]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_page.c
Merge r358042 from the clang1000-import branch:
[FreeBSD/FreeBSD.git] / sys / vm / vm_page.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
36  */
37
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64
65 /*
66  *      Resident memory management module.
67  */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_vm.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113
114 #include <machine/md_var.h>
115
116 struct vm_domain vm_dom[MAXMEMDOM];
117
118 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
119
120 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
121
122 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
123 /* The following fields are protected by the domainset lock. */
124 domainset_t __exclusive_cache_line vm_min_domains;
125 domainset_t __exclusive_cache_line vm_severe_domains;
126 static int vm_min_waiters;
127 static int vm_severe_waiters;
128 static int vm_pageproc_waiters;
129
130 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0,
131     "VM page statistics");
132
133 static counter_u64_t pqstate_commit_retries = EARLY_COUNTER;
134 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
135     CTLFLAG_RD, &pqstate_commit_retries,
136     "Number of failed per-page atomic queue state updates");
137
138 static counter_u64_t queue_ops = EARLY_COUNTER;
139 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
140     CTLFLAG_RD, &queue_ops,
141     "Number of batched queue operations");
142
143 static counter_u64_t queue_nops = EARLY_COUNTER;
144 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
145     CTLFLAG_RD, &queue_nops,
146     "Number of batched queue operations with no effects");
147
148 static void
149 counter_startup(void)
150 {
151
152         pqstate_commit_retries = counter_u64_alloc(M_WAITOK);
153         queue_ops = counter_u64_alloc(M_WAITOK);
154         queue_nops = counter_u64_alloc(M_WAITOK);
155 }
156 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
157
158 /*
159  * bogus page -- for I/O to/from partially complete buffers,
160  * or for paging into sparsely invalid regions.
161  */
162 vm_page_t bogus_page;
163
164 vm_page_t vm_page_array;
165 long vm_page_array_size;
166 long first_page;
167
168 static TAILQ_HEAD(, vm_page) blacklist_head;
169 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
170 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
171     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
172
173 static uma_zone_t fakepg_zone;
174
175 static void vm_page_alloc_check(vm_page_t m);
176 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
177     vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
178 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
179 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
180 static bool vm_page_free_prep(vm_page_t m);
181 static void vm_page_free_toq(vm_page_t m);
182 static void vm_page_init(void *dummy);
183 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
184     vm_pindex_t pindex, vm_page_t mpred);
185 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
186     vm_page_t mpred);
187 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
188     const uint16_t nflag);
189 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
190     vm_page_t m_run, vm_paddr_t high);
191 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
192 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
193     int req);
194 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
195     int flags);
196 static void vm_page_zone_release(void *arg, void **store, int cnt);
197
198 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
199
200 static void
201 vm_page_init(void *dummy)
202 {
203
204         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
205             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
206         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
207             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
208 }
209
210 /*
211  * The cache page zone is initialized later since we need to be able to allocate
212  * pages before UMA is fully initialized.
213  */
214 static void
215 vm_page_init_cache_zones(void *dummy __unused)
216 {
217         struct vm_domain *vmd;
218         struct vm_pgcache *pgcache;
219         int cache, domain, maxcache, pool;
220
221         maxcache = 0;
222         TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
223         maxcache *= mp_ncpus;
224         for (domain = 0; domain < vm_ndomains; domain++) {
225                 vmd = VM_DOMAIN(domain);
226                 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
227                         pgcache = &vmd->vmd_pgcache[pool];
228                         pgcache->domain = domain;
229                         pgcache->pool = pool;
230                         pgcache->zone = uma_zcache_create("vm pgcache",
231                             PAGE_SIZE, NULL, NULL, NULL, NULL,
232                             vm_page_zone_import, vm_page_zone_release, pgcache,
233                             UMA_ZONE_VM);
234
235                         /*
236                          * Limit each pool's zone to 0.1% of the pages in the
237                          * domain.
238                          */
239                         cache = maxcache != 0 ? maxcache :
240                             vmd->vmd_page_count / 1000;
241                         uma_zone_set_maxcache(pgcache->zone, cache);
242                 }
243         }
244 }
245 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
246
247 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
248 #if PAGE_SIZE == 32768
249 #ifdef CTASSERT
250 CTASSERT(sizeof(u_long) >= 8);
251 #endif
252 #endif
253
254 /*
255  *      vm_set_page_size:
256  *
257  *      Sets the page size, perhaps based upon the memory
258  *      size.  Must be called before any use of page-size
259  *      dependent functions.
260  */
261 void
262 vm_set_page_size(void)
263 {
264         if (vm_cnt.v_page_size == 0)
265                 vm_cnt.v_page_size = PAGE_SIZE;
266         if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
267                 panic("vm_set_page_size: page size not a power of two");
268 }
269
270 /*
271  *      vm_page_blacklist_next:
272  *
273  *      Find the next entry in the provided string of blacklist
274  *      addresses.  Entries are separated by space, comma, or newline.
275  *      If an invalid integer is encountered then the rest of the
276  *      string is skipped.  Updates the list pointer to the next
277  *      character, or NULL if the string is exhausted or invalid.
278  */
279 static vm_paddr_t
280 vm_page_blacklist_next(char **list, char *end)
281 {
282         vm_paddr_t bad;
283         char *cp, *pos;
284
285         if (list == NULL || *list == NULL)
286                 return (0);
287         if (**list =='\0') {
288                 *list = NULL;
289                 return (0);
290         }
291
292         /*
293          * If there's no end pointer then the buffer is coming from
294          * the kenv and we know it's null-terminated.
295          */
296         if (end == NULL)
297                 end = *list + strlen(*list);
298
299         /* Ensure that strtoq() won't walk off the end */
300         if (*end != '\0') {
301                 if (*end == '\n' || *end == ' ' || *end  == ',')
302                         *end = '\0';
303                 else {
304                         printf("Blacklist not terminated, skipping\n");
305                         *list = NULL;
306                         return (0);
307                 }
308         }
309
310         for (pos = *list; *pos != '\0'; pos = cp) {
311                 bad = strtoq(pos, &cp, 0);
312                 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
313                         if (bad == 0) {
314                                 if (++cp < end)
315                                         continue;
316                                 else
317                                         break;
318                         }
319                 } else
320                         break;
321                 if (*cp == '\0' || ++cp >= end)
322                         *list = NULL;
323                 else
324                         *list = cp;
325                 return (trunc_page(bad));
326         }
327         printf("Garbage in RAM blacklist, skipping\n");
328         *list = NULL;
329         return (0);
330 }
331
332 bool
333 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
334 {
335         struct vm_domain *vmd;
336         vm_page_t m;
337         int ret;
338
339         m = vm_phys_paddr_to_vm_page(pa);
340         if (m == NULL)
341                 return (true); /* page does not exist, no failure */
342
343         vmd = vm_pagequeue_domain(m);
344         vm_domain_free_lock(vmd);
345         ret = vm_phys_unfree_page(m);
346         vm_domain_free_unlock(vmd);
347         if (ret != 0) {
348                 vm_domain_freecnt_inc(vmd, -1);
349                 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
350                 if (verbose)
351                         printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
352         }
353         return (ret);
354 }
355
356 /*
357  *      vm_page_blacklist_check:
358  *
359  *      Iterate through the provided string of blacklist addresses, pulling
360  *      each entry out of the physical allocator free list and putting it
361  *      onto a list for reporting via the vm.page_blacklist sysctl.
362  */
363 static void
364 vm_page_blacklist_check(char *list, char *end)
365 {
366         vm_paddr_t pa;
367         char *next;
368
369         next = list;
370         while (next != NULL) {
371                 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
372                         continue;
373                 vm_page_blacklist_add(pa, bootverbose);
374         }
375 }
376
377 /*
378  *      vm_page_blacklist_load:
379  *
380  *      Search for a special module named "ram_blacklist".  It'll be a
381  *      plain text file provided by the user via the loader directive
382  *      of the same name.
383  */
384 static void
385 vm_page_blacklist_load(char **list, char **end)
386 {
387         void *mod;
388         u_char *ptr;
389         u_int len;
390
391         mod = NULL;
392         ptr = NULL;
393
394         mod = preload_search_by_type("ram_blacklist");
395         if (mod != NULL) {
396                 ptr = preload_fetch_addr(mod);
397                 len = preload_fetch_size(mod);
398         }
399         *list = ptr;
400         if (ptr != NULL)
401                 *end = ptr + len;
402         else
403                 *end = NULL;
404         return;
405 }
406
407 static int
408 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
409 {
410         vm_page_t m;
411         struct sbuf sbuf;
412         int error, first;
413
414         first = 1;
415         error = sysctl_wire_old_buffer(req, 0);
416         if (error != 0)
417                 return (error);
418         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
419         TAILQ_FOREACH(m, &blacklist_head, listq) {
420                 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
421                     (uintmax_t)m->phys_addr);
422                 first = 0;
423         }
424         error = sbuf_finish(&sbuf);
425         sbuf_delete(&sbuf);
426         return (error);
427 }
428
429 /*
430  * Initialize a dummy page for use in scans of the specified paging queue.
431  * In principle, this function only needs to set the flag PG_MARKER.
432  * Nonetheless, it write busies the page as a safety precaution.
433  */
434 static void
435 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
436 {
437
438         bzero(marker, sizeof(*marker));
439         marker->flags = PG_MARKER;
440         marker->a.flags = aflags;
441         marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
442         marker->a.queue = queue;
443 }
444
445 static void
446 vm_page_domain_init(int domain)
447 {
448         struct vm_domain *vmd;
449         struct vm_pagequeue *pq;
450         int i;
451
452         vmd = VM_DOMAIN(domain);
453         bzero(vmd, sizeof(*vmd));
454         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
455             "vm inactive pagequeue";
456         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
457             "vm active pagequeue";
458         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
459             "vm laundry pagequeue";
460         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
461             "vm unswappable pagequeue";
462         vmd->vmd_domain = domain;
463         vmd->vmd_page_count = 0;
464         vmd->vmd_free_count = 0;
465         vmd->vmd_segs = 0;
466         vmd->vmd_oom = FALSE;
467         for (i = 0; i < PQ_COUNT; i++) {
468                 pq = &vmd->vmd_pagequeues[i];
469                 TAILQ_INIT(&pq->pq_pl);
470                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
471                     MTX_DEF | MTX_DUPOK);
472                 pq->pq_pdpages = 0;
473                 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
474         }
475         mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
476         mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
477         snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
478
479         /*
480          * inacthead is used to provide FIFO ordering for LRU-bypassing
481          * insertions.
482          */
483         vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
484         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
485             &vmd->vmd_inacthead, plinks.q);
486
487         /*
488          * The clock pages are used to implement active queue scanning without
489          * requeues.  Scans start at clock[0], which is advanced after the scan
490          * ends.  When the two clock hands meet, they are reset and scanning
491          * resumes from the head of the queue.
492          */
493         vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
494         vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
495         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
496             &vmd->vmd_clock[0], plinks.q);
497         TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
498             &vmd->vmd_clock[1], plinks.q);
499 }
500
501 /*
502  * Initialize a physical page in preparation for adding it to the free
503  * lists.
504  */
505 static void
506 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
507 {
508
509         m->object = NULL;
510         m->ref_count = 0;
511         m->busy_lock = VPB_FREED;
512         m->flags = m->a.flags = 0;
513         m->phys_addr = pa;
514         m->a.queue = PQ_NONE;
515         m->psind = 0;
516         m->segind = segind;
517         m->order = VM_NFREEORDER;
518         m->pool = VM_FREEPOOL_DEFAULT;
519         m->valid = m->dirty = 0;
520         pmap_page_init(m);
521 }
522
523 #ifndef PMAP_HAS_PAGE_ARRAY
524 static vm_paddr_t
525 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
526 {
527         vm_paddr_t new_end;
528
529         /*
530          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
531          * However, because this page is allocated from KVM, out-of-bounds
532          * accesses using the direct map will not be trapped.
533          */
534         *vaddr += PAGE_SIZE;
535
536         /*
537          * Allocate physical memory for the page structures, and map it.
538          */
539         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
540         vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
541             VM_PROT_READ | VM_PROT_WRITE);
542         vm_page_array_size = page_range;
543
544         return (new_end);
545 }
546 #endif
547
548 /*
549  *      vm_page_startup:
550  *
551  *      Initializes the resident memory module.  Allocates physical memory for
552  *      bootstrapping UMA and some data structures that are used to manage
553  *      physical pages.  Initializes these structures, and populates the free
554  *      page queues.
555  */
556 vm_offset_t
557 vm_page_startup(vm_offset_t vaddr)
558 {
559         struct vm_phys_seg *seg;
560         vm_page_t m;
561         char *list, *listend;
562         vm_paddr_t end, high_avail, low_avail, new_end, size;
563         vm_paddr_t page_range __unused;
564         vm_paddr_t last_pa, pa;
565         u_long pagecount;
566         int biggestone, i, segind;
567 #ifdef WITNESS
568         vm_offset_t mapped;
569         int witness_size;
570 #endif
571 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
572         long ii;
573 #endif
574
575         vaddr = round_page(vaddr);
576
577         vm_phys_early_startup();
578         biggestone = vm_phys_avail_largest();
579         end = phys_avail[biggestone+1];
580
581         /*
582          * Initialize the page and queue locks.
583          */
584         mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
585         for (i = 0; i < PA_LOCK_COUNT; i++)
586                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
587         for (i = 0; i < vm_ndomains; i++)
588                 vm_page_domain_init(i);
589
590         new_end = end;
591 #ifdef WITNESS
592         witness_size = round_page(witness_startup_count());
593         new_end -= witness_size;
594         mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
595             VM_PROT_READ | VM_PROT_WRITE);
596         bzero((void *)mapped, witness_size);
597         witness_startup((void *)mapped);
598 #endif
599
600 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
601     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
602     defined(__powerpc64__)
603         /*
604          * Allocate a bitmap to indicate that a random physical page
605          * needs to be included in a minidump.
606          *
607          * The amd64 port needs this to indicate which direct map pages
608          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
609          *
610          * However, i386 still needs this workspace internally within the
611          * minidump code.  In theory, they are not needed on i386, but are
612          * included should the sf_buf code decide to use them.
613          */
614         last_pa = 0;
615         for (i = 0; dump_avail[i + 1] != 0; i += 2)
616                 if (dump_avail[i + 1] > last_pa)
617                         last_pa = dump_avail[i + 1];
618         page_range = last_pa / PAGE_SIZE;
619         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
620         new_end -= vm_page_dump_size;
621         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
622             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
623         bzero((void *)vm_page_dump, vm_page_dump_size);
624 #else
625         (void)last_pa;
626 #endif
627 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
628     defined(__riscv) || defined(__powerpc64__)
629         /*
630          * Include the UMA bootstrap pages, witness pages and vm_page_dump
631          * in a crash dump.  When pmap_map() uses the direct map, they are
632          * not automatically included.
633          */
634         for (pa = new_end; pa < end; pa += PAGE_SIZE)
635                 dump_add_page(pa);
636 #endif
637         phys_avail[biggestone + 1] = new_end;
638 #ifdef __amd64__
639         /*
640          * Request that the physical pages underlying the message buffer be
641          * included in a crash dump.  Since the message buffer is accessed
642          * through the direct map, they are not automatically included.
643          */
644         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
645         last_pa = pa + round_page(msgbufsize);
646         while (pa < last_pa) {
647                 dump_add_page(pa);
648                 pa += PAGE_SIZE;
649         }
650 #endif
651         /*
652          * Compute the number of pages of memory that will be available for
653          * use, taking into account the overhead of a page structure per page.
654          * In other words, solve
655          *      "available physical memory" - round_page(page_range *
656          *          sizeof(struct vm_page)) = page_range * PAGE_SIZE 
657          * for page_range.  
658          */
659         low_avail = phys_avail[0];
660         high_avail = phys_avail[1];
661         for (i = 0; i < vm_phys_nsegs; i++) {
662                 if (vm_phys_segs[i].start < low_avail)
663                         low_avail = vm_phys_segs[i].start;
664                 if (vm_phys_segs[i].end > high_avail)
665                         high_avail = vm_phys_segs[i].end;
666         }
667         /* Skip the first chunk.  It is already accounted for. */
668         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
669                 if (phys_avail[i] < low_avail)
670                         low_avail = phys_avail[i];
671                 if (phys_avail[i + 1] > high_avail)
672                         high_avail = phys_avail[i + 1];
673         }
674         first_page = low_avail / PAGE_SIZE;
675 #ifdef VM_PHYSSEG_SPARSE
676         size = 0;
677         for (i = 0; i < vm_phys_nsegs; i++)
678                 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
679         for (i = 0; phys_avail[i + 1] != 0; i += 2)
680                 size += phys_avail[i + 1] - phys_avail[i];
681 #elif defined(VM_PHYSSEG_DENSE)
682         size = high_avail - low_avail;
683 #else
684 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
685 #endif
686
687 #ifdef PMAP_HAS_PAGE_ARRAY
688         pmap_page_array_startup(size / PAGE_SIZE);
689         biggestone = vm_phys_avail_largest();
690         end = new_end = phys_avail[biggestone + 1];
691 #else
692 #ifdef VM_PHYSSEG_DENSE
693         /*
694          * In the VM_PHYSSEG_DENSE case, the number of pages can account for
695          * the overhead of a page structure per page only if vm_page_array is
696          * allocated from the last physical memory chunk.  Otherwise, we must
697          * allocate page structures representing the physical memory
698          * underlying vm_page_array, even though they will not be used.
699          */
700         if (new_end != high_avail)
701                 page_range = size / PAGE_SIZE;
702         else
703 #endif
704         {
705                 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
706
707                 /*
708                  * If the partial bytes remaining are large enough for
709                  * a page (PAGE_SIZE) without a corresponding
710                  * 'struct vm_page', then new_end will contain an
711                  * extra page after subtracting the length of the VM
712                  * page array.  Compensate by subtracting an extra
713                  * page from new_end.
714                  */
715                 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
716                         if (new_end == high_avail)
717                                 high_avail -= PAGE_SIZE;
718                         new_end -= PAGE_SIZE;
719                 }
720         }
721         end = new_end;
722         new_end = vm_page_array_alloc(&vaddr, end, page_range);
723 #endif
724
725 #if VM_NRESERVLEVEL > 0
726         /*
727          * Allocate physical memory for the reservation management system's
728          * data structures, and map it.
729          */
730         new_end = vm_reserv_startup(&vaddr, new_end);
731 #endif
732 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
733     defined(__riscv) || defined(__powerpc64__)
734         /*
735          * Include vm_page_array and vm_reserv_array in a crash dump.
736          */
737         for (pa = new_end; pa < end; pa += PAGE_SIZE)
738                 dump_add_page(pa);
739 #endif
740         phys_avail[biggestone + 1] = new_end;
741
742         /*
743          * Add physical memory segments corresponding to the available
744          * physical pages.
745          */
746         for (i = 0; phys_avail[i + 1] != 0; i += 2)
747                 if (vm_phys_avail_size(i) != 0)
748                         vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
749
750         /*
751          * Initialize the physical memory allocator.
752          */
753         vm_phys_init();
754
755         /*
756          * Initialize the page structures and add every available page to the
757          * physical memory allocator's free lists.
758          */
759 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
760         for (ii = 0; ii < vm_page_array_size; ii++) {
761                 m = &vm_page_array[ii];
762                 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
763                 m->flags = PG_FICTITIOUS;
764         }
765 #endif
766         vm_cnt.v_page_count = 0;
767         for (segind = 0; segind < vm_phys_nsegs; segind++) {
768                 seg = &vm_phys_segs[segind];
769                 for (m = seg->first_page, pa = seg->start; pa < seg->end;
770                     m++, pa += PAGE_SIZE)
771                         vm_page_init_page(m, pa, segind);
772
773                 /*
774                  * Add the segment to the free lists only if it is covered by
775                  * one of the ranges in phys_avail.  Because we've added the
776                  * ranges to the vm_phys_segs array, we can assume that each
777                  * segment is either entirely contained in one of the ranges,
778                  * or doesn't overlap any of them.
779                  */
780                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
781                         struct vm_domain *vmd;
782
783                         if (seg->start < phys_avail[i] ||
784                             seg->end > phys_avail[i + 1])
785                                 continue;
786
787                         m = seg->first_page;
788                         pagecount = (u_long)atop(seg->end - seg->start);
789
790                         vmd = VM_DOMAIN(seg->domain);
791                         vm_domain_free_lock(vmd);
792                         vm_phys_enqueue_contig(m, pagecount);
793                         vm_domain_free_unlock(vmd);
794                         vm_domain_freecnt_inc(vmd, pagecount);
795                         vm_cnt.v_page_count += (u_int)pagecount;
796
797                         vmd = VM_DOMAIN(seg->domain);
798                         vmd->vmd_page_count += (u_int)pagecount;
799                         vmd->vmd_segs |= 1UL << m->segind;
800                         break;
801                 }
802         }
803
804         /*
805          * Remove blacklisted pages from the physical memory allocator.
806          */
807         TAILQ_INIT(&blacklist_head);
808         vm_page_blacklist_load(&list, &listend);
809         vm_page_blacklist_check(list, listend);
810
811         list = kern_getenv("vm.blacklist");
812         vm_page_blacklist_check(list, NULL);
813
814         freeenv(list);
815 #if VM_NRESERVLEVEL > 0
816         /*
817          * Initialize the reservation management system.
818          */
819         vm_reserv_init();
820 #endif
821
822         return (vaddr);
823 }
824
825 void
826 vm_page_reference(vm_page_t m)
827 {
828
829         vm_page_aflag_set(m, PGA_REFERENCED);
830 }
831
832 static bool
833 vm_page_acquire_flags(vm_page_t m, int allocflags)
834 {
835         bool locked;
836
837         if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
838                 locked = vm_page_trysbusy(m);
839         else
840                 locked = vm_page_tryxbusy(m);
841         if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
842                 vm_page_wire(m);
843         return (locked);
844 }
845
846 /*
847  *      vm_page_busy_sleep_flags
848  *
849  *      Sleep for busy according to VM_ALLOC_ parameters.  Returns true
850  *      if the caller should retry and false otherwise.
851  */
852 static bool
853 vm_page_busy_sleep_flags(vm_object_t object, vm_page_t m, const char *wmesg,
854     int allocflags)
855 {
856
857         if ((allocflags & VM_ALLOC_NOWAIT) != 0)
858                 return (false);
859
860         /*
861          * Reference the page before unlocking and sleeping so that
862          * the page daemon is less likely to reclaim it.
863          */
864         if ((allocflags & VM_ALLOC_NOCREAT) == 0)
865                 vm_page_reference(m);
866
867         if (_vm_page_busy_sleep(object, m, m->pindex, wmesg, allocflags, true))
868                 VM_OBJECT_WLOCK(object);
869         if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
870                 return (false);
871
872         return (true);
873 }
874
875 /*
876  *      vm_page_busy_acquire:
877  *
878  *      Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
879  *      and drop the object lock if necessary.
880  */
881 bool
882 vm_page_busy_acquire(vm_page_t m, int allocflags)
883 {
884         vm_object_t obj;
885         bool locked;
886
887         /*
888          * The page-specific object must be cached because page
889          * identity can change during the sleep, causing the
890          * re-lock of a different object.
891          * It is assumed that a reference to the object is already
892          * held by the callers.
893          */
894         obj = m->object;
895         for (;;) {
896                 if (vm_page_acquire_flags(m, allocflags))
897                         return (true);
898                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
899                         return (false);
900                 if (obj != NULL)
901                         locked = VM_OBJECT_WOWNED(obj);
902                 else
903                         locked = false;
904                 MPASS(locked || vm_page_wired(m));
905                 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
906                     locked) && locked)
907                         VM_OBJECT_WLOCK(obj);
908                 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
909                         return (false);
910                 KASSERT(m->object == obj || m->object == NULL,
911                     ("vm_page_busy_acquire: page %p does not belong to %p",
912                     m, obj));
913         }
914 }
915
916 /*
917  *      vm_page_busy_downgrade:
918  *
919  *      Downgrade an exclusive busy page into a single shared busy page.
920  */
921 void
922 vm_page_busy_downgrade(vm_page_t m)
923 {
924         u_int x;
925
926         vm_page_assert_xbusied(m);
927
928         x = m->busy_lock;
929         for (;;) {
930                 if (atomic_fcmpset_rel_int(&m->busy_lock,
931                     &x, VPB_SHARERS_WORD(1)))
932                         break;
933         }
934         if ((x & VPB_BIT_WAITERS) != 0)
935                 wakeup(m);
936 }
937
938 /*
939  *
940  *      vm_page_busy_tryupgrade:
941  *
942  *      Attempt to upgrade a single shared busy into an exclusive busy.
943  */
944 int
945 vm_page_busy_tryupgrade(vm_page_t m)
946 {
947         u_int ce, x;
948
949         vm_page_assert_sbusied(m);
950
951         x = m->busy_lock;
952         ce = VPB_CURTHREAD_EXCLUSIVE;
953         for (;;) {
954                 if (VPB_SHARERS(x) > 1)
955                         return (0);
956                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
957                     ("vm_page_busy_tryupgrade: invalid lock state"));
958                 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
959                     ce | (x & VPB_BIT_WAITERS)))
960                         continue;
961                 return (1);
962         }
963 }
964
965 /*
966  *      vm_page_sbusied:
967  *
968  *      Return a positive value if the page is shared busied, 0 otherwise.
969  */
970 int
971 vm_page_sbusied(vm_page_t m)
972 {
973         u_int x;
974
975         x = m->busy_lock;
976         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
977 }
978
979 /*
980  *      vm_page_sunbusy:
981  *
982  *      Shared unbusy a page.
983  */
984 void
985 vm_page_sunbusy(vm_page_t m)
986 {
987         u_int x;
988
989         vm_page_assert_sbusied(m);
990
991         x = m->busy_lock;
992         for (;;) {
993                 KASSERT(x != VPB_FREED,
994                     ("vm_page_sunbusy: Unlocking freed page."));
995                 if (VPB_SHARERS(x) > 1) {
996                         if (atomic_fcmpset_int(&m->busy_lock, &x,
997                             x - VPB_ONE_SHARER))
998                                 break;
999                         continue;
1000                 }
1001                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1002                     ("vm_page_sunbusy: invalid lock state"));
1003                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1004                         continue;
1005                 if ((x & VPB_BIT_WAITERS) == 0)
1006                         break;
1007                 wakeup(m);
1008                 break;
1009         }
1010 }
1011
1012 /*
1013  *      vm_page_busy_sleep:
1014  *
1015  *      Sleep if the page is busy, using the page pointer as wchan.
1016  *      This is used to implement the hard-path of busying mechanism.
1017  *
1018  *      If nonshared is true, sleep only if the page is xbusy.
1019  *
1020  *      The object lock must be held on entry and will be released on exit.
1021  */
1022 void
1023 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1024 {
1025         vm_object_t obj;
1026
1027         obj = m->object;
1028         VM_OBJECT_ASSERT_LOCKED(obj);
1029         vm_page_lock_assert(m, MA_NOTOWNED);
1030
1031         if (!_vm_page_busy_sleep(obj, m, m->pindex, wmesg,
1032             nonshared ? VM_ALLOC_SBUSY : 0 , true))
1033                 VM_OBJECT_DROP(obj);
1034 }
1035
1036 /*
1037  *      vm_page_busy_sleep_unlocked:
1038  *
1039  *      Sleep if the page is busy, using the page pointer as wchan.
1040  *      This is used to implement the hard-path of busying mechanism.
1041  *
1042  *      If nonshared is true, sleep only if the page is xbusy.
1043  *
1044  *      The object lock must not be held on entry.  The operation will
1045  *      return if the page changes identity.
1046  */
1047 void
1048 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1049     const char *wmesg, bool nonshared)
1050 {
1051
1052         VM_OBJECT_ASSERT_UNLOCKED(obj);
1053         vm_page_lock_assert(m, MA_NOTOWNED);
1054
1055         _vm_page_busy_sleep(obj, m, pindex, wmesg,
1056             nonshared ? VM_ALLOC_SBUSY : 0, false);
1057 }
1058
1059 /*
1060  *      _vm_page_busy_sleep:
1061  *
1062  *      Internal busy sleep function.  Verifies the page identity and
1063  *      lockstate against parameters.  Returns true if it sleeps and
1064  *      false otherwise.
1065  *
1066  *      If locked is true the lock will be dropped for any true returns
1067  *      and held for any false returns.
1068  */
1069 static bool
1070 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1071     const char *wmesg, int allocflags, bool locked)
1072 {
1073         bool xsleep;
1074         u_int x;
1075
1076         /*
1077          * If the object is busy we must wait for that to drain to zero
1078          * before trying the page again.
1079          */
1080         if (obj != NULL && vm_object_busied(obj)) {
1081                 if (locked)
1082                         VM_OBJECT_DROP(obj);
1083                 vm_object_busy_wait(obj, wmesg);
1084                 return (true);
1085         }
1086
1087         if (!vm_page_busied(m))
1088                 return (false);
1089
1090         xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1091         sleepq_lock(m);
1092         x = atomic_load_int(&m->busy_lock);
1093         do {
1094                 /*
1095                  * If the page changes objects or becomes unlocked we can
1096                  * simply return.
1097                  */
1098                 if (x == VPB_UNBUSIED ||
1099                     (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1100                     m->object != obj || m->pindex != pindex) {
1101                         sleepq_release(m);
1102                         return (false);
1103                 }
1104                 if ((x & VPB_BIT_WAITERS) != 0)
1105                         break;
1106         } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1107         if (locked)
1108                 VM_OBJECT_DROP(obj);
1109         DROP_GIANT();
1110         sleepq_add(m, NULL, wmesg, 0, 0);
1111         sleepq_wait(m, PVM);
1112         PICKUP_GIANT();
1113         return (true);
1114 }
1115
1116 /*
1117  *      vm_page_trysbusy:
1118  *
1119  *      Try to shared busy a page.
1120  *      If the operation succeeds 1 is returned otherwise 0.
1121  *      The operation never sleeps.
1122  */
1123 int
1124 vm_page_trysbusy(vm_page_t m)
1125 {
1126         vm_object_t obj;
1127         u_int x;
1128
1129         obj = m->object;
1130         x = m->busy_lock;
1131         for (;;) {
1132                 if ((x & VPB_BIT_SHARED) == 0)
1133                         return (0);
1134                 /*
1135                  * Reduce the window for transient busies that will trigger
1136                  * false negatives in vm_page_ps_test().
1137                  */
1138                 if (obj != NULL && vm_object_busied(obj))
1139                         return (0);
1140                 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1141                     x + VPB_ONE_SHARER))
1142                         break;
1143         }
1144
1145         /* Refetch the object now that we're guaranteed that it is stable. */
1146         obj = m->object;
1147         if (obj != NULL && vm_object_busied(obj)) {
1148                 vm_page_sunbusy(m);
1149                 return (0);
1150         }
1151         return (1);
1152 }
1153
1154 /*
1155  *      vm_page_tryxbusy:
1156  *
1157  *      Try to exclusive busy a page.
1158  *      If the operation succeeds 1 is returned otherwise 0.
1159  *      The operation never sleeps.
1160  */
1161 int
1162 vm_page_tryxbusy(vm_page_t m)
1163 {
1164         vm_object_t obj;
1165
1166         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1167             VPB_CURTHREAD_EXCLUSIVE) == 0)
1168                 return (0);
1169
1170         obj = m->object;
1171         if (obj != NULL && vm_object_busied(obj)) {
1172                 vm_page_xunbusy(m);
1173                 return (0);
1174         }
1175         return (1);
1176 }
1177
1178 static void
1179 vm_page_xunbusy_hard_tail(vm_page_t m)
1180 {
1181         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1182         /* Wake the waiter. */
1183         wakeup(m);
1184 }
1185
1186 /*
1187  *      vm_page_xunbusy_hard:
1188  *
1189  *      Called when unbusy has failed because there is a waiter.
1190  */
1191 void
1192 vm_page_xunbusy_hard(vm_page_t m)
1193 {
1194         vm_page_assert_xbusied(m);
1195         vm_page_xunbusy_hard_tail(m);
1196 }
1197
1198 void
1199 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1200 {
1201         vm_page_assert_xbusied_unchecked(m);
1202         vm_page_xunbusy_hard_tail(m);
1203 }
1204
1205 static void
1206 vm_page_busy_free(vm_page_t m)
1207 {
1208         u_int x;
1209
1210         atomic_thread_fence_rel();
1211         x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1212         if ((x & VPB_BIT_WAITERS) != 0)
1213                 wakeup(m);
1214 }
1215
1216 /*
1217  *      vm_page_unhold_pages:
1218  *
1219  *      Unhold each of the pages that is referenced by the given array.
1220  */
1221 void
1222 vm_page_unhold_pages(vm_page_t *ma, int count)
1223 {
1224
1225         for (; count != 0; count--) {
1226                 vm_page_unwire(*ma, PQ_ACTIVE);
1227                 ma++;
1228         }
1229 }
1230
1231 vm_page_t
1232 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1233 {
1234         vm_page_t m;
1235
1236 #ifdef VM_PHYSSEG_SPARSE
1237         m = vm_phys_paddr_to_vm_page(pa);
1238         if (m == NULL)
1239                 m = vm_phys_fictitious_to_vm_page(pa);
1240         return (m);
1241 #elif defined(VM_PHYSSEG_DENSE)
1242         long pi;
1243
1244         pi = atop(pa);
1245         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1246                 m = &vm_page_array[pi - first_page];
1247                 return (m);
1248         }
1249         return (vm_phys_fictitious_to_vm_page(pa));
1250 #else
1251 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1252 #endif
1253 }
1254
1255 /*
1256  *      vm_page_getfake:
1257  *
1258  *      Create a fictitious page with the specified physical address and
1259  *      memory attribute.  The memory attribute is the only the machine-
1260  *      dependent aspect of a fictitious page that must be initialized.
1261  */
1262 vm_page_t
1263 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1264 {
1265         vm_page_t m;
1266
1267         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1268         vm_page_initfake(m, paddr, memattr);
1269         return (m);
1270 }
1271
1272 void
1273 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1274 {
1275
1276         if ((m->flags & PG_FICTITIOUS) != 0) {
1277                 /*
1278                  * The page's memattr might have changed since the
1279                  * previous initialization.  Update the pmap to the
1280                  * new memattr.
1281                  */
1282                 goto memattr;
1283         }
1284         m->phys_addr = paddr;
1285         m->a.queue = PQ_NONE;
1286         /* Fictitious pages don't use "segind". */
1287         m->flags = PG_FICTITIOUS;
1288         /* Fictitious pages don't use "order" or "pool". */
1289         m->oflags = VPO_UNMANAGED;
1290         m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1291         /* Fictitious pages are unevictable. */
1292         m->ref_count = 1;
1293         pmap_page_init(m);
1294 memattr:
1295         pmap_page_set_memattr(m, memattr);
1296 }
1297
1298 /*
1299  *      vm_page_putfake:
1300  *
1301  *      Release a fictitious page.
1302  */
1303 void
1304 vm_page_putfake(vm_page_t m)
1305 {
1306
1307         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1308         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1309             ("vm_page_putfake: bad page %p", m));
1310         vm_page_assert_xbusied(m);
1311         vm_page_busy_free(m);
1312         uma_zfree(fakepg_zone, m);
1313 }
1314
1315 /*
1316  *      vm_page_updatefake:
1317  *
1318  *      Update the given fictitious page to the specified physical address and
1319  *      memory attribute.
1320  */
1321 void
1322 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1323 {
1324
1325         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1326             ("vm_page_updatefake: bad page %p", m));
1327         m->phys_addr = paddr;
1328         pmap_page_set_memattr(m, memattr);
1329 }
1330
1331 /*
1332  *      vm_page_free:
1333  *
1334  *      Free a page.
1335  */
1336 void
1337 vm_page_free(vm_page_t m)
1338 {
1339
1340         m->flags &= ~PG_ZERO;
1341         vm_page_free_toq(m);
1342 }
1343
1344 /*
1345  *      vm_page_free_zero:
1346  *
1347  *      Free a page to the zerod-pages queue
1348  */
1349 void
1350 vm_page_free_zero(vm_page_t m)
1351 {
1352
1353         m->flags |= PG_ZERO;
1354         vm_page_free_toq(m);
1355 }
1356
1357 /*
1358  * Unbusy and handle the page queueing for a page from a getpages request that
1359  * was optionally read ahead or behind.
1360  */
1361 void
1362 vm_page_readahead_finish(vm_page_t m)
1363 {
1364
1365         /* We shouldn't put invalid pages on queues. */
1366         KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1367
1368         /*
1369          * Since the page is not the actually needed one, whether it should
1370          * be activated or deactivated is not obvious.  Empirical results
1371          * have shown that deactivating the page is usually the best choice,
1372          * unless the page is wanted by another thread.
1373          */
1374         if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1375                 vm_page_activate(m);
1376         else
1377                 vm_page_deactivate(m);
1378         vm_page_xunbusy_unchecked(m);
1379 }
1380
1381 /*
1382  *      vm_page_sleep_if_busy:
1383  *
1384  *      Sleep and release the object lock if the page is busied.
1385  *      Returns TRUE if the thread slept.
1386  *
1387  *      The given page must be unlocked and object containing it must
1388  *      be locked.
1389  */
1390 int
1391 vm_page_sleep_if_busy(vm_page_t m, const char *wmesg)
1392 {
1393         vm_object_t obj;
1394
1395         vm_page_lock_assert(m, MA_NOTOWNED);
1396         VM_OBJECT_ASSERT_WLOCKED(m->object);
1397
1398         /*
1399          * The page-specific object must be cached because page
1400          * identity can change during the sleep, causing the
1401          * re-lock of a different object.
1402          * It is assumed that a reference to the object is already
1403          * held by the callers.
1404          */
1405         obj = m->object;
1406         if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, 0, true)) {
1407                 VM_OBJECT_WLOCK(obj);
1408                 return (TRUE);
1409         }
1410         return (FALSE);
1411 }
1412
1413 /*
1414  *      vm_page_sleep_if_xbusy:
1415  *
1416  *      Sleep and release the object lock if the page is xbusied.
1417  *      Returns TRUE if the thread slept.
1418  *
1419  *      The given page must be unlocked and object containing it must
1420  *      be locked.
1421  */
1422 int
1423 vm_page_sleep_if_xbusy(vm_page_t m, const char *wmesg)
1424 {
1425         vm_object_t obj;
1426
1427         vm_page_lock_assert(m, MA_NOTOWNED);
1428         VM_OBJECT_ASSERT_WLOCKED(m->object);
1429
1430         /*
1431          * The page-specific object must be cached because page
1432          * identity can change during the sleep, causing the
1433          * re-lock of a different object.
1434          * It is assumed that a reference to the object is already
1435          * held by the callers.
1436          */
1437         obj = m->object;
1438         if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, VM_ALLOC_SBUSY,
1439             true)) {
1440                 VM_OBJECT_WLOCK(obj);
1441                 return (TRUE);
1442         }
1443         return (FALSE);
1444 }
1445
1446 /*
1447  *      vm_page_dirty_KBI:              [ internal use only ]
1448  *
1449  *      Set all bits in the page's dirty field.
1450  *
1451  *      The object containing the specified page must be locked if the
1452  *      call is made from the machine-independent layer.
1453  *
1454  *      See vm_page_clear_dirty_mask().
1455  *
1456  *      This function should only be called by vm_page_dirty().
1457  */
1458 void
1459 vm_page_dirty_KBI(vm_page_t m)
1460 {
1461
1462         /* Refer to this operation by its public name. */
1463         KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1464         m->dirty = VM_PAGE_BITS_ALL;
1465 }
1466
1467 /*
1468  *      vm_page_insert:         [ internal use only ]
1469  *
1470  *      Inserts the given mem entry into the object and object list.
1471  *
1472  *      The object must be locked.
1473  */
1474 int
1475 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1476 {
1477         vm_page_t mpred;
1478
1479         VM_OBJECT_ASSERT_WLOCKED(object);
1480         mpred = vm_radix_lookup_le(&object->rtree, pindex);
1481         return (vm_page_insert_after(m, object, pindex, mpred));
1482 }
1483
1484 /*
1485  *      vm_page_insert_after:
1486  *
1487  *      Inserts the page "m" into the specified object at offset "pindex".
1488  *
1489  *      The page "mpred" must immediately precede the offset "pindex" within
1490  *      the specified object.
1491  *
1492  *      The object must be locked.
1493  */
1494 static int
1495 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1496     vm_page_t mpred)
1497 {
1498         vm_page_t msucc;
1499
1500         VM_OBJECT_ASSERT_WLOCKED(object);
1501         KASSERT(m->object == NULL,
1502             ("vm_page_insert_after: page already inserted"));
1503         if (mpred != NULL) {
1504                 KASSERT(mpred->object == object,
1505                     ("vm_page_insert_after: object doesn't contain mpred"));
1506                 KASSERT(mpred->pindex < pindex,
1507                     ("vm_page_insert_after: mpred doesn't precede pindex"));
1508                 msucc = TAILQ_NEXT(mpred, listq);
1509         } else
1510                 msucc = TAILQ_FIRST(&object->memq);
1511         if (msucc != NULL)
1512                 KASSERT(msucc->pindex > pindex,
1513                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
1514
1515         /*
1516          * Record the object/offset pair in this page.
1517          */
1518         m->object = object;
1519         m->pindex = pindex;
1520         m->ref_count |= VPRC_OBJREF;
1521
1522         /*
1523          * Now link into the object's ordered list of backed pages.
1524          */
1525         if (vm_radix_insert(&object->rtree, m)) {
1526                 m->object = NULL;
1527                 m->pindex = 0;
1528                 m->ref_count &= ~VPRC_OBJREF;
1529                 return (1);
1530         }
1531         vm_page_insert_radixdone(m, object, mpred);
1532         return (0);
1533 }
1534
1535 /*
1536  *      vm_page_insert_radixdone:
1537  *
1538  *      Complete page "m" insertion into the specified object after the
1539  *      radix trie hooking.
1540  *
1541  *      The page "mpred" must precede the offset "m->pindex" within the
1542  *      specified object.
1543  *
1544  *      The object must be locked.
1545  */
1546 static void
1547 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1548 {
1549
1550         VM_OBJECT_ASSERT_WLOCKED(object);
1551         KASSERT(object != NULL && m->object == object,
1552             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1553         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1554             ("vm_page_insert_radixdone: page %p is missing object ref", m));
1555         if (mpred != NULL) {
1556                 KASSERT(mpred->object == object,
1557                     ("vm_page_insert_radixdone: object doesn't contain mpred"));
1558                 KASSERT(mpred->pindex < m->pindex,
1559                     ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1560         }
1561
1562         if (mpred != NULL)
1563                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1564         else
1565                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1566
1567         /*
1568          * Show that the object has one more resident page.
1569          */
1570         object->resident_page_count++;
1571
1572         /*
1573          * Hold the vnode until the last page is released.
1574          */
1575         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1576                 vhold(object->handle);
1577
1578         /*
1579          * Since we are inserting a new and possibly dirty page,
1580          * update the object's generation count.
1581          */
1582         if (pmap_page_is_write_mapped(m))
1583                 vm_object_set_writeable_dirty(object);
1584 }
1585
1586 /*
1587  * Do the work to remove a page from its object.  The caller is responsible for
1588  * updating the page's fields to reflect this removal.
1589  */
1590 static void
1591 vm_page_object_remove(vm_page_t m)
1592 {
1593         vm_object_t object;
1594         vm_page_t mrem;
1595
1596         vm_page_assert_xbusied(m);
1597         object = m->object;
1598         VM_OBJECT_ASSERT_WLOCKED(object);
1599         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1600             ("page %p is missing its object ref", m));
1601
1602         /* Deferred free of swap space. */
1603         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1604                 vm_pager_page_unswapped(m);
1605
1606         mrem = vm_radix_remove(&object->rtree, m->pindex);
1607         KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1608
1609         /*
1610          * Now remove from the object's list of backed pages.
1611          */
1612         TAILQ_REMOVE(&object->memq, m, listq);
1613
1614         /*
1615          * And show that the object has one fewer resident page.
1616          */
1617         object->resident_page_count--;
1618
1619         /*
1620          * The vnode may now be recycled.
1621          */
1622         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1623                 vdrop(object->handle);
1624 }
1625
1626 /*
1627  *      vm_page_remove:
1628  *
1629  *      Removes the specified page from its containing object, but does not
1630  *      invalidate any backing storage.  Returns true if the object's reference
1631  *      was the last reference to the page, and false otherwise.
1632  *
1633  *      The object must be locked and the page must be exclusively busied.
1634  *      The exclusive busy will be released on return.  If this is not the
1635  *      final ref and the caller does not hold a wire reference it may not
1636  *      continue to access the page.
1637  */
1638 bool
1639 vm_page_remove(vm_page_t m)
1640 {
1641         bool dropped;
1642
1643         dropped = vm_page_remove_xbusy(m);
1644         vm_page_xunbusy(m);
1645
1646         return (dropped);
1647 }
1648
1649 /*
1650  *      vm_page_remove_xbusy
1651  *
1652  *      Removes the page but leaves the xbusy held.  Returns true if this
1653  *      removed the final ref and false otherwise.
1654  */
1655 bool
1656 vm_page_remove_xbusy(vm_page_t m)
1657 {
1658
1659         vm_page_object_remove(m);
1660         m->object = NULL;
1661         return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1662 }
1663
1664 /*
1665  *      vm_page_lookup:
1666  *
1667  *      Returns the page associated with the object/offset
1668  *      pair specified; if none is found, NULL is returned.
1669  *
1670  *      The object must be locked.
1671  */
1672 vm_page_t
1673 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1674 {
1675
1676         VM_OBJECT_ASSERT_LOCKED(object);
1677         return (vm_radix_lookup(&object->rtree, pindex));
1678 }
1679
1680 /*
1681  *      vm_page_find_least:
1682  *
1683  *      Returns the page associated with the object with least pindex
1684  *      greater than or equal to the parameter pindex, or NULL.
1685  *
1686  *      The object must be locked.
1687  */
1688 vm_page_t
1689 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1690 {
1691         vm_page_t m;
1692
1693         VM_OBJECT_ASSERT_LOCKED(object);
1694         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1695                 m = vm_radix_lookup_ge(&object->rtree, pindex);
1696         return (m);
1697 }
1698
1699 /*
1700  * Returns the given page's successor (by pindex) within the object if it is
1701  * resident; if none is found, NULL is returned.
1702  *
1703  * The object must be locked.
1704  */
1705 vm_page_t
1706 vm_page_next(vm_page_t m)
1707 {
1708         vm_page_t next;
1709
1710         VM_OBJECT_ASSERT_LOCKED(m->object);
1711         if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1712                 MPASS(next->object == m->object);
1713                 if (next->pindex != m->pindex + 1)
1714                         next = NULL;
1715         }
1716         return (next);
1717 }
1718
1719 /*
1720  * Returns the given page's predecessor (by pindex) within the object if it is
1721  * resident; if none is found, NULL is returned.
1722  *
1723  * The object must be locked.
1724  */
1725 vm_page_t
1726 vm_page_prev(vm_page_t m)
1727 {
1728         vm_page_t prev;
1729
1730         VM_OBJECT_ASSERT_LOCKED(m->object);
1731         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1732                 MPASS(prev->object == m->object);
1733                 if (prev->pindex != m->pindex - 1)
1734                         prev = NULL;
1735         }
1736         return (prev);
1737 }
1738
1739 /*
1740  * Uses the page mnew as a replacement for an existing page at index
1741  * pindex which must be already present in the object.
1742  *
1743  * Both pages must be exclusively busied on enter.  The old page is
1744  * unbusied on exit.
1745  *
1746  * A return value of true means mold is now free.  If this is not the
1747  * final ref and the caller does not hold a wire reference it may not
1748  * continue to access the page.
1749  */
1750 static bool
1751 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1752     vm_page_t mold)
1753 {
1754         vm_page_t mret;
1755         bool dropped;
1756
1757         VM_OBJECT_ASSERT_WLOCKED(object);
1758         vm_page_assert_xbusied(mold);
1759         KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1760             ("vm_page_replace: page %p already in object", mnew));
1761
1762         /*
1763          * This function mostly follows vm_page_insert() and
1764          * vm_page_remove() without the radix, object count and vnode
1765          * dance.  Double check such functions for more comments.
1766          */
1767
1768         mnew->object = object;
1769         mnew->pindex = pindex;
1770         atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1771         mret = vm_radix_replace(&object->rtree, mnew);
1772         KASSERT(mret == mold,
1773             ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1774         KASSERT((mold->oflags & VPO_UNMANAGED) ==
1775             (mnew->oflags & VPO_UNMANAGED),
1776             ("vm_page_replace: mismatched VPO_UNMANAGED"));
1777
1778         /* Keep the resident page list in sorted order. */
1779         TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1780         TAILQ_REMOVE(&object->memq, mold, listq);
1781         mold->object = NULL;
1782
1783         /*
1784          * The object's resident_page_count does not change because we have
1785          * swapped one page for another, but the generation count should
1786          * change if the page is dirty.
1787          */
1788         if (pmap_page_is_write_mapped(mnew))
1789                 vm_object_set_writeable_dirty(object);
1790         dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1791         vm_page_xunbusy(mold);
1792
1793         return (dropped);
1794 }
1795
1796 void
1797 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1798     vm_page_t mold)
1799 {
1800
1801         vm_page_assert_xbusied(mnew);
1802
1803         if (vm_page_replace_hold(mnew, object, pindex, mold))
1804                 vm_page_free(mold);
1805 }
1806
1807 /*
1808  *      vm_page_rename:
1809  *
1810  *      Move the given memory entry from its
1811  *      current object to the specified target object/offset.
1812  *
1813  *      Note: swap associated with the page must be invalidated by the move.  We
1814  *            have to do this for several reasons:  (1) we aren't freeing the
1815  *            page, (2) we are dirtying the page, (3) the VM system is probably
1816  *            moving the page from object A to B, and will then later move
1817  *            the backing store from A to B and we can't have a conflict.
1818  *
1819  *      Note: we *always* dirty the page.  It is necessary both for the
1820  *            fact that we moved it, and because we may be invalidating
1821  *            swap.
1822  *
1823  *      The objects must be locked.
1824  */
1825 int
1826 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1827 {
1828         vm_page_t mpred;
1829         vm_pindex_t opidx;
1830
1831         VM_OBJECT_ASSERT_WLOCKED(new_object);
1832
1833         KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1834         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1835         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1836             ("vm_page_rename: pindex already renamed"));
1837
1838         /*
1839          * Create a custom version of vm_page_insert() which does not depend
1840          * by m_prev and can cheat on the implementation aspects of the
1841          * function.
1842          */
1843         opidx = m->pindex;
1844         m->pindex = new_pindex;
1845         if (vm_radix_insert(&new_object->rtree, m)) {
1846                 m->pindex = opidx;
1847                 return (1);
1848         }
1849
1850         /*
1851          * The operation cannot fail anymore.  The removal must happen before
1852          * the listq iterator is tainted.
1853          */
1854         m->pindex = opidx;
1855         vm_page_object_remove(m);
1856
1857         /* Return back to the new pindex to complete vm_page_insert(). */
1858         m->pindex = new_pindex;
1859         m->object = new_object;
1860
1861         vm_page_insert_radixdone(m, new_object, mpred);
1862         vm_page_dirty(m);
1863         return (0);
1864 }
1865
1866 /*
1867  *      vm_page_alloc:
1868  *
1869  *      Allocate and return a page that is associated with the specified
1870  *      object and offset pair.  By default, this page is exclusive busied.
1871  *
1872  *      The caller must always specify an allocation class.
1873  *
1874  *      allocation classes:
1875  *      VM_ALLOC_NORMAL         normal process request
1876  *      VM_ALLOC_SYSTEM         system *really* needs a page
1877  *      VM_ALLOC_INTERRUPT      interrupt time request
1878  *
1879  *      optional allocation flags:
1880  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
1881  *                              intends to allocate
1882  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1883  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1884  *      VM_ALLOC_NOOBJ          page is not associated with an object and
1885  *                              should not be exclusive busy
1886  *      VM_ALLOC_SBUSY          shared busy the allocated page
1887  *      VM_ALLOC_WIRED          wire the allocated page
1888  *      VM_ALLOC_ZERO           prefer a zeroed page
1889  */
1890 vm_page_t
1891 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1892 {
1893
1894         return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1895             vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1896 }
1897
1898 vm_page_t
1899 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1900     int req)
1901 {
1902
1903         return (vm_page_alloc_domain_after(object, pindex, domain, req,
1904             object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1905             NULL));
1906 }
1907
1908 /*
1909  * Allocate a page in the specified object with the given page index.  To
1910  * optimize insertion of the page into the object, the caller must also specifiy
1911  * the resident page in the object with largest index smaller than the given
1912  * page index, or NULL if no such page exists.
1913  */
1914 vm_page_t
1915 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1916     int req, vm_page_t mpred)
1917 {
1918         struct vm_domainset_iter di;
1919         vm_page_t m;
1920         int domain;
1921
1922         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1923         do {
1924                 m = vm_page_alloc_domain_after(object, pindex, domain, req,
1925                     mpred);
1926                 if (m != NULL)
1927                         break;
1928         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
1929
1930         return (m);
1931 }
1932
1933 /*
1934  * Returns true if the number of free pages exceeds the minimum
1935  * for the request class and false otherwise.
1936  */
1937 static int
1938 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1939 {
1940         u_int limit, old, new;
1941
1942         if (req_class == VM_ALLOC_INTERRUPT)
1943                 limit = 0;
1944         else if (req_class == VM_ALLOC_SYSTEM)
1945                 limit = vmd->vmd_interrupt_free_min;
1946         else
1947                 limit = vmd->vmd_free_reserved;
1948
1949         /*
1950          * Attempt to reserve the pages.  Fail if we're below the limit.
1951          */
1952         limit += npages;
1953         old = vmd->vmd_free_count;
1954         do {
1955                 if (old < limit)
1956                         return (0);
1957                 new = old - npages;
1958         } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1959
1960         /* Wake the page daemon if we've crossed the threshold. */
1961         if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1962                 pagedaemon_wakeup(vmd->vmd_domain);
1963
1964         /* Only update bitsets on transitions. */
1965         if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1966             (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1967                 vm_domain_set(vmd);
1968
1969         return (1);
1970 }
1971
1972 int
1973 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1974 {
1975         int req_class;
1976
1977         /*
1978          * The page daemon is allowed to dig deeper into the free page list.
1979          */
1980         req_class = req & VM_ALLOC_CLASS_MASK;
1981         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1982                 req_class = VM_ALLOC_SYSTEM;
1983         return (_vm_domain_allocate(vmd, req_class, npages));
1984 }
1985
1986 vm_page_t
1987 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1988     int req, vm_page_t mpred)
1989 {
1990         struct vm_domain *vmd;
1991         vm_page_t m;
1992         int flags, pool;
1993
1994         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1995             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1996             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1997             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1998             ("inconsistent object(%p)/req(%x)", object, req));
1999         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2000             ("Can't sleep and retry object insertion."));
2001         KASSERT(mpred == NULL || mpred->pindex < pindex,
2002             ("mpred %p doesn't precede pindex 0x%jx", mpred,
2003             (uintmax_t)pindex));
2004         if (object != NULL)
2005                 VM_OBJECT_ASSERT_WLOCKED(object);
2006
2007         flags = 0;
2008         m = NULL;
2009         pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
2010 again:
2011 #if VM_NRESERVLEVEL > 0
2012         /*
2013          * Can we allocate the page from a reservation?
2014          */
2015         if (vm_object_reserv(object) &&
2016             (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
2017             NULL) {
2018                 domain = vm_phys_domain(m);
2019                 vmd = VM_DOMAIN(domain);
2020                 goto found;
2021         }
2022 #endif
2023         vmd = VM_DOMAIN(domain);
2024         if (vmd->vmd_pgcache[pool].zone != NULL) {
2025                 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
2026                 if (m != NULL) {
2027                         flags |= PG_PCPU_CACHE;
2028                         goto found;
2029                 }
2030         }
2031         if (vm_domain_allocate(vmd, req, 1)) {
2032                 /*
2033                  * If not, allocate it from the free page queues.
2034                  */
2035                 vm_domain_free_lock(vmd);
2036                 m = vm_phys_alloc_pages(domain, pool, 0);
2037                 vm_domain_free_unlock(vmd);
2038                 if (m == NULL) {
2039                         vm_domain_freecnt_inc(vmd, 1);
2040 #if VM_NRESERVLEVEL > 0
2041                         if (vm_reserv_reclaim_inactive(domain))
2042                                 goto again;
2043 #endif
2044                 }
2045         }
2046         if (m == NULL) {
2047                 /*
2048                  * Not allocatable, give up.
2049                  */
2050                 if (vm_domain_alloc_fail(vmd, object, req))
2051                         goto again;
2052                 return (NULL);
2053         }
2054
2055         /*
2056          * At this point we had better have found a good page.
2057          */
2058 found:
2059         vm_page_dequeue(m);
2060         vm_page_alloc_check(m);
2061
2062         /*
2063          * Initialize the page.  Only the PG_ZERO flag is inherited.
2064          */
2065         if ((req & VM_ALLOC_ZERO) != 0)
2066                 flags |= (m->flags & PG_ZERO);
2067         if ((req & VM_ALLOC_NODUMP) != 0)
2068                 flags |= PG_NODUMP;
2069         m->flags = flags;
2070         m->a.flags = 0;
2071         m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2072             VPO_UNMANAGED : 0;
2073         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2074                 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2075         else if ((req & VM_ALLOC_SBUSY) != 0)
2076                 m->busy_lock = VPB_SHARERS_WORD(1);
2077         else
2078                 m->busy_lock = VPB_UNBUSIED;
2079         if (req & VM_ALLOC_WIRED) {
2080                 vm_wire_add(1);
2081                 m->ref_count = 1;
2082         }
2083         m->a.act_count = 0;
2084
2085         if (object != NULL) {
2086                 if (vm_page_insert_after(m, object, pindex, mpred)) {
2087                         if (req & VM_ALLOC_WIRED) {
2088                                 vm_wire_sub(1);
2089                                 m->ref_count = 0;
2090                         }
2091                         KASSERT(m->object == NULL, ("page %p has object", m));
2092                         m->oflags = VPO_UNMANAGED;
2093                         m->busy_lock = VPB_UNBUSIED;
2094                         /* Don't change PG_ZERO. */
2095                         vm_page_free_toq(m);
2096                         if (req & VM_ALLOC_WAITFAIL) {
2097                                 VM_OBJECT_WUNLOCK(object);
2098                                 vm_radix_wait();
2099                                 VM_OBJECT_WLOCK(object);
2100                         }
2101                         return (NULL);
2102                 }
2103
2104                 /* Ignore device objects; the pager sets "memattr" for them. */
2105                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2106                     (object->flags & OBJ_FICTITIOUS) == 0)
2107                         pmap_page_set_memattr(m, object->memattr);
2108         } else
2109                 m->pindex = pindex;
2110
2111         return (m);
2112 }
2113
2114 /*
2115  *      vm_page_alloc_contig:
2116  *
2117  *      Allocate a contiguous set of physical pages of the given size "npages"
2118  *      from the free lists.  All of the physical pages must be at or above
2119  *      the given physical address "low" and below the given physical address
2120  *      "high".  The given value "alignment" determines the alignment of the
2121  *      first physical page in the set.  If the given value "boundary" is
2122  *      non-zero, then the set of physical pages cannot cross any physical
2123  *      address boundary that is a multiple of that value.  Both "alignment"
2124  *      and "boundary" must be a power of two.
2125  *
2126  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2127  *      then the memory attribute setting for the physical pages is configured
2128  *      to the object's memory attribute setting.  Otherwise, the memory
2129  *      attribute setting for the physical pages is configured to "memattr",
2130  *      overriding the object's memory attribute setting.  However, if the
2131  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2132  *      memory attribute setting for the physical pages cannot be configured
2133  *      to VM_MEMATTR_DEFAULT.
2134  *
2135  *      The specified object may not contain fictitious pages.
2136  *
2137  *      The caller must always specify an allocation class.
2138  *
2139  *      allocation classes:
2140  *      VM_ALLOC_NORMAL         normal process request
2141  *      VM_ALLOC_SYSTEM         system *really* needs a page
2142  *      VM_ALLOC_INTERRUPT      interrupt time request
2143  *
2144  *      optional allocation flags:
2145  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
2146  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
2147  *      VM_ALLOC_NOOBJ          page is not associated with an object and
2148  *                              should not be exclusive busy
2149  *      VM_ALLOC_SBUSY          shared busy the allocated page
2150  *      VM_ALLOC_WIRED          wire the allocated page
2151  *      VM_ALLOC_ZERO           prefer a zeroed page
2152  */
2153 vm_page_t
2154 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2155     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2156     vm_paddr_t boundary, vm_memattr_t memattr)
2157 {
2158         struct vm_domainset_iter di;
2159         vm_page_t m;
2160         int domain;
2161
2162         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2163         do {
2164                 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2165                     npages, low, high, alignment, boundary, memattr);
2166                 if (m != NULL)
2167                         break;
2168         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2169
2170         return (m);
2171 }
2172
2173 vm_page_t
2174 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2175     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2176     vm_paddr_t boundary, vm_memattr_t memattr)
2177 {
2178         struct vm_domain *vmd;
2179         vm_page_t m, m_ret, mpred;
2180         u_int busy_lock, flags, oflags;
2181
2182         mpred = NULL;   /* XXX: pacify gcc */
2183         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2184             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2185             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2186             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2187             ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2188             req));
2189         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2190             ("Can't sleep and retry object insertion."));
2191         if (object != NULL) {
2192                 VM_OBJECT_ASSERT_WLOCKED(object);
2193                 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2194                     ("vm_page_alloc_contig: object %p has fictitious pages",
2195                     object));
2196         }
2197         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2198
2199         if (object != NULL) {
2200                 mpred = vm_radix_lookup_le(&object->rtree, pindex);
2201                 KASSERT(mpred == NULL || mpred->pindex != pindex,
2202                     ("vm_page_alloc_contig: pindex already allocated"));
2203         }
2204
2205         /*
2206          * Can we allocate the pages without the number of free pages falling
2207          * below the lower bound for the allocation class?
2208          */
2209         m_ret = NULL;
2210 again:
2211 #if VM_NRESERVLEVEL > 0
2212         /*
2213          * Can we allocate the pages from a reservation?
2214          */
2215         if (vm_object_reserv(object) &&
2216             (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2217             mpred, npages, low, high, alignment, boundary)) != NULL) {
2218                 domain = vm_phys_domain(m_ret);
2219                 vmd = VM_DOMAIN(domain);
2220                 goto found;
2221         }
2222 #endif
2223         vmd = VM_DOMAIN(domain);
2224         if (vm_domain_allocate(vmd, req, npages)) {
2225                 /*
2226                  * allocate them from the free page queues.
2227                  */
2228                 vm_domain_free_lock(vmd);
2229                 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2230                     alignment, boundary);
2231                 vm_domain_free_unlock(vmd);
2232                 if (m_ret == NULL) {
2233                         vm_domain_freecnt_inc(vmd, npages);
2234 #if VM_NRESERVLEVEL > 0
2235                         if (vm_reserv_reclaim_contig(domain, npages, low,
2236                             high, alignment, boundary))
2237                                 goto again;
2238 #endif
2239                 }
2240         }
2241         if (m_ret == NULL) {
2242                 if (vm_domain_alloc_fail(vmd, object, req))
2243                         goto again;
2244                 return (NULL);
2245         }
2246 #if VM_NRESERVLEVEL > 0
2247 found:
2248 #endif
2249         for (m = m_ret; m < &m_ret[npages]; m++) {
2250                 vm_page_dequeue(m);
2251                 vm_page_alloc_check(m);
2252         }
2253
2254         /*
2255          * Initialize the pages.  Only the PG_ZERO flag is inherited.
2256          */
2257         flags = 0;
2258         if ((req & VM_ALLOC_ZERO) != 0)
2259                 flags = PG_ZERO;
2260         if ((req & VM_ALLOC_NODUMP) != 0)
2261                 flags |= PG_NODUMP;
2262         oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2263             VPO_UNMANAGED : 0;
2264         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2265                 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2266         else if ((req & VM_ALLOC_SBUSY) != 0)
2267                 busy_lock = VPB_SHARERS_WORD(1);
2268         else
2269                 busy_lock = VPB_UNBUSIED;
2270         if ((req & VM_ALLOC_WIRED) != 0)
2271                 vm_wire_add(npages);
2272         if (object != NULL) {
2273                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2274                     memattr == VM_MEMATTR_DEFAULT)
2275                         memattr = object->memattr;
2276         }
2277         for (m = m_ret; m < &m_ret[npages]; m++) {
2278                 m->a.flags = 0;
2279                 m->flags = (m->flags | PG_NODUMP) & flags;
2280                 m->busy_lock = busy_lock;
2281                 if ((req & VM_ALLOC_WIRED) != 0)
2282                         m->ref_count = 1;
2283                 m->a.act_count = 0;
2284                 m->oflags = oflags;
2285                 if (object != NULL) {
2286                         if (vm_page_insert_after(m, object, pindex, mpred)) {
2287                                 if ((req & VM_ALLOC_WIRED) != 0)
2288                                         vm_wire_sub(npages);
2289                                 KASSERT(m->object == NULL,
2290                                     ("page %p has object", m));
2291                                 mpred = m;
2292                                 for (m = m_ret; m < &m_ret[npages]; m++) {
2293                                         if (m <= mpred &&
2294                                             (req & VM_ALLOC_WIRED) != 0)
2295                                                 m->ref_count = 0;
2296                                         m->oflags = VPO_UNMANAGED;
2297                                         m->busy_lock = VPB_UNBUSIED;
2298                                         /* Don't change PG_ZERO. */
2299                                         vm_page_free_toq(m);
2300                                 }
2301                                 if (req & VM_ALLOC_WAITFAIL) {
2302                                         VM_OBJECT_WUNLOCK(object);
2303                                         vm_radix_wait();
2304                                         VM_OBJECT_WLOCK(object);
2305                                 }
2306                                 return (NULL);
2307                         }
2308                         mpred = m;
2309                 } else
2310                         m->pindex = pindex;
2311                 if (memattr != VM_MEMATTR_DEFAULT)
2312                         pmap_page_set_memattr(m, memattr);
2313                 pindex++;
2314         }
2315         return (m_ret);
2316 }
2317
2318 /*
2319  * Check a page that has been freshly dequeued from a freelist.
2320  */
2321 static void
2322 vm_page_alloc_check(vm_page_t m)
2323 {
2324
2325         KASSERT(m->object == NULL, ("page %p has object", m));
2326         KASSERT(m->a.queue == PQ_NONE &&
2327             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2328             ("page %p has unexpected queue %d, flags %#x",
2329             m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2330         KASSERT(m->ref_count == 0, ("page %p has references", m));
2331         KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2332         KASSERT(m->dirty == 0, ("page %p is dirty", m));
2333         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2334             ("page %p has unexpected memattr %d",
2335             m, pmap_page_get_memattr(m)));
2336         KASSERT(m->valid == 0, ("free page %p is valid", m));
2337 }
2338
2339 /*
2340  *      vm_page_alloc_freelist:
2341  *
2342  *      Allocate a physical page from the specified free page list.
2343  *
2344  *      The caller must always specify an allocation class.
2345  *
2346  *      allocation classes:
2347  *      VM_ALLOC_NORMAL         normal process request
2348  *      VM_ALLOC_SYSTEM         system *really* needs a page
2349  *      VM_ALLOC_INTERRUPT      interrupt time request
2350  *
2351  *      optional allocation flags:
2352  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
2353  *                              intends to allocate
2354  *      VM_ALLOC_WIRED          wire the allocated page
2355  *      VM_ALLOC_ZERO           prefer a zeroed page
2356  */
2357 vm_page_t
2358 vm_page_alloc_freelist(int freelist, int req)
2359 {
2360         struct vm_domainset_iter di;
2361         vm_page_t m;
2362         int domain;
2363
2364         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2365         do {
2366                 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2367                 if (m != NULL)
2368                         break;
2369         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2370
2371         return (m);
2372 }
2373
2374 vm_page_t
2375 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2376 {
2377         struct vm_domain *vmd;
2378         vm_page_t m;
2379         u_int flags;
2380
2381         m = NULL;
2382         vmd = VM_DOMAIN(domain);
2383 again:
2384         if (vm_domain_allocate(vmd, req, 1)) {
2385                 vm_domain_free_lock(vmd);
2386                 m = vm_phys_alloc_freelist_pages(domain, freelist,
2387                     VM_FREEPOOL_DIRECT, 0);
2388                 vm_domain_free_unlock(vmd);
2389                 if (m == NULL)
2390                         vm_domain_freecnt_inc(vmd, 1);
2391         }
2392         if (m == NULL) {
2393                 if (vm_domain_alloc_fail(vmd, NULL, req))
2394                         goto again;
2395                 return (NULL);
2396         }
2397         vm_page_dequeue(m);
2398         vm_page_alloc_check(m);
2399
2400         /*
2401          * Initialize the page.  Only the PG_ZERO flag is inherited.
2402          */
2403         m->a.flags = 0;
2404         flags = 0;
2405         if ((req & VM_ALLOC_ZERO) != 0)
2406                 flags = PG_ZERO;
2407         m->flags &= flags;
2408         if ((req & VM_ALLOC_WIRED) != 0) {
2409                 vm_wire_add(1);
2410                 m->ref_count = 1;
2411         }
2412         /* Unmanaged pages don't use "act_count". */
2413         m->oflags = VPO_UNMANAGED;
2414         return (m);
2415 }
2416
2417 static int
2418 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2419 {
2420         struct vm_domain *vmd;
2421         struct vm_pgcache *pgcache;
2422         int i;
2423
2424         pgcache = arg;
2425         vmd = VM_DOMAIN(pgcache->domain);
2426
2427         /*
2428          * The page daemon should avoid creating extra memory pressure since its
2429          * main purpose is to replenish the store of free pages.
2430          */
2431         if (vmd->vmd_severeset || curproc == pageproc ||
2432             !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2433                 return (0);
2434         domain = vmd->vmd_domain;
2435         vm_domain_free_lock(vmd);
2436         i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2437             (vm_page_t *)store);
2438         vm_domain_free_unlock(vmd);
2439         if (cnt != i)
2440                 vm_domain_freecnt_inc(vmd, cnt - i);
2441
2442         return (i);
2443 }
2444
2445 static void
2446 vm_page_zone_release(void *arg, void **store, int cnt)
2447 {
2448         struct vm_domain *vmd;
2449         struct vm_pgcache *pgcache;
2450         vm_page_t m;
2451         int i;
2452
2453         pgcache = arg;
2454         vmd = VM_DOMAIN(pgcache->domain);
2455         vm_domain_free_lock(vmd);
2456         for (i = 0; i < cnt; i++) {
2457                 m = (vm_page_t)store[i];
2458                 vm_phys_free_pages(m, 0);
2459         }
2460         vm_domain_free_unlock(vmd);
2461         vm_domain_freecnt_inc(vmd, cnt);
2462 }
2463
2464 #define VPSC_ANY        0       /* No restrictions. */
2465 #define VPSC_NORESERV   1       /* Skip reservations; implies VPSC_NOSUPER. */
2466 #define VPSC_NOSUPER    2       /* Skip superpages. */
2467
2468 /*
2469  *      vm_page_scan_contig:
2470  *
2471  *      Scan vm_page_array[] between the specified entries "m_start" and
2472  *      "m_end" for a run of contiguous physical pages that satisfy the
2473  *      specified conditions, and return the lowest page in the run.  The
2474  *      specified "alignment" determines the alignment of the lowest physical
2475  *      page in the run.  If the specified "boundary" is non-zero, then the
2476  *      run of physical pages cannot span a physical address that is a
2477  *      multiple of "boundary".
2478  *
2479  *      "m_end" is never dereferenced, so it need not point to a vm_page
2480  *      structure within vm_page_array[].
2481  *
2482  *      "npages" must be greater than zero.  "m_start" and "m_end" must not
2483  *      span a hole (or discontiguity) in the physical address space.  Both
2484  *      "alignment" and "boundary" must be a power of two.
2485  */
2486 vm_page_t
2487 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2488     u_long alignment, vm_paddr_t boundary, int options)
2489 {
2490         vm_object_t object;
2491         vm_paddr_t pa;
2492         vm_page_t m, m_run;
2493 #if VM_NRESERVLEVEL > 0
2494         int level;
2495 #endif
2496         int m_inc, order, run_ext, run_len;
2497
2498         KASSERT(npages > 0, ("npages is 0"));
2499         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2500         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2501         m_run = NULL;
2502         run_len = 0;
2503         for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2504                 KASSERT((m->flags & PG_MARKER) == 0,
2505                     ("page %p is PG_MARKER", m));
2506                 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2507                     ("fictitious page %p has invalid ref count", m));
2508
2509                 /*
2510                  * If the current page would be the start of a run, check its
2511                  * physical address against the end, alignment, and boundary
2512                  * conditions.  If it doesn't satisfy these conditions, either
2513                  * terminate the scan or advance to the next page that
2514                  * satisfies the failed condition.
2515                  */
2516                 if (run_len == 0) {
2517                         KASSERT(m_run == NULL, ("m_run != NULL"));
2518                         if (m + npages > m_end)
2519                                 break;
2520                         pa = VM_PAGE_TO_PHYS(m);
2521                         if ((pa & (alignment - 1)) != 0) {
2522                                 m_inc = atop(roundup2(pa, alignment) - pa);
2523                                 continue;
2524                         }
2525                         if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2526                             boundary) != 0) {
2527                                 m_inc = atop(roundup2(pa, boundary) - pa);
2528                                 continue;
2529                         }
2530                 } else
2531                         KASSERT(m_run != NULL, ("m_run == NULL"));
2532
2533 retry:
2534                 m_inc = 1;
2535                 if (vm_page_wired(m))
2536                         run_ext = 0;
2537 #if VM_NRESERVLEVEL > 0
2538                 else if ((level = vm_reserv_level(m)) >= 0 &&
2539                     (options & VPSC_NORESERV) != 0) {
2540                         run_ext = 0;
2541                         /* Advance to the end of the reservation. */
2542                         pa = VM_PAGE_TO_PHYS(m);
2543                         m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2544                             pa);
2545                 }
2546 #endif
2547                 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2548                         /*
2549                          * The page is considered eligible for relocation if
2550                          * and only if it could be laundered or reclaimed by
2551                          * the page daemon.
2552                          */
2553                         VM_OBJECT_RLOCK(object);
2554                         if (object != m->object) {
2555                                 VM_OBJECT_RUNLOCK(object);
2556                                 goto retry;
2557                         }
2558                         /* Don't care: PG_NODUMP, PG_ZERO. */
2559                         if (object->type != OBJT_DEFAULT &&
2560                             object->type != OBJT_SWAP &&
2561                             object->type != OBJT_VNODE) {
2562                                 run_ext = 0;
2563 #if VM_NRESERVLEVEL > 0
2564                         } else if ((options & VPSC_NOSUPER) != 0 &&
2565                             (level = vm_reserv_level_iffullpop(m)) >= 0) {
2566                                 run_ext = 0;
2567                                 /* Advance to the end of the superpage. */
2568                                 pa = VM_PAGE_TO_PHYS(m);
2569                                 m_inc = atop(roundup2(pa + 1,
2570                                     vm_reserv_size(level)) - pa);
2571 #endif
2572                         } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2573                             vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2574                                 /*
2575                                  * The page is allocated but eligible for
2576                                  * relocation.  Extend the current run by one
2577                                  * page.
2578                                  */
2579                                 KASSERT(pmap_page_get_memattr(m) ==
2580                                     VM_MEMATTR_DEFAULT,
2581                                     ("page %p has an unexpected memattr", m));
2582                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2583                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2584                                     ("page %p has unexpected oflags", m));
2585                                 /* Don't care: PGA_NOSYNC. */
2586                                 run_ext = 1;
2587                         } else
2588                                 run_ext = 0;
2589                         VM_OBJECT_RUNLOCK(object);
2590 #if VM_NRESERVLEVEL > 0
2591                 } else if (level >= 0) {
2592                         /*
2593                          * The page is reserved but not yet allocated.  In
2594                          * other words, it is still free.  Extend the current
2595                          * run by one page.
2596                          */
2597                         run_ext = 1;
2598 #endif
2599                 } else if ((order = m->order) < VM_NFREEORDER) {
2600                         /*
2601                          * The page is enqueued in the physical memory
2602                          * allocator's free page queues.  Moreover, it is the
2603                          * first page in a power-of-two-sized run of
2604                          * contiguous free pages.  Add these pages to the end
2605                          * of the current run, and jump ahead.
2606                          */
2607                         run_ext = 1 << order;
2608                         m_inc = 1 << order;
2609                 } else {
2610                         /*
2611                          * Skip the page for one of the following reasons: (1)
2612                          * It is enqueued in the physical memory allocator's
2613                          * free page queues.  However, it is not the first
2614                          * page in a run of contiguous free pages.  (This case
2615                          * rarely occurs because the scan is performed in
2616                          * ascending order.) (2) It is not reserved, and it is
2617                          * transitioning from free to allocated.  (Conversely,
2618                          * the transition from allocated to free for managed
2619                          * pages is blocked by the page lock.) (3) It is
2620                          * allocated but not contained by an object and not
2621                          * wired, e.g., allocated by Xen's balloon driver.
2622                          */
2623                         run_ext = 0;
2624                 }
2625
2626                 /*
2627                  * Extend or reset the current run of pages.
2628                  */
2629                 if (run_ext > 0) {
2630                         if (run_len == 0)
2631                                 m_run = m;
2632                         run_len += run_ext;
2633                 } else {
2634                         if (run_len > 0) {
2635                                 m_run = NULL;
2636                                 run_len = 0;
2637                         }
2638                 }
2639         }
2640         if (run_len >= npages)
2641                 return (m_run);
2642         return (NULL);
2643 }
2644
2645 /*
2646  *      vm_page_reclaim_run:
2647  *
2648  *      Try to relocate each of the allocated virtual pages within the
2649  *      specified run of physical pages to a new physical address.  Free the
2650  *      physical pages underlying the relocated virtual pages.  A virtual page
2651  *      is relocatable if and only if it could be laundered or reclaimed by
2652  *      the page daemon.  Whenever possible, a virtual page is relocated to a
2653  *      physical address above "high".
2654  *
2655  *      Returns 0 if every physical page within the run was already free or
2656  *      just freed by a successful relocation.  Otherwise, returns a non-zero
2657  *      value indicating why the last attempt to relocate a virtual page was
2658  *      unsuccessful.
2659  *
2660  *      "req_class" must be an allocation class.
2661  */
2662 static int
2663 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2664     vm_paddr_t high)
2665 {
2666         struct vm_domain *vmd;
2667         struct spglist free;
2668         vm_object_t object;
2669         vm_paddr_t pa;
2670         vm_page_t m, m_end, m_new;
2671         int error, order, req;
2672
2673         KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2674             ("req_class is not an allocation class"));
2675         SLIST_INIT(&free);
2676         error = 0;
2677         m = m_run;
2678         m_end = m_run + npages;
2679         for (; error == 0 && m < m_end; m++) {
2680                 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2681                     ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2682
2683                 /*
2684                  * Racily check for wirings.  Races are handled once the object
2685                  * lock is held and the page is unmapped.
2686                  */
2687                 if (vm_page_wired(m))
2688                         error = EBUSY;
2689                 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2690                         /*
2691                          * The page is relocated if and only if it could be
2692                          * laundered or reclaimed by the page daemon.
2693                          */
2694                         VM_OBJECT_WLOCK(object);
2695                         /* Don't care: PG_NODUMP, PG_ZERO. */
2696                         if (m->object != object ||
2697                             (object->type != OBJT_DEFAULT &&
2698                             object->type != OBJT_SWAP &&
2699                             object->type != OBJT_VNODE))
2700                                 error = EINVAL;
2701                         else if (object->memattr != VM_MEMATTR_DEFAULT)
2702                                 error = EINVAL;
2703                         else if (vm_page_queue(m) != PQ_NONE &&
2704                             vm_page_tryxbusy(m) != 0) {
2705                                 if (vm_page_wired(m)) {
2706                                         vm_page_xunbusy(m);
2707                                         error = EBUSY;
2708                                         goto unlock;
2709                                 }
2710                                 KASSERT(pmap_page_get_memattr(m) ==
2711                                     VM_MEMATTR_DEFAULT,
2712                                     ("page %p has an unexpected memattr", m));
2713                                 KASSERT(m->oflags == 0,
2714                                     ("page %p has unexpected oflags", m));
2715                                 /* Don't care: PGA_NOSYNC. */
2716                                 if (!vm_page_none_valid(m)) {
2717                                         /*
2718                                          * First, try to allocate a new page
2719                                          * that is above "high".  Failing
2720                                          * that, try to allocate a new page
2721                                          * that is below "m_run".  Allocate
2722                                          * the new page between the end of
2723                                          * "m_run" and "high" only as a last
2724                                          * resort.
2725                                          */
2726                                         req = req_class | VM_ALLOC_NOOBJ;
2727                                         if ((m->flags & PG_NODUMP) != 0)
2728                                                 req |= VM_ALLOC_NODUMP;
2729                                         if (trunc_page(high) !=
2730                                             ~(vm_paddr_t)PAGE_MASK) {
2731                                                 m_new = vm_page_alloc_contig(
2732                                                     NULL, 0, req, 1,
2733                                                     round_page(high),
2734                                                     ~(vm_paddr_t)0,
2735                                                     PAGE_SIZE, 0,
2736                                                     VM_MEMATTR_DEFAULT);
2737                                         } else
2738                                                 m_new = NULL;
2739                                         if (m_new == NULL) {
2740                                                 pa = VM_PAGE_TO_PHYS(m_run);
2741                                                 m_new = vm_page_alloc_contig(
2742                                                     NULL, 0, req, 1,
2743                                                     0, pa - 1, PAGE_SIZE, 0,
2744                                                     VM_MEMATTR_DEFAULT);
2745                                         }
2746                                         if (m_new == NULL) {
2747                                                 pa += ptoa(npages);
2748                                                 m_new = vm_page_alloc_contig(
2749                                                     NULL, 0, req, 1,
2750                                                     pa, high, PAGE_SIZE, 0,
2751                                                     VM_MEMATTR_DEFAULT);
2752                                         }
2753                                         if (m_new == NULL) {
2754                                                 vm_page_xunbusy(m);
2755                                                 error = ENOMEM;
2756                                                 goto unlock;
2757                                         }
2758
2759                                         /*
2760                                          * Unmap the page and check for new
2761                                          * wirings that may have been acquired
2762                                          * through a pmap lookup.
2763                                          */
2764                                         if (object->ref_count != 0 &&
2765                                             !vm_page_try_remove_all(m)) {
2766                                                 vm_page_xunbusy(m);
2767                                                 vm_page_free(m_new);
2768                                                 error = EBUSY;
2769                                                 goto unlock;
2770                                         }
2771
2772                                         /*
2773                                          * Replace "m" with the new page.  For
2774                                          * vm_page_replace(), "m" must be busy
2775                                          * and dequeued.  Finally, change "m"
2776                                          * as if vm_page_free() was called.
2777                                          */
2778                                         m_new->a.flags = m->a.flags &
2779                                             ~PGA_QUEUE_STATE_MASK;
2780                                         KASSERT(m_new->oflags == VPO_UNMANAGED,
2781                                             ("page %p is managed", m_new));
2782                                         m_new->oflags = 0;
2783                                         pmap_copy_page(m, m_new);
2784                                         m_new->valid = m->valid;
2785                                         m_new->dirty = m->dirty;
2786                                         m->flags &= ~PG_ZERO;
2787                                         vm_page_dequeue(m);
2788                                         if (vm_page_replace_hold(m_new, object,
2789                                             m->pindex, m) &&
2790                                             vm_page_free_prep(m))
2791                                                 SLIST_INSERT_HEAD(&free, m,
2792                                                     plinks.s.ss);
2793
2794                                         /*
2795                                          * The new page must be deactivated
2796                                          * before the object is unlocked.
2797                                          */
2798                                         vm_page_deactivate(m_new);
2799                                 } else {
2800                                         m->flags &= ~PG_ZERO;
2801                                         vm_page_dequeue(m);
2802                                         if (vm_page_free_prep(m))
2803                                                 SLIST_INSERT_HEAD(&free, m,
2804                                                     plinks.s.ss);
2805                                         KASSERT(m->dirty == 0,
2806                                             ("page %p is dirty", m));
2807                                 }
2808                         } else
2809                                 error = EBUSY;
2810 unlock:
2811                         VM_OBJECT_WUNLOCK(object);
2812                 } else {
2813                         MPASS(vm_phys_domain(m) == domain);
2814                         vmd = VM_DOMAIN(domain);
2815                         vm_domain_free_lock(vmd);
2816                         order = m->order;
2817                         if (order < VM_NFREEORDER) {
2818                                 /*
2819                                  * The page is enqueued in the physical memory
2820                                  * allocator's free page queues.  Moreover, it
2821                                  * is the first page in a power-of-two-sized
2822                                  * run of contiguous free pages.  Jump ahead
2823                                  * to the last page within that run, and
2824                                  * continue from there.
2825                                  */
2826                                 m += (1 << order) - 1;
2827                         }
2828 #if VM_NRESERVLEVEL > 0
2829                         else if (vm_reserv_is_page_free(m))
2830                                 order = 0;
2831 #endif
2832                         vm_domain_free_unlock(vmd);
2833                         if (order == VM_NFREEORDER)
2834                                 error = EINVAL;
2835                 }
2836         }
2837         if ((m = SLIST_FIRST(&free)) != NULL) {
2838                 int cnt;
2839
2840                 vmd = VM_DOMAIN(domain);
2841                 cnt = 0;
2842                 vm_domain_free_lock(vmd);
2843                 do {
2844                         MPASS(vm_phys_domain(m) == domain);
2845                         SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2846                         vm_phys_free_pages(m, 0);
2847                         cnt++;
2848                 } while ((m = SLIST_FIRST(&free)) != NULL);
2849                 vm_domain_free_unlock(vmd);
2850                 vm_domain_freecnt_inc(vmd, cnt);
2851         }
2852         return (error);
2853 }
2854
2855 #define NRUNS   16
2856
2857 CTASSERT(powerof2(NRUNS));
2858
2859 #define RUN_INDEX(count)        ((count) & (NRUNS - 1))
2860
2861 #define MIN_RECLAIM     8
2862
2863 /*
2864  *      vm_page_reclaim_contig:
2865  *
2866  *      Reclaim allocated, contiguous physical memory satisfying the specified
2867  *      conditions by relocating the virtual pages using that physical memory.
2868  *      Returns true if reclamation is successful and false otherwise.  Since
2869  *      relocation requires the allocation of physical pages, reclamation may
2870  *      fail due to a shortage of free pages.  When reclamation fails, callers
2871  *      are expected to perform vm_wait() before retrying a failed allocation
2872  *      operation, e.g., vm_page_alloc_contig().
2873  *
2874  *      The caller must always specify an allocation class through "req".
2875  *
2876  *      allocation classes:
2877  *      VM_ALLOC_NORMAL         normal process request
2878  *      VM_ALLOC_SYSTEM         system *really* needs a page
2879  *      VM_ALLOC_INTERRUPT      interrupt time request
2880  *
2881  *      The optional allocation flags are ignored.
2882  *
2883  *      "npages" must be greater than zero.  Both "alignment" and "boundary"
2884  *      must be a power of two.
2885  */
2886 bool
2887 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2888     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2889 {
2890         struct vm_domain *vmd;
2891         vm_paddr_t curr_low;
2892         vm_page_t m_run, m_runs[NRUNS];
2893         u_long count, reclaimed;
2894         int error, i, options, req_class;
2895
2896         KASSERT(npages > 0, ("npages is 0"));
2897         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2898         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2899         req_class = req & VM_ALLOC_CLASS_MASK;
2900
2901         /*
2902          * The page daemon is allowed to dig deeper into the free page list.
2903          */
2904         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2905                 req_class = VM_ALLOC_SYSTEM;
2906
2907         /*
2908          * Return if the number of free pages cannot satisfy the requested
2909          * allocation.
2910          */
2911         vmd = VM_DOMAIN(domain);
2912         count = vmd->vmd_free_count;
2913         if (count < npages + vmd->vmd_free_reserved || (count < npages +
2914             vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2915             (count < npages && req_class == VM_ALLOC_INTERRUPT))
2916                 return (false);
2917
2918         /*
2919          * Scan up to three times, relaxing the restrictions ("options") on
2920          * the reclamation of reservations and superpages each time.
2921          */
2922         for (options = VPSC_NORESERV;;) {
2923                 /*
2924                  * Find the highest runs that satisfy the given constraints
2925                  * and restrictions, and record them in "m_runs".
2926                  */
2927                 curr_low = low;
2928                 count = 0;
2929                 for (;;) {
2930                         m_run = vm_phys_scan_contig(domain, npages, curr_low,
2931                             high, alignment, boundary, options);
2932                         if (m_run == NULL)
2933                                 break;
2934                         curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2935                         m_runs[RUN_INDEX(count)] = m_run;
2936                         count++;
2937                 }
2938
2939                 /*
2940                  * Reclaim the highest runs in LIFO (descending) order until
2941                  * the number of reclaimed pages, "reclaimed", is at least
2942                  * MIN_RECLAIM.  Reset "reclaimed" each time because each
2943                  * reclamation is idempotent, and runs will (likely) recur
2944                  * from one scan to the next as restrictions are relaxed.
2945                  */
2946                 reclaimed = 0;
2947                 for (i = 0; count > 0 && i < NRUNS; i++) {
2948                         count--;
2949                         m_run = m_runs[RUN_INDEX(count)];
2950                         error = vm_page_reclaim_run(req_class, domain, npages,
2951                             m_run, high);
2952                         if (error == 0) {
2953                                 reclaimed += npages;
2954                                 if (reclaimed >= MIN_RECLAIM)
2955                                         return (true);
2956                         }
2957                 }
2958
2959                 /*
2960                  * Either relax the restrictions on the next scan or return if
2961                  * the last scan had no restrictions.
2962                  */
2963                 if (options == VPSC_NORESERV)
2964                         options = VPSC_NOSUPER;
2965                 else if (options == VPSC_NOSUPER)
2966                         options = VPSC_ANY;
2967                 else if (options == VPSC_ANY)
2968                         return (reclaimed != 0);
2969         }
2970 }
2971
2972 bool
2973 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2974     u_long alignment, vm_paddr_t boundary)
2975 {
2976         struct vm_domainset_iter di;
2977         int domain;
2978         bool ret;
2979
2980         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2981         do {
2982                 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2983                     high, alignment, boundary);
2984                 if (ret)
2985                         break;
2986         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2987
2988         return (ret);
2989 }
2990
2991 /*
2992  * Set the domain in the appropriate page level domainset.
2993  */
2994 void
2995 vm_domain_set(struct vm_domain *vmd)
2996 {
2997
2998         mtx_lock(&vm_domainset_lock);
2999         if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3000                 vmd->vmd_minset = 1;
3001                 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3002         }
3003         if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3004                 vmd->vmd_severeset = 1;
3005                 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3006         }
3007         mtx_unlock(&vm_domainset_lock);
3008 }
3009
3010 /*
3011  * Clear the domain from the appropriate page level domainset.
3012  */
3013 void
3014 vm_domain_clear(struct vm_domain *vmd)
3015 {
3016
3017         mtx_lock(&vm_domainset_lock);
3018         if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3019                 vmd->vmd_minset = 0;
3020                 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3021                 if (vm_min_waiters != 0) {
3022                         vm_min_waiters = 0;
3023                         wakeup(&vm_min_domains);
3024                 }
3025         }
3026         if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3027                 vmd->vmd_severeset = 0;
3028                 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3029                 if (vm_severe_waiters != 0) {
3030                         vm_severe_waiters = 0;
3031                         wakeup(&vm_severe_domains);
3032                 }
3033         }
3034
3035         /*
3036          * If pageout daemon needs pages, then tell it that there are
3037          * some free.
3038          */
3039         if (vmd->vmd_pageout_pages_needed &&
3040             vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3041                 wakeup(&vmd->vmd_pageout_pages_needed);
3042                 vmd->vmd_pageout_pages_needed = 0;
3043         }
3044
3045         /* See comments in vm_wait_doms(). */
3046         if (vm_pageproc_waiters) {
3047                 vm_pageproc_waiters = 0;
3048                 wakeup(&vm_pageproc_waiters);
3049         }
3050         mtx_unlock(&vm_domainset_lock);
3051 }
3052
3053 /*
3054  * Wait for free pages to exceed the min threshold globally.
3055  */
3056 void
3057 vm_wait_min(void)
3058 {
3059
3060         mtx_lock(&vm_domainset_lock);
3061         while (vm_page_count_min()) {
3062                 vm_min_waiters++;
3063                 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3064         }
3065         mtx_unlock(&vm_domainset_lock);
3066 }
3067
3068 /*
3069  * Wait for free pages to exceed the severe threshold globally.
3070  */
3071 void
3072 vm_wait_severe(void)
3073 {
3074
3075         mtx_lock(&vm_domainset_lock);
3076         while (vm_page_count_severe()) {
3077                 vm_severe_waiters++;
3078                 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3079                     "vmwait", 0);
3080         }
3081         mtx_unlock(&vm_domainset_lock);
3082 }
3083
3084 u_int
3085 vm_wait_count(void)
3086 {
3087
3088         return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3089 }
3090
3091 void
3092 vm_wait_doms(const domainset_t *wdoms)
3093 {
3094
3095         /*
3096          * We use racey wakeup synchronization to avoid expensive global
3097          * locking for the pageproc when sleeping with a non-specific vm_wait.
3098          * To handle this, we only sleep for one tick in this instance.  It
3099          * is expected that most allocations for the pageproc will come from
3100          * kmem or vm_page_grab* which will use the more specific and
3101          * race-free vm_wait_domain().
3102          */
3103         if (curproc == pageproc) {
3104                 mtx_lock(&vm_domainset_lock);
3105                 vm_pageproc_waiters++;
3106                 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3107                     "pageprocwait", 1);
3108         } else {
3109                 /*
3110                  * XXX Ideally we would wait only until the allocation could
3111                  * be satisfied.  This condition can cause new allocators to
3112                  * consume all freed pages while old allocators wait.
3113                  */
3114                 mtx_lock(&vm_domainset_lock);
3115                 if (vm_page_count_min_set(wdoms)) {
3116                         vm_min_waiters++;
3117                         msleep(&vm_min_domains, &vm_domainset_lock,
3118                             PVM | PDROP, "vmwait", 0);
3119                 } else
3120                         mtx_unlock(&vm_domainset_lock);
3121         }
3122 }
3123
3124 /*
3125  *      vm_wait_domain:
3126  *
3127  *      Sleep until free pages are available for allocation.
3128  *      - Called in various places after failed memory allocations.
3129  */
3130 void
3131 vm_wait_domain(int domain)
3132 {
3133         struct vm_domain *vmd;
3134         domainset_t wdom;
3135
3136         vmd = VM_DOMAIN(domain);
3137         vm_domain_free_assert_unlocked(vmd);
3138
3139         if (curproc == pageproc) {
3140                 mtx_lock(&vm_domainset_lock);
3141                 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3142                         vmd->vmd_pageout_pages_needed = 1;
3143                         msleep(&vmd->vmd_pageout_pages_needed,
3144                             &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3145                 } else
3146                         mtx_unlock(&vm_domainset_lock);
3147         } else {
3148                 if (pageproc == NULL)
3149                         panic("vm_wait in early boot");
3150                 DOMAINSET_ZERO(&wdom);
3151                 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3152                 vm_wait_doms(&wdom);
3153         }
3154 }
3155
3156 /*
3157  *      vm_wait:
3158  *
3159  *      Sleep until free pages are available for allocation in the
3160  *      affinity domains of the obj.  If obj is NULL, the domain set
3161  *      for the calling thread is used.
3162  *      Called in various places after failed memory allocations.
3163  */
3164 void
3165 vm_wait(vm_object_t obj)
3166 {
3167         struct domainset *d;
3168
3169         d = NULL;
3170
3171         /*
3172          * Carefully fetch pointers only once: the struct domainset
3173          * itself is ummutable but the pointer might change.
3174          */
3175         if (obj != NULL)
3176                 d = obj->domain.dr_policy;
3177         if (d == NULL)
3178                 d = curthread->td_domain.dr_policy;
3179
3180         vm_wait_doms(&d->ds_mask);
3181 }
3182
3183 /*
3184  *      vm_domain_alloc_fail:
3185  *
3186  *      Called when a page allocation function fails.  Informs the
3187  *      pagedaemon and performs the requested wait.  Requires the
3188  *      domain_free and object lock on entry.  Returns with the
3189  *      object lock held and free lock released.  Returns an error when
3190  *      retry is necessary.
3191  *
3192  */
3193 static int
3194 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3195 {
3196
3197         vm_domain_free_assert_unlocked(vmd);
3198
3199         atomic_add_int(&vmd->vmd_pageout_deficit,
3200             max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3201         if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3202                 if (object != NULL) 
3203                         VM_OBJECT_WUNLOCK(object);
3204                 vm_wait_domain(vmd->vmd_domain);
3205                 if (object != NULL) 
3206                         VM_OBJECT_WLOCK(object);
3207                 if (req & VM_ALLOC_WAITOK)
3208                         return (EAGAIN);
3209         }
3210
3211         return (0);
3212 }
3213
3214 /*
3215  *      vm_waitpfault:
3216  *
3217  *      Sleep until free pages are available for allocation.
3218  *      - Called only in vm_fault so that processes page faulting
3219  *        can be easily tracked.
3220  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3221  *        processes will be able to grab memory first.  Do not change
3222  *        this balance without careful testing first.
3223  */
3224 void
3225 vm_waitpfault(struct domainset *dset, int timo)
3226 {
3227
3228         /*
3229          * XXX Ideally we would wait only until the allocation could
3230          * be satisfied.  This condition can cause new allocators to
3231          * consume all freed pages while old allocators wait.
3232          */
3233         mtx_lock(&vm_domainset_lock);
3234         if (vm_page_count_min_set(&dset->ds_mask)) {
3235                 vm_min_waiters++;
3236                 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3237                     "pfault", timo);
3238         } else
3239                 mtx_unlock(&vm_domainset_lock);
3240 }
3241
3242 static struct vm_pagequeue *
3243 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3244 {
3245
3246         return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3247 }
3248
3249 #ifdef INVARIANTS
3250 static struct vm_pagequeue *
3251 vm_page_pagequeue(vm_page_t m)
3252 {
3253
3254         return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3255 }
3256 #endif
3257
3258 static __always_inline bool
3259 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3260 {
3261         vm_page_astate_t tmp;
3262
3263         tmp = *old;
3264         do {
3265                 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3266                         return (true);
3267                 counter_u64_add(pqstate_commit_retries, 1);
3268         } while (old->_bits == tmp._bits);
3269
3270         return (false);
3271 }
3272
3273 /*
3274  * Do the work of committing a queue state update that moves the page out of
3275  * its current queue.
3276  */
3277 static bool
3278 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3279     vm_page_astate_t *old, vm_page_astate_t new)
3280 {
3281         vm_page_t next;
3282
3283         vm_pagequeue_assert_locked(pq);
3284         KASSERT(vm_page_pagequeue(m) == pq,
3285             ("%s: queue %p does not match page %p", __func__, pq, m));
3286         KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3287             ("%s: invalid queue indices %d %d",
3288             __func__, old->queue, new.queue));
3289
3290         /*
3291          * Once the queue index of the page changes there is nothing
3292          * synchronizing with further updates to the page's physical
3293          * queue state.  Therefore we must speculatively remove the page
3294          * from the queue now and be prepared to roll back if the queue
3295          * state update fails.  If the page is not physically enqueued then
3296          * we just update its queue index.
3297          */
3298         if ((old->flags & PGA_ENQUEUED) != 0) {
3299                 new.flags &= ~PGA_ENQUEUED;
3300                 next = TAILQ_NEXT(m, plinks.q);
3301                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3302                 vm_pagequeue_cnt_dec(pq);
3303                 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3304                         if (next == NULL)
3305                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3306                         else
3307                                 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3308                         vm_pagequeue_cnt_inc(pq);
3309                         return (false);
3310                 } else {
3311                         return (true);
3312                 }
3313         } else {
3314                 return (vm_page_pqstate_fcmpset(m, old, new));
3315         }
3316 }
3317
3318 static bool
3319 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3320     vm_page_astate_t new)
3321 {
3322         struct vm_pagequeue *pq;
3323         vm_page_astate_t as;
3324         bool ret;
3325
3326         pq = _vm_page_pagequeue(m, old->queue);
3327
3328         /*
3329          * The queue field and PGA_ENQUEUED flag are stable only so long as the
3330          * corresponding page queue lock is held.
3331          */
3332         vm_pagequeue_lock(pq);
3333         as = vm_page_astate_load(m);
3334         if (__predict_false(as._bits != old->_bits)) {
3335                 *old = as;
3336                 ret = false;
3337         } else {
3338                 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3339         }
3340         vm_pagequeue_unlock(pq);
3341         return (ret);
3342 }
3343
3344 /*
3345  * Commit a queue state update that enqueues or requeues a page.
3346  */
3347 static bool
3348 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3349     vm_page_astate_t *old, vm_page_astate_t new)
3350 {
3351         struct vm_domain *vmd;
3352
3353         vm_pagequeue_assert_locked(pq);
3354         KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3355             ("%s: invalid queue indices %d %d",
3356             __func__, old->queue, new.queue));
3357
3358         new.flags |= PGA_ENQUEUED;
3359         if (!vm_page_pqstate_fcmpset(m, old, new))
3360                 return (false);
3361
3362         if ((old->flags & PGA_ENQUEUED) != 0)
3363                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3364         else
3365                 vm_pagequeue_cnt_inc(pq);
3366
3367         /*
3368          * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3369          * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3370          * applied, even if it was set first.
3371          */
3372         if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3373                 vmd = vm_pagequeue_domain(m);
3374                 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3375                     ("%s: invalid page queue for page %p", __func__, m));
3376                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3377         } else {
3378                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3379         }
3380         return (true);
3381 }
3382
3383 /*
3384  * Commit a queue state update that encodes a request for a deferred queue
3385  * operation.
3386  */
3387 static bool
3388 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3389     vm_page_astate_t new)
3390 {
3391
3392         KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3393             ("%s: invalid state, queue %d flags %x",
3394             __func__, new.queue, new.flags));
3395
3396         if (old->_bits != new._bits &&
3397             !vm_page_pqstate_fcmpset(m, old, new))
3398                 return (false);
3399         vm_page_pqbatch_submit(m, new.queue);
3400         return (true);
3401 }
3402
3403 /*
3404  * A generic queue state update function.  This handles more cases than the
3405  * specialized functions above.
3406  */
3407 bool
3408 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3409 {
3410
3411         if (old->_bits == new._bits)
3412                 return (true);
3413
3414         if (old->queue != PQ_NONE && new.queue != old->queue) {
3415                 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3416                         return (false);
3417                 if (new.queue != PQ_NONE)
3418                         vm_page_pqbatch_submit(m, new.queue);
3419         } else {
3420                 if (!vm_page_pqstate_fcmpset(m, old, new))
3421                         return (false);
3422                 if (new.queue != PQ_NONE &&
3423                     ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3424                         vm_page_pqbatch_submit(m, new.queue);
3425         }
3426         return (true);
3427 }
3428
3429 /*
3430  * Apply deferred queue state updates to a page.
3431  */
3432 static inline void
3433 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3434 {
3435         vm_page_astate_t new, old;
3436
3437         CRITICAL_ASSERT(curthread);
3438         vm_pagequeue_assert_locked(pq);
3439         KASSERT(queue < PQ_COUNT,
3440             ("%s: invalid queue index %d", __func__, queue));
3441         KASSERT(pq == _vm_page_pagequeue(m, queue),
3442             ("%s: page %p does not belong to queue %p", __func__, m, pq));
3443
3444         for (old = vm_page_astate_load(m);;) {
3445                 if (__predict_false(old.queue != queue ||
3446                     (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3447                         counter_u64_add(queue_nops, 1);
3448                         break;
3449                 }
3450                 KASSERT(old.queue != PQ_NONE || (old.flags & PGA_QUEUE_STATE_MASK) == 0,
3451                     ("%s: page %p has unexpected queue state", __func__, m));
3452
3453                 new = old;
3454                 if ((old.flags & PGA_DEQUEUE) != 0) {
3455                         new.flags &= ~PGA_QUEUE_OP_MASK;
3456                         new.queue = PQ_NONE;
3457                         if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3458                             m, &old, new))) {
3459                                 counter_u64_add(queue_ops, 1);
3460                                 break;
3461                         }
3462                 } else {
3463                         new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3464                         if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3465                             m, &old, new))) {
3466                                 counter_u64_add(queue_ops, 1);
3467                                 break;
3468                         }
3469                 }
3470         }
3471 }
3472
3473 static void
3474 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3475     uint8_t queue)
3476 {
3477         int i;
3478
3479         for (i = 0; i < bq->bq_cnt; i++)
3480                 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3481         vm_batchqueue_init(bq);
3482 }
3483
3484 /*
3485  *      vm_page_pqbatch_submit:         [ internal use only ]
3486  *
3487  *      Enqueue a page in the specified page queue's batched work queue.
3488  *      The caller must have encoded the requested operation in the page
3489  *      structure's a.flags field.
3490  */
3491 void
3492 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3493 {
3494         struct vm_batchqueue *bq;
3495         struct vm_pagequeue *pq;
3496         int domain;
3497
3498         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3499             ("page %p is unmanaged", m));
3500         KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3501
3502         domain = vm_phys_domain(m);
3503         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3504
3505         critical_enter();
3506         bq = DPCPU_PTR(pqbatch[domain][queue]);
3507         if (vm_batchqueue_insert(bq, m)) {
3508                 critical_exit();
3509                 return;
3510         }
3511         critical_exit();
3512         vm_pagequeue_lock(pq);
3513         critical_enter();
3514         bq = DPCPU_PTR(pqbatch[domain][queue]);
3515         vm_pqbatch_process(pq, bq, queue);
3516         vm_pqbatch_process_page(pq, m, queue);
3517         vm_pagequeue_unlock(pq);
3518         critical_exit();
3519 }
3520
3521 /*
3522  *      vm_page_pqbatch_drain:          [ internal use only ]
3523  *
3524  *      Force all per-CPU page queue batch queues to be drained.  This is
3525  *      intended for use in severe memory shortages, to ensure that pages
3526  *      do not remain stuck in the batch queues.
3527  */
3528 void
3529 vm_page_pqbatch_drain(void)
3530 {
3531         struct thread *td;
3532         struct vm_domain *vmd;
3533         struct vm_pagequeue *pq;
3534         int cpu, domain, queue;
3535
3536         td = curthread;
3537         CPU_FOREACH(cpu) {
3538                 thread_lock(td);
3539                 sched_bind(td, cpu);
3540                 thread_unlock(td);
3541
3542                 for (domain = 0; domain < vm_ndomains; domain++) {
3543                         vmd = VM_DOMAIN(domain);
3544                         for (queue = 0; queue < PQ_COUNT; queue++) {
3545                                 pq = &vmd->vmd_pagequeues[queue];
3546                                 vm_pagequeue_lock(pq);
3547                                 critical_enter();
3548                                 vm_pqbatch_process(pq,
3549                                     DPCPU_PTR(pqbatch[domain][queue]), queue);
3550                                 critical_exit();
3551                                 vm_pagequeue_unlock(pq);
3552                         }
3553                 }
3554         }
3555         thread_lock(td);
3556         sched_unbind(td);
3557         thread_unlock(td);
3558 }
3559
3560 /*
3561  *      vm_page_dequeue_deferred:       [ internal use only ]
3562  *
3563  *      Request removal of the given page from its current page
3564  *      queue.  Physical removal from the queue may be deferred
3565  *      indefinitely.
3566  *
3567  *      The page must be locked.
3568  */
3569 void
3570 vm_page_dequeue_deferred(vm_page_t m)
3571 {
3572         vm_page_astate_t new, old;
3573
3574         old = vm_page_astate_load(m);
3575         do {
3576                 if (old.queue == PQ_NONE) {
3577                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3578                             ("%s: page %p has unexpected queue state",
3579                             __func__, m));
3580                         break;
3581                 }
3582                 new = old;
3583                 new.flags |= PGA_DEQUEUE;
3584         } while (!vm_page_pqstate_commit_request(m, &old, new));
3585 }
3586
3587 /*
3588  *      vm_page_dequeue:
3589  *
3590  *      Remove the page from whichever page queue it's in, if any, before
3591  *      returning.
3592  */
3593 void
3594 vm_page_dequeue(vm_page_t m)
3595 {
3596         vm_page_astate_t new, old;
3597
3598         old = vm_page_astate_load(m);
3599         do {
3600                 if (old.queue == PQ_NONE) {
3601                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3602                             ("%s: page %p has unexpected queue state",
3603                             __func__, m));
3604                         break;
3605                 }
3606                 new = old;
3607                 new.flags &= ~PGA_QUEUE_OP_MASK;
3608                 new.queue = PQ_NONE;
3609         } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3610
3611 }
3612
3613 /*
3614  * Schedule the given page for insertion into the specified page queue.
3615  * Physical insertion of the page may be deferred indefinitely.
3616  */
3617 static void
3618 vm_page_enqueue(vm_page_t m, uint8_t queue)
3619 {
3620
3621         KASSERT(m->a.queue == PQ_NONE &&
3622             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3623             ("%s: page %p is already enqueued", __func__, m));
3624         KASSERT(m->ref_count > 0,
3625             ("%s: page %p does not carry any references", __func__, m));
3626
3627         m->a.queue = queue;
3628         if ((m->a.flags & PGA_REQUEUE) == 0)
3629                 vm_page_aflag_set(m, PGA_REQUEUE);
3630         vm_page_pqbatch_submit(m, queue);
3631 }
3632
3633 /*
3634  *      vm_page_free_prep:
3635  *
3636  *      Prepares the given page to be put on the free list,
3637  *      disassociating it from any VM object. The caller may return
3638  *      the page to the free list only if this function returns true.
3639  *
3640  *      The object must be locked.  The page must be locked if it is
3641  *      managed.
3642  */
3643 static bool
3644 vm_page_free_prep(vm_page_t m)
3645 {
3646
3647         /*
3648          * Synchronize with threads that have dropped a reference to this
3649          * page.
3650          */
3651         atomic_thread_fence_acq();
3652
3653 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3654         if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3655                 uint64_t *p;
3656                 int i;
3657                 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3658                 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3659                         KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3660                             m, i, (uintmax_t)*p));
3661         }
3662 #endif
3663         if ((m->oflags & VPO_UNMANAGED) == 0) {
3664                 KASSERT(!pmap_page_is_mapped(m),
3665                     ("vm_page_free_prep: freeing mapped page %p", m));
3666                 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3667                     ("vm_page_free_prep: mapping flags set in page %p", m));
3668         } else {
3669                 KASSERT(m->a.queue == PQ_NONE,
3670                     ("vm_page_free_prep: unmanaged page %p is queued", m));
3671         }
3672         VM_CNT_INC(v_tfree);
3673
3674         if (m->object != NULL) {
3675                 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3676                     ((m->object->flags & OBJ_UNMANAGED) != 0),
3677                     ("vm_page_free_prep: managed flag mismatch for page %p",
3678                     m));
3679                 vm_page_assert_xbusied(m);
3680
3681                 /*
3682                  * The object reference can be released without an atomic
3683                  * operation.
3684                  */
3685                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3686                     m->ref_count == VPRC_OBJREF,
3687                     ("vm_page_free_prep: page %p has unexpected ref_count %u",
3688                     m, m->ref_count));
3689                 vm_page_object_remove(m);
3690                 m->object = NULL;
3691                 m->ref_count -= VPRC_OBJREF;
3692         } else
3693                 vm_page_assert_unbusied(m);
3694
3695         vm_page_busy_free(m);
3696
3697         /*
3698          * If fictitious remove object association and
3699          * return.
3700          */
3701         if ((m->flags & PG_FICTITIOUS) != 0) {
3702                 KASSERT(m->ref_count == 1,
3703                     ("fictitious page %p is referenced", m));
3704                 KASSERT(m->a.queue == PQ_NONE,
3705                     ("fictitious page %p is queued", m));
3706                 return (false);
3707         }
3708
3709         /*
3710          * Pages need not be dequeued before they are returned to the physical
3711          * memory allocator, but they must at least be marked for a deferred
3712          * dequeue.
3713          */
3714         if ((m->oflags & VPO_UNMANAGED) == 0)
3715                 vm_page_dequeue_deferred(m);
3716
3717         m->valid = 0;
3718         vm_page_undirty(m);
3719
3720         if (m->ref_count != 0)
3721                 panic("vm_page_free_prep: page %p has references", m);
3722
3723         /*
3724          * Restore the default memory attribute to the page.
3725          */
3726         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3727                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3728
3729 #if VM_NRESERVLEVEL > 0
3730         /*
3731          * Determine whether the page belongs to a reservation.  If the page was
3732          * allocated from a per-CPU cache, it cannot belong to a reservation, so
3733          * as an optimization, we avoid the check in that case.
3734          */
3735         if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3736                 return (false);
3737 #endif
3738
3739         return (true);
3740 }
3741
3742 /*
3743  *      vm_page_free_toq:
3744  *
3745  *      Returns the given page to the free list, disassociating it
3746  *      from any VM object.
3747  *
3748  *      The object must be locked.  The page must be locked if it is
3749  *      managed.
3750  */
3751 static void
3752 vm_page_free_toq(vm_page_t m)
3753 {
3754         struct vm_domain *vmd;
3755         uma_zone_t zone;
3756
3757         if (!vm_page_free_prep(m))
3758                 return;
3759
3760         vmd = vm_pagequeue_domain(m);
3761         zone = vmd->vmd_pgcache[m->pool].zone;
3762         if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3763                 uma_zfree(zone, m);
3764                 return;
3765         }
3766         vm_domain_free_lock(vmd);
3767         vm_phys_free_pages(m, 0);
3768         vm_domain_free_unlock(vmd);
3769         vm_domain_freecnt_inc(vmd, 1);
3770 }
3771
3772 /*
3773  *      vm_page_free_pages_toq:
3774  *
3775  *      Returns a list of pages to the free list, disassociating it
3776  *      from any VM object.  In other words, this is equivalent to
3777  *      calling vm_page_free_toq() for each page of a list of VM objects.
3778  *
3779  *      The objects must be locked.  The pages must be locked if it is
3780  *      managed.
3781  */
3782 void
3783 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3784 {
3785         vm_page_t m;
3786         int count;
3787
3788         if (SLIST_EMPTY(free))
3789                 return;
3790
3791         count = 0;
3792         while ((m = SLIST_FIRST(free)) != NULL) {
3793                 count++;
3794                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
3795                 vm_page_free_toq(m);
3796         }
3797
3798         if (update_wire_count)
3799                 vm_wire_sub(count);
3800 }
3801
3802 /*
3803  * Mark this page as wired down, preventing reclamation by the page daemon
3804  * or when the containing object is destroyed.
3805  */
3806 void
3807 vm_page_wire(vm_page_t m)
3808 {
3809         u_int old;
3810
3811         KASSERT(m->object != NULL,
3812             ("vm_page_wire: page %p does not belong to an object", m));
3813         if (!vm_page_busied(m) && !vm_object_busied(m->object))
3814                 VM_OBJECT_ASSERT_LOCKED(m->object);
3815         KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3816             VPRC_WIRE_COUNT(m->ref_count) >= 1,
3817             ("vm_page_wire: fictitious page %p has zero wirings", m));
3818
3819         old = atomic_fetchadd_int(&m->ref_count, 1);
3820         KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3821             ("vm_page_wire: counter overflow for page %p", m));
3822         if (VPRC_WIRE_COUNT(old) == 0) {
3823                 if ((m->oflags & VPO_UNMANAGED) == 0)
3824                         vm_page_aflag_set(m, PGA_DEQUEUE);
3825                 vm_wire_add(1);
3826         }
3827 }
3828
3829 /*
3830  * Attempt to wire a mapped page following a pmap lookup of that page.
3831  * This may fail if a thread is concurrently tearing down mappings of the page.
3832  * The transient failure is acceptable because it translates to the
3833  * failure of the caller pmap_extract_and_hold(), which should be then
3834  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3835  */
3836 bool
3837 vm_page_wire_mapped(vm_page_t m)
3838 {
3839         u_int old;
3840
3841         old = m->ref_count;
3842         do {
3843                 KASSERT(old > 0,
3844                     ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3845                 if ((old & VPRC_BLOCKED) != 0)
3846                         return (false);
3847         } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3848
3849         if (VPRC_WIRE_COUNT(old) == 0) {
3850                 if ((m->oflags & VPO_UNMANAGED) == 0)
3851                         vm_page_aflag_set(m, PGA_DEQUEUE);
3852                 vm_wire_add(1);
3853         }
3854         return (true);
3855 }
3856
3857 /*
3858  * Release a wiring reference to a managed page.  If the page still belongs to
3859  * an object, update its position in the page queues to reflect the reference.
3860  * If the wiring was the last reference to the page, free the page.
3861  */
3862 static void
3863 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
3864 {
3865         u_int old;
3866
3867         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3868             ("%s: page %p is unmanaged", __func__, m));
3869
3870         /*
3871          * Update LRU state before releasing the wiring reference.
3872          * Use a release store when updating the reference count to
3873          * synchronize with vm_page_free_prep().
3874          */
3875         old = m->ref_count;
3876         do {
3877                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
3878                     ("vm_page_unwire: wire count underflow for page %p", m));
3879
3880                 if (old > VPRC_OBJREF + 1) {
3881                         /*
3882                          * The page has at least one other wiring reference.  An
3883                          * earlier iteration of this loop may have called
3884                          * vm_page_release_toq() and cleared PGA_DEQUEUE, so
3885                          * re-set it if necessary.
3886                          */
3887                         if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
3888                                 vm_page_aflag_set(m, PGA_DEQUEUE);
3889                 } else if (old == VPRC_OBJREF + 1) {
3890                         /*
3891                          * This is the last wiring.  Clear PGA_DEQUEUE and
3892                          * update the page's queue state to reflect the
3893                          * reference.  If the page does not belong to an object
3894                          * (i.e., the VPRC_OBJREF bit is clear), we only need to
3895                          * clear leftover queue state.
3896                          */
3897                         vm_page_release_toq(m, nqueue, false);
3898                 } else if (old == 1) {
3899                         vm_page_aflag_clear(m, PGA_DEQUEUE);
3900                 }
3901         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3902
3903         if (VPRC_WIRE_COUNT(old) == 1) {
3904                 vm_wire_sub(1);
3905                 if (old == 1)
3906                         vm_page_free(m);
3907         }
3908 }
3909
3910 /*
3911  * Release one wiring of the specified page, potentially allowing it to be
3912  * paged out.
3913  *
3914  * Only managed pages belonging to an object can be paged out.  If the number
3915  * of wirings transitions to zero and the page is eligible for page out, then
3916  * the page is added to the specified paging queue.  If the released wiring
3917  * represented the last reference to the page, the page is freed.
3918  *
3919  * A managed page must be locked.
3920  */
3921 void
3922 vm_page_unwire(vm_page_t m, uint8_t nqueue)
3923 {
3924
3925         KASSERT(nqueue < PQ_COUNT,
3926             ("vm_page_unwire: invalid queue %u request for page %p",
3927             nqueue, m));
3928
3929         if ((m->oflags & VPO_UNMANAGED) != 0) {
3930                 if (vm_page_unwire_noq(m) && m->ref_count == 0)
3931                         vm_page_free(m);
3932                 return;
3933         }
3934         vm_page_unwire_managed(m, nqueue, false);
3935 }
3936
3937 /*
3938  * Unwire a page without (re-)inserting it into a page queue.  It is up
3939  * to the caller to enqueue, requeue, or free the page as appropriate.
3940  * In most cases involving managed pages, vm_page_unwire() should be used
3941  * instead.
3942  */
3943 bool
3944 vm_page_unwire_noq(vm_page_t m)
3945 {
3946         u_int old;
3947
3948         old = vm_page_drop(m, 1);
3949         KASSERT(VPRC_WIRE_COUNT(old) != 0,
3950             ("vm_page_unref: counter underflow for page %p", m));
3951         KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3952             ("vm_page_unref: missing ref on fictitious page %p", m));
3953
3954         if (VPRC_WIRE_COUNT(old) > 1)
3955                 return (false);
3956         if ((m->oflags & VPO_UNMANAGED) == 0)
3957                 vm_page_aflag_clear(m, PGA_DEQUEUE);
3958         vm_wire_sub(1);
3959         return (true);
3960 }
3961
3962 /*
3963  * Ensure that the page ends up in the specified page queue.  If the page is
3964  * active or being moved to the active queue, ensure that its act_count is
3965  * at least ACT_INIT but do not otherwise mess with it.
3966  *
3967  * A managed page must be locked.
3968  */
3969 static __always_inline void
3970 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
3971 {
3972         vm_page_astate_t old, new;
3973
3974         KASSERT(m->ref_count > 0,
3975             ("%s: page %p does not carry any references", __func__, m));
3976         KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
3977             ("%s: invalid flags %x", __func__, nflag));
3978
3979         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3980                 return;
3981
3982         old = vm_page_astate_load(m);
3983         do {
3984                 if ((old.flags & PGA_DEQUEUE) != 0)
3985                         break;
3986                 new = old;
3987                 new.flags &= ~PGA_QUEUE_OP_MASK;
3988                 if (nqueue == PQ_ACTIVE)
3989                         new.act_count = max(old.act_count, ACT_INIT);
3990                 if (old.queue == nqueue) {
3991                         if (nqueue != PQ_ACTIVE)
3992                                 new.flags |= nflag;
3993                 } else {
3994                         new.flags |= nflag;
3995                         new.queue = nqueue;
3996                 }
3997         } while (!vm_page_pqstate_commit(m, &old, new));
3998 }
3999
4000 /*
4001  * Put the specified page on the active list (if appropriate).
4002  */
4003 void
4004 vm_page_activate(vm_page_t m)
4005 {
4006
4007         vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4008 }
4009
4010 /*
4011  * Move the specified page to the tail of the inactive queue, or requeue
4012  * the page if it is already in the inactive queue.
4013  */
4014 void
4015 vm_page_deactivate(vm_page_t m)
4016 {
4017
4018         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4019 }
4020
4021 void
4022 vm_page_deactivate_noreuse(vm_page_t m)
4023 {
4024
4025         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4026 }
4027
4028 /*
4029  * Put a page in the laundry, or requeue it if it is already there.
4030  */
4031 void
4032 vm_page_launder(vm_page_t m)
4033 {
4034
4035         vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4036 }
4037
4038 /*
4039  * Put a page in the PQ_UNSWAPPABLE holding queue.
4040  */
4041 void
4042 vm_page_unswappable(vm_page_t m)
4043 {
4044
4045         KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4046             ("page %p already unswappable", m));
4047
4048         vm_page_dequeue(m);
4049         vm_page_enqueue(m, PQ_UNSWAPPABLE);
4050 }
4051
4052 /*
4053  * Release a page back to the page queues in preparation for unwiring.
4054  */
4055 static void
4056 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4057 {
4058         vm_page_astate_t old, new;
4059         uint16_t nflag;
4060
4061         /*
4062          * Use a check of the valid bits to determine whether we should
4063          * accelerate reclamation of the page.  The object lock might not be
4064          * held here, in which case the check is racy.  At worst we will either
4065          * accelerate reclamation of a valid page and violate LRU, or
4066          * unnecessarily defer reclamation of an invalid page.
4067          *
4068          * If we were asked to not cache the page, place it near the head of the
4069          * inactive queue so that is reclaimed sooner.
4070          */
4071         if (noreuse || m->valid == 0) {
4072                 nqueue = PQ_INACTIVE;
4073                 nflag = PGA_REQUEUE_HEAD;
4074         } else {
4075                 nflag = PGA_REQUEUE;
4076         }
4077
4078         old = vm_page_astate_load(m);
4079         do {
4080                 new = old;
4081
4082                 /*
4083                  * If the page is already in the active queue and we are not
4084                  * trying to accelerate reclamation, simply mark it as
4085                  * referenced and avoid any queue operations.
4086                  */
4087                 new.flags &= ~PGA_QUEUE_OP_MASK;
4088                 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE)
4089                         new.flags |= PGA_REFERENCED;
4090                 else {
4091                         new.flags |= nflag;
4092                         new.queue = nqueue;
4093                 }
4094         } while (!vm_page_pqstate_commit(m, &old, new));
4095 }
4096
4097 /*
4098  * Unwire a page and either attempt to free it or re-add it to the page queues.
4099  */
4100 void
4101 vm_page_release(vm_page_t m, int flags)
4102 {
4103         vm_object_t object;
4104
4105         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4106             ("vm_page_release: page %p is unmanaged", m));
4107
4108         if ((flags & VPR_TRYFREE) != 0) {
4109                 for (;;) {
4110                         object = atomic_load_ptr(&m->object);
4111                         if (object == NULL)
4112                                 break;
4113                         /* Depends on type-stability. */
4114                         if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4115                                 break;
4116                         if (object == m->object) {
4117                                 vm_page_release_locked(m, flags);
4118                                 VM_OBJECT_WUNLOCK(object);
4119                                 return;
4120                         }
4121                         VM_OBJECT_WUNLOCK(object);
4122                 }
4123         }
4124         vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4125 }
4126
4127 /* See vm_page_release(). */
4128 void
4129 vm_page_release_locked(vm_page_t m, int flags)
4130 {
4131
4132         VM_OBJECT_ASSERT_WLOCKED(m->object);
4133         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4134             ("vm_page_release_locked: page %p is unmanaged", m));
4135
4136         if (vm_page_unwire_noq(m)) {
4137                 if ((flags & VPR_TRYFREE) != 0 &&
4138                     (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4139                     m->dirty == 0 && vm_page_tryxbusy(m)) {
4140                         vm_page_free(m);
4141                 } else {
4142                         vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4143                 }
4144         }
4145 }
4146
4147 static bool
4148 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4149 {
4150         u_int old;
4151
4152         KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4153             ("vm_page_try_blocked_op: page %p has no object", m));
4154         KASSERT(vm_page_busied(m),
4155             ("vm_page_try_blocked_op: page %p is not busy", m));
4156         VM_OBJECT_ASSERT_LOCKED(m->object);
4157
4158         old = m->ref_count;
4159         do {
4160                 KASSERT(old != 0,
4161                     ("vm_page_try_blocked_op: page %p has no references", m));
4162                 if (VPRC_WIRE_COUNT(old) != 0)
4163                         return (false);
4164         } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4165
4166         (op)(m);
4167
4168         /*
4169          * If the object is read-locked, new wirings may be created via an
4170          * object lookup.
4171          */
4172         old = vm_page_drop(m, VPRC_BLOCKED);
4173         KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4174             old == (VPRC_BLOCKED | VPRC_OBJREF),
4175             ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4176             old, m));
4177         return (true);
4178 }
4179
4180 /*
4181  * Atomically check for wirings and remove all mappings of the page.
4182  */
4183 bool
4184 vm_page_try_remove_all(vm_page_t m)
4185 {
4186
4187         return (vm_page_try_blocked_op(m, pmap_remove_all));
4188 }
4189
4190 /*
4191  * Atomically check for wirings and remove all writeable mappings of the page.
4192  */
4193 bool
4194 vm_page_try_remove_write(vm_page_t m)
4195 {
4196
4197         return (vm_page_try_blocked_op(m, pmap_remove_write));
4198 }
4199
4200 /*
4201  * vm_page_advise
4202  *
4203  *      Apply the specified advice to the given page.
4204  *
4205  *      The object and page must be locked.
4206  */
4207 void
4208 vm_page_advise(vm_page_t m, int advice)
4209 {
4210
4211         VM_OBJECT_ASSERT_WLOCKED(m->object);
4212         if (advice == MADV_FREE)
4213                 /*
4214                  * Mark the page clean.  This will allow the page to be freed
4215                  * without first paging it out.  MADV_FREE pages are often
4216                  * quickly reused by malloc(3), so we do not do anything that
4217                  * would result in a page fault on a later access.
4218                  */
4219                 vm_page_undirty(m);
4220         else if (advice != MADV_DONTNEED) {
4221                 if (advice == MADV_WILLNEED)
4222                         vm_page_activate(m);
4223                 return;
4224         }
4225
4226         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4227                 vm_page_dirty(m);
4228
4229         /*
4230          * Clear any references to the page.  Otherwise, the page daemon will
4231          * immediately reactivate the page.
4232          */
4233         vm_page_aflag_clear(m, PGA_REFERENCED);
4234
4235         /*
4236          * Place clean pages near the head of the inactive queue rather than
4237          * the tail, thus defeating the queue's LRU operation and ensuring that
4238          * the page will be reused quickly.  Dirty pages not already in the
4239          * laundry are moved there.
4240          */
4241         if (m->dirty == 0)
4242                 vm_page_deactivate_noreuse(m);
4243         else if (!vm_page_in_laundry(m))
4244                 vm_page_launder(m);
4245 }
4246
4247 static inline int
4248 vm_page_grab_pflags(int allocflags)
4249 {
4250         int pflags;
4251
4252         KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4253             (allocflags & VM_ALLOC_WIRED) != 0,
4254             ("vm_page_grab_pflags: the pages must be busied or wired"));
4255         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4256             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4257             ("vm_page_grab_pflags: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4258             "mismatch"));
4259         pflags = allocflags &
4260             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4261             VM_ALLOC_NOBUSY);
4262         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4263                 pflags |= VM_ALLOC_WAITFAIL;
4264         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4265                 pflags |= VM_ALLOC_SBUSY;
4266
4267         return (pflags);
4268 }
4269
4270 /*
4271  * Grab a page, waiting until we are waken up due to the page
4272  * changing state.  We keep on waiting, if the page continues
4273  * to be in the object.  If the page doesn't exist, first allocate it
4274  * and then conditionally zero it.
4275  *
4276  * This routine may sleep.
4277  *
4278  * The object must be locked on entry.  The lock will, however, be released
4279  * and reacquired if the routine sleeps.
4280  */
4281 vm_page_t
4282 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4283 {
4284         vm_page_t m;
4285         int pflags;
4286
4287         VM_OBJECT_ASSERT_WLOCKED(object);
4288         pflags = vm_page_grab_pflags(allocflags);
4289 retrylookup:
4290         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4291                 if (!vm_page_acquire_flags(m, allocflags)) {
4292                         if (vm_page_busy_sleep_flags(object, m, "pgrbwt",
4293                             allocflags))
4294                                 goto retrylookup;
4295                         return (NULL);
4296                 }
4297                 goto out;
4298         }
4299         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4300                 return (NULL);
4301         m = vm_page_alloc(object, pindex, pflags);
4302         if (m == NULL) {
4303                 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4304                         return (NULL);
4305                 goto retrylookup;
4306         }
4307         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4308                 pmap_zero_page(m);
4309
4310 out:
4311         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4312                 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4313                         vm_page_sunbusy(m);
4314                 else
4315                         vm_page_xunbusy(m);
4316         }
4317         return (m);
4318 }
4319
4320 /*
4321  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4322  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4323  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4324  * in simultaneously.  Additional pages will be left on a paging queue but
4325  * will neither be wired nor busy regardless of allocflags.
4326  */
4327 int
4328 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4329 {
4330         vm_page_t m;
4331         vm_page_t ma[VM_INITIAL_PAGEIN];
4332         bool sleep, xbusy;
4333         int after, i, pflags, rv;
4334
4335         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4336             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4337             ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4338         KASSERT((allocflags &
4339             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4340             ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4341         VM_OBJECT_ASSERT_WLOCKED(object);
4342         pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY);
4343         pflags |= VM_ALLOC_WAITFAIL;
4344
4345 retrylookup:
4346         xbusy = false;
4347         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4348                 /*
4349                  * If the page is fully valid it can only become invalid
4350                  * with the object lock held.  If it is not valid it can
4351                  * become valid with the busy lock held.  Therefore, we
4352                  * may unnecessarily lock the exclusive busy here if we
4353                  * race with I/O completion not using the object lock.
4354                  * However, we will not end up with an invalid page and a
4355                  * shared lock.
4356                  */
4357                 if (!vm_page_all_valid(m) ||
4358                     (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) {
4359                         sleep = !vm_page_tryxbusy(m);
4360                         xbusy = true;
4361                 } else
4362                         sleep = !vm_page_trysbusy(m);
4363                 if (sleep) {
4364                         (void)vm_page_busy_sleep_flags(object, m, "pgrbwt",
4365                             allocflags);
4366                         goto retrylookup;
4367                 }
4368                 if ((allocflags & VM_ALLOC_NOCREAT) != 0 &&
4369                    !vm_page_all_valid(m)) {
4370                         if (xbusy)
4371                                 vm_page_xunbusy(m);
4372                         else
4373                                 vm_page_sunbusy(m);
4374                         *mp = NULL;
4375                         return (VM_PAGER_FAIL);
4376                 }
4377                 if ((allocflags & VM_ALLOC_WIRED) != 0)
4378                         vm_page_wire(m);
4379                 if (vm_page_all_valid(m))
4380                         goto out;
4381         } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4382                 *mp = NULL;
4383                 return (VM_PAGER_FAIL);
4384         } else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) {
4385                 xbusy = true;
4386         } else {
4387                 goto retrylookup;
4388         }
4389
4390         vm_page_assert_xbusied(m);
4391         MPASS(xbusy);
4392         if (vm_pager_has_page(object, pindex, NULL, &after)) {
4393                 after = MIN(after, VM_INITIAL_PAGEIN);
4394                 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4395                 after = MAX(after, 1);
4396                 ma[0] = m;
4397                 for (i = 1; i < after; i++) {
4398                         if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4399                                 if (ma[i]->valid || !vm_page_tryxbusy(ma[i]))
4400                                         break;
4401                         } else {
4402                                 ma[i] = vm_page_alloc(object, m->pindex + i,
4403                                     VM_ALLOC_NORMAL);
4404                                 if (ma[i] == NULL)
4405                                         break;
4406                         }
4407                 }
4408                 after = i;
4409                 vm_object_pip_add(object, after);
4410                 VM_OBJECT_WUNLOCK(object);
4411                 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4412                 VM_OBJECT_WLOCK(object);
4413                 vm_object_pip_wakeupn(object, after);
4414                 /* Pager may have replaced a page. */
4415                 m = ma[0];
4416                 if (rv != VM_PAGER_OK) {
4417                         if ((allocflags & VM_ALLOC_WIRED) != 0)
4418                                 vm_page_unwire_noq(m);
4419                         for (i = 0; i < after; i++) {
4420                                 if (!vm_page_wired(ma[i]))
4421                                         vm_page_free(ma[i]);
4422                                 else
4423                                         vm_page_xunbusy(ma[i]);
4424                         }
4425                         *mp = NULL;
4426                         return (rv);
4427                 }
4428                 for (i = 1; i < after; i++)
4429                         vm_page_readahead_finish(ma[i]);
4430                 MPASS(vm_page_all_valid(m));
4431         } else {
4432                 vm_page_zero_invalid(m, TRUE);
4433         }
4434 out:
4435         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4436                 if (xbusy)
4437                         vm_page_xunbusy(m);
4438                 else
4439                         vm_page_sunbusy(m);
4440         }
4441         if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy)
4442                 vm_page_busy_downgrade(m);
4443         *mp = m;
4444         return (VM_PAGER_OK);
4445 }
4446
4447 /*
4448  * Return the specified range of pages from the given object.  For each
4449  * page offset within the range, if a page already exists within the object
4450  * at that offset and it is busy, then wait for it to change state.  If,
4451  * instead, the page doesn't exist, then allocate it.
4452  *
4453  * The caller must always specify an allocation class.
4454  *
4455  * allocation classes:
4456  *      VM_ALLOC_NORMAL         normal process request
4457  *      VM_ALLOC_SYSTEM         system *really* needs the pages
4458  *
4459  * The caller must always specify that the pages are to be busied and/or
4460  * wired.
4461  *
4462  * optional allocation flags:
4463  *      VM_ALLOC_IGN_SBUSY      do not sleep on soft busy pages
4464  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
4465  *      VM_ALLOC_NOWAIT         do not sleep
4466  *      VM_ALLOC_SBUSY          set page to sbusy state
4467  *      VM_ALLOC_WIRED          wire the pages
4468  *      VM_ALLOC_ZERO           zero and validate any invalid pages
4469  *
4470  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4471  * may return a partial prefix of the requested range.
4472  */
4473 int
4474 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4475     vm_page_t *ma, int count)
4476 {
4477         vm_page_t m, mpred;
4478         int pflags;
4479         int i;
4480
4481         VM_OBJECT_ASSERT_WLOCKED(object);
4482         KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4483             ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4484
4485         pflags = vm_page_grab_pflags(allocflags);
4486         if (count == 0)
4487                 return (0);
4488
4489         i = 0;
4490 retrylookup:
4491         m = vm_radix_lookup_le(&object->rtree, pindex + i);
4492         if (m == NULL || m->pindex != pindex + i) {
4493                 mpred = m;
4494                 m = NULL;
4495         } else
4496                 mpred = TAILQ_PREV(m, pglist, listq);
4497         for (; i < count; i++) {
4498                 if (m != NULL) {
4499                         if (!vm_page_acquire_flags(m, allocflags)) {
4500                                 if (vm_page_busy_sleep_flags(object, m,
4501                                     "grbmaw", allocflags))
4502                                         goto retrylookup;
4503                                 break;
4504                         }
4505                 } else {
4506                         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4507                                 break;
4508                         m = vm_page_alloc_after(object, pindex + i,
4509                             pflags | VM_ALLOC_COUNT(count - i), mpred);
4510                         if (m == NULL) {
4511                                 if ((allocflags & (VM_ALLOC_NOWAIT |
4512                                     VM_ALLOC_WAITFAIL)) != 0)
4513                                         break;
4514                                 goto retrylookup;
4515                         }
4516                 }
4517                 if (vm_page_none_valid(m) &&
4518                     (allocflags & VM_ALLOC_ZERO) != 0) {
4519                         if ((m->flags & PG_ZERO) == 0)
4520                                 pmap_zero_page(m);
4521                         vm_page_valid(m);
4522                 }
4523                 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4524                         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4525                                 vm_page_sunbusy(m);
4526                         else
4527                                 vm_page_xunbusy(m);
4528                 }
4529                 ma[i] = mpred = m;
4530                 m = vm_page_next(m);
4531         }
4532         return (i);
4533 }
4534
4535 /*
4536  * Mapping function for valid or dirty bits in a page.
4537  *
4538  * Inputs are required to range within a page.
4539  */
4540 vm_page_bits_t
4541 vm_page_bits(int base, int size)
4542 {
4543         int first_bit;
4544         int last_bit;
4545
4546         KASSERT(
4547             base + size <= PAGE_SIZE,
4548             ("vm_page_bits: illegal base/size %d/%d", base, size)
4549         );
4550
4551         if (size == 0)          /* handle degenerate case */
4552                 return (0);
4553
4554         first_bit = base >> DEV_BSHIFT;
4555         last_bit = (base + size - 1) >> DEV_BSHIFT;
4556
4557         return (((vm_page_bits_t)2 << last_bit) -
4558             ((vm_page_bits_t)1 << first_bit));
4559 }
4560
4561 void
4562 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4563 {
4564
4565 #if PAGE_SIZE == 32768
4566         atomic_set_64((uint64_t *)bits, set);
4567 #elif PAGE_SIZE == 16384
4568         atomic_set_32((uint32_t *)bits, set);
4569 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4570         atomic_set_16((uint16_t *)bits, set);
4571 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4572         atomic_set_8((uint8_t *)bits, set);
4573 #else           /* PAGE_SIZE <= 8192 */
4574         uintptr_t addr;
4575         int shift;
4576
4577         addr = (uintptr_t)bits;
4578         /*
4579          * Use a trick to perform a 32-bit atomic on the
4580          * containing aligned word, to not depend on the existence
4581          * of atomic_{set, clear}_{8, 16}.
4582          */
4583         shift = addr & (sizeof(uint32_t) - 1);
4584 #if BYTE_ORDER == BIG_ENDIAN
4585         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4586 #else
4587         shift *= NBBY;
4588 #endif
4589         addr &= ~(sizeof(uint32_t) - 1);
4590         atomic_set_32((uint32_t *)addr, set << shift);
4591 #endif          /* PAGE_SIZE */
4592 }
4593
4594 static inline void
4595 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4596 {
4597
4598 #if PAGE_SIZE == 32768
4599         atomic_clear_64((uint64_t *)bits, clear);
4600 #elif PAGE_SIZE == 16384
4601         atomic_clear_32((uint32_t *)bits, clear);
4602 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4603         atomic_clear_16((uint16_t *)bits, clear);
4604 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4605         atomic_clear_8((uint8_t *)bits, clear);
4606 #else           /* PAGE_SIZE <= 8192 */
4607         uintptr_t addr;
4608         int shift;
4609
4610         addr = (uintptr_t)bits;
4611         /*
4612          * Use a trick to perform a 32-bit atomic on the
4613          * containing aligned word, to not depend on the existence
4614          * of atomic_{set, clear}_{8, 16}.
4615          */
4616         shift = addr & (sizeof(uint32_t) - 1);
4617 #if BYTE_ORDER == BIG_ENDIAN
4618         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4619 #else
4620         shift *= NBBY;
4621 #endif
4622         addr &= ~(sizeof(uint32_t) - 1);
4623         atomic_clear_32((uint32_t *)addr, clear << shift);
4624 #endif          /* PAGE_SIZE */
4625 }
4626
4627 static inline vm_page_bits_t
4628 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
4629 {
4630 #if PAGE_SIZE == 32768
4631         uint64_t old;
4632
4633         old = *bits;
4634         while (atomic_fcmpset_64(bits, &old, newbits) == 0);
4635         return (old);
4636 #elif PAGE_SIZE == 16384
4637         uint32_t old;
4638
4639         old = *bits;
4640         while (atomic_fcmpset_32(bits, &old, newbits) == 0);
4641         return (old);
4642 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
4643         uint16_t old;
4644
4645         old = *bits;
4646         while (atomic_fcmpset_16(bits, &old, newbits) == 0);
4647         return (old);
4648 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
4649         uint8_t old;
4650
4651         old = *bits;
4652         while (atomic_fcmpset_8(bits, &old, newbits) == 0);
4653         return (old);
4654 #else           /* PAGE_SIZE <= 4096*/
4655         uintptr_t addr;
4656         uint32_t old, new, mask;
4657         int shift;
4658
4659         addr = (uintptr_t)bits;
4660         /*
4661          * Use a trick to perform a 32-bit atomic on the
4662          * containing aligned word, to not depend on the existence
4663          * of atomic_{set, swap, clear}_{8, 16}.
4664          */
4665         shift = addr & (sizeof(uint32_t) - 1);
4666 #if BYTE_ORDER == BIG_ENDIAN
4667         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4668 #else
4669         shift *= NBBY;
4670 #endif
4671         addr &= ~(sizeof(uint32_t) - 1);
4672         mask = VM_PAGE_BITS_ALL << shift;
4673
4674         old = *bits;
4675         do {
4676                 new = old & ~mask;
4677                 new |= newbits << shift;
4678         } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
4679         return (old >> shift);
4680 #endif          /* PAGE_SIZE */
4681 }
4682
4683 /*
4684  *      vm_page_set_valid_range:
4685  *
4686  *      Sets portions of a page valid.  The arguments are expected
4687  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4688  *      of any partial chunks touched by the range.  The invalid portion of
4689  *      such chunks will be zeroed.
4690  *
4691  *      (base + size) must be less then or equal to PAGE_SIZE.
4692  */
4693 void
4694 vm_page_set_valid_range(vm_page_t m, int base, int size)
4695 {
4696         int endoff, frag;
4697         vm_page_bits_t pagebits;
4698
4699         vm_page_assert_busied(m);
4700         if (size == 0)  /* handle degenerate case */
4701                 return;
4702
4703         /*
4704          * If the base is not DEV_BSIZE aligned and the valid
4705          * bit is clear, we have to zero out a portion of the
4706          * first block.
4707          */
4708         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4709             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4710                 pmap_zero_page_area(m, frag, base - frag);
4711
4712         /*
4713          * If the ending offset is not DEV_BSIZE aligned and the
4714          * valid bit is clear, we have to zero out a portion of
4715          * the last block.
4716          */
4717         endoff = base + size;
4718         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4719             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4720                 pmap_zero_page_area(m, endoff,
4721                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4722
4723         /*
4724          * Assert that no previously invalid block that is now being validated
4725          * is already dirty.
4726          */
4727         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4728             ("vm_page_set_valid_range: page %p is dirty", m));
4729
4730         /*
4731          * Set valid bits inclusive of any overlap.
4732          */
4733         pagebits = vm_page_bits(base, size);
4734         if (vm_page_xbusied(m))
4735                 m->valid |= pagebits;
4736         else
4737                 vm_page_bits_set(m, &m->valid, pagebits);
4738 }
4739
4740 /*
4741  * Set the page dirty bits and free the invalid swap space if
4742  * present.  Returns the previous dirty bits.
4743  */
4744 vm_page_bits_t
4745 vm_page_set_dirty(vm_page_t m)
4746 {
4747         vm_page_bits_t old;
4748
4749         VM_PAGE_OBJECT_BUSY_ASSERT(m);
4750
4751         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
4752                 old = m->dirty;
4753                 m->dirty = VM_PAGE_BITS_ALL;
4754         } else
4755                 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
4756         if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
4757                 vm_pager_page_unswapped(m);
4758
4759         return (old);
4760 }
4761
4762 /*
4763  * Clear the given bits from the specified page's dirty field.
4764  */
4765 static __inline void
4766 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4767 {
4768
4769         vm_page_assert_busied(m);
4770
4771         /*
4772          * If the page is xbusied and not write mapped we are the
4773          * only thread that can modify dirty bits.  Otherwise, The pmap
4774          * layer can call vm_page_dirty() without holding a distinguished
4775          * lock.  The combination of page busy and atomic operations
4776          * suffice to guarantee consistency of the page dirty field.
4777          */
4778         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4779                 m->dirty &= ~pagebits;
4780         else
4781                 vm_page_bits_clear(m, &m->dirty, pagebits);
4782 }
4783
4784 /*
4785  *      vm_page_set_validclean:
4786  *
4787  *      Sets portions of a page valid and clean.  The arguments are expected
4788  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4789  *      of any partial chunks touched by the range.  The invalid portion of
4790  *      such chunks will be zero'd.
4791  *
4792  *      (base + size) must be less then or equal to PAGE_SIZE.
4793  */
4794 void
4795 vm_page_set_validclean(vm_page_t m, int base, int size)
4796 {
4797         vm_page_bits_t oldvalid, pagebits;
4798         int endoff, frag;
4799
4800         vm_page_assert_busied(m);
4801         if (size == 0)  /* handle degenerate case */
4802                 return;
4803
4804         /*
4805          * If the base is not DEV_BSIZE aligned and the valid
4806          * bit is clear, we have to zero out a portion of the
4807          * first block.
4808          */
4809         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4810             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4811                 pmap_zero_page_area(m, frag, base - frag);
4812
4813         /*
4814          * If the ending offset is not DEV_BSIZE aligned and the
4815          * valid bit is clear, we have to zero out a portion of
4816          * the last block.
4817          */
4818         endoff = base + size;
4819         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4820             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4821                 pmap_zero_page_area(m, endoff,
4822                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4823
4824         /*
4825          * Set valid, clear dirty bits.  If validating the entire
4826          * page we can safely clear the pmap modify bit.  We also
4827          * use this opportunity to clear the PGA_NOSYNC flag.  If a process
4828          * takes a write fault on a MAP_NOSYNC memory area the flag will
4829          * be set again.
4830          *
4831          * We set valid bits inclusive of any overlap, but we can only
4832          * clear dirty bits for DEV_BSIZE chunks that are fully within
4833          * the range.
4834          */
4835         oldvalid = m->valid;
4836         pagebits = vm_page_bits(base, size);
4837         if (vm_page_xbusied(m))
4838                 m->valid |= pagebits;
4839         else
4840                 vm_page_bits_set(m, &m->valid, pagebits);
4841 #if 0   /* NOT YET */
4842         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4843                 frag = DEV_BSIZE - frag;
4844                 base += frag;
4845                 size -= frag;
4846                 if (size < 0)
4847                         size = 0;
4848         }
4849         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4850 #endif
4851         if (base == 0 && size == PAGE_SIZE) {
4852                 /*
4853                  * The page can only be modified within the pmap if it is
4854                  * mapped, and it can only be mapped if it was previously
4855                  * fully valid.
4856                  */
4857                 if (oldvalid == VM_PAGE_BITS_ALL)
4858                         /*
4859                          * Perform the pmap_clear_modify() first.  Otherwise,
4860                          * a concurrent pmap operation, such as
4861                          * pmap_protect(), could clear a modification in the
4862                          * pmap and set the dirty field on the page before
4863                          * pmap_clear_modify() had begun and after the dirty
4864                          * field was cleared here.
4865                          */
4866                         pmap_clear_modify(m);
4867                 m->dirty = 0;
4868                 vm_page_aflag_clear(m, PGA_NOSYNC);
4869         } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
4870                 m->dirty &= ~pagebits;
4871         else
4872                 vm_page_clear_dirty_mask(m, pagebits);
4873 }
4874
4875 void
4876 vm_page_clear_dirty(vm_page_t m, int base, int size)
4877 {
4878
4879         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4880 }
4881
4882 /*
4883  *      vm_page_set_invalid:
4884  *
4885  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
4886  *      valid and dirty bits for the effected areas are cleared.
4887  */
4888 void
4889 vm_page_set_invalid(vm_page_t m, int base, int size)
4890 {
4891         vm_page_bits_t bits;
4892         vm_object_t object;
4893
4894         /*
4895          * The object lock is required so that pages can't be mapped
4896          * read-only while we're in the process of invalidating them.
4897          */
4898         object = m->object;
4899         VM_OBJECT_ASSERT_WLOCKED(object);
4900         vm_page_assert_busied(m);
4901
4902         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4903             size >= object->un_pager.vnp.vnp_size)
4904                 bits = VM_PAGE_BITS_ALL;
4905         else
4906                 bits = vm_page_bits(base, size);
4907         if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
4908                 pmap_remove_all(m);
4909         KASSERT((bits == 0 && vm_page_all_valid(m)) ||
4910             !pmap_page_is_mapped(m),
4911             ("vm_page_set_invalid: page %p is mapped", m));
4912         if (vm_page_xbusied(m)) {
4913                 m->valid &= ~bits;
4914                 m->dirty &= ~bits;
4915         } else {
4916                 vm_page_bits_clear(m, &m->valid, bits);
4917                 vm_page_bits_clear(m, &m->dirty, bits);
4918         }
4919 }
4920
4921 /*
4922  *      vm_page_invalid:
4923  *
4924  *      Invalidates the entire page.  The page must be busy, unmapped, and
4925  *      the enclosing object must be locked.  The object locks protects
4926  *      against concurrent read-only pmap enter which is done without
4927  *      busy.
4928  */
4929 void
4930 vm_page_invalid(vm_page_t m)
4931 {
4932
4933         vm_page_assert_busied(m);
4934         VM_OBJECT_ASSERT_LOCKED(m->object);
4935         MPASS(!pmap_page_is_mapped(m));
4936
4937         if (vm_page_xbusied(m))
4938                 m->valid = 0;
4939         else
4940                 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
4941 }
4942
4943 /*
4944  * vm_page_zero_invalid()
4945  *
4946  *      The kernel assumes that the invalid portions of a page contain
4947  *      garbage, but such pages can be mapped into memory by user code.
4948  *      When this occurs, we must zero out the non-valid portions of the
4949  *      page so user code sees what it expects.
4950  *
4951  *      Pages are most often semi-valid when the end of a file is mapped
4952  *      into memory and the file's size is not page aligned.
4953  */
4954 void
4955 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4956 {
4957         int b;
4958         int i;
4959
4960         /*
4961          * Scan the valid bits looking for invalid sections that
4962          * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4963          * valid bit may be set ) have already been zeroed by
4964          * vm_page_set_validclean().
4965          */
4966         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4967                 if (i == (PAGE_SIZE / DEV_BSIZE) ||
4968                     (m->valid & ((vm_page_bits_t)1 << i))) {
4969                         if (i > b) {
4970                                 pmap_zero_page_area(m,
4971                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4972                         }
4973                         b = i + 1;
4974                 }
4975         }
4976
4977         /*
4978          * setvalid is TRUE when we can safely set the zero'd areas
4979          * as being valid.  We can do this if there are no cache consistancy
4980          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4981          */
4982         if (setvalid)
4983                 vm_page_valid(m);
4984 }
4985
4986 /*
4987  *      vm_page_is_valid:
4988  *
4989  *      Is (partial) page valid?  Note that the case where size == 0
4990  *      will return FALSE in the degenerate case where the page is
4991  *      entirely invalid, and TRUE otherwise.
4992  *
4993  *      Some callers envoke this routine without the busy lock held and
4994  *      handle races via higher level locks.  Typical callers should
4995  *      hold a busy lock to prevent invalidation.
4996  */
4997 int
4998 vm_page_is_valid(vm_page_t m, int base, int size)
4999 {
5000         vm_page_bits_t bits;
5001
5002         bits = vm_page_bits(base, size);
5003         return (m->valid != 0 && (m->valid & bits) == bits);
5004 }
5005
5006 /*
5007  * Returns true if all of the specified predicates are true for the entire
5008  * (super)page and false otherwise.
5009  */
5010 bool
5011 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5012 {
5013         vm_object_t object;
5014         int i, npages;
5015
5016         object = m->object;
5017         if (skip_m != NULL && skip_m->object != object)
5018                 return (false);
5019         VM_OBJECT_ASSERT_LOCKED(object);
5020         npages = atop(pagesizes[m->psind]);
5021
5022         /*
5023          * The physically contiguous pages that make up a superpage, i.e., a
5024          * page with a page size index ("psind") greater than zero, will
5025          * occupy adjacent entries in vm_page_array[].
5026          */
5027         for (i = 0; i < npages; i++) {
5028                 /* Always test object consistency, including "skip_m". */
5029                 if (m[i].object != object)
5030                         return (false);
5031                 if (&m[i] == skip_m)
5032                         continue;
5033                 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5034                         return (false);
5035                 if ((flags & PS_ALL_DIRTY) != 0) {
5036                         /*
5037                          * Calling vm_page_test_dirty() or pmap_is_modified()
5038                          * might stop this case from spuriously returning
5039                          * "false".  However, that would require a write lock
5040                          * on the object containing "m[i]".
5041                          */
5042                         if (m[i].dirty != VM_PAGE_BITS_ALL)
5043                                 return (false);
5044                 }
5045                 if ((flags & PS_ALL_VALID) != 0 &&
5046                     m[i].valid != VM_PAGE_BITS_ALL)
5047                         return (false);
5048         }
5049         return (true);
5050 }
5051
5052 /*
5053  * Set the page's dirty bits if the page is modified.
5054  */
5055 void
5056 vm_page_test_dirty(vm_page_t m)
5057 {
5058
5059         vm_page_assert_busied(m);
5060         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5061                 vm_page_dirty(m);
5062 }
5063
5064 void
5065 vm_page_valid(vm_page_t m)
5066 {
5067
5068         vm_page_assert_busied(m);
5069         if (vm_page_xbusied(m))
5070                 m->valid = VM_PAGE_BITS_ALL;
5071         else
5072                 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5073 }
5074
5075 void
5076 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5077 {
5078
5079         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5080 }
5081
5082 void
5083 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5084 {
5085
5086         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5087 }
5088
5089 int
5090 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5091 {
5092
5093         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5094 }
5095
5096 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5097 void
5098 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5099 {
5100
5101         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5102 }
5103
5104 void
5105 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5106 {
5107
5108         mtx_assert_(vm_page_lockptr(m), a, file, line);
5109 }
5110 #endif
5111
5112 #ifdef INVARIANTS
5113 void
5114 vm_page_object_busy_assert(vm_page_t m)
5115 {
5116
5117         /*
5118          * Certain of the page's fields may only be modified by the
5119          * holder of a page or object busy.
5120          */
5121         if (m->object != NULL && !vm_page_busied(m))
5122                 VM_OBJECT_ASSERT_BUSY(m->object);
5123 }
5124
5125 void
5126 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5127 {
5128
5129         if ((bits & PGA_WRITEABLE) == 0)
5130                 return;
5131
5132         /*
5133          * The PGA_WRITEABLE flag can only be set if the page is
5134          * managed, is exclusively busied or the object is locked.
5135          * Currently, this flag is only set by pmap_enter().
5136          */
5137         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5138             ("PGA_WRITEABLE on unmanaged page"));
5139         if (!vm_page_xbusied(m))
5140                 VM_OBJECT_ASSERT_BUSY(m->object);
5141 }
5142 #endif
5143
5144 #include "opt_ddb.h"
5145 #ifdef DDB
5146 #include <sys/kernel.h>
5147
5148 #include <ddb/ddb.h>
5149
5150 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5151 {
5152
5153         db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5154         db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5155         db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5156         db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5157         db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5158         db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5159         db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5160         db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5161         db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5162 }
5163
5164 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5165 {
5166         int dom;
5167
5168         db_printf("pq_free %d\n", vm_free_count());
5169         for (dom = 0; dom < vm_ndomains; dom++) {
5170                 db_printf(
5171     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5172                     dom,
5173                     vm_dom[dom].vmd_page_count,
5174                     vm_dom[dom].vmd_free_count,
5175                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5176                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5177                     vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5178                     vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5179         }
5180 }
5181
5182 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5183 {
5184         vm_page_t m;
5185         boolean_t phys, virt;
5186
5187         if (!have_addr) {
5188                 db_printf("show pginfo addr\n");
5189                 return;
5190         }
5191
5192         phys = strchr(modif, 'p') != NULL;
5193         virt = strchr(modif, 'v') != NULL;
5194         if (virt)
5195                 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5196         else if (phys)
5197                 m = PHYS_TO_VM_PAGE(addr);
5198         else
5199                 m = (vm_page_t)addr;
5200         db_printf(
5201     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
5202     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5203             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5204             m->a.queue, m->ref_count, m->a.flags, m->oflags,
5205             m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5206 }
5207 #endif /* DDB */