]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_page.c
Merge ^/head r352764 through r353315.
[FreeBSD/FreeBSD.git] / sys / vm / vm_page.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
36  */
37
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64
65 /*
66  *      Resident memory management module.
67  */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_vm.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113
114 #include <machine/md_var.h>
115
116 extern int      uma_startup_count(int);
117 extern void     uma_startup(void *, int);
118 extern int      vmem_startup_count(void);
119
120 struct vm_domain vm_dom[MAXMEMDOM];
121
122 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
123
124 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
125
126 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
127 /* The following fields are protected by the domainset lock. */
128 domainset_t __exclusive_cache_line vm_min_domains;
129 domainset_t __exclusive_cache_line vm_severe_domains;
130 static int vm_min_waiters;
131 static int vm_severe_waiters;
132 static int vm_pageproc_waiters;
133
134 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0,
135     "VM page statistics");
136
137 static counter_u64_t queue_ops = EARLY_COUNTER;
138 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
139     CTLFLAG_RD, &queue_ops,
140     "Number of batched queue operations");
141
142 static counter_u64_t queue_nops = EARLY_COUNTER;
143 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
144     CTLFLAG_RD, &queue_nops,
145     "Number of batched queue operations with no effects");
146
147 static void
148 counter_startup(void)
149 {
150
151         queue_ops = counter_u64_alloc(M_WAITOK);
152         queue_nops = counter_u64_alloc(M_WAITOK);
153 }
154 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
155
156 /*
157  * bogus page -- for I/O to/from partially complete buffers,
158  * or for paging into sparsely invalid regions.
159  */
160 vm_page_t bogus_page;
161
162 vm_page_t vm_page_array;
163 long vm_page_array_size;
164 long first_page;
165
166 static int boot_pages;
167 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
168     &boot_pages, 0,
169     "number of pages allocated for bootstrapping the VM system");
170
171 static int pa_tryrelock_restart;
172 SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
173     &pa_tryrelock_restart, 0, "Number of tryrelock restarts");
174
175 static TAILQ_HEAD(, vm_page) blacklist_head;
176 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
177 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
178     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
179
180 static uma_zone_t fakepg_zone;
181
182 static void vm_page_alloc_check(vm_page_t m);
183 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
184 static void vm_page_dequeue_complete(vm_page_t m);
185 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
186 static void vm_page_init(void *dummy);
187 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
188     vm_pindex_t pindex, vm_page_t mpred);
189 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
190     vm_page_t mpred);
191 static void vm_page_mvqueue(vm_page_t m, uint8_t queue);
192 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
193     vm_page_t m_run, vm_paddr_t high);
194 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
195     int req);
196 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
197     int flags);
198 static void vm_page_zone_release(void *arg, void **store, int cnt);
199
200 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
201
202 static void
203 vm_page_init(void *dummy)
204 {
205
206         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
207             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
208         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
209             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
210 }
211
212 /*
213  * The cache page zone is initialized later since we need to be able to allocate
214  * pages before UMA is fully initialized.
215  */
216 static void
217 vm_page_init_cache_zones(void *dummy __unused)
218 {
219         struct vm_domain *vmd;
220         struct vm_pgcache *pgcache;
221         int domain, pool;
222
223         for (domain = 0; domain < vm_ndomains; domain++) {
224                 vmd = VM_DOMAIN(domain);
225
226                 /*
227                  * Don't allow the page caches to take up more than .25% of
228                  * memory.
229                  */
230                 if (vmd->vmd_page_count / 400 < 256 * mp_ncpus * VM_NFREEPOOL)
231                         continue;
232                 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
233                         pgcache = &vmd->vmd_pgcache[pool];
234                         pgcache->domain = domain;
235                         pgcache->pool = pool;
236                         pgcache->zone = uma_zcache_create("vm pgcache",
237                             sizeof(struct vm_page), NULL, NULL, NULL, NULL,
238                             vm_page_zone_import, vm_page_zone_release, pgcache,
239                             UMA_ZONE_MAXBUCKET | UMA_ZONE_VM);
240                         (void)uma_zone_set_maxcache(pgcache->zone, 0);
241                 }
242         }
243 }
244 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
245
246 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
247 #if PAGE_SIZE == 32768
248 #ifdef CTASSERT
249 CTASSERT(sizeof(u_long) >= 8);
250 #endif
251 #endif
252
253 /*
254  * Try to acquire a physical address lock while a pmap is locked.  If we
255  * fail to trylock we unlock and lock the pmap directly and cache the
256  * locked pa in *locked.  The caller should then restart their loop in case
257  * the virtual to physical mapping has changed.
258  */
259 int
260 vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
261 {
262         vm_paddr_t lockpa;
263
264         lockpa = *locked;
265         *locked = pa;
266         if (lockpa) {
267                 PA_LOCK_ASSERT(lockpa, MA_OWNED);
268                 if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
269                         return (0);
270                 PA_UNLOCK(lockpa);
271         }
272         if (PA_TRYLOCK(pa))
273                 return (0);
274         PMAP_UNLOCK(pmap);
275         atomic_add_int(&pa_tryrelock_restart, 1);
276         PA_LOCK(pa);
277         PMAP_LOCK(pmap);
278         return (EAGAIN);
279 }
280
281 /*
282  *      vm_set_page_size:
283  *
284  *      Sets the page size, perhaps based upon the memory
285  *      size.  Must be called before any use of page-size
286  *      dependent functions.
287  */
288 void
289 vm_set_page_size(void)
290 {
291         if (vm_cnt.v_page_size == 0)
292                 vm_cnt.v_page_size = PAGE_SIZE;
293         if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
294                 panic("vm_set_page_size: page size not a power of two");
295 }
296
297 /*
298  *      vm_page_blacklist_next:
299  *
300  *      Find the next entry in the provided string of blacklist
301  *      addresses.  Entries are separated by space, comma, or newline.
302  *      If an invalid integer is encountered then the rest of the
303  *      string is skipped.  Updates the list pointer to the next
304  *      character, or NULL if the string is exhausted or invalid.
305  */
306 static vm_paddr_t
307 vm_page_blacklist_next(char **list, char *end)
308 {
309         vm_paddr_t bad;
310         char *cp, *pos;
311
312         if (list == NULL || *list == NULL)
313                 return (0);
314         if (**list =='\0') {
315                 *list = NULL;
316                 return (0);
317         }
318
319         /*
320          * If there's no end pointer then the buffer is coming from
321          * the kenv and we know it's null-terminated.
322          */
323         if (end == NULL)
324                 end = *list + strlen(*list);
325
326         /* Ensure that strtoq() won't walk off the end */
327         if (*end != '\0') {
328                 if (*end == '\n' || *end == ' ' || *end  == ',')
329                         *end = '\0';
330                 else {
331                         printf("Blacklist not terminated, skipping\n");
332                         *list = NULL;
333                         return (0);
334                 }
335         }
336
337         for (pos = *list; *pos != '\0'; pos = cp) {
338                 bad = strtoq(pos, &cp, 0);
339                 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
340                         if (bad == 0) {
341                                 if (++cp < end)
342                                         continue;
343                                 else
344                                         break;
345                         }
346                 } else
347                         break;
348                 if (*cp == '\0' || ++cp >= end)
349                         *list = NULL;
350                 else
351                         *list = cp;
352                 return (trunc_page(bad));
353         }
354         printf("Garbage in RAM blacklist, skipping\n");
355         *list = NULL;
356         return (0);
357 }
358
359 bool
360 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
361 {
362         struct vm_domain *vmd;
363         vm_page_t m;
364         int ret;
365
366         m = vm_phys_paddr_to_vm_page(pa);
367         if (m == NULL)
368                 return (true); /* page does not exist, no failure */
369
370         vmd = vm_pagequeue_domain(m);
371         vm_domain_free_lock(vmd);
372         ret = vm_phys_unfree_page(m);
373         vm_domain_free_unlock(vmd);
374         if (ret != 0) {
375                 vm_domain_freecnt_inc(vmd, -1);
376                 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
377                 if (verbose)
378                         printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
379         }
380         return (ret);
381 }
382
383 /*
384  *      vm_page_blacklist_check:
385  *
386  *      Iterate through the provided string of blacklist addresses, pulling
387  *      each entry out of the physical allocator free list and putting it
388  *      onto a list for reporting via the vm.page_blacklist sysctl.
389  */
390 static void
391 vm_page_blacklist_check(char *list, char *end)
392 {
393         vm_paddr_t pa;
394         char *next;
395
396         next = list;
397         while (next != NULL) {
398                 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
399                         continue;
400                 vm_page_blacklist_add(pa, bootverbose);
401         }
402 }
403
404 /*
405  *      vm_page_blacklist_load:
406  *
407  *      Search for a special module named "ram_blacklist".  It'll be a
408  *      plain text file provided by the user via the loader directive
409  *      of the same name.
410  */
411 static void
412 vm_page_blacklist_load(char **list, char **end)
413 {
414         void *mod;
415         u_char *ptr;
416         u_int len;
417
418         mod = NULL;
419         ptr = NULL;
420
421         mod = preload_search_by_type("ram_blacklist");
422         if (mod != NULL) {
423                 ptr = preload_fetch_addr(mod);
424                 len = preload_fetch_size(mod);
425         }
426         *list = ptr;
427         if (ptr != NULL)
428                 *end = ptr + len;
429         else
430                 *end = NULL;
431         return;
432 }
433
434 static int
435 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
436 {
437         vm_page_t m;
438         struct sbuf sbuf;
439         int error, first;
440
441         first = 1;
442         error = sysctl_wire_old_buffer(req, 0);
443         if (error != 0)
444                 return (error);
445         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
446         TAILQ_FOREACH(m, &blacklist_head, listq) {
447                 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
448                     (uintmax_t)m->phys_addr);
449                 first = 0;
450         }
451         error = sbuf_finish(&sbuf);
452         sbuf_delete(&sbuf);
453         return (error);
454 }
455
456 /*
457  * Initialize a dummy page for use in scans of the specified paging queue.
458  * In principle, this function only needs to set the flag PG_MARKER.
459  * Nonetheless, it write busies the page as a safety precaution.
460  */
461 static void
462 vm_page_init_marker(vm_page_t marker, int queue, uint8_t aflags)
463 {
464
465         bzero(marker, sizeof(*marker));
466         marker->flags = PG_MARKER;
467         marker->aflags = aflags;
468         marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
469         marker->queue = queue;
470 }
471
472 static void
473 vm_page_domain_init(int domain)
474 {
475         struct vm_domain *vmd;
476         struct vm_pagequeue *pq;
477         int i;
478
479         vmd = VM_DOMAIN(domain);
480         bzero(vmd, sizeof(*vmd));
481         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
482             "vm inactive pagequeue";
483         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
484             "vm active pagequeue";
485         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
486             "vm laundry pagequeue";
487         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
488             "vm unswappable pagequeue";
489         vmd->vmd_domain = domain;
490         vmd->vmd_page_count = 0;
491         vmd->vmd_free_count = 0;
492         vmd->vmd_segs = 0;
493         vmd->vmd_oom = FALSE;
494         for (i = 0; i < PQ_COUNT; i++) {
495                 pq = &vmd->vmd_pagequeues[i];
496                 TAILQ_INIT(&pq->pq_pl);
497                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
498                     MTX_DEF | MTX_DUPOK);
499                 pq->pq_pdpages = 0;
500                 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
501         }
502         mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
503         mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
504         snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
505
506         /*
507          * inacthead is used to provide FIFO ordering for LRU-bypassing
508          * insertions.
509          */
510         vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
511         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
512             &vmd->vmd_inacthead, plinks.q);
513
514         /*
515          * The clock pages are used to implement active queue scanning without
516          * requeues.  Scans start at clock[0], which is advanced after the scan
517          * ends.  When the two clock hands meet, they are reset and scanning
518          * resumes from the head of the queue.
519          */
520         vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
521         vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
522         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
523             &vmd->vmd_clock[0], plinks.q);
524         TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
525             &vmd->vmd_clock[1], plinks.q);
526 }
527
528 /*
529  * Initialize a physical page in preparation for adding it to the free
530  * lists.
531  */
532 static void
533 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
534 {
535
536         m->object = NULL;
537         m->ref_count = 0;
538         m->busy_lock = VPB_UNBUSIED;
539         m->flags = m->aflags = 0;
540         m->phys_addr = pa;
541         m->queue = PQ_NONE;
542         m->psind = 0;
543         m->segind = segind;
544         m->order = VM_NFREEORDER;
545         m->pool = VM_FREEPOOL_DEFAULT;
546         m->valid = m->dirty = 0;
547         pmap_page_init(m);
548 }
549
550 #ifndef PMAP_HAS_PAGE_ARRAY
551 static vm_paddr_t
552 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
553 {
554         vm_paddr_t new_end;
555
556         /*
557          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
558          * However, because this page is allocated from KVM, out-of-bounds
559          * accesses using the direct map will not be trapped.
560          */
561         *vaddr += PAGE_SIZE;
562
563         /*
564          * Allocate physical memory for the page structures, and map it.
565          */
566         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
567         vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
568             VM_PROT_READ | VM_PROT_WRITE);
569         vm_page_array_size = page_range;
570
571         return (new_end);
572 }
573 #endif
574
575 /*
576  *      vm_page_startup:
577  *
578  *      Initializes the resident memory module.  Allocates physical memory for
579  *      bootstrapping UMA and some data structures that are used to manage
580  *      physical pages.  Initializes these structures, and populates the free
581  *      page queues.
582  */
583 vm_offset_t
584 vm_page_startup(vm_offset_t vaddr)
585 {
586         struct vm_phys_seg *seg;
587         vm_page_t m;
588         char *list, *listend;
589         vm_offset_t mapped;
590         vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
591         vm_paddr_t last_pa, pa;
592         u_long pagecount;
593         int biggestone, i, segind;
594 #ifdef WITNESS
595         int witness_size;
596 #endif
597 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
598         long ii;
599 #endif
600
601         vaddr = round_page(vaddr);
602
603         vm_phys_early_startup();
604         biggestone = vm_phys_avail_largest();
605         end = phys_avail[biggestone+1];
606
607         /*
608          * Initialize the page and queue locks.
609          */
610         mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
611         for (i = 0; i < PA_LOCK_COUNT; i++)
612                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
613         for (i = 0; i < vm_ndomains; i++)
614                 vm_page_domain_init(i);
615
616         /*
617          * Allocate memory for use when boot strapping the kernel memory
618          * allocator.  Tell UMA how many zones we are going to create
619          * before going fully functional.  UMA will add its zones.
620          *
621          * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP,
622          * KMAP ENTRY, MAP ENTRY, VMSPACE.
623          */
624         boot_pages = uma_startup_count(8);
625
626 #ifndef UMA_MD_SMALL_ALLOC
627         /* vmem_startup() calls uma_prealloc(). */
628         boot_pages += vmem_startup_count();
629         /* vm_map_startup() calls uma_prealloc(). */
630         boot_pages += howmany(MAX_KMAP,
631             UMA_SLAB_SPACE / sizeof(struct vm_map));
632
633         /*
634          * Before going fully functional kmem_init() does allocation
635          * from "KMAP ENTRY" and vmem_create() does allocation from "vmem".
636          */
637         boot_pages += 2;
638 #endif
639         /*
640          * CTFLAG_RDTUN doesn't work during the early boot process, so we must
641          * manually fetch the value.
642          */
643         TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
644         new_end = end - (boot_pages * UMA_SLAB_SIZE);
645         new_end = trunc_page(new_end);
646         mapped = pmap_map(&vaddr, new_end, end,
647             VM_PROT_READ | VM_PROT_WRITE);
648         bzero((void *)mapped, end - new_end);
649         uma_startup((void *)mapped, boot_pages);
650
651 #ifdef WITNESS
652         witness_size = round_page(witness_startup_count());
653         new_end -= witness_size;
654         mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
655             VM_PROT_READ | VM_PROT_WRITE);
656         bzero((void *)mapped, witness_size);
657         witness_startup((void *)mapped);
658 #endif
659
660 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
661     defined(__i386__) || defined(__mips__) || defined(__riscv)
662         /*
663          * Allocate a bitmap to indicate that a random physical page
664          * needs to be included in a minidump.
665          *
666          * The amd64 port needs this to indicate which direct map pages
667          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
668          *
669          * However, i386 still needs this workspace internally within the
670          * minidump code.  In theory, they are not needed on i386, but are
671          * included should the sf_buf code decide to use them.
672          */
673         last_pa = 0;
674         for (i = 0; dump_avail[i + 1] != 0; i += 2)
675                 if (dump_avail[i + 1] > last_pa)
676                         last_pa = dump_avail[i + 1];
677         page_range = last_pa / PAGE_SIZE;
678         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
679         new_end -= vm_page_dump_size;
680         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
681             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
682         bzero((void *)vm_page_dump, vm_page_dump_size);
683 #else
684         (void)last_pa;
685 #endif
686 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
687     defined(__riscv)
688         /*
689          * Include the UMA bootstrap pages, witness pages and vm_page_dump
690          * in a crash dump.  When pmap_map() uses the direct map, they are
691          * not automatically included.
692          */
693         for (pa = new_end; pa < end; pa += PAGE_SIZE)
694                 dump_add_page(pa);
695 #endif
696         phys_avail[biggestone + 1] = new_end;
697 #ifdef __amd64__
698         /*
699          * Request that the physical pages underlying the message buffer be
700          * included in a crash dump.  Since the message buffer is accessed
701          * through the direct map, they are not automatically included.
702          */
703         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
704         last_pa = pa + round_page(msgbufsize);
705         while (pa < last_pa) {
706                 dump_add_page(pa);
707                 pa += PAGE_SIZE;
708         }
709 #endif
710         /*
711          * Compute the number of pages of memory that will be available for
712          * use, taking into account the overhead of a page structure per page.
713          * In other words, solve
714          *      "available physical memory" - round_page(page_range *
715          *          sizeof(struct vm_page)) = page_range * PAGE_SIZE 
716          * for page_range.  
717          */
718         low_avail = phys_avail[0];
719         high_avail = phys_avail[1];
720         for (i = 0; i < vm_phys_nsegs; i++) {
721                 if (vm_phys_segs[i].start < low_avail)
722                         low_avail = vm_phys_segs[i].start;
723                 if (vm_phys_segs[i].end > high_avail)
724                         high_avail = vm_phys_segs[i].end;
725         }
726         /* Skip the first chunk.  It is already accounted for. */
727         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
728                 if (phys_avail[i] < low_avail)
729                         low_avail = phys_avail[i];
730                 if (phys_avail[i + 1] > high_avail)
731                         high_avail = phys_avail[i + 1];
732         }
733         first_page = low_avail / PAGE_SIZE;
734 #ifdef VM_PHYSSEG_SPARSE
735         size = 0;
736         for (i = 0; i < vm_phys_nsegs; i++)
737                 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
738         for (i = 0; phys_avail[i + 1] != 0; i += 2)
739                 size += phys_avail[i + 1] - phys_avail[i];
740 #elif defined(VM_PHYSSEG_DENSE)
741         size = high_avail - low_avail;
742 #else
743 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
744 #endif
745
746 #ifdef PMAP_HAS_PAGE_ARRAY
747         pmap_page_array_startup(size / PAGE_SIZE);
748         biggestone = vm_phys_avail_largest();
749         end = new_end = phys_avail[biggestone + 1];
750 #else
751 #ifdef VM_PHYSSEG_DENSE
752         /*
753          * In the VM_PHYSSEG_DENSE case, the number of pages can account for
754          * the overhead of a page structure per page only if vm_page_array is
755          * allocated from the last physical memory chunk.  Otherwise, we must
756          * allocate page structures representing the physical memory
757          * underlying vm_page_array, even though they will not be used.
758          */
759         if (new_end != high_avail)
760                 page_range = size / PAGE_SIZE;
761         else
762 #endif
763         {
764                 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
765
766                 /*
767                  * If the partial bytes remaining are large enough for
768                  * a page (PAGE_SIZE) without a corresponding
769                  * 'struct vm_page', then new_end will contain an
770                  * extra page after subtracting the length of the VM
771                  * page array.  Compensate by subtracting an extra
772                  * page from new_end.
773                  */
774                 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
775                         if (new_end == high_avail)
776                                 high_avail -= PAGE_SIZE;
777                         new_end -= PAGE_SIZE;
778                 }
779         }
780         end = new_end;
781         new_end = vm_page_array_alloc(&vaddr, end, page_range);
782 #endif
783
784 #if VM_NRESERVLEVEL > 0
785         /*
786          * Allocate physical memory for the reservation management system's
787          * data structures, and map it.
788          */
789         new_end = vm_reserv_startup(&vaddr, new_end);
790 #endif
791 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
792     defined(__riscv)
793         /*
794          * Include vm_page_array and vm_reserv_array in a crash dump.
795          */
796         for (pa = new_end; pa < end; pa += PAGE_SIZE)
797                 dump_add_page(pa);
798 #endif
799         phys_avail[biggestone + 1] = new_end;
800
801         /*
802          * Add physical memory segments corresponding to the available
803          * physical pages.
804          */
805         for (i = 0; phys_avail[i + 1] != 0; i += 2)
806                 if (vm_phys_avail_size(i) != 0)
807                         vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
808
809         /*
810          * Initialize the physical memory allocator.
811          */
812         vm_phys_init();
813
814         /*
815          * Initialize the page structures and add every available page to the
816          * physical memory allocator's free lists.
817          */
818 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
819         for (ii = 0; ii < vm_page_array_size; ii++) {
820                 m = &vm_page_array[ii];
821                 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
822                 m->flags = PG_FICTITIOUS;
823         }
824 #endif
825         vm_cnt.v_page_count = 0;
826         for (segind = 0; segind < vm_phys_nsegs; segind++) {
827                 seg = &vm_phys_segs[segind];
828                 for (m = seg->first_page, pa = seg->start; pa < seg->end;
829                     m++, pa += PAGE_SIZE)
830                         vm_page_init_page(m, pa, segind);
831
832                 /*
833                  * Add the segment to the free lists only if it is covered by
834                  * one of the ranges in phys_avail.  Because we've added the
835                  * ranges to the vm_phys_segs array, we can assume that each
836                  * segment is either entirely contained in one of the ranges,
837                  * or doesn't overlap any of them.
838                  */
839                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
840                         struct vm_domain *vmd;
841
842                         if (seg->start < phys_avail[i] ||
843                             seg->end > phys_avail[i + 1])
844                                 continue;
845
846                         m = seg->first_page;
847                         pagecount = (u_long)atop(seg->end - seg->start);
848
849                         vmd = VM_DOMAIN(seg->domain);
850                         vm_domain_free_lock(vmd);
851                         vm_phys_enqueue_contig(m, pagecount);
852                         vm_domain_free_unlock(vmd);
853                         vm_domain_freecnt_inc(vmd, pagecount);
854                         vm_cnt.v_page_count += (u_int)pagecount;
855
856                         vmd = VM_DOMAIN(seg->domain);
857                         vmd->vmd_page_count += (u_int)pagecount;
858                         vmd->vmd_segs |= 1UL << m->segind;
859                         break;
860                 }
861         }
862
863         /*
864          * Remove blacklisted pages from the physical memory allocator.
865          */
866         TAILQ_INIT(&blacklist_head);
867         vm_page_blacklist_load(&list, &listend);
868         vm_page_blacklist_check(list, listend);
869
870         list = kern_getenv("vm.blacklist");
871         vm_page_blacklist_check(list, NULL);
872
873         freeenv(list);
874 #if VM_NRESERVLEVEL > 0
875         /*
876          * Initialize the reservation management system.
877          */
878         vm_reserv_init();
879 #endif
880
881         return (vaddr);
882 }
883
884 void
885 vm_page_reference(vm_page_t m)
886 {
887
888         vm_page_aflag_set(m, PGA_REFERENCED);
889 }
890
891 /*
892  *      vm_page_busy_acquire:
893  *
894  *      Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
895  *      and drop the object lock if necessary.
896  */
897 int
898 vm_page_busy_acquire(vm_page_t m, int allocflags)
899 {
900         vm_object_t obj;
901         u_int x;
902         bool locked;
903
904         /*
905          * The page-specific object must be cached because page
906          * identity can change during the sleep, causing the
907          * re-lock of a different object.
908          * It is assumed that a reference to the object is already
909          * held by the callers.
910          */
911         obj = m->object;
912         for (;;) {
913                 if ((allocflags & VM_ALLOC_SBUSY) == 0) {
914                         if (vm_page_tryxbusy(m))
915                                 return (TRUE);
916                 } else {
917                         if (vm_page_trysbusy(m))
918                                 return (TRUE);
919                 }
920                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
921                         return (FALSE);
922                 if (obj != NULL) {
923                         locked = VM_OBJECT_WOWNED(obj);
924                 } else {
925                         MPASS(vm_page_wired(m));
926                         locked = FALSE;
927                 }
928                 sleepq_lock(m);
929                 x = m->busy_lock;
930                 if (x == VPB_UNBUSIED ||
931                     ((allocflags & VM_ALLOC_SBUSY) != 0 &&
932                     (x & VPB_BIT_SHARED) != 0) ||
933                     ((x & VPB_BIT_WAITERS) == 0 &&
934                     !atomic_cmpset_int(&m->busy_lock, x,
935                     x | VPB_BIT_WAITERS))) {
936                         sleepq_release(m);
937                         continue;
938                 }
939                 if (locked)
940                         VM_OBJECT_WUNLOCK(obj);
941                 sleepq_add(m, NULL, "vmpba", 0, 0);
942                 sleepq_wait(m, PVM);
943                 if (locked)
944                         VM_OBJECT_WLOCK(obj);
945                 MPASS(m->object == obj || m->object == NULL);
946                 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
947                         return (FALSE);
948         }
949 }
950
951 /*
952  *      vm_page_busy_downgrade:
953  *
954  *      Downgrade an exclusive busy page into a single shared busy page.
955  */
956 void
957 vm_page_busy_downgrade(vm_page_t m)
958 {
959         u_int x;
960
961         vm_page_assert_xbusied(m);
962
963         x = m->busy_lock;
964         for (;;) {
965                 if (atomic_fcmpset_rel_int(&m->busy_lock,
966                     &x, VPB_SHARERS_WORD(1)))
967                         break;
968         }
969         if ((x & VPB_BIT_WAITERS) != 0)
970                 wakeup(m);
971 }
972
973 /*
974  *      vm_page_sbusied:
975  *
976  *      Return a positive value if the page is shared busied, 0 otherwise.
977  */
978 int
979 vm_page_sbusied(vm_page_t m)
980 {
981         u_int x;
982
983         x = m->busy_lock;
984         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
985 }
986
987 /*
988  *      vm_page_sunbusy:
989  *
990  *      Shared unbusy a page.
991  */
992 void
993 vm_page_sunbusy(vm_page_t m)
994 {
995         u_int x;
996
997         vm_page_assert_sbusied(m);
998
999         x = m->busy_lock;
1000         for (;;) {
1001                 if (VPB_SHARERS(x) > 1) {
1002                         if (atomic_fcmpset_int(&m->busy_lock, &x,
1003                             x - VPB_ONE_SHARER))
1004                                 break;
1005                         continue;
1006                 }
1007                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1008                     ("vm_page_sunbusy: invalid lock state"));
1009                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1010                         continue;
1011                 if ((x & VPB_BIT_WAITERS) == 0)
1012                         break;
1013                 wakeup(m);
1014                 break;
1015         }
1016 }
1017
1018 /*
1019  *      vm_page_busy_sleep:
1020  *
1021  *      Sleep if the page is busy, using the page pointer as wchan.
1022  *      This is used to implement the hard-path of busying mechanism.
1023  *
1024  *      If nonshared is true, sleep only if the page is xbusy.
1025  *
1026  *      The object lock must be held on entry and will be released on exit.
1027  */
1028 void
1029 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1030 {
1031         vm_object_t obj;
1032         u_int x;
1033
1034         obj = m->object;
1035         vm_page_lock_assert(m, MA_NOTOWNED);
1036         VM_OBJECT_ASSERT_LOCKED(obj);
1037
1038         sleepq_lock(m);
1039         x = m->busy_lock;
1040         if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
1041             ((x & VPB_BIT_WAITERS) == 0 &&
1042             !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
1043                 VM_OBJECT_DROP(obj);
1044                 sleepq_release(m);
1045                 return;
1046         }
1047         VM_OBJECT_DROP(obj);
1048         sleepq_add(m, NULL, wmesg, 0, 0);
1049         sleepq_wait(m, PVM);
1050 }
1051
1052 /*
1053  *      vm_page_trysbusy:
1054  *
1055  *      Try to shared busy a page.
1056  *      If the operation succeeds 1 is returned otherwise 0.
1057  *      The operation never sleeps.
1058  */
1059 int
1060 vm_page_trysbusy(vm_page_t m)
1061 {
1062         u_int x;
1063
1064         x = m->busy_lock;
1065         for (;;) {
1066                 if ((x & VPB_BIT_SHARED) == 0)
1067                         return (0);
1068                 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1069                     x + VPB_ONE_SHARER))
1070                         return (1);
1071         }
1072 }
1073
1074 /*
1075  *      vm_page_xunbusy_hard:
1076  *
1077  *      Called when unbusy has failed because there is a waiter.
1078  */
1079 void
1080 vm_page_xunbusy_hard(vm_page_t m)
1081 {
1082
1083         vm_page_assert_xbusied(m);
1084
1085         /*
1086          * Wake the waiter.
1087          */
1088         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1089         wakeup(m);
1090 }
1091
1092 /*
1093  * Avoid releasing and reacquiring the same page lock.
1094  */
1095 void
1096 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
1097 {
1098         struct mtx *mtx1;
1099
1100         mtx1 = vm_page_lockptr(m);
1101         if (*mtx == mtx1)
1102                 return;
1103         if (*mtx != NULL)
1104                 mtx_unlock(*mtx);
1105         *mtx = mtx1;
1106         mtx_lock(mtx1);
1107 }
1108
1109 /*
1110  *      vm_page_unhold_pages:
1111  *
1112  *      Unhold each of the pages that is referenced by the given array.
1113  */
1114 void
1115 vm_page_unhold_pages(vm_page_t *ma, int count)
1116 {
1117
1118         for (; count != 0; count--) {
1119                 vm_page_unwire(*ma, PQ_ACTIVE);
1120                 ma++;
1121         }
1122 }
1123
1124 vm_page_t
1125 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1126 {
1127         vm_page_t m;
1128
1129 #ifdef VM_PHYSSEG_SPARSE
1130         m = vm_phys_paddr_to_vm_page(pa);
1131         if (m == NULL)
1132                 m = vm_phys_fictitious_to_vm_page(pa);
1133         return (m);
1134 #elif defined(VM_PHYSSEG_DENSE)
1135         long pi;
1136
1137         pi = atop(pa);
1138         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1139                 m = &vm_page_array[pi - first_page];
1140                 return (m);
1141         }
1142         return (vm_phys_fictitious_to_vm_page(pa));
1143 #else
1144 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1145 #endif
1146 }
1147
1148 /*
1149  *      vm_page_getfake:
1150  *
1151  *      Create a fictitious page with the specified physical address and
1152  *      memory attribute.  The memory attribute is the only the machine-
1153  *      dependent aspect of a fictitious page that must be initialized.
1154  */
1155 vm_page_t
1156 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1157 {
1158         vm_page_t m;
1159
1160         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1161         vm_page_initfake(m, paddr, memattr);
1162         return (m);
1163 }
1164
1165 void
1166 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1167 {
1168
1169         if ((m->flags & PG_FICTITIOUS) != 0) {
1170                 /*
1171                  * The page's memattr might have changed since the
1172                  * previous initialization.  Update the pmap to the
1173                  * new memattr.
1174                  */
1175                 goto memattr;
1176         }
1177         m->phys_addr = paddr;
1178         m->queue = PQ_NONE;
1179         /* Fictitious pages don't use "segind". */
1180         m->flags = PG_FICTITIOUS;
1181         /* Fictitious pages don't use "order" or "pool". */
1182         m->oflags = VPO_UNMANAGED;
1183         m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1184         /* Fictitious pages are unevictable. */
1185         m->ref_count = 1;
1186         pmap_page_init(m);
1187 memattr:
1188         pmap_page_set_memattr(m, memattr);
1189 }
1190
1191 /*
1192  *      vm_page_putfake:
1193  *
1194  *      Release a fictitious page.
1195  */
1196 void
1197 vm_page_putfake(vm_page_t m)
1198 {
1199
1200         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1201         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1202             ("vm_page_putfake: bad page %p", m));
1203         uma_zfree(fakepg_zone, m);
1204 }
1205
1206 /*
1207  *      vm_page_updatefake:
1208  *
1209  *      Update the given fictitious page to the specified physical address and
1210  *      memory attribute.
1211  */
1212 void
1213 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1214 {
1215
1216         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1217             ("vm_page_updatefake: bad page %p", m));
1218         m->phys_addr = paddr;
1219         pmap_page_set_memattr(m, memattr);
1220 }
1221
1222 /*
1223  *      vm_page_free:
1224  *
1225  *      Free a page.
1226  */
1227 void
1228 vm_page_free(vm_page_t m)
1229 {
1230
1231         m->flags &= ~PG_ZERO;
1232         vm_page_free_toq(m);
1233 }
1234
1235 /*
1236  *      vm_page_free_zero:
1237  *
1238  *      Free a page to the zerod-pages queue
1239  */
1240 void
1241 vm_page_free_zero(vm_page_t m)
1242 {
1243
1244         m->flags |= PG_ZERO;
1245         vm_page_free_toq(m);
1246 }
1247
1248 /*
1249  * Unbusy and handle the page queueing for a page from a getpages request that
1250  * was optionally read ahead or behind.
1251  */
1252 void
1253 vm_page_readahead_finish(vm_page_t m)
1254 {
1255
1256         /* We shouldn't put invalid pages on queues. */
1257         KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));
1258
1259         /*
1260          * Since the page is not the actually needed one, whether it should
1261          * be activated or deactivated is not obvious.  Empirical results
1262          * have shown that deactivating the page is usually the best choice,
1263          * unless the page is wanted by another thread.
1264          */
1265         vm_page_lock(m);
1266         if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1267                 vm_page_activate(m);
1268         else
1269                 vm_page_deactivate(m);
1270         vm_page_unlock(m);
1271         vm_page_xunbusy(m);
1272 }
1273
1274 /*
1275  *      vm_page_sleep_if_busy:
1276  *
1277  *      Sleep and release the object lock if the page is busied.
1278  *      Returns TRUE if the thread slept.
1279  *
1280  *      The given page must be unlocked and object containing it must
1281  *      be locked.
1282  */
1283 int
1284 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1285 {
1286         vm_object_t obj;
1287
1288         vm_page_lock_assert(m, MA_NOTOWNED);
1289         VM_OBJECT_ASSERT_WLOCKED(m->object);
1290
1291         if (vm_page_busied(m)) {
1292                 /*
1293                  * The page-specific object must be cached because page
1294                  * identity can change during the sleep, causing the
1295                  * re-lock of a different object.
1296                  * It is assumed that a reference to the object is already
1297                  * held by the callers.
1298                  */
1299                 obj = m->object;
1300                 vm_page_busy_sleep(m, msg, false);
1301                 VM_OBJECT_WLOCK(obj);
1302                 return (TRUE);
1303         }
1304         return (FALSE);
1305 }
1306
1307 /*
1308  *      vm_page_sleep_if_xbusy:
1309  *
1310  *      Sleep and release the object lock if the page is xbusied.
1311  *      Returns TRUE if the thread slept.
1312  *
1313  *      The given page must be unlocked and object containing it must
1314  *      be locked.
1315  */
1316 int
1317 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg)
1318 {
1319         vm_object_t obj;
1320
1321         vm_page_lock_assert(m, MA_NOTOWNED);
1322         VM_OBJECT_ASSERT_WLOCKED(m->object);
1323
1324         if (vm_page_xbusied(m)) {
1325                 /*
1326                  * The page-specific object must be cached because page
1327                  * identity can change during the sleep, causing the
1328                  * re-lock of a different object.
1329                  * It is assumed that a reference to the object is already
1330                  * held by the callers.
1331                  */
1332                 obj = m->object;
1333                 vm_page_busy_sleep(m, msg, true);
1334                 VM_OBJECT_WLOCK(obj);
1335                 return (TRUE);
1336         }
1337         return (FALSE);
1338 }
1339
1340 /*
1341  *      vm_page_dirty_KBI:              [ internal use only ]
1342  *
1343  *      Set all bits in the page's dirty field.
1344  *
1345  *      The object containing the specified page must be locked if the
1346  *      call is made from the machine-independent layer.
1347  *
1348  *      See vm_page_clear_dirty_mask().
1349  *
1350  *      This function should only be called by vm_page_dirty().
1351  */
1352 void
1353 vm_page_dirty_KBI(vm_page_t m)
1354 {
1355
1356         /* Refer to this operation by its public name. */
1357         KASSERT(m->valid == VM_PAGE_BITS_ALL,
1358             ("vm_page_dirty: page is invalid!"));
1359         m->dirty = VM_PAGE_BITS_ALL;
1360 }
1361
1362 /*
1363  *      vm_page_insert:         [ internal use only ]
1364  *
1365  *      Inserts the given mem entry into the object and object list.
1366  *
1367  *      The object must be locked.
1368  */
1369 int
1370 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1371 {
1372         vm_page_t mpred;
1373
1374         VM_OBJECT_ASSERT_WLOCKED(object);
1375         mpred = vm_radix_lookup_le(&object->rtree, pindex);
1376         return (vm_page_insert_after(m, object, pindex, mpred));
1377 }
1378
1379 /*
1380  *      vm_page_insert_after:
1381  *
1382  *      Inserts the page "m" into the specified object at offset "pindex".
1383  *
1384  *      The page "mpred" must immediately precede the offset "pindex" within
1385  *      the specified object.
1386  *
1387  *      The object must be locked.
1388  */
1389 static int
1390 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1391     vm_page_t mpred)
1392 {
1393         vm_page_t msucc;
1394
1395         VM_OBJECT_ASSERT_WLOCKED(object);
1396         KASSERT(m->object == NULL,
1397             ("vm_page_insert_after: page already inserted"));
1398         if (mpred != NULL) {
1399                 KASSERT(mpred->object == object,
1400                     ("vm_page_insert_after: object doesn't contain mpred"));
1401                 KASSERT(mpred->pindex < pindex,
1402                     ("vm_page_insert_after: mpred doesn't precede pindex"));
1403                 msucc = TAILQ_NEXT(mpred, listq);
1404         } else
1405                 msucc = TAILQ_FIRST(&object->memq);
1406         if (msucc != NULL)
1407                 KASSERT(msucc->pindex > pindex,
1408                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
1409
1410         /*
1411          * Record the object/offset pair in this page.
1412          */
1413         m->object = object;
1414         m->pindex = pindex;
1415         m->ref_count |= VPRC_OBJREF;
1416
1417         /*
1418          * Now link into the object's ordered list of backed pages.
1419          */
1420         if (vm_radix_insert(&object->rtree, m)) {
1421                 m->object = NULL;
1422                 m->pindex = 0;
1423                 m->ref_count &= ~VPRC_OBJREF;
1424                 return (1);
1425         }
1426         vm_page_insert_radixdone(m, object, mpred);
1427         return (0);
1428 }
1429
1430 /*
1431  *      vm_page_insert_radixdone:
1432  *
1433  *      Complete page "m" insertion into the specified object after the
1434  *      radix trie hooking.
1435  *
1436  *      The page "mpred" must precede the offset "m->pindex" within the
1437  *      specified object.
1438  *
1439  *      The object must be locked.
1440  */
1441 static void
1442 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1443 {
1444
1445         VM_OBJECT_ASSERT_WLOCKED(object);
1446         KASSERT(object != NULL && m->object == object,
1447             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1448         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1449             ("vm_page_insert_radixdone: page %p is missing object ref", m));
1450         if (mpred != NULL) {
1451                 KASSERT(mpred->object == object,
1452                     ("vm_page_insert_radixdone: object doesn't contain mpred"));
1453                 KASSERT(mpred->pindex < m->pindex,
1454                     ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1455         }
1456
1457         if (mpred != NULL)
1458                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1459         else
1460                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1461
1462         /*
1463          * Show that the object has one more resident page.
1464          */
1465         object->resident_page_count++;
1466
1467         /*
1468          * Hold the vnode until the last page is released.
1469          */
1470         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1471                 vhold(object->handle);
1472
1473         /*
1474          * Since we are inserting a new and possibly dirty page,
1475          * update the object's OBJ_MIGHTBEDIRTY flag.
1476          */
1477         if (pmap_page_is_write_mapped(m))
1478                 vm_object_set_writeable_dirty(object);
1479 }
1480
1481 /*
1482  * Do the work to remove a page from its object.  The caller is responsible for
1483  * updating the page's fields to reflect this removal.
1484  */
1485 static void
1486 vm_page_object_remove(vm_page_t m)
1487 {
1488         vm_object_t object;
1489         vm_page_t mrem;
1490
1491         object = m->object;
1492         VM_OBJECT_ASSERT_WLOCKED(object);
1493         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1494             ("page %p is missing its object ref", m));
1495         if (vm_page_xbusied(m))
1496                 vm_page_xunbusy(m);
1497         mrem = vm_radix_remove(&object->rtree, m->pindex);
1498         KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1499
1500         /*
1501          * Now remove from the object's list of backed pages.
1502          */
1503         TAILQ_REMOVE(&object->memq, m, listq);
1504
1505         /*
1506          * And show that the object has one fewer resident page.
1507          */
1508         object->resident_page_count--;
1509
1510         /*
1511          * The vnode may now be recycled.
1512          */
1513         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1514                 vdrop(object->handle);
1515 }
1516
1517 /*
1518  *      vm_page_remove:
1519  *
1520  *      Removes the specified page from its containing object, but does not
1521  *      invalidate any backing storage.  Returns true if the object's reference
1522  *      was the last reference to the page, and false otherwise.
1523  *
1524  *      The object must be locked.
1525  */
1526 bool
1527 vm_page_remove(vm_page_t m)
1528 {
1529
1530         vm_page_object_remove(m);
1531         m->object = NULL;
1532         return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1533 }
1534
1535 /*
1536  *      vm_page_lookup:
1537  *
1538  *      Returns the page associated with the object/offset
1539  *      pair specified; if none is found, NULL is returned.
1540  *
1541  *      The object must be locked.
1542  */
1543 vm_page_t
1544 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1545 {
1546
1547         VM_OBJECT_ASSERT_LOCKED(object);
1548         return (vm_radix_lookup(&object->rtree, pindex));
1549 }
1550
1551 /*
1552  *      vm_page_find_least:
1553  *
1554  *      Returns the page associated with the object with least pindex
1555  *      greater than or equal to the parameter pindex, or NULL.
1556  *
1557  *      The object must be locked.
1558  */
1559 vm_page_t
1560 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1561 {
1562         vm_page_t m;
1563
1564         VM_OBJECT_ASSERT_LOCKED(object);
1565         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1566                 m = vm_radix_lookup_ge(&object->rtree, pindex);
1567         return (m);
1568 }
1569
1570 /*
1571  * Returns the given page's successor (by pindex) within the object if it is
1572  * resident; if none is found, NULL is returned.
1573  *
1574  * The object must be locked.
1575  */
1576 vm_page_t
1577 vm_page_next(vm_page_t m)
1578 {
1579         vm_page_t next;
1580
1581         VM_OBJECT_ASSERT_LOCKED(m->object);
1582         if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1583                 MPASS(next->object == m->object);
1584                 if (next->pindex != m->pindex + 1)
1585                         next = NULL;
1586         }
1587         return (next);
1588 }
1589
1590 /*
1591  * Returns the given page's predecessor (by pindex) within the object if it is
1592  * resident; if none is found, NULL is returned.
1593  *
1594  * The object must be locked.
1595  */
1596 vm_page_t
1597 vm_page_prev(vm_page_t m)
1598 {
1599         vm_page_t prev;
1600
1601         VM_OBJECT_ASSERT_LOCKED(m->object);
1602         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1603                 MPASS(prev->object == m->object);
1604                 if (prev->pindex != m->pindex - 1)
1605                         prev = NULL;
1606         }
1607         return (prev);
1608 }
1609
1610 /*
1611  * Uses the page mnew as a replacement for an existing page at index
1612  * pindex which must be already present in the object.
1613  */
1614 vm_page_t
1615 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1616 {
1617         vm_page_t mold;
1618
1619         VM_OBJECT_ASSERT_WLOCKED(object);
1620         KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1621             ("vm_page_replace: page %p already in object", mnew));
1622
1623         /*
1624          * This function mostly follows vm_page_insert() and
1625          * vm_page_remove() without the radix, object count and vnode
1626          * dance.  Double check such functions for more comments.
1627          */
1628
1629         mnew->object = object;
1630         mnew->pindex = pindex;
1631         atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1632         mold = vm_radix_replace(&object->rtree, mnew);
1633         KASSERT(mold->queue == PQ_NONE,
1634             ("vm_page_replace: old page %p is on a paging queue", mold));
1635
1636         /* Keep the resident page list in sorted order. */
1637         TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1638         TAILQ_REMOVE(&object->memq, mold, listq);
1639
1640         mold->object = NULL;
1641         atomic_clear_int(&mold->ref_count, VPRC_OBJREF);
1642         vm_page_xunbusy(mold);
1643
1644         /*
1645          * The object's resident_page_count does not change because we have
1646          * swapped one page for another, but OBJ_MIGHTBEDIRTY.
1647          */
1648         if (pmap_page_is_write_mapped(mnew))
1649                 vm_object_set_writeable_dirty(object);
1650         return (mold);
1651 }
1652
1653 /*
1654  *      vm_page_rename:
1655  *
1656  *      Move the given memory entry from its
1657  *      current object to the specified target object/offset.
1658  *
1659  *      Note: swap associated with the page must be invalidated by the move.  We
1660  *            have to do this for several reasons:  (1) we aren't freeing the
1661  *            page, (2) we are dirtying the page, (3) the VM system is probably
1662  *            moving the page from object A to B, and will then later move
1663  *            the backing store from A to B and we can't have a conflict.
1664  *
1665  *      Note: we *always* dirty the page.  It is necessary both for the
1666  *            fact that we moved it, and because we may be invalidating
1667  *            swap.
1668  *
1669  *      The objects must be locked.
1670  */
1671 int
1672 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1673 {
1674         vm_page_t mpred;
1675         vm_pindex_t opidx;
1676
1677         VM_OBJECT_ASSERT_WLOCKED(new_object);
1678
1679         KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1680         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1681         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1682             ("vm_page_rename: pindex already renamed"));
1683
1684         /*
1685          * Create a custom version of vm_page_insert() which does not depend
1686          * by m_prev and can cheat on the implementation aspects of the
1687          * function.
1688          */
1689         opidx = m->pindex;
1690         m->pindex = new_pindex;
1691         if (vm_radix_insert(&new_object->rtree, m)) {
1692                 m->pindex = opidx;
1693                 return (1);
1694         }
1695
1696         /*
1697          * The operation cannot fail anymore.  The removal must happen before
1698          * the listq iterator is tainted.
1699          */
1700         m->pindex = opidx;
1701         vm_page_object_remove(m);
1702
1703         /* Return back to the new pindex to complete vm_page_insert(). */
1704         m->pindex = new_pindex;
1705         m->object = new_object;
1706
1707         vm_page_insert_radixdone(m, new_object, mpred);
1708         vm_page_dirty(m);
1709         return (0);
1710 }
1711
1712 /*
1713  *      vm_page_alloc:
1714  *
1715  *      Allocate and return a page that is associated with the specified
1716  *      object and offset pair.  By default, this page is exclusive busied.
1717  *
1718  *      The caller must always specify an allocation class.
1719  *
1720  *      allocation classes:
1721  *      VM_ALLOC_NORMAL         normal process request
1722  *      VM_ALLOC_SYSTEM         system *really* needs a page
1723  *      VM_ALLOC_INTERRUPT      interrupt time request
1724  *
1725  *      optional allocation flags:
1726  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
1727  *                              intends to allocate
1728  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1729  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1730  *      VM_ALLOC_NOOBJ          page is not associated with an object and
1731  *                              should not be exclusive busy
1732  *      VM_ALLOC_SBUSY          shared busy the allocated page
1733  *      VM_ALLOC_WIRED          wire the allocated page
1734  *      VM_ALLOC_ZERO           prefer a zeroed page
1735  */
1736 vm_page_t
1737 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1738 {
1739
1740         return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1741             vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1742 }
1743
1744 vm_page_t
1745 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1746     int req)
1747 {
1748
1749         return (vm_page_alloc_domain_after(object, pindex, domain, req,
1750             object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1751             NULL));
1752 }
1753
1754 /*
1755  * Allocate a page in the specified object with the given page index.  To
1756  * optimize insertion of the page into the object, the caller must also specifiy
1757  * the resident page in the object with largest index smaller than the given
1758  * page index, or NULL if no such page exists.
1759  */
1760 vm_page_t
1761 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1762     int req, vm_page_t mpred)
1763 {
1764         struct vm_domainset_iter di;
1765         vm_page_t m;
1766         int domain;
1767
1768         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1769         do {
1770                 m = vm_page_alloc_domain_after(object, pindex, domain, req,
1771                     mpred);
1772                 if (m != NULL)
1773                         break;
1774         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
1775
1776         return (m);
1777 }
1778
1779 /*
1780  * Returns true if the number of free pages exceeds the minimum
1781  * for the request class and false otherwise.
1782  */
1783 int
1784 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1785 {
1786         u_int limit, old, new;
1787
1788         req = req & VM_ALLOC_CLASS_MASK;
1789
1790         /*
1791          * The page daemon is allowed to dig deeper into the free page list.
1792          */
1793         if (curproc == pageproc && req != VM_ALLOC_INTERRUPT)
1794                 req = VM_ALLOC_SYSTEM;
1795         if (req == VM_ALLOC_INTERRUPT)
1796                 limit = 0;
1797         else if (req == VM_ALLOC_SYSTEM)
1798                 limit = vmd->vmd_interrupt_free_min;
1799         else
1800                 limit = vmd->vmd_free_reserved;
1801
1802         /*
1803          * Attempt to reserve the pages.  Fail if we're below the limit.
1804          */
1805         limit += npages;
1806         old = vmd->vmd_free_count;
1807         do {
1808                 if (old < limit)
1809                         return (0);
1810                 new = old - npages;
1811         } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1812
1813         /* Wake the page daemon if we've crossed the threshold. */
1814         if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1815                 pagedaemon_wakeup(vmd->vmd_domain);
1816
1817         /* Only update bitsets on transitions. */
1818         if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1819             (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1820                 vm_domain_set(vmd);
1821
1822         return (1);
1823 }
1824
1825 vm_page_t
1826 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1827     int req, vm_page_t mpred)
1828 {
1829         struct vm_domain *vmd;
1830         vm_page_t m;
1831         int flags, pool;
1832
1833         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1834             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1835             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1836             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1837             ("inconsistent object(%p)/req(%x)", object, req));
1838         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1839             ("Can't sleep and retry object insertion."));
1840         KASSERT(mpred == NULL || mpred->pindex < pindex,
1841             ("mpred %p doesn't precede pindex 0x%jx", mpred,
1842             (uintmax_t)pindex));
1843         if (object != NULL)
1844                 VM_OBJECT_ASSERT_WLOCKED(object);
1845
1846         flags = 0;
1847         m = NULL;
1848         pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
1849 again:
1850 #if VM_NRESERVLEVEL > 0
1851         /*
1852          * Can we allocate the page from a reservation?
1853          */
1854         if (vm_object_reserv(object) &&
1855             (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
1856             NULL) {
1857                 domain = vm_phys_domain(m);
1858                 vmd = VM_DOMAIN(domain);
1859                 goto found;
1860         }
1861 #endif
1862         vmd = VM_DOMAIN(domain);
1863         if (vmd->vmd_pgcache[pool].zone != NULL) {
1864                 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
1865                 if (m != NULL) {
1866                         flags |= PG_PCPU_CACHE;
1867                         goto found;
1868                 }
1869         }
1870         if (vm_domain_allocate(vmd, req, 1)) {
1871                 /*
1872                  * If not, allocate it from the free page queues.
1873                  */
1874                 vm_domain_free_lock(vmd);
1875                 m = vm_phys_alloc_pages(domain, pool, 0);
1876                 vm_domain_free_unlock(vmd);
1877                 if (m == NULL) {
1878                         vm_domain_freecnt_inc(vmd, 1);
1879 #if VM_NRESERVLEVEL > 0
1880                         if (vm_reserv_reclaim_inactive(domain))
1881                                 goto again;
1882 #endif
1883                 }
1884         }
1885         if (m == NULL) {
1886                 /*
1887                  * Not allocatable, give up.
1888                  */
1889                 if (vm_domain_alloc_fail(vmd, object, req))
1890                         goto again;
1891                 return (NULL);
1892         }
1893
1894         /*
1895          * At this point we had better have found a good page.
1896          */
1897 found:
1898         vm_page_dequeue(m);
1899         vm_page_alloc_check(m);
1900
1901         /*
1902          * Initialize the page.  Only the PG_ZERO flag is inherited.
1903          */
1904         if ((req & VM_ALLOC_ZERO) != 0)
1905                 flags |= (m->flags & PG_ZERO);
1906         if ((req & VM_ALLOC_NODUMP) != 0)
1907                 flags |= PG_NODUMP;
1908         m->flags = flags;
1909         m->aflags = 0;
1910         m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1911             VPO_UNMANAGED : 0;
1912         m->busy_lock = VPB_UNBUSIED;
1913         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1914                 m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1915         if ((req & VM_ALLOC_SBUSY) != 0)
1916                 m->busy_lock = VPB_SHARERS_WORD(1);
1917         if (req & VM_ALLOC_WIRED) {
1918                 /*
1919                  * The page lock is not required for wiring a page until that
1920                  * page is inserted into the object.
1921                  */
1922                 vm_wire_add(1);
1923                 m->ref_count = 1;
1924         }
1925         m->act_count = 0;
1926
1927         if (object != NULL) {
1928                 if (vm_page_insert_after(m, object, pindex, mpred)) {
1929                         if (req & VM_ALLOC_WIRED) {
1930                                 vm_wire_sub(1);
1931                                 m->ref_count = 0;
1932                         }
1933                         KASSERT(m->object == NULL, ("page %p has object", m));
1934                         m->oflags = VPO_UNMANAGED;
1935                         m->busy_lock = VPB_UNBUSIED;
1936                         /* Don't change PG_ZERO. */
1937                         vm_page_free_toq(m);
1938                         if (req & VM_ALLOC_WAITFAIL) {
1939                                 VM_OBJECT_WUNLOCK(object);
1940                                 vm_radix_wait();
1941                                 VM_OBJECT_WLOCK(object);
1942                         }
1943                         return (NULL);
1944                 }
1945
1946                 /* Ignore device objects; the pager sets "memattr" for them. */
1947                 if (object->memattr != VM_MEMATTR_DEFAULT &&
1948                     (object->flags & OBJ_FICTITIOUS) == 0)
1949                         pmap_page_set_memattr(m, object->memattr);
1950         } else
1951                 m->pindex = pindex;
1952
1953         return (m);
1954 }
1955
1956 /*
1957  *      vm_page_alloc_contig:
1958  *
1959  *      Allocate a contiguous set of physical pages of the given size "npages"
1960  *      from the free lists.  All of the physical pages must be at or above
1961  *      the given physical address "low" and below the given physical address
1962  *      "high".  The given value "alignment" determines the alignment of the
1963  *      first physical page in the set.  If the given value "boundary" is
1964  *      non-zero, then the set of physical pages cannot cross any physical
1965  *      address boundary that is a multiple of that value.  Both "alignment"
1966  *      and "boundary" must be a power of two.
1967  *
1968  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
1969  *      then the memory attribute setting for the physical pages is configured
1970  *      to the object's memory attribute setting.  Otherwise, the memory
1971  *      attribute setting for the physical pages is configured to "memattr",
1972  *      overriding the object's memory attribute setting.  However, if the
1973  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
1974  *      memory attribute setting for the physical pages cannot be configured
1975  *      to VM_MEMATTR_DEFAULT.
1976  *
1977  *      The specified object may not contain fictitious pages.
1978  *
1979  *      The caller must always specify an allocation class.
1980  *
1981  *      allocation classes:
1982  *      VM_ALLOC_NORMAL         normal process request
1983  *      VM_ALLOC_SYSTEM         system *really* needs a page
1984  *      VM_ALLOC_INTERRUPT      interrupt time request
1985  *
1986  *      optional allocation flags:
1987  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1988  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1989  *      VM_ALLOC_NOOBJ          page is not associated with an object and
1990  *                              should not be exclusive busy
1991  *      VM_ALLOC_SBUSY          shared busy the allocated page
1992  *      VM_ALLOC_WIRED          wire the allocated page
1993  *      VM_ALLOC_ZERO           prefer a zeroed page
1994  */
1995 vm_page_t
1996 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
1997     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
1998     vm_paddr_t boundary, vm_memattr_t memattr)
1999 {
2000         struct vm_domainset_iter di;
2001         vm_page_t m;
2002         int domain;
2003
2004         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2005         do {
2006                 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2007                     npages, low, high, alignment, boundary, memattr);
2008                 if (m != NULL)
2009                         break;
2010         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2011
2012         return (m);
2013 }
2014
2015 vm_page_t
2016 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2017     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2018     vm_paddr_t boundary, vm_memattr_t memattr)
2019 {
2020         struct vm_domain *vmd;
2021         vm_page_t m, m_ret, mpred;
2022         u_int busy_lock, flags, oflags;
2023
2024         mpred = NULL;   /* XXX: pacify gcc */
2025         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2026             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2027             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2028             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2029             ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2030             req));
2031         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2032             ("Can't sleep and retry object insertion."));
2033         if (object != NULL) {
2034                 VM_OBJECT_ASSERT_WLOCKED(object);
2035                 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2036                     ("vm_page_alloc_contig: object %p has fictitious pages",
2037                     object));
2038         }
2039         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2040
2041         if (object != NULL) {
2042                 mpred = vm_radix_lookup_le(&object->rtree, pindex);
2043                 KASSERT(mpred == NULL || mpred->pindex != pindex,
2044                     ("vm_page_alloc_contig: pindex already allocated"));
2045         }
2046
2047         /*
2048          * Can we allocate the pages without the number of free pages falling
2049          * below the lower bound for the allocation class?
2050          */
2051         m_ret = NULL;
2052 again:
2053 #if VM_NRESERVLEVEL > 0
2054         /*
2055          * Can we allocate the pages from a reservation?
2056          */
2057         if (vm_object_reserv(object) &&
2058             (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2059             mpred, npages, low, high, alignment, boundary)) != NULL) {
2060                 domain = vm_phys_domain(m_ret);
2061                 vmd = VM_DOMAIN(domain);
2062                 goto found;
2063         }
2064 #endif
2065         vmd = VM_DOMAIN(domain);
2066         if (vm_domain_allocate(vmd, req, npages)) {
2067                 /*
2068                  * allocate them from the free page queues.
2069                  */
2070                 vm_domain_free_lock(vmd);
2071                 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2072                     alignment, boundary);
2073                 vm_domain_free_unlock(vmd);
2074                 if (m_ret == NULL) {
2075                         vm_domain_freecnt_inc(vmd, npages);
2076 #if VM_NRESERVLEVEL > 0
2077                         if (vm_reserv_reclaim_contig(domain, npages, low,
2078                             high, alignment, boundary))
2079                                 goto again;
2080 #endif
2081                 }
2082         }
2083         if (m_ret == NULL) {
2084                 if (vm_domain_alloc_fail(vmd, object, req))
2085                         goto again;
2086                 return (NULL);
2087         }
2088 #if VM_NRESERVLEVEL > 0
2089 found:
2090 #endif
2091         for (m = m_ret; m < &m_ret[npages]; m++) {
2092                 vm_page_dequeue(m);
2093                 vm_page_alloc_check(m);
2094         }
2095
2096         /*
2097          * Initialize the pages.  Only the PG_ZERO flag is inherited.
2098          */
2099         flags = 0;
2100         if ((req & VM_ALLOC_ZERO) != 0)
2101                 flags = PG_ZERO;
2102         if ((req & VM_ALLOC_NODUMP) != 0)
2103                 flags |= PG_NODUMP;
2104         oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2105             VPO_UNMANAGED : 0;
2106         busy_lock = VPB_UNBUSIED;
2107         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2108                 busy_lock = VPB_SINGLE_EXCLUSIVER;
2109         if ((req & VM_ALLOC_SBUSY) != 0)
2110                 busy_lock = VPB_SHARERS_WORD(1);
2111         if ((req & VM_ALLOC_WIRED) != 0)
2112                 vm_wire_add(npages);
2113         if (object != NULL) {
2114                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2115                     memattr == VM_MEMATTR_DEFAULT)
2116                         memattr = object->memattr;
2117         }
2118         for (m = m_ret; m < &m_ret[npages]; m++) {
2119                 m->aflags = 0;
2120                 m->flags = (m->flags | PG_NODUMP) & flags;
2121                 m->busy_lock = busy_lock;
2122                 if ((req & VM_ALLOC_WIRED) != 0)
2123                         m->ref_count = 1;
2124                 m->act_count = 0;
2125                 m->oflags = oflags;
2126                 if (object != NULL) {
2127                         if (vm_page_insert_after(m, object, pindex, mpred)) {
2128                                 if ((req & VM_ALLOC_WIRED) != 0)
2129                                         vm_wire_sub(npages);
2130                                 KASSERT(m->object == NULL,
2131                                     ("page %p has object", m));
2132                                 mpred = m;
2133                                 for (m = m_ret; m < &m_ret[npages]; m++) {
2134                                         if (m <= mpred &&
2135                                             (req & VM_ALLOC_WIRED) != 0)
2136                                                 m->ref_count = 0;
2137                                         m->oflags = VPO_UNMANAGED;
2138                                         m->busy_lock = VPB_UNBUSIED;
2139                                         /* Don't change PG_ZERO. */
2140                                         vm_page_free_toq(m);
2141                                 }
2142                                 if (req & VM_ALLOC_WAITFAIL) {
2143                                         VM_OBJECT_WUNLOCK(object);
2144                                         vm_radix_wait();
2145                                         VM_OBJECT_WLOCK(object);
2146                                 }
2147                                 return (NULL);
2148                         }
2149                         mpred = m;
2150                 } else
2151                         m->pindex = pindex;
2152                 if (memattr != VM_MEMATTR_DEFAULT)
2153                         pmap_page_set_memattr(m, memattr);
2154                 pindex++;
2155         }
2156         return (m_ret);
2157 }
2158
2159 /*
2160  * Check a page that has been freshly dequeued from a freelist.
2161  */
2162 static void
2163 vm_page_alloc_check(vm_page_t m)
2164 {
2165
2166         KASSERT(m->object == NULL, ("page %p has object", m));
2167         KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
2168             ("page %p has unexpected queue %d, flags %#x",
2169             m, m->queue, (m->aflags & PGA_QUEUE_STATE_MASK)));
2170         KASSERT(m->ref_count == 0, ("page %p has references", m));
2171         KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2172         KASSERT(m->dirty == 0, ("page %p is dirty", m));
2173         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2174             ("page %p has unexpected memattr %d",
2175             m, pmap_page_get_memattr(m)));
2176         KASSERT(m->valid == 0, ("free page %p is valid", m));
2177 }
2178
2179 /*
2180  *      vm_page_alloc_freelist:
2181  *
2182  *      Allocate a physical page from the specified free page list.
2183  *
2184  *      The caller must always specify an allocation class.
2185  *
2186  *      allocation classes:
2187  *      VM_ALLOC_NORMAL         normal process request
2188  *      VM_ALLOC_SYSTEM         system *really* needs a page
2189  *      VM_ALLOC_INTERRUPT      interrupt time request
2190  *
2191  *      optional allocation flags:
2192  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
2193  *                              intends to allocate
2194  *      VM_ALLOC_WIRED          wire the allocated page
2195  *      VM_ALLOC_ZERO           prefer a zeroed page
2196  */
2197 vm_page_t
2198 vm_page_alloc_freelist(int freelist, int req)
2199 {
2200         struct vm_domainset_iter di;
2201         vm_page_t m;
2202         int domain;
2203
2204         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2205         do {
2206                 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2207                 if (m != NULL)
2208                         break;
2209         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2210
2211         return (m);
2212 }
2213
2214 vm_page_t
2215 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2216 {
2217         struct vm_domain *vmd;
2218         vm_page_t m;
2219         u_int flags;
2220
2221         m = NULL;
2222         vmd = VM_DOMAIN(domain);
2223 again:
2224         if (vm_domain_allocate(vmd, req, 1)) {
2225                 vm_domain_free_lock(vmd);
2226                 m = vm_phys_alloc_freelist_pages(domain, freelist,
2227                     VM_FREEPOOL_DIRECT, 0);
2228                 vm_domain_free_unlock(vmd);
2229                 if (m == NULL)
2230                         vm_domain_freecnt_inc(vmd, 1);
2231         }
2232         if (m == NULL) {
2233                 if (vm_domain_alloc_fail(vmd, NULL, req))
2234                         goto again;
2235                 return (NULL);
2236         }
2237         vm_page_dequeue(m);
2238         vm_page_alloc_check(m);
2239
2240         /*
2241          * Initialize the page.  Only the PG_ZERO flag is inherited.
2242          */
2243         m->aflags = 0;
2244         flags = 0;
2245         if ((req & VM_ALLOC_ZERO) != 0)
2246                 flags = PG_ZERO;
2247         m->flags &= flags;
2248         if ((req & VM_ALLOC_WIRED) != 0) {
2249                 /*
2250                  * The page lock is not required for wiring a page that does
2251                  * not belong to an object.
2252                  */
2253                 vm_wire_add(1);
2254                 m->ref_count = 1;
2255         }
2256         /* Unmanaged pages don't use "act_count". */
2257         m->oflags = VPO_UNMANAGED;
2258         return (m);
2259 }
2260
2261 static int
2262 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2263 {
2264         struct vm_domain *vmd;
2265         struct vm_pgcache *pgcache;
2266         int i;
2267
2268         pgcache = arg;
2269         vmd = VM_DOMAIN(pgcache->domain);
2270         /* Only import if we can bring in a full bucket. */
2271         if (cnt == 1 || !vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2272                 return (0);
2273         domain = vmd->vmd_domain;
2274         vm_domain_free_lock(vmd);
2275         i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2276             (vm_page_t *)store);
2277         vm_domain_free_unlock(vmd);
2278         if (cnt != i)
2279                 vm_domain_freecnt_inc(vmd, cnt - i);
2280
2281         return (i);
2282 }
2283
2284 static void
2285 vm_page_zone_release(void *arg, void **store, int cnt)
2286 {
2287         struct vm_domain *vmd;
2288         struct vm_pgcache *pgcache;
2289         vm_page_t m;
2290         int i;
2291
2292         pgcache = arg;
2293         vmd = VM_DOMAIN(pgcache->domain);
2294         vm_domain_free_lock(vmd);
2295         for (i = 0; i < cnt; i++) {
2296                 m = (vm_page_t)store[i];
2297                 vm_phys_free_pages(m, 0);
2298         }
2299         vm_domain_free_unlock(vmd);
2300         vm_domain_freecnt_inc(vmd, cnt);
2301 }
2302
2303 #define VPSC_ANY        0       /* No restrictions. */
2304 #define VPSC_NORESERV   1       /* Skip reservations; implies VPSC_NOSUPER. */
2305 #define VPSC_NOSUPER    2       /* Skip superpages. */
2306
2307 /*
2308  *      vm_page_scan_contig:
2309  *
2310  *      Scan vm_page_array[] between the specified entries "m_start" and
2311  *      "m_end" for a run of contiguous physical pages that satisfy the
2312  *      specified conditions, and return the lowest page in the run.  The
2313  *      specified "alignment" determines the alignment of the lowest physical
2314  *      page in the run.  If the specified "boundary" is non-zero, then the
2315  *      run of physical pages cannot span a physical address that is a
2316  *      multiple of "boundary".
2317  *
2318  *      "m_end" is never dereferenced, so it need not point to a vm_page
2319  *      structure within vm_page_array[].
2320  *
2321  *      "npages" must be greater than zero.  "m_start" and "m_end" must not
2322  *      span a hole (or discontiguity) in the physical address space.  Both
2323  *      "alignment" and "boundary" must be a power of two.
2324  */
2325 vm_page_t
2326 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2327     u_long alignment, vm_paddr_t boundary, int options)
2328 {
2329         struct mtx *m_mtx;
2330         vm_object_t object;
2331         vm_paddr_t pa;
2332         vm_page_t m, m_run;
2333 #if VM_NRESERVLEVEL > 0
2334         int level;
2335 #endif
2336         int m_inc, order, run_ext, run_len;
2337
2338         KASSERT(npages > 0, ("npages is 0"));
2339         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2340         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2341         m_run = NULL;
2342         run_len = 0;
2343         m_mtx = NULL;
2344         for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2345                 KASSERT((m->flags & PG_MARKER) == 0,
2346                     ("page %p is PG_MARKER", m));
2347                 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2348                     ("fictitious page %p has invalid ref count", m));
2349
2350                 /*
2351                  * If the current page would be the start of a run, check its
2352                  * physical address against the end, alignment, and boundary
2353                  * conditions.  If it doesn't satisfy these conditions, either
2354                  * terminate the scan or advance to the next page that
2355                  * satisfies the failed condition.
2356                  */
2357                 if (run_len == 0) {
2358                         KASSERT(m_run == NULL, ("m_run != NULL"));
2359                         if (m + npages > m_end)
2360                                 break;
2361                         pa = VM_PAGE_TO_PHYS(m);
2362                         if ((pa & (alignment - 1)) != 0) {
2363                                 m_inc = atop(roundup2(pa, alignment) - pa);
2364                                 continue;
2365                         }
2366                         if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2367                             boundary) != 0) {
2368                                 m_inc = atop(roundup2(pa, boundary) - pa);
2369                                 continue;
2370                         }
2371                 } else
2372                         KASSERT(m_run != NULL, ("m_run == NULL"));
2373
2374                 vm_page_change_lock(m, &m_mtx);
2375                 m_inc = 1;
2376 retry:
2377                 if (vm_page_wired(m))
2378                         run_ext = 0;
2379 #if VM_NRESERVLEVEL > 0
2380                 else if ((level = vm_reserv_level(m)) >= 0 &&
2381                     (options & VPSC_NORESERV) != 0) {
2382                         run_ext = 0;
2383                         /* Advance to the end of the reservation. */
2384                         pa = VM_PAGE_TO_PHYS(m);
2385                         m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2386                             pa);
2387                 }
2388 #endif
2389                 else if ((object = m->object) != NULL) {
2390                         /*
2391                          * The page is considered eligible for relocation if
2392                          * and only if it could be laundered or reclaimed by
2393                          * the page daemon.
2394                          */
2395                         if (!VM_OBJECT_TRYRLOCK(object)) {
2396                                 mtx_unlock(m_mtx);
2397                                 VM_OBJECT_RLOCK(object);
2398                                 mtx_lock(m_mtx);
2399                                 if (m->object != object) {
2400                                         /*
2401                                          * The page may have been freed.
2402                                          */
2403                                         VM_OBJECT_RUNLOCK(object);
2404                                         goto retry;
2405                                 }
2406                         }
2407                         /* Don't care: PG_NODUMP, PG_ZERO. */
2408                         if (object->type != OBJT_DEFAULT &&
2409                             object->type != OBJT_SWAP &&
2410                             object->type != OBJT_VNODE) {
2411                                 run_ext = 0;
2412 #if VM_NRESERVLEVEL > 0
2413                         } else if ((options & VPSC_NOSUPER) != 0 &&
2414                             (level = vm_reserv_level_iffullpop(m)) >= 0) {
2415                                 run_ext = 0;
2416                                 /* Advance to the end of the superpage. */
2417                                 pa = VM_PAGE_TO_PHYS(m);
2418                                 m_inc = atop(roundup2(pa + 1,
2419                                     vm_reserv_size(level)) - pa);
2420 #endif
2421                         } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2422                             vm_page_queue(m) != PQ_NONE && !vm_page_busied(m) &&
2423                             !vm_page_wired(m)) {
2424                                 /*
2425                                  * The page is allocated but eligible for
2426                                  * relocation.  Extend the current run by one
2427                                  * page.
2428                                  */
2429                                 KASSERT(pmap_page_get_memattr(m) ==
2430                                     VM_MEMATTR_DEFAULT,
2431                                     ("page %p has an unexpected memattr", m));
2432                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2433                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2434                                     ("page %p has unexpected oflags", m));
2435                                 /* Don't care: VPO_NOSYNC. */
2436                                 run_ext = 1;
2437                         } else
2438                                 run_ext = 0;
2439                         VM_OBJECT_RUNLOCK(object);
2440 #if VM_NRESERVLEVEL > 0
2441                 } else if (level >= 0) {
2442                         /*
2443                          * The page is reserved but not yet allocated.  In
2444                          * other words, it is still free.  Extend the current
2445                          * run by one page.
2446                          */
2447                         run_ext = 1;
2448 #endif
2449                 } else if ((order = m->order) < VM_NFREEORDER) {
2450                         /*
2451                          * The page is enqueued in the physical memory
2452                          * allocator's free page queues.  Moreover, it is the
2453                          * first page in a power-of-two-sized run of
2454                          * contiguous free pages.  Add these pages to the end
2455                          * of the current run, and jump ahead.
2456                          */
2457                         run_ext = 1 << order;
2458                         m_inc = 1 << order;
2459                 } else {
2460                         /*
2461                          * Skip the page for one of the following reasons: (1)
2462                          * It is enqueued in the physical memory allocator's
2463                          * free page queues.  However, it is not the first
2464                          * page in a run of contiguous free pages.  (This case
2465                          * rarely occurs because the scan is performed in
2466                          * ascending order.) (2) It is not reserved, and it is
2467                          * transitioning from free to allocated.  (Conversely,
2468                          * the transition from allocated to free for managed
2469                          * pages is blocked by the page lock.) (3) It is
2470                          * allocated but not contained by an object and not
2471                          * wired, e.g., allocated by Xen's balloon driver.
2472                          */
2473                         run_ext = 0;
2474                 }
2475
2476                 /*
2477                  * Extend or reset the current run of pages.
2478                  */
2479                 if (run_ext > 0) {
2480                         if (run_len == 0)
2481                                 m_run = m;
2482                         run_len += run_ext;
2483                 } else {
2484                         if (run_len > 0) {
2485                                 m_run = NULL;
2486                                 run_len = 0;
2487                         }
2488                 }
2489         }
2490         if (m_mtx != NULL)
2491                 mtx_unlock(m_mtx);
2492         if (run_len >= npages)
2493                 return (m_run);
2494         return (NULL);
2495 }
2496
2497 /*
2498  *      vm_page_reclaim_run:
2499  *
2500  *      Try to relocate each of the allocated virtual pages within the
2501  *      specified run of physical pages to a new physical address.  Free the
2502  *      physical pages underlying the relocated virtual pages.  A virtual page
2503  *      is relocatable if and only if it could be laundered or reclaimed by
2504  *      the page daemon.  Whenever possible, a virtual page is relocated to a
2505  *      physical address above "high".
2506  *
2507  *      Returns 0 if every physical page within the run was already free or
2508  *      just freed by a successful relocation.  Otherwise, returns a non-zero
2509  *      value indicating why the last attempt to relocate a virtual page was
2510  *      unsuccessful.
2511  *
2512  *      "req_class" must be an allocation class.
2513  */
2514 static int
2515 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2516     vm_paddr_t high)
2517 {
2518         struct vm_domain *vmd;
2519         struct mtx *m_mtx;
2520         struct spglist free;
2521         vm_object_t object;
2522         vm_paddr_t pa;
2523         vm_page_t m, m_end, m_new;
2524         int error, order, req;
2525
2526         KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2527             ("req_class is not an allocation class"));
2528         SLIST_INIT(&free);
2529         error = 0;
2530         m = m_run;
2531         m_end = m_run + npages;
2532         m_mtx = NULL;
2533         for (; error == 0 && m < m_end; m++) {
2534                 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2535                     ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2536
2537                 /*
2538                  * Avoid releasing and reacquiring the same page lock.
2539                  */
2540                 vm_page_change_lock(m, &m_mtx);
2541 retry:
2542                 /*
2543                  * Racily check for wirings.  Races are handled below.
2544                  */
2545                 if (vm_page_wired(m))
2546                         error = EBUSY;
2547                 else if ((object = m->object) != NULL) {
2548                         /*
2549                          * The page is relocated if and only if it could be
2550                          * laundered or reclaimed by the page daemon.
2551                          */
2552                         if (!VM_OBJECT_TRYWLOCK(object)) {
2553                                 mtx_unlock(m_mtx);
2554                                 VM_OBJECT_WLOCK(object);
2555                                 mtx_lock(m_mtx);
2556                                 if (m->object != object) {
2557                                         /*
2558                                          * The page may have been freed.
2559                                          */
2560                                         VM_OBJECT_WUNLOCK(object);
2561                                         goto retry;
2562                                 }
2563                         }
2564                         /* Don't care: PG_NODUMP, PG_ZERO. */
2565                         if (object->type != OBJT_DEFAULT &&
2566                             object->type != OBJT_SWAP &&
2567                             object->type != OBJT_VNODE)
2568                                 error = EINVAL;
2569                         else if (object->memattr != VM_MEMATTR_DEFAULT)
2570                                 error = EINVAL;
2571                         else if (vm_page_queue(m) != PQ_NONE &&
2572                             !vm_page_busied(m) && !vm_page_wired(m)) {
2573                                 KASSERT(pmap_page_get_memattr(m) ==
2574                                     VM_MEMATTR_DEFAULT,
2575                                     ("page %p has an unexpected memattr", m));
2576                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2577                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2578                                     ("page %p has unexpected oflags", m));
2579                                 /* Don't care: VPO_NOSYNC. */
2580                                 if (m->valid != 0) {
2581                                         /*
2582                                          * First, try to allocate a new page
2583                                          * that is above "high".  Failing
2584                                          * that, try to allocate a new page
2585                                          * that is below "m_run".  Allocate
2586                                          * the new page between the end of
2587                                          * "m_run" and "high" only as a last
2588                                          * resort.
2589                                          */
2590                                         req = req_class | VM_ALLOC_NOOBJ;
2591                                         if ((m->flags & PG_NODUMP) != 0)
2592                                                 req |= VM_ALLOC_NODUMP;
2593                                         if (trunc_page(high) !=
2594                                             ~(vm_paddr_t)PAGE_MASK) {
2595                                                 m_new = vm_page_alloc_contig(
2596                                                     NULL, 0, req, 1,
2597                                                     round_page(high),
2598                                                     ~(vm_paddr_t)0,
2599                                                     PAGE_SIZE, 0,
2600                                                     VM_MEMATTR_DEFAULT);
2601                                         } else
2602                                                 m_new = NULL;
2603                                         if (m_new == NULL) {
2604                                                 pa = VM_PAGE_TO_PHYS(m_run);
2605                                                 m_new = vm_page_alloc_contig(
2606                                                     NULL, 0, req, 1,
2607                                                     0, pa - 1, PAGE_SIZE, 0,
2608                                                     VM_MEMATTR_DEFAULT);
2609                                         }
2610                                         if (m_new == NULL) {
2611                                                 pa += ptoa(npages);
2612                                                 m_new = vm_page_alloc_contig(
2613                                                     NULL, 0, req, 1,
2614                                                     pa, high, PAGE_SIZE, 0,
2615                                                     VM_MEMATTR_DEFAULT);
2616                                         }
2617                                         if (m_new == NULL) {
2618                                                 error = ENOMEM;
2619                                                 goto unlock;
2620                                         }
2621
2622                                         /*
2623                                          * Unmap the page and check for new
2624                                          * wirings that may have been acquired
2625                                          * through a pmap lookup.
2626                                          */
2627                                         if (object->ref_count != 0 &&
2628                                             !vm_page_try_remove_all(m)) {
2629                                                 vm_page_free(m_new);
2630                                                 error = EBUSY;
2631                                                 goto unlock;
2632                                         }
2633
2634                                         /*
2635                                          * Replace "m" with the new page.  For
2636                                          * vm_page_replace(), "m" must be busy
2637                                          * and dequeued.  Finally, change "m"
2638                                          * as if vm_page_free() was called.
2639                                          */
2640                                         m_new->aflags = m->aflags &
2641                                             ~PGA_QUEUE_STATE_MASK;
2642                                         KASSERT(m_new->oflags == VPO_UNMANAGED,
2643                                             ("page %p is managed", m_new));
2644                                         m_new->oflags = m->oflags & VPO_NOSYNC;
2645                                         pmap_copy_page(m, m_new);
2646                                         m_new->valid = m->valid;
2647                                         m_new->dirty = m->dirty;
2648                                         m->flags &= ~PG_ZERO;
2649                                         vm_page_xbusy(m);
2650                                         vm_page_dequeue(m);
2651                                         vm_page_replace_checked(m_new, object,
2652                                             m->pindex, m);
2653                                         if (vm_page_free_prep(m))
2654                                                 SLIST_INSERT_HEAD(&free, m,
2655                                                     plinks.s.ss);
2656
2657                                         /*
2658                                          * The new page must be deactivated
2659                                          * before the object is unlocked.
2660                                          */
2661                                         vm_page_change_lock(m_new, &m_mtx);
2662                                         vm_page_deactivate(m_new);
2663                                 } else {
2664                                         m->flags &= ~PG_ZERO;
2665                                         vm_page_dequeue(m);
2666                                         if (vm_page_free_prep(m))
2667                                                 SLIST_INSERT_HEAD(&free, m,
2668                                                     plinks.s.ss);
2669                                         KASSERT(m->dirty == 0,
2670                                             ("page %p is dirty", m));
2671                                 }
2672                         } else
2673                                 error = EBUSY;
2674 unlock:
2675                         VM_OBJECT_WUNLOCK(object);
2676                 } else {
2677                         MPASS(vm_phys_domain(m) == domain);
2678                         vmd = VM_DOMAIN(domain);
2679                         vm_domain_free_lock(vmd);
2680                         order = m->order;
2681                         if (order < VM_NFREEORDER) {
2682                                 /*
2683                                  * The page is enqueued in the physical memory
2684                                  * allocator's free page queues.  Moreover, it
2685                                  * is the first page in a power-of-two-sized
2686                                  * run of contiguous free pages.  Jump ahead
2687                                  * to the last page within that run, and
2688                                  * continue from there.
2689                                  */
2690                                 m += (1 << order) - 1;
2691                         }
2692 #if VM_NRESERVLEVEL > 0
2693                         else if (vm_reserv_is_page_free(m))
2694                                 order = 0;
2695 #endif
2696                         vm_domain_free_unlock(vmd);
2697                         if (order == VM_NFREEORDER)
2698                                 error = EINVAL;
2699                 }
2700         }
2701         if (m_mtx != NULL)
2702                 mtx_unlock(m_mtx);
2703         if ((m = SLIST_FIRST(&free)) != NULL) {
2704                 int cnt;
2705
2706                 vmd = VM_DOMAIN(domain);
2707                 cnt = 0;
2708                 vm_domain_free_lock(vmd);
2709                 do {
2710                         MPASS(vm_phys_domain(m) == domain);
2711                         SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2712                         vm_phys_free_pages(m, 0);
2713                         cnt++;
2714                 } while ((m = SLIST_FIRST(&free)) != NULL);
2715                 vm_domain_free_unlock(vmd);
2716                 vm_domain_freecnt_inc(vmd, cnt);
2717         }
2718         return (error);
2719 }
2720
2721 #define NRUNS   16
2722
2723 CTASSERT(powerof2(NRUNS));
2724
2725 #define RUN_INDEX(count)        ((count) & (NRUNS - 1))
2726
2727 #define MIN_RECLAIM     8
2728
2729 /*
2730  *      vm_page_reclaim_contig:
2731  *
2732  *      Reclaim allocated, contiguous physical memory satisfying the specified
2733  *      conditions by relocating the virtual pages using that physical memory.
2734  *      Returns true if reclamation is successful and false otherwise.  Since
2735  *      relocation requires the allocation of physical pages, reclamation may
2736  *      fail due to a shortage of free pages.  When reclamation fails, callers
2737  *      are expected to perform vm_wait() before retrying a failed allocation
2738  *      operation, e.g., vm_page_alloc_contig().
2739  *
2740  *      The caller must always specify an allocation class through "req".
2741  *
2742  *      allocation classes:
2743  *      VM_ALLOC_NORMAL         normal process request
2744  *      VM_ALLOC_SYSTEM         system *really* needs a page
2745  *      VM_ALLOC_INTERRUPT      interrupt time request
2746  *
2747  *      The optional allocation flags are ignored.
2748  *
2749  *      "npages" must be greater than zero.  Both "alignment" and "boundary"
2750  *      must be a power of two.
2751  */
2752 bool
2753 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2754     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2755 {
2756         struct vm_domain *vmd;
2757         vm_paddr_t curr_low;
2758         vm_page_t m_run, m_runs[NRUNS];
2759         u_long count, reclaimed;
2760         int error, i, options, req_class;
2761
2762         KASSERT(npages > 0, ("npages is 0"));
2763         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2764         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2765         req_class = req & VM_ALLOC_CLASS_MASK;
2766
2767         /*
2768          * The page daemon is allowed to dig deeper into the free page list.
2769          */
2770         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2771                 req_class = VM_ALLOC_SYSTEM;
2772
2773         /*
2774          * Return if the number of free pages cannot satisfy the requested
2775          * allocation.
2776          */
2777         vmd = VM_DOMAIN(domain);
2778         count = vmd->vmd_free_count;
2779         if (count < npages + vmd->vmd_free_reserved || (count < npages +
2780             vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2781             (count < npages && req_class == VM_ALLOC_INTERRUPT))
2782                 return (false);
2783
2784         /*
2785          * Scan up to three times, relaxing the restrictions ("options") on
2786          * the reclamation of reservations and superpages each time.
2787          */
2788         for (options = VPSC_NORESERV;;) {
2789                 /*
2790                  * Find the highest runs that satisfy the given constraints
2791                  * and restrictions, and record them in "m_runs".
2792                  */
2793                 curr_low = low;
2794                 count = 0;
2795                 for (;;) {
2796                         m_run = vm_phys_scan_contig(domain, npages, curr_low,
2797                             high, alignment, boundary, options);
2798                         if (m_run == NULL)
2799                                 break;
2800                         curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2801                         m_runs[RUN_INDEX(count)] = m_run;
2802                         count++;
2803                 }
2804
2805                 /*
2806                  * Reclaim the highest runs in LIFO (descending) order until
2807                  * the number of reclaimed pages, "reclaimed", is at least
2808                  * MIN_RECLAIM.  Reset "reclaimed" each time because each
2809                  * reclamation is idempotent, and runs will (likely) recur
2810                  * from one scan to the next as restrictions are relaxed.
2811                  */
2812                 reclaimed = 0;
2813                 for (i = 0; count > 0 && i < NRUNS; i++) {
2814                         count--;
2815                         m_run = m_runs[RUN_INDEX(count)];
2816                         error = vm_page_reclaim_run(req_class, domain, npages,
2817                             m_run, high);
2818                         if (error == 0) {
2819                                 reclaimed += npages;
2820                                 if (reclaimed >= MIN_RECLAIM)
2821                                         return (true);
2822                         }
2823                 }
2824
2825                 /*
2826                  * Either relax the restrictions on the next scan or return if
2827                  * the last scan had no restrictions.
2828                  */
2829                 if (options == VPSC_NORESERV)
2830                         options = VPSC_NOSUPER;
2831                 else if (options == VPSC_NOSUPER)
2832                         options = VPSC_ANY;
2833                 else if (options == VPSC_ANY)
2834                         return (reclaimed != 0);
2835         }
2836 }
2837
2838 bool
2839 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2840     u_long alignment, vm_paddr_t boundary)
2841 {
2842         struct vm_domainset_iter di;
2843         int domain;
2844         bool ret;
2845
2846         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2847         do {
2848                 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2849                     high, alignment, boundary);
2850                 if (ret)
2851                         break;
2852         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2853
2854         return (ret);
2855 }
2856
2857 /*
2858  * Set the domain in the appropriate page level domainset.
2859  */
2860 void
2861 vm_domain_set(struct vm_domain *vmd)
2862 {
2863
2864         mtx_lock(&vm_domainset_lock);
2865         if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2866                 vmd->vmd_minset = 1;
2867                 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2868         }
2869         if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2870                 vmd->vmd_severeset = 1;
2871                 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
2872         }
2873         mtx_unlock(&vm_domainset_lock);
2874 }
2875
2876 /*
2877  * Clear the domain from the appropriate page level domainset.
2878  */
2879 void
2880 vm_domain_clear(struct vm_domain *vmd)
2881 {
2882
2883         mtx_lock(&vm_domainset_lock);
2884         if (vmd->vmd_minset && !vm_paging_min(vmd)) {
2885                 vmd->vmd_minset = 0;
2886                 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
2887                 if (vm_min_waiters != 0) {
2888                         vm_min_waiters = 0;
2889                         wakeup(&vm_min_domains);
2890                 }
2891         }
2892         if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
2893                 vmd->vmd_severeset = 0;
2894                 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
2895                 if (vm_severe_waiters != 0) {
2896                         vm_severe_waiters = 0;
2897                         wakeup(&vm_severe_domains);
2898                 }
2899         }
2900
2901         /*
2902          * If pageout daemon needs pages, then tell it that there are
2903          * some free.
2904          */
2905         if (vmd->vmd_pageout_pages_needed &&
2906             vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
2907                 wakeup(&vmd->vmd_pageout_pages_needed);
2908                 vmd->vmd_pageout_pages_needed = 0;
2909         }
2910
2911         /* See comments in vm_wait_doms(). */
2912         if (vm_pageproc_waiters) {
2913                 vm_pageproc_waiters = 0;
2914                 wakeup(&vm_pageproc_waiters);
2915         }
2916         mtx_unlock(&vm_domainset_lock);
2917 }
2918
2919 /*
2920  * Wait for free pages to exceed the min threshold globally.
2921  */
2922 void
2923 vm_wait_min(void)
2924 {
2925
2926         mtx_lock(&vm_domainset_lock);
2927         while (vm_page_count_min()) {
2928                 vm_min_waiters++;
2929                 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
2930         }
2931         mtx_unlock(&vm_domainset_lock);
2932 }
2933
2934 /*
2935  * Wait for free pages to exceed the severe threshold globally.
2936  */
2937 void
2938 vm_wait_severe(void)
2939 {
2940
2941         mtx_lock(&vm_domainset_lock);
2942         while (vm_page_count_severe()) {
2943                 vm_severe_waiters++;
2944                 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
2945                     "vmwait", 0);
2946         }
2947         mtx_unlock(&vm_domainset_lock);
2948 }
2949
2950 u_int
2951 vm_wait_count(void)
2952 {
2953
2954         return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
2955 }
2956
2957 void
2958 vm_wait_doms(const domainset_t *wdoms)
2959 {
2960
2961         /*
2962          * We use racey wakeup synchronization to avoid expensive global
2963          * locking for the pageproc when sleeping with a non-specific vm_wait.
2964          * To handle this, we only sleep for one tick in this instance.  It
2965          * is expected that most allocations for the pageproc will come from
2966          * kmem or vm_page_grab* which will use the more specific and
2967          * race-free vm_wait_domain().
2968          */
2969         if (curproc == pageproc) {
2970                 mtx_lock(&vm_domainset_lock);
2971                 vm_pageproc_waiters++;
2972                 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
2973                     "pageprocwait", 1);
2974         } else {
2975                 /*
2976                  * XXX Ideally we would wait only until the allocation could
2977                  * be satisfied.  This condition can cause new allocators to
2978                  * consume all freed pages while old allocators wait.
2979                  */
2980                 mtx_lock(&vm_domainset_lock);
2981                 if (vm_page_count_min_set(wdoms)) {
2982                         vm_min_waiters++;
2983                         msleep(&vm_min_domains, &vm_domainset_lock,
2984                             PVM | PDROP, "vmwait", 0);
2985                 } else
2986                         mtx_unlock(&vm_domainset_lock);
2987         }
2988 }
2989
2990 /*
2991  *      vm_wait_domain:
2992  *
2993  *      Sleep until free pages are available for allocation.
2994  *      - Called in various places after failed memory allocations.
2995  */
2996 void
2997 vm_wait_domain(int domain)
2998 {
2999         struct vm_domain *vmd;
3000         domainset_t wdom;
3001
3002         vmd = VM_DOMAIN(domain);
3003         vm_domain_free_assert_unlocked(vmd);
3004
3005         if (curproc == pageproc) {
3006                 mtx_lock(&vm_domainset_lock);
3007                 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3008                         vmd->vmd_pageout_pages_needed = 1;
3009                         msleep(&vmd->vmd_pageout_pages_needed,
3010                             &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3011                 } else
3012                         mtx_unlock(&vm_domainset_lock);
3013         } else {
3014                 if (pageproc == NULL)
3015                         panic("vm_wait in early boot");
3016                 DOMAINSET_ZERO(&wdom);
3017                 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3018                 vm_wait_doms(&wdom);
3019         }
3020 }
3021
3022 /*
3023  *      vm_wait:
3024  *
3025  *      Sleep until free pages are available for allocation in the
3026  *      affinity domains of the obj.  If obj is NULL, the domain set
3027  *      for the calling thread is used.
3028  *      Called in various places after failed memory allocations.
3029  */
3030 void
3031 vm_wait(vm_object_t obj)
3032 {
3033         struct domainset *d;
3034
3035         d = NULL;
3036
3037         /*
3038          * Carefully fetch pointers only once: the struct domainset
3039          * itself is ummutable but the pointer might change.
3040          */
3041         if (obj != NULL)
3042                 d = obj->domain.dr_policy;
3043         if (d == NULL)
3044                 d = curthread->td_domain.dr_policy;
3045
3046         vm_wait_doms(&d->ds_mask);
3047 }
3048
3049 /*
3050  *      vm_domain_alloc_fail:
3051  *
3052  *      Called when a page allocation function fails.  Informs the
3053  *      pagedaemon and performs the requested wait.  Requires the
3054  *      domain_free and object lock on entry.  Returns with the
3055  *      object lock held and free lock released.  Returns an error when
3056  *      retry is necessary.
3057  *
3058  */
3059 static int
3060 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3061 {
3062
3063         vm_domain_free_assert_unlocked(vmd);
3064
3065         atomic_add_int(&vmd->vmd_pageout_deficit,
3066             max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3067         if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3068                 if (object != NULL) 
3069                         VM_OBJECT_WUNLOCK(object);
3070                 vm_wait_domain(vmd->vmd_domain);
3071                 if (object != NULL) 
3072                         VM_OBJECT_WLOCK(object);
3073                 if (req & VM_ALLOC_WAITOK)
3074                         return (EAGAIN);
3075         }
3076
3077         return (0);
3078 }
3079
3080 /*
3081  *      vm_waitpfault:
3082  *
3083  *      Sleep until free pages are available for allocation.
3084  *      - Called only in vm_fault so that processes page faulting
3085  *        can be easily tracked.
3086  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3087  *        processes will be able to grab memory first.  Do not change
3088  *        this balance without careful testing first.
3089  */
3090 void
3091 vm_waitpfault(struct domainset *dset, int timo)
3092 {
3093
3094         /*
3095          * XXX Ideally we would wait only until the allocation could
3096          * be satisfied.  This condition can cause new allocators to
3097          * consume all freed pages while old allocators wait.
3098          */
3099         mtx_lock(&vm_domainset_lock);
3100         if (vm_page_count_min_set(&dset->ds_mask)) {
3101                 vm_min_waiters++;
3102                 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3103                     "pfault", timo);
3104         } else
3105                 mtx_unlock(&vm_domainset_lock);
3106 }
3107
3108 static struct vm_pagequeue *
3109 vm_page_pagequeue(vm_page_t m)
3110 {
3111
3112         uint8_t queue;
3113
3114         if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3115                 return (NULL);
3116         return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3117 }
3118
3119 static inline void
3120 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m)
3121 {
3122         struct vm_domain *vmd;
3123         uint8_t qflags;
3124
3125         CRITICAL_ASSERT(curthread);
3126         vm_pagequeue_assert_locked(pq);
3127
3128         /*
3129          * The page daemon is allowed to set m->queue = PQ_NONE without
3130          * the page queue lock held.  In this case it is about to free the page,
3131          * which must not have any queue state.
3132          */
3133         qflags = atomic_load_8(&m->aflags);
3134         KASSERT(pq == vm_page_pagequeue(m) ||
3135             (qflags & PGA_QUEUE_STATE_MASK) == 0,
3136             ("page %p doesn't belong to queue %p but has aflags %#x",
3137             m, pq, qflags));
3138
3139         if ((qflags & PGA_DEQUEUE) != 0) {
3140                 if (__predict_true((qflags & PGA_ENQUEUED) != 0))
3141                         vm_pagequeue_remove(pq, m);
3142                 vm_page_dequeue_complete(m);
3143                 counter_u64_add(queue_ops, 1);
3144         } else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) {
3145                 if ((qflags & PGA_ENQUEUED) != 0)
3146                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3147                 else {
3148                         vm_pagequeue_cnt_inc(pq);
3149                         vm_page_aflag_set(m, PGA_ENQUEUED);
3150                 }
3151
3152                 /*
3153                  * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.
3154                  * In particular, if both flags are set in close succession,
3155                  * only PGA_REQUEUE_HEAD will be applied, even if it was set
3156                  * first.
3157                  */
3158                 if ((qflags & PGA_REQUEUE_HEAD) != 0) {
3159                         KASSERT(m->queue == PQ_INACTIVE,
3160                             ("head enqueue not supported for page %p", m));
3161                         vmd = vm_pagequeue_domain(m);
3162                         TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3163                 } else
3164                         TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3165
3166                 vm_page_aflag_clear(m, qflags & (PGA_REQUEUE |
3167                     PGA_REQUEUE_HEAD));
3168                 counter_u64_add(queue_ops, 1);
3169         } else {
3170                 counter_u64_add(queue_nops, 1);
3171         }
3172 }
3173
3174 static void
3175 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3176     uint8_t queue)
3177 {
3178         vm_page_t m;
3179         int i;
3180
3181         for (i = 0; i < bq->bq_cnt; i++) {
3182                 m = bq->bq_pa[i];
3183                 if (__predict_false(m->queue != queue))
3184                         continue;
3185                 vm_pqbatch_process_page(pq, m);
3186         }
3187         vm_batchqueue_init(bq);
3188 }
3189
3190 /*
3191  *      vm_page_pqbatch_submit:         [ internal use only ]
3192  *
3193  *      Enqueue a page in the specified page queue's batched work queue.
3194  *      The caller must have encoded the requested operation in the page
3195  *      structure's aflags field.
3196  */
3197 void
3198 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3199 {
3200         struct vm_batchqueue *bq;
3201         struct vm_pagequeue *pq;
3202         int domain;
3203
3204         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3205             ("page %p is unmanaged", m));
3206         KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL,
3207             ("missing synchronization for page %p", m));
3208         KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3209
3210         domain = vm_phys_domain(m);
3211         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3212
3213         critical_enter();
3214         bq = DPCPU_PTR(pqbatch[domain][queue]);
3215         if (vm_batchqueue_insert(bq, m)) {
3216                 critical_exit();
3217                 return;
3218         }
3219         critical_exit();
3220         vm_pagequeue_lock(pq);
3221         critical_enter();
3222         bq = DPCPU_PTR(pqbatch[domain][queue]);
3223         vm_pqbatch_process(pq, bq, queue);
3224
3225         /*
3226          * The page may have been logically dequeued before we acquired the
3227          * page queue lock.  In this case, since we either hold the page lock
3228          * or the page is being freed, a different thread cannot be concurrently
3229          * enqueuing the page.
3230          */
3231         if (__predict_true(m->queue == queue))
3232                 vm_pqbatch_process_page(pq, m);
3233         else {
3234                 KASSERT(m->queue == PQ_NONE,
3235                     ("invalid queue transition for page %p", m));
3236                 KASSERT((m->aflags & PGA_ENQUEUED) == 0,
3237                     ("page %p is enqueued with invalid queue index", m));
3238         }
3239         vm_pagequeue_unlock(pq);
3240         critical_exit();
3241 }
3242
3243 /*
3244  *      vm_page_pqbatch_drain:          [ internal use only ]
3245  *
3246  *      Force all per-CPU page queue batch queues to be drained.  This is
3247  *      intended for use in severe memory shortages, to ensure that pages
3248  *      do not remain stuck in the batch queues.
3249  */
3250 void
3251 vm_page_pqbatch_drain(void)
3252 {
3253         struct thread *td;
3254         struct vm_domain *vmd;
3255         struct vm_pagequeue *pq;
3256         int cpu, domain, queue;
3257
3258         td = curthread;
3259         CPU_FOREACH(cpu) {
3260                 thread_lock(td);
3261                 sched_bind(td, cpu);
3262                 thread_unlock(td);
3263
3264                 for (domain = 0; domain < vm_ndomains; domain++) {
3265                         vmd = VM_DOMAIN(domain);
3266                         for (queue = 0; queue < PQ_COUNT; queue++) {
3267                                 pq = &vmd->vmd_pagequeues[queue];
3268                                 vm_pagequeue_lock(pq);
3269                                 critical_enter();
3270                                 vm_pqbatch_process(pq,
3271                                     DPCPU_PTR(pqbatch[domain][queue]), queue);
3272                                 critical_exit();
3273                                 vm_pagequeue_unlock(pq);
3274                         }
3275                 }
3276         }
3277         thread_lock(td);
3278         sched_unbind(td);
3279         thread_unlock(td);
3280 }
3281
3282 /*
3283  * Complete the logical removal of a page from a page queue.  We must be
3284  * careful to synchronize with the page daemon, which may be concurrently
3285  * examining the page with only the page lock held.  The page must not be
3286  * in a state where it appears to be logically enqueued.
3287  */
3288 static void
3289 vm_page_dequeue_complete(vm_page_t m)
3290 {
3291
3292         m->queue = PQ_NONE;
3293         atomic_thread_fence_rel();
3294         vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK);
3295 }
3296
3297 /*
3298  *      vm_page_dequeue_deferred:       [ internal use only ]
3299  *
3300  *      Request removal of the given page from its current page
3301  *      queue.  Physical removal from the queue may be deferred
3302  *      indefinitely.
3303  *
3304  *      The page must be locked.
3305  */
3306 void
3307 vm_page_dequeue_deferred(vm_page_t m)
3308 {
3309         uint8_t queue;
3310
3311         vm_page_assert_locked(m);
3312
3313         if ((queue = vm_page_queue(m)) == PQ_NONE)
3314                 return;
3315
3316         /*
3317          * Set PGA_DEQUEUE if it is not already set to handle a concurrent call
3318          * to vm_page_dequeue_deferred_free().  In particular, avoid modifying
3319          * the page's queue state once vm_page_dequeue_deferred_free() has been
3320          * called.  In the event of a race, two batch queue entries for the page
3321          * will be created, but the second will have no effect.
3322          */
3323         if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE, PGA_DEQUEUE))
3324                 vm_page_pqbatch_submit(m, queue);
3325 }
3326
3327 /*
3328  * A variant of vm_page_dequeue_deferred() that does not assert the page
3329  * lock and is only to be called from vm_page_free_prep().  Because the
3330  * page is being freed, we can assume that nothing other than the page
3331  * daemon is scheduling queue operations on this page, so we get for
3332  * free the mutual exclusion that is otherwise provided by the page lock.
3333  * To handle races, the page daemon must take care to atomically check
3334  * for PGA_DEQUEUE when updating queue state.
3335  */
3336 static void
3337 vm_page_dequeue_deferred_free(vm_page_t m)
3338 {
3339         uint8_t queue;
3340
3341         KASSERT(m->ref_count == 0, ("page %p has references", m));
3342
3343         for (;;) {
3344                 if ((m->aflags & PGA_DEQUEUE) != 0)
3345                         return;
3346                 atomic_thread_fence_acq();
3347                 if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3348                         return;
3349                 if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE,
3350                     PGA_DEQUEUE)) {
3351                         vm_page_pqbatch_submit(m, queue);
3352                         break;
3353                 }
3354         }
3355 }
3356
3357 /*
3358  *      vm_page_dequeue:
3359  *
3360  *      Remove the page from whichever page queue it's in, if any.
3361  *      The page must either be locked or unallocated.  This constraint
3362  *      ensures that the queue state of the page will remain consistent
3363  *      after this function returns.
3364  */
3365 void
3366 vm_page_dequeue(vm_page_t m)
3367 {
3368         struct vm_pagequeue *pq, *pq1;
3369         uint8_t aflags;
3370
3371         KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL,
3372             ("page %p is allocated and unlocked", m));
3373
3374         for (pq = vm_page_pagequeue(m);; pq = pq1) {
3375                 if (pq == NULL) {
3376                         /*
3377                          * A thread may be concurrently executing
3378                          * vm_page_dequeue_complete().  Ensure that all queue
3379                          * state is cleared before we return.
3380                          */
3381                         aflags = atomic_load_8(&m->aflags);
3382                         if ((aflags & PGA_QUEUE_STATE_MASK) == 0)
3383                                 return;
3384                         KASSERT((aflags & PGA_DEQUEUE) != 0,
3385                             ("page %p has unexpected queue state flags %#x",
3386                             m, aflags));
3387
3388                         /*
3389                          * Busy wait until the thread updating queue state is
3390                          * finished.  Such a thread must be executing in a
3391                          * critical section.
3392                          */
3393                         cpu_spinwait();
3394                         pq1 = vm_page_pagequeue(m);
3395                         continue;
3396                 }
3397                 vm_pagequeue_lock(pq);
3398                 if ((pq1 = vm_page_pagequeue(m)) == pq)
3399                         break;
3400                 vm_pagequeue_unlock(pq);
3401         }
3402         KASSERT(pq == vm_page_pagequeue(m),
3403             ("%s: page %p migrated directly between queues", __func__, m));
3404         KASSERT((m->aflags & PGA_DEQUEUE) != 0 ||
3405             mtx_owned(vm_page_lockptr(m)),
3406             ("%s: queued unlocked page %p", __func__, m));
3407
3408         if ((m->aflags & PGA_ENQUEUED) != 0)
3409                 vm_pagequeue_remove(pq, m);
3410         vm_page_dequeue_complete(m);
3411         vm_pagequeue_unlock(pq);
3412 }
3413
3414 /*
3415  * Schedule the given page for insertion into the specified page queue.
3416  * Physical insertion of the page may be deferred indefinitely.
3417  */
3418 static void
3419 vm_page_enqueue(vm_page_t m, uint8_t queue)
3420 {
3421
3422         vm_page_assert_locked(m);
3423         KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
3424             ("%s: page %p is already enqueued", __func__, m));
3425
3426         m->queue = queue;
3427         if ((m->aflags & PGA_REQUEUE) == 0)
3428                 vm_page_aflag_set(m, PGA_REQUEUE);
3429         vm_page_pqbatch_submit(m, queue);
3430 }
3431
3432 /*
3433  *      vm_page_requeue:                [ internal use only ]
3434  *
3435  *      Schedule a requeue of the given page.
3436  *
3437  *      The page must be locked.
3438  */
3439 void
3440 vm_page_requeue(vm_page_t m)
3441 {
3442
3443         vm_page_assert_locked(m);
3444         KASSERT(vm_page_queue(m) != PQ_NONE,
3445             ("%s: page %p is not logically enqueued", __func__, m));
3446
3447         if ((m->aflags & PGA_REQUEUE) == 0)
3448                 vm_page_aflag_set(m, PGA_REQUEUE);
3449         vm_page_pqbatch_submit(m, atomic_load_8(&m->queue));
3450 }
3451
3452 /*
3453  *      vm_page_swapqueue:              [ internal use only ]
3454  *
3455  *      Move the page from one queue to another, or to the tail of its
3456  *      current queue, in the face of a possible concurrent call to
3457  *      vm_page_dequeue_deferred_free().
3458  */
3459 void
3460 vm_page_swapqueue(vm_page_t m, uint8_t oldq, uint8_t newq)
3461 {
3462         struct vm_pagequeue *pq;
3463         vm_page_t next;
3464         bool queued;
3465
3466         KASSERT(oldq < PQ_COUNT && newq < PQ_COUNT && oldq != newq,
3467             ("vm_page_swapqueue: invalid queues (%d, %d)", oldq, newq));
3468         vm_page_assert_locked(m);
3469
3470         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[oldq];
3471         vm_pagequeue_lock(pq);
3472
3473         /*
3474          * The physical queue state might change at any point before the page
3475          * queue lock is acquired, so we must verify that we hold the correct
3476          * lock before proceeding.
3477          */
3478         if (__predict_false(m->queue != oldq)) {
3479                 vm_pagequeue_unlock(pq);
3480                 return;
3481         }
3482
3483         /*
3484          * Once the queue index of the page changes, there is nothing
3485          * synchronizing with further updates to the physical queue state.
3486          * Therefore we must remove the page from the queue now in anticipation
3487          * of a successful commit, and be prepared to roll back.
3488          */
3489         if (__predict_true((m->aflags & PGA_ENQUEUED) != 0)) {
3490                 next = TAILQ_NEXT(m, plinks.q);
3491                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3492                 vm_page_aflag_clear(m, PGA_ENQUEUED);
3493                 queued = true;
3494         } else {
3495                 queued = false;
3496         }
3497
3498         /*
3499          * Atomically update the queue field and set PGA_REQUEUE while
3500          * ensuring that PGA_DEQUEUE has not been set.
3501          */
3502         if (__predict_false(!vm_page_pqstate_cmpset(m, oldq, newq, PGA_DEQUEUE,
3503             PGA_REQUEUE))) {
3504                 if (queued) {
3505                         vm_page_aflag_set(m, PGA_ENQUEUED);
3506                         if (next != NULL)
3507                                 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3508                         else
3509                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3510                 }
3511                 vm_pagequeue_unlock(pq);
3512                 return;
3513         }
3514         vm_pagequeue_cnt_dec(pq);
3515         vm_pagequeue_unlock(pq);
3516         vm_page_pqbatch_submit(m, newq);
3517 }
3518
3519 /*
3520  *      vm_page_free_prep:
3521  *
3522  *      Prepares the given page to be put on the free list,
3523  *      disassociating it from any VM object. The caller may return
3524  *      the page to the free list only if this function returns true.
3525  *
3526  *      The object must be locked.  The page must be locked if it is
3527  *      managed.
3528  */
3529 bool
3530 vm_page_free_prep(vm_page_t m)
3531 {
3532
3533         /*
3534          * Synchronize with threads that have dropped a reference to this
3535          * page.
3536          */
3537         atomic_thread_fence_acq();
3538
3539 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3540         if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3541                 uint64_t *p;
3542                 int i;
3543                 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3544                 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3545                         KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3546                             m, i, (uintmax_t)*p));
3547         }
3548 #endif
3549         if ((m->oflags & VPO_UNMANAGED) == 0) {
3550                 KASSERT(!pmap_page_is_mapped(m),
3551                     ("vm_page_free_prep: freeing mapped page %p", m));
3552                 KASSERT((m->aflags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3553                     ("vm_page_free_prep: mapping flags set in page %p", m));
3554         } else {
3555                 KASSERT(m->queue == PQ_NONE,
3556                     ("vm_page_free_prep: unmanaged page %p is queued", m));
3557         }
3558         VM_CNT_INC(v_tfree);
3559
3560         if (vm_page_sbusied(m))
3561                 panic("vm_page_free_prep: freeing busy page %p", m);
3562
3563         if (m->object != NULL) {
3564                 vm_page_object_remove(m);
3565
3566                 /*
3567                  * The object reference can be released without an atomic
3568                  * operation.
3569                  */
3570                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3571                     m->ref_count == VPRC_OBJREF,
3572                     ("vm_page_free_prep: page %p has unexpected ref_count %u",
3573                     m, m->ref_count));
3574                 m->object = NULL;
3575                 m->ref_count -= VPRC_OBJREF;
3576         }
3577
3578         /*
3579          * If fictitious remove object association and
3580          * return.
3581          */
3582         if ((m->flags & PG_FICTITIOUS) != 0) {
3583                 KASSERT(m->ref_count == 1,
3584                     ("fictitious page %p is referenced", m));
3585                 KASSERT(m->queue == PQ_NONE,
3586                     ("fictitious page %p is queued", m));
3587                 return (false);
3588         }
3589
3590         /*
3591          * Pages need not be dequeued before they are returned to the physical
3592          * memory allocator, but they must at least be marked for a deferred
3593          * dequeue.
3594          */
3595         if ((m->oflags & VPO_UNMANAGED) == 0)
3596                 vm_page_dequeue_deferred_free(m);
3597
3598         m->valid = 0;
3599         vm_page_undirty(m);
3600
3601         if (m->ref_count != 0)
3602                 panic("vm_page_free_prep: page %p has references", m);
3603
3604         /*
3605          * Restore the default memory attribute to the page.
3606          */
3607         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3608                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3609
3610 #if VM_NRESERVLEVEL > 0
3611         /*
3612          * Determine whether the page belongs to a reservation.  If the page was
3613          * allocated from a per-CPU cache, it cannot belong to a reservation, so
3614          * as an optimization, we avoid the check in that case.
3615          */
3616         if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3617                 return (false);
3618 #endif
3619
3620         return (true);
3621 }
3622
3623 /*
3624  *      vm_page_free_toq:
3625  *
3626  *      Returns the given page to the free list, disassociating it
3627  *      from any VM object.
3628  *
3629  *      The object must be locked.  The page must be locked if it is
3630  *      managed.
3631  */
3632 void
3633 vm_page_free_toq(vm_page_t m)
3634 {
3635         struct vm_domain *vmd;
3636         uma_zone_t zone;
3637
3638         if (!vm_page_free_prep(m))
3639                 return;
3640
3641         vmd = vm_pagequeue_domain(m);
3642         zone = vmd->vmd_pgcache[m->pool].zone;
3643         if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3644                 uma_zfree(zone, m);
3645                 return;
3646         }
3647         vm_domain_free_lock(vmd);
3648         vm_phys_free_pages(m, 0);
3649         vm_domain_free_unlock(vmd);
3650         vm_domain_freecnt_inc(vmd, 1);
3651 }
3652
3653 /*
3654  *      vm_page_free_pages_toq:
3655  *
3656  *      Returns a list of pages to the free list, disassociating it
3657  *      from any VM object.  In other words, this is equivalent to
3658  *      calling vm_page_free_toq() for each page of a list of VM objects.
3659  *
3660  *      The objects must be locked.  The pages must be locked if it is
3661  *      managed.
3662  */
3663 void
3664 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3665 {
3666         vm_page_t m;
3667         int count;
3668
3669         if (SLIST_EMPTY(free))
3670                 return;
3671
3672         count = 0;
3673         while ((m = SLIST_FIRST(free)) != NULL) {
3674                 count++;
3675                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
3676                 vm_page_free_toq(m);
3677         }
3678
3679         if (update_wire_count)
3680                 vm_wire_sub(count);
3681 }
3682
3683 /*
3684  * Mark this page as wired down, preventing reclamation by the page daemon
3685  * or when the containing object is destroyed.
3686  */
3687 void
3688 vm_page_wire(vm_page_t m)
3689 {
3690         u_int old;
3691
3692         KASSERT(m->object != NULL,
3693             ("vm_page_wire: page %p does not belong to an object", m));
3694         if (!vm_page_busied(m))
3695                 VM_OBJECT_ASSERT_LOCKED(m->object);
3696         KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3697             VPRC_WIRE_COUNT(m->ref_count) >= 1,
3698             ("vm_page_wire: fictitious page %p has zero wirings", m));
3699
3700         old = atomic_fetchadd_int(&m->ref_count, 1);
3701         KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3702             ("vm_page_wire: counter overflow for page %p", m));
3703         if (VPRC_WIRE_COUNT(old) == 0)
3704                 vm_wire_add(1);
3705 }
3706
3707 /*
3708  * Attempt to wire a mapped page following a pmap lookup of that page.
3709  * This may fail if a thread is concurrently tearing down mappings of the page.
3710  */
3711 bool
3712 vm_page_wire_mapped(vm_page_t m)
3713 {
3714         u_int old;
3715
3716         old = m->ref_count;
3717         do {
3718                 KASSERT(old > 0,
3719                     ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3720                 if ((old & VPRC_BLOCKED) != 0)
3721                         return (false);
3722         } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3723
3724         if (VPRC_WIRE_COUNT(old) == 0)
3725                 vm_wire_add(1);
3726         return (true);
3727 }
3728
3729 /*
3730  * Release one wiring of the specified page, potentially allowing it to be
3731  * paged out.
3732  *
3733  * Only managed pages belonging to an object can be paged out.  If the number
3734  * of wirings transitions to zero and the page is eligible for page out, then
3735  * the page is added to the specified paging queue.  If the released wiring
3736  * represented the last reference to the page, the page is freed.
3737  *
3738  * A managed page must be locked.
3739  */
3740 void
3741 vm_page_unwire(vm_page_t m, uint8_t queue)
3742 {
3743         u_int old;
3744         bool locked;
3745
3746         KASSERT(queue < PQ_COUNT,
3747             ("vm_page_unwire: invalid queue %u request for page %p", queue, m));
3748
3749         if ((m->oflags & VPO_UNMANAGED) != 0) {
3750                 if (vm_page_unwire_noq(m) && m->ref_count == 0)
3751                         vm_page_free(m);
3752                 return;
3753         }
3754
3755         /*
3756          * Update LRU state before releasing the wiring reference.
3757          * We only need to do this once since we hold the page lock.
3758          * Use a release store when updating the reference count to
3759          * synchronize with vm_page_free_prep().
3760          */
3761         old = m->ref_count;
3762         locked = false;
3763         do {
3764                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
3765                     ("vm_page_unwire: wire count underflow for page %p", m));
3766                 if (!locked && VPRC_WIRE_COUNT(old) == 1) {
3767                         vm_page_lock(m);
3768                         locked = true;
3769                         if (queue == PQ_ACTIVE && vm_page_queue(m) == PQ_ACTIVE)
3770                                 vm_page_reference(m);
3771                         else
3772                                 vm_page_mvqueue(m, queue);
3773                 }
3774         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3775
3776         /*
3777          * Release the lock only after the wiring is released, to ensure that
3778          * the page daemon does not encounter and dequeue the page while it is
3779          * still wired.
3780          */
3781         if (locked)
3782                 vm_page_unlock(m);
3783
3784         if (VPRC_WIRE_COUNT(old) == 1) {
3785                 vm_wire_sub(1);
3786                 if (old == 1)
3787                         vm_page_free(m);
3788         }
3789 }
3790
3791 /*
3792  * Unwire a page without (re-)inserting it into a page queue.  It is up
3793  * to the caller to enqueue, requeue, or free the page as appropriate.
3794  * In most cases involving managed pages, vm_page_unwire() should be used
3795  * instead.
3796  */
3797 bool
3798 vm_page_unwire_noq(vm_page_t m)
3799 {
3800         u_int old;
3801
3802         old = vm_page_drop(m, 1);
3803         KASSERT(VPRC_WIRE_COUNT(old) != 0,
3804             ("vm_page_unref: counter underflow for page %p", m));
3805         KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3806             ("vm_page_unref: missing ref on fictitious page %p", m));
3807
3808         if (VPRC_WIRE_COUNT(old) > 1)
3809                 return (false);
3810         vm_wire_sub(1);
3811         return (true);
3812 }
3813
3814 /*
3815  * Ensure that the page is in the specified page queue.  If the page is
3816  * active or being moved to the active queue, ensure that its act_count is
3817  * at least ACT_INIT but do not otherwise mess with it.  Otherwise, ensure that
3818  * the page is at the tail of its page queue.
3819  *
3820  * The page may be wired.  The caller should release its wiring reference
3821  * before releasing the page lock, otherwise the page daemon may immediately
3822  * dequeue the page.
3823  *
3824  * A managed page must be locked.
3825  */
3826 static __always_inline void
3827 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue)
3828 {
3829
3830         vm_page_assert_locked(m);
3831         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3832             ("vm_page_mvqueue: page %p is unmanaged", m));
3833
3834         if (vm_page_queue(m) != nqueue) {
3835                 vm_page_dequeue(m);
3836                 vm_page_enqueue(m, nqueue);
3837         } else if (nqueue != PQ_ACTIVE) {
3838                 vm_page_requeue(m);
3839         }
3840
3841         if (nqueue == PQ_ACTIVE && m->act_count < ACT_INIT)
3842                 m->act_count = ACT_INIT;
3843 }
3844
3845 /*
3846  * Put the specified page on the active list (if appropriate).
3847  */
3848 void
3849 vm_page_activate(vm_page_t m)
3850 {
3851
3852         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3853                 return;
3854         vm_page_mvqueue(m, PQ_ACTIVE);
3855 }
3856
3857 /*
3858  * Move the specified page to the tail of the inactive queue, or requeue
3859  * the page if it is already in the inactive queue.
3860  */
3861 void
3862 vm_page_deactivate(vm_page_t m)
3863 {
3864
3865         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3866                 return;
3867         vm_page_mvqueue(m, PQ_INACTIVE);
3868 }
3869
3870 /*
3871  * Move the specified page close to the head of the inactive queue,
3872  * bypassing LRU.  A marker page is used to maintain FIFO ordering.
3873  * As with regular enqueues, we use a per-CPU batch queue to reduce
3874  * contention on the page queue lock.
3875  */
3876 static void
3877 _vm_page_deactivate_noreuse(vm_page_t m)
3878 {
3879
3880         vm_page_assert_locked(m);
3881
3882         if (!vm_page_inactive(m)) {
3883                 vm_page_dequeue(m);
3884                 m->queue = PQ_INACTIVE;
3885         }
3886         if ((m->aflags & PGA_REQUEUE_HEAD) == 0)
3887                 vm_page_aflag_set(m, PGA_REQUEUE_HEAD);
3888         vm_page_pqbatch_submit(m, PQ_INACTIVE);
3889 }
3890
3891 void
3892 vm_page_deactivate_noreuse(vm_page_t m)
3893 {
3894
3895         KASSERT(m->object != NULL,
3896             ("vm_page_deactivate_noreuse: page %p has no object", m));
3897
3898         if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_wired(m))
3899                 _vm_page_deactivate_noreuse(m);
3900 }
3901
3902 /*
3903  * Put a page in the laundry, or requeue it if it is already there.
3904  */
3905 void
3906 vm_page_launder(vm_page_t m)
3907 {
3908
3909         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3910                 return;
3911         vm_page_mvqueue(m, PQ_LAUNDRY);
3912 }
3913
3914 /*
3915  * Put a page in the PQ_UNSWAPPABLE holding queue.
3916  */
3917 void
3918 vm_page_unswappable(vm_page_t m)
3919 {
3920
3921         vm_page_assert_locked(m);
3922         KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
3923             ("page %p already unswappable", m));
3924
3925         vm_page_dequeue(m);
3926         vm_page_enqueue(m, PQ_UNSWAPPABLE);
3927 }
3928
3929 static void
3930 vm_page_release_toq(vm_page_t m, int flags)
3931 {
3932
3933         vm_page_assert_locked(m);
3934
3935         /*
3936          * Use a check of the valid bits to determine whether we should
3937          * accelerate reclamation of the page.  The object lock might not be
3938          * held here, in which case the check is racy.  At worst we will either
3939          * accelerate reclamation of a valid page and violate LRU, or
3940          * unnecessarily defer reclamation of an invalid page.
3941          *
3942          * If we were asked to not cache the page, place it near the head of the
3943          * inactive queue so that is reclaimed sooner.
3944          */
3945         if ((flags & (VPR_TRYFREE | VPR_NOREUSE)) != 0 || m->valid == 0)
3946                 _vm_page_deactivate_noreuse(m);
3947         else if (vm_page_active(m))
3948                 vm_page_reference(m);
3949         else
3950                 vm_page_mvqueue(m, PQ_INACTIVE);
3951 }
3952
3953 /*
3954  * Unwire a page and either attempt to free it or re-add it to the page queues.
3955  */
3956 void
3957 vm_page_release(vm_page_t m, int flags)
3958 {
3959         vm_object_t object;
3960         u_int old;
3961         bool locked;
3962
3963         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3964             ("vm_page_release: page %p is unmanaged", m));
3965
3966         if ((flags & VPR_TRYFREE) != 0) {
3967                 for (;;) {
3968                         object = (vm_object_t)atomic_load_ptr(&m->object);
3969                         if (object == NULL)
3970                                 break;
3971                         /* Depends on type-stability. */
3972                         if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) {
3973                                 object = NULL;
3974                                 break;
3975                         }
3976                         if (object == m->object)
3977                                 break;
3978                         VM_OBJECT_WUNLOCK(object);
3979                 }
3980                 if (__predict_true(object != NULL)) {
3981                         vm_page_release_locked(m, flags);
3982                         VM_OBJECT_WUNLOCK(object);
3983                         return;
3984                 }
3985         }
3986
3987         /*
3988          * Update LRU state before releasing the wiring reference.
3989          * Use a release store when updating the reference count to
3990          * synchronize with vm_page_free_prep().
3991          */
3992         old = m->ref_count;
3993         locked = false;
3994         do {
3995                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
3996                     ("vm_page_unwire: wire count underflow for page %p", m));
3997                 if (!locked && VPRC_WIRE_COUNT(old) == 1) {
3998                         vm_page_lock(m);
3999                         locked = true;
4000                         vm_page_release_toq(m, flags);
4001                 }
4002         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4003
4004         /*
4005          * Release the lock only after the wiring is released, to ensure that
4006          * the page daemon does not encounter and dequeue the page while it is
4007          * still wired.
4008          */
4009         if (locked)
4010                 vm_page_unlock(m);
4011
4012         if (VPRC_WIRE_COUNT(old) == 1) {
4013                 vm_wire_sub(1);
4014                 if (old == 1)
4015                         vm_page_free(m);
4016         }
4017 }
4018
4019 /* See vm_page_release(). */
4020 void
4021 vm_page_release_locked(vm_page_t m, int flags)
4022 {
4023
4024         VM_OBJECT_ASSERT_WLOCKED(m->object);
4025         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4026             ("vm_page_release_locked: page %p is unmanaged", m));
4027
4028         if (vm_page_unwire_noq(m)) {
4029                 if ((flags & VPR_TRYFREE) != 0 &&
4030                     (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4031                     m->dirty == 0 && !vm_page_busied(m)) {
4032                         vm_page_free(m);
4033                 } else {
4034                         vm_page_lock(m);
4035                         vm_page_release_toq(m, flags);
4036                         vm_page_unlock(m);
4037                 }
4038         }
4039 }
4040
4041 static bool
4042 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4043 {
4044         u_int old;
4045
4046         KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4047             ("vm_page_try_blocked_op: page %p has no object", m));
4048         KASSERT(!vm_page_busied(m),
4049             ("vm_page_try_blocked_op: page %p is busy", m));
4050         VM_OBJECT_ASSERT_LOCKED(m->object);
4051
4052         old = m->ref_count;
4053         do {
4054                 KASSERT(old != 0,
4055                     ("vm_page_try_blocked_op: page %p has no references", m));
4056                 if (VPRC_WIRE_COUNT(old) != 0)
4057                         return (false);
4058         } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4059
4060         (op)(m);
4061
4062         /*
4063          * If the object is read-locked, new wirings may be created via an
4064          * object lookup.
4065          */
4066         old = vm_page_drop(m, VPRC_BLOCKED);
4067         KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4068             old == (VPRC_BLOCKED | VPRC_OBJREF),
4069             ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4070             old, m));
4071         return (true);
4072 }
4073
4074 /*
4075  * Atomically check for wirings and remove all mappings of the page.
4076  */
4077 bool
4078 vm_page_try_remove_all(vm_page_t m)
4079 {
4080
4081         return (vm_page_try_blocked_op(m, pmap_remove_all));
4082 }
4083
4084 /*
4085  * Atomically check for wirings and remove all writeable mappings of the page.
4086  */
4087 bool
4088 vm_page_try_remove_write(vm_page_t m)
4089 {
4090
4091         return (vm_page_try_blocked_op(m, pmap_remove_write));
4092 }
4093
4094 /*
4095  * vm_page_advise
4096  *
4097  *      Apply the specified advice to the given page.
4098  *
4099  *      The object and page must be locked.
4100  */
4101 void
4102 vm_page_advise(vm_page_t m, int advice)
4103 {
4104
4105         vm_page_assert_locked(m);
4106         VM_OBJECT_ASSERT_WLOCKED(m->object);
4107         if (advice == MADV_FREE)
4108                 /*
4109                  * Mark the page clean.  This will allow the page to be freed
4110                  * without first paging it out.  MADV_FREE pages are often
4111                  * quickly reused by malloc(3), so we do not do anything that
4112                  * would result in a page fault on a later access.
4113                  */
4114                 vm_page_undirty(m);
4115         else if (advice != MADV_DONTNEED) {
4116                 if (advice == MADV_WILLNEED)
4117                         vm_page_activate(m);
4118                 return;
4119         }
4120
4121         /*
4122          * Clear any references to the page.  Otherwise, the page daemon will
4123          * immediately reactivate the page.
4124          */
4125         vm_page_aflag_clear(m, PGA_REFERENCED);
4126
4127         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4128                 vm_page_dirty(m);
4129
4130         /*
4131          * Place clean pages near the head of the inactive queue rather than
4132          * the tail, thus defeating the queue's LRU operation and ensuring that
4133          * the page will be reused quickly.  Dirty pages not already in the
4134          * laundry are moved there.
4135          */
4136         if (m->dirty == 0)
4137                 vm_page_deactivate_noreuse(m);
4138         else if (!vm_page_in_laundry(m))
4139                 vm_page_launder(m);
4140 }
4141
4142 /*
4143  * Grab a page, waiting until we are waken up due to the page
4144  * changing state.  We keep on waiting, if the page continues
4145  * to be in the object.  If the page doesn't exist, first allocate it
4146  * and then conditionally zero it.
4147  *
4148  * This routine may sleep.
4149  *
4150  * The object must be locked on entry.  The lock will, however, be released
4151  * and reacquired if the routine sleeps.
4152  */
4153 vm_page_t
4154 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4155 {
4156         vm_page_t m;
4157         int sleep;
4158         int pflags;
4159
4160         VM_OBJECT_ASSERT_WLOCKED(object);
4161         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4162             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4163             ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4164         pflags = allocflags &
4165             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
4166         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4167                 pflags |= VM_ALLOC_WAITFAIL;
4168 retrylookup:
4169         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4170                 sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
4171                     vm_page_xbusied(m) : vm_page_busied(m);
4172                 if (sleep) {
4173                         if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4174                                 return (NULL);
4175                         /*
4176                          * Reference the page before unlocking and
4177                          * sleeping so that the page daemon is less
4178                          * likely to reclaim it.
4179                          */
4180                         if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4181                                 vm_page_aflag_set(m, PGA_REFERENCED);
4182                         vm_page_busy_sleep(m, "pgrbwt", (allocflags &
4183                             VM_ALLOC_IGN_SBUSY) != 0);
4184                         VM_OBJECT_WLOCK(object);
4185                         if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4186                                 return (NULL);
4187                         goto retrylookup;
4188                 } else {
4189                         if ((allocflags & VM_ALLOC_WIRED) != 0)
4190                                 vm_page_wire(m);
4191                         if ((allocflags &
4192                             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
4193                                 vm_page_xbusy(m);
4194                         else if ((allocflags & VM_ALLOC_SBUSY) != 0)
4195                                 vm_page_sbusy(m);
4196                         return (m);
4197                 }
4198         }
4199         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4200                 return (NULL);
4201         m = vm_page_alloc(object, pindex, pflags);
4202         if (m == NULL) {
4203                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4204                         return (NULL);
4205                 goto retrylookup;
4206         }
4207         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4208                 pmap_zero_page(m);
4209         return (m);
4210 }
4211
4212 /*
4213  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4214  * their pager are zero filled and validated.
4215  */
4216 int
4217 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4218 {
4219         vm_page_t m;
4220         bool sleep, xbusy;
4221         int pflags;
4222         int rv;
4223
4224         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4225             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4226             ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4227         KASSERT((allocflags &
4228             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4229             ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4230         VM_OBJECT_ASSERT_WLOCKED(object);
4231         pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY);
4232         pflags |= VM_ALLOC_WAITFAIL;
4233
4234 retrylookup:
4235         xbusy = false;
4236         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4237                 /*
4238                  * If the page is fully valid it can only become invalid
4239                  * with the object lock held.  If it is not valid it can
4240                  * become valid with the busy lock held.  Therefore, we
4241                  * may unnecessarily lock the exclusive busy here if we
4242                  * race with I/O completion not using the object lock.
4243                  * However, we will not end up with an invalid page and a
4244                  * shared lock.
4245                  */
4246                 if (m->valid != VM_PAGE_BITS_ALL ||
4247                     (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) {
4248                         sleep = !vm_page_tryxbusy(m);
4249                         xbusy = true;
4250                 } else
4251                         sleep = !vm_page_trysbusy(m);
4252                 if (sleep) {
4253                         /*
4254                          * Reference the page before unlocking and
4255                          * sleeping so that the page daemon is less
4256                          * likely to reclaim it.
4257                          */
4258                         if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4259                                 vm_page_aflag_set(m, PGA_REFERENCED);
4260                         vm_page_busy_sleep(m, "pgrbwt", (allocflags &
4261                             VM_ALLOC_IGN_SBUSY) != 0);
4262                         VM_OBJECT_WLOCK(object);
4263                         goto retrylookup;
4264                 }
4265                 if ((allocflags & VM_ALLOC_NOCREAT) != 0 &&
4266                    m->valid != VM_PAGE_BITS_ALL) {
4267                         if (xbusy)
4268                                 vm_page_xunbusy(m);
4269                         else
4270                                 vm_page_sunbusy(m);
4271                         *mp = NULL;
4272                         return (VM_PAGER_FAIL);
4273                 }
4274                 if ((allocflags & VM_ALLOC_WIRED) != 0)
4275                         vm_page_wire(m);
4276                 if (m->valid == VM_PAGE_BITS_ALL)
4277                         goto out;
4278         } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4279                 *mp = NULL;
4280                 return (VM_PAGER_FAIL);
4281         } else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) {
4282                 xbusy = true;
4283         } else {
4284                 goto retrylookup;
4285         }
4286
4287         vm_page_assert_xbusied(m);
4288         MPASS(xbusy);
4289         if (vm_pager_has_page(object, pindex, NULL, NULL)) {
4290                 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
4291                 if (rv != VM_PAGER_OK) {
4292                         if (allocflags & VM_ALLOC_WIRED)
4293                                 vm_page_unwire_noq(m);
4294                         vm_page_free(m);
4295                         *mp = NULL;
4296                         return (rv);
4297                 }
4298                 MPASS(m->valid == VM_PAGE_BITS_ALL);
4299         } else {
4300                 vm_page_zero_invalid(m, TRUE);
4301         }
4302 out:
4303         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4304                 if (xbusy)
4305                         vm_page_xunbusy(m);
4306                 else
4307                         vm_page_sunbusy(m);
4308         }
4309         if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy)
4310                 vm_page_busy_downgrade(m);
4311         *mp = m;
4312         return (VM_PAGER_OK);
4313 }
4314
4315 /*
4316  * Return the specified range of pages from the given object.  For each
4317  * page offset within the range, if a page already exists within the object
4318  * at that offset and it is busy, then wait for it to change state.  If,
4319  * instead, the page doesn't exist, then allocate it.
4320  *
4321  * The caller must always specify an allocation class.
4322  *
4323  * allocation classes:
4324  *      VM_ALLOC_NORMAL         normal process request
4325  *      VM_ALLOC_SYSTEM         system *really* needs the pages
4326  *
4327  * The caller must always specify that the pages are to be busied and/or
4328  * wired.
4329  *
4330  * optional allocation flags:
4331  *      VM_ALLOC_IGN_SBUSY      do not sleep on soft busy pages
4332  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
4333  *      VM_ALLOC_NOWAIT         do not sleep
4334  *      VM_ALLOC_SBUSY          set page to sbusy state
4335  *      VM_ALLOC_WIRED          wire the pages
4336  *      VM_ALLOC_ZERO           zero and validate any invalid pages
4337  *
4338  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4339  * may return a partial prefix of the requested range.
4340  */
4341 int
4342 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4343     vm_page_t *ma, int count)
4344 {
4345         vm_page_t m, mpred;
4346         int pflags;
4347         int i;
4348         bool sleep;
4349
4350         VM_OBJECT_ASSERT_WLOCKED(object);
4351         KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4352             ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4353         KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4354             (allocflags & VM_ALLOC_WIRED) != 0,
4355             ("vm_page_grab_pages: the pages must be busied or wired"));
4356         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4357             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4358             ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
4359         if (count == 0)
4360                 return (0);
4361         pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK |
4362             VM_ALLOC_WAITFAIL | VM_ALLOC_IGN_SBUSY);
4363         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4364                 pflags |= VM_ALLOC_WAITFAIL;
4365         i = 0;
4366 retrylookup:
4367         m = vm_radix_lookup_le(&object->rtree, pindex + i);
4368         if (m == NULL || m->pindex != pindex + i) {
4369                 mpred = m;
4370                 m = NULL;
4371         } else
4372                 mpred = TAILQ_PREV(m, pglist, listq);
4373         for (; i < count; i++) {
4374                 if (m != NULL) {
4375                         sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
4376                             vm_page_xbusied(m) : vm_page_busied(m);
4377                         if (sleep) {
4378                                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4379                                         break;
4380                                 /*
4381                                  * Reference the page before unlocking and
4382                                  * sleeping so that the page daemon is less
4383                                  * likely to reclaim it.
4384                                  */
4385                                 if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4386                                         vm_page_aflag_set(m, PGA_REFERENCED);
4387                                 vm_page_busy_sleep(m, "grbmaw", (allocflags &
4388                                     VM_ALLOC_IGN_SBUSY) != 0);
4389                                 VM_OBJECT_WLOCK(object);
4390                                 goto retrylookup;
4391                         }
4392                         if ((allocflags & VM_ALLOC_WIRED) != 0)
4393                                 vm_page_wire(m);
4394                         if ((allocflags & (VM_ALLOC_NOBUSY |
4395                             VM_ALLOC_SBUSY)) == 0)
4396                                 vm_page_xbusy(m);
4397                         if ((allocflags & VM_ALLOC_SBUSY) != 0)
4398                                 vm_page_sbusy(m);
4399                 } else {
4400                         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4401                                 break;
4402                         m = vm_page_alloc_after(object, pindex + i,
4403                             pflags | VM_ALLOC_COUNT(count - i), mpred);
4404                         if (m == NULL) {
4405                                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4406                                         break;
4407                                 goto retrylookup;
4408                         }
4409                 }
4410                 if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) {
4411                         if ((m->flags & PG_ZERO) == 0)
4412                                 pmap_zero_page(m);
4413                         m->valid = VM_PAGE_BITS_ALL;
4414                 }
4415                 ma[i] = mpred = m;
4416                 m = vm_page_next(m);
4417         }
4418         return (i);
4419 }
4420
4421 /*
4422  * Mapping function for valid or dirty bits in a page.
4423  *
4424  * Inputs are required to range within a page.
4425  */
4426 vm_page_bits_t
4427 vm_page_bits(int base, int size)
4428 {
4429         int first_bit;
4430         int last_bit;
4431
4432         KASSERT(
4433             base + size <= PAGE_SIZE,
4434             ("vm_page_bits: illegal base/size %d/%d", base, size)
4435         );
4436
4437         if (size == 0)          /* handle degenerate case */
4438                 return (0);
4439
4440         first_bit = base >> DEV_BSHIFT;
4441         last_bit = (base + size - 1) >> DEV_BSHIFT;
4442
4443         return (((vm_page_bits_t)2 << last_bit) -
4444             ((vm_page_bits_t)1 << first_bit));
4445 }
4446
4447 /*
4448  *      vm_page_set_valid_range:
4449  *
4450  *      Sets portions of a page valid.  The arguments are expected
4451  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4452  *      of any partial chunks touched by the range.  The invalid portion of
4453  *      such chunks will be zeroed.
4454  *
4455  *      (base + size) must be less then or equal to PAGE_SIZE.
4456  */
4457 void
4458 vm_page_set_valid_range(vm_page_t m, int base, int size)
4459 {
4460         int endoff, frag;
4461
4462         VM_OBJECT_ASSERT_WLOCKED(m->object);
4463         if (size == 0)  /* handle degenerate case */
4464                 return;
4465
4466         /*
4467          * If the base is not DEV_BSIZE aligned and the valid
4468          * bit is clear, we have to zero out a portion of the
4469          * first block.
4470          */
4471         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4472             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4473                 pmap_zero_page_area(m, frag, base - frag);
4474
4475         /*
4476          * If the ending offset is not DEV_BSIZE aligned and the
4477          * valid bit is clear, we have to zero out a portion of
4478          * the last block.
4479          */
4480         endoff = base + size;
4481         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4482             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4483                 pmap_zero_page_area(m, endoff,
4484                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4485
4486         /*
4487          * Assert that no previously invalid block that is now being validated
4488          * is already dirty.
4489          */
4490         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4491             ("vm_page_set_valid_range: page %p is dirty", m));
4492
4493         /*
4494          * Set valid bits inclusive of any overlap.
4495          */
4496         m->valid |= vm_page_bits(base, size);
4497 }
4498
4499 /*
4500  * Clear the given bits from the specified page's dirty field.
4501  */
4502 static __inline void
4503 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4504 {
4505         uintptr_t addr;
4506 #if PAGE_SIZE < 16384
4507         int shift;
4508 #endif
4509
4510         /*
4511          * If the object is locked and the page is neither exclusive busy nor
4512          * write mapped, then the page's dirty field cannot possibly be
4513          * set by a concurrent pmap operation.
4514          */
4515         VM_OBJECT_ASSERT_WLOCKED(m->object);
4516         if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4517                 m->dirty &= ~pagebits;
4518         else {
4519                 /*
4520                  * The pmap layer can call vm_page_dirty() without
4521                  * holding a distinguished lock.  The combination of
4522                  * the object's lock and an atomic operation suffice
4523                  * to guarantee consistency of the page dirty field.
4524                  *
4525                  * For PAGE_SIZE == 32768 case, compiler already
4526                  * properly aligns the dirty field, so no forcible
4527                  * alignment is needed. Only require existence of
4528                  * atomic_clear_64 when page size is 32768.
4529                  */
4530                 addr = (uintptr_t)&m->dirty;
4531 #if PAGE_SIZE == 32768
4532                 atomic_clear_64((uint64_t *)addr, pagebits);
4533 #elif PAGE_SIZE == 16384
4534                 atomic_clear_32((uint32_t *)addr, pagebits);
4535 #else           /* PAGE_SIZE <= 8192 */
4536                 /*
4537                  * Use a trick to perform a 32-bit atomic on the
4538                  * containing aligned word, to not depend on the existence
4539                  * of atomic_clear_{8, 16}.
4540                  */
4541                 shift = addr & (sizeof(uint32_t) - 1);
4542 #if BYTE_ORDER == BIG_ENDIAN
4543                 shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
4544 #else
4545                 shift *= NBBY;
4546 #endif
4547                 addr &= ~(sizeof(uint32_t) - 1);
4548                 atomic_clear_32((uint32_t *)addr, pagebits << shift);
4549 #endif          /* PAGE_SIZE */
4550         }
4551 }
4552
4553 /*
4554  *      vm_page_set_validclean:
4555  *
4556  *      Sets portions of a page valid and clean.  The arguments are expected
4557  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4558  *      of any partial chunks touched by the range.  The invalid portion of
4559  *      such chunks will be zero'd.
4560  *
4561  *      (base + size) must be less then or equal to PAGE_SIZE.
4562  */
4563 void
4564 vm_page_set_validclean(vm_page_t m, int base, int size)
4565 {
4566         vm_page_bits_t oldvalid, pagebits;
4567         int endoff, frag;
4568
4569         VM_OBJECT_ASSERT_WLOCKED(m->object);
4570         if (size == 0)  /* handle degenerate case */
4571                 return;
4572
4573         /*
4574          * If the base is not DEV_BSIZE aligned and the valid
4575          * bit is clear, we have to zero out a portion of the
4576          * first block.
4577          */
4578         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4579             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4580                 pmap_zero_page_area(m, frag, base - frag);
4581
4582         /*
4583          * If the ending offset is not DEV_BSIZE aligned and the
4584          * valid bit is clear, we have to zero out a portion of
4585          * the last block.
4586          */
4587         endoff = base + size;
4588         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4589             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4590                 pmap_zero_page_area(m, endoff,
4591                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4592
4593         /*
4594          * Set valid, clear dirty bits.  If validating the entire
4595          * page we can safely clear the pmap modify bit.  We also
4596          * use this opportunity to clear the VPO_NOSYNC flag.  If a process
4597          * takes a write fault on a MAP_NOSYNC memory area the flag will
4598          * be set again.
4599          *
4600          * We set valid bits inclusive of any overlap, but we can only
4601          * clear dirty bits for DEV_BSIZE chunks that are fully within
4602          * the range.
4603          */
4604         oldvalid = m->valid;
4605         pagebits = vm_page_bits(base, size);
4606         m->valid |= pagebits;
4607 #if 0   /* NOT YET */
4608         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4609                 frag = DEV_BSIZE - frag;
4610                 base += frag;
4611                 size -= frag;
4612                 if (size < 0)
4613                         size = 0;
4614         }
4615         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4616 #endif
4617         if (base == 0 && size == PAGE_SIZE) {
4618                 /*
4619                  * The page can only be modified within the pmap if it is
4620                  * mapped, and it can only be mapped if it was previously
4621                  * fully valid.
4622                  */
4623                 if (oldvalid == VM_PAGE_BITS_ALL)
4624                         /*
4625                          * Perform the pmap_clear_modify() first.  Otherwise,
4626                          * a concurrent pmap operation, such as
4627                          * pmap_protect(), could clear a modification in the
4628                          * pmap and set the dirty field on the page before
4629                          * pmap_clear_modify() had begun and after the dirty
4630                          * field was cleared here.
4631                          */
4632                         pmap_clear_modify(m);
4633                 m->dirty = 0;
4634                 m->oflags &= ~VPO_NOSYNC;
4635         } else if (oldvalid != VM_PAGE_BITS_ALL)
4636                 m->dirty &= ~pagebits;
4637         else
4638                 vm_page_clear_dirty_mask(m, pagebits);
4639 }
4640
4641 void
4642 vm_page_clear_dirty(vm_page_t m, int base, int size)
4643 {
4644
4645         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4646 }
4647
4648 /*
4649  *      vm_page_set_invalid:
4650  *
4651  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
4652  *      valid and dirty bits for the effected areas are cleared.
4653  */
4654 void
4655 vm_page_set_invalid(vm_page_t m, int base, int size)
4656 {
4657         vm_page_bits_t bits;
4658         vm_object_t object;
4659
4660         object = m->object;
4661         VM_OBJECT_ASSERT_WLOCKED(object);
4662         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4663             size >= object->un_pager.vnp.vnp_size)
4664                 bits = VM_PAGE_BITS_ALL;
4665         else
4666                 bits = vm_page_bits(base, size);
4667         if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
4668             bits != 0)
4669                 pmap_remove_all(m);
4670         KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
4671             !pmap_page_is_mapped(m),
4672             ("vm_page_set_invalid: page %p is mapped", m));
4673         m->valid &= ~bits;
4674         m->dirty &= ~bits;
4675 }
4676
4677 /*
4678  * vm_page_zero_invalid()
4679  *
4680  *      The kernel assumes that the invalid portions of a page contain
4681  *      garbage, but such pages can be mapped into memory by user code.
4682  *      When this occurs, we must zero out the non-valid portions of the
4683  *      page so user code sees what it expects.
4684  *
4685  *      Pages are most often semi-valid when the end of a file is mapped
4686  *      into memory and the file's size is not page aligned.
4687  */
4688 void
4689 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4690 {
4691         int b;
4692         int i;
4693
4694         VM_OBJECT_ASSERT_WLOCKED(m->object);
4695         /*
4696          * Scan the valid bits looking for invalid sections that
4697          * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4698          * valid bit may be set ) have already been zeroed by
4699          * vm_page_set_validclean().
4700          */
4701         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4702                 if (i == (PAGE_SIZE / DEV_BSIZE) ||
4703                     (m->valid & ((vm_page_bits_t)1 << i))) {
4704                         if (i > b) {
4705                                 pmap_zero_page_area(m,
4706                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4707                         }
4708                         b = i + 1;
4709                 }
4710         }
4711
4712         /*
4713          * setvalid is TRUE when we can safely set the zero'd areas
4714          * as being valid.  We can do this if there are no cache consistancy
4715          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4716          */
4717         if (setvalid)
4718                 m->valid = VM_PAGE_BITS_ALL;
4719 }
4720
4721 /*
4722  *      vm_page_is_valid:
4723  *
4724  *      Is (partial) page valid?  Note that the case where size == 0
4725  *      will return FALSE in the degenerate case where the page is
4726  *      entirely invalid, and TRUE otherwise.
4727  */
4728 int
4729 vm_page_is_valid(vm_page_t m, int base, int size)
4730 {
4731         vm_page_bits_t bits;
4732
4733         VM_OBJECT_ASSERT_LOCKED(m->object);
4734         bits = vm_page_bits(base, size);
4735         return (m->valid != 0 && (m->valid & bits) == bits);
4736 }
4737
4738 /*
4739  * Returns true if all of the specified predicates are true for the entire
4740  * (super)page and false otherwise.
4741  */
4742 bool
4743 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
4744 {
4745         vm_object_t object;
4746         int i, npages;
4747
4748         object = m->object;
4749         if (skip_m != NULL && skip_m->object != object)
4750                 return (false);
4751         VM_OBJECT_ASSERT_LOCKED(object);
4752         npages = atop(pagesizes[m->psind]);
4753
4754         /*
4755          * The physically contiguous pages that make up a superpage, i.e., a
4756          * page with a page size index ("psind") greater than zero, will
4757          * occupy adjacent entries in vm_page_array[].
4758          */
4759         for (i = 0; i < npages; i++) {
4760                 /* Always test object consistency, including "skip_m". */
4761                 if (m[i].object != object)
4762                         return (false);
4763                 if (&m[i] == skip_m)
4764                         continue;
4765                 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
4766                         return (false);
4767                 if ((flags & PS_ALL_DIRTY) != 0) {
4768                         /*
4769                          * Calling vm_page_test_dirty() or pmap_is_modified()
4770                          * might stop this case from spuriously returning
4771                          * "false".  However, that would require a write lock
4772                          * on the object containing "m[i]".
4773                          */
4774                         if (m[i].dirty != VM_PAGE_BITS_ALL)
4775                                 return (false);
4776                 }
4777                 if ((flags & PS_ALL_VALID) != 0 &&
4778                     m[i].valid != VM_PAGE_BITS_ALL)
4779                         return (false);
4780         }
4781         return (true);
4782 }
4783
4784 /*
4785  * Set the page's dirty bits if the page is modified.
4786  */
4787 void
4788 vm_page_test_dirty(vm_page_t m)
4789 {
4790
4791         VM_OBJECT_ASSERT_WLOCKED(m->object);
4792         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
4793                 vm_page_dirty(m);
4794 }
4795
4796 void
4797 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
4798 {
4799
4800         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
4801 }
4802
4803 void
4804 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
4805 {
4806
4807         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
4808 }
4809
4810 int
4811 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
4812 {
4813
4814         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
4815 }
4816
4817 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
4818 void
4819 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
4820 {
4821
4822         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
4823 }
4824
4825 void
4826 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
4827 {
4828
4829         mtx_assert_(vm_page_lockptr(m), a, file, line);
4830 }
4831 #endif
4832
4833 #ifdef INVARIANTS
4834 void
4835 vm_page_object_lock_assert(vm_page_t m)
4836 {
4837
4838         /*
4839          * Certain of the page's fields may only be modified by the
4840          * holder of the containing object's lock or the exclusive busy.
4841          * holder.  Unfortunately, the holder of the write busy is
4842          * not recorded, and thus cannot be checked here.
4843          */
4844         if (m->object != NULL && !vm_page_xbusied(m))
4845                 VM_OBJECT_ASSERT_WLOCKED(m->object);
4846 }
4847
4848 void
4849 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
4850 {
4851
4852         if ((bits & PGA_WRITEABLE) == 0)
4853                 return;
4854
4855         /*
4856          * The PGA_WRITEABLE flag can only be set if the page is
4857          * managed, is exclusively busied or the object is locked.
4858          * Currently, this flag is only set by pmap_enter().
4859          */
4860         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4861             ("PGA_WRITEABLE on unmanaged page"));
4862         if (!vm_page_xbusied(m))
4863                 VM_OBJECT_ASSERT_LOCKED(m->object);
4864 }
4865 #endif
4866
4867 #include "opt_ddb.h"
4868 #ifdef DDB
4869 #include <sys/kernel.h>
4870
4871 #include <ddb/ddb.h>
4872
4873 DB_SHOW_COMMAND(page, vm_page_print_page_info)
4874 {
4875
4876         db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
4877         db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
4878         db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
4879         db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
4880         db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
4881         db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
4882         db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
4883         db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
4884         db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
4885 }
4886
4887 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
4888 {
4889         int dom;
4890
4891         db_printf("pq_free %d\n", vm_free_count());
4892         for (dom = 0; dom < vm_ndomains; dom++) {
4893                 db_printf(
4894     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
4895                     dom,
4896                     vm_dom[dom].vmd_page_count,
4897                     vm_dom[dom].vmd_free_count,
4898                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
4899                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
4900                     vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
4901                     vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
4902         }
4903 }
4904
4905 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
4906 {
4907         vm_page_t m;
4908         boolean_t phys, virt;
4909
4910         if (!have_addr) {
4911                 db_printf("show pginfo addr\n");
4912                 return;
4913         }
4914
4915         phys = strchr(modif, 'p') != NULL;
4916         virt = strchr(modif, 'v') != NULL;
4917         if (virt)
4918                 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
4919         else if (phys)
4920                 m = PHYS_TO_VM_PAGE(addr);
4921         else
4922                 m = (vm_page_t)addr;
4923         db_printf(
4924     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
4925     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
4926             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
4927             m->queue, m->ref_count, m->aflags, m->oflags,
4928             m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
4929 }
4930 #endif /* DDB */