606          */
1607         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1608                 vdrop(object->handle);
1609 }
1610
1611 /*
1612  *      vm_page_remove:
1613  *
1614  *      Removes the specified page from its containing object, but does not
1615  *      invalidate any backing storage.  Returns true if the object's reference
1616  *      was the last reference to the page, and false otherwise.
1617  *
1618  *      The object must be locked.
1619  */
1620 bool
1621 vm_page_remove(vm_page_t m)
1622 {
1623
1624         vm_page_object_remove(m);
1625         m->object = NULL;
1626         return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1627 }
1628
1629 /*
1630  *      vm_page_lookup:
1631  *
1632  *      Returns the page associated with the object/offset
1633  *      pair specified; if none is found, NULL is returned.
1634  *
1635  *      The object must be locked.
1636  */
1637 vm_page_t
1638 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1639 {
1640
1641         VM_OBJECT_ASSERT_LOCKED(object);
1642         return (vm_radix_lookup(&object->rtree, pindex));
1643 }
1644
1645 /*
1646  *      vm_page_find_least:
1647  *
1648  *      Returns the page associated with the object with least pindex
1649  *      greater than or equal to the parameter pindex, or NULL.
1650  *
1651  *      The object must be locked.
1652  */
1653 vm_page_t
1654 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1655 {
1656         vm_page_t m;
1657
1658         VM_OBJECT_ASSERT_LOCKED(object);
1659         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1660                 m = vm_radix_lookup_ge(&object->rtree, pindex);
1661         return (m);
1662 }
1663
1664 /*
1665  * Returns the given page's successor (by pindex) within the object if it is
1666  * resident; if none is found, NULL is returned.
1667  *
1668  * The object must be locked.
1669  */
1670 vm_page_t
1671 vm_page_next(vm_page_t m)
1672 {
1673         vm_page_t next;
1674
1675         VM_OBJECT_ASSERT_LOCKED(m->object);
1676         if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1677                 MPASS(next->object == m->object);
1678                 if (next->pindex != m->pindex + 1)
1679                         next = NULL;
1680         }
1681         return (next);
1682 }
1683
1684 /*
1685  * Returns the given page's predecessor (by pindex) within the object if it is
1686  * resident; if none is found, NULL is returned.
1687  *
1688  * The object must be locked.
1689  */
1690 vm_page_t
1691 vm_page_prev(vm_page_t m)
1692 {
1693         vm_page_t prev;
1694
1695         VM_OBJECT_ASSERT_LOCKED(m->object);
1696         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1697                 MPASS(prev->object == m->object);
1698                 if (prev->pindex != m->pindex - 1)
1699                         prev = NULL;
1700         }
1701         return (prev);
1702 }
1703
1704 /*
1705  * Uses the page mnew as a replacement for an existing page at index
1706  * pindex which must be already present in the object.
1707  */
1708 vm_page_t
1709 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1710 {
1711         vm_page_t mold;
1712
1713         VM_OBJECT_ASSERT_WLOCKED(object);
1714         KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1715             ("vm_page_replace: page %p already in object", mnew));
1716
1717         /*
1718          * This function mostly follows vm_page_insert() and
1719          * vm_page_remove() without the radix, object count and vnode
1720          * dance.  Double check such functions for more comments.
1721          */
1722
1723         mnew->object = object;
1724         mnew->pindex = pindex;
1725         atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1726         mold = vm_radix_replace(&object->rtree, mnew);
1727
1728         /* Keep the resident page list in sorted order. */
1729         TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1730         TAILQ_REMOVE(&object->memq, mold, listq);
1731
1732         mold->object = NULL;
1733         atomic_clear_int(&mold->ref_count, VPRC_OBJREF);
1734         vm_page_xunbusy(mold);
1735
1736         /*
1737          * The object's resident_page_count does not change because we have
1738          * swapped one page for another, but the generation count should
1739          * change if the page is dirty.
1740          */
1741         if (pmap_page_is_write_mapped(mnew))
1742                 vm_object_set_writeable_dirty(object);
1743         return (mold);
1744 }
1745
1746 /*
1747  *      vm_page_rename:
1748  *
1749  *      Move the given memory entry from its
1750  *      current object to the specified target object/offset.
1751  *
1752  *      Note: swap associated with the page must be invalidated by the move.  We
1753  *            have to do this for several reasons:  (1) we aren't freeing the
1754  *            page, (2) we are dirtying the page, (3) the VM system is probably
1755  *            moving the page from object A to B, and will then later move
1756  *            the backing store from A to B and we can't have a conflict.
1757  *
1758  *      Note: we *always* dirty the page.  It is necessary both for the
1759  *            fact that we moved it, and because we may be invalidating
1760  *            swap.
1761  *
1762  *      The objects must be locked.
1763  */
1764 int
1765 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1766 {
1767         vm_page_t mpred;
1768         vm_pindex_t opidx;
1769
1770         VM_OBJECT_ASSERT_WLOCKED(new_object);
1771
1772         KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1773         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1774         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1775             ("vm_page_rename: pindex already renamed"));
1776
1777         /*
1778          * Create a custom version of vm_page_insert() which does not depend
1779          * by m_prev and can cheat on the implementation aspects of the
1780          * function.
1781          */
1782         opidx = m->pindex;
1783         m->pindex = new_pindex;
1784         if (vm_radix_insert(&new_object->rtree, m)) {
1785                 m->pindex = opidx;
1786                 return (1);
1787         }
1788
1789         /*
1790          * The operation cannot fail anymore.  The removal must happen before
1791          * the listq iterator is tainted.
1792          */
1793         m->pindex = opidx;
1794         vm_page_object_remove(m);
1795
1796         /* Return back to the new pindex to complete vm_page_insert(). */
1797         m->pindex = new_pindex;
1798         m->object = new_object;
1799
1800         vm_page_insert_radixdone(m, new_object, mpred);
1801         vm_page_dirty(m);
1802         return (0);
1803 }
1804
1805 /*
1806  *      vm_page_alloc:
1807  *
1808  *      Allocate and return a page that is associated with the specified
1809  *      object and offset pair.  By default, this page is exclusive busied.
1810  *
1811  *      The caller must always specify an allocation class.
1812  *
1813  *      allocation classes:
1814  *      VM_ALLOC_NORMAL         normal process request
1815  *      VM_ALLOC_SYSTEM         system *really* needs a page
1816  *      VM_ALLOC_INTERRUPT      interrupt time request
1817  *
1818  *      optional allocation flags:
1819  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
1820  *                              intends to allocate
1821  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1822  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1823  *      VM_ALLOC_NOOBJ          page is not associated with an object and
1824  *                              should not be exclusive busy
1825  *      VM_ALLOC_SBUSY          shared busy the allocated page
1826  *      VM_ALLOC_WIRED          wire the allocated page
1827  *      VM_ALLOC_ZERO           prefer a zeroed page
1828  */
1829 vm_page_t
1830 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1831 {
1832
1833         return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1834             vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1835 }
1836
1837 vm_page_t
1838 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1839     int req)
1840 {
1841
1842         return (vm_page_alloc_domain_after(object, pindex, domain, req,
1843             object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1844             NULL));
1845 }
1846
1847 /*
1848  * Allocate a page in the specified object with the given page index.  To
1849  * optimize insertion of the page into the object, the caller must also specifiy
1850  * the resident page in the object with largest index smaller than the given
1851  * page index, or NULL if no such page exists.
1852  */
1853 vm_page_t
1854 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1855     int req, vm_page_t mpred)
1856 {
1857         struct vm_domainset_iter di;
1858         vm_page_t m;
1859         int domain;
1860
1861         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1862         do {
1863                 m = vm_page_alloc_domain_after(object, pindex, domain, req,
1864                     mpred);
1865                 if (m != NULL)
1866                         break;
1867         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
1868
1869         return (m);
1870 }
1871
1872 /*
1873  * Returns true if the number of free pages exceeds the minimum
1874  * for the request class and false otherwise.
1875  */
1876 static int
1877 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1878 {
1879         u_int limit, old, new;
1880
1881         if (req_class == VM_ALLOC_INTERRUPT)
1882                 limit = 0;
1883         else if (req_class == VM_ALLOC_SYSTEM)
1884                 limit = vmd->vmd_interrupt_free_min;
1885         else
1886                 limit = vmd->vmd_free_reserved;
1887
1888         /*
1889          * Attempt to reserve the pages.  Fail if we're below the limit.
1890          */
1891         limit += npages;
1892         old = vmd->vmd_free_count;
1893         do {
1894                 if (old < limit)
1895                         return (0);
1896                 new = old - npages;
1897         } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1898
1899         /* Wake the page daemon if we've crossed the threshold. */
1900         if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1901                 pagedaemon_wakeup(vmd->vmd_domain);
1902
1903         /* Only update bitsets on transitions. */
1904         if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1905             (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1906                 vm_domain_set(vmd);
1907
1908         return (1);
1909 }
1910
1911 int
1912 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1913 {
1914         int req_class;
1915
1916         /*
1917          * The page daemon is allowed to dig deeper into the free page list.
1918          */
1919         req_class = req & VM_ALLOC_CLASS_MASK;
1920         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1921                 req_class = VM_ALLOC_SYSTEM;
1922         return (_vm_domain_allocate(vmd, req_class, npages));
1923 }
1924
1925 vm_page_t
1926 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1927     int req, vm_page_t mpred)
1928 {
1929         struct vm_domain *vmd;
1930         vm_page_t m;
1931         int flags, pool;
1932
1933         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1934             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1935             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1936             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1937             ("inconsistent object(%p)/req(%x)", object, req));
1938         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1939             ("Can't sleep and retry object insertion."));
1940         KASSERT(mpred == NULL || mpred->pindex < pindex,
1941             ("mpred %p doesn't precede pindex 0x%jx", mpred,
1942             (uintmax_t)pindex));
1943         if (object != NULL)
1944                 VM_OBJECT_ASSERT_WLOCKED(object);
1945
1946         flags = 0;
1947         m = NULL;
1948         pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
1949 again:
1950 #if VM_NRESERVLEVEL > 0
1951         /*
1952          * Can we allocate the page from a reservation?
1953          */
1954         if (vm_object_reserv(object) &&
1955             (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
1956             NULL) {
1957                 domain = vm_phys_domain(m);
1958                 vmd = VM_DOMAIN(domain);
1959                 goto found;
1960         }
1961 #endif
1962         vmd = VM_DOMAIN(domain);
1963         if (vmd->vmd_pgcache[pool].zone != NULL) {
1964                 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
1965                 if (m != NULL) {
1966                         flags |= PG_PCPU_CACHE;
1967                         goto found;
1968                 }
1969         }
1970         if (vm_domain_allocate(vmd, req, 1)) {
1971                 /*
1972                  * If not, allocate it from the free page queues.
1973                  */
1974                 vm_domain_free_lock(vmd);
1975                 m = vm_phys_alloc_pages(domain, pool, 0);
1976                 vm_domain_free_unlock(vmd);
1977                 if (m == NULL) {
1978                         vm_domain_freecnt_inc(vmd, 1);
1979 #if VM_NRESERVLEVEL > 0
1980                         if (vm_reserv_reclaim_inactive(domain))
1981                                 goto again;
1982 #endif
1983                 }
1984         }
1985         if (m == NULL) {
1986                 /*
1987                  * Not allocatable, give up.
1988                  */
1989                 if (vm_domain_alloc_fail(vmd, object, req))
1990                         goto again;
1991                 return (NULL);
1992         }
1993
1994         /*
1995          * At this point we had better have found a good page.
1996          */
1997 found:
1998         vm_page_dequeue(m);
1999         vm_page_alloc_check(m);
2000
2001         /*
2002          * Initialize the page.  Only the PG_ZERO flag is inherited.
2003          */
2004         if ((req & VM_ALLOC_ZERO) != 0)
2005                 flags |= (m->flags & PG_ZERO);
2006         if ((req & VM_ALLOC_NODUMP) != 0)
2007                 flags |= PG_NODUMP;
2008         m->flags = flags;
2009         m->a.flags = 0;
2010         m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2011             VPO_UNMANAGED : 0;
2012         m->busy_lock = VPB_UNBUSIED;
2013         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2014                 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2015         if ((req & VM_ALLOC_SBUSY) != 0)
2016                 m->busy_lock = VPB_SHARERS_WORD(1);
2017         if (req & VM_ALLOC_WIRED) {
2018                 /*
2019                  * The page lock is not required for wiring a page until that
2020                  * page is inserted into the object.
2021                  */
2022                 vm_wire_add(1);
2023                 m->ref_count = 1;
2024         }
2025         m->a.act_count = 0;
2026
2027         if (object != NULL) {
2028                 if (vm_page_insert_after(m, object, pindex, mpred)) {
2029                         if (req & VM_ALLOC_WIRED) {
2030                                 vm_wire_sub(1);
2031                                 m->ref_count = 0;
2032                         }
2033                         KASSERT(m->object == NULL, ("page %p has object", m));
2034                         m->oflags = VPO_UNMANAGED;
2035                         m->busy_lock = VPB_UNBUSIED;
2036                         /* Don't change PG_ZERO. */
2037                         vm_page_free_toq(m);
2038                         if (req & VM_ALLOC_WAITFAIL) {
2039                                 VM_OBJECT_WUNLOCK(object);
2040                                 vm_radix_wait();
2041                                 VM_OBJECT_WLOCK(object);
2042                         }
2043                         return (NULL);
2044                 }
2045
2046                 /* Ignore device objects; the pager sets "memattr" for them. */
2047                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2048                     (object->flags & OBJ_FICTITIOUS) == 0)
2049                         pmap_page_set_memattr(m, object->memattr);
2050         } else
2051                 m->pindex = pindex;
2052
2053         return (m);
2054 }
2055
2056 /*
2057  *      vm_page_alloc_contig:
2058  *
2059  *      Allocate a contiguous set of physical pages of the given size "npages"
2060  *      from the free lists.  All of the physical pages must be at or above
2061  *      the given physical address "low" and below the given physical address
2062  *      "high".  The given value "alignment" determines the alignment of the
2063  *      first physical page in the set.  If the given value "boundary" is
2064  *      non-zero, then the set of physical pages cannot cross any physical
2065  *      address boundary that is a multiple of that value.  Both "alignment"
2066  *      and "boundary" must be a power of two.
2067  *
2068  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2069  *      then the memory attribute setting for the physical pages is configured
2070  *      to the object's memory attribute setting.  Otherwise, the memory
2071  *      attribute setting for the physical pages is configured to "memattr",
2072  *      overriding the object's memory attribute setting.  However, if the
2073  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2074  *      memory attribute setting for the physical pages cannot be configured
2075  *      to VM_MEMATTR_DEFAULT.
2076  *
2077  *      The specified object may not contain fictitious pages.
2078  *
2079  *      The caller must always specify an allocation class.
2080  *
2081  *      allocation classes:
2082  *      VM_ALLOC_NORMAL         normal process request
2083  *      VM_ALLOC_SYSTEM         system *really* needs a page
2084  *      VM_ALLOC_INTERRUPT      interrupt time request
2085  *
2086  *      optional allocation flags:
2087  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
2088  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
2089  *      VM_ALLOC_NOOBJ          page is not associated with an object and
2090  *                              should not be exclusive busy
2091  *      VM_ALLOC_SBUSY          shared busy the allocated page
2092  *      VM_ALLOC_WIRED          wire the allocated page
2093  *      VM_ALLOC_ZERO           prefer a zeroed page
2094  */
2095 vm_page_t
2096 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2097     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2098     vm_paddr_t boundary, vm_memattr_t memattr)
2099 {
2100         struct vm_domainset_iter di;
2101         vm_page_t m;
2102         int domain;
2103
2104         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2105         do {
2106                 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2107                     npages, low, high, alignment, boundary, memattr);
2108                 if (m != NULL)
2109                         break;
2110         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2111
2112         return (m);
2113 }
2114
2115 vm_page_t
2116 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2117     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2118     vm_paddr_t boundary, vm_memattr_t memattr)
2119 {
2120         struct vm_domain *vmd;
2121         vm_page_t m, m_ret, mpred;
2122         u_int busy_lock, flags, oflags;
2123
2124         mpred = NULL;   /* XXX: pacify gcc */
2125         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2126             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2127             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2128             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2129             ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2130             req));
2131         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2132             ("Can't sleep and retry object insertion."));
2133         if (object != NULL) {
2134                 VM_OBJECT_ASSERT_WLOCKED(object);
2135                 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2136                     ("vm_page_alloc_contig: object %p has fictitious pages",
2137                     object));
2138         }
2139         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2140
2141         if (object != NULL) {
2142                 mpred = vm_radix_lookup_le(&object->rtree, pindex);
2143                 KASSERT(mpred == NULL || mpred->pindex != pindex,
2144                     ("vm_page_alloc_contig: pindex already allocated"));
2145         }
2146
2147         /*
2148          * Can we allocate the pages without the number of free pages falling
2149          * below the lower bound for the allocation class?
2150          */
2151         m_ret = NULL;
2152 again:
2153 #if VM_NRESERVLEVEL > 0
2154         /*
2155          * Can we allocate the pages from a reservation?
2156          */
2157         if (vm_object_reserv(object) &&
2158             (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2159             mpred, npages, low, high, alignment, boundary)) != NULL) {
2160                 domain = vm_phys_domain(m_ret);
2161                 vmd = VM_DOMAIN(domain);
2162                 goto found;
2163         }
2164 #endif
2165         vmd = VM_DOMAIN(domain);
2166         if (vm_domain_allocate(vmd, req, npages)) {
2167                 /*
2168                  * allocate them from the free page queues.
2169                  */
2170                 vm_domain_free_lock(vmd);
2171                 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2172                     alignment, boundary);
2173                 vm_domain_free_unlock(vmd);
2174                 if (m_ret == NULL) {
2175                         vm_domain_freecnt_inc(vmd, npages);
2176 #if VM_NRESERVLEVEL > 0
2177                         if (vm_reserv_reclaim_contig(domain, npages, low,
2178                             high, alignment, boundary))
2179                                 goto again;
2180 #endif
2181                 }
2182         }
2183         if (m_ret == NULL) {
2184                 if (vm_domain_alloc_fail(vmd, object, req))
2185                         goto again;
2186                 return (NULL);
2187         }
2188 #if VM_NRESERVLEVEL > 0
2189 found:
2190 #endif
2191         for (m = m_ret; m < &m_ret[npages]; m++) {
2192                 vm_page_dequeue(m);
2193                 vm_page_alloc_check(m);
2194         }
2195
2196         /*
2197          * Initialize the pages.  Only the PG_ZERO flag is inherited.
2198          */
2199         flags = 0;
2200         if ((req & VM_ALLOC_ZERO) != 0)
2201                 flags = PG_ZERO;
2202         if ((req & VM_ALLOC_NODUMP) != 0)
2203                 flags |= PG_NODUMP;
2204         oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2205             VPO_UNMANAGED : 0;
2206         busy_lock = VPB_UNBUSIED;
2207         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2208                 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2209         if ((req & VM_ALLOC_SBUSY) != 0)
2210                 busy_lock = VPB_SHARERS_WORD(1);
2211         if ((req & VM_ALLOC_WIRED) != 0)
2212                 vm_wire_add(npages);
2213         if (object != NULL) {
2214                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2215                     memattr == VM_MEMATTR_DEFAULT)
2216                         memattr = object->memattr;
2217         }
2218         for (m = m_ret; m < &m_ret[npages]; m++) {
2219                 m->a.flags = 0;
2220                 m->flags = (m->flags | PG_NODUMP) & flags;
2221                 m->busy_lock = busy_lock;
2222                 if ((req & VM_ALLOC_WIRED) != 0)
2223                         m->ref_count = 1;
2224                 m->a.act_count = 0;
2225                 m->oflags = oflags;
2226                 if (object != NULL) {
2227                         if (vm_page_insert_after(m, object, pindex, mpred)) {
2228                                 if ((req & VM_ALLOC_WIRED) != 0)
2229                                         vm_wire_sub(npages);
2230                                 KASSERT(m->object == NULL,
2231                                     ("page %p has object", m));
2232                                 mpred = m;
2233                                 for (m = m_ret; m < &m_ret[npages]; m++) {
2234                                         if (m <= mpred &&
2235                                             (req & VM_ALLOC_WIRED) != 0)
2236                                                 m->ref_count = 0;
2237                                         m->oflags = VPO_UNMANAGED;
2238                                         m->busy_lock = VPB_UNBUSIED;
2239                                         /* Don't change PG_ZERO. */
2240                                         vm_page_free_toq(m);
2241                                 }
2242                                 if (req & VM_ALLOC_WAITFAIL) {
2243                                         VM_OBJECT_WUNLOCK(object);
2244                                         vm_radix_wait();
2245                                         VM_OBJECT_WLOCK(object);
2246                                 }
2247                                 return (NULL);
2248                         }
2249                         mpred = m;
2250                 } else
2251                         m->pindex = pindex;
2252                 if (memattr != VM_MEMATTR_DEFAULT)
2253                         pmap_page_set_memattr(m, memattr);
2254                 pindex++;
2255         }
2256         return (m_ret);
2257 }
2258
2259 /*
2260  * Check a page that has been freshly dequeued from a freelist.
2261  */
2262 static void
2263 vm_page_alloc_check(vm_page_t m)
2264 {
2265
2266         KASSERT(m->object == NULL, ("page %p has object", m));
2267         KASSERT(m->a.queue == PQ_NONE &&
2268             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2269             ("page %p has unexpected queue %d, flags %#x",
2270             m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2271         KASSERT(m->ref_count == 0, ("page %p has references", m));
2272         KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2273         KASSERT(m->dirty == 0, ("page %p is dirty", m));
2274         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2275             ("page %p has unexpected memattr %d",
2276             m, pmap_page_get_memattr(m)));
2277         KASSERT(m->valid == 0, ("free page %p is valid", m));
2278 }
2279
2280 /*
2281  *      vm_page_alloc_freelist:
2282  *
2283  *      Allocate a physical page from the specified free page list.
2284  *
2285  *      The caller must always specify an allocation class.
2286  *
2287  *      allocation classes:
2288  *      VM_ALLOC_NORMAL         normal process request
2289  *      VM_ALLOC_SYSTEM         system *really* needs a page
2290  *      VM_ALLOC_INTERRUPT      interrupt time request
2291  *
2292  *      optional allocation flags:
2293  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
2294  *                              intends to allocate
2295  *      VM_ALLOC_WIRED          wire the allocated page
2296  *      VM_ALLOC_ZERO           prefer a zeroed page
2297  */
2298 vm_page_t
2299 vm_page_alloc_freelist(int freelist, int req)
2300 {
2301         struct vm_domainset_iter di;
2302         vm_page_t m;
2303         int domain;
2304
2305         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2306         do {
2307                 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2308                 if (m != NULL)
2309                         break;
2310         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2311
2312         return (m);
2313 }
2314
2315 vm_page_t
2316 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2317 {
2318         struct vm_domain *vmd;
2319         vm_page_t m;
2320         u_int flags;
2321
2322         m = NULL;
2323         vmd = VM_DOMAIN(domain);
2324 again:
2325         if (vm_domain_allocate(vmd, req, 1)) {
2326                 vm_domain_free_lock(vmd);
2327                 m = vm_phys_alloc_freelist_pages(domain, freelist,
2328                     VM_FREEPOOL_DIRECT, 0);
2329                 vm_domain_free_unlock(vmd);
2330                 if (m == NULL)
2331                         vm_domain_freecnt_inc(vmd, 1);
2332         }
2333         if (m == NULL) {
2334                 if (vm_domain_alloc_fail(vmd, NULL, req))
2335                         goto again;
2336                 return (NULL);
2337         }
2338         vm_page_dequeue(m);
2339         vm_page_alloc_check(m);
2340
2341         /*
2342          * Initialize the page.  Only the PG_ZERO flag is inherited.
2343          */
2344         m->a.flags = 0;
2345         flags = 0;
2346         if ((req & VM_ALLOC_ZERO) != 0)
2347                 flags = PG_ZERO;
2348         m->flags &= flags;
2349         if ((req & VM_ALLOC_WIRED) != 0) {
2350                 /*
2351                  * The page lock is not required for wiring a page that does
2352                  * not belong to an object.
2353                  */
2354                 vm_wire_add(1);
2355                 m->ref_count = 1;
2356         }
2357         /* Unmanaged pages don't use "act_count". */
2358         m->oflags = VPO_UNMANAGED;
2359         return (m);
2360 }
2361
2362 static int
2363 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2364 {
2365         struct vm_domain *vmd;
2366         struct vm_pgcache *pgcache;
2367         int i;
2368
2369         pgcache = arg;
2370         vmd = VM_DOMAIN(pgcache->domain);
2371
2372         /*
2373          * The page daemon should avoid creating extra memory pressure since its
2374          * main purpose is to replenish the store of free pages.
2375          */
2376         if (vmd->vmd_severeset || curproc == pageproc ||
2377             !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2378                 return (0);
2379         domain = vmd->vmd_domain;
2380         vm_domain_free_lock(vmd);
2381         i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2382             (vm_page_t *)store);
2383         vm_domain_free_unlock(vmd);
2384         if (cnt != i)
2385                 vm_domain_freecnt_inc(vmd, cnt - i);
2386
2387         return (i);
2388 }
2389
2390 static void
2391 vm_page_zone_release(void *arg, void **store, int cnt)
2392 {
2393         struct vm_domain *vmd;
2394         struct vm_pgcache *pgcache;
2395         vm_page_t m;
2396         int i;
2397
2398         pgcache = arg;
2399         vmd = VM_DOMAIN(pgcache->domain);
2400         vm_domain_free_lock(vmd);
2401         for (i = 0; i < cnt; i++) {
2402                 m = (vm_page_t)store[i];
2403                 vm_phys_free_pages(m, 0);
2404         }
2405         vm_domain_free_unlock(vmd);
2406         vm_domain_freecnt_inc(vmd, cnt);
2407 }
2408
2409 #define VPSC_ANY        0       /* No restrictions. */
2410 #define VPSC_NORESERV   1       /* Skip reservations; implies VPSC_NOSUPER. */
2411 #define VPSC_NOSUPER    2       /* Skip superpages. */
2412
2413 /*
2414  *      vm_page_scan_contig:
2415  *
2416  *      Scan vm_page_array[] between the specified entries "m_start" and
2417  *      "m_end" for a run of contiguous physical pages that satisfy the
2418  *      specified conditions, and return the lowest page in the run.  The
2419  *      specified "alignment" determines the alignment of the lowest physical
2420  *      page in the run.  If the specified "boundary" is non-zero, then the
2421  *      run of physical pages cannot span a physical address that is a
2422  *      multiple of "boundary".
2423  *
2424  *      "m_end" is never dereferenced, so it need not point to a vm_page
2425  *      structure within vm_page_array[].
2426  *
2427  *      "npages" must be greater than zero.  "m_start" and "m_end" must not
2428  *      span a hole (or discontiguity) in the physical address space.  Both
2429  *      "alignment" and "boundary" must be a power of two.
2430  */
2431 vm_page_t
2432 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2433     u_long alignment, vm_paddr_t boundary, int options)
2434 {
2435         struct mtx *m_mtx;
2436         vm_object_t object;
2437         vm_paddr_t pa;
2438         vm_page_t m, m_run;
2439 #if VM_NRESERVLEVEL > 0
2440         int level;
2441 #endif
2442         int m_inc, order, run_ext, run_len;
2443
2444         KASSERT(npages > 0, ("npages is 0"));
2445         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2446         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2447         m_run = NULL;
2448         run_len = 0;
2449         m_mtx = NULL;
2450         for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2451                 KASSERT((m->flags & PG_MARKER) == 0,
2452                     ("page %p is PG_MARKER", m));
2453                 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2454                     ("fictitious page %p has invalid ref count", m));
2455
2456                 /*
2457                  * If the current page would be the start of a run, check its
2458                  * physical address against the end, alignment, and boundary
2459                  * conditions.  If it doesn't satisfy these conditions, either
2460                  * terminate the scan or advance to the next page that
2461                  * satisfies the failed condition.
2462                  */
2463                 if (run_len == 0) {
2464                         KASSERT(m_run == NULL, ("m_run != NULL"));
2465                         if (m + npages > m_end)
2466                                 break;
2467                         pa = VM_PAGE_TO_PHYS(m);
2468                         if ((pa & (alignment - 1)) != 0) {
2469                                 m_inc = atop(roundup2(pa, alignment) - pa);
2470                                 continue;
2471                         }
2472                         if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2473                             boundary) != 0) {
2474                                 m_inc = atop(roundup2(pa, boundary) - pa);
2475                                 continue;
2476                         }
2477                 } else
2478                         KASSERT(m_run != NULL, ("m_run == NULL"));
2479
2480                 vm_page_change_lock(m, &m_mtx);
2481                 m_inc = 1;
2482 retry:
2483                 if (vm_page_wired(m))
2484                         run_ext = 0;
2485 #if VM_NRESERVLEVEL > 0
2486                 else if ((level = vm_reserv_level(m)) >= 0 &&
2487                     (options & VPSC_NORESERV) != 0) {
2488                         run_ext = 0;
2489                         /* Advance to the end of the reservation. */
2490                         pa = VM_PAGE_TO_PHYS(m);
2491                         m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2492                             pa);
2493                 }
2494 #endif
2495                 else if ((object = m->object) != NULL) {
2496                         /*
2497                          * The page is considered eligible for relocation if
2498                          * and only if it could be laundered or reclaimed by
2499                          * the page daemon.
2500                          */
2501                         if (!VM_OBJECT_TRYRLOCK(object)) {
2502                                 mtx_unlock(m_mtx);
2503                                 VM_OBJECT_RLOCK(object);
2504                                 mtx_lock(m_mtx);
2505                                 if (m->object != object) {
2506                                         /*
2507                                          * The page may have been freed.
2508                                          */
2509                                         VM_OBJECT_RUNLOCK(object);
2510                                         goto retry;
2511                                 }
2512                         }
2513                         /* Don't care: PG_NODUMP, PG_ZERO. */
2514                         if (object->type != OBJT_DEFAULT &&
2515                             object->type != OBJT_SWAP &&
2516                             object->type != OBJT_VNODE) {
2517                                 run_ext = 0;
2518 #if VM_NRESERVLEVEL > 0
2519                         } else if ((options & VPSC_NOSUPER) != 0 &&
2520                             (level = vm_reserv_level_iffullpop(m)) >= 0) {
2521                                 run_ext = 0;
2522                                 /* Advance to the end of the superpage. */
2523                                 pa = VM_PAGE_TO_PHYS(m);
2524                                 m_inc = atop(roundup2(pa + 1,
2525                                     vm_reserv_size(level)) - pa);
2526 #endif
2527                         } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2528                             vm_page_queue(m) != PQ_NONE && !vm_page_busied(m) &&
2529                             !vm_page_wired(m)) {
2530                                 /*
2531                                  * The page is allocated but eligible for
2532                                  * relocation.  Extend the current run by one
2533                                  * page.
2534                                  */
2535                                 KASSERT(pmap_page_get_memattr(m) ==
2536                                     VM_MEMATTR_DEFAULT,
2537                                     ("page %p has an unexpected memattr", m));
2538                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2539                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2540                                     ("page %p has unexpected oflags", m));
2541                                 /* Don't care: PGA_NOSYNC. */
2542                                 run_ext = 1;
2543                         } else
2544                                 run_ext = 0;
2545                         VM_OBJECT_RUNLOCK(object);
2546 #if VM_NRESERVLEVEL > 0
2547                 } else if (level >= 0) {
2548                         /*
2549                          * The page is reserved but not yet allocated.  In
2550                          * other words, it is still free.  Extend the current
2551                          * run by one page.
2552                          */
2553                         run_ext = 1;
2554 #endif
2555                 } else if ((order = m->order) < VM_NFREEORDER) {
2556                         /*
2557                          * The page is enqueued in the physical memory
2558                          * allocator's free page queues.  Moreover, it is the
2559                          * first page in a power-of-two-sized run of
2560                          * contiguous free pages.  Add these pages to the end
2561                          * of the current run, and jump ahead.
2562                          */
2563                         run_ext = 1 << order;
2564                         m_inc = 1 << order;
2565                 } else {
2566                         /*
2567                          * Skip the page for one of the following reasons: (1)
2568                          * It is enqueued in the physical memory allocator's
2569                          * free page queues.  However, it is not the first
2570                          * page in a run of contiguous free pages.  (This case
2571                          * rarely occurs because the scan is performed in
2572                          * ascending order.) (2) It is not reserved, and it is
2573                          * transitioning from free to allocated.  (Conversely,
2574                          * the transition from allocated to free for managed
2575                          * pages is blocked by the page lock.) (3) It is
2576                          * allocated but not contained by an object and not
2577                          * wired, e.g., allocated by Xen's balloon driver.
2578                          */
2579                         run_ext = 0;
2580                 }
2581
2582                 /*
2583                  * Extend or reset the current run of pages.
2584                  */
2585                 if (run_ext > 0) {
2586                         if (run_len == 0)
2587                                 m_run = m;
2588                         run_len += run_ext;
2589                 } else {
2590                         if (run_len > 0) {
2591                                 m_run = NULL;
2592                                 run_len = 0;
2593                         }
2594                 }
2595         }
2596         if (m_mtx != NULL)
2597                 mtx_unlock(m_mtx);
2598         if (run_len >= npages)
2599                 return (m_run);
2600         return (NULL);
2601 }
2602
2603 /*
2604  *      vm_page_reclaim_run:
2605  *
2606  *      Try to relocate each of the allocated virtual pages within the
2607  *      specified run of physical pages to a new physical address.  Free the
2608  *      physical pages underlying the relocated virtual pages.  A virtual page
2609  *      is relocatable if and only if it could be laundered or reclaimed by
2610  *      the page daemon.  Whenever possible, a virtual page is relocated to a
2611  *      physical address above "high".
2612  *
2613  *      Returns 0 if every physical page within the run was already free or
2614  *      just freed by a successful relocation.  Otherwise, returns a non-zero
2615  *      value indicating why the last attempt to relocate a virtual page was
2616  *      unsuccessful.
2617  *
2618  *      "req_class" must be an allocation class.
2619  */
2620 static int
2621 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2622     vm_paddr_t high)
2623 {
2624         struct vm_domain *vmd;
2625         struct mtx *m_mtx;
2626         struct spglist free;
2627         vm_object_t object;
2628         vm_paddr_t pa;
2629         vm_page_t m, m_end, m_new;
2630         int error, order, req;
2631
2632         KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2633             ("req_class is not an allocation class"));
2634         SLIST_INIT(&free);
2635         error = 0;
2636         m = m_run;
2637         m_end = m_run + npages;
2638         m_mtx = NULL;
2639         for (; error == 0 && m < m_end; m++) {
2640                 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2641                     ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2642
2643                 /*
2644                  * Avoid releasing and reacquiring the same page lock.
2645                  */
2646                 vm_page_change_lock(m, &m_mtx);
2647 retry:
2648                 /*
2649                  * Racily check for wirings.  Races are handled below.
2650                  */
2651                 if (vm_page_wired(m))
2652                         error = EBUSY;
2653                 else if ((object = m->object) != NULL) {
2654                         /*
2655                          * The page is relocated if and only if it could be
2656                          * laundered or reclaimed by the page daemon.
2657                          */
2658                         if (!VM_OBJECT_TRYWLOCK(object)) {
2659                                 mtx_unlock(m_mtx);
2660                                 VM_OBJECT_WLOCK(object);
2661                                 mtx_lock(m_mtx);
2662                                 if (m->object != object) {
2663                                         /*
2664                                          * The page may have been freed.
2665                                          */
2666                                         VM_OBJECT_WUNLOCK(object);
2667                                         goto retry;
2668                                 }
2669                         }
2670                         /* Don't care: PG_NODUMP, PG_ZERO. */
2671                         if (object->type != OBJT_DEFAULT &&
2672                             object->type != OBJT_SWAP &&
2673                             object->type != OBJT_VNODE)
2674                                 error = EINVAL;
2675                         else if (object->memattr != VM_MEMATTR_DEFAULT)
2676                                 error = EINVAL;
2677                         else if (vm_page_queue(m) != PQ_NONE &&
2678                             vm_page_tryxbusy(m) != 0) {
2679                                 if (vm_page_wired(m)) {
2680                                         vm_page_xunbusy(m);
2681                                         error = EBUSY;
2682                                         goto unlock;
2683                                 }
2684                                 KASSERT(pmap_page_get_memattr(m) ==
2685                                     VM_MEMATTR_DEFAULT,
2686                                     ("page %p has an unexpected memattr", m));
2687                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2688                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2689                                     ("page %p has unexpected oflags", m));
2690                                 /* Don't care: PGA_NOSYNC. */
2691                                 if (!vm_page_none_valid(m)) {
2692                                         /*
2693                                          * First, try to allocate a new page
2694                                          * that is above "high".  Failing
2695                                          * that, try to allocate a new page
2696                                          * that is below "m_run".  Allocate
2697                                          * the new page between the end of
2698                                          * "m_run" and "high" only as a last
2699                                          * resort.
2700                                          */
2701                                         req = req_class | VM_ALLOC_NOOBJ;
2702                                         if ((m->flags & PG_NODUMP) != 0)
2703                                                 req |= VM_ALLOC_NODUMP;
2704                                         if (trunc_page(high) !=
2705                                             ~(vm_paddr_t)PAGE_MASK) {
2706                                                 m_new = vm_page_alloc_contig(
2707                                                     NULL, 0, req, 1,
2708                                                     round_page(high),
2709                                                     ~(vm_paddr_t)0,
2710                                                     PAGE_SIZE, 0,
2711                                                     VM_MEMATTR_DEFAULT);
2712                                         } else
2713                                                 m_new = NULL;
2714                                         if (m_new == NULL) {
2715                                                 pa = VM_PAGE_TO_PHYS(m_run);
2716                                                 m_new = vm_page_alloc_contig(
2717                                                     NULL, 0, req, 1,
2718                                                     0, pa - 1, PAGE_SIZE, 0,
2719                                                     VM_MEMATTR_DEFAULT);
2720                                         }
2721                                         if (m_new == NULL) {
2722                                                 pa += ptoa(npages);
2723                                                 m_new = vm_page_alloc_contig(
2724                                                     NULL, 0, req, 1,
2725                                                     pa, high, PAGE_SIZE, 0,
2726                                                     VM_MEMATTR_DEFAULT);
2727                                         }
2728                                         if (m_new == NULL) {
2729                                                 vm_page_xunbusy(m);
2730                                                 error = ENOMEM;
2731                                                 goto unlock;
2732                                         }
2733
2734                                         /*
2735                                          * Unmap the page and check for new
2736                                          * wirings that may have been acquired
2737                                          * through a pmap lookup.
2738                                          */
2739                                         if (object->ref_count != 0 &&
2740                                             !vm_page_try_remove_all(m)) {
2741                                                 vm_page_free(m_new);
2742                                                 error = EBUSY;
2743                                                 goto unlock;
2744                                         }
2745
2746                                         /*
2747                                          * Replace "m" with the new page.  For
2748                                          * vm_page_replace(), "m" must be busy
2749                                          * and dequeued.  Finally, change "m"
2750                                          * as if vm_page_free() was called.
2751                                          */
2752                                         m_new->a.flags = m->a.flags &
2753                                             ~PGA_QUEUE_STATE_MASK;
2754                                         KASSERT(m_new->oflags == VPO_UNMANAGED,
2755                                             ("page %p is managed", m_new));
2756                                         pmap_copy_page(m, m_new);
2757                                         m_new->valid = m->valid;
2758                                         m_new->dirty = m->dirty;
2759                                         m->flags &= ~PG_ZERO;
2760                                         vm_page_dequeue(m);
2761                                         vm_page_replace_checked(m_new, object,
2762                                             m->pindex, m);
2763                                         if (vm_page_free_prep(m))
2764                                                 SLIST_INSERT_HEAD(&free, m,
2765                                                     plinks.s.ss);
2766
2767                                         /*
2768                                          * The new page must be deactivated
2769                                          * before the object is unlocked.
2770                                          */
2771                                         vm_page_change_lock(m_new, &m_mtx);
2772                                         vm_page_deactivate(m_new);
2773                                 } else {
2774                                         m->flags &= ~PG_ZERO;
2775                                         vm_page_dequeue(m);
2776                                         if (vm_page_free_prep(m))
2777                                                 SLIST_INSERT_HEAD(&free, m,
2778                                                     plinks.s.ss);
2779                                         KASSERT(m->dirty == 0,
2780                                             ("page %p is dirty", m));
2781                                 }
2782                         } else
2783                                 error = EBUSY;
2784 unlock:
2785                         VM_OBJECT_WUNLOCK(object);
2786                 } else {
2787                         MPASS(vm_phys_domain(m) == domain);
2788                         vmd = VM_DOMAIN(domain);
2789                         vm_domain_free_lock(vmd);
2790                         order = m->order;
2791                         if (order < VM_NFREEORDER) {
2792                                 /*
2793                                  * The page is enqueued in the physical memory
2794                                  * allocator's free page queues.  Moreover, it
2795                                  * is the first page in a power-of-two-sized
2796                                  * run of contiguous free pages.  Jump ahead
2797                                  * to the last page within that run, and
2798                                  * continue from there.
2799                                  */
2800                                 m += (1 << order) - 1;
2801                         }
2802 #if VM_NRESERVLEVEL > 0
2803                         else if (vm_reserv_is_page_free(m))
2804                                 order = 0;
2805 #endif
2806                         vm_domain_free_unlock(vmd);
2807                         if (order == VM_NFREEORDER)
2808                                 error = EINVAL;
2809                 }
2810         }
2811         if (m_mtx != NULL)
2812                 mtx_unlock(m_mtx);
2813         if ((m = SLIST_FIRST(&free)) != NULL) {
2814                 int cnt;
2815
2816                 vmd = VM_DOMAIN(domain);
2817                 cnt = 0;
2818                 vm_domain_free_lock(vmd);
2819                 do {
2820                         MPASS(vm_phys_domain(m) == domain);
2821                         SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2822                         vm_phys_free_pages(m, 0);
2823                         cnt++;
2824                 } while ((m = SLIST_FIRST(&free)) != NULL);
2825                 vm_domain_free_unlock(vmd);
2826                 vm_domain_freecnt_inc(vmd, cnt);
2827         }
2828         return (error);
2829 }
2830
2831 #define NRUNS   16
2832
2833 CTASSERT(powerof2(NRUNS));
2834
2835 #define RUN_INDEX(count)        ((count) & (NRUNS - 1))
2836
2837 #define MIN_RECLAIM     8
2838
2839 /*
2840  *      vm_page_reclaim_contig:
2841  *
2842  *      Reclaim allocated, contiguous physical memory satisfying the specified
2843  *      conditions by relocating the virtual pages using that physical memory.
2844  *      Returns true if reclamation is successful and false otherwise.  Since
2845  *      relocation requires the allocation of physical pages, reclamation may
2846  *      fail due to a shortage of free pages.  When reclamation fails, callers
2847  *      are expected to perform vm_wait() before retrying a failed allocation
2848  *      operation, e.g., vm_page_alloc_contig().
2849  *
2850  *      The caller must always specify an allocation class through "req".
2851  *
2852  *      allocation classes:
2853  *      VM_ALLOC_NORMAL         normal process request
2854  *      VM_ALLOC_SYSTEM         system *really* needs a page
2855  *      VM_ALLOC_INTERRUPT      interrupt time request
2856  *
2857  *      The optional allocation flags are ignored.
2858  *
2859  *      "npages" must be greater than zero.  Both "alignment" and "boundary"
2860  *      must be a power of two.
2861  */
2862 bool
2863 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2864     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2865 {
2866         struct vm_domain *vmd;
2867         vm_paddr_t curr_low;
2868         vm_page_t m_run, m_runs[NRUNS];
2869         u_long count, reclaimed;
2870         int error, i, options, req_class;
2871
2872         KASSERT(npages > 0, ("npages is 0"));
2873         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2874         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2875         req_class = req & VM_ALLOC_CLASS_MASK;
2876
2877         /*
2878          * The page daemon is allowed to dig deeper into the free page list.
2879          */
2880         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2881                 req_class = VM_ALLOC_SYSTEM;
2882
2883         /*
2884          * Return if the number of free pages cannot satisfy the requested
2885          * allocation.
2886          */
2887         vmd = VM_DOMAIN(domain);
2888         count = vmd->vmd_free_count;
2889         if (count < npages + vmd->vmd_free_reserved || (count < npages +
2890             vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2891             (count < npages && req_class == VM_ALLOC_INTERRUPT))
2892                 return (false);
2893
2894         /*
2895          * Scan up to three times, relaxing the restrictions ("options") on
2896          * the reclamation of reservations and superpages each time.
2897          */
2898         for (options = VPSC_NORESERV;;) {
2899                 /*
2900                  * Find the highest runs that satisfy the given constraints
2901                  * and restrictions, and record them in "m_runs".
2902                  */
2903                 curr_low = low;
2904                 count = 0;
2905                 for (;;) {
2906                         m_run = vm_phys_scan_contig(domain, npages, curr_low,
2907                             high, alignment, boundary, options);
2908                         if (m_run == NULL)
2909                                 break;
2910                         curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2911                         m_runs[RUN_INDEX(count)] = m_run;
2912                         count++;
2913                 }
2914
2915                 /*
2916                  * Reclaim the highest runs in LIFO (descending) order until
2917                  * the number of reclaimed pages, "reclaimed", is at least
2918                  * MIN_RECLAIM.  Reset "reclaimed" each time because each
2919                  * reclamation is idempotent, and runs will (likely) recur
2920                  * from one scan to the next as restrictions are relaxed.
2921                  */
2922                 reclaimed = 0;
2923                 for (i = 0; count > 0 && i < NRUNS; i++) {
2924                         count--;
2925                         m_run = m_runs[RUN_INDEX(count)];
2926                         error = vm_page_reclaim_run(req_class, domain, npages,
2927                             m_run, high);
2928                         if (error == 0) {
2929                                 reclaimed += npages;
2930                                 if (reclaimed >= MIN_RECLAIM)
2931                                         return (true);
2932                         }
2933                 }
2934
2935                 /*
2936                  * Either relax the restrictions on the next scan or return if
2937                  * the last scan had no restrictions.
2938                  */
2939                 if (options == VPSC_NORESERV)
2940                         options = VPSC_NOSUPER;
2941                 else if (options == VPSC_NOSUPER)
2942                         options = VPSC_ANY;
2943                 else if (options == VPSC_ANY)
2944                         return (reclaimed != 0);
2945         }
2946 }
2947
2948 bool
2949 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2950     u_long alignment, vm_paddr_t boundary)
2951 {
2952         struct vm_domainset_iter di;
2953         int domain;
2954         bool ret;
2955
2956         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2957         do {
2958                 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2959                     high, alignment, boundary);
2960                 if (ret)
2961                         break;
2962         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2963
2964         return (ret);
2965 }
2966
2967 /*
2968  * Set the domain in the appropriate page level domainset.
2969  */
2970 void
2971 vm_domain_set(struct vm_domain *vmd)
2972 {
2973
2974         mtx_lock(&vm_domainset_lock);
2975         if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2976                 vmd->vmd_minset = 1;
2977                 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2978         }
2979         if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2980                 vmd->vmd_severeset = 1;
2981                 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
2982         }
2983         mtx_unlock(&vm_domainset_lock);
2984 }
2985
2986 /*
2987  * Clear the domain from the appropriate page level domainset.
2988  */
2989 void
2990 vm_domain_clear(struct vm_domain *vmd)
2991 {
2992
2993         mtx_lock(&vm_domainset_lock);
2994         if (vmd->vmd_minset && !vm_paging_min(vmd)) {
2995                 vmd->vmd_minset = 0;
2996                 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
2997                 if (vm_min_waiters != 0) {
2998                         vm_min_waiters = 0;
2999                         wakeup(&vm_min_domains);
3000                 }
3001         }
3002         if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3003                 vmd->vmd_severeset = 0;
3004                 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3005                 if (vm_severe_waiters != 0) {
3006                         vm_severe_waiters = 0;
3007                         wakeup(&vm_severe_domains);
3008                 }
3009         }
3010
3011         /*
3012          * If pageout daemon needs pages, then tell it that there are
3013          * some free.
3014          */
3015         if (vmd->vmd_pageout_pages_needed &&
3016             vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3017                 wakeup(&vmd->vmd_pageout_pages_needed);
3018                 vmd->vmd_pageout_pages_needed = 0;
3019         }
3020
3021         /* See comments in vm_wait_doms(). */
3022         if (vm_pageproc_waiters) {
3023                 vm_pageproc_waiters = 0;
3024                 wakeup(&vm_pageproc_waiters);
3025         }
3026         mtx_unlock(&vm_domainset_lock);
3027 }
3028
3029 /*
3030  * Wait for free pages to exceed the min threshold globally.
3031  */
3032 void
3033 vm_wait_min(void)
3034 {
3035
3036         mtx_lock(&vm_domainset_lock);
3037         while (vm_page_count_min()) {
3038                 vm_min_waiters++;
3039                 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3040         }
3041         mtx_unlock(&vm_domainset_lock);
3042 }
3043
3044 /*
3045  * Wait for free pages to exceed the severe threshold globally.
3046  */
3047 void
3048 vm_wait_severe(void)
3049 {
3050
3051         mtx_lock(&vm_domainset_lock);
3052         while (vm_page_count_severe()) {
3053                 vm_severe_waiters++;
3054                 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3055                     "vmwait", 0);
3056         }
3057         mtx_unlock(&vm_domainset_lock);
3058 }
3059
3060 u_int
3061 vm_wait_count(void)
3062 {
3063
3064         return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3065 }
3066
3067 void
3068 vm_wait_doms(const domainset_t *wdoms)
3069 {
3070
3071         /*
3072          * We use racey wakeup synchronization to avoid expensive global
3073          * locking for the pageproc when sleeping with a non-specific vm_wait.
3074          * To handle this, we only sleep for one tick in this instance.  It
3075          * is expected that most allocations for the pageproc will come from
3076          * kmem or vm_page_grab* which will use the more specific and
3077          * race-free vm_wait_domain().
3078          */
3079         if (curproc == pageproc) {
3080                 mtx_lock(&vm_domainset_lock);
3081                 vm_pageproc_waiters++;
3082                 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3083                     "pageprocwait", 1);
3084         } else {
3085                 /*
3086                  * XXX Ideally we would wait only until the allocation could
3087                  * be satisfied.  This condition can cause new allocators to
3088                  * consume all freed pages while old allocators wait.
3089                  */
3090                 mtx_lock(&vm_domainset_lock);
3091                 if (vm_page_count_min_set(wdoms)) {
3092                         vm_min_waiters++;
3093                         msleep(&vm_min_domains, &vm_domainset_lock,
3094                             PVM | PDROP, "vmwait", 0);
3095                 } else
3096                         mtx_unlock(&vm_domainset_lock);
3097         }
3098 }
3099
3100 /*
3101  *      vm_wait_domain:
3102  *
3103  *      Sleep until free pages are available for allocation.
3104  *      - Called in various places after failed memory allocations.
3105  */
3106 void
3107 vm_wait_domain(int domain)
3108 {
3109         struct vm_domain *vmd;
3110         domainset_t wdom;
3111
3112         vmd = VM_DOMAIN(domain);
3113         vm_domain_free_assert_unlocked(vmd);
3114
3115         if (curproc == pageproc) {
3116                 mtx_lock(&vm_domainset_lock);
3117                 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3118                         vmd->vmd_pageout_pages_needed = 1;
3119                         msleep(&vmd->vmd_pageout_pages_needed,
3120                             &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3121                 } else
3122                         mtx_unlock(&vm_domainset_lock);
3123         } else {
3124                 if (pageproc == NULL)
3125                         panic("vm_wait in early boot");
3126                 DOMAINSET_ZERO(&wdom);
3127                 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3128                 vm_wait_doms(&wdom);
3129         }
3130 }
3131
3132 /*
3133  *      vm_wait:
3134  *
3135  *      Sleep until free pages are available for allocation in the
3136  *      affinity domains of the obj.  If obj is NULL, the domain set
3137  *      for the calling thread is used.
3138  *      Called in various places after failed memory allocations.
3139  */
3140 void
3141 vm_wait(vm_object_t obj)
3142 {
3143         struct domainset *d;
3144
3145         d = NULL;
3146
3147         /*
3148          * Carefully fetch pointers only once: the struct domainset
3149          * itself is ummutable but the pointer might change.
3150          */
3151         if (obj != NULL)
3152                 d = obj->domain.dr_policy;
3153         if (d == NULL)
3154                 d = curthread->td_domain.dr_policy;
3155
3156         vm_wait_doms(&d->ds_mask);
3157 }
3158
3159 /*
3160  *      vm_domain_alloc_fail:
3161  *
3162  *      Called when a page allocation function fails.  Informs the
3163  *      pagedaemon and performs the requested wait.  Requires the
3164  *      domain_free and object lock on entry.  Returns with the
3165  *      object lock held and free lock released.  Returns an error when
3166  *      retry is necessary.
3167  *
3168  */
3169 static int
3170 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3171 {
3172
3173         vm_domain_free_assert_unlocked(vmd);
3174
3175         atomic_add_int(&vmd->vmd_pageout_deficit,
3176             max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3177         if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3178                 if (object != NULL) 
3179                         VM_OBJECT_WUNLOCK(object);
3180                 vm_wait_domain(vmd->vmd_domain);
3181                 if (object != NULL) 
3182                         VM_OBJECT_WLOCK(object);
3183                 if (req & VM_ALLOC_WAITOK)
3184                         return (EAGAIN);
3185         }
3186
3187         return (0);
3188 }
3189
3190 /*
3191  *      vm_waitpfault:
3192  *
3193  *      Sleep until free pages are available for allocation.
3194  *      - Called only in vm_fault so that processes page faulting
3195  *        can be easily tracked.
3196  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3197  *        processes will be able to grab memory first.  Do not change
3198  *        this balance without careful testing first.
3199  */
3200 void
3201 vm_waitpfault(struct domainset *dset, int timo)
3202 {
3203
3204         /*
3205          * XXX Ideally we would wait only until the allocation could
3206          * be satisfied.  This condition can cause new allocators to
3207          * consume all freed pages while old allocators wait.
3208          */
3209         mtx_lock(&vm_domainset_lock);
3210         if (vm_page_count_min_set(&dset->ds_mask)) {
3211                 vm_min_waiters++;
3212                 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3213                     "pfault", timo);
3214         } else
3215                 mtx_unlock(&vm_domainset_lock);
3216 }
3217
3218 static struct vm_pagequeue *
3219 vm_page_pagequeue(vm_page_t m)
3220 {
3221
3222         uint8_t queue;
3223
3224         if ((queue = atomic_load_8(&m->a.queue)) == PQ_NONE)
3225                 return (NULL);
3226         return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3227 }
3228
3229 static inline void
3230 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m)
3231 {
3232         struct vm_domain *vmd;
3233         uint16_t qflags;
3234
3235         CRITICAL_ASSERT(curthread);
3236         vm_pagequeue_assert_locked(pq);
3237
3238         /*
3239          * The page daemon is allowed to set m->a.queue = PQ_NONE without
3240          * the page queue lock held.  In this case it is about to free the page,
3241          * which must not have any queue state.
3242          */
3243         qflags = atomic_load_16(&m->a.flags);
3244         KASSERT(pq == vm_page_pagequeue(m) ||
3245             (qflags & PGA_QUEUE_STATE_MASK) == 0,
3246             ("page %p doesn't belong to queue %p but has aflags %#x",
3247             m, pq, qflags));
3248
3249         if ((qflags & PGA_DEQUEUE) != 0) {
3250                 if (__predict_true((qflags & PGA_ENQUEUED) != 0))
3251                         vm_pagequeue_remove(pq, m);
3252                 vm_page_dequeue_complete(m);
3253                 counter_u64_add(queue_ops, 1);
3254         } else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) {
3255                 if ((qflags & PGA_ENQUEUED) != 0)
3256                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3257                 else {
3258                         vm_pagequeue_cnt_inc(pq);
3259                         vm_page_aflag_set(m, PGA_ENQUEUED);
3260                 }
3261
3262                 /*
3263                  * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.
3264                  * In particular, if both flags are set in close succession,
3265                  * only PGA_REQUEUE_HEAD will be applied, even if it was set
3266                  * first.
3267                  */
3268                 if ((qflags & PGA_REQUEUE_HEAD) != 0) {
3269                         KASSERT(m->a.queue == PQ_INACTIVE,
3270                             ("head enqueue not supported for page %p", m));
3271                         vmd = vm_pagequeue_domain(m);
3272                         TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3273                 } else
3274                         TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3275
3276                 vm_page_aflag_clear(m, qflags & (PGA_REQUEUE |
3277                     PGA_REQUEUE_HEAD));
3278                 counter_u64_add(queue_ops, 1);
3279         } else {
3280                 counter_u64_add(queue_nops, 1);
3281         }
3282 }
3283
3284 static void
3285 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3286     uint8_t queue)
3287 {
3288         vm_page_t m;
3289         int i;
3290
3291         for (i = 0; i < bq->bq_cnt; i++) {
3292                 m = bq->bq_pa[i];
3293                 if (__predict_false(m->a.queue != queue))
3294                         continue;
3295                 vm_pqbatch_process_page(pq, m);
3296         }
3297         vm_batchqueue_init(bq);
3298 }
3299
3300 /*
3301  *      vm_page_pqbatch_submit:         [ internal use only ]
3302  *
3303  *      Enqueue a page in the specified page queue's batched work queue.
3304  *      The caller must have encoded the requested operation in the page
3305  *      structure's a.flags field.
3306  */
3307 void
3308 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3309 {
3310         struct vm_batchqueue *bq;
3311         struct vm_pagequeue *pq;
3312         int domain;
3313
3314         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3315             ("page %p is unmanaged", m));
3316         KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL,
3317             ("missing synchronization for page %p", m));
3318         KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3319
3320         domain = vm_phys_domain(m);
3321         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3322
3323         critical_enter();
3324         bq = DPCPU_PTR(pqbatch[domain][queue]);
3325         if (vm_batchqueue_insert(bq, m)) {
3326                 critical_exit();
3327                 return;
3328         }
3329         critical_exit();
3330         vm_pagequeue_lock(pq);
3331         critical_enter();
3332         bq = DPCPU_PTR(pqbatch[domain][queue]);
3333         vm_pqbatch_process(pq, bq, queue);
3334
3335         /*
3336          * The page may have been logically dequeued before we acquired the
3337          * page queue lock.  In this case, since we either hold the page lock
3338          * or the page is being freed, a different thread cannot be concurrently
3339          * enqueuing the page.
3340          */
3341         if (__predict_true(m->a.queue == queue))
3342                 vm_pqbatch_process_page(pq, m);
3343         else {
3344                 KASSERT(m->a.queue == PQ_NONE,
3345                     ("invalid queue transition for page %p", m));
3346                 KASSERT((m->a.flags & PGA_ENQUEUED) == 0,
3347                     ("page %p is enqueued with invalid queue index", m));
3348         }
3349         vm_pagequeue_unlock(pq);
3350         critical_exit();
3351 }
3352
3353 /*
3354  *      vm_page_pqbatch_drain:          [ internal use only ]
3355  *
3356  *      Force all per-CPU page queue batch queues to be drained.  This is
3357  *      intended for use in severe memory shortages, to ensure that pages
3358  *      do not remain stuck in the batch queues.
3359  */
3360 void
3361 vm_page_pqbatch_drain(void)
3362 {
3363         struct thread *td;
3364         struct vm_domain *vmd;
3365         struct vm_pagequeue *pq;
3366         int cpu, domain, queue;
3367
3368         td = curthread;
3369         CPU_FOREACH(cpu) {
3370                 thread_lock(td);
3371                 sched_bind(td, cpu);
3372                 thread_unlock(td);
3373
3374                 for (domain = 0; domain < vm_ndomains; domain++) {
3375                         vmd = VM_DOMAIN(domain);
3376                         for (queue = 0; queue < PQ_COUNT; queue++) {
3377                                 pq = &vmd->vmd_pagequeues[queue];
3378                                 vm_pagequeue_lock(pq);
3379                                 critical_enter();
3380                                 vm_pqbatch_process(pq,
3381                                     DPCPU_PTR(pqbatch[domain][queue]), queue);
3382                                 critical_exit();
3383                                 vm_pagequeue_unlock(pq);
3384                         }
3385                 }
3386         }
3387         thread_lock(td);
3388         sched_unbind(td);
3389         thread_unlock(td);
3390 }
3391
3392 /*
3393  * Complete the logical removal of a page from a page queue.  We must be
3394  * careful to synchronize with the page daemon, which may be concurrently
3395  * examining the page with only the page lock held.  The page must not be
3396  * in a state where it appears to be logically enqueued.
3397  */
3398 static void
3399 vm_page_dequeue_complete(vm_page_t m)
3400 {
3401
3402         m->a.queue = PQ_NONE;
3403         atomic_thread_fence_rel();
3404         vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK);
3405 }
3406
3407 /*
3408  *      vm_page_dequeue_deferred:       [ internal use only ]
3409  *
3410  *      Request removal of the given page from its current page
3411  *      queue.  Physical removal from the queue may be deferred
3412  *      indefinitely.
3413  *
3414  *      The page must be locked.
3415  */
3416 void
3417 vm_page_dequeue_deferred(vm_page_t m)
3418 {
3419         uint8_t queue;
3420
3421         vm_page_assert_locked(m);
3422
3423         if ((queue = vm_page_queue(m)) == PQ_NONE)
3424                 return;
3425
3426         /*
3427          * Set PGA_DEQUEUE if it is not already set to handle a concurrent call
3428          * to vm_page_dequeue_deferred_free().  In particular, avoid modifying
3429          * the page's queue state once vm_page_dequeue_deferred_free() has been
3430          * called.  In the event of a race, two batch queue entries for the page
3431          * will be created, but the second will have no effect.
3432          */
3433         if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE, PGA_DEQUEUE))
3434                 vm_page_pqbatch_submit(m, queue);
3435 }
3436
3437 /*
3438  * A variant of vm_page_dequeue_deferred() that does not assert the page
3439  * lock and is only to be called from vm_page_free_prep().  Because the
3440  * page is being freed, we can assume that nothing other than the page
3441  * daemon is scheduling queue operations on this page, so we get for
3442  * free the mutual exclusion that is otherwise provided by the page lock.
3443  * To handle races, the page daemon must take care to atomically check
3444  * for PGA_DEQUEUE when updating queue state.
3445  */
3446 static void
3447 vm_page_dequeue_deferred_free(vm_page_t m)
3448 {
3449         uint8_t queue;
3450
3451         KASSERT(m->ref_count == 0, ("page %p has references", m));
3452
3453         for (;;) {
3454                 if ((m->a.flags & PGA_DEQUEUE) != 0)
3455                         return;
3456                 atomic_thread_fence_acq();
3457                 if ((queue = atomic_load_8(&m->a.queue)) == PQ_NONE)
3458                         return;
3459                 if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE,
3460                     PGA_DEQUEUE)) {
3461                         vm_page_pqbatch_submit(m, queue);
3462                         break;
3463                 }
3464         }
3465 }
3466
3467 /*
3468  *      vm_page_dequeue:
3469  *
3470  *      Remove the page from whichever page queue it's in, if any.
3471  *      The page must either be locked or unallocated.  This constraint
3472  *      ensures that the queue state of the page will remain consistent
3473  *      after this function returns.
3474  */
3475 void
3476 vm_page_dequeue(vm_page_t m)
3477 {
3478         struct vm_pagequeue *pq, *pq1;
3479         uint16_t aflags;
3480
3481         KASSERT(mtx_owned(vm_page_lockptr(m)) || m->ref_count == 0,
3482             ("page %p is allocated and unlocked", m));
3483
3484         for (pq = vm_page_pagequeue(m);; pq = pq1) {
3485                 if (pq == NULL) {
3486                         /*
3487                          * A thread may be concurrently executing
3488                          * vm_page_dequeue_complete().  Ensure that all queue
3489                          * state is cleared before we return.
3490                          */
3491                         aflags = atomic_load_16(&m->a.flags);
3492                         if ((aflags & PGA_QUEUE_STATE_MASK) == 0)
3493                                 return;
3494                         KASSERT((aflags & PGA_DEQUEUE) != 0,
3495                             ("page %p has unexpected queue state flags %#x",
3496                             m, aflags));
3497
3498                         /*
3499                          * Busy wait until the thread updating queue state is
3500                          * finished.  Such a thread must be executing in a
3501                          * critical section.
3502                          */
3503                         cpu_spinwait();
3504                         pq1 = vm_page_pagequeue(m);
3505                         continue;
3506                 }
3507                 vm_pagequeue_lock(pq);
3508                 if ((pq1 = vm_page_pagequeue(m)) == pq)
3509                         break;
3510                 vm_pagequeue_unlock(pq);
3511         }
3512         KASSERT(pq == vm_page_pagequeue(m),
3513             ("%s: page %p migrated directly between queues", __func__, m));
3514         KASSERT((m->a.flags & PGA_DEQUEUE) != 0 ||
3515             mtx_owned(vm_page_lockptr(m)),
3516             ("%s: queued unlocked page %p", __func__, m));
3517
3518         if ((m->a.flags & PGA_ENQUEUED) != 0)
3519                 vm_pagequeue_remove(pq, m);
3520         vm_page_dequeue_complete(m);
3521         vm_pagequeue_unlock(pq);
3522 }
3523
3524 /*
3525  * Schedule the given page for insertion into the specified page queue.
3526  * Physical insertion of the page may be deferred indefinitely.
3527  */
3528 static void
3529 vm_page_enqueue(vm_page_t m, uint8_t queue)
3530 {
3531
3532         vm_page_assert_locked(m);
3533         KASSERT(m->a.queue == PQ_NONE &&
3534             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3535             ("%s: page %p is already enqueued", __func__, m));
3536         KASSERT(m->ref_count > 0,
3537             ("%s: page %p does not carry any references", __func__, m));
3538
3539         m->a.queue = queue;
3540         if ((m->a.flags & PGA_REQUEUE) == 0)
3541                 vm_page_aflag_set(m, PGA_REQUEUE);
3542         vm_page_pqbatch_submit(m, queue);
3543 }
3544
3545 /*
3546  *      vm_page_requeue:                [ internal use only ]
3547  *
3548  *      Schedule a requeue of the given page.
3549  *
3550  *      The page must be locked.
3551  */
3552 void
3553 vm_page_requeue(vm_page_t m)
3554 {
3555
3556         vm_page_assert_locked(m);
3557         KASSERT(vm_page_queue(m) != PQ_NONE,
3558             ("%s: page %p is not logically enqueued", __func__, m));
3559         KASSERT(m->ref_count > 0,
3560             ("%s: page %p does not carry any references", __func__, m));
3561
3562         if ((m->a.flags & PGA_REQUEUE) == 0)
3563                 vm_page_aflag_set(m, PGA_REQUEUE);
3564         vm_page_pqbatch_submit(m, atomic_load_8(&m->a.queue));
3565 }
3566
3567 /*
3568  *      vm_page_swapqueue:              [ internal use only ]
3569  *
3570  *      Move the page from one queue to another, or to the tail of its
3571  *      current queue, in the face of a possible concurrent call to
3572  *      vm_page_dequeue_deferred_free().
3573  */
3574 void
3575 vm_page_swapqueue(vm_page_t m, uint8_t oldq, uint8_t newq)
3576 {
3577         struct vm_pagequeue *pq;
3578         vm_page_t next;
3579         bool queued;
3580
3581         KASSERT(oldq < PQ_COUNT && newq < PQ_COUNT && oldq != newq,
3582             ("vm_page_swapqueue: invalid queues (%d, %d)", oldq, newq));
3583         vm_page_assert_locked(m);
3584
3585         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[oldq];
3586         vm_pagequeue_lock(pq);
3587
3588         /*
3589          * The physical queue state might change at any point before the page
3590          * queue lock is acquired, so we must verify that we hold the correct
3591          * lock before proceeding.
3592          */
3593         if (__predict_false(m->a.queue != oldq)) {
3594                 vm_pagequeue_unlock(pq);
3595                 return;
3596         }
3597
3598         /*
3599          * Once the queue index of the page changes, there is nothing
3600          * synchronizing with further updates to the physical queue state.
3601          * Therefore we must remove the page from the queue now in anticipation
3602          * of a successful commit, and be prepared to roll back.
3603          */
3604         if (__predict_true((m->a.flags & PGA_ENQUEUED) != 0)) {
3605                 next = TAILQ_NEXT(m, plinks.q);
3606                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3607                 vm_page_aflag_clear(m, PGA_ENQUEUED);
3608                 queued = true;
3609         } else {
3610                 queued = false;
3611         }
3612
3613         /*
3614          * Atomically update the queue field and set PGA_REQUEUE while
3615          * ensuring that PGA_DEQUEUE has not been set.
3616          */
3617         if (__predict_false(!vm_page_pqstate_cmpset(m, oldq, newq, PGA_DEQUEUE,
3618             PGA_REQUEUE))) {
3619                 if (queued) {
3620                         vm_page_aflag_set(m, PGA_ENQUEUED);
3621                         if (next != NULL)
3622                                 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3623                         else
3624                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3625                 }
3626                 vm_pagequeue_unlock(pq);
3627                 return;
3628         }
3629         vm_pagequeue_cnt_dec(pq);
3630         vm_pagequeue_unlock(pq);
3631         vm_page_pqbatch_submit(m, newq);
3632 }
3633
3634 /*
3635  *      vm_page_free_prep:
3636  *
3637  *      Prepares the given page to be put on the free list,
3638  *      disassociating it from any VM object. The caller may return
3639  *      the page to the free list only if this function returns true.
3640  *
3641  *      The object must be locked.  The page must be locked if it is
3642  *      managed.
3643  */
3644 bool
3645 vm_page_free_prep(vm_page_t m)
3646 {
3647
3648         /*
3649          * Synchronize with threads that have dropped a reference to this
3650          * page.
3651          */
3652         atomic_thread_fence_acq();
3653
3654 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3655         if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3656                 uint64_t *p;
3657                 int i;
3658                 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3659                 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3660                         KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3661                             m, i, (uintmax_t)*p));
3662         }
3663 #endif
3664         if ((m->oflags & VPO_UNMANAGED) == 0) {
3665                 KASSERT(!pmap_page_is_mapped(m),
3666                     ("vm_page_free_prep: freeing mapped page %p", m));
3667                 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3668                     ("vm_page_free_prep: mapping flags set in page %p", m));
3669         } else {
3670                 KASSERT(m->a.queue == PQ_NONE,
3671                     ("vm_page_free_prep: unmanaged page %p is queued", m));
3672         }
3673         VM_CNT_INC(v_tfree);
3674
3675         if (vm_page_sbusied(m))
3676                 panic("vm_page_free_prep: freeing shared busy page %p", m);
3677
3678         if (m->object != NULL) {
3679                 vm_page_object_remove(m);
3680
3681                 /*
3682                  * The object reference can be released without an atomic
3683                  * operation.
3684                  */
3685                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3686                     m->ref_count == VPRC_OBJREF,
3687                     ("vm_page_free_prep: page %p has unexpected ref_count %u",
3688                     m, m->ref_count));
3689                 m->object = NULL;
3690                 m->ref_count -= VPRC_OBJREF;
3691         }
3692
3693         if (vm_page_xbusied(m))
3694                 vm_page_xunbusy(m);
3695
3696         /*
3697          * If fictitious remove object association and
3698          * return.
3699          */
3700         if ((m->flags & PG_FICTITIOUS) != 0) {
3701                 KASSERT(m->ref_count == 1,
3702                     ("fictitious page %p is referenced", m));
3703                 KASSERT(m->a.queue == PQ_NONE,
3704                     ("fictitious page %p is queued", m));
3705                 return (false);
3706         }
3707
3708         /*
3709          * Pages need not be dequeued before they are returned to the physical
3710          * memory allocator, but they must at least be marked for a deferred
3711          * dequeue.
3712          */
3713         if ((m->oflags & VPO_UNMANAGED) == 0)
3714                 vm_page_dequeue_deferred_free(m);
3715
3716         m->valid = 0;
3717         vm_page_undirty(m);
3718
3719         if (m->ref_count != 0)
3720                 panic("vm_page_free_prep: page %p has references", m);
3721
3722         /*
3723          * Restore the default memory attribute to the page.
3724          */
3725         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3726                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3727
3728 #if VM_NRESERVLEVEL > 0
3729         /*
3730          * Determine whether the page belongs to a reservation.  If the page was
3731          * allocated from a per-CPU cache, it cannot belong to a reservation, so
3732          * as an optimization, we avoid the check in that case.
3733          */
3734         if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3735                 return (false);
3736 #endif
3737
3738         return (true);
3739 }
3740
3741 /*
3742  *      vm_page_free_toq:
3743  *
3744  *      Returns the given page to the free list, disassociating it
3745  *      from any VM object.
3746  *
3747  *      The object must be locked.  The page must be locked if it is
3748  *      managed.
3749  */
3750 void
3751 vm_page_free_toq(vm_page_t m)
3752 {
3753         struct vm_domain *vmd;
3754         uma_zone_t zone;
3755
3756         if (!vm_page_free_prep(m))
3757                 return;
3758
3759         vmd = vm_pagequeue_domain(m);
3760         zone = vmd->vmd_pgcache[m->pool].zone;
3761         if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3762                 uma_zfree(zone, m);
3763                 return;
3764         }
3765         vm_domain_free_lock(vmd);
3766         vm_phys_free_pages(m, 0);
3767         vm_domain_free_unlock(vmd);
3768         vm_domain_freecnt_inc(vmd, 1);
3769 }
3770
3771 /*
3772  *      vm_page_free_pages_toq:
3773  *
3774  *      Returns a list of pages to the free list, disassociating it
3775  *      from any VM object.  In other words, this is equivalent to
3776  *      calling vm_page_free_toq() for each page of a list of VM objects.
3777  *
3778  *      The objects must be locked.  The pages must be locked if it is
3779  *      managed.
3780  */
3781 void
3782 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3783 {
3784         vm_page_t m;
3785         int count;
3786
3787         if (SLIST_EMPTY(free))
3788                 return;
3789
3790         count = 0;
3791         while ((m = SLIST_FIRST(free)) != NULL) {
3792                 count++;
3793                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
3794                 vm_page_free_toq(m);
3795         }
3796
3797         if (update_wire_count)
3798                 vm_wire_sub(count);
3799 }
3800
3801 /*
3802  * Mark this page as wired down, preventing reclamation by the page daemon
3803  * or when the containing object is destroyed.
3804  */
3805 void
3806 vm_page_wire(vm_page_t m)
3807 {
3808         u_int old;
3809
3810         KASSERT(m->object != NULL,
3811             ("vm_page_wire: page %p does not belong to an object", m));
3812         if (!vm_page_busied(m) && !vm_object_busied(m->object))
3813                 VM_OBJECT_ASSERT_LOCKED(m->object);
3814         KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3815             VPRC_WIRE_COUNT(m->ref_count) >= 1,
3816             ("vm_page_wire: fictitious page %p has zero wirings", m));
3817
3818         old = atomic_fetchadd_int(&m->ref_count, 1);
3819         KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3820             ("vm_page_wire: counter overflow for page %p", m));
3821         if (VPRC_WIRE_COUNT(old) == 0)
3822                 vm_wire_add(1);
3823 }
3824
3825 /*
3826  * Attempt to wire a mapped page following a pmap lookup of that page.
3827  * This may fail if a thread is concurrently tearing down mappings of the page.
3828  * The transient failure is acceptable because it translates to the
3829  * failure of the caller pmap_extract_and_hold(), which should be then
3830  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3831  */
3832 bool
3833 vm_page_wire_mapped(vm_page_t m)
3834 {
3835         u_int old;
3836
3837         old = m->ref_count;
3838         do {
3839                 KASSERT(old > 0,
3840                     ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3841                 if ((old & VPRC_BLOCKED) != 0)
3842                         return (false);
3843         } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3844
3845         if (VPRC_WIRE_COUNT(old) == 0)
3846                 vm_wire_add(1);
3847         return (true);
3848 }
3849
3850 /*
3851  * Release one wiring of the specified page, potentially allowing it to be
3852  * paged out.
3853  *
3854  * Only managed pages belonging to an object can be paged out.  If the number
3855  * of wirings transitions to zero and the page is eligible for page out, then
3856  * the page is added to the specified paging queue.  If the released wiring
3857  * represented the last reference to the page, the page is freed.
3858  *
3859  * A managed page must be locked.
3860  */
3861 void
3862 vm_page_unwire(vm_page_t m, uint8_t queue)
3863 {
3864         u_int old;
3865         bool locked;
3866
3867         KASSERT(queue < PQ_COUNT,
3868             ("vm_page_unwire: invalid queue %u request for page %p", queue, m));
3869
3870         if ((m->oflags & VPO_UNMANAGED) != 0) {
3871                 if (vm_page_unwire_noq(m) && m->ref_count == 0)
3872                         vm_page_free(m);
3873                 return;
3874         }
3875
3876         /*
3877          * Update LRU state before releasing the wiring reference.
3878          * We only need to do this once since we hold the page lock.
3879          * Use a release store when updating the reference count to
3880          * synchronize with vm_page_free_prep().
3881          */
3882         old = m->ref_count;
3883         locked = false;
3884         do {
3885                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
3886                     ("vm_page_unwire: wire count underflow for page %p", m));
3887                 if (!locked && VPRC_WIRE_COUNT(old) == 1) {
3888                         vm_page_lock(m);
3889                         locked = true;
3890                         if (queue == PQ_ACTIVE && vm_page_queue(m) == PQ_ACTIVE)
3891                                 vm_page_reference(m);
3892                         else
3893                                 vm_page_mvqueue(m, queue);
3894                 }
3895         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3896
3897         /*
3898          * Release the lock only after the wiring is released, to ensure that
3899          * the page daemon does not encounter and dequeue the page while it is
3900          * still wired.
3901          */
3902         if (locked)
3903                 vm_page_unlock(m);
3904
3905         if (VPRC_WIRE_COUNT(old) == 1) {
3906                 vm_wire_sub(1);
3907                 if (old == 1)
3908                         vm_page_free(m);
3909         }
3910 }
3911
3912 /*
3913  * Unwire a page without (re-)inserting it into a page queue.  It is up
3914  * to the caller to enqueue, requeue, or free the page as appropriate.
3915  * In most cases involving managed pages, vm_page_unwire() should be used
3916  * instead.
3917  */
3918 bool
3919 vm_page_unwire_noq(vm_page_t m)
3920 {
3921         u_int old;
3922
3923         old = vm_page_drop(m, 1);
3924         KASSERT(VPRC_WIRE_COUNT(old) != 0,
3925             ("vm_page_unref: counter underflow for page %p", m));
3926         KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3927             ("vm_page_unref: missing ref on fictitious page %p", m));
3928
3929         if (VPRC_WIRE_COUNT(old) > 1)
3930                 return (false);
3931         vm_wire_sub(1);
3932         return (true);
3933 }
3934
3935 /*
3936  * Ensure that the page is in the specified page queue.  If the page is
3937  * active or being moved to the active queue, ensure that its act_count is
3938  * at least ACT_INIT but do not otherwise mess with it.  Otherwise, ensure that
3939  * the page is at the tail of its page queue.
3940  *
3941  * The page may be wired.  The caller should release its wiring reference
3942  * before releasing the page lock, otherwise the page daemon may immediately
3943  * dequeue the page.
3944  *
3945  * A managed page must be locked.
3946  */
3947 static __always_inline void
3948 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue)
3949 {
3950
3951         vm_page_assert_locked(m);
3952         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3953             ("vm_page_mvqueue: page %p is unmanaged", m));
3954         KASSERT(m->ref_count > 0,
3955             ("%s: page %p does not carry any references", __func__, m));
3956
3957         if (vm_page_queue(m) != nqueue) {
3958                 vm_page_dequeue(m);
3959                 vm_page_enqueue(m, nqueue);
3960         } else if (nqueue != PQ_ACTIVE) {
3961                 vm_page_requeue(m);
3962         }
3963
3964         if (nqueue == PQ_ACTIVE && m->a.act_count < ACT_INIT)
3965                 m->a.act_count = ACT_INIT;
3966 }
3967
3968 /*
3969  * Put the specified page on the active list (if appropriate).
3970  */
3971 void
3972 vm_page_activate(vm_page_t m)
3973 {
3974
3975         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3976                 return;
3977         vm_page_mvqueue(m, PQ_ACTIVE);
3978 }
3979
3980 /*
3981  * Move the specified page to the tail of the inactive queue, or requeue
3982  * the page if it is already in the inactive queue.
3983  */
3984 void
3985 vm_page_deactivate(vm_page_t m)
3986 {
3987
3988         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3989                 return;
3990         vm_page_mvqueue(m, PQ_INACTIVE);
3991 }
3992
3993 /*
3994  * Move the specified page close to the head of the inactive queue,
3995  * bypassing LRU.  A marker page is used to maintain FIFO ordering.
3996  * As with regular enqueues, we use a per-CPU batch queue to reduce
3997  * contention on the page queue lock.
3998  */
3999 static void
4000 _vm_page_deactivate_noreuse(vm_page_t m)
4001 {
4002
4003         vm_page_assert_locked(m);
4004
4005         if (!vm_page_inactive(m)) {
4006                 vm_page_dequeue(m);
4007                 m->a.queue = PQ_INACTIVE;
4008         }
4009         if ((m->a.flags & PGA_REQUEUE_HEAD) == 0)
4010                 vm_page_aflag_set(m, PGA_REQUEUE_HEAD);
4011         vm_page_pqbatch_submit(m, PQ_INACTIVE);
4012 }
4013
4014 void
4015 vm_page_deactivate_noreuse(vm_page_t m)
4016 {
4017
4018         KASSERT(m->object != NULL,
4019             ("vm_page_deactivate_noreuse: page %p has no object", m));
4020
4021         if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_wired(m))
4022                 _vm_page_deactivate_noreuse(m);
4023 }
4024
4025 /*
4026  * Put a page in the laundry, or requeue it if it is already there.
4027  */
4028 void
4029 vm_page_launder(vm_page_t m)
4030 {
4031
4032         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4033                 return;
4034         vm_page_mvqueue(m, PQ_LAUNDRY);
4035 }
4036
4037 /*
4038  * Put a page in the PQ_UNSWAPPABLE holding queue.
4039  */
4040 void
4041 vm_page_unswappable(vm_page_t m)
4042 {
4043
4044         vm_page_assert_locked(m);
4045         KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4046             ("page %p already unswappable", m));
4047
4048         vm_page_dequeue(m);
4049         vm_page_enqueue(m, PQ_UNSWAPPABLE);
4050 }
4051
4052 static void
4053 vm_page_release_toq(vm_page_t m, int flags)
4054 {
4055
4056         vm_page_assert_locked(m);
4057
4058         /*
4059          * Use a check of the valid bits to determine whether we should
4060          * accelerate reclamation of the page.  The object lock might not be
4061          * held here, in which case the check is racy.  At worst we will either
4062          * accelerate reclamation of a valid page and violate LRU, or
4063          * unnecessarily defer reclamation of an invalid page.
4064          *
4065          * If we were asked to not cache the page, place it near the head of the
4066          * inactive queue so that is reclaimed sooner.
4067          */
4068         if ((flags & (VPR_TRYFREE | VPR_NOREUSE)) != 0 || m->valid == 0)
4069                 _vm_page_deactivate_noreuse(m);
4070         else if (vm_page_active(m))
4071                 vm_page_reference(m);
4072         else
4073                 vm_page_mvqueue(m, PQ_INACTIVE);
4074 }
4075
4076 /*
4077  * Unwire a page and either attempt to free it or re-add it to the page queues.
4078  */
4079 void
4080 vm_page_release(vm_page_t m, int flags)
4081 {
4082         vm_object_t object;
4083         u_int old;
4084         bool locked;
4085
4086         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4087             ("vm_page_release: page %p is unmanaged", m));
4088
4089         if ((flags & VPR_TRYFREE) != 0) {
4090                 for (;;) {
4091                         object = (vm_object_t)atomic_load_ptr(&m->object);
4092                         if (object == NULL)
4093                                 break;
4094                         /* Depends on type-stability. */
4095                         if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) {
4096                                 object = NULL;
4097                                 break;
4098                         }
4099                         if (object == m->object)
4100                                 break;
4101                         VM_OBJECT_WUNLOCK(object);
4102                 }
4103                 if (__predict_true(object != NULL)) {
4104                         vm_page_release_locked(m, flags);
4105                         VM_OBJECT_WUNLOCK(object);
4106                         return;
4107                 }
4108         }
4109
4110         /*
4111          * Update LRU state before releasing the wiring reference.
4112          * Use a release store when updating the reference count to
4113          * synchronize with vm_page_free_prep().
4114          */
4115         old = m->ref_count;
4116         locked = false;
4117         do {
4118                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
4119                     ("vm_page_unwire: wire count underflow for page %p", m));
4120                 if (!locked && VPRC_WIRE_COUNT(old) == 1) {
4121                         vm_page_lock(m);
4122                         locked = true;
4123                         vm_page_release_toq(m, flags);
4124                 }
4125         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4126
4127         /*
4128          * Release the lock only after the wiring is released, to ensure that
4129          * the page daemon does not encounter and dequeue the page while it is
4130          * still wired.
4131          */
4132         if (locked)
4133                 vm_page_unlock(m);
4134
4135         if (VPRC_WIRE_COUNT(old) == 1) {
4136                 vm_wire_sub(1);
4137                 if (old == 1)
4138                         vm_page_free(m);
4139         }
4140 }
4141
4142 /* See vm_page_release(). */
4143 void
4144 vm_page_release_locked(vm_page_t m, int flags)
4145 {
4146
4147         VM_OBJECT_ASSERT_WLOCKED(m->object);
4148         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4149             ("vm_page_release_locked: page %p is unmanaged", m));
4150
4151         if (vm_page_unwire_noq(m)) {
4152                 if ((flags & VPR_TRYFREE) != 0 &&
4153                     (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4154                     m->dirty == 0 && !vm_page_busied(m)) {
4155                         vm_page_free(m);
4156                 } else {
4157                         vm_page_lock(m);
4158                         vm_page_release_toq(m, flags);
4159                         vm_page_unlock(m);
4160                 }
4161         }
4162 }
4163
4164 static bool
4165 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4166 {
4167         u_int old;
4168
4169         KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4170             ("vm_page_try_blocked_op: page %p has no object", m));
4171         KASSERT(vm_page_busied(m),
4172             ("vm_page_try_blocked_op: page %p is not busy", m));
4173         VM_OBJECT_ASSERT_LOCKED(m->object);
4174
4175         old = m->ref_count;
4176         do {
4177                 KASSERT(old != 0,
4178                     ("vm_page_try_blocked_op: page %p has no references", m));
4179                 if (VPRC_WIRE_COUNT(old) != 0)
4180                         return (false);
4181         } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4182
4183         (op)(m);
4184
4185         /*
4186          * If the object is read-locked, new wirings may be created via an
4187          * object lookup.
4188          */
4189         old = vm_page_drop(m, VPRC_BLOCKED);
4190         KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4191             old == (VPRC_BLOCKED | VPRC_OBJREF),
4192             ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4193             old, m));
4194         return (true);
4195 }
4196
4197 /*
4198  * Atomically check for wirings and remove all mappings of the page.
4199  */
4200 bool
4201 vm_page_try_remove_all(vm_page_t m)
4202 {
4203
4204         return (vm_page_try_blocked_op(m, pmap_remove_all));
4205 }
4206
4207 /*
4208  * Atomically check for wirings and remove all writeable mappings of the page.
4209  */
4210 bool
4211 vm_page_try_remove_write(vm_page_t m)
4212 {
4213
4214         return (vm_page_try_blocked_op(m, pmap_remove_write));
4215 }
4216
4217 /*
4218  * vm_page_advise
4219  *
4220  *      Apply the specified advice to the given page.
4221  *
4222  *      The object and page must be locked.
4223  */
4224 void
4225 vm_page_advise(vm_page_t m, int advice)
4226 {
4227
4228         vm_page_assert_locked(m);
4229         VM_OBJECT_ASSERT_WLOCKED(m->object);
4230         if (advice == MADV_FREE)
4231                 /*
4232                  * Mark the page clean.  This will allow the page to be freed
4233                  * without first paging it out.  MADV_FREE pages are often
4234                  * quickly reused by malloc(3), so we do not do anything that
4235                  * would result in a page fault on a later access.
4236                  */
4237                 vm_page_undirty(m);
4238         else if (advice != MADV_DONTNEED) {
4239                 if (advice == MADV_WILLNEED)
4240                         vm_page_activate(m);
4241                 return;
4242         }
4243
4244         /*
4245          * Clear any references to the page.  Otherwise, the page daemon will
4246          * immediately reactivate the page.
4247          */
4248         vm_page_aflag_clear(m, PGA_REFERENCED);
4249
4250         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4251                 vm_page_dirty(m);
4252
4253         /*
4254          * Place clean pages near the head of the inactive queue rather than
4255          * the tail, thus defeating the queue's LRU operation and ensuring that
4256          * the page will be reused quickly.  Dirty pages not already in the
4257          * laundry are moved there.
4258          */
4259         if (m->dirty == 0)
4260                 vm_page_deactivate_noreuse(m);
4261         else if (!vm_page_in_laundry(m))
4262                 vm_page_launder(m);
4263 }
4264
4265 static inline int
4266 vm_page_grab_pflags(int allocflags)
4267 {
4268         int pflags;
4269
4270         KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4271             (allocflags & VM_ALLOC_WIRED) != 0,
4272             ("vm_page_grab_pflags: the pages must be busied or wired"));
4273         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4274             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4275             ("vm_page_grab_pflags: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4276             "mismatch"));
4277         pflags = allocflags &
4278             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4279             VM_ALLOC_NOBUSY);
4280         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4281                 pflags |= VM_ALLOC_WAITFAIL;
4282         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4283                 pflags |= VM_ALLOC_SBUSY;
4284
4285         return (pflags);
4286 }
4287
4288 /*
4289  * Grab a page, waiting until we are waken up due to the page
4290  * changing state.  We keep on waiting, if the page continues
4291  * to be in the object.  If the page doesn't exist, first allocate it
4292  * and then conditionally zero it.
4293  *
4294  * This routine may sleep.
4295  *
4296  * The object must be locked on entry.  The lock will, however, be released
4297  * and reacquired if the routine sleeps.
4298  */
4299 vm_page_t
4300 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4301 {
4302         vm_page_t m;
4303         int pflags;
4304
4305         VM_OBJECT_ASSERT_WLOCKED(object);
4306         pflags = vm_page_grab_pflags(allocflags);
4307 retrylookup:
4308         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4309                 if (!vm_page_acquire_flags(m, allocflags)) {
4310                         if (vm_page_busy_sleep_flags(object, m, "pgrbwt",
4311                             allocflags))
4312                                 goto retrylookup;
4313                         return (NULL);
4314                 }
4315                 goto out;
4316         }
4317         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4318                 return (NULL);
4319         m = vm_page_alloc(object, pindex, pflags);
4320         if (m == NULL) {
4321                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4322                         return (NULL);
4323                 goto retrylookup;
4324         }
4325         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4326                 pmap_zero_page(m);
4327
4328 out:
4329         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4330                 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4331                         vm_page_sunbusy(m);
4332                 else
4333                         vm_page_xunbusy(m);
4334         }
4335         return (m);
4336 }
4337
4338 /*
4339  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4340  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4341  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4342  * in simultaneously.  Additional pages will be left on a paging queue but
4343  * will neither be wired nor busy regardless of allocflags.
4344  */
4345 int
4346 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4347 {
4348         vm_page_t m;
4349         vm_page_t ma[VM_INITIAL_PAGEIN];
4350         bool sleep, xbusy;
4351         int after, i, pflags, rv;
4352
4353         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4354             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4355             ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4356         KASSERT((allocflags &
4357             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4358             ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4359         VM_OBJECT_ASSERT_WLOCKED(object);
4360         pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY);
4361         pflags |= VM_ALLOC_WAITFAIL;
4362
4363 retrylookup:
4364         xbusy = false;
4365         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4366                 /*
4367                  * If the page is fully valid it can only become invalid
4368                  * with the object lock held.  If it is not valid it can
4369                  * become valid with the busy lock held.  Therefore, we
4370                  * may unnecessarily lock the exclusive busy here if we
4371                  * race with I/O completion not using the object lock.
4372                  * However, we will not end up with an invalid page and a
4373                  * shared lock.
4374                  */
4375                 if (!vm_page_all_valid(m) ||
4376                     (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) {
4377                         sleep = !vm_page_tryxbusy(m);
4378                         xbusy = true;
4379                 } else
4380                         sleep = !vm_page_trysbusy(m);
4381                 if (sleep) {
4382                         (void)vm_page_busy_sleep_flags(object, m, "pgrbwt",
4383                             allocflags);
4384                         goto retrylookup;
4385                 }
4386                 if ((allocflags & VM_ALLOC_NOCREAT) != 0 &&
4387                    !vm_page_all_valid(m)) {
4388                         if (xbusy)
4389                                 vm_page_xunbusy(m);
4390                         else
4391                                 vm_page_sunbusy(m);
4392                         *mp = NULL;
4393                         return (VM_PAGER_FAIL);
4394                 }
4395                 if ((allocflags & VM_ALLOC_WIRED) != 0)
4396                         vm_page_wire(m);
4397                 if (vm_page_all_valid(m))
4398                         goto out;
4399         } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4400                 *mp = NULL;
4401                 return (VM_PAGER_FAIL);
4402         } else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) {
4403                 xbusy = true;
4404         } else {
4405                 goto retrylookup;
4406         }
4407
4408         vm_page_assert_xbusied(m);
4409         MPASS(xbusy);
4410         if (vm_pager_has_page(object, pindex, NULL, &after)) {
4411                 after = MIN(after, VM_INITIAL_PAGEIN);
4412                 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4413                 after = MAX(after, 1);
4414                 ma[0] = m;
4415                 for (i = 1; i < after; i++) {
4416                         if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4417                                 if (ma[i]->valid || !vm_page_tryxbusy(ma[i]))
4418                                         break;
4419                         } else {
4420                                 ma[i] = vm_page_alloc(object, m->pindex + i,
4421                                     VM_ALLOC_NORMAL);
4422                                 if (ma[i] == NULL)
4423                                         break;
4424                         }
4425                 }
4426                 after = i;
4427                 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4428                 /* Pager may have replaced a page. */
4429                 m = ma[0];
4430                 if (rv != VM_PAGER_OK) {
4431                         if ((allocflags & VM_ALLOC_WIRED) != 0)
4432                                 vm_page_unwire_noq(m);
4433                         for (i = 0; i < after; i++) {
4434                                 if (!vm_page_wired(ma[i]))
4435                                         vm_page_free(ma[i]);
4436                                 else
4437                                         vm_page_xunbusy(ma[i]);
4438                         }
4439                         *mp = NULL;
4440                         return (rv);
4441                 }
4442                 for (i = 1; i < after; i++)
4443                         vm_page_readahead_finish(ma[i]);
4444                 MPASS(vm_page_all_valid(m));
4445         } else {
4446                 vm_page_zero_invalid(m, TRUE);
4447         }
4448 out:
4449         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4450                 if (xbusy)
4451                         vm_page_xunbusy(m);
4452                 else
4453                         vm_page_sunbusy(m);
4454         }
4455         if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy)
4456                 vm_page_busy_downgrade(m);
4457         *mp = m;
4458         return (VM_PAGER_OK);
4459 }
4460
4461 /*
4462  * Return the specified range of pages from the given object.  For each
4463  * page offset within the range, if a page already exists within the object
4464  * at that offset and it is busy, then wait for it to change state.  If,
4465  * instead, the page doesn't exist, then allocate it.
4466  *
4467  * The caller must always specify an allocation class.
4468  *
4469  * allocation classes:
4470  *      VM_ALLOC_NORMAL         normal process request
4471  *      VM_ALLOC_SYSTEM         system *really* needs the pages
4472  *
4473  * The caller must always specify that the pages are to be busied and/or
4474  * wired.
4475  *
4476  * optional allocation flags:
4477  *      VM_ALLOC_IGN_SBUSY      do not sleep on soft busy pages
4478  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
4479  *      VM_ALLOC_NOWAIT         do not sleep
4480  *      VM_ALLOC_SBUSY          set page to sbusy state
4481  *      VM_ALLOC_WIRED          wire the pages
4482  *      VM_ALLOC_ZERO           zero and validate any invalid pages
4483  *
4484  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4485  * may return a partial prefix of the requested range.
4486  */
4487 int
4488 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4489     vm_page_t *ma, int count)
4490 {
4491         vm_page_t m, mpred;
4492         int pflags;
4493         int i;
4494
4495         VM_OBJECT_ASSERT_WLOCKED(object);
4496         KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4497             ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4498
4499         pflags = vm_page_grab_pflags(allocflags);
4500         if (count == 0)
4501                 return (0);
4502
4503         i = 0;
4504 retrylookup:
4505         m = vm_radix_lookup_le(&object->rtree, pindex + i);
4506         if (m == NULL || m->pindex != pindex + i) {
4507                 mpred = m;
4508                 m = NULL;
4509         } else
4510                 mpred = TAILQ_PREV(m, pglist, listq);
4511         for (; i < count; i++) {
4512                 if (m != NULL) {
4513                         if (!vm_page_acquire_flags(m, allocflags)) {
4514                                 if (vm_page_busy_sleep_flags(object, m,
4515                                     "grbmaw", allocflags))
4516                                         goto retrylookup;
4517                                 break;
4518                         }
4519                 } else {
4520                         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4521                                 break;
4522                         m = vm_page_alloc_after(object, pindex + i,
4523                             pflags | VM_ALLOC_COUNT(count - i), mpred);
4524                         if (m == NULL) {
4525                                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4526                                         break;
4527                                 goto retrylookup;
4528                         }
4529                 }
4530                 if (vm_page_none_valid(m) &&
4531                     (allocflags & VM_ALLOC_ZERO) != 0) {
4532                         if ((m->flags & PG_ZERO) == 0)
4533                                 pmap_zero_page(m);
4534                         vm_page_valid(m);
4535                 }
4536                 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4537                         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4538                                 vm_page_sunbusy(m);
4539                         else
4540                                 vm_page_xunbusy(m);
4541                 }
4542                 ma[i] = mpred = m;
4543                 m = vm_page_next(m);
4544         }
4545         return (i);
4546 }
4547
4548 /*
4549  * Mapping function for valid or dirty bits in a page.
4550  *
4551  * Inputs are required to range within a page.
4552  */
4553 vm_page_bits_t
4554 vm_page_bits(int base, int size)
4555 {
4556         int first_bit;
4557         int last_bit;
4558
4559         KASSERT(
4560             base + size <= PAGE_SIZE,
4561             ("vm_page_bits: illegal base/size %d/%d", base, size)
4562         );
4563
4564         if (size == 0)          /* handle degenerate case */
4565                 return (0);
4566
4567         first_bit = base >> DEV_BSHIFT;
4568         last_bit = (base + size - 1) >> DEV_BSHIFT;
4569
4570         return (((vm_page_bits_t)2 << last_bit) -
4571             ((vm_page_bits_t)1 << first_bit));
4572 }
4573
4574 void
4575 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4576 {
4577
4578 #if PAGE_SIZE == 32768
4579         atomic_set_64((uint64_t *)bits, set);
4580 #elif PAGE_SIZE == 16384
4581         atomic_set_32((uint32_t *)bits, set);
4582 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4583         atomic_set_16((uint16_t *)bits, set);
4584 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4585         atomic_set_8((uint8_t *)bits, set);
4586 #else           /* PAGE_SIZE <= 8192 */
4587         uintptr_t addr;
4588         int shift;
4589
4590         addr = (uintptr_t)bits;
4591         /*
4592          * Use a trick to perform a 32-bit atomic on the
4593          * containing aligned word, to not depend on the existence
4594          * of atomic_{set, clear}_{8, 16}.
4595          */
4596         shift = addr & (sizeof(uint32_t) - 1);
4597 #if BYTE_ORDER == BIG_ENDIAN
4598         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4599 #else
4600         shift *= NBBY;
4601 #endif
4602         addr &= ~(sizeof(uint32_t) - 1);
4603         atomic_set_32((uint32_t *)addr, set << shift);
4604 #endif          /* PAGE_SIZE */
4605 }
4606
4607 static inline void
4608 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4609 {
4610
4611 #if PAGE_SIZE == 32768
4612         atomic_clear_64((uint64_t *)bits, clear);
4613 #elif PAGE_SIZE == 16384
4614         atomic_clear_32((uint32_t *)bits, clear);
4615 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4616         atomic_clear_16((uint16_t *)bits, clear);
4617 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4618         atomic_clear_8((uint8_t *)bits, clear);
4619 #else           /* PAGE_SIZE <= 8192 */
4620         uintptr_t addr;
4621         int shift;
4622
4623         addr = (uintptr_t)bits;
4624         /*
4625          * Use a trick to perform a 32-bit atomic on the
4626          * containing aligned word, to not depend on the existence
4627          * of atomic_{set, clear}_{8, 16}.
4628          */
4629         shift = addr & (sizeof(uint32_t) - 1);
4630 #if BYTE_ORDER == BIG_ENDIAN
4631         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4632 #else
4633         shift *= NBBY;
4634 #endif
4635         addr &= ~(sizeof(uint32_t) - 1);
4636         atomic_clear_32((uint32_t *)addr, clear << shift);
4637 #endif          /* PAGE_SIZE */
4638 }
4639
4640 static inline vm_page_bits_t
4641 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
4642 {
4643 #if PAGE_SIZE == 32768
4644         uint64_t old;
4645
4646         old = *bits;
4647         while (atomic_fcmpset_64(bits, &old, newbits) == 0);
4648         return (old);
4649 #elif PAGE_SIZE == 16384
4650         uint32_t old;
4651
4652         old = *bits;
4653         while (atomic_fcmpset_32(bits, &old, newbits) == 0);
4654         return (old);
4655 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
4656         uint16_t old;
4657
4658         old = *bits;
4659         while (atomic_fcmpset_16(bits, &old, newbits) == 0);
4660         return (old);
4661 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
4662         uint8_t old;
4663
4664         old = *bits;
4665         while (atomic_fcmpset_8(bits, &old, newbits) == 0);
4666         return (old);
4667 #else           /* PAGE_SIZE <= 4096*/
4668         uintptr_t addr;
4669         uint32_t old, new, mask;
4670         int shift;
4671
4672         addr = (uintptr_t)bits;
4673         /*
4674          * Use a trick to perform a 32-bit atomic on the
4675          * containing aligned word, to not depend on the existence
4676          * of atomic_{set, swap, clear}_{8, 16}.
4677          */
4678         shift = addr & (sizeof(uint32_t) - 1);
4679 #if BYTE_ORDER == BIG_ENDIAN
4680         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4681 #else
4682         shift *= NBBY;
4683 #endif
4684         addr &= ~(sizeof(uint32_t) - 1);
4685         mask = VM_PAGE_BITS_ALL << shift;
4686
4687         old = *bits;
4688         do {
4689                 new = old & ~mask;
4690                 new |= newbits << shift;
4691         } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
4692         return (old >> shift);
4693 #endif          /* PAGE_SIZE */
4694 }
4695
4696 /*
4697  *      vm_page_set_valid_range:
4698  *
4699  *      Sets portions of a page valid.  The arguments are expected
4700  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4701  *      of any partial chunks touched by the range.  The invalid portion of
4702  *      such chunks will be zeroed.
4703  *
4704  *      (base + size) must be less then or equal to PAGE_SIZE.
4705  */
4706 void
4707 vm_page_set_valid_range(vm_page_t m, int base, int size)
4708 {
4709         int endoff, frag;
4710         vm_page_bits_t pagebits;
4711
4712         vm_page_assert_busied(m);
4713         if (size == 0)  /* handle degenerate case */
4714                 return;
4715
4716         /*
4717          * If the base is not DEV_BSIZE aligned and the valid
4718          * bit is clear, we have to zero out a portion of the
4719          * first block.
4720          */
4721         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4722             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4723                 pmap_zero_page_area(m, frag, base - frag);
4724
4725         /*
4726          * If the ending offset is not DEV_BSIZE aligned and the
4727          * valid bit is clear, we have to zero out a portion of
4728          * the last block.
4729          */
4730         endoff = base + size;
4731         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4732             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4733                 pmap_zero_page_area(m, endoff,
4734                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4735
4736         /*
4737          * Assert that no previously invalid block that is now being validated
4738          * is already dirty.
4739          */
4740         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4741             ("vm_page_set_valid_range: page %p is dirty", m));
4742
4743         /*
4744          * Set valid bits inclusive of any overlap.
4745          */
4746         pagebits = vm_page_bits(base, size);
4747         if (vm_page_xbusied(m))
4748                 m->valid |= pagebits;
4749         else
4750                 vm_page_bits_set(m, &m->valid, pagebits);
4751 }
4752
4753 /*
4754  * Set the page dirty bits and free the invalid swap space if
4755  * present.  Returns the previous dirty bits.
4756  */
4757 vm_page_bits_t
4758 vm_page_set_dirty(vm_page_t m)
4759 {
4760         vm_page_bits_t old;
4761
4762         VM_PAGE_OBJECT_BUSY_ASSERT(m);
4763
4764         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
4765                 old = m->dirty;
4766                 m->dirty = VM_PAGE_BITS_ALL;
4767         } else
4768                 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
4769         if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
4770                 vm_pager_page_unswapped(m);
4771
4772         return (old);
4773 }
4774
4775 /*
4776  * Clear the given bits from the specified page's dirty field.
4777  */
4778 static __inline void
4779 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4780 {
4781
4782         vm_page_assert_busied(m);
4783
4784         /*
4785          * If the page is xbusied and not write mapped we are the
4786          * only thread that can modify dirty bits.  Otherwise, The pmap
4787          * layer can call vm_page_dirty() without holding a distinguished
4788          * lock.  The combination of page busy and atomic operations
4789          * suffice to guarantee consistency of the page dirty field.
4790          */
4791         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4792                 m->dirty &= ~pagebits;
4793         else
4794                 vm_page_bits_clear(m, &m->dirty, pagebits);
4795 }
4796
4797 /*
4798  *      vm_page_set_validclean:
4799  *
4800  *      Sets portions of a page valid and clean.  The arguments are expected
4801  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4802  *      of any partial chunks touched by the range.  The invalid portion of
4803  *      such chunks will be zero'd.
4804  *
4805  *      (base + size) must be less then or equal to PAGE_SIZE.
4806  */
4807 void
4808 vm_page_set_validclean(vm_page_t m, int base, int size)
4809 {
4810         vm_page_bits_t oldvalid, pagebits;
4811         int endoff, frag;
4812
4813         vm_page_assert_busied(m);
4814         if (size == 0)  /* handle degenerate case */
4815                 return;
4816
4817         /*
4818          * If the base is not DEV_BSIZE aligned and the valid
4819          * bit is clear, we have to zero out a portion of the
4820          * first block.
4821          */
4822         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4823             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4824                 pmap_zero_page_area(m, frag, base - frag);
4825
4826         /*
4827          * If the ending offset is not DEV_BSIZE aligned and the
4828          * valid bit is clear, we have to zero out a portion of
4829          * the last block.
4830          */
4831         endoff = base + size;
4832         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4833             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4834                 pmap_zero_page_area(m, endoff,
4835                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4836
4837         /*
4838          * Set valid, clear dirty bits.  If validating the entire
4839          * page we can safely clear the pmap modify bit.  We also
4840          * use this opportunity to clear the PGA_NOSYNC flag.  If a process
4841          * takes a write fault on a MAP_NOSYNC memory area the flag will
4842          * be set again.
4843          *
4844          * We set valid bits inclusive of any overlap, but we can only
4845          * clear dirty bits for DEV_BSIZE chunks that are fully within
4846          * the range.
4847          */
4848         oldvalid = m->valid;
4849         pagebits = vm_page_bits(base, size);
4850         if (vm_page_xbusied(m))
4851                 m->valid |= pagebits;
4852         else
4853                 vm_page_bits_set(m, &m->valid, pagebits);
4854 #if 0   /* NOT YET */
4855         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4856                 frag = DEV_BSIZE - frag;
4857                 base += frag;
4858                 size -= frag;
4859                 if (size < 0)
4860                         size = 0;
4861         }
4862         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4863 #endif
4864         if (base == 0 && size == PAGE_SIZE) {
4865                 /*
4866                  * The page can only be modified within the pmap if it is
4867                  * mapped, and it can only be mapped if it was previously
4868                  * fully valid.
4869                  */
4870                 if (oldvalid == VM_PAGE_BITS_ALL)
4871                         /*
4872                          * Perform the pmap_clear_modify() first.  Otherwise,
4873                          * a concurrent pmap operation, such as
4874                          * pmap_protect(), could clear a modification in the
4875                          * pmap and set the dirty field on the page before
4876                          * pmap_clear_modify() had begun and after the dirty
4877                          * field was cleared here.
4878                          */
4879                         pmap_clear_modify(m);
4880                 m->dirty = 0;
4881                 vm_page_aflag_clear(m, PGA_NOSYNC);
4882         } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
4883                 m->dirty &= ~pagebits;
4884         else
4885                 vm_page_clear_dirty_mask(m, pagebits);
4886 }
4887
4888 void
4889 vm_page_clear_dirty(vm_page_t m, int base, int size)
4890 {
4891
4892         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4893 }
4894
4895 /*
4896  *      vm_page_set_invalid:
4897  *
4898  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
4899  *      valid and dirty bits for the effected areas are cleared.
4900  */
4901 void
4902 vm_page_set_invalid(vm_page_t m, int base, int size)
4903 {
4904         vm_page_bits_t bits;
4905         vm_object_t object;
4906
4907         /*
4908          * The object lock is required so that pages can't be mapped
4909          * read-only while we're in the process of invalidating them.
4910          */
4911         object = m->object;
4912         VM_OBJECT_ASSERT_WLOCKED(object);
4913         vm_page_assert_busied(m);
4914
4915         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4916             size >= object->un_pager.vnp.vnp_size)
4917                 bits = VM_PAGE_BITS_ALL;
4918         else
4919                 bits = vm_page_bits(base, size);
4920         if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
4921                 pmap_remove_all(m);
4922         KASSERT((bits == 0 && vm_page_all_valid(m)) ||
4923             !pmap_page_is_mapped(m),
4924             ("vm_page_set_invalid: page %p is mapped", m));
4925         if (vm_page_xbusied(m)) {
4926                 m->valid &= ~bits;
4927                 m->dirty &= ~bits;
4928         } else {
4929                 vm_page_bits_clear(m, &m->valid, bits);
4930                 vm_page_bits_clear(m, &m->dirty, bits);
4931         }
4932 }
4933
4934 /*
4935  *      vm_page_invalid:
4936  *
4937  *      Invalidates the entire page.  The page must be busy, unmapped, and
4938  *      the enclosing object must be locked.  The object locks protects
4939  *      against concurrent read-only pmap enter which is done without
4940  *      busy.
4941  */
4942 void
4943 vm_page_invalid(vm_page_t m)
4944 {
4945
4946         vm_page_assert_busied(m);
4947         VM_OBJECT_ASSERT_LOCKED(m->object);
4948         MPASS(!pmap_page_is_mapped(m));
4949
4950         if (vm_page_xbusied(m))
4951                 m->valid = 0;
4952         else
4953                 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
4954 }
4955
4956 /*
4957  * vm_page_zero_invalid()
4958  *
4959  *      The kernel assumes that the invalid portions of a page contain
4960  *      garbage, but such pages can be mapped into memory by user code.
4961  *      When this occurs, we must zero out the non-valid portions of the
4962  *      page so user code sees what it expects.
4963  *
4964  *      Pages are most often semi-valid when the end of a file is mapped
4965  *      into memory and the file's size is not page aligned.
4966  */
4967 void
4968 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4969 {
4970         int b;
4971         int i;
4972
4973         /*
4974          * Scan the valid bits looking for invalid sections that
4975          * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4976          * valid bit may be set ) have already been zeroed by
4977          * vm_page_set_validclean().
4978          */
4979         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4980                 if (i == (PAGE_SIZE / DEV_BSIZE) ||
4981                     (m->valid & ((vm_page_bits_t)1 << i))) {
4982                         if (i > b) {
4983                                 pmap_zero_page_area(m,
4984                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4985                         }
4986                         b = i + 1;
4987                 }
4988         }
4989
4990         /*
4991          * setvalid is TRUE when we can safely set the zero'd areas
4992          * as being valid.  We can do this if there are no cache consistancy
4993          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4994          */
4995         if (setvalid)
4996                 vm_page_valid(m);
4997 }
4998
4999 /*
5000  *      vm_page_is_valid:
5001  *
5002  *      Is (partial) page valid?  Note that the case where size == 0
5003  *      will return FALSE in the degenerate case where the page is
5004  *      entirely invalid, and TRUE otherwise.
5005  *
5006  *      Some callers envoke this routine without the busy lock held and
5007  *      handle races via higher level locks.  Typical callers should
5008  *      hold a busy lock to prevent invalidation.
5009  */
5010 int
5011 vm_page_is_valid(vm_page_t m, int base, int size)
5012 {
5013         vm_page_bits_t bits;
5014
5015         bits = vm_page_bits(base, size);
5016         return (m->valid != 0 && (m->valid & bits) == bits);
5017 }
5018
5019 /*
5020  * Returns true if all of the specified predicates are true for the entire
5021  * (super)page and false otherwise.
5022  */
5023 bool
5024 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5025 {
5026         vm_object_t object;
5027         int i, npages;
5028
5029         object = m->object;
5030         if (skip_m != NULL && skip_m->object != object)
5031                 return (false);
5032         VM_OBJECT_ASSERT_LOCKED(object);
5033         npages = atop(pagesizes[m->psind]);
5034
5035         /*
5036          * The physically contiguous pages that make up a superpage, i.e., a
5037          * page with a page size index ("psind") greater than zero, will
5038          * occupy adjacent entries in vm_page_array[].
5039          */
5040         for (i = 0; i < npages; i++) {
5041                 /* Always test object consistency, including "skip_m". */
5042                 if (m[i].object != object)
5043                         return (false);
5044                 if (&m[i] == skip_m)
5045                         continue;
5046                 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5047                         return (false);
5048                 if ((flags & PS_ALL_DIRTY) != 0) {
5049                         /*
5050                          * Calling vm_page_test_dirty() or pmap_is_modified()
5051                          * might stop this case from spuriously returning
5052                          * "false".  However, that would require a write lock
5053                          * on the object containing "m[i]".
5054                          */
5055                         if (m[i].dirty != VM_PAGE_BITS_ALL)
5056                                 return (false);
5057                 }
5058                 if ((flags & PS_ALL_VALID) != 0 &&
5059                     m[i].valid != VM_PAGE_BITS_ALL)
5060                         return (false);
5061         }
5062         return (true);
5063 }
5064
5065 /*
5066  * Set the page's dirty bits if the page is modified.
5067  */
5068 void
5069 vm_page_test_dirty(vm_page_t m)
5070 {
5071
5072         vm_page_assert_busied(m);
5073         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5074                 vm_page_dirty(m);
5075 }
5076
5077 void
5078 vm_page_valid(vm_page_t m)
5079 {
5080
5081         vm_page_assert_busied(m);
5082         if (vm_page_xbusied(m))
5083                 m->valid = VM_PAGE_BITS_ALL;
5084         else
5085                 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5086 }
5087
5088 void
5089 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5090 {
5091
5092         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5093 }
5094
5095 void
5096 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5097 {
5098
5099         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5100 }
5101
5102 int
5103 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5104 {
5105
5106         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5107 }
5108
5109 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5110 void
5111 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5112 {
5113
5114         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5115 }
5116
5117 void
5118 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5119 {
5120
5121         mtx_assert_(vm_page_lockptr(m), a, file, line);
5122 }
5123 #endif
5124
5125 #ifdef INVARIANTS
5126 void
5127 vm_page_object_busy_assert(vm_page_t m)
5128 {
5129
5130         /*
5131          * Certain of the page's fields may only be modified by the
5132          * holder of a page or object busy.
5133          */
5134         if (m->object != NULL && !vm_page_busied(m))
5135                 VM_OBJECT_ASSERT_BUSY(m->object);
5136 }
5137
5138 void
5139 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5140 {
5141
5142         if ((bits & PGA_WRITEABLE) == 0)
5143                 return;
5144
5145         /*
5146          * The PGA_WRITEABLE flag can only be set if the page is
5147          * managed, is exclusively busied or the object is locked.
5148          * Currently, this flag is only set by pmap_enter().
5149          */
5150         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5151             ("PGA_WRITEABLE on unmanaged page"));
5152         if (!vm_page_xbusied(m))
5153                 VM_OBJECT_ASSERT_BUSY(m->object);
5154 }
5155 #endif
5156
5157 #include "opt_ddb.h"
5158 #ifdef DDB
5159 #include <sys/kernel.h>
5160
5161 #include <ddb/ddb.h>
5162
5163 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5164 {
5165
5166         db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5167         db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5168         db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5169         db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5170         db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5171         db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5172         db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5173         db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5174         db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5175 }
5176
5177 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5178 {
5179         int dom;
5180
5181         db_printf("pq_free %d\n", vm_free_count());
5182         for (dom = 0; dom < vm_ndomains; dom++) {
5183                 db_printf(
5184     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5185                     dom,
5186                     vm_dom[dom].vmd_page_count,
5187                     vm_dom[dom].vmd_free_count,
5188                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5189                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5190                     vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5191                     vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5192         }
5193 }
5194
5195 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5196 {
5197         vm_page_t m;
5198         boolean_t phys, virt;
5199
5200         if (!have_addr) {
5201                 db_printf("show pginfo addr\n");
5202                 return;
5203         }
5204
5205         phys = strchr(modif, 'p') != NULL;
5206         virt = strchr(modif, 'v') != NULL;
5207         if (virt)
5208                 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5209         else if (phys)
5210                 m = PHYS_TO_VM_PAGE(addr);
5211         else
5212                 m = (vm_page_t)addr;
5213         db_printf(
5214     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
5215     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5216             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5217             m->a.queue, m->ref_count, m->a.flags, m->oflags,
5218             m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5219 }
5220 #endif /* DDB */