]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_page.c
Don't hold the object lock while calling getpages.
[FreeBSD/FreeBSD.git] / sys / vm / vm_page.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
36  */
37
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64
65 /*
66  *      Resident memory management module.
67  */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_vm.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113
114 #include <machine/md_var.h>
115
116 struct vm_domain vm_dom[MAXMEMDOM];
117
118 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
119
120 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
121
122 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
123 /* The following fields are protected by the domainset lock. */
124 domainset_t __exclusive_cache_line vm_min_domains;
125 domainset_t __exclusive_cache_line vm_severe_domains;
126 static int vm_min_waiters;
127 static int vm_severe_waiters;
128 static int vm_pageproc_waiters;
129
130 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0,
131     "VM page statistics");
132
133 static counter_u64_t pqstate_commit_retries = EARLY_COUNTER;
134 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
135     CTLFLAG_RD, &pqstate_commit_retries,
136     "Number of failed per-page atomic queue state updates");
137
138 static counter_u64_t queue_ops = EARLY_COUNTER;
139 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
140     CTLFLAG_RD, &queue_ops,
141     "Number of batched queue operations");
142
143 static counter_u64_t queue_nops = EARLY_COUNTER;
144 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
145     CTLFLAG_RD, &queue_nops,
146     "Number of batched queue operations with no effects");
147
148 static void
149 counter_startup(void)
150 {
151
152         pqstate_commit_retries = counter_u64_alloc(M_WAITOK);
153         queue_ops = counter_u64_alloc(M_WAITOK);
154         queue_nops = counter_u64_alloc(M_WAITOK);
155 }
156 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
157
158 /*
159  * bogus page -- for I/O to/from partially complete buffers,
160  * or for paging into sparsely invalid regions.
161  */
162 vm_page_t bogus_page;
163
164 vm_page_t vm_page_array;
165 long vm_page_array_size;
166 long first_page;
167
168 static TAILQ_HEAD(, vm_page) blacklist_head;
169 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
170 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
171     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
172
173 static uma_zone_t fakepg_zone;
174
175 static void vm_page_alloc_check(vm_page_t m);
176 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
177     const char *wmesg, bool nonshared, bool locked);
178 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
179 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
180 static bool vm_page_free_prep(vm_page_t m);
181 static void vm_page_free_toq(vm_page_t m);
182 static void vm_page_init(void *dummy);
183 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
184     vm_pindex_t pindex, vm_page_t mpred);
185 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
186     vm_page_t mpred);
187 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
188     const uint16_t nflag);
189 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
190     vm_page_t m_run, vm_paddr_t high);
191 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
192 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
193     int req);
194 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
195     int flags);
196 static void vm_page_zone_release(void *arg, void **store, int cnt);
197
198 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
199
200 static void
201 vm_page_init(void *dummy)
202 {
203
204         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
205             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
206         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
207             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
208 }
209
210 /*
211  * The cache page zone is initialized later since we need to be able to allocate
212  * pages before UMA is fully initialized.
213  */
214 static void
215 vm_page_init_cache_zones(void *dummy __unused)
216 {
217         struct vm_domain *vmd;
218         struct vm_pgcache *pgcache;
219         int cache, domain, maxcache, pool;
220
221         maxcache = 0;
222         TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
223         maxcache *= mp_ncpus;
224         for (domain = 0; domain < vm_ndomains; domain++) {
225                 vmd = VM_DOMAIN(domain);
226                 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
227                         pgcache = &vmd->vmd_pgcache[pool];
228                         pgcache->domain = domain;
229                         pgcache->pool = pool;
230                         pgcache->zone = uma_zcache_create("vm pgcache",
231                             PAGE_SIZE, NULL, NULL, NULL, NULL,
232                             vm_page_zone_import, vm_page_zone_release, pgcache,
233                             UMA_ZONE_VM);
234
235                         /*
236                          * Limit each pool's zone to 0.1% of the pages in the
237                          * domain.
238                          */
239                         cache = maxcache != 0 ? maxcache :
240                             vmd->vmd_page_count / 1000;
241                         uma_zone_set_maxcache(pgcache->zone, cache);
242                 }
243         }
244 }
245 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
246
247 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
248 #if PAGE_SIZE == 32768
249 #ifdef CTASSERT
250 CTASSERT(sizeof(u_long) >= 8);
251 #endif
252 #endif
253
254 /*
255  *      vm_set_page_size:
256  *
257  *      Sets the page size, perhaps based upon the memory
258  *      size.  Must be called before any use of page-size
259  *      dependent functions.
260  */
261 void
262 vm_set_page_size(void)
263 {
264         if (vm_cnt.v_page_size == 0)
265                 vm_cnt.v_page_size = PAGE_SIZE;
266         if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
267                 panic("vm_set_page_size: page size not a power of two");
268 }
269
270 /*
271  *      vm_page_blacklist_next:
272  *
273  *      Find the next entry in the provided string of blacklist
274  *      addresses.  Entries are separated by space, comma, or newline.
275  *      If an invalid integer is encountered then the rest of the
276  *      string is skipped.  Updates the list pointer to the next
277  *      character, or NULL if the string is exhausted or invalid.
278  */
279 static vm_paddr_t
280 vm_page_blacklist_next(char **list, char *end)
281 {
282         vm_paddr_t bad;
283         char *cp, *pos;
284
285         if (list == NULL || *list == NULL)
286                 return (0);
287         if (**list =='\0') {
288                 *list = NULL;
289                 return (0);
290         }
291
292         /*
293          * If there's no end pointer then the buffer is coming from
294          * the kenv and we know it's null-terminated.
295          */
296         if (end == NULL)
297                 end = *list + strlen(*list);
298
299         /* Ensure that strtoq() won't walk off the end */
300         if (*end != '\0') {
301                 if (*end == '\n' || *end == ' ' || *end  == ',')
302                         *end = '\0';
303                 else {
304                         printf("Blacklist not terminated, skipping\n");
305                         *list = NULL;
306                         return (0);
307                 }
308         }
309
310         for (pos = *list; *pos != '\0'; pos = cp) {
311                 bad = strtoq(pos, &cp, 0);
312                 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
313                         if (bad == 0) {
314                                 if (++cp < end)
315                                         continue;
316                                 else
317                                         break;
318                         }
319                 } else
320                         break;
321                 if (*cp == '\0' || ++cp >= end)
322                         *list = NULL;
323                 else
324                         *list = cp;
325                 return (trunc_page(bad));
326         }
327         printf("Garbage in RAM blacklist, skipping\n");
328         *list = NULL;
329         return (0);
330 }
331
332 bool
333 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
334 {
335         struct vm_domain *vmd;
336         vm_page_t m;
337         int ret;
338
339         m = vm_phys_paddr_to_vm_page(pa);
340         if (m == NULL)
341                 return (true); /* page does not exist, no failure */
342
343         vmd = vm_pagequeue_domain(m);
344         vm_domain_free_lock(vmd);
345         ret = vm_phys_unfree_page(m);
346         vm_domain_free_unlock(vmd);
347         if (ret != 0) {
348                 vm_domain_freecnt_inc(vmd, -1);
349                 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
350                 if (verbose)
351                         printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
352         }
353         return (ret);
354 }
355
356 /*
357  *      vm_page_blacklist_check:
358  *
359  *      Iterate through the provided string of blacklist addresses, pulling
360  *      each entry out of the physical allocator free list and putting it
361  *      onto a list for reporting via the vm.page_blacklist sysctl.
362  */
363 static void
364 vm_page_blacklist_check(char *list, char *end)
365 {
366         vm_paddr_t pa;
367         char *next;
368
369         next = list;
370         while (next != NULL) {
371                 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
372                         continue;
373                 vm_page_blacklist_add(pa, bootverbose);
374         }
375 }
376
377 /*
378  *      vm_page_blacklist_load:
379  *
380  *      Search for a special module named "ram_blacklist".  It'll be a
381  *      plain text file provided by the user via the loader directive
382  *      of the same name.
383  */
384 static void
385 vm_page_blacklist_load(char **list, char **end)
386 {
387         void *mod;
388         u_char *ptr;
389         u_int len;
390
391         mod = NULL;
392         ptr = NULL;
393
394         mod = preload_search_by_type("ram_blacklist");
395         if (mod != NULL) {
396                 ptr = preload_fetch_addr(mod);
397                 len = preload_fetch_size(mod);
398         }
399         *list = ptr;
400         if (ptr != NULL)
401                 *end = ptr + len;
402         else
403                 *end = NULL;
404         return;
405 }
406
407 static int
408 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
409 {
410         vm_page_t m;
411         struct sbuf sbuf;
412         int error, first;
413
414         first = 1;
415         error = sysctl_wire_old_buffer(req, 0);
416         if (error != 0)
417                 return (error);
418         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
419         TAILQ_FOREACH(m, &blacklist_head, listq) {
420                 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
421                     (uintmax_t)m->phys_addr);
422                 first = 0;
423         }
424         error = sbuf_finish(&sbuf);
425         sbuf_delete(&sbuf);
426         return (error);
427 }
428
429 /*
430  * Initialize a dummy page for use in scans of the specified paging queue.
431  * In principle, this function only needs to set the flag PG_MARKER.
432  * Nonetheless, it write busies the page as a safety precaution.
433  */
434 static void
435 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
436 {
437
438         bzero(marker, sizeof(*marker));
439         marker->flags = PG_MARKER;
440         marker->a.flags = aflags;
441         marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
442         marker->a.queue = queue;
443 }
444
445 static void
446 vm_page_domain_init(int domain)
447 {
448         struct vm_domain *vmd;
449         struct vm_pagequeue *pq;
450         int i;
451
452         vmd = VM_DOMAIN(domain);
453         bzero(vmd, sizeof(*vmd));
454         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
455             "vm inactive pagequeue";
456         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
457             "vm active pagequeue";
458         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
459             "vm laundry pagequeue";
460         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
461             "vm unswappable pagequeue";
462         vmd->vmd_domain = domain;
463         vmd->vmd_page_count = 0;
464         vmd->vmd_free_count = 0;
465         vmd->vmd_segs = 0;
466         vmd->vmd_oom = FALSE;
467         for (i = 0; i < PQ_COUNT; i++) {
468                 pq = &vmd->vmd_pagequeues[i];
469                 TAILQ_INIT(&pq->pq_pl);
470                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
471                     MTX_DEF | MTX_DUPOK);
472                 pq->pq_pdpages = 0;
473                 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
474         }
475         mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
476         mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
477         snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
478
479         /*
480          * inacthead is used to provide FIFO ordering for LRU-bypassing
481          * insertions.
482          */
483         vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
484         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
485             &vmd->vmd_inacthead, plinks.q);
486
487         /*
488          * The clock pages are used to implement active queue scanning without
489          * requeues.  Scans start at clock[0], which is advanced after the scan
490          * ends.  When the two clock hands meet, they are reset and scanning
491          * resumes from the head of the queue.
492          */
493         vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
494         vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
495         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
496             &vmd->vmd_clock[0], plinks.q);
497         TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
498             &vmd->vmd_clock[1], plinks.q);
499 }
500
501 /*
502  * Initialize a physical page in preparation for adding it to the free
503  * lists.
504  */
505 static void
506 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
507 {
508
509         m->object = NULL;
510         m->ref_count = 0;
511         m->busy_lock = VPB_UNBUSIED;
512         m->flags = m->a.flags = 0;
513         m->phys_addr = pa;
514         m->a.queue = PQ_NONE;
515         m->psind = 0;
516         m->segind = segind;
517         m->order = VM_NFREEORDER;
518         m->pool = VM_FREEPOOL_DEFAULT;
519         m->valid = m->dirty = 0;
520         pmap_page_init(m);
521 }
522
523 #ifndef PMAP_HAS_PAGE_ARRAY
524 static vm_paddr_t
525 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
526 {
527         vm_paddr_t new_end;
528
529         /*
530          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
531          * However, because this page is allocated from KVM, out-of-bounds
532          * accesses using the direct map will not be trapped.
533          */
534         *vaddr += PAGE_SIZE;
535
536         /*
537          * Allocate physical memory for the page structures, and map it.
538          */
539         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
540         vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
541             VM_PROT_READ | VM_PROT_WRITE);
542         vm_page_array_size = page_range;
543
544         return (new_end);
545 }
546 #endif
547
548 /*
549  *      vm_page_startup:
550  *
551  *      Initializes the resident memory module.  Allocates physical memory for
552  *      bootstrapping UMA and some data structures that are used to manage
553  *      physical pages.  Initializes these structures, and populates the free
554  *      page queues.
555  */
556 vm_offset_t
557 vm_page_startup(vm_offset_t vaddr)
558 {
559         struct vm_phys_seg *seg;
560         vm_page_t m;
561         char *list, *listend;
562         vm_paddr_t end, high_avail, low_avail, new_end, size;
563         vm_paddr_t page_range __unused;
564         vm_paddr_t last_pa, pa;
565         u_long pagecount;
566         int biggestone, i, segind;
567 #ifdef WITNESS
568         vm_offset_t mapped;
569         int witness_size;
570 #endif
571 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
572         long ii;
573 #endif
574
575         vaddr = round_page(vaddr);
576
577         vm_phys_early_startup();
578         biggestone = vm_phys_avail_largest();
579         end = phys_avail[biggestone+1];
580
581         /*
582          * Initialize the page and queue locks.
583          */
584         mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
585         for (i = 0; i < PA_LOCK_COUNT; i++)
586                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
587         for (i = 0; i < vm_ndomains; i++)
588                 vm_page_domain_init(i);
589
590         new_end = end;
591 #ifdef WITNESS
592         witness_size = round_page(witness_startup_count());
593         new_end -= witness_size;
594         mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
595             VM_PROT_READ | VM_PROT_WRITE);
596         bzero((void *)mapped, witness_size);
597         witness_startup((void *)mapped);
598 #endif
599
600 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
601     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
602     defined(__powerpc64__)
603         /*
604          * Allocate a bitmap to indicate that a random physical page
605          * needs to be included in a minidump.
606          *
607          * The amd64 port needs this to indicate which direct map pages
608          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
609          *
610          * However, i386 still needs this workspace internally within the
611          * minidump code.  In theory, they are not needed on i386, but are
612          * included should the sf_buf code decide to use them.
613          */
614         last_pa = 0;
615         for (i = 0; dump_avail[i + 1] != 0; i += 2)
616                 if (dump_avail[i + 1] > last_pa)
617                         last_pa = dump_avail[i + 1];
618         page_range = last_pa / PAGE_SIZE;
619         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
620         new_end -= vm_page_dump_size;
621         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
622             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
623         bzero((void *)vm_page_dump, vm_page_dump_size);
624 #else
625         (void)last_pa;
626 #endif
627 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
628     defined(__riscv) || defined(__powerpc64__)
629         /*
630          * Include the UMA bootstrap pages, witness pages and vm_page_dump
631          * in a crash dump.  When pmap_map() uses the direct map, they are
632          * not automatically included.
633          */
634         for (pa = new_end; pa < end; pa += PAGE_SIZE)
635                 dump_add_page(pa);
636 #endif
637         phys_avail[biggestone + 1] = new_end;
638 #ifdef __amd64__
639         /*
640          * Request that the physical pages underlying the message buffer be
641          * included in a crash dump.  Since the message buffer is accessed
642          * through the direct map, they are not automatically included.
643          */
644         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
645         last_pa = pa + round_page(msgbufsize);
646         while (pa < last_pa) {
647                 dump_add_page(pa);
648                 pa += PAGE_SIZE;
649         }
650 #endif
651         /*
652          * Compute the number of pages of memory that will be available for
653          * use, taking into account the overhead of a page structure per page.
654          * In other words, solve
655          *      "available physical memory" - round_page(page_range *
656          *          sizeof(struct vm_page)) = page_range * PAGE_SIZE 
657          * for page_range.  
658          */
659         low_avail = phys_avail[0];
660         high_avail = phys_avail[1];
661         for (i = 0; i < vm_phys_nsegs; i++) {
662                 if (vm_phys_segs[i].start < low_avail)
663                         low_avail = vm_phys_segs[i].start;
664                 if (vm_phys_segs[i].end > high_avail)
665                         high_avail = vm_phys_segs[i].end;
666         }
667         /* Skip the first chunk.  It is already accounted for. */
668         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
669                 if (phys_avail[i] < low_avail)
670                         low_avail = phys_avail[i];
671                 if (phys_avail[i + 1] > high_avail)
672                         high_avail = phys_avail[i + 1];
673         }
674         first_page = low_avail / PAGE_SIZE;
675 #ifdef VM_PHYSSEG_SPARSE
676         size = 0;
677         for (i = 0; i < vm_phys_nsegs; i++)
678                 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
679         for (i = 0; phys_avail[i + 1] != 0; i += 2)
680                 size += phys_avail[i + 1] - phys_avail[i];
681 #elif defined(VM_PHYSSEG_DENSE)
682         size = high_avail - low_avail;
683 #else
684 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
685 #endif
686
687 #ifdef PMAP_HAS_PAGE_ARRAY
688         pmap_page_array_startup(size / PAGE_SIZE);
689         biggestone = vm_phys_avail_largest();
690         end = new_end = phys_avail[biggestone + 1];
691 #else
692 #ifdef VM_PHYSSEG_DENSE
693         /*
694          * In the VM_PHYSSEG_DENSE case, the number of pages can account for
695          * the overhead of a page structure per page only if vm_page_array is
696          * allocated from the last physical memory chunk.  Otherwise, we must
697          * allocate page structures representing the physical memory
698          * underlying vm_page_array, even though they will not be used.
699          */
700         if (new_end != high_avail)
701                 page_range = size / PAGE_SIZE;
702         else
703 #endif
704         {
705                 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
706
707                 /*
708                  * If the partial bytes remaining are large enough for
709                  * a page (PAGE_SIZE) without a corresponding
710                  * 'struct vm_page', then new_end will contain an
711                  * extra page after subtracting the length of the VM
712                  * page array.  Compensate by subtracting an extra
713                  * page from new_end.
714                  */
715                 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
716                         if (new_end == high_avail)
717                                 high_avail -= PAGE_SIZE;
718                         new_end -= PAGE_SIZE;
719                 }
720         }
721         end = new_end;
722         new_end = vm_page_array_alloc(&vaddr, end, page_range);
723 #endif
724
725 #if VM_NRESERVLEVEL > 0
726         /*
727          * Allocate physical memory for the reservation management system's
728          * data structures, and map it.
729          */
730         new_end = vm_reserv_startup(&vaddr, new_end);
731 #endif
732 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
733     defined(__riscv) || defined(__powerpc64__)
734         /*
735          * Include vm_page_array and vm_reserv_array in a crash dump.
736          */
737         for (pa = new_end; pa < end; pa += PAGE_SIZE)
738                 dump_add_page(pa);
739 #endif
740         phys_avail[biggestone + 1] = new_end;
741
742         /*
743          * Add physical memory segments corresponding to the available
744          * physical pages.
745          */
746         for (i = 0; phys_avail[i + 1] != 0; i += 2)
747                 if (vm_phys_avail_size(i) != 0)
748                         vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
749
750         /*
751          * Initialize the physical memory allocator.
752          */
753         vm_phys_init();
754
755         /*
756          * Initialize the page structures and add every available page to the
757          * physical memory allocator's free lists.
758          */
759 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
760         for (ii = 0; ii < vm_page_array_size; ii++) {
761                 m = &vm_page_array[ii];
762                 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
763                 m->flags = PG_FICTITIOUS;
764         }
765 #endif
766         vm_cnt.v_page_count = 0;
767         for (segind = 0; segind < vm_phys_nsegs; segind++) {
768                 seg = &vm_phys_segs[segind];
769                 for (m = seg->first_page, pa = seg->start; pa < seg->end;
770                     m++, pa += PAGE_SIZE)
771                         vm_page_init_page(m, pa, segind);
772
773                 /*
774                  * Add the segment to the free lists only if it is covered by
775                  * one of the ranges in phys_avail.  Because we've added the
776                  * ranges to the vm_phys_segs array, we can assume that each
777                  * segment is either entirely contained in one of the ranges,
778                  * or doesn't overlap any of them.
779                  */
780                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
781                         struct vm_domain *vmd;
782
783                         if (seg->start < phys_avail[i] ||
784                             seg->end > phys_avail[i + 1])
785                                 continue;
786
787                         m = seg->first_page;
788                         pagecount = (u_long)atop(seg->end - seg->start);
789
790                         vmd = VM_DOMAIN(seg->domain);
791                         vm_domain_free_lock(vmd);
792                         vm_phys_enqueue_contig(m, pagecount);
793                         vm_domain_free_unlock(vmd);
794                         vm_domain_freecnt_inc(vmd, pagecount);
795                         vm_cnt.v_page_count += (u_int)pagecount;
796
797                         vmd = VM_DOMAIN(seg->domain);
798                         vmd->vmd_page_count += (u_int)pagecount;
799                         vmd->vmd_segs |= 1UL << m->segind;
800                         break;
801                 }
802         }
803
804         /*
805          * Remove blacklisted pages from the physical memory allocator.
806          */
807         TAILQ_INIT(&blacklist_head);
808         vm_page_blacklist_load(&list, &listend);
809         vm_page_blacklist_check(list, listend);
810
811         list = kern_getenv("vm.blacklist");
812         vm_page_blacklist_check(list, NULL);
813
814         freeenv(list);
815 #if VM_NRESERVLEVEL > 0
816         /*
817          * Initialize the reservation management system.
818          */
819         vm_reserv_init();
820 #endif
821
822         return (vaddr);
823 }
824
825 void
826 vm_page_reference(vm_page_t m)
827 {
828
829         vm_page_aflag_set(m, PGA_REFERENCED);
830 }
831
832 static bool
833 vm_page_acquire_flags(vm_page_t m, int allocflags)
834 {
835         bool locked;
836
837         if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
838                 locked = vm_page_trysbusy(m);
839         else
840                 locked = vm_page_tryxbusy(m);
841         if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
842                 vm_page_wire(m);
843         return (locked);
844 }
845
846 /*
847  *      vm_page_busy_sleep_flags
848  *
849  *      Sleep for busy according to VM_ALLOC_ parameters.
850  */
851 static bool
852 vm_page_busy_sleep_flags(vm_object_t object, vm_page_t m, const char *wmesg,
853     int allocflags)
854 {
855
856         if ((allocflags & VM_ALLOC_NOWAIT) != 0)
857                 return (false);
858         /*
859          * Reference the page before unlocking and
860          * sleeping so that the page daemon is less
861          * likely to reclaim it.
862          */
863         if ((allocflags & VM_ALLOC_NOCREAT) == 0)
864                 vm_page_aflag_set(m, PGA_REFERENCED);
865         if (_vm_page_busy_sleep(object, m, wmesg, (allocflags &
866             VM_ALLOC_IGN_SBUSY) != 0, true))
867                 VM_OBJECT_WLOCK(object);
868         if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
869                 return (false);
870         return (true);
871 }
872
873 /*
874  *      vm_page_busy_acquire:
875  *
876  *      Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
877  *      and drop the object lock if necessary.
878  */
879 bool
880 vm_page_busy_acquire(vm_page_t m, int allocflags)
881 {
882         vm_object_t obj;
883         bool locked;
884
885         /*
886          * The page-specific object must be cached because page
887          * identity can change during the sleep, causing the
888          * re-lock of a different object.
889          * It is assumed that a reference to the object is already
890          * held by the callers.
891          */
892         obj = m->object;
893         for (;;) {
894                 if (vm_page_acquire_flags(m, allocflags))
895                         return (true);
896                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
897                         return (false);
898                 if (obj != NULL)
899                         locked = VM_OBJECT_WOWNED(obj);
900                 else
901                         locked = false;
902                 MPASS(locked || vm_page_wired(m));
903                 if (_vm_page_busy_sleep(obj, m, "vmpba",
904                     (allocflags & VM_ALLOC_SBUSY) != 0, locked))
905                         VM_OBJECT_WLOCK(obj);
906                 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
907                         return (false);
908                 KASSERT(m->object == obj || m->object == NULL,
909                     ("vm_page_busy_acquire: page %p does not belong to %p",
910                     m, obj));
911         }
912 }
913
914 /*
915  *      vm_page_busy_downgrade:
916  *
917  *      Downgrade an exclusive busy page into a single shared busy page.
918  */
919 void
920 vm_page_busy_downgrade(vm_page_t m)
921 {
922         u_int x;
923
924         vm_page_assert_xbusied(m);
925
926         x = m->busy_lock;
927         for (;;) {
928                 if (atomic_fcmpset_rel_int(&m->busy_lock,
929                     &x, VPB_SHARERS_WORD(1)))
930                         break;
931         }
932         if ((x & VPB_BIT_WAITERS) != 0)
933                 wakeup(m);
934 }
935
936 /*
937  *
938  *      vm_page_busy_tryupgrade:
939  *
940  *      Attempt to upgrade a single shared busy into an exclusive busy.
941  */
942 int
943 vm_page_busy_tryupgrade(vm_page_t m)
944 {
945         u_int ce, x;
946
947         vm_page_assert_sbusied(m);
948
949         x = m->busy_lock;
950         ce = VPB_CURTHREAD_EXCLUSIVE;
951         for (;;) {
952                 if (VPB_SHARERS(x) > 1)
953                         return (0);
954                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
955                     ("vm_page_busy_tryupgrade: invalid lock state"));
956                 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
957                     ce | (x & VPB_BIT_WAITERS)))
958                         continue;
959                 return (1);
960         }
961 }
962
963 /*
964  *      vm_page_sbusied:
965  *
966  *      Return a positive value if the page is shared busied, 0 otherwise.
967  */
968 int
969 vm_page_sbusied(vm_page_t m)
970 {
971         u_int x;
972
973         x = m->busy_lock;
974         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
975 }
976
977 /*
978  *      vm_page_sunbusy:
979  *
980  *      Shared unbusy a page.
981  */
982 void
983 vm_page_sunbusy(vm_page_t m)
984 {
985         u_int x;
986
987         vm_page_assert_sbusied(m);
988
989         x = m->busy_lock;
990         for (;;) {
991                 if (VPB_SHARERS(x) > 1) {
992                         if (atomic_fcmpset_int(&m->busy_lock, &x,
993                             x - VPB_ONE_SHARER))
994                                 break;
995                         continue;
996                 }
997                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
998                     ("vm_page_sunbusy: invalid lock state"));
999                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1000                         continue;
1001                 if ((x & VPB_BIT_WAITERS) == 0)
1002                         break;
1003                 wakeup(m);
1004                 break;
1005         }
1006 }
1007
1008 /*
1009  *      vm_page_busy_sleep:
1010  *
1011  *      Sleep if the page is busy, using the page pointer as wchan.
1012  *      This is used to implement the hard-path of busying mechanism.
1013  *
1014  *      If nonshared is true, sleep only if the page is xbusy.
1015  *
1016  *      The object lock must be held on entry and will be released on exit.
1017  */
1018 void
1019 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1020 {
1021         vm_object_t obj;
1022
1023         obj = m->object;
1024         VM_OBJECT_ASSERT_LOCKED(obj);
1025         vm_page_lock_assert(m, MA_NOTOWNED);
1026
1027         if (!_vm_page_busy_sleep(obj, m, wmesg, nonshared, true))
1028                 VM_OBJECT_DROP(obj);
1029 }
1030
1031 /*
1032  *      _vm_page_busy_sleep:
1033  *
1034  *      Internal busy sleep function.
1035  */
1036 static bool
1037 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg,
1038     bool nonshared, bool locked)
1039 {
1040         u_int x;
1041
1042         /*
1043          * If the object is busy we must wait for that to drain to zero
1044          * before trying the page again.
1045          */
1046         if (obj != NULL && vm_object_busied(obj)) {
1047                 if (locked)
1048                         VM_OBJECT_DROP(obj);
1049                 vm_object_busy_wait(obj, wmesg);
1050                 return (locked);
1051         }
1052         sleepq_lock(m);
1053         x = m->busy_lock;
1054         if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
1055             ((x & VPB_BIT_WAITERS) == 0 &&
1056             !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
1057                 sleepq_release(m);
1058                 return (false);
1059         }
1060         if (locked)
1061                 VM_OBJECT_DROP(obj);
1062         DROP_GIANT();
1063         sleepq_add(m, NULL, wmesg, 0, 0);
1064         sleepq_wait(m, PVM);
1065         PICKUP_GIANT();
1066         return (locked);
1067 }
1068
1069 /*
1070  *      vm_page_trysbusy:
1071  *
1072  *      Try to shared busy a page.
1073  *      If the operation succeeds 1 is returned otherwise 0.
1074  *      The operation never sleeps.
1075  */
1076 int
1077 vm_page_trysbusy(vm_page_t m)
1078 {
1079         vm_object_t obj;
1080         u_int x;
1081
1082         obj = m->object;
1083         x = m->busy_lock;
1084         for (;;) {
1085                 if ((x & VPB_BIT_SHARED) == 0)
1086                         return (0);
1087                 /*
1088                  * Reduce the window for transient busies that will trigger
1089                  * false negatives in vm_page_ps_test().
1090                  */
1091                 if (obj != NULL && vm_object_busied(obj))
1092                         return (0);
1093                 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1094                     x + VPB_ONE_SHARER))
1095                         break;
1096         }
1097
1098         /* Refetch the object now that we're guaranteed that it is stable. */
1099         obj = m->object;
1100         if (obj != NULL && vm_object_busied(obj)) {
1101                 vm_page_sunbusy(m);
1102                 return (0);
1103         }
1104         return (1);
1105 }
1106
1107 /*
1108  *      vm_page_tryxbusy:
1109  *
1110  *      Try to exclusive busy a page.
1111  *      If the operation succeeds 1 is returned otherwise 0.
1112  *      The operation never sleeps.
1113  */
1114 int
1115 vm_page_tryxbusy(vm_page_t m)
1116 {
1117         vm_object_t obj;
1118
1119         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1120             VPB_CURTHREAD_EXCLUSIVE) == 0)
1121                 return (0);
1122
1123         obj = m->object;
1124         if (obj != NULL && vm_object_busied(obj)) {
1125                 vm_page_xunbusy(m);
1126                 return (0);
1127         }
1128         return (1);
1129 }
1130
1131 static void
1132 vm_page_xunbusy_hard_tail(vm_page_t m)
1133 {
1134         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1135         /* Wake the waiter. */
1136         wakeup(m);
1137 }
1138
1139 /*
1140  *      vm_page_xunbusy_hard:
1141  *
1142  *      Called when unbusy has failed because there is a waiter.
1143  */
1144 void
1145 vm_page_xunbusy_hard(vm_page_t m)
1146 {
1147         vm_page_assert_xbusied(m);
1148         vm_page_xunbusy_hard_tail(m);
1149 }
1150
1151 void
1152 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1153 {
1154         vm_page_assert_xbusied_unchecked(m);
1155         vm_page_xunbusy_hard_tail(m);
1156 }
1157
1158 /*
1159  * Avoid releasing and reacquiring the same page lock.
1160  */
1161 void
1162 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
1163 {
1164         struct mtx *mtx1;
1165
1166         mtx1 = vm_page_lockptr(m);
1167         if (*mtx == mtx1)
1168                 return;
1169         if (*mtx != NULL)
1170                 mtx_unlock(*mtx);
1171         *mtx = mtx1;
1172         mtx_lock(mtx1);
1173 }
1174
1175 /*
1176  *      vm_page_unhold_pages:
1177  *
1178  *      Unhold each of the pages that is referenced by the given array.
1179  */
1180 void
1181 vm_page_unhold_pages(vm_page_t *ma, int count)
1182 {
1183
1184         for (; count != 0; count--) {
1185                 vm_page_unwire(*ma, PQ_ACTIVE);
1186                 ma++;
1187         }
1188 }
1189
1190 vm_page_t
1191 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1192 {
1193         vm_page_t m;
1194
1195 #ifdef VM_PHYSSEG_SPARSE
1196         m = vm_phys_paddr_to_vm_page(pa);
1197         if (m == NULL)
1198                 m = vm_phys_fictitious_to_vm_page(pa);
1199         return (m);
1200 #elif defined(VM_PHYSSEG_DENSE)
1201         long pi;
1202
1203         pi = atop(pa);
1204         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1205                 m = &vm_page_array[pi - first_page];
1206                 return (m);
1207         }
1208         return (vm_phys_fictitious_to_vm_page(pa));
1209 #else
1210 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1211 #endif
1212 }
1213
1214 /*
1215  *      vm_page_getfake:
1216  *
1217  *      Create a fictitious page with the specified physical address and
1218  *      memory attribute.  The memory attribute is the only the machine-
1219  *      dependent aspect of a fictitious page that must be initialized.
1220  */
1221 vm_page_t
1222 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1223 {
1224         vm_page_t m;
1225
1226         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1227         vm_page_initfake(m, paddr, memattr);
1228         return (m);
1229 }
1230
1231 void
1232 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1233 {
1234
1235         if ((m->flags & PG_FICTITIOUS) != 0) {
1236                 /*
1237                  * The page's memattr might have changed since the
1238                  * previous initialization.  Update the pmap to the
1239                  * new memattr.
1240                  */
1241                 goto memattr;
1242         }
1243         m->phys_addr = paddr;
1244         m->a.queue = PQ_NONE;
1245         /* Fictitious pages don't use "segind". */
1246         m->flags = PG_FICTITIOUS;
1247         /* Fictitious pages don't use "order" or "pool". */
1248         m->oflags = VPO_UNMANAGED;
1249         m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1250         /* Fictitious pages are unevictable. */
1251         m->ref_count = 1;
1252         pmap_page_init(m);
1253 memattr:
1254         pmap_page_set_memattr(m, memattr);
1255 }
1256
1257 /*
1258  *      vm_page_putfake:
1259  *
1260  *      Release a fictitious page.
1261  */
1262 void
1263 vm_page_putfake(vm_page_t m)
1264 {
1265
1266         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1267         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1268             ("vm_page_putfake: bad page %p", m));
1269         vm_page_xunbusy(m);
1270         uma_zfree(fakepg_zone, m);
1271 }
1272
1273 /*
1274  *      vm_page_updatefake:
1275  *
1276  *      Update the given fictitious page to the specified physical address and
1277  *      memory attribute.
1278  */
1279 void
1280 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1281 {
1282
1283         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1284             ("vm_page_updatefake: bad page %p", m));
1285         m->phys_addr = paddr;
1286         pmap_page_set_memattr(m, memattr);
1287 }
1288
1289 /*
1290  *      vm_page_free:
1291  *
1292  *      Free a page.
1293  */
1294 void
1295 vm_page_free(vm_page_t m)
1296 {
1297
1298         m->flags &= ~PG_ZERO;
1299         vm_page_free_toq(m);
1300 }
1301
1302 /*
1303  *      vm_page_free_zero:
1304  *
1305  *      Free a page to the zerod-pages queue
1306  */
1307 void
1308 vm_page_free_zero(vm_page_t m)
1309 {
1310
1311         m->flags |= PG_ZERO;
1312         vm_page_free_toq(m);
1313 }
1314
1315 /*
1316  * Unbusy and handle the page queueing for a page from a getpages request that
1317  * was optionally read ahead or behind.
1318  */
1319 void
1320 vm_page_readahead_finish(vm_page_t m)
1321 {
1322
1323         /* We shouldn't put invalid pages on queues. */
1324         KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1325
1326         /*
1327          * Since the page is not the actually needed one, whether it should
1328          * be activated or deactivated is not obvious.  Empirical results
1329          * have shown that deactivating the page is usually the best choice,
1330          * unless the page is wanted by another thread.
1331          */
1332         if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1333                 vm_page_activate(m);
1334         else
1335                 vm_page_deactivate(m);
1336         vm_page_xunbusy_unchecked(m);
1337 }
1338
1339 /*
1340  *      vm_page_sleep_if_busy:
1341  *
1342  *      Sleep and release the object lock if the page is busied.
1343  *      Returns TRUE if the thread slept.
1344  *
1345  *      The given page must be unlocked and object containing it must
1346  *      be locked.
1347  */
1348 int
1349 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1350 {
1351         vm_object_t obj;
1352
1353         vm_page_lock_assert(m, MA_NOTOWNED);
1354         VM_OBJECT_ASSERT_WLOCKED(m->object);
1355
1356         /*
1357          * The page-specific object must be cached because page
1358          * identity can change during the sleep, causing the
1359          * re-lock of a different object.
1360          * It is assumed that a reference to the object is already
1361          * held by the callers.
1362          */
1363         obj = m->object;
1364         if (vm_page_busied(m) || (obj != NULL && obj->busy)) {
1365                 vm_page_busy_sleep(m, msg, false);
1366                 VM_OBJECT_WLOCK(obj);
1367                 return (TRUE);
1368         }
1369         return (FALSE);
1370 }
1371
1372 /*
1373  *      vm_page_sleep_if_xbusy:
1374  *
1375  *      Sleep and release the object lock if the page is xbusied.
1376  *      Returns TRUE if the thread slept.
1377  *
1378  *      The given page must be unlocked and object containing it must
1379  *      be locked.
1380  */
1381 int
1382 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg)
1383 {
1384         vm_object_t obj;
1385
1386         vm_page_lock_assert(m, MA_NOTOWNED);
1387         VM_OBJECT_ASSERT_WLOCKED(m->object);
1388
1389         /*
1390          * The page-specific object must be cached because page
1391          * identity can change during the sleep, causing the
1392          * re-lock of a different object.
1393          * It is assumed that a reference to the object is already
1394          * held by the callers.
1395          */
1396         obj = m->object;
1397         if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) {
1398                 vm_page_busy_sleep(m, msg, true);
1399                 VM_OBJECT_WLOCK(obj);
1400                 return (TRUE);
1401         }
1402         return (FALSE);
1403 }
1404
1405 /*
1406  *      vm_page_dirty_KBI:              [ internal use only ]
1407  *
1408  *      Set all bits in the page's dirty field.
1409  *
1410  *      The object containing the specified page must be locked if the
1411  *      call is made from the machine-independent layer.
1412  *
1413  *      See vm_page_clear_dirty_mask().
1414  *
1415  *      This function should only be called by vm_page_dirty().
1416  */
1417 void
1418 vm_page_dirty_KBI(vm_page_t m)
1419 {
1420
1421         /* Refer to this operation by its public name. */
1422         KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1423         m->dirty = VM_PAGE_BITS_ALL;
1424 }
1425
1426 /*
1427  *      vm_page_insert:         [ internal use only ]
1428  *
1429  *      Inserts the given mem entry into the object and object list.
1430  *
1431  *      The object must be locked.
1432  */
1433 int
1434 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1435 {
1436         vm_page_t mpred;
1437
1438         VM_OBJECT_ASSERT_WLOCKED(object);
1439         mpred = vm_radix_lookup_le(&object->rtree, pindex);
1440         return (vm_page_insert_after(m, object, pindex, mpred));
1441 }
1442
1443 /*
1444  *      vm_page_insert_after:
1445  *
1446  *      Inserts the page "m" into the specified object at offset "pindex".
1447  *
1448  *      The page "mpred" must immediately precede the offset "pindex" within
1449  *      the specified object.
1450  *
1451  *      The object must be locked.
1452  */
1453 static int
1454 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1455     vm_page_t mpred)
1456 {
1457         vm_page_t msucc;
1458
1459         VM_OBJECT_ASSERT_WLOCKED(object);
1460         KASSERT(m->object == NULL,
1461             ("vm_page_insert_after: page already inserted"));
1462         if (mpred != NULL) {
1463                 KASSERT(mpred->object == object,
1464                     ("vm_page_insert_after: object doesn't contain mpred"));
1465                 KASSERT(mpred->pindex < pindex,
1466                     ("vm_page_insert_after: mpred doesn't precede pindex"));
1467                 msucc = TAILQ_NEXT(mpred, listq);
1468         } else
1469                 msucc = TAILQ_FIRST(&object->memq);
1470         if (msucc != NULL)
1471                 KASSERT(msucc->pindex > pindex,
1472                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
1473
1474         /*
1475          * Record the object/offset pair in this page.
1476          */
1477         m->object = object;
1478         m->pindex = pindex;
1479         m->ref_count |= VPRC_OBJREF;
1480
1481         /*
1482          * Now link into the object's ordered list of backed pages.
1483          */
1484         if (vm_radix_insert(&object->rtree, m)) {
1485                 m->object = NULL;
1486                 m->pindex = 0;
1487                 m->ref_count &= ~VPRC_OBJREF;
1488                 return (1);
1489         }
1490         vm_page_insert_radixdone(m, object, mpred);
1491         return (0);
1492 }
1493
1494 /*
1495  *      vm_page_insert_radixdone:
1496  *
1497  *      Complete page "m" insertion into the specified object after the
1498  *      radix trie hooking.
1499  *
1500  *      The page "mpred" must precede the offset "m->pindex" within the
1501  *      specified object.
1502  *
1503  *      The object must be locked.
1504  */
1505 static void
1506 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1507 {
1508
1509         VM_OBJECT_ASSERT_WLOCKED(object);
1510         KASSERT(object != NULL && m->object == object,
1511             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1512         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1513             ("vm_page_insert_radixdone: page %p is missing object ref", m));
1514         if (mpred != NULL) {
1515                 KASSERT(mpred->object == object,
1516                     ("vm_page_insert_radixdone: object doesn't contain mpred"));
1517                 KASSERT(mpred->pindex < m->pindex,
1518                     ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1519         }
1520
1521         if (mpred != NULL)
1522                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1523         else
1524                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1525
1526         /*
1527          * Show that the object has one more resident page.
1528          */
1529         object->resident_page_count++;
1530
1531         /*
1532          * Hold the vnode until the last page is released.
1533          */
1534         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1535                 vhold(object->handle);
1536
1537         /*
1538          * Since we are inserting a new and possibly dirty page,
1539          * update the object's generation count.
1540          */
1541         if (pmap_page_is_write_mapped(m))
1542                 vm_object_set_writeable_dirty(object);
1543 }
1544
1545 /*
1546  * Do the work to remove a page from its object.  The caller is responsible for
1547  * updating the page's fields to reflect this removal.
1548  */
1549 static void
1550 vm_page_object_remove(vm_page_t m)
1551 {
1552         vm_object_t object;
1553         vm_page_t mrem;
1554
1555         vm_page_assert_xbusied(m);
1556         object = m->object;
1557         VM_OBJECT_ASSERT_WLOCKED(object);
1558         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1559             ("page %p is missing its object ref", m));
1560
1561         /* Deferred free of swap space. */
1562         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1563                 vm_pager_page_unswapped(m);
1564
1565         mrem = vm_radix_remove(&object->rtree, m->pindex);
1566         KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1567
1568         /*
1569          * Now remove from the object's list of backed pages.
1570          */
1571         TAILQ_REMOVE(&object->memq, m, listq);
1572
1573         /*
1574          * And show that the object has one fewer resident page.
1575          */
1576         object->resident_page_count--;
1577
1578         /*
1579          * The vnode may now be recycled.
1580          */
1581         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1582                 vdrop(object->handle);
1583 }
1584
1585 /*
1586  *      vm_page_remove:
1587  *
1588  *      Removes the specified page from its containing object, but does not
1589  *      invalidate any backing storage.  Returns true if the object's reference
1590  *      was the last reference to the page, and false otherwise.
1591  *
1592  *      The object must be locked and the page must be exclusively busied.
1593  *      The exclusive busy will be released on return.  If this is not the
1594  *      final ref and the caller does not hold a wire reference it may not
1595  *      continue to access the page.
1596  */
1597 bool
1598 vm_page_remove(vm_page_t m)
1599 {
1600         bool dropped;
1601
1602         dropped = vm_page_remove_xbusy(m);
1603         vm_page_xunbusy(m);
1604
1605         return (dropped);
1606 }
1607
1608 /*
1609  *      vm_page_remove_xbusy
1610  *
1611  *      Removes the page but leaves the xbusy held.  Returns true if this
1612  *      removed the final ref and false otherwise.
1613  */
1614 bool
1615 vm_page_remove_xbusy(vm_page_t m)
1616 {
1617
1618         vm_page_object_remove(m);
1619         m->object = NULL;
1620         return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1621 }
1622
1623 /*
1624  *      vm_page_lookup:
1625  *
1626  *      Returns the page associated with the object/offset
1627  *      pair specified; if none is found, NULL is returned.
1628  *
1629  *      The object must be locked.
1630  */
1631 vm_page_t
1632 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1633 {
1634
1635         VM_OBJECT_ASSERT_LOCKED(object);
1636         return (vm_radix_lookup(&object->rtree, pindex));
1637 }
1638
1639 /*
1640  *      vm_page_find_least:
1641  *
1642  *      Returns the page associated with the object with least pindex
1643  *      greater than or equal to the parameter pindex, or NULL.
1644  *
1645  *      The object must be locked.
1646  */
1647 vm_page_t
1648 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1649 {
1650         vm_page_t m;
1651
1652         VM_OBJECT_ASSERT_LOCKED(object);
1653         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1654                 m = vm_radix_lookup_ge(&object->rtree, pindex);
1655         return (m);
1656 }
1657
1658 /*
1659  * Returns the given page's successor (by pindex) within the object if it is
1660  * resident; if none is found, NULL is returned.
1661  *
1662  * The object must be locked.
1663  */
1664 vm_page_t
1665 vm_page_next(vm_page_t m)
1666 {
1667         vm_page_t next;
1668
1669         VM_OBJECT_ASSERT_LOCKED(m->object);
1670         if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1671                 MPASS(next->object == m->object);
1672                 if (next->pindex != m->pindex + 1)
1673                         next = NULL;
1674         }
1675         return (next);
1676 }
1677
1678 /*
1679  * Returns the given page's predecessor (by pindex) within the object if it is
1680  * resident; if none is found, NULL is returned.
1681  *
1682  * The object must be locked.
1683  */
1684 vm_page_t
1685 vm_page_prev(vm_page_t m)
1686 {
1687         vm_page_t prev;
1688
1689         VM_OBJECT_ASSERT_LOCKED(m->object);
1690         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1691                 MPASS(prev->object == m->object);
1692                 if (prev->pindex != m->pindex - 1)
1693                         prev = NULL;
1694         }
1695         return (prev);
1696 }
1697
1698 /*
1699  * Uses the page mnew as a replacement for an existing page at index
1700  * pindex which must be already present in the object.
1701  *
1702  * Both pages must be exclusively busied on enter.  The old page is
1703  * unbusied on exit.
1704  *
1705  * A return value of true means mold is now free.  If this is not the
1706  * final ref and the caller does not hold a wire reference it may not
1707  * continue to access the page.
1708  */
1709 static bool
1710 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1711     vm_page_t mold)
1712 {
1713         vm_page_t mret;
1714         bool dropped;
1715
1716         VM_OBJECT_ASSERT_WLOCKED(object);
1717         vm_page_assert_xbusied(mold);
1718         KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1719             ("vm_page_replace: page %p already in object", mnew));
1720
1721         /*
1722          * This function mostly follows vm_page_insert() and
1723          * vm_page_remove() without the radix, object count and vnode
1724          * dance.  Double check such functions for more comments.
1725          */
1726
1727         mnew->object = object;
1728         mnew->pindex = pindex;
1729         atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1730         mret = vm_radix_replace(&object->rtree, mnew);
1731         KASSERT(mret == mold,
1732             ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1733         KASSERT((mold->oflags & VPO_UNMANAGED) ==
1734             (mnew->oflags & VPO_UNMANAGED),
1735             ("vm_page_replace: mismatched VPO_UNMANAGED"));
1736
1737         /* Keep the resident page list in sorted order. */
1738         TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1739         TAILQ_REMOVE(&object->memq, mold, listq);
1740         mold->object = NULL;
1741
1742         /*
1743          * The object's resident_page_count does not change because we have
1744          * swapped one page for another, but the generation count should
1745          * change if the page is dirty.
1746          */
1747         if (pmap_page_is_write_mapped(mnew))
1748                 vm_object_set_writeable_dirty(object);
1749         dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1750         vm_page_xunbusy(mold);
1751
1752         return (dropped);
1753 }
1754
1755 void
1756 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1757     vm_page_t mold)
1758 {
1759
1760         vm_page_assert_xbusied(mnew);
1761
1762         if (vm_page_replace_hold(mnew, object, pindex, mold))
1763                 vm_page_free(mold);
1764 }
1765
1766 /*
1767  *      vm_page_rename:
1768  *
1769  *      Move the given memory entry from its
1770  *      current object to the specified target object/offset.
1771  *
1772  *      Note: swap associated with the page must be invalidated by the move.  We
1773  *            have to do this for several reasons:  (1) we aren't freeing the
1774  *            page, (2) we are dirtying the page, (3) the VM system is probably
1775  *            moving the page from object A to B, and will then later move
1776  *            the backing store from A to B and we can't have a conflict.
1777  *
1778  *      Note: we *always* dirty the page.  It is necessary both for the
1779  *            fact that we moved it, and because we may be invalidating
1780  *            swap.
1781  *
1782  *      The objects must be locked.
1783  */
1784 int
1785 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1786 {
1787         vm_page_t mpred;
1788         vm_pindex_t opidx;
1789
1790         VM_OBJECT_ASSERT_WLOCKED(new_object);
1791
1792         KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1793         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1794         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1795             ("vm_page_rename: pindex already renamed"));
1796
1797         /*
1798          * Create a custom version of vm_page_insert() which does not depend
1799          * by m_prev and can cheat on the implementation aspects of the
1800          * function.
1801          */
1802         opidx = m->pindex;
1803         m->pindex = new_pindex;
1804         if (vm_radix_insert(&new_object->rtree, m)) {
1805                 m->pindex = opidx;
1806                 return (1);
1807         }
1808
1809         /*
1810          * The operation cannot fail anymore.  The removal must happen before
1811          * the listq iterator is tainted.
1812          */
1813         m->pindex = opidx;
1814         vm_page_object_remove(m);
1815
1816         /* Return back to the new pindex to complete vm_page_insert(). */
1817         m->pindex = new_pindex;
1818         m->object = new_object;
1819
1820         vm_page_insert_radixdone(m, new_object, mpred);
1821         vm_page_dirty(m);
1822         return (0);
1823 }
1824
1825 /*
1826  *      vm_page_alloc:
1827  *
1828  *      Allocate and return a page that is associated with the specified
1829  *      object and offset pair.  By default, this page is exclusive busied.
1830  *
1831  *      The caller must always specify an allocation class.
1832  *
1833  *      allocation classes:
1834  *      VM_ALLOC_NORMAL         normal process request
1835  *      VM_ALLOC_SYSTEM         system *really* needs a page
1836  *      VM_ALLOC_INTERRUPT      interrupt time request
1837  *
1838  *      optional allocation flags:
1839  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
1840  *                              intends to allocate
1841  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1842  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1843  *      VM_ALLOC_NOOBJ          page is not associated with an object and
1844  *                              should not be exclusive busy
1845  *      VM_ALLOC_SBUSY          shared busy the allocated page
1846  *      VM_ALLOC_WIRED          wire the allocated page
1847  *      VM_ALLOC_ZERO           prefer a zeroed page
1848  */
1849 vm_page_t
1850 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1851 {
1852
1853         return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1854             vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1855 }
1856
1857 vm_page_t
1858 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1859     int req)
1860 {
1861
1862         return (vm_page_alloc_domain_after(object, pindex, domain, req,
1863             object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1864             NULL));
1865 }
1866
1867 /*
1868  * Allocate a page in the specified object with the given page index.  To
1869  * optimize insertion of the page into the object, the caller must also specifiy
1870  * the resident page in the object with largest index smaller than the given
1871  * page index, or NULL if no such page exists.
1872  */
1873 vm_page_t
1874 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1875     int req, vm_page_t mpred)
1876 {
1877         struct vm_domainset_iter di;
1878         vm_page_t m;
1879         int domain;
1880
1881         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1882         do {
1883                 m = vm_page_alloc_domain_after(object, pindex, domain, req,
1884                     mpred);
1885                 if (m != NULL)
1886                         break;
1887         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
1888
1889         return (m);
1890 }
1891
1892 /*
1893  * Returns true if the number of free pages exceeds the minimum
1894  * for the request class and false otherwise.
1895  */
1896 static int
1897 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1898 {
1899         u_int limit, old, new;
1900
1901         if (req_class == VM_ALLOC_INTERRUPT)
1902                 limit = 0;
1903         else if (req_class == VM_ALLOC_SYSTEM)
1904                 limit = vmd->vmd_interrupt_free_min;
1905         else
1906                 limit = vmd->vmd_free_reserved;
1907
1908         /*
1909          * Attempt to reserve the pages.  Fail if we're below the limit.
1910          */
1911         limit += npages;
1912         old = vmd->vmd_free_count;
1913         do {
1914                 if (old < limit)
1915                         return (0);
1916                 new = old - npages;
1917         } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1918
1919         /* Wake the page daemon if we've crossed the threshold. */
1920         if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1921                 pagedaemon_wakeup(vmd->vmd_domain);
1922
1923         /* Only update bitsets on transitions. */
1924         if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1925             (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1926                 vm_domain_set(vmd);
1927
1928         return (1);
1929 }
1930
1931 int
1932 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1933 {
1934         int req_class;
1935
1936         /*
1937          * The page daemon is allowed to dig deeper into the free page list.
1938          */
1939         req_class = req & VM_ALLOC_CLASS_MASK;
1940         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1941                 req_class = VM_ALLOC_SYSTEM;
1942         return (_vm_domain_allocate(vmd, req_class, npages));
1943 }
1944
1945 vm_page_t
1946 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1947     int req, vm_page_t mpred)
1948 {
1949         struct vm_domain *vmd;
1950         vm_page_t m;
1951         int flags, pool;
1952
1953         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1954             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1955             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1956             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1957             ("inconsistent object(%p)/req(%x)", object, req));
1958         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1959             ("Can't sleep and retry object insertion."));
1960         KASSERT(mpred == NULL || mpred->pindex < pindex,
1961             ("mpred %p doesn't precede pindex 0x%jx", mpred,
1962             (uintmax_t)pindex));
1963         if (object != NULL)
1964                 VM_OBJECT_ASSERT_WLOCKED(object);
1965
1966         flags = 0;
1967         m = NULL;
1968         pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
1969 again:
1970 #if VM_NRESERVLEVEL > 0
1971         /*
1972          * Can we allocate the page from a reservation?
1973          */
1974         if (vm_object_reserv(object) &&
1975             (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
1976             NULL) {
1977                 domain = vm_phys_domain(m);
1978                 vmd = VM_DOMAIN(domain);
1979                 goto found;
1980         }
1981 #endif
1982         vmd = VM_DOMAIN(domain);
1983         if (vmd->vmd_pgcache[pool].zone != NULL) {
1984                 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
1985                 if (m != NULL) {
1986                         flags |= PG_PCPU_CACHE;
1987                         goto found;
1988                 }
1989         }
1990         if (vm_domain_allocate(vmd, req, 1)) {
1991                 /*
1992                  * If not, allocate it from the free page queues.
1993                  */
1994                 vm_domain_free_lock(vmd);
1995                 m = vm_phys_alloc_pages(domain, pool, 0);
1996                 vm_domain_free_unlock(vmd);
1997                 if (m == NULL) {
1998                         vm_domain_freecnt_inc(vmd, 1);
1999 #if VM_NRESERVLEVEL > 0
2000                         if (vm_reserv_reclaim_inactive(domain))
2001                                 goto again;
2002 #endif
2003                 }
2004         }
2005         if (m == NULL) {
2006                 /*
2007                  * Not allocatable, give up.
2008                  */
2009                 if (vm_domain_alloc_fail(vmd, object, req))
2010                         goto again;
2011                 return (NULL);
2012         }
2013
2014         /*
2015          * At this point we had better have found a good page.
2016          */
2017 found:
2018         vm_page_dequeue(m);
2019         vm_page_alloc_check(m);
2020
2021         /*
2022          * Initialize the page.  Only the PG_ZERO flag is inherited.
2023          */
2024         if ((req & VM_ALLOC_ZERO) != 0)
2025                 flags |= (m->flags & PG_ZERO);
2026         if ((req & VM_ALLOC_NODUMP) != 0)
2027                 flags |= PG_NODUMP;
2028         m->flags = flags;
2029         m->a.flags = 0;
2030         m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2031             VPO_UNMANAGED : 0;
2032         m->busy_lock = VPB_UNBUSIED;
2033         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2034                 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2035         if ((req & VM_ALLOC_SBUSY) != 0)
2036                 m->busy_lock = VPB_SHARERS_WORD(1);
2037         if (req & VM_ALLOC_WIRED) {
2038                 vm_wire_add(1);
2039                 m->ref_count = 1;
2040         }
2041         m->a.act_count = 0;
2042
2043         if (object != NULL) {
2044                 if (vm_page_insert_after(m, object, pindex, mpred)) {
2045                         if (req & VM_ALLOC_WIRED) {
2046                                 vm_wire_sub(1);
2047                                 m->ref_count = 0;
2048                         }
2049                         KASSERT(m->object == NULL, ("page %p has object", m));
2050                         m->oflags = VPO_UNMANAGED;
2051                         m->busy_lock = VPB_UNBUSIED;
2052                         /* Don't change PG_ZERO. */
2053                         vm_page_free_toq(m);
2054                         if (req & VM_ALLOC_WAITFAIL) {
2055                                 VM_OBJECT_WUNLOCK(object);
2056                                 vm_radix_wait();
2057                                 VM_OBJECT_WLOCK(object);
2058                         }
2059                         return (NULL);
2060                 }
2061
2062                 /* Ignore device objects; the pager sets "memattr" for them. */
2063                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2064                     (object->flags & OBJ_FICTITIOUS) == 0)
2065                         pmap_page_set_memattr(m, object->memattr);
2066         } else
2067                 m->pindex = pindex;
2068
2069         return (m);
2070 }
2071
2072 /*
2073  *      vm_page_alloc_contig:
2074  *
2075  *      Allocate a contiguous set of physical pages of the given size "npages"
2076  *      from the free lists.  All of the physical pages must be at or above
2077  *      the given physical address "low" and below the given physical address
2078  *      "high".  The given value "alignment" determines the alignment of the
2079  *      first physical page in the set.  If the given value "boundary" is
2080  *      non-zero, then the set of physical pages cannot cross any physical
2081  *      address boundary that is a multiple of that value.  Both "alignment"
2082  *      and "boundary" must be a power of two.
2083  *
2084  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2085  *      then the memory attribute setting for the physical pages is configured
2086  *      to the object's memory attribute setting.  Otherwise, the memory
2087  *      attribute setting for the physical pages is configured to "memattr",
2088  *      overriding the object's memory attribute setting.  However, if the
2089  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2090  *      memory attribute setting for the physical pages cannot be configured
2091  *      to VM_MEMATTR_DEFAULT.
2092  *
2093  *      The specified object may not contain fictitious pages.
2094  *
2095  *      The caller must always specify an allocation class.
2096  *
2097  *      allocation classes:
2098  *      VM_ALLOC_NORMAL         normal process request
2099  *      VM_ALLOC_SYSTEM         system *really* needs a page
2100  *      VM_ALLOC_INTERRUPT      interrupt time request
2101  *
2102  *      optional allocation flags:
2103  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
2104  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
2105  *      VM_ALLOC_NOOBJ          page is not associated with an object and
2106  *                              should not be exclusive busy
2107  *      VM_ALLOC_SBUSY          shared busy the allocated page
2108  *      VM_ALLOC_WIRED          wire the allocated page
2109  *      VM_ALLOC_ZERO           prefer a zeroed page
2110  */
2111 vm_page_t
2112 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2113     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2114     vm_paddr_t boundary, vm_memattr_t memattr)
2115 {
2116         struct vm_domainset_iter di;
2117         vm_page_t m;
2118         int domain;
2119
2120         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2121         do {
2122                 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2123                     npages, low, high, alignment, boundary, memattr);
2124                 if (m != NULL)
2125                         break;
2126         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2127
2128         return (m);
2129 }
2130
2131 vm_page_t
2132 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2133     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2134     vm_paddr_t boundary, vm_memattr_t memattr)
2135 {
2136         struct vm_domain *vmd;
2137         vm_page_t m, m_ret, mpred;
2138         u_int busy_lock, flags, oflags;
2139
2140         mpred = NULL;   /* XXX: pacify gcc */
2141         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2142             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2143             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2144             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2145             ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2146             req));
2147         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2148             ("Can't sleep and retry object insertion."));
2149         if (object != NULL) {
2150                 VM_OBJECT_ASSERT_WLOCKED(object);
2151                 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2152                     ("vm_page_alloc_contig: object %p has fictitious pages",
2153                     object));
2154         }
2155         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2156
2157         if (object != NULL) {
2158                 mpred = vm_radix_lookup_le(&object->rtree, pindex);
2159                 KASSERT(mpred == NULL || mpred->pindex != pindex,
2160                     ("vm_page_alloc_contig: pindex already allocated"));
2161         }
2162
2163         /*
2164          * Can we allocate the pages without the number of free pages falling
2165          * below the lower bound for the allocation class?
2166          */
2167         m_ret = NULL;
2168 again:
2169 #if VM_NRESERVLEVEL > 0
2170         /*
2171          * Can we allocate the pages from a reservation?
2172          */
2173         if (vm_object_reserv(object) &&
2174             (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2175             mpred, npages, low, high, alignment, boundary)) != NULL) {
2176                 domain = vm_phys_domain(m_ret);
2177                 vmd = VM_DOMAIN(domain);
2178                 goto found;
2179         }
2180 #endif
2181         vmd = VM_DOMAIN(domain);
2182         if (vm_domain_allocate(vmd, req, npages)) {
2183                 /*
2184                  * allocate them from the free page queues.
2185                  */
2186                 vm_domain_free_lock(vmd);
2187                 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2188                     alignment, boundary);
2189                 vm_domain_free_unlock(vmd);
2190                 if (m_ret == NULL) {
2191                         vm_domain_freecnt_inc(vmd, npages);
2192 #if VM_NRESERVLEVEL > 0
2193                         if (vm_reserv_reclaim_contig(domain, npages, low,
2194                             high, alignment, boundary))
2195                                 goto again;
2196 #endif
2197                 }
2198         }
2199         if (m_ret == NULL) {
2200                 if (vm_domain_alloc_fail(vmd, object, req))
2201                         goto again;
2202                 return (NULL);
2203         }
2204 #if VM_NRESERVLEVEL > 0
2205 found:
2206 #endif
2207         for (m = m_ret; m < &m_ret[npages]; m++) {
2208                 vm_page_dequeue(m);
2209                 vm_page_alloc_check(m);
2210         }
2211
2212         /*
2213          * Initialize the pages.  Only the PG_ZERO flag is inherited.
2214          */
2215         flags = 0;
2216         if ((req & VM_ALLOC_ZERO) != 0)
2217                 flags = PG_ZERO;
2218         if ((req & VM_ALLOC_NODUMP) != 0)
2219                 flags |= PG_NODUMP;
2220         oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2221             VPO_UNMANAGED : 0;
2222         busy_lock = VPB_UNBUSIED;
2223         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2224                 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2225         if ((req & VM_ALLOC_SBUSY) != 0)
2226                 busy_lock = VPB_SHARERS_WORD(1);
2227         if ((req & VM_ALLOC_WIRED) != 0)
2228                 vm_wire_add(npages);
2229         if (object != NULL) {
2230                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2231                     memattr == VM_MEMATTR_DEFAULT)
2232                         memattr = object->memattr;
2233         }
2234         for (m = m_ret; m < &m_ret[npages]; m++) {
2235                 m->a.flags = 0;
2236                 m->flags = (m->flags | PG_NODUMP) & flags;
2237                 m->busy_lock = busy_lock;
2238                 if ((req & VM_ALLOC_WIRED) != 0)
2239                         m->ref_count = 1;
2240                 m->a.act_count = 0;
2241                 m->oflags = oflags;
2242                 if (object != NULL) {
2243                         if (vm_page_insert_after(m, object, pindex, mpred)) {
2244                                 if ((req & VM_ALLOC_WIRED) != 0)
2245                                         vm_wire_sub(npages);
2246                                 KASSERT(m->object == NULL,
2247                                     ("page %p has object", m));
2248                                 mpred = m;
2249                                 for (m = m_ret; m < &m_ret[npages]; m++) {
2250                                         if (m <= mpred &&
2251                                             (req & VM_ALLOC_WIRED) != 0)
2252                                                 m->ref_count = 0;
2253                                         m->oflags = VPO_UNMANAGED;
2254                                         m->busy_lock = VPB_UNBUSIED;
2255                                         /* Don't change PG_ZERO. */
2256                                         vm_page_free_toq(m);
2257                                 }
2258                                 if (req & VM_ALLOC_WAITFAIL) {
2259                                         VM_OBJECT_WUNLOCK(object);
2260                                         vm_radix_wait();
2261                                         VM_OBJECT_WLOCK(object);
2262                                 }
2263                                 return (NULL);
2264                         }
2265                         mpred = m;
2266                 } else
2267                         m->pindex = pindex;
2268                 if (memattr != VM_MEMATTR_DEFAULT)
2269                         pmap_page_set_memattr(m, memattr);
2270                 pindex++;
2271         }
2272         return (m_ret);
2273 }
2274
2275 /*
2276  * Check a page that has been freshly dequeued from a freelist.
2277  */
2278 static void
2279 vm_page_alloc_check(vm_page_t m)
2280 {
2281
2282         KASSERT(m->object == NULL, ("page %p has object", m));
2283         KASSERT(m->a.queue == PQ_NONE &&
2284             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2285             ("page %p has unexpected queue %d, flags %#x",
2286             m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2287         KASSERT(m->ref_count == 0, ("page %p has references", m));
2288         KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2289         KASSERT(m->dirty == 0, ("page %p is dirty", m));
2290         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2291             ("page %p has unexpected memattr %d",
2292             m, pmap_page_get_memattr(m)));
2293         KASSERT(m->valid == 0, ("free page %p is valid", m));
2294 }
2295
2296 /*
2297  *      vm_page_alloc_freelist:
2298  *
2299  *      Allocate a physical page from the specified free page list.
2300  *
2301  *      The caller must always specify an allocation class.
2302  *
2303  *      allocation classes:
2304  *      VM_ALLOC_NORMAL         normal process request
2305  *      VM_ALLOC_SYSTEM         system *really* needs a page
2306  *      VM_ALLOC_INTERRUPT      interrupt time request
2307  *
2308  *      optional allocation flags:
2309  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
2310  *                              intends to allocate
2311  *      VM_ALLOC_WIRED          wire the allocated page
2312  *      VM_ALLOC_ZERO           prefer a zeroed page
2313  */
2314 vm_page_t
2315 vm_page_alloc_freelist(int freelist, int req)
2316 {
2317         struct vm_domainset_iter di;
2318         vm_page_t m;
2319         int domain;
2320
2321         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2322         do {
2323                 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2324                 if (m != NULL)
2325                         break;
2326         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2327
2328         return (m);
2329 }
2330
2331 vm_page_t
2332 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2333 {
2334         struct vm_domain *vmd;
2335         vm_page_t m;
2336         u_int flags;
2337
2338         m = NULL;
2339         vmd = VM_DOMAIN(domain);
2340 again:
2341         if (vm_domain_allocate(vmd, req, 1)) {
2342                 vm_domain_free_lock(vmd);
2343                 m = vm_phys_alloc_freelist_pages(domain, freelist,
2344                     VM_FREEPOOL_DIRECT, 0);
2345                 vm_domain_free_unlock(vmd);
2346                 if (m == NULL)
2347                         vm_domain_freecnt_inc(vmd, 1);
2348         }
2349         if (m == NULL) {
2350                 if (vm_domain_alloc_fail(vmd, NULL, req))
2351                         goto again;
2352                 return (NULL);
2353         }
2354         vm_page_dequeue(m);
2355         vm_page_alloc_check(m);
2356
2357         /*
2358          * Initialize the page.  Only the PG_ZERO flag is inherited.
2359          */
2360         m->a.flags = 0;
2361         flags = 0;
2362         if ((req & VM_ALLOC_ZERO) != 0)
2363                 flags = PG_ZERO;
2364         m->flags &= flags;
2365         if ((req & VM_ALLOC_WIRED) != 0) {
2366                 vm_wire_add(1);
2367                 m->ref_count = 1;
2368         }
2369         /* Unmanaged pages don't use "act_count". */
2370         m->oflags = VPO_UNMANAGED;
2371         return (m);
2372 }
2373
2374 static int
2375 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2376 {
2377         struct vm_domain *vmd;
2378         struct vm_pgcache *pgcache;
2379         int i;
2380
2381         pgcache = arg;
2382         vmd = VM_DOMAIN(pgcache->domain);
2383
2384         /*
2385          * The page daemon should avoid creating extra memory pressure since its
2386          * main purpose is to replenish the store of free pages.
2387          */
2388         if (vmd->vmd_severeset || curproc == pageproc ||
2389             !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2390                 return (0);
2391         domain = vmd->vmd_domain;
2392         vm_domain_free_lock(vmd);
2393         i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2394             (vm_page_t *)store);
2395         vm_domain_free_unlock(vmd);
2396         if (cnt != i)
2397                 vm_domain_freecnt_inc(vmd, cnt - i);
2398
2399         return (i);
2400 }
2401
2402 static void
2403 vm_page_zone_release(void *arg, void **store, int cnt)
2404 {
2405         struct vm_domain *vmd;
2406         struct vm_pgcache *pgcache;
2407         vm_page_t m;
2408         int i;
2409
2410         pgcache = arg;
2411         vmd = VM_DOMAIN(pgcache->domain);
2412         vm_domain_free_lock(vmd);
2413         for (i = 0; i < cnt; i++) {
2414                 m = (vm_page_t)store[i];
2415                 vm_phys_free_pages(m, 0);
2416         }
2417         vm_domain_free_unlock(vmd);
2418         vm_domain_freecnt_inc(vmd, cnt);
2419 }
2420
2421 #define VPSC_ANY        0       /* No restrictions. */
2422 #define VPSC_NORESERV   1       /* Skip reservations; implies VPSC_NOSUPER. */
2423 #define VPSC_NOSUPER    2       /* Skip superpages. */
2424
2425 /*
2426  *      vm_page_scan_contig:
2427  *
2428  *      Scan vm_page_array[] between the specified entries "m_start" and
2429  *      "m_end" for a run of contiguous physical pages that satisfy the
2430  *      specified conditions, and return the lowest page in the run.  The
2431  *      specified "alignment" determines the alignment of the lowest physical
2432  *      page in the run.  If the specified "boundary" is non-zero, then the
2433  *      run of physical pages cannot span a physical address that is a
2434  *      multiple of "boundary".
2435  *
2436  *      "m_end" is never dereferenced, so it need not point to a vm_page
2437  *      structure within vm_page_array[].
2438  *
2439  *      "npages" must be greater than zero.  "m_start" and "m_end" must not
2440  *      span a hole (or discontiguity) in the physical address space.  Both
2441  *      "alignment" and "boundary" must be a power of two.
2442  */
2443 vm_page_t
2444 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2445     u_long alignment, vm_paddr_t boundary, int options)
2446 {
2447         struct mtx *m_mtx;
2448         vm_object_t object;
2449         vm_paddr_t pa;
2450         vm_page_t m, m_run;
2451 #if VM_NRESERVLEVEL > 0
2452         int level;
2453 #endif
2454         int m_inc, order, run_ext, run_len;
2455
2456         KASSERT(npages > 0, ("npages is 0"));
2457         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2458         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2459         m_run = NULL;
2460         run_len = 0;
2461         m_mtx = NULL;
2462         for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2463                 KASSERT((m->flags & PG_MARKER) == 0,
2464                     ("page %p is PG_MARKER", m));
2465                 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2466                     ("fictitious page %p has invalid ref count", m));
2467
2468                 /*
2469                  * If the current page would be the start of a run, check its
2470                  * physical address against the end, alignment, and boundary
2471                  * conditions.  If it doesn't satisfy these conditions, either
2472                  * terminate the scan or advance to the next page that
2473                  * satisfies the failed condition.
2474                  */
2475                 if (run_len == 0) {
2476                         KASSERT(m_run == NULL, ("m_run != NULL"));
2477                         if (m + npages > m_end)
2478                                 break;
2479                         pa = VM_PAGE_TO_PHYS(m);
2480                         if ((pa & (alignment - 1)) != 0) {
2481                                 m_inc = atop(roundup2(pa, alignment) - pa);
2482                                 continue;
2483                         }
2484                         if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2485                             boundary) != 0) {
2486                                 m_inc = atop(roundup2(pa, boundary) - pa);
2487                                 continue;
2488                         }
2489                 } else
2490                         KASSERT(m_run != NULL, ("m_run == NULL"));
2491
2492                 vm_page_change_lock(m, &m_mtx);
2493                 m_inc = 1;
2494 retry:
2495                 if (vm_page_wired(m))
2496                         run_ext = 0;
2497 #if VM_NRESERVLEVEL > 0
2498                 else if ((level = vm_reserv_level(m)) >= 0 &&
2499                     (options & VPSC_NORESERV) != 0) {
2500                         run_ext = 0;
2501                         /* Advance to the end of the reservation. */
2502                         pa = VM_PAGE_TO_PHYS(m);
2503                         m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2504                             pa);
2505                 }
2506 #endif
2507                 else if ((object = m->object) != NULL) {
2508                         /*
2509                          * The page is considered eligible for relocation if
2510                          * and only if it could be laundered or reclaimed by
2511                          * the page daemon.
2512                          */
2513                         if (!VM_OBJECT_TRYRLOCK(object)) {
2514                                 mtx_unlock(m_mtx);
2515                                 VM_OBJECT_RLOCK(object);
2516                                 mtx_lock(m_mtx);
2517                                 if (m->object != object) {
2518                                         /*
2519                                          * The page may have been freed.
2520                                          */
2521                                         VM_OBJECT_RUNLOCK(object);
2522                                         goto retry;
2523                                 }
2524                         }
2525                         /* Don't care: PG_NODUMP, PG_ZERO. */
2526                         if (object->type != OBJT_DEFAULT &&
2527                             object->type != OBJT_SWAP &&
2528                             object->type != OBJT_VNODE) {
2529                                 run_ext = 0;
2530 #if VM_NRESERVLEVEL > 0
2531                         } else if ((options & VPSC_NOSUPER) != 0 &&
2532                             (level = vm_reserv_level_iffullpop(m)) >= 0) {
2533                                 run_ext = 0;
2534                                 /* Advance to the end of the superpage. */
2535                                 pa = VM_PAGE_TO_PHYS(m);
2536                                 m_inc = atop(roundup2(pa + 1,
2537                                     vm_reserv_size(level)) - pa);
2538 #endif
2539                         } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2540                             vm_page_queue(m) != PQ_NONE && !vm_page_busied(m) &&
2541                             !vm_page_wired(m)) {
2542                                 /*
2543                                  * The page is allocated but eligible for
2544                                  * relocation.  Extend the current run by one
2545                                  * page.
2546                                  */
2547                                 KASSERT(pmap_page_get_memattr(m) ==
2548                                     VM_MEMATTR_DEFAULT,
2549                                     ("page %p has an unexpected memattr", m));
2550                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2551                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2552                                     ("page %p has unexpected oflags", m));
2553                                 /* Don't care: PGA_NOSYNC. */
2554                                 run_ext = 1;
2555                         } else
2556                                 run_ext = 0;
2557                         VM_OBJECT_RUNLOCK(object);
2558 #if VM_NRESERVLEVEL > 0
2559                 } else if (level >= 0) {
2560                         /*
2561                          * The page is reserved but not yet allocated.  In
2562                          * other words, it is still free.  Extend the current
2563                          * run by one page.
2564                          */
2565                         run_ext = 1;
2566 #endif
2567                 } else if ((order = m->order) < VM_NFREEORDER) {
2568                         /*
2569                          * The page is enqueued in the physical memory
2570                          * allocator's free page queues.  Moreover, it is the
2571                          * first page in a power-of-two-sized run of
2572                          * contiguous free pages.  Add these pages to the end
2573                          * of the current run, and jump ahead.
2574                          */
2575                         run_ext = 1 << order;
2576                         m_inc = 1 << order;
2577                 } else {
2578                         /*
2579                          * Skip the page for one of the following reasons: (1)
2580                          * It is enqueued in the physical memory allocator's
2581                          * free page queues.  However, it is not the first
2582                          * page in a run of contiguous free pages.  (This case
2583                          * rarely occurs because the scan is performed in
2584                          * ascending order.) (2) It is not reserved, and it is
2585                          * transitioning from free to allocated.  (Conversely,
2586                          * the transition from allocated to free for managed
2587                          * pages is blocked by the page lock.) (3) It is
2588                          * allocated but not contained by an object and not
2589                          * wired, e.g., allocated by Xen's balloon driver.
2590                          */
2591                         run_ext = 0;
2592                 }
2593
2594                 /*
2595                  * Extend or reset the current run of pages.
2596                  */
2597                 if (run_ext > 0) {
2598                         if (run_len == 0)
2599                                 m_run = m;
2600                         run_len += run_ext;
2601                 } else {
2602                         if (run_len > 0) {
2603                                 m_run = NULL;
2604                                 run_len = 0;
2605                         }
2606                 }
2607         }
2608         if (m_mtx != NULL)
2609                 mtx_unlock(m_mtx);
2610         if (run_len >= npages)
2611                 return (m_run);
2612         return (NULL);
2613 }
2614
2615 /*
2616  *      vm_page_reclaim_run:
2617  *
2618  *      Try to relocate each of the allocated virtual pages within the
2619  *      specified run of physical pages to a new physical address.  Free the
2620  *      physical pages underlying the relocated virtual pages.  A virtual page
2621  *      is relocatable if and only if it could be laundered or reclaimed by
2622  *      the page daemon.  Whenever possible, a virtual page is relocated to a
2623  *      physical address above "high".
2624  *
2625  *      Returns 0 if every physical page within the run was already free or
2626  *      just freed by a successful relocation.  Otherwise, returns a non-zero
2627  *      value indicating why the last attempt to relocate a virtual page was
2628  *      unsuccessful.
2629  *
2630  *      "req_class" must be an allocation class.
2631  */
2632 static int
2633 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2634     vm_paddr_t high)
2635 {
2636         struct vm_domain *vmd;
2637         struct mtx *m_mtx;
2638         struct spglist free;
2639         vm_object_t object;
2640         vm_paddr_t pa;
2641         vm_page_t m, m_end, m_new;
2642         int error, order, req;
2643
2644         KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2645             ("req_class is not an allocation class"));
2646         SLIST_INIT(&free);
2647         error = 0;
2648         m = m_run;
2649         m_end = m_run + npages;
2650         m_mtx = NULL;
2651         for (; error == 0 && m < m_end; m++) {
2652                 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2653                     ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2654
2655                 /*
2656                  * Avoid releasing and reacquiring the same page lock.
2657                  */
2658                 vm_page_change_lock(m, &m_mtx);
2659 retry:
2660                 /*
2661                  * Racily check for wirings.  Races are handled below.
2662                  */
2663                 if (vm_page_wired(m))
2664                         error = EBUSY;
2665                 else if ((object = m->object) != NULL) {
2666                         /*
2667                          * The page is relocated if and only if it could be
2668                          * laundered or reclaimed by the page daemon.
2669                          */
2670                         if (!VM_OBJECT_TRYWLOCK(object)) {
2671                                 mtx_unlock(m_mtx);
2672                                 VM_OBJECT_WLOCK(object);
2673                                 mtx_lock(m_mtx);
2674                                 if (m->object != object) {
2675                                         /*
2676                                          * The page may have been freed.
2677                                          */
2678                                         VM_OBJECT_WUNLOCK(object);
2679                                         goto retry;
2680                                 }
2681                         }
2682                         /* Don't care: PG_NODUMP, PG_ZERO. */
2683                         if (object->type != OBJT_DEFAULT &&
2684                             object->type != OBJT_SWAP &&
2685                             object->type != OBJT_VNODE)
2686                                 error = EINVAL;
2687                         else if (object->memattr != VM_MEMATTR_DEFAULT)
2688                                 error = EINVAL;
2689                         else if (vm_page_queue(m) != PQ_NONE &&
2690                             vm_page_tryxbusy(m) != 0) {
2691                                 if (vm_page_wired(m)) {
2692                                         vm_page_xunbusy(m);
2693                                         error = EBUSY;
2694                                         goto unlock;
2695                                 }
2696                                 KASSERT(pmap_page_get_memattr(m) ==
2697                                     VM_MEMATTR_DEFAULT,
2698                                     ("page %p has an unexpected memattr", m));
2699                                 KASSERT(m->oflags == 0,
2700                                     ("page %p has unexpected oflags", m));
2701                                 /* Don't care: PGA_NOSYNC. */
2702                                 if (!vm_page_none_valid(m)) {
2703                                         /*
2704                                          * First, try to allocate a new page
2705                                          * that is above "high".  Failing
2706                                          * that, try to allocate a new page
2707                                          * that is below "m_run".  Allocate
2708                                          * the new page between the end of
2709                                          * "m_run" and "high" only as a last
2710                                          * resort.
2711                                          */
2712                                         req = req_class | VM_ALLOC_NOOBJ;
2713                                         if ((m->flags & PG_NODUMP) != 0)
2714                                                 req |= VM_ALLOC_NODUMP;
2715                                         if (trunc_page(high) !=
2716                                             ~(vm_paddr_t)PAGE_MASK) {
2717                                                 m_new = vm_page_alloc_contig(
2718                                                     NULL, 0, req, 1,
2719                                                     round_page(high),
2720                                                     ~(vm_paddr_t)0,
2721                                                     PAGE_SIZE, 0,
2722                                                     VM_MEMATTR_DEFAULT);
2723                                         } else
2724                                                 m_new = NULL;
2725                                         if (m_new == NULL) {
2726                                                 pa = VM_PAGE_TO_PHYS(m_run);
2727                                                 m_new = vm_page_alloc_contig(
2728                                                     NULL, 0, req, 1,
2729                                                     0, pa - 1, PAGE_SIZE, 0,
2730                                                     VM_MEMATTR_DEFAULT);
2731                                         }
2732                                         if (m_new == NULL) {
2733                                                 pa += ptoa(npages);
2734                                                 m_new = vm_page_alloc_contig(
2735                                                     NULL, 0, req, 1,
2736                                                     pa, high, PAGE_SIZE, 0,
2737                                                     VM_MEMATTR_DEFAULT);
2738                                         }
2739                                         if (m_new == NULL) {
2740                                                 vm_page_xunbusy(m);
2741                                                 error = ENOMEM;
2742                                                 goto unlock;
2743                                         }
2744
2745                                         /*
2746                                          * Unmap the page and check for new
2747                                          * wirings that may have been acquired
2748                                          * through a pmap lookup.
2749                                          */
2750                                         if (object->ref_count != 0 &&
2751                                             !vm_page_try_remove_all(m)) {
2752                                                 vm_page_xunbusy(m);
2753                                                 vm_page_free(m_new);
2754                                                 error = EBUSY;
2755                                                 goto unlock;
2756                                         }
2757
2758                                         /*
2759                                          * Replace "m" with the new page.  For
2760                                          * vm_page_replace(), "m" must be busy
2761                                          * and dequeued.  Finally, change "m"
2762                                          * as if vm_page_free() was called.
2763                                          */
2764                                         m_new->a.flags = m->a.flags &
2765                                             ~PGA_QUEUE_STATE_MASK;
2766                                         KASSERT(m_new->oflags == VPO_UNMANAGED,
2767                                             ("page %p is managed", m_new));
2768                                         m_new->oflags = 0;
2769                                         pmap_copy_page(m, m_new);
2770                                         m_new->valid = m->valid;
2771                                         m_new->dirty = m->dirty;
2772                                         m->flags &= ~PG_ZERO;
2773                                         vm_page_dequeue(m);
2774                                         if (vm_page_replace_hold(m_new, object,
2775                                             m->pindex, m) &&
2776                                             vm_page_free_prep(m))
2777                                                 SLIST_INSERT_HEAD(&free, m,
2778                                                     plinks.s.ss);
2779
2780                                         /*
2781                                          * The new page must be deactivated
2782                                          * before the object is unlocked.
2783                                          */
2784                                         vm_page_change_lock(m_new, &m_mtx);
2785                                         vm_page_deactivate(m_new);
2786                                 } else {
2787                                         m->flags &= ~PG_ZERO;
2788                                         vm_page_dequeue(m);
2789                                         if (vm_page_free_prep(m))
2790                                                 SLIST_INSERT_HEAD(&free, m,
2791                                                     plinks.s.ss);
2792                                         KASSERT(m->dirty == 0,
2793                                             ("page %p is dirty", m));
2794                                 }
2795                         } else
2796                                 error = EBUSY;
2797 unlock:
2798                         VM_OBJECT_WUNLOCK(object);
2799                 } else {
2800                         MPASS(vm_phys_domain(m) == domain);
2801                         vmd = VM_DOMAIN(domain);
2802                         vm_domain_free_lock(vmd);
2803                         order = m->order;
2804                         if (order < VM_NFREEORDER) {
2805                                 /*
2806                                  * The page is enqueued in the physical memory
2807                                  * allocator's free page queues.  Moreover, it
2808                                  * is the first page in a power-of-two-sized
2809                                  * run of contiguous free pages.  Jump ahead
2810                                  * to the last page within that run, and
2811                                  * continue from there.
2812                                  */
2813                                 m += (1 << order) - 1;
2814                         }
2815 #if VM_NRESERVLEVEL > 0
2816                         else if (vm_reserv_is_page_free(m))
2817                                 order = 0;
2818 #endif
2819                         vm_domain_free_unlock(vmd);
2820                         if (order == VM_NFREEORDER)
2821                                 error = EINVAL;
2822                 }
2823         }
2824         if (m_mtx != NULL)
2825                 mtx_unlock(m_mtx);
2826         if ((m = SLIST_FIRST(&free)) != NULL) {
2827                 int cnt;
2828
2829                 vmd = VM_DOMAIN(domain);
2830                 cnt = 0;
2831                 vm_domain_free_lock(vmd);
2832                 do {
2833                         MPASS(vm_phys_domain(m) == domain);
2834                         SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2835                         vm_phys_free_pages(m, 0);
2836                         cnt++;
2837                 } while ((m = SLIST_FIRST(&free)) != NULL);
2838                 vm_domain_free_unlock(vmd);
2839                 vm_domain_freecnt_inc(vmd, cnt);
2840         }
2841         return (error);
2842 }
2843
2844 #define NRUNS   16
2845
2846 CTASSERT(powerof2(NRUNS));
2847
2848 #define RUN_INDEX(count)        ((count) & (NRUNS - 1))
2849
2850 #define MIN_RECLAIM     8
2851
2852 /*
2853  *      vm_page_reclaim_contig:
2854  *
2855  *      Reclaim allocated, contiguous physical memory satisfying the specified
2856  *      conditions by relocating the virtual pages using that physical memory.
2857  *      Returns true if reclamation is successful and false otherwise.  Since
2858  *      relocation requires the allocation of physical pages, reclamation may
2859  *      fail due to a shortage of free pages.  When reclamation fails, callers
2860  *      are expected to perform vm_wait() before retrying a failed allocation
2861  *      operation, e.g., vm_page_alloc_contig().
2862  *
2863  *      The caller must always specify an allocation class through "req".
2864  *
2865  *      allocation classes:
2866  *      VM_ALLOC_NORMAL         normal process request
2867  *      VM_ALLOC_SYSTEM         system *really* needs a page
2868  *      VM_ALLOC_INTERRUPT      interrupt time request
2869  *
2870  *      The optional allocation flags are ignored.
2871  *
2872  *      "npages" must be greater than zero.  Both "alignment" and "boundary"
2873  *      must be a power of two.
2874  */
2875 bool
2876 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2877     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2878 {
2879         struct vm_domain *vmd;
2880         vm_paddr_t curr_low;
2881         vm_page_t m_run, m_runs[NRUNS];
2882         u_long count, reclaimed;
2883         int error, i, options, req_class;
2884
2885         KASSERT(npages > 0, ("npages is 0"));
2886         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2887         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2888         req_class = req & VM_ALLOC_CLASS_MASK;
2889
2890         /*
2891          * The page daemon is allowed to dig deeper into the free page list.
2892          */
2893         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2894                 req_class = VM_ALLOC_SYSTEM;
2895
2896         /*
2897          * Return if the number of free pages cannot satisfy the requested
2898          * allocation.
2899          */
2900         vmd = VM_DOMAIN(domain);
2901         count = vmd->vmd_free_count;
2902         if (count < npages + vmd->vmd_free_reserved || (count < npages +
2903             vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2904             (count < npages && req_class == VM_ALLOC_INTERRUPT))
2905                 return (false);
2906
2907         /*
2908          * Scan up to three times, relaxing the restrictions ("options") on
2909          * the reclamation of reservations and superpages each time.
2910          */
2911         for (options = VPSC_NORESERV;;) {
2912                 /*
2913                  * Find the highest runs that satisfy the given constraints
2914                  * and restrictions, and record them in "m_runs".
2915                  */
2916                 curr_low = low;
2917                 count = 0;
2918                 for (;;) {
2919                         m_run = vm_phys_scan_contig(domain, npages, curr_low,
2920                             high, alignment, boundary, options);
2921                         if (m_run == NULL)
2922                                 break;
2923                         curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2924                         m_runs[RUN_INDEX(count)] = m_run;
2925                         count++;
2926                 }
2927
2928                 /*
2929                  * Reclaim the highest runs in LIFO (descending) order until
2930                  * the number of reclaimed pages, "reclaimed", is at least
2931                  * MIN_RECLAIM.  Reset "reclaimed" each time because each
2932                  * reclamation is idempotent, and runs will (likely) recur
2933                  * from one scan to the next as restrictions are relaxed.
2934                  */
2935                 reclaimed = 0;
2936                 for (i = 0; count > 0 && i < NRUNS; i++) {
2937                         count--;
2938                         m_run = m_runs[RUN_INDEX(count)];
2939                         error = vm_page_reclaim_run(req_class, domain, npages,
2940                             m_run, high);
2941                         if (error == 0) {
2942                                 reclaimed += npages;
2943                                 if (reclaimed >= MIN_RECLAIM)
2944                                         return (true);
2945                         }
2946                 }
2947
2948                 /*
2949                  * Either relax the restrictions on the next scan or return if
2950                  * the last scan had no restrictions.
2951                  */
2952                 if (options == VPSC_NORESERV)
2953                         options = VPSC_NOSUPER;
2954                 else if (options == VPSC_NOSUPER)
2955                         options = VPSC_ANY;
2956                 else if (options == VPSC_ANY)
2957                         return (reclaimed != 0);
2958         }
2959 }
2960
2961 bool
2962 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2963     u_long alignment, vm_paddr_t boundary)
2964 {
2965         struct vm_domainset_iter di;
2966         int domain;
2967         bool ret;
2968
2969         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2970         do {
2971                 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2972                     high, alignment, boundary);
2973                 if (ret)
2974                         break;
2975         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2976
2977         return (ret);
2978 }
2979
2980 /*
2981  * Set the domain in the appropriate page level domainset.
2982  */
2983 void
2984 vm_domain_set(struct vm_domain *vmd)
2985 {
2986
2987         mtx_lock(&vm_domainset_lock);
2988         if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2989                 vmd->vmd_minset = 1;
2990                 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2991         }
2992         if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2993                 vmd->vmd_severeset = 1;
2994                 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
2995         }
2996         mtx_unlock(&vm_domainset_lock);
2997 }
2998
2999 /*
3000  * Clear the domain from the appropriate page level domainset.
3001  */
3002 void
3003 vm_domain_clear(struct vm_domain *vmd)
3004 {
3005
3006         mtx_lock(&vm_domainset_lock);
3007         if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3008                 vmd->vmd_minset = 0;
3009                 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3010                 if (vm_min_waiters != 0) {
3011                         vm_min_waiters = 0;
3012                         wakeup(&vm_min_domains);
3013                 }
3014         }
3015         if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3016                 vmd->vmd_severeset = 0;
3017                 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3018                 if (vm_severe_waiters != 0) {
3019                         vm_severe_waiters = 0;
3020                         wakeup(&vm_severe_domains);
3021                 }
3022         }
3023
3024         /*
3025          * If pageout daemon needs pages, then tell it that there are
3026          * some free.
3027          */
3028         if (vmd->vmd_pageout_pages_needed &&
3029             vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3030                 wakeup(&vmd->vmd_pageout_pages_needed);
3031                 vmd->vmd_pageout_pages_needed = 0;
3032         }
3033
3034         /* See comments in vm_wait_doms(). */
3035         if (vm_pageproc_waiters) {
3036                 vm_pageproc_waiters = 0;
3037                 wakeup(&vm_pageproc_waiters);
3038         }
3039         mtx_unlock(&vm_domainset_lock);
3040 }
3041
3042 /*
3043  * Wait for free pages to exceed the min threshold globally.
3044  */
3045 void
3046 vm_wait_min(void)
3047 {
3048
3049         mtx_lock(&vm_domainset_lock);
3050         while (vm_page_count_min()) {
3051                 vm_min_waiters++;
3052                 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3053         }
3054         mtx_unlock(&vm_domainset_lock);
3055 }
3056
3057 /*
3058  * Wait for free pages to exceed the severe threshold globally.
3059  */
3060 void
3061 vm_wait_severe(void)
3062 {
3063
3064         mtx_lock(&vm_domainset_lock);
3065         while (vm_page_count_severe()) {
3066                 vm_severe_waiters++;
3067                 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3068                     "vmwait", 0);
3069         }
3070         mtx_unlock(&vm_domainset_lock);
3071 }
3072
3073 u_int
3074 vm_wait_count(void)
3075 {
3076
3077         return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3078 }
3079
3080 void
3081 vm_wait_doms(const domainset_t *wdoms)
3082 {
3083
3084         /*
3085          * We use racey wakeup synchronization to avoid expensive global
3086          * locking for the pageproc when sleeping with a non-specific vm_wait.
3087          * To handle this, we only sleep for one tick in this instance.  It
3088          * is expected that most allocations for the pageproc will come from
3089          * kmem or vm_page_grab* which will use the more specific and
3090          * race-free vm_wait_domain().
3091          */
3092         if (curproc == pageproc) {
3093                 mtx_lock(&vm_domainset_lock);
3094                 vm_pageproc_waiters++;
3095                 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3096                     "pageprocwait", 1);
3097         } else {
3098                 /*
3099                  * XXX Ideally we would wait only until the allocation could
3100                  * be satisfied.  This condition can cause new allocators to
3101                  * consume all freed pages while old allocators wait.
3102                  */
3103                 mtx_lock(&vm_domainset_lock);
3104                 if (vm_page_count_min_set(wdoms)) {
3105                         vm_min_waiters++;
3106                         msleep(&vm_min_domains, &vm_domainset_lock,
3107                             PVM | PDROP, "vmwait", 0);
3108                 } else
3109                         mtx_unlock(&vm_domainset_lock);
3110         }
3111 }
3112
3113 /*
3114  *      vm_wait_domain:
3115  *
3116  *      Sleep until free pages are available for allocation.
3117  *      - Called in various places after failed memory allocations.
3118  */
3119 void
3120 vm_wait_domain(int domain)
3121 {
3122         struct vm_domain *vmd;
3123         domainset_t wdom;
3124
3125         vmd = VM_DOMAIN(domain);
3126         vm_domain_free_assert_unlocked(vmd);
3127
3128         if (curproc == pageproc) {
3129                 mtx_lock(&vm_domainset_lock);
3130                 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3131                         vmd->vmd_pageout_pages_needed = 1;
3132                         msleep(&vmd->vmd_pageout_pages_needed,
3133                             &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3134                 } else
3135                         mtx_unlock(&vm_domainset_lock);
3136         } else {
3137                 if (pageproc == NULL)
3138                         panic("vm_wait in early boot");
3139                 DOMAINSET_ZERO(&wdom);
3140                 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3141                 vm_wait_doms(&wdom);
3142         }
3143 }
3144
3145 /*
3146  *      vm_wait:
3147  *
3148  *      Sleep until free pages are available for allocation in the
3149  *      affinity domains of the obj.  If obj is NULL, the domain set
3150  *      for the calling thread is used.
3151  *      Called in various places after failed memory allocations.
3152  */
3153 void
3154 vm_wait(vm_object_t obj)
3155 {
3156         struct domainset *d;
3157
3158         d = NULL;
3159
3160         /*
3161          * Carefully fetch pointers only once: the struct domainset
3162          * itself is ummutable but the pointer might change.
3163          */
3164         if (obj != NULL)
3165                 d = obj->domain.dr_policy;
3166         if (d == NULL)
3167                 d = curthread->td_domain.dr_policy;
3168
3169         vm_wait_doms(&d->ds_mask);
3170 }
3171
3172 /*
3173  *      vm_domain_alloc_fail:
3174  *
3175  *      Called when a page allocation function fails.  Informs the
3176  *      pagedaemon and performs the requested wait.  Requires the
3177  *      domain_free and object lock on entry.  Returns with the
3178  *      object lock held and free lock released.  Returns an error when
3179  *      retry is necessary.
3180  *
3181  */
3182 static int
3183 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3184 {
3185
3186         vm_domain_free_assert_unlocked(vmd);
3187
3188         atomic_add_int(&vmd->vmd_pageout_deficit,
3189             max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3190         if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3191                 if (object != NULL) 
3192                         VM_OBJECT_WUNLOCK(object);
3193                 vm_wait_domain(vmd->vmd_domain);
3194                 if (object != NULL) 
3195                         VM_OBJECT_WLOCK(object);
3196                 if (req & VM_ALLOC_WAITOK)
3197                         return (EAGAIN);
3198         }
3199
3200         return (0);
3201 }
3202
3203 /*
3204  *      vm_waitpfault:
3205  *
3206  *      Sleep until free pages are available for allocation.
3207  *      - Called only in vm_fault so that processes page faulting
3208  *        can be easily tracked.
3209  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3210  *        processes will be able to grab memory first.  Do not change
3211  *        this balance without careful testing first.
3212  */
3213 void
3214 vm_waitpfault(struct domainset *dset, int timo)
3215 {
3216
3217         /*
3218          * XXX Ideally we would wait only until the allocation could
3219          * be satisfied.  This condition can cause new allocators to
3220          * consume all freed pages while old allocators wait.
3221          */
3222         mtx_lock(&vm_domainset_lock);
3223         if (vm_page_count_min_set(&dset->ds_mask)) {
3224                 vm_min_waiters++;
3225                 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3226                     "pfault", timo);
3227         } else
3228                 mtx_unlock(&vm_domainset_lock);
3229 }
3230
3231 static struct vm_pagequeue *
3232 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3233 {
3234
3235         return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3236 }
3237
3238 #ifdef INVARIANTS
3239 static struct vm_pagequeue *
3240 vm_page_pagequeue(vm_page_t m)
3241 {
3242
3243         return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3244 }
3245 #endif
3246
3247 static __always_inline bool
3248 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3249 {
3250         vm_page_astate_t tmp;
3251
3252         tmp = *old;
3253         do {
3254                 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3255                         return (true);
3256                 counter_u64_add(pqstate_commit_retries, 1);
3257         } while (old->_bits == tmp._bits);
3258
3259         return (false);
3260 }
3261
3262 /*
3263  * Do the work of committing a queue state update that moves the page out of
3264  * its current queue.
3265  */
3266 static bool
3267 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3268     vm_page_astate_t *old, vm_page_astate_t new)
3269 {
3270         vm_page_t next;
3271
3272         vm_pagequeue_assert_locked(pq);
3273         KASSERT(vm_page_pagequeue(m) == pq,
3274             ("%s: queue %p does not match page %p", __func__, pq, m));
3275         KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3276             ("%s: invalid queue indices %d %d",
3277             __func__, old->queue, new.queue));
3278
3279         /*
3280          * Once the queue index of the page changes there is nothing
3281          * synchronizing with further updates to the page's physical
3282          * queue state.  Therefore we must speculatively remove the page
3283          * from the queue now and be prepared to roll back if the queue
3284          * state update fails.  If the page is not physically enqueued then
3285          * we just update its queue index.
3286          */
3287         if ((old->flags & PGA_ENQUEUED) != 0) {
3288                 new.flags &= ~PGA_ENQUEUED;
3289                 next = TAILQ_NEXT(m, plinks.q);
3290                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3291                 vm_pagequeue_cnt_dec(pq);
3292                 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3293                         if (next == NULL)
3294                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3295                         else
3296                                 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3297                         vm_pagequeue_cnt_inc(pq);
3298                         return (false);
3299                 } else {
3300                         return (true);
3301                 }
3302         } else {
3303                 return (vm_page_pqstate_fcmpset(m, old, new));
3304         }
3305 }
3306
3307 static bool
3308 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3309     vm_page_astate_t new)
3310 {
3311         struct vm_pagequeue *pq;
3312         vm_page_astate_t as;
3313         bool ret;
3314
3315         pq = _vm_page_pagequeue(m, old->queue);
3316
3317         /*
3318          * The queue field and PGA_ENQUEUED flag are stable only so long as the
3319          * corresponding page queue lock is held.
3320          */
3321         vm_pagequeue_lock(pq);
3322         as = vm_page_astate_load(m);
3323         if (__predict_false(as._bits != old->_bits)) {
3324                 *old = as;
3325                 ret = false;
3326         } else {
3327                 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3328         }
3329         vm_pagequeue_unlock(pq);
3330         return (ret);
3331 }
3332
3333 /*
3334  * Commit a queue state update that enqueues or requeues a page.
3335  */
3336 static bool
3337 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3338     vm_page_astate_t *old, vm_page_astate_t new)
3339 {
3340         struct vm_domain *vmd;
3341
3342         vm_pagequeue_assert_locked(pq);
3343         KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3344             ("%s: invalid queue indices %d %d",
3345             __func__, old->queue, new.queue));
3346
3347         new.flags |= PGA_ENQUEUED;
3348         if (!vm_page_pqstate_fcmpset(m, old, new))
3349                 return (false);
3350
3351         if ((old->flags & PGA_ENQUEUED) != 0)
3352                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3353         else
3354                 vm_pagequeue_cnt_inc(pq);
3355
3356         /*
3357          * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3358          * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3359          * applied, even if it was set first.
3360          */
3361         if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3362                 vmd = vm_pagequeue_domain(m);
3363                 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3364                     ("%s: invalid page queue for page %p", __func__, m));
3365                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3366         } else {
3367                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3368         }
3369         return (true);
3370 }
3371
3372 /*
3373  * Commit a queue state update that encodes a request for a deferred queue
3374  * operation.
3375  */
3376 static bool
3377 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3378     vm_page_astate_t new)
3379 {
3380
3381         KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3382             ("%s: invalid state, queue %d flags %x",
3383             __func__, new.queue, new.flags));
3384
3385         if (old->_bits != new._bits &&
3386             !vm_page_pqstate_fcmpset(m, old, new))
3387                 return (false);
3388         vm_page_pqbatch_submit(m, new.queue);
3389         return (true);
3390 }
3391
3392 /*
3393  * A generic queue state update function.  This handles more cases than the
3394  * specialized functions above.
3395  */
3396 bool
3397 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3398 {
3399
3400         if (old->_bits == new._bits)
3401                 return (true);
3402
3403         if (old->queue != PQ_NONE && new.queue != old->queue) {
3404                 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3405                         return (false);
3406                 if (new.queue != PQ_NONE)
3407                         vm_page_pqbatch_submit(m, new.queue);
3408         } else {
3409                 if (!vm_page_pqstate_fcmpset(m, old, new))
3410                         return (false);
3411                 if (new.queue != PQ_NONE &&
3412                     ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3413                         vm_page_pqbatch_submit(m, new.queue);
3414         }
3415         return (true);
3416 }
3417
3418 /*
3419  * Apply deferred queue state updates to a page.
3420  */
3421 static inline void
3422 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3423 {
3424         vm_page_astate_t new, old;
3425
3426         CRITICAL_ASSERT(curthread);
3427         vm_pagequeue_assert_locked(pq);
3428         KASSERT(queue < PQ_COUNT,
3429             ("%s: invalid queue index %d", __func__, queue));
3430         KASSERT(pq == _vm_page_pagequeue(m, queue),
3431             ("%s: page %p does not belong to queue %p", __func__, m, pq));
3432
3433         for (old = vm_page_astate_load(m);;) {
3434                 if (__predict_false(old.queue != queue ||
3435                     (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3436                         counter_u64_add(queue_nops, 1);
3437                         break;
3438                 }
3439                 KASSERT(old.queue != PQ_NONE || (old.flags & PGA_QUEUE_STATE_MASK) == 0,
3440                     ("%s: page %p has unexpected queue state", __func__, m));
3441
3442                 new = old;
3443                 if ((old.flags & PGA_DEQUEUE) != 0) {
3444                         new.flags &= ~PGA_QUEUE_OP_MASK;
3445                         new.queue = PQ_NONE;
3446                         if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3447                             m, &old, new))) {
3448                                 counter_u64_add(queue_ops, 1);
3449                                 break;
3450                         }
3451                 } else {
3452                         new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3453                         if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3454                             m, &old, new))) {
3455                                 counter_u64_add(queue_ops, 1);
3456                                 break;
3457                         }
3458                 }
3459         }
3460 }
3461
3462 static void
3463 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3464     uint8_t queue)
3465 {
3466         int i;
3467
3468         for (i = 0; i < bq->bq_cnt; i++)
3469                 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3470         vm_batchqueue_init(bq);
3471 }
3472
3473 /*
3474  *      vm_page_pqbatch_submit:         [ internal use only ]
3475  *
3476  *      Enqueue a page in the specified page queue's batched work queue.
3477  *      The caller must have encoded the requested operation in the page
3478  *      structure's a.flags field.
3479  */
3480 void
3481 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3482 {
3483         struct vm_batchqueue *bq;
3484         struct vm_pagequeue *pq;
3485         int domain;
3486
3487         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3488             ("page %p is unmanaged", m));
3489         KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3490
3491         domain = vm_phys_domain(m);
3492         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3493
3494         critical_enter();
3495         bq = DPCPU_PTR(pqbatch[domain][queue]);
3496         if (vm_batchqueue_insert(bq, m)) {
3497                 critical_exit();
3498                 return;
3499         }
3500         critical_exit();
3501         vm_pagequeue_lock(pq);
3502         critical_enter();
3503         bq = DPCPU_PTR(pqbatch[domain][queue]);
3504         vm_pqbatch_process(pq, bq, queue);
3505         vm_pqbatch_process_page(pq, m, queue);
3506         vm_pagequeue_unlock(pq);
3507         critical_exit();
3508 }
3509
3510 /*
3511  *      vm_page_pqbatch_drain:          [ internal use only ]
3512  *
3513  *      Force all per-CPU page queue batch queues to be drained.  This is
3514  *      intended for use in severe memory shortages, to ensure that pages
3515  *      do not remain stuck in the batch queues.
3516  */
3517 void
3518 vm_page_pqbatch_drain(void)
3519 {
3520         struct thread *td;
3521         struct vm_domain *vmd;
3522         struct vm_pagequeue *pq;
3523         int cpu, domain, queue;
3524
3525         td = curthread;
3526         CPU_FOREACH(cpu) {
3527                 thread_lock(td);
3528                 sched_bind(td, cpu);
3529                 thread_unlock(td);
3530
3531                 for (domain = 0; domain < vm_ndomains; domain++) {
3532                         vmd = VM_DOMAIN(domain);
3533                         for (queue = 0; queue < PQ_COUNT; queue++) {
3534                                 pq = &vmd->vmd_pagequeues[queue];
3535                                 vm_pagequeue_lock(pq);
3536                                 critical_enter();
3537                                 vm_pqbatch_process(pq,
3538                                     DPCPU_PTR(pqbatch[domain][queue]), queue);
3539                                 critical_exit();
3540                                 vm_pagequeue_unlock(pq);
3541                         }
3542                 }
3543         }
3544         thread_lock(td);
3545         sched_unbind(td);
3546         thread_unlock(td);
3547 }
3548
3549 /*
3550  *      vm_page_dequeue_deferred:       [ internal use only ]
3551  *
3552  *      Request removal of the given page from its current page
3553  *      queue.  Physical removal from the queue may be deferred
3554  *      indefinitely.
3555  *
3556  *      The page must be locked.
3557  */
3558 void
3559 vm_page_dequeue_deferred(vm_page_t m)
3560 {
3561         vm_page_astate_t new, old;
3562
3563         old = vm_page_astate_load(m);
3564         do {
3565                 if (old.queue == PQ_NONE) {
3566                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3567                             ("%s: page %p has unexpected queue state",
3568                             __func__, m));
3569                         break;
3570                 }
3571                 new = old;
3572                 new.flags |= PGA_DEQUEUE;
3573         } while (!vm_page_pqstate_commit_request(m, &old, new));
3574 }
3575
3576 /*
3577  *      vm_page_dequeue:
3578  *
3579  *      Remove the page from whichever page queue it's in, if any, before
3580  *      returning.
3581  */
3582 void
3583 vm_page_dequeue(vm_page_t m)
3584 {
3585         vm_page_astate_t new, old;
3586
3587         old = vm_page_astate_load(m);
3588         do {
3589                 if (old.queue == PQ_NONE) {
3590                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3591                             ("%s: page %p has unexpected queue state",
3592                             __func__, m));
3593                         break;
3594                 }
3595                 new = old;
3596                 new.flags &= ~PGA_QUEUE_OP_MASK;
3597                 new.queue = PQ_NONE;
3598         } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3599
3600 }
3601
3602 /*
3603  * Schedule the given page for insertion into the specified page queue.
3604  * Physical insertion of the page may be deferred indefinitely.
3605  */
3606 static void
3607 vm_page_enqueue(vm_page_t m, uint8_t queue)
3608 {
3609
3610         KASSERT(m->a.queue == PQ_NONE &&
3611             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3612             ("%s: page %p is already enqueued", __func__, m));
3613         KASSERT(m->ref_count > 0,
3614             ("%s: page %p does not carry any references", __func__, m));
3615
3616         m->a.queue = queue;
3617         if ((m->a.flags & PGA_REQUEUE) == 0)
3618                 vm_page_aflag_set(m, PGA_REQUEUE);
3619         vm_page_pqbatch_submit(m, queue);
3620 }
3621
3622 /*
3623  *      vm_page_free_prep:
3624  *
3625  *      Prepares the given page to be put on the free list,
3626  *      disassociating it from any VM object. The caller may return
3627  *      the page to the free list only if this function returns true.
3628  *
3629  *      The object must be locked.  The page must be locked if it is
3630  *      managed.
3631  */
3632 static bool
3633 vm_page_free_prep(vm_page_t m)
3634 {
3635
3636         /*
3637          * Synchronize with threads that have dropped a reference to this
3638          * page.
3639          */
3640         atomic_thread_fence_acq();
3641
3642         if (vm_page_sbusied(m))
3643                 panic("vm_page_free_prep: freeing shared busy page %p", m);
3644
3645 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3646         if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3647                 uint64_t *p;
3648                 int i;
3649                 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3650                 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3651                         KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3652                             m, i, (uintmax_t)*p));
3653         }
3654 #endif
3655         if ((m->oflags & VPO_UNMANAGED) == 0) {
3656                 KASSERT(!pmap_page_is_mapped(m),
3657                     ("vm_page_free_prep: freeing mapped page %p", m));
3658                 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3659                     ("vm_page_free_prep: mapping flags set in page %p", m));
3660         } else {
3661                 KASSERT(m->a.queue == PQ_NONE,
3662                     ("vm_page_free_prep: unmanaged page %p is queued", m));
3663         }
3664         VM_CNT_INC(v_tfree);
3665
3666         if (m->object != NULL) {
3667                 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3668                     ((m->object->flags & OBJ_UNMANAGED) != 0),
3669                     ("vm_page_free_prep: managed flag mismatch for page %p",
3670                     m));
3671                 vm_page_object_remove(m);
3672
3673                 /*
3674                  * The object reference can be released without an atomic
3675                  * operation.
3676                  */
3677                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3678                     m->ref_count == VPRC_OBJREF,
3679                     ("vm_page_free_prep: page %p has unexpected ref_count %u",
3680                     m, m->ref_count));
3681                 m->object = NULL;
3682                 m->ref_count -= VPRC_OBJREF;
3683                 vm_page_xunbusy(m);
3684         }
3685
3686         if (vm_page_xbusied(m))
3687                 panic("vm_page_free_prep: freeing exclusive busy page %p", m);
3688
3689         /*
3690          * If fictitious remove object association and
3691          * return.
3692          */
3693         if ((m->flags & PG_FICTITIOUS) != 0) {
3694                 KASSERT(m->ref_count == 1,
3695                     ("fictitious page %p is referenced", m));
3696                 KASSERT(m->a.queue == PQ_NONE,
3697                     ("fictitious page %p is queued", m));
3698                 return (false);
3699         }
3700
3701         /*
3702          * Pages need not be dequeued before they are returned to the physical
3703          * memory allocator, but they must at least be marked for a deferred
3704          * dequeue.
3705          */
3706         if ((m->oflags & VPO_UNMANAGED) == 0)
3707                 vm_page_dequeue_deferred(m);
3708
3709         m->valid = 0;
3710         vm_page_undirty(m);
3711
3712         if (m->ref_count != 0)
3713                 panic("vm_page_free_prep: page %p has references", m);
3714
3715         /*
3716          * Restore the default memory attribute to the page.
3717          */
3718         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3719                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3720
3721 #if VM_NRESERVLEVEL > 0
3722         /*
3723          * Determine whether the page belongs to a reservation.  If the page was
3724          * allocated from a per-CPU cache, it cannot belong to a reservation, so
3725          * as an optimization, we avoid the check in that case.
3726          */
3727         if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3728                 return (false);
3729 #endif
3730
3731         return (true);
3732 }
3733
3734 /*
3735  *      vm_page_free_toq:
3736  *
3737  *      Returns the given page to the free list, disassociating it
3738  *      from any VM object.
3739  *
3740  *      The object must be locked.  The page must be locked if it is
3741  *      managed.
3742  */
3743 static void
3744 vm_page_free_toq(vm_page_t m)
3745 {
3746         struct vm_domain *vmd;
3747         uma_zone_t zone;
3748
3749         if (!vm_page_free_prep(m))
3750                 return;
3751
3752         vmd = vm_pagequeue_domain(m);
3753         zone = vmd->vmd_pgcache[m->pool].zone;
3754         if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3755                 uma_zfree(zone, m);
3756                 return;
3757         }
3758         vm_domain_free_lock(vmd);
3759         vm_phys_free_pages(m, 0);
3760         vm_domain_free_unlock(vmd);
3761         vm_domain_freecnt_inc(vmd, 1);
3762 }
3763
3764 /*
3765  *      vm_page_free_pages_toq:
3766  *
3767  *      Returns a list of pages to the free list, disassociating it
3768  *      from any VM object.  In other words, this is equivalent to
3769  *      calling vm_page_free_toq() for each page of a list of VM objects.
3770  *
3771  *      The objects must be locked.  The pages must be locked if it is
3772  *      managed.
3773  */
3774 void
3775 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3776 {
3777         vm_page_t m;
3778         int count;
3779
3780         if (SLIST_EMPTY(free))
3781                 return;
3782
3783         count = 0;
3784         while ((m = SLIST_FIRST(free)) != NULL) {
3785                 count++;
3786                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
3787                 vm_page_free_toq(m);
3788         }
3789
3790         if (update_wire_count)
3791                 vm_wire_sub(count);
3792 }
3793
3794 /*
3795  * Mark this page as wired down, preventing reclamation by the page daemon
3796  * or when the containing object is destroyed.
3797  */
3798 void
3799 vm_page_wire(vm_page_t m)
3800 {
3801         u_int old;
3802
3803         KASSERT(m->object != NULL,
3804             ("vm_page_wire: page %p does not belong to an object", m));
3805         if (!vm_page_busied(m) && !vm_object_busied(m->object))
3806                 VM_OBJECT_ASSERT_LOCKED(m->object);
3807         KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3808             VPRC_WIRE_COUNT(m->ref_count) >= 1,
3809             ("vm_page_wire: fictitious page %p has zero wirings", m));
3810
3811         old = atomic_fetchadd_int(&m->ref_count, 1);
3812         KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3813             ("vm_page_wire: counter overflow for page %p", m));
3814         if (VPRC_WIRE_COUNT(old) == 0) {
3815                 if ((m->oflags & VPO_UNMANAGED) == 0)
3816                         vm_page_aflag_set(m, PGA_DEQUEUE);
3817                 vm_wire_add(1);
3818         }
3819 }
3820
3821 /*
3822  * Attempt to wire a mapped page following a pmap lookup of that page.
3823  * This may fail if a thread is concurrently tearing down mappings of the page.
3824  * The transient failure is acceptable because it translates to the
3825  * failure of the caller pmap_extract_and_hold(), which should be then
3826  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3827  */
3828 bool
3829 vm_page_wire_mapped(vm_page_t m)
3830 {
3831         u_int old;
3832
3833         old = m->ref_count;
3834         do {
3835                 KASSERT(old > 0,
3836                     ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3837                 if ((old & VPRC_BLOCKED) != 0)
3838                         return (false);
3839         } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3840
3841         if (VPRC_WIRE_COUNT(old) == 0) {
3842                 if ((m->oflags & VPO_UNMANAGED) == 0)
3843                         vm_page_aflag_set(m, PGA_DEQUEUE);
3844                 vm_wire_add(1);
3845         }
3846         return (true);
3847 }
3848
3849 /*
3850  * Release a wiring reference to a managed page.  If the page still belongs to
3851  * an object, update its position in the page queues to reflect the reference.
3852  * If the wiring was the last reference to the page, free the page.
3853  */
3854 static void
3855 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
3856 {
3857         u_int old;
3858
3859         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3860             ("%s: page %p is unmanaged", __func__, m));
3861
3862         /*
3863          * Update LRU state before releasing the wiring reference.
3864          * Use a release store when updating the reference count to
3865          * synchronize with vm_page_free_prep().
3866          */
3867         old = m->ref_count;
3868         do {
3869                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
3870                     ("vm_page_unwire: wire count underflow for page %p", m));
3871
3872                 if (old > VPRC_OBJREF + 1) {
3873                         /*
3874                          * The page has at least one other wiring reference.  An
3875                          * earlier iteration of this loop may have called
3876                          * vm_page_release_toq() and cleared PGA_DEQUEUE, so
3877                          * re-set it if necessary.
3878                          */
3879                         if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
3880                                 vm_page_aflag_set(m, PGA_DEQUEUE);
3881                 } else if (old == VPRC_OBJREF + 1) {
3882                         /*
3883                          * This is the last wiring.  Clear PGA_DEQUEUE and
3884                          * update the page's queue state to reflect the
3885                          * reference.  If the page does not belong to an object
3886                          * (i.e., the VPRC_OBJREF bit is clear), we only need to
3887                          * clear leftover queue state.
3888                          */
3889                         vm_page_release_toq(m, nqueue, false);
3890                 } else if (old == 1) {
3891                         vm_page_aflag_clear(m, PGA_DEQUEUE);
3892                 }
3893         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3894
3895         if (VPRC_WIRE_COUNT(old) == 1) {
3896                 vm_wire_sub(1);
3897                 if (old == 1)
3898                         vm_page_free(m);
3899         }
3900 }
3901
3902 /*
3903  * Release one wiring of the specified page, potentially allowing it to be
3904  * paged out.
3905  *
3906  * Only managed pages belonging to an object can be paged out.  If the number
3907  * of wirings transitions to zero and the page is eligible for page out, then
3908  * the page is added to the specified paging queue.  If the released wiring
3909  * represented the last reference to the page, the page is freed.
3910  *
3911  * A managed page must be locked.
3912  */
3913 void
3914 vm_page_unwire(vm_page_t m, uint8_t nqueue)
3915 {
3916
3917         KASSERT(nqueue < PQ_COUNT,
3918             ("vm_page_unwire: invalid queue %u request for page %p",
3919             nqueue, m));
3920
3921         if ((m->oflags & VPO_UNMANAGED) != 0) {
3922                 if (vm_page_unwire_noq(m) && m->ref_count == 0)
3923                         vm_page_free(m);
3924                 return;
3925         }
3926         vm_page_unwire_managed(m, nqueue, false);
3927 }
3928
3929 /*
3930  * Unwire a page without (re-)inserting it into a page queue.  It is up
3931  * to the caller to enqueue, requeue, or free the page as appropriate.
3932  * In most cases involving managed pages, vm_page_unwire() should be used
3933  * instead.
3934  */
3935 bool
3936 vm_page_unwire_noq(vm_page_t m)
3937 {
3938         u_int old;
3939
3940         old = vm_page_drop(m, 1);
3941         KASSERT(VPRC_WIRE_COUNT(old) != 0,
3942             ("vm_page_unref: counter underflow for page %p", m));
3943         KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3944             ("vm_page_unref: missing ref on fictitious page %p", m));
3945
3946         if (VPRC_WIRE_COUNT(old) > 1)
3947                 return (false);
3948         if ((m->oflags & VPO_UNMANAGED) == 0)
3949                 vm_page_aflag_clear(m, PGA_DEQUEUE);
3950         vm_wire_sub(1);
3951         return (true);
3952 }
3953
3954 /*
3955  * Ensure that the page ends up in the specified page queue.  If the page is
3956  * active or being moved to the active queue, ensure that its act_count is
3957  * at least ACT_INIT but do not otherwise mess with it.
3958  *
3959  * A managed page must be locked.
3960  */
3961 static __always_inline void
3962 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
3963 {
3964         vm_page_astate_t old, new;
3965
3966         KASSERT(m->ref_count > 0,
3967             ("%s: page %p does not carry any references", __func__, m));
3968         KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
3969             ("%s: invalid flags %x", __func__, nflag));
3970
3971         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3972                 return;
3973
3974         old = vm_page_astate_load(m);
3975         do {
3976                 if ((old.flags & PGA_DEQUEUE) != 0)
3977                         break;
3978                 new = old;
3979                 new.flags &= ~PGA_QUEUE_OP_MASK;
3980                 if (nqueue == PQ_ACTIVE)
3981                         new.act_count = max(old.act_count, ACT_INIT);
3982                 if (old.queue == nqueue) {
3983                         if (nqueue != PQ_ACTIVE)
3984                                 new.flags |= nflag;
3985                 } else {
3986                         new.flags |= nflag;
3987                         new.queue = nqueue;
3988                 }
3989         } while (!vm_page_pqstate_commit(m, &old, new));
3990 }
3991
3992 /*
3993  * Put the specified page on the active list (if appropriate).
3994  */
3995 void
3996 vm_page_activate(vm_page_t m)
3997 {
3998
3999         vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4000 }
4001
4002 /*
4003  * Move the specified page to the tail of the inactive queue, or requeue
4004  * the page if it is already in the inactive queue.
4005  */
4006 void
4007 vm_page_deactivate(vm_page_t m)
4008 {
4009
4010         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4011 }
4012
4013 void
4014 vm_page_deactivate_noreuse(vm_page_t m)
4015 {
4016
4017         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4018 }
4019
4020 /*
4021  * Put a page in the laundry, or requeue it if it is already there.
4022  */
4023 void
4024 vm_page_launder(vm_page_t m)
4025 {
4026
4027         vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4028 }
4029
4030 /*
4031  * Put a page in the PQ_UNSWAPPABLE holding queue.
4032  */
4033 void
4034 vm_page_unswappable(vm_page_t m)
4035 {
4036
4037         KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4038             ("page %p already unswappable", m));
4039
4040         vm_page_dequeue(m);
4041         vm_page_enqueue(m, PQ_UNSWAPPABLE);
4042 }
4043
4044 /*
4045  * Release a page back to the page queues in preparation for unwiring.
4046  */
4047 static void
4048 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4049 {
4050         vm_page_astate_t old, new;
4051         uint16_t nflag;
4052
4053         /*
4054          * Use a check of the valid bits to determine whether we should
4055          * accelerate reclamation of the page.  The object lock might not be
4056          * held here, in which case the check is racy.  At worst we will either
4057          * accelerate reclamation of a valid page and violate LRU, or
4058          * unnecessarily defer reclamation of an invalid page.
4059          *
4060          * If we were asked to not cache the page, place it near the head of the
4061          * inactive queue so that is reclaimed sooner.
4062          */
4063         if (noreuse || m->valid == 0) {
4064                 nqueue = PQ_INACTIVE;
4065                 nflag = PGA_REQUEUE_HEAD;
4066         } else {
4067                 nflag = PGA_REQUEUE;
4068         }
4069
4070         old = vm_page_astate_load(m);
4071         do {
4072                 new = old;
4073
4074                 /*
4075                  * If the page is already in the active queue and we are not
4076                  * trying to accelerate reclamation, simply mark it as
4077                  * referenced and avoid any queue operations.
4078                  */
4079                 new.flags &= ~PGA_QUEUE_OP_MASK;
4080                 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE)
4081                         new.flags |= PGA_REFERENCED;
4082                 else {
4083                         new.flags |= nflag;
4084                         new.queue = nqueue;
4085                 }
4086         } while (!vm_page_pqstate_commit(m, &old, new));
4087 }
4088
4089 /*
4090  * Unwire a page and either attempt to free it or re-add it to the page queues.
4091  */
4092 void
4093 vm_page_release(vm_page_t m, int flags)
4094 {
4095         vm_object_t object;
4096
4097         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4098             ("vm_page_release: page %p is unmanaged", m));
4099
4100         if ((flags & VPR_TRYFREE) != 0) {
4101                 for (;;) {
4102                         object = (vm_object_t)atomic_load_ptr(&m->object);
4103                         if (object == NULL)
4104                                 break;
4105                         /* Depends on type-stability. */
4106                         if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4107                                 break;
4108                         if (object == m->object) {
4109                                 vm_page_release_locked(m, flags);
4110                                 VM_OBJECT_WUNLOCK(object);
4111                                 return;
4112                         }
4113                         VM_OBJECT_WUNLOCK(object);
4114                 }
4115         }
4116         vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4117 }
4118
4119 /* See vm_page_release(). */
4120 void
4121 vm_page_release_locked(vm_page_t m, int flags)
4122 {
4123
4124         VM_OBJECT_ASSERT_WLOCKED(m->object);
4125         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4126             ("vm_page_release_locked: page %p is unmanaged", m));
4127
4128         if (vm_page_unwire_noq(m)) {
4129                 if ((flags & VPR_TRYFREE) != 0 &&
4130                     (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4131                     m->dirty == 0 && vm_page_tryxbusy(m)) {
4132                         vm_page_free(m);
4133                 } else {
4134                         vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4135                 }
4136         }
4137 }
4138
4139 static bool
4140 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4141 {
4142         u_int old;
4143
4144         KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4145             ("vm_page_try_blocked_op: page %p has no object", m));
4146         KASSERT(vm_page_busied(m),
4147             ("vm_page_try_blocked_op: page %p is not busy", m));
4148         VM_OBJECT_ASSERT_LOCKED(m->object);
4149
4150         old = m->ref_count;
4151         do {
4152                 KASSERT(old != 0,
4153                     ("vm_page_try_blocked_op: page %p has no references", m));
4154                 if (VPRC_WIRE_COUNT(old) != 0)
4155                         return (false);
4156         } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4157
4158         (op)(m);
4159
4160         /*
4161          * If the object is read-locked, new wirings may be created via an
4162          * object lookup.
4163          */
4164         old = vm_page_drop(m, VPRC_BLOCKED);
4165         KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4166             old == (VPRC_BLOCKED | VPRC_OBJREF),
4167             ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4168             old, m));
4169         return (true);
4170 }
4171
4172 /*
4173  * Atomically check for wirings and remove all mappings of the page.
4174  */
4175 bool
4176 vm_page_try_remove_all(vm_page_t m)
4177 {
4178
4179         return (vm_page_try_blocked_op(m, pmap_remove_all));
4180 }
4181
4182 /*
4183  * Atomically check for wirings and remove all writeable mappings of the page.
4184  */
4185 bool
4186 vm_page_try_remove_write(vm_page_t m)
4187 {
4188
4189         return (vm_page_try_blocked_op(m, pmap_remove_write));
4190 }
4191
4192 /*
4193  * vm_page_advise
4194  *
4195  *      Apply the specified advice to the given page.
4196  *
4197  *      The object and page must be locked.
4198  */
4199 void
4200 vm_page_advise(vm_page_t m, int advice)
4201 {
4202
4203         VM_OBJECT_ASSERT_WLOCKED(m->object);
4204         if (advice == MADV_FREE)
4205                 /*
4206                  * Mark the page clean.  This will allow the page to be freed
4207                  * without first paging it out.  MADV_FREE pages are often
4208                  * quickly reused by malloc(3), so we do not do anything that
4209                  * would result in a page fault on a later access.
4210                  */
4211                 vm_page_undirty(m);
4212         else if (advice != MADV_DONTNEED) {
4213                 if (advice == MADV_WILLNEED)
4214                         vm_page_activate(m);
4215                 return;
4216         }
4217
4218         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4219                 vm_page_dirty(m);
4220
4221         /*
4222          * Clear any references to the page.  Otherwise, the page daemon will
4223          * immediately reactivate the page.
4224          */
4225         vm_page_aflag_clear(m, PGA_REFERENCED);
4226
4227         /*
4228          * Place clean pages near the head of the inactive queue rather than
4229          * the tail, thus defeating the queue's LRU operation and ensuring that
4230          * the page will be reused quickly.  Dirty pages not already in the
4231          * laundry are moved there.
4232          */
4233         if (m->dirty == 0)
4234                 vm_page_deactivate_noreuse(m);
4235         else if (!vm_page_in_laundry(m))
4236                 vm_page_launder(m);
4237 }
4238
4239 static inline int
4240 vm_page_grab_pflags(int allocflags)
4241 {
4242         int pflags;
4243
4244         KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4245             (allocflags & VM_ALLOC_WIRED) != 0,
4246             ("vm_page_grab_pflags: the pages must be busied or wired"));
4247         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4248             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4249             ("vm_page_grab_pflags: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4250             "mismatch"));
4251         pflags = allocflags &
4252             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4253             VM_ALLOC_NOBUSY);
4254         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4255                 pflags |= VM_ALLOC_WAITFAIL;
4256         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4257                 pflags |= VM_ALLOC_SBUSY;
4258
4259         return (pflags);
4260 }
4261
4262 /*
4263  * Grab a page, waiting until we are waken up due to the page
4264  * changing state.  We keep on waiting, if the page continues
4265  * to be in the object.  If the page doesn't exist, first allocate it
4266  * and then conditionally zero it.
4267  *
4268  * This routine may sleep.
4269  *
4270  * The object must be locked on entry.  The lock will, however, be released
4271  * and reacquired if the routine sleeps.
4272  */
4273 vm_page_t
4274 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4275 {
4276         vm_page_t m;
4277         int pflags;
4278
4279         VM_OBJECT_ASSERT_WLOCKED(object);
4280         pflags = vm_page_grab_pflags(allocflags);
4281 retrylookup:
4282         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4283                 if (!vm_page_acquire_flags(m, allocflags)) {
4284                         if (vm_page_busy_sleep_flags(object, m, "pgrbwt",
4285                             allocflags))
4286                                 goto retrylookup;
4287                         return (NULL);
4288                 }
4289                 goto out;
4290         }
4291         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4292                 return (NULL);
4293         m = vm_page_alloc(object, pindex, pflags);
4294         if (m == NULL) {
4295                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4296                         return (NULL);
4297                 goto retrylookup;
4298         }
4299         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4300                 pmap_zero_page(m);
4301
4302 out:
4303         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4304                 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4305                         vm_page_sunbusy(m);
4306                 else
4307                         vm_page_xunbusy(m);
4308         }
4309         return (m);
4310 }
4311
4312 /*
4313  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4314  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4315  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4316  * in simultaneously.  Additional pages will be left on a paging queue but
4317  * will neither be wired nor busy regardless of allocflags.
4318  */
4319 int
4320 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4321 {
4322         vm_page_t m;
4323         vm_page_t ma[VM_INITIAL_PAGEIN];
4324         bool sleep, xbusy;
4325         int after, i, pflags, rv;
4326
4327         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4328             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4329             ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4330         KASSERT((allocflags &
4331             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4332             ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4333         VM_OBJECT_ASSERT_WLOCKED(object);
4334         pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY);
4335         pflags |= VM_ALLOC_WAITFAIL;
4336
4337 retrylookup:
4338         xbusy = false;
4339         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4340                 /*
4341                  * If the page is fully valid it can only become invalid
4342                  * with the object lock held.  If it is not valid it can
4343                  * become valid with the busy lock held.  Therefore, we
4344                  * may unnecessarily lock the exclusive busy here if we
4345                  * race with I/O completion not using the object lock.
4346                  * However, we will not end up with an invalid page and a
4347                  * shared lock.
4348                  */
4349                 if (!vm_page_all_valid(m) ||
4350                     (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) {
4351                         sleep = !vm_page_tryxbusy(m);
4352                         xbusy = true;
4353                 } else
4354                         sleep = !vm_page_trysbusy(m);
4355                 if (sleep) {
4356                         (void)vm_page_busy_sleep_flags(object, m, "pgrbwt",
4357                             allocflags);
4358                         goto retrylookup;
4359                 }
4360                 if ((allocflags & VM_ALLOC_NOCREAT) != 0 &&
4361                    !vm_page_all_valid(m)) {
4362                         if (xbusy)
4363                                 vm_page_xunbusy(m);
4364                         else
4365                                 vm_page_sunbusy(m);
4366                         *mp = NULL;
4367                         return (VM_PAGER_FAIL);
4368                 }
4369                 if ((allocflags & VM_ALLOC_WIRED) != 0)
4370                         vm_page_wire(m);
4371                 if (vm_page_all_valid(m))
4372                         goto out;
4373         } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4374                 *mp = NULL;
4375                 return (VM_PAGER_FAIL);
4376         } else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) {
4377                 xbusy = true;
4378         } else {
4379                 goto retrylookup;
4380         }
4381
4382         vm_page_assert_xbusied(m);
4383         MPASS(xbusy);
4384         if (vm_pager_has_page(object, pindex, NULL, &after)) {
4385                 after = MIN(after, VM_INITIAL_PAGEIN);
4386                 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4387                 after = MAX(after, 1);
4388                 ma[0] = m;
4389                 for (i = 1; i < after; i++) {
4390                         if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4391                                 if (ma[i]->valid || !vm_page_tryxbusy(ma[i]))
4392                                         break;
4393                         } else {
4394                                 ma[i] = vm_page_alloc(object, m->pindex + i,
4395                                     VM_ALLOC_NORMAL);
4396                                 if (ma[i] == NULL)
4397                                         break;
4398                         }
4399                 }
4400                 after = i;
4401                 vm_object_pip_add(object, after);
4402                 VM_OBJECT_WUNLOCK(object);
4403                 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4404                 VM_OBJECT_WLOCK(object);
4405                 vm_object_pip_wakeupn(object, after);
4406                 /* Pager may have replaced a page. */
4407                 m = ma[0];
4408                 if (rv != VM_PAGER_OK) {
4409                         if ((allocflags & VM_ALLOC_WIRED) != 0)
4410                                 vm_page_unwire_noq(m);
4411                         for (i = 0; i < after; i++) {
4412                                 if (!vm_page_wired(ma[i]))
4413                                         vm_page_free(ma[i]);
4414                                 else
4415                                         vm_page_xunbusy(ma[i]);
4416                         }
4417                         *mp = NULL;
4418                         return (rv);
4419                 }
4420                 for (i = 1; i < after; i++)
4421                         vm_page_readahead_finish(ma[i]);
4422                 MPASS(vm_page_all_valid(m));
4423         } else {
4424                 vm_page_zero_invalid(m, TRUE);
4425         }
4426 out:
4427         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4428                 if (xbusy)
4429                         vm_page_xunbusy(m);
4430                 else
4431                         vm_page_sunbusy(m);
4432         }
4433         if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy)
4434                 vm_page_busy_downgrade(m);
4435         *mp = m;
4436         return (VM_PAGER_OK);
4437 }
4438
4439 /*
4440  * Return the specified range of pages from the given object.  For each
4441  * page offset within the range, if a page already exists within the object
4442  * at that offset and it is busy, then wait for it to change state.  If,
4443  * instead, the page doesn't exist, then allocate it.
4444  *
4445  * The caller must always specify an allocation class.
4446  *
4447  * allocation classes:
4448  *      VM_ALLOC_NORMAL         normal process request
4449  *      VM_ALLOC_SYSTEM         system *really* needs the pages
4450  *
4451  * The caller must always specify that the pages are to be busied and/or
4452  * wired.
4453  *
4454  * optional allocation flags:
4455  *      VM_ALLOC_IGN_SBUSY      do not sleep on soft busy pages
4456  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
4457  *      VM_ALLOC_NOWAIT         do not sleep
4458  *      VM_ALLOC_SBUSY          set page to sbusy state
4459  *      VM_ALLOC_WIRED          wire the pages
4460  *      VM_ALLOC_ZERO           zero and validate any invalid pages
4461  *
4462  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4463  * may return a partial prefix of the requested range.
4464  */
4465 int
4466 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4467     vm_page_t *ma, int count)
4468 {
4469         vm_page_t m, mpred;
4470         int pflags;
4471         int i;
4472
4473         VM_OBJECT_ASSERT_WLOCKED(object);
4474         KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4475             ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4476
4477         pflags = vm_page_grab_pflags(allocflags);
4478         if (count == 0)
4479                 return (0);
4480
4481         i = 0;
4482 retrylookup:
4483         m = vm_radix_lookup_le(&object->rtree, pindex + i);
4484         if (m == NULL || m->pindex != pindex + i) {
4485                 mpred = m;
4486                 m = NULL;
4487         } else
4488                 mpred = TAILQ_PREV(m, pglist, listq);
4489         for (; i < count; i++) {
4490                 if (m != NULL) {
4491                         if (!vm_page_acquire_flags(m, allocflags)) {
4492                                 if (vm_page_busy_sleep_flags(object, m,
4493                                     "grbmaw", allocflags))
4494                                         goto retrylookup;
4495                                 break;
4496                         }
4497                 } else {
4498                         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4499                                 break;
4500                         m = vm_page_alloc_after(object, pindex + i,
4501                             pflags | VM_ALLOC_COUNT(count - i), mpred);
4502                         if (m == NULL) {
4503                                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4504                                         break;
4505                                 goto retrylookup;
4506                         }
4507                 }
4508                 if (vm_page_none_valid(m) &&
4509                     (allocflags & VM_ALLOC_ZERO) != 0) {
4510                         if ((m->flags & PG_ZERO) == 0)
4511                                 pmap_zero_page(m);
4512                         vm_page_valid(m);
4513                 }
4514                 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4515                         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4516                                 vm_page_sunbusy(m);
4517                         else
4518                                 vm_page_xunbusy(m);
4519                 }
4520                 ma[i] = mpred = m;
4521                 m = vm_page_next(m);
4522         }
4523         return (i);
4524 }
4525
4526 /*
4527  * Mapping function for valid or dirty bits in a page.
4528  *
4529  * Inputs are required to range within a page.
4530  */
4531 vm_page_bits_t
4532 vm_page_bits(int base, int size)
4533 {
4534         int first_bit;
4535         int last_bit;
4536
4537         KASSERT(
4538             base + size <= PAGE_SIZE,
4539             ("vm_page_bits: illegal base/size %d/%d", base, size)
4540         );
4541
4542         if (size == 0)          /* handle degenerate case */
4543                 return (0);
4544
4545         first_bit = base >> DEV_BSHIFT;
4546         last_bit = (base + size - 1) >> DEV_BSHIFT;
4547
4548         return (((vm_page_bits_t)2 << last_bit) -
4549             ((vm_page_bits_t)1 << first_bit));
4550 }
4551
4552 void
4553 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4554 {
4555
4556 #if PAGE_SIZE == 32768
4557         atomic_set_64((uint64_t *)bits, set);
4558 #elif PAGE_SIZE == 16384
4559         atomic_set_32((uint32_t *)bits, set);
4560 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4561         atomic_set_16((uint16_t *)bits, set);
4562 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4563         atomic_set_8((uint8_t *)bits, set);
4564 #else           /* PAGE_SIZE <= 8192 */
4565         uintptr_t addr;
4566         int shift;
4567
4568         addr = (uintptr_t)bits;
4569         /*
4570          * Use a trick to perform a 32-bit atomic on the
4571          * containing aligned word, to not depend on the existence
4572          * of atomic_{set, clear}_{8, 16}.
4573          */
4574         shift = addr & (sizeof(uint32_t) - 1);
4575 #if BYTE_ORDER == BIG_ENDIAN
4576         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4577 #else
4578         shift *= NBBY;
4579 #endif
4580         addr &= ~(sizeof(uint32_t) - 1);
4581         atomic_set_32((uint32_t *)addr, set << shift);
4582 #endif          /* PAGE_SIZE */
4583 }
4584
4585 static inline void
4586 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4587 {
4588
4589 #if PAGE_SIZE == 32768
4590         atomic_clear_64((uint64_t *)bits, clear);
4591 #elif PAGE_SIZE == 16384
4592         atomic_clear_32((uint32_t *)bits, clear);
4593 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4594         atomic_clear_16((uint16_t *)bits, clear);
4595 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4596         atomic_clear_8((uint8_t *)bits, clear);
4597 #else           /* PAGE_SIZE <= 8192 */
4598         uintptr_t addr;
4599         int shift;
4600
4601         addr = (uintptr_t)bits;
4602         /*
4603          * Use a trick to perform a 32-bit atomic on the
4604          * containing aligned word, to not depend on the existence
4605          * of atomic_{set, clear}_{8, 16}.
4606          */
4607         shift = addr & (sizeof(uint32_t) - 1);
4608 #if BYTE_ORDER == BIG_ENDIAN
4609         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4610 #else
4611         shift *= NBBY;
4612 #endif
4613         addr &= ~(sizeof(uint32_t) - 1);
4614         atomic_clear_32((uint32_t *)addr, clear << shift);
4615 #endif          /* PAGE_SIZE */
4616 }
4617
4618 static inline vm_page_bits_t
4619 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
4620 {
4621 #if PAGE_SIZE == 32768
4622         uint64_t old;
4623
4624         old = *bits;
4625         while (atomic_fcmpset_64(bits, &old, newbits) == 0);
4626         return (old);
4627 #elif PAGE_SIZE == 16384
4628         uint32_t old;
4629
4630         old = *bits;
4631         while (atomic_fcmpset_32(bits, &old, newbits) == 0);
4632         return (old);
4633 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
4634         uint16_t old;
4635
4636         old = *bits;
4637         while (atomic_fcmpset_16(bits, &old, newbits) == 0);
4638         return (old);
4639 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
4640         uint8_t old;
4641
4642         old = *bits;
4643         while (atomic_fcmpset_8(bits, &old, newbits) == 0);
4644         return (old);
4645 #else           /* PAGE_SIZE <= 4096*/
4646         uintptr_t addr;
4647         uint32_t old, new, mask;
4648         int shift;
4649
4650         addr = (uintptr_t)bits;
4651         /*
4652          * Use a trick to perform a 32-bit atomic on the
4653          * containing aligned word, to not depend on the existence
4654          * of atomic_{set, swap, clear}_{8, 16}.
4655          */
4656         shift = addr & (sizeof(uint32_t) - 1);
4657 #if BYTE_ORDER == BIG_ENDIAN
4658         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4659 #else
4660         shift *= NBBY;
4661 #endif
4662         addr &= ~(sizeof(uint32_t) - 1);
4663         mask = VM_PAGE_BITS_ALL << shift;
4664
4665         old = *bits;
4666         do {
4667                 new = old & ~mask;
4668                 new |= newbits << shift;
4669         } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
4670         return (old >> shift);
4671 #endif          /* PAGE_SIZE */
4672 }
4673
4674 /*
4675  *      vm_page_set_valid_range:
4676  *
4677  *      Sets portions of a page valid.  The arguments are expected
4678  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4679  *      of any partial chunks touched by the range.  The invalid portion of
4680  *      such chunks will be zeroed.
4681  *
4682  *      (base + size) must be less then or equal to PAGE_SIZE.
4683  */
4684 void
4685 vm_page_set_valid_range(vm_page_t m, int base, int size)
4686 {
4687         int endoff, frag;
4688         vm_page_bits_t pagebits;
4689
4690         vm_page_assert_busied(m);
4691         if (size == 0)  /* handle degenerate case */
4692                 return;
4693
4694         /*
4695          * If the base is not DEV_BSIZE aligned and the valid
4696          * bit is clear, we have to zero out a portion of the
4697          * first block.
4698          */
4699         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4700             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4701                 pmap_zero_page_area(m, frag, base - frag);
4702
4703         /*
4704          * If the ending offset is not DEV_BSIZE aligned and the
4705          * valid bit is clear, we have to zero out a portion of
4706          * the last block.
4707          */
4708         endoff = base + size;
4709         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4710             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4711                 pmap_zero_page_area(m, endoff,
4712                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4713
4714         /*
4715          * Assert that no previously invalid block that is now being validated
4716          * is already dirty.
4717          */
4718         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4719             ("vm_page_set_valid_range: page %p is dirty", m));
4720
4721         /*
4722          * Set valid bits inclusive of any overlap.
4723          */
4724         pagebits = vm_page_bits(base, size);
4725         if (vm_page_xbusied(m))
4726                 m->valid |= pagebits;
4727         else
4728                 vm_page_bits_set(m, &m->valid, pagebits);
4729 }
4730
4731 /*
4732  * Set the page dirty bits and free the invalid swap space if
4733  * present.  Returns the previous dirty bits.
4734  */
4735 vm_page_bits_t
4736 vm_page_set_dirty(vm_page_t m)
4737 {
4738         vm_page_bits_t old;
4739
4740         VM_PAGE_OBJECT_BUSY_ASSERT(m);
4741
4742         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
4743                 old = m->dirty;
4744                 m->dirty = VM_PAGE_BITS_ALL;
4745         } else
4746                 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
4747         if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
4748                 vm_pager_page_unswapped(m);
4749
4750         return (old);
4751 }
4752
4753 /*
4754  * Clear the given bits from the specified page's dirty field.
4755  */
4756 static __inline void
4757 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4758 {
4759
4760         vm_page_assert_busied(m);
4761
4762         /*
4763          * If the page is xbusied and not write mapped we are the
4764          * only thread that can modify dirty bits.  Otherwise, The pmap
4765          * layer can call vm_page_dirty() without holding a distinguished
4766          * lock.  The combination of page busy and atomic operations
4767          * suffice to guarantee consistency of the page dirty field.
4768          */
4769         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4770                 m->dirty &= ~pagebits;
4771         else
4772                 vm_page_bits_clear(m, &m->dirty, pagebits);
4773 }
4774
4775 /*
4776  *      vm_page_set_validclean:
4777  *
4778  *      Sets portions of a page valid and clean.  The arguments are expected
4779  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4780  *      of any partial chunks touched by the range.  The invalid portion of
4781  *      such chunks will be zero'd.
4782  *
4783  *      (base + size) must be less then or equal to PAGE_SIZE.
4784  */
4785 void
4786 vm_page_set_validclean(vm_page_t m, int base, int size)
4787 {
4788         vm_page_bits_t oldvalid, pagebits;
4789         int endoff, frag;
4790
4791         vm_page_assert_busied(m);
4792         if (size == 0)  /* handle degenerate case */
4793                 return;
4794
4795         /*
4796          * If the base is not DEV_BSIZE aligned and the valid
4797          * bit is clear, we have to zero out a portion of the
4798          * first block.
4799          */
4800         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4801             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4802                 pmap_zero_page_area(m, frag, base - frag);
4803
4804         /*
4805          * If the ending offset is not DEV_BSIZE aligned and the
4806          * valid bit is clear, we have to zero out a portion of
4807          * the last block.
4808          */
4809         endoff = base + size;
4810         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4811             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4812                 pmap_zero_page_area(m, endoff,
4813                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4814
4815         /*
4816          * Set valid, clear dirty bits.  If validating the entire
4817          * page we can safely clear the pmap modify bit.  We also
4818          * use this opportunity to clear the PGA_NOSYNC flag.  If a process
4819          * takes a write fault on a MAP_NOSYNC memory area the flag will
4820          * be set again.
4821          *
4822          * We set valid bits inclusive of any overlap, but we can only
4823          * clear dirty bits for DEV_BSIZE chunks that are fully within
4824          * the range.
4825          */
4826         oldvalid = m->valid;
4827         pagebits = vm_page_bits(base, size);
4828         if (vm_page_xbusied(m))
4829                 m->valid |= pagebits;
4830         else
4831                 vm_page_bits_set(m, &m->valid, pagebits);
4832 #if 0   /* NOT YET */
4833         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4834                 frag = DEV_BSIZE - frag;
4835                 base += frag;
4836                 size -= frag;
4837                 if (size < 0)
4838                         size = 0;
4839         }
4840         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4841 #endif
4842         if (base == 0 && size == PAGE_SIZE) {
4843                 /*
4844                  * The page can only be modified within the pmap if it is
4845                  * mapped, and it can only be mapped if it was previously
4846                  * fully valid.
4847                  */
4848                 if (oldvalid == VM_PAGE_BITS_ALL)
4849                         /*
4850                          * Perform the pmap_clear_modify() first.  Otherwise,
4851                          * a concurrent pmap operation, such as
4852                          * pmap_protect(), could clear a modification in the
4853                          * pmap and set the dirty field on the page before
4854                          * pmap_clear_modify() had begun and after the dirty
4855                          * field was cleared here.
4856                          */
4857                         pmap_clear_modify(m);
4858                 m->dirty = 0;
4859                 vm_page_aflag_clear(m, PGA_NOSYNC);
4860         } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
4861                 m->dirty &= ~pagebits;
4862         else
4863                 vm_page_clear_dirty_mask(m, pagebits);
4864 }
4865
4866 void
4867 vm_page_clear_dirty(vm_page_t m, int base, int size)
4868 {
4869
4870         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4871 }
4872
4873 /*
4874  *      vm_page_set_invalid:
4875  *
4876  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
4877  *      valid and dirty bits for the effected areas are cleared.
4878  */
4879 void
4880 vm_page_set_invalid(vm_page_t m, int base, int size)
4881 {
4882         vm_page_bits_t bits;
4883         vm_object_t object;
4884
4885         /*
4886          * The object lock is required so that pages can't be mapped
4887          * read-only while we're in the process of invalidating them.
4888          */
4889         object = m->object;
4890         VM_OBJECT_ASSERT_WLOCKED(object);
4891         vm_page_assert_busied(m);
4892
4893         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4894             size >= object->un_pager.vnp.vnp_size)
4895                 bits = VM_PAGE_BITS_ALL;
4896         else
4897                 bits = vm_page_bits(base, size);
4898         if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
4899                 pmap_remove_all(m);
4900         KASSERT((bits == 0 && vm_page_all_valid(m)) ||
4901             !pmap_page_is_mapped(m),
4902             ("vm_page_set_invalid: page %p is mapped", m));
4903         if (vm_page_xbusied(m)) {
4904                 m->valid &= ~bits;
4905                 m->dirty &= ~bits;
4906         } else {
4907                 vm_page_bits_clear(m, &m->valid, bits);
4908                 vm_page_bits_clear(m, &m->dirty, bits);
4909         }
4910 }
4911
4912 /*
4913  *      vm_page_invalid:
4914  *
4915  *      Invalidates the entire page.  The page must be busy, unmapped, and
4916  *      the enclosing object must be locked.  The object locks protects
4917  *      against concurrent read-only pmap enter which is done without
4918  *      busy.
4919  */
4920 void
4921 vm_page_invalid(vm_page_t m)
4922 {
4923
4924         vm_page_assert_busied(m);
4925         VM_OBJECT_ASSERT_LOCKED(m->object);
4926         MPASS(!pmap_page_is_mapped(m));
4927
4928         if (vm_page_xbusied(m))
4929                 m->valid = 0;
4930         else
4931                 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
4932 }
4933
4934 /*
4935  * vm_page_zero_invalid()
4936  *
4937  *      The kernel assumes that the invalid portions of a page contain
4938  *      garbage, but such pages can be mapped into memory by user code.
4939  *      When this occurs, we must zero out the non-valid portions of the
4940  *      page so user code sees what it expects.
4941  *
4942  *      Pages are most often semi-valid when the end of a file is mapped
4943  *      into memory and the file's size is not page aligned.
4944  */
4945 void
4946 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4947 {
4948         int b;
4949         int i;
4950
4951         /*
4952          * Scan the valid bits looking for invalid sections that
4953          * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4954          * valid bit may be set ) have already been zeroed by
4955          * vm_page_set_validclean().
4956          */
4957         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4958                 if (i == (PAGE_SIZE / DEV_BSIZE) ||
4959                     (m->valid & ((vm_page_bits_t)1 << i))) {
4960                         if (i > b) {
4961                                 pmap_zero_page_area(m,
4962                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4963                         }
4964                         b = i + 1;
4965                 }
4966         }
4967
4968         /*
4969          * setvalid is TRUE when we can safely set the zero'd areas
4970          * as being valid.  We can do this if there are no cache consistancy
4971          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4972          */
4973         if (setvalid)
4974                 vm_page_valid(m);
4975 }
4976
4977 /*
4978  *      vm_page_is_valid:
4979  *
4980  *      Is (partial) page valid?  Note that the case where size == 0
4981  *      will return FALSE in the degenerate case where the page is
4982  *      entirely invalid, and TRUE otherwise.
4983  *
4984  *      Some callers envoke this routine without the busy lock held and
4985  *      handle races via higher level locks.  Typical callers should
4986  *      hold a busy lock to prevent invalidation.
4987  */
4988 int
4989 vm_page_is_valid(vm_page_t m, int base, int size)
4990 {
4991         vm_page_bits_t bits;
4992
4993         bits = vm_page_bits(base, size);
4994         return (m->valid != 0 && (m->valid & bits) == bits);
4995 }
4996
4997 /*
4998  * Returns true if all of the specified predicates are true for the entire
4999  * (super)page and false otherwise.
5000  */
5001 bool
5002 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
5003 {
5004         vm_object_t object;
5005         int i, npages;
5006
5007         object = m->object;
5008         if (skip_m != NULL && skip_m->object != object)
5009                 return (false);
5010         VM_OBJECT_ASSERT_LOCKED(object);
5011         npages = atop(pagesizes[m->psind]);
5012
5013         /*
5014          * The physically contiguous pages that make up a superpage, i.e., a
5015          * page with a page size index ("psind") greater than zero, will
5016          * occupy adjacent entries in vm_page_array[].
5017          */
5018         for (i = 0; i < npages; i++) {
5019                 /* Always test object consistency, including "skip_m". */
5020                 if (m[i].object != object)
5021                         return (false);
5022                 if (&m[i] == skip_m)
5023                         continue;
5024                 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5025                         return (false);
5026                 if ((flags & PS_ALL_DIRTY) != 0) {
5027                         /*
5028                          * Calling vm_page_test_dirty() or pmap_is_modified()
5029                          * might stop this case from spuriously returning
5030                          * "false".  However, that would require a write lock
5031                          * on the object containing "m[i]".
5032                          */
5033                         if (m[i].dirty != VM_PAGE_BITS_ALL)
5034                                 return (false);
5035                 }
5036                 if ((flags & PS_ALL_VALID) != 0 &&
5037                     m[i].valid != VM_PAGE_BITS_ALL)
5038                         return (false);
5039         }
5040         return (true);
5041 }
5042
5043 /*
5044  * Set the page's dirty bits if the page is modified.
5045  */
5046 void
5047 vm_page_test_dirty(vm_page_t m)
5048 {
5049
5050         vm_page_assert_busied(m);
5051         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5052                 vm_page_dirty(m);
5053 }
5054
5055 void
5056 vm_page_valid(vm_page_t m)
5057 {
5058
5059         vm_page_assert_busied(m);
5060         if (vm_page_xbusied(m))
5061                 m->valid = VM_PAGE_BITS_ALL;
5062         else
5063                 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5064 }
5065
5066 void
5067 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5068 {
5069
5070         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5071 }
5072
5073 void
5074 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5075 {
5076
5077         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5078 }
5079
5080 int
5081 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5082 {
5083
5084         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5085 }
5086
5087 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5088 void
5089 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5090 {
5091
5092         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5093 }
5094
5095 void
5096 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5097 {
5098
5099         mtx_assert_(vm_page_lockptr(m), a, file, line);
5100 }
5101 #endif
5102
5103 #ifdef INVARIANTS
5104 void
5105 vm_page_object_busy_assert(vm_page_t m)
5106 {
5107
5108         /*
5109          * Certain of the page's fields may only be modified by the
5110          * holder of a page or object busy.
5111          */
5112         if (m->object != NULL && !vm_page_busied(m))
5113                 VM_OBJECT_ASSERT_BUSY(m->object);
5114 }
5115
5116 void
5117 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5118 {
5119
5120         if ((bits & PGA_WRITEABLE) == 0)
5121                 return;
5122
5123         /*
5124          * The PGA_WRITEABLE flag can only be set if the page is
5125          * managed, is exclusively busied or the object is locked.
5126          * Currently, this flag is only set by pmap_enter().
5127          */
5128         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5129             ("PGA_WRITEABLE on unmanaged page"));
5130         if (!vm_page_xbusied(m))
5131                 VM_OBJECT_ASSERT_BUSY(m->object);
5132 }
5133 #endif
5134
5135 #include "opt_ddb.h"
5136 #ifdef DDB
5137 #include <sys/kernel.h>
5138
5139 #include <ddb/ddb.h>
5140
5141 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5142 {
5143
5144         db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5145         db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5146         db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5147         db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5148         db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5149         db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5150         db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5151         db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5152         db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5153 }
5154
5155 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5156 {
5157         int dom;
5158
5159         db_printf("pq_free %d\n", vm_free_count());
5160         for (dom = 0; dom < vm_ndomains; dom++) {
5161                 db_printf(
5162     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5163                     dom,
5164                     vm_dom[dom].vmd_page_count,
5165                     vm_dom[dom].vmd_free_count,
5166                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5167                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5168                     vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5169                     vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5170         }
5171 }
5172
5173 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5174 {
5175         vm_page_t m;
5176         boolean_t phys, virt;
5177
5178         if (!have_addr) {
5179                 db_printf("show pginfo addr\n");
5180                 return;
5181         }
5182
5183         phys = strchr(modif, 'p') != NULL;
5184         virt = strchr(modif, 'v') != NULL;
5185         if (virt)
5186                 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5187         else if (phys)
5188                 m = PHYS_TO_VM_PAGE(addr);
5189         else
5190                 m = (vm_page_t)addr;
5191         db_printf(
5192     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
5193     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5194             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5195             m->a.queue, m->ref_count, m->a.flags, m->oflags,
5196             m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5197 }
5198 #endif /* DDB */