]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_page.c
Fix a race in release_page().
[FreeBSD/FreeBSD.git] / sys / vm / vm_page.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
36  */
37
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64
65 /*
66  *      Resident memory management module.
67  */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_vm.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113
114 #include <machine/md_var.h>
115
116 extern int      uma_startup_count(int);
117 extern void     uma_startup(void *, int);
118 extern int      vmem_startup_count(void);
119
120 struct vm_domain vm_dom[MAXMEMDOM];
121
122 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
123
124 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
125
126 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
127 /* The following fields are protected by the domainset lock. */
128 domainset_t __exclusive_cache_line vm_min_domains;
129 domainset_t __exclusive_cache_line vm_severe_domains;
130 static int vm_min_waiters;
131 static int vm_severe_waiters;
132 static int vm_pageproc_waiters;
133
134 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0,
135     "VM page statistics");
136
137 static counter_u64_t queue_ops = EARLY_COUNTER;
138 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
139     CTLFLAG_RD, &queue_ops,
140     "Number of batched queue operations");
141
142 static counter_u64_t queue_nops = EARLY_COUNTER;
143 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
144     CTLFLAG_RD, &queue_nops,
145     "Number of batched queue operations with no effects");
146
147 static void
148 counter_startup(void)
149 {
150
151         queue_ops = counter_u64_alloc(M_WAITOK);
152         queue_nops = counter_u64_alloc(M_WAITOK);
153 }
154 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
155
156 /*
157  * bogus page -- for I/O to/from partially complete buffers,
158  * or for paging into sparsely invalid regions.
159  */
160 vm_page_t bogus_page;
161
162 vm_page_t vm_page_array;
163 long vm_page_array_size;
164 long first_page;
165
166 static int boot_pages;
167 SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
168     &boot_pages, 0,
169     "number of pages allocated for bootstrapping the VM system");
170
171 static TAILQ_HEAD(, vm_page) blacklist_head;
172 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
173 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
174     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
175
176 static uma_zone_t fakepg_zone;
177
178 static void vm_page_alloc_check(vm_page_t m);
179 static void _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
180     const char *wmesg, bool nonshared, bool locked);
181 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
182 static void vm_page_dequeue_complete(vm_page_t m);
183 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
184 static void vm_page_init(void *dummy);
185 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
186     vm_pindex_t pindex, vm_page_t mpred);
187 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
188     vm_page_t mpred);
189 static void vm_page_mvqueue(vm_page_t m, uint8_t queue);
190 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
191     vm_page_t m_run, vm_paddr_t high);
192 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
193     int req);
194 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
195     int flags);
196 static void vm_page_zone_release(void *arg, void **store, int cnt);
197
198 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
199
200 static void
201 vm_page_init(void *dummy)
202 {
203
204         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
205             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
206         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
207             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
208 }
209
210 /*
211  * The cache page zone is initialized later since we need to be able to allocate
212  * pages before UMA is fully initialized.
213  */
214 static void
215 vm_page_init_cache_zones(void *dummy __unused)
216 {
217         struct vm_domain *vmd;
218         struct vm_pgcache *pgcache;
219         int domain, maxcache, pool;
220
221         maxcache = 0;
222         TUNABLE_INT_FETCH("vm.pgcache_zone_max", &maxcache);
223         for (domain = 0; domain < vm_ndomains; domain++) {
224                 vmd = VM_DOMAIN(domain);
225
226                 /*
227                  * Don't allow the page caches to take up more than .1875% of
228                  * memory.  A UMA bucket contains at most 256 free pages, and we
229                  * have two buckets per CPU per free pool.
230                  */
231                 if (vmd->vmd_page_count / 600 < 2 * 256 * mp_ncpus *
232                     VM_NFREEPOOL)
233                         continue;
234                 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
235                         pgcache = &vmd->vmd_pgcache[pool];
236                         pgcache->domain = domain;
237                         pgcache->pool = pool;
238                         pgcache->zone = uma_zcache_create("vm pgcache",
239                             sizeof(struct vm_page), NULL, NULL, NULL, NULL,
240                             vm_page_zone_import, vm_page_zone_release, pgcache,
241                             UMA_ZONE_MAXBUCKET | UMA_ZONE_VM);
242                         (void)uma_zone_set_maxcache(pgcache->zone, maxcache);
243                 }
244         }
245 }
246 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
247
248 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
249 #if PAGE_SIZE == 32768
250 #ifdef CTASSERT
251 CTASSERT(sizeof(u_long) >= 8);
252 #endif
253 #endif
254
255 /*
256  *      vm_set_page_size:
257  *
258  *      Sets the page size, perhaps based upon the memory
259  *      size.  Must be called before any use of page-size
260  *      dependent functions.
261  */
262 void
263 vm_set_page_size(void)
264 {
265         if (vm_cnt.v_page_size == 0)
266                 vm_cnt.v_page_size = PAGE_SIZE;
267         if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
268                 panic("vm_set_page_size: page size not a power of two");
269 }
270
271 /*
272  *      vm_page_blacklist_next:
273  *
274  *      Find the next entry in the provided string of blacklist
275  *      addresses.  Entries are separated by space, comma, or newline.
276  *      If an invalid integer is encountered then the rest of the
277  *      string is skipped.  Updates the list pointer to the next
278  *      character, or NULL if the string is exhausted or invalid.
279  */
280 static vm_paddr_t
281 vm_page_blacklist_next(char **list, char *end)
282 {
283         vm_paddr_t bad;
284         char *cp, *pos;
285
286         if (list == NULL || *list == NULL)
287                 return (0);
288         if (**list =='\0') {
289                 *list = NULL;
290                 return (0);
291         }
292
293         /*
294          * If there's no end pointer then the buffer is coming from
295          * the kenv and we know it's null-terminated.
296          */
297         if (end == NULL)
298                 end = *list + strlen(*list);
299
300         /* Ensure that strtoq() won't walk off the end */
301         if (*end != '\0') {
302                 if (*end == '\n' || *end == ' ' || *end  == ',')
303                         *end = '\0';
304                 else {
305                         printf("Blacklist not terminated, skipping\n");
306                         *list = NULL;
307                         return (0);
308                 }
309         }
310
311         for (pos = *list; *pos != '\0'; pos = cp) {
312                 bad = strtoq(pos, &cp, 0);
313                 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
314                         if (bad == 0) {
315                                 if (++cp < end)
316                                         continue;
317                                 else
318                                         break;
319                         }
320                 } else
321                         break;
322                 if (*cp == '\0' || ++cp >= end)
323                         *list = NULL;
324                 else
325                         *list = cp;
326                 return (trunc_page(bad));
327         }
328         printf("Garbage in RAM blacklist, skipping\n");
329         *list = NULL;
330         return (0);
331 }
332
333 bool
334 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
335 {
336         struct vm_domain *vmd;
337         vm_page_t m;
338         int ret;
339
340         m = vm_phys_paddr_to_vm_page(pa);
341         if (m == NULL)
342                 return (true); /* page does not exist, no failure */
343
344         vmd = vm_pagequeue_domain(m);
345         vm_domain_free_lock(vmd);
346         ret = vm_phys_unfree_page(m);
347         vm_domain_free_unlock(vmd);
348         if (ret != 0) {
349                 vm_domain_freecnt_inc(vmd, -1);
350                 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
351                 if (verbose)
352                         printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
353         }
354         return (ret);
355 }
356
357 /*
358  *      vm_page_blacklist_check:
359  *
360  *      Iterate through the provided string of blacklist addresses, pulling
361  *      each entry out of the physical allocator free list and putting it
362  *      onto a list for reporting via the vm.page_blacklist sysctl.
363  */
364 static void
365 vm_page_blacklist_check(char *list, char *end)
366 {
367         vm_paddr_t pa;
368         char *next;
369
370         next = list;
371         while (next != NULL) {
372                 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
373                         continue;
374                 vm_page_blacklist_add(pa, bootverbose);
375         }
376 }
377
378 /*
379  *      vm_page_blacklist_load:
380  *
381  *      Search for a special module named "ram_blacklist".  It'll be a
382  *      plain text file provided by the user via the loader directive
383  *      of the same name.
384  */
385 static void
386 vm_page_blacklist_load(char **list, char **end)
387 {
388         void *mod;
389         u_char *ptr;
390         u_int len;
391
392         mod = NULL;
393         ptr = NULL;
394
395         mod = preload_search_by_type("ram_blacklist");
396         if (mod != NULL) {
397                 ptr = preload_fetch_addr(mod);
398                 len = preload_fetch_size(mod);
399         }
400         *list = ptr;
401         if (ptr != NULL)
402                 *end = ptr + len;
403         else
404                 *end = NULL;
405         return;
406 }
407
408 static int
409 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
410 {
411         vm_page_t m;
412         struct sbuf sbuf;
413         int error, first;
414
415         first = 1;
416         error = sysctl_wire_old_buffer(req, 0);
417         if (error != 0)
418                 return (error);
419         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
420         TAILQ_FOREACH(m, &blacklist_head, listq) {
421                 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
422                     (uintmax_t)m->phys_addr);
423                 first = 0;
424         }
425         error = sbuf_finish(&sbuf);
426         sbuf_delete(&sbuf);
427         return (error);
428 }
429
430 /*
431  * Initialize a dummy page for use in scans of the specified paging queue.
432  * In principle, this function only needs to set the flag PG_MARKER.
433  * Nonetheless, it write busies the page as a safety precaution.
434  */
435 static void
436 vm_page_init_marker(vm_page_t marker, int queue, uint8_t aflags)
437 {
438
439         bzero(marker, sizeof(*marker));
440         marker->flags = PG_MARKER;
441         marker->aflags = aflags;
442         marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
443         marker->queue = queue;
444 }
445
446 static void
447 vm_page_domain_init(int domain)
448 {
449         struct vm_domain *vmd;
450         struct vm_pagequeue *pq;
451         int i;
452
453         vmd = VM_DOMAIN(domain);
454         bzero(vmd, sizeof(*vmd));
455         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
456             "vm inactive pagequeue";
457         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
458             "vm active pagequeue";
459         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
460             "vm laundry pagequeue";
461         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
462             "vm unswappable pagequeue";
463         vmd->vmd_domain = domain;
464         vmd->vmd_page_count = 0;
465         vmd->vmd_free_count = 0;
466         vmd->vmd_segs = 0;
467         vmd->vmd_oom = FALSE;
468         for (i = 0; i < PQ_COUNT; i++) {
469                 pq = &vmd->vmd_pagequeues[i];
470                 TAILQ_INIT(&pq->pq_pl);
471                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
472                     MTX_DEF | MTX_DUPOK);
473                 pq->pq_pdpages = 0;
474                 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
475         }
476         mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
477         mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
478         snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
479
480         /*
481          * inacthead is used to provide FIFO ordering for LRU-bypassing
482          * insertions.
483          */
484         vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
485         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
486             &vmd->vmd_inacthead, plinks.q);
487
488         /*
489          * The clock pages are used to implement active queue scanning without
490          * requeues.  Scans start at clock[0], which is advanced after the scan
491          * ends.  When the two clock hands meet, they are reset and scanning
492          * resumes from the head of the queue.
493          */
494         vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
495         vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
496         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
497             &vmd->vmd_clock[0], plinks.q);
498         TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
499             &vmd->vmd_clock[1], plinks.q);
500 }
501
502 /*
503  * Initialize a physical page in preparation for adding it to the free
504  * lists.
505  */
506 static void
507 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
508 {
509
510         m->object = NULL;
511         m->ref_count = 0;
512         m->busy_lock = VPB_UNBUSIED;
513         m->flags = m->aflags = 0;
514         m->phys_addr = pa;
515         m->queue = PQ_NONE;
516         m->psind = 0;
517         m->segind = segind;
518         m->order = VM_NFREEORDER;
519         m->pool = VM_FREEPOOL_DEFAULT;
520         m->valid = m->dirty = 0;
521         pmap_page_init(m);
522 }
523
524 #ifndef PMAP_HAS_PAGE_ARRAY
525 static vm_paddr_t
526 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
527 {
528         vm_paddr_t new_end;
529
530         /*
531          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
532          * However, because this page is allocated from KVM, out-of-bounds
533          * accesses using the direct map will not be trapped.
534          */
535         *vaddr += PAGE_SIZE;
536
537         /*
538          * Allocate physical memory for the page structures, and map it.
539          */
540         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
541         vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
542             VM_PROT_READ | VM_PROT_WRITE);
543         vm_page_array_size = page_range;
544
545         return (new_end);
546 }
547 #endif
548
549 /*
550  *      vm_page_startup:
551  *
552  *      Initializes the resident memory module.  Allocates physical memory for
553  *      bootstrapping UMA and some data structures that are used to manage
554  *      physical pages.  Initializes these structures, and populates the free
555  *      page queues.
556  */
557 vm_offset_t
558 vm_page_startup(vm_offset_t vaddr)
559 {
560         struct vm_phys_seg *seg;
561         vm_page_t m;
562         char *list, *listend;
563         vm_offset_t mapped;
564         vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
565         vm_paddr_t last_pa, pa;
566         u_long pagecount;
567         int biggestone, i, segind;
568 #ifdef WITNESS
569         int witness_size;
570 #endif
571 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
572         long ii;
573 #endif
574
575         vaddr = round_page(vaddr);
576
577         vm_phys_early_startup();
578         biggestone = vm_phys_avail_largest();
579         end = phys_avail[biggestone+1];
580
581         /*
582          * Initialize the page and queue locks.
583          */
584         mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
585         for (i = 0; i < PA_LOCK_COUNT; i++)
586                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
587         for (i = 0; i < vm_ndomains; i++)
588                 vm_page_domain_init(i);
589
590         /*
591          * Allocate memory for use when boot strapping the kernel memory
592          * allocator.  Tell UMA how many zones we are going to create
593          * before going fully functional.  UMA will add its zones.
594          *
595          * VM startup zones: vmem, vmem_btag, VM OBJECT, RADIX NODE, MAP,
596          * KMAP ENTRY, MAP ENTRY, VMSPACE.
597          */
598         boot_pages = uma_startup_count(8);
599
600 #ifndef UMA_MD_SMALL_ALLOC
601         /* vmem_startup() calls uma_prealloc(). */
602         boot_pages += vmem_startup_count();
603         /* vm_map_startup() calls uma_prealloc(). */
604         boot_pages += howmany(MAX_KMAP,
605             UMA_SLAB_SPACE / sizeof(struct vm_map));
606
607         /*
608          * Before going fully functional kmem_init() does allocation
609          * from "KMAP ENTRY" and vmem_create() does allocation from "vmem".
610          */
611         boot_pages += 2;
612 #endif
613         /*
614          * CTFLAG_RDTUN doesn't work during the early boot process, so we must
615          * manually fetch the value.
616          */
617         TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
618         new_end = end - (boot_pages * UMA_SLAB_SIZE);
619         new_end = trunc_page(new_end);
620         mapped = pmap_map(&vaddr, new_end, end,
621             VM_PROT_READ | VM_PROT_WRITE);
622         bzero((void *)mapped, end - new_end);
623         uma_startup((void *)mapped, boot_pages);
624
625 #ifdef WITNESS
626         witness_size = round_page(witness_startup_count());
627         new_end -= witness_size;
628         mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
629             VM_PROT_READ | VM_PROT_WRITE);
630         bzero((void *)mapped, witness_size);
631         witness_startup((void *)mapped);
632 #endif
633
634 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
635     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
636     defined(__powerpc64__)
637         /*
638          * Allocate a bitmap to indicate that a random physical page
639          * needs to be included in a minidump.
640          *
641          * The amd64 port needs this to indicate which direct map pages
642          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
643          *
644          * However, i386 still needs this workspace internally within the
645          * minidump code.  In theory, they are not needed on i386, but are
646          * included should the sf_buf code decide to use them.
647          */
648         last_pa = 0;
649         for (i = 0; dump_avail[i + 1] != 0; i += 2)
650                 if (dump_avail[i + 1] > last_pa)
651                         last_pa = dump_avail[i + 1];
652         page_range = last_pa / PAGE_SIZE;
653         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
654         new_end -= vm_page_dump_size;
655         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
656             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
657         bzero((void *)vm_page_dump, vm_page_dump_size);
658 #else
659         (void)last_pa;
660 #endif
661 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
662     defined(__riscv) || defined(__powerpc64__)
663         /*
664          * Include the UMA bootstrap pages, witness pages and vm_page_dump
665          * in a crash dump.  When pmap_map() uses the direct map, they are
666          * not automatically included.
667          */
668         for (pa = new_end; pa < end; pa += PAGE_SIZE)
669                 dump_add_page(pa);
670 #endif
671         phys_avail[biggestone + 1] = new_end;
672 #ifdef __amd64__
673         /*
674          * Request that the physical pages underlying the message buffer be
675          * included in a crash dump.  Since the message buffer is accessed
676          * through the direct map, they are not automatically included.
677          */
678         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
679         last_pa = pa + round_page(msgbufsize);
680         while (pa < last_pa) {
681                 dump_add_page(pa);
682                 pa += PAGE_SIZE;
683         }
684 #endif
685         /*
686          * Compute the number of pages of memory that will be available for
687          * use, taking into account the overhead of a page structure per page.
688          * In other words, solve
689          *      "available physical memory" - round_page(page_range *
690          *          sizeof(struct vm_page)) = page_range * PAGE_SIZE 
691          * for page_range.  
692          */
693         low_avail = phys_avail[0];
694         high_avail = phys_avail[1];
695         for (i = 0; i < vm_phys_nsegs; i++) {
696                 if (vm_phys_segs[i].start < low_avail)
697                         low_avail = vm_phys_segs[i].start;
698                 if (vm_phys_segs[i].end > high_avail)
699                         high_avail = vm_phys_segs[i].end;
700         }
701         /* Skip the first chunk.  It is already accounted for. */
702         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
703                 if (phys_avail[i] < low_avail)
704                         low_avail = phys_avail[i];
705                 if (phys_avail[i + 1] > high_avail)
706                         high_avail = phys_avail[i + 1];
707         }
708         first_page = low_avail / PAGE_SIZE;
709 #ifdef VM_PHYSSEG_SPARSE
710         size = 0;
711         for (i = 0; i < vm_phys_nsegs; i++)
712                 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
713         for (i = 0; phys_avail[i + 1] != 0; i += 2)
714                 size += phys_avail[i + 1] - phys_avail[i];
715 #elif defined(VM_PHYSSEG_DENSE)
716         size = high_avail - low_avail;
717 #else
718 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
719 #endif
720
721 #ifdef PMAP_HAS_PAGE_ARRAY
722         pmap_page_array_startup(size / PAGE_SIZE);
723         biggestone = vm_phys_avail_largest();
724         end = new_end = phys_avail[biggestone + 1];
725 #else
726 #ifdef VM_PHYSSEG_DENSE
727         /*
728          * In the VM_PHYSSEG_DENSE case, the number of pages can account for
729          * the overhead of a page structure per page only if vm_page_array is
730          * allocated from the last physical memory chunk.  Otherwise, we must
731          * allocate page structures representing the physical memory
732          * underlying vm_page_array, even though they will not be used.
733          */
734         if (new_end != high_avail)
735                 page_range = size / PAGE_SIZE;
736         else
737 #endif
738         {
739                 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
740
741                 /*
742                  * If the partial bytes remaining are large enough for
743                  * a page (PAGE_SIZE) without a corresponding
744                  * 'struct vm_page', then new_end will contain an
745                  * extra page after subtracting the length of the VM
746                  * page array.  Compensate by subtracting an extra
747                  * page from new_end.
748                  */
749                 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
750                         if (new_end == high_avail)
751                                 high_avail -= PAGE_SIZE;
752                         new_end -= PAGE_SIZE;
753                 }
754         }
755         end = new_end;
756         new_end = vm_page_array_alloc(&vaddr, end, page_range);
757 #endif
758
759 #if VM_NRESERVLEVEL > 0
760         /*
761          * Allocate physical memory for the reservation management system's
762          * data structures, and map it.
763          */
764         new_end = vm_reserv_startup(&vaddr, new_end);
765 #endif
766 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
767     defined(__riscv) || defined(__powerpc64__)
768         /*
769          * Include vm_page_array and vm_reserv_array in a crash dump.
770          */
771         for (pa = new_end; pa < end; pa += PAGE_SIZE)
772                 dump_add_page(pa);
773 #endif
774         phys_avail[biggestone + 1] = new_end;
775
776         /*
777          * Add physical memory segments corresponding to the available
778          * physical pages.
779          */
780         for (i = 0; phys_avail[i + 1] != 0; i += 2)
781                 if (vm_phys_avail_size(i) != 0)
782                         vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
783
784         /*
785          * Initialize the physical memory allocator.
786          */
787         vm_phys_init();
788
789         /*
790          * Initialize the page structures and add every available page to the
791          * physical memory allocator's free lists.
792          */
793 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
794         for (ii = 0; ii < vm_page_array_size; ii++) {
795                 m = &vm_page_array[ii];
796                 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
797                 m->flags = PG_FICTITIOUS;
798         }
799 #endif
800         vm_cnt.v_page_count = 0;
801         for (segind = 0; segind < vm_phys_nsegs; segind++) {
802                 seg = &vm_phys_segs[segind];
803                 for (m = seg->first_page, pa = seg->start; pa < seg->end;
804                     m++, pa += PAGE_SIZE)
805                         vm_page_init_page(m, pa, segind);
806
807                 /*
808                  * Add the segment to the free lists only if it is covered by
809                  * one of the ranges in phys_avail.  Because we've added the
810                  * ranges to the vm_phys_segs array, we can assume that each
811                  * segment is either entirely contained in one of the ranges,
812                  * or doesn't overlap any of them.
813                  */
814                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
815                         struct vm_domain *vmd;
816
817                         if (seg->start < phys_avail[i] ||
818                             seg->end > phys_avail[i + 1])
819                                 continue;
820
821                         m = seg->first_page;
822                         pagecount = (u_long)atop(seg->end - seg->start);
823
824                         vmd = VM_DOMAIN(seg->domain);
825                         vm_domain_free_lock(vmd);
826                         vm_phys_enqueue_contig(m, pagecount);
827                         vm_domain_free_unlock(vmd);
828                         vm_domain_freecnt_inc(vmd, pagecount);
829                         vm_cnt.v_page_count += (u_int)pagecount;
830
831                         vmd = VM_DOMAIN(seg->domain);
832                         vmd->vmd_page_count += (u_int)pagecount;
833                         vmd->vmd_segs |= 1UL << m->segind;
834                         break;
835                 }
836         }
837
838         /*
839          * Remove blacklisted pages from the physical memory allocator.
840          */
841         TAILQ_INIT(&blacklist_head);
842         vm_page_blacklist_load(&list, &listend);
843         vm_page_blacklist_check(list, listend);
844
845         list = kern_getenv("vm.blacklist");
846         vm_page_blacklist_check(list, NULL);
847
848         freeenv(list);
849 #if VM_NRESERVLEVEL > 0
850         /*
851          * Initialize the reservation management system.
852          */
853         vm_reserv_init();
854 #endif
855
856         return (vaddr);
857 }
858
859 void
860 vm_page_reference(vm_page_t m)
861 {
862
863         vm_page_aflag_set(m, PGA_REFERENCED);
864 }
865
866 /*
867  *      vm_page_busy_acquire:
868  *
869  *      Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
870  *      and drop the object lock if necessary.
871  */
872 int
873 vm_page_busy_acquire(vm_page_t m, int allocflags)
874 {
875         vm_object_t obj;
876         bool locked;
877
878         /*
879          * The page-specific object must be cached because page
880          * identity can change during the sleep, causing the
881          * re-lock of a different object.
882          * It is assumed that a reference to the object is already
883          * held by the callers.
884          */
885         obj = m->object;
886         for (;;) {
887                 if ((allocflags & VM_ALLOC_SBUSY) == 0) {
888                         if (vm_page_tryxbusy(m))
889                                 return (TRUE);
890                 } else {
891                         if (vm_page_trysbusy(m))
892                                 return (TRUE);
893                 }
894                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
895                         return (FALSE);
896                 if (obj != NULL)
897                         locked = VM_OBJECT_WOWNED(obj);
898                 else
899                         locked = FALSE;
900                 MPASS(locked || vm_page_wired(m));
901                 _vm_page_busy_sleep(obj, m, "vmpba",
902                     (allocflags & VM_ALLOC_SBUSY) != 0, locked);
903                 if (locked)
904                         VM_OBJECT_WLOCK(obj);
905                 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
906                         return (FALSE);
907                 KASSERT(m->object == obj || m->object == NULL,
908                     ("vm_page_busy_acquire: page %p does not belong to %p",
909                     m, obj));
910         }
911 }
912
913 /*
914  *      vm_page_busy_downgrade:
915  *
916  *      Downgrade an exclusive busy page into a single shared busy page.
917  */
918 void
919 vm_page_busy_downgrade(vm_page_t m)
920 {
921         u_int x;
922
923         vm_page_assert_xbusied(m);
924
925         x = m->busy_lock;
926         for (;;) {
927                 if (atomic_fcmpset_rel_int(&m->busy_lock,
928                     &x, VPB_SHARERS_WORD(1)))
929                         break;
930         }
931         if ((x & VPB_BIT_WAITERS) != 0)
932                 wakeup(m);
933 }
934
935 /*
936  *
937  *      vm_page_busy_tryupgrade:
938  *
939  *      Attempt to upgrade a single shared busy into an exclusive busy.
940  */
941 int
942 vm_page_busy_tryupgrade(vm_page_t m)
943 {
944         u_int x;
945
946         vm_page_assert_sbusied(m);
947
948         x = m->busy_lock;
949         for (;;) {
950                 if (VPB_SHARERS(x) > 1)
951                         return (0);
952                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
953                     ("vm_page_busy_tryupgrade: invalid lock state"));
954                 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
955                     VPB_SINGLE_EXCLUSIVER | (x & VPB_BIT_WAITERS)))
956                         continue;
957                 return (1);
958         }
959 }
960
961 /*
962  *      vm_page_sbusied:
963  *
964  *      Return a positive value if the page is shared busied, 0 otherwise.
965  */
966 int
967 vm_page_sbusied(vm_page_t m)
968 {
969         u_int x;
970
971         x = m->busy_lock;
972         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
973 }
974
975 /*
976  *      vm_page_sunbusy:
977  *
978  *      Shared unbusy a page.
979  */
980 void
981 vm_page_sunbusy(vm_page_t m)
982 {
983         u_int x;
984
985         vm_page_assert_sbusied(m);
986
987         x = m->busy_lock;
988         for (;;) {
989                 if (VPB_SHARERS(x) > 1) {
990                         if (atomic_fcmpset_int(&m->busy_lock, &x,
991                             x - VPB_ONE_SHARER))
992                                 break;
993                         continue;
994                 }
995                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
996                     ("vm_page_sunbusy: invalid lock state"));
997                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
998                         continue;
999                 if ((x & VPB_BIT_WAITERS) == 0)
1000                         break;
1001                 wakeup(m);
1002                 break;
1003         }
1004 }
1005
1006 /*
1007  *      vm_page_busy_sleep:
1008  *
1009  *      Sleep if the page is busy, using the page pointer as wchan.
1010  *      This is used to implement the hard-path of busying mechanism.
1011  *
1012  *      If nonshared is true, sleep only if the page is xbusy.
1013  *
1014  *      The object lock must be held on entry and will be released on exit.
1015  */
1016 void
1017 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1018 {
1019         vm_object_t obj;
1020
1021         obj = m->object;
1022         VM_OBJECT_ASSERT_LOCKED(obj);
1023         vm_page_lock_assert(m, MA_NOTOWNED);
1024
1025         _vm_page_busy_sleep(obj, m, wmesg, nonshared, true);
1026 }
1027
1028 static void
1029 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg,
1030     bool nonshared, bool locked)
1031 {
1032         u_int x;
1033
1034         /*
1035          * If the object is busy we must wait for that to drain to zero
1036          * before trying the page again.
1037          */
1038         if (obj != NULL && vm_object_busied(obj)) {
1039                 if (locked)
1040                         VM_OBJECT_DROP(obj);
1041                 vm_object_busy_wait(obj, wmesg);
1042                 return;
1043         }
1044         sleepq_lock(m);
1045         x = m->busy_lock;
1046         if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
1047             ((x & VPB_BIT_WAITERS) == 0 &&
1048             !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
1049                 if (locked)
1050                         VM_OBJECT_DROP(obj);
1051                 sleepq_release(m);
1052                 return;
1053         }
1054         if (locked)
1055                 VM_OBJECT_DROP(obj);
1056         sleepq_add(m, NULL, wmesg, 0, 0);
1057         sleepq_wait(m, PVM);
1058 }
1059
1060 /*
1061  *      vm_page_trysbusy:
1062  *
1063  *      Try to shared busy a page.
1064  *      If the operation succeeds 1 is returned otherwise 0.
1065  *      The operation never sleeps.
1066  */
1067 int
1068 vm_page_trysbusy(vm_page_t m)
1069 {
1070         vm_object_t obj;
1071         u_int x;
1072
1073         obj = m->object;
1074         x = m->busy_lock;
1075         for (;;) {
1076                 if ((x & VPB_BIT_SHARED) == 0)
1077                         return (0);
1078                 /*
1079                  * Reduce the window for transient busies that will trigger
1080                  * false negatives in vm_page_ps_test().
1081                  */
1082                 if (obj != NULL && vm_object_busied(obj))
1083                         return (0);
1084                 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1085                     x + VPB_ONE_SHARER))
1086                         break;
1087         }
1088
1089         /* Refetch the object now that we're guaranteed that it is stable. */
1090         obj = m->object;
1091         if (obj != NULL && vm_object_busied(obj)) {
1092                 vm_page_sunbusy(m);
1093                 return (0);
1094         }
1095         return (1);
1096 }
1097
1098 /*
1099  *      vm_page_tryxbusy:
1100  *
1101  *      Try to exclusive busy a page.
1102  *      If the operation succeeds 1 is returned otherwise 0.
1103  *      The operation never sleeps.
1104  */
1105 int
1106 vm_page_tryxbusy(vm_page_t m)
1107 {
1108         vm_object_t obj;
1109
1110         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1111             VPB_SINGLE_EXCLUSIVER) == 0)
1112                 return (0);
1113
1114         obj = m->object;
1115         if (obj != NULL && vm_object_busied(obj)) {
1116                 vm_page_xunbusy(m);
1117                 return (0);
1118         }
1119         return (1);
1120 }
1121
1122 /*
1123  *      vm_page_xunbusy_hard:
1124  *
1125  *      Called when unbusy has failed because there is a waiter.
1126  */
1127 void
1128 vm_page_xunbusy_hard(vm_page_t m)
1129 {
1130
1131         vm_page_assert_xbusied(m);
1132
1133         /*
1134          * Wake the waiter.
1135          */
1136         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1137         wakeup(m);
1138 }
1139
1140 /*
1141  * Avoid releasing and reacquiring the same page lock.
1142  */
1143 void
1144 vm_page_change_lock(vm_page_t m, struct mtx **mtx)
1145 {
1146         struct mtx *mtx1;
1147
1148         mtx1 = vm_page_lockptr(m);
1149         if (*mtx == mtx1)
1150                 return;
1151         if (*mtx != NULL)
1152                 mtx_unlock(*mtx);
1153         *mtx = mtx1;
1154         mtx_lock(mtx1);
1155 }
1156
1157 /*
1158  *      vm_page_unhold_pages:
1159  *
1160  *      Unhold each of the pages that is referenced by the given array.
1161  */
1162 void
1163 vm_page_unhold_pages(vm_page_t *ma, int count)
1164 {
1165
1166         for (; count != 0; count--) {
1167                 vm_page_unwire(*ma, PQ_ACTIVE);
1168                 ma++;
1169         }
1170 }
1171
1172 vm_page_t
1173 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1174 {
1175         vm_page_t m;
1176
1177 #ifdef VM_PHYSSEG_SPARSE
1178         m = vm_phys_paddr_to_vm_page(pa);
1179         if (m == NULL)
1180                 m = vm_phys_fictitious_to_vm_page(pa);
1181         return (m);
1182 #elif defined(VM_PHYSSEG_DENSE)
1183         long pi;
1184
1185         pi = atop(pa);
1186         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1187                 m = &vm_page_array[pi - first_page];
1188                 return (m);
1189         }
1190         return (vm_phys_fictitious_to_vm_page(pa));
1191 #else
1192 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1193 #endif
1194 }
1195
1196 /*
1197  *      vm_page_getfake:
1198  *
1199  *      Create a fictitious page with the specified physical address and
1200  *      memory attribute.  The memory attribute is the only the machine-
1201  *      dependent aspect of a fictitious page that must be initialized.
1202  */
1203 vm_page_t
1204 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1205 {
1206         vm_page_t m;
1207
1208         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1209         vm_page_initfake(m, paddr, memattr);
1210         return (m);
1211 }
1212
1213 void
1214 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1215 {
1216
1217         if ((m->flags & PG_FICTITIOUS) != 0) {
1218                 /*
1219                  * The page's memattr might have changed since the
1220                  * previous initialization.  Update the pmap to the
1221                  * new memattr.
1222                  */
1223                 goto memattr;
1224         }
1225         m->phys_addr = paddr;
1226         m->queue = PQ_NONE;
1227         /* Fictitious pages don't use "segind". */
1228         m->flags = PG_FICTITIOUS;
1229         /* Fictitious pages don't use "order" or "pool". */
1230         m->oflags = VPO_UNMANAGED;
1231         m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1232         /* Fictitious pages are unevictable. */
1233         m->ref_count = 1;
1234         pmap_page_init(m);
1235 memattr:
1236         pmap_page_set_memattr(m, memattr);
1237 }
1238
1239 /*
1240  *      vm_page_putfake:
1241  *
1242  *      Release a fictitious page.
1243  */
1244 void
1245 vm_page_putfake(vm_page_t m)
1246 {
1247
1248         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1249         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1250             ("vm_page_putfake: bad page %p", m));
1251         if (vm_page_xbusied(m))
1252                 vm_page_xunbusy(m);
1253         uma_zfree(fakepg_zone, m);
1254 }
1255
1256 /*
1257  *      vm_page_updatefake:
1258  *
1259  *      Update the given fictitious page to the specified physical address and
1260  *      memory attribute.
1261  */
1262 void
1263 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1264 {
1265
1266         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1267             ("vm_page_updatefake: bad page %p", m));
1268         m->phys_addr = paddr;
1269         pmap_page_set_memattr(m, memattr);
1270 }
1271
1272 /*
1273  *      vm_page_free:
1274  *
1275  *      Free a page.
1276  */
1277 void
1278 vm_page_free(vm_page_t m)
1279 {
1280
1281         m->flags &= ~PG_ZERO;
1282         vm_page_free_toq(m);
1283 }
1284
1285 /*
1286  *      vm_page_free_zero:
1287  *
1288  *      Free a page to the zerod-pages queue
1289  */
1290 void
1291 vm_page_free_zero(vm_page_t m)
1292 {
1293
1294         m->flags |= PG_ZERO;
1295         vm_page_free_toq(m);
1296 }
1297
1298 /*
1299  * Unbusy and handle the page queueing for a page from a getpages request that
1300  * was optionally read ahead or behind.
1301  */
1302 void
1303 vm_page_readahead_finish(vm_page_t m)
1304 {
1305
1306         /* We shouldn't put invalid pages on queues. */
1307         KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1308
1309         /*
1310          * Since the page is not the actually needed one, whether it should
1311          * be activated or deactivated is not obvious.  Empirical results
1312          * have shown that deactivating the page is usually the best choice,
1313          * unless the page is wanted by another thread.
1314          */
1315         vm_page_lock(m);
1316         if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1317                 vm_page_activate(m);
1318         else
1319                 vm_page_deactivate(m);
1320         vm_page_unlock(m);
1321         vm_page_xunbusy(m);
1322 }
1323
1324 /*
1325  *      vm_page_sleep_if_busy:
1326  *
1327  *      Sleep and release the object lock if the page is busied.
1328  *      Returns TRUE if the thread slept.
1329  *
1330  *      The given page must be unlocked and object containing it must
1331  *      be locked.
1332  */
1333 int
1334 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1335 {
1336         vm_object_t obj;
1337
1338         vm_page_lock_assert(m, MA_NOTOWNED);
1339         VM_OBJECT_ASSERT_WLOCKED(m->object);
1340
1341         /*
1342          * The page-specific object must be cached because page
1343          * identity can change during the sleep, causing the
1344          * re-lock of a different object.
1345          * It is assumed that a reference to the object is already
1346          * held by the callers.
1347          */
1348         obj = m->object;
1349         if (vm_page_busied(m) || (obj != NULL && obj->busy)) {
1350                 vm_page_busy_sleep(m, msg, false);
1351                 VM_OBJECT_WLOCK(obj);
1352                 return (TRUE);
1353         }
1354         return (FALSE);
1355 }
1356
1357 /*
1358  *      vm_page_sleep_if_xbusy:
1359  *
1360  *      Sleep and release the object lock if the page is xbusied.
1361  *      Returns TRUE if the thread slept.
1362  *
1363  *      The given page must be unlocked and object containing it must
1364  *      be locked.
1365  */
1366 int
1367 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg)
1368 {
1369         vm_object_t obj;
1370
1371         vm_page_lock_assert(m, MA_NOTOWNED);
1372         VM_OBJECT_ASSERT_WLOCKED(m->object);
1373
1374         /*
1375          * The page-specific object must be cached because page
1376          * identity can change during the sleep, causing the
1377          * re-lock of a different object.
1378          * It is assumed that a reference to the object is already
1379          * held by the callers.
1380          */
1381         obj = m->object;
1382         if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) {
1383                 vm_page_busy_sleep(m, msg, true);
1384                 VM_OBJECT_WLOCK(obj);
1385                 return (TRUE);
1386         }
1387         return (FALSE);
1388 }
1389
1390 /*
1391  *      vm_page_dirty_KBI:              [ internal use only ]
1392  *
1393  *      Set all bits in the page's dirty field.
1394  *
1395  *      The object containing the specified page must be locked if the
1396  *      call is made from the machine-independent layer.
1397  *
1398  *      See vm_page_clear_dirty_mask().
1399  *
1400  *      This function should only be called by vm_page_dirty().
1401  */
1402 void
1403 vm_page_dirty_KBI(vm_page_t m)
1404 {
1405
1406         /* Refer to this operation by its public name. */
1407         KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1408         m->dirty = VM_PAGE_BITS_ALL;
1409 }
1410
1411 /*
1412  *      vm_page_insert:         [ internal use only ]
1413  *
1414  *      Inserts the given mem entry into the object and object list.
1415  *
1416  *      The object must be locked.
1417  */
1418 int
1419 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1420 {
1421         vm_page_t mpred;
1422
1423         VM_OBJECT_ASSERT_WLOCKED(object);
1424         mpred = vm_radix_lookup_le(&object->rtree, pindex);
1425         return (vm_page_insert_after(m, object, pindex, mpred));
1426 }
1427
1428 /*
1429  *      vm_page_insert_after:
1430  *
1431  *      Inserts the page "m" into the specified object at offset "pindex".
1432  *
1433  *      The page "mpred" must immediately precede the offset "pindex" within
1434  *      the specified object.
1435  *
1436  *      The object must be locked.
1437  */
1438 static int
1439 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1440     vm_page_t mpred)
1441 {
1442         vm_page_t msucc;
1443
1444         VM_OBJECT_ASSERT_WLOCKED(object);
1445         KASSERT(m->object == NULL,
1446             ("vm_page_insert_after: page already inserted"));
1447         if (mpred != NULL) {
1448                 KASSERT(mpred->object == object,
1449                     ("vm_page_insert_after: object doesn't contain mpred"));
1450                 KASSERT(mpred->pindex < pindex,
1451                     ("vm_page_insert_after: mpred doesn't precede pindex"));
1452                 msucc = TAILQ_NEXT(mpred, listq);
1453         } else
1454                 msucc = TAILQ_FIRST(&object->memq);
1455         if (msucc != NULL)
1456                 KASSERT(msucc->pindex > pindex,
1457                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
1458
1459         /*
1460          * Record the object/offset pair in this page.
1461          */
1462         m->object = object;
1463         m->pindex = pindex;
1464         m->ref_count |= VPRC_OBJREF;
1465
1466         /*
1467          * Now link into the object's ordered list of backed pages.
1468          */
1469         if (vm_radix_insert(&object->rtree, m)) {
1470                 m->object = NULL;
1471                 m->pindex = 0;
1472                 m->ref_count &= ~VPRC_OBJREF;
1473                 return (1);
1474         }
1475         vm_page_insert_radixdone(m, object, mpred);
1476         return (0);
1477 }
1478
1479 /*
1480  *      vm_page_insert_radixdone:
1481  *
1482  *      Complete page "m" insertion into the specified object after the
1483  *      radix trie hooking.
1484  *
1485  *      The page "mpred" must precede the offset "m->pindex" within the
1486  *      specified object.
1487  *
1488  *      The object must be locked.
1489  */
1490 static void
1491 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1492 {
1493
1494         VM_OBJECT_ASSERT_WLOCKED(object);
1495         KASSERT(object != NULL && m->object == object,
1496             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1497         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1498             ("vm_page_insert_radixdone: page %p is missing object ref", m));
1499         if (mpred != NULL) {
1500                 KASSERT(mpred->object == object,
1501                     ("vm_page_insert_radixdone: object doesn't contain mpred"));
1502                 KASSERT(mpred->pindex < m->pindex,
1503                     ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1504         }
1505
1506         if (mpred != NULL)
1507                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1508         else
1509                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1510
1511         /*
1512          * Show that the object has one more resident page.
1513          */
1514         object->resident_page_count++;
1515
1516         /*
1517          * Hold the vnode until the last page is released.
1518          */
1519         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1520                 vhold(object->handle);
1521
1522         /*
1523          * Since we are inserting a new and possibly dirty page,
1524          * update the object's generation count.
1525          */
1526         if (pmap_page_is_write_mapped(m))
1527                 vm_object_set_writeable_dirty(object);
1528 }
1529
1530 /*
1531  * Do the work to remove a page from its object.  The caller is responsible for
1532  * updating the page's fields to reflect this removal.
1533  */
1534 static void
1535 vm_page_object_remove(vm_page_t m)
1536 {
1537         vm_object_t object;
1538         vm_page_t mrem;
1539
1540         object = m->object;
1541         VM_OBJECT_ASSERT_WLOCKED(object);
1542         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1543             ("page %p is missing its object ref", m));
1544
1545         mrem = vm_radix_remove(&object->rtree, m->pindex);
1546         KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1547
1548         /*
1549          * Now remove from the object's list of backed pages.
1550          */
1551         TAILQ_REMOVE(&object->memq, m, listq);
1552
1553         /*
1554          * And show that the object has one fewer resident page.
1555          */
1556         object->resident_page_count--;
1557
1558         /*
1559          * The vnode may now be recycled.
1560          */
1561         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1562                 vdrop(object->handle);
1563 }
1564
1565 /*
1566  *      vm_page_remove:
1567  *
1568  *      Removes the specified page from its containing object, but does not
1569  *      invalidate any backing storage.  Returns true if the object's reference
1570  *      was the last reference to the page, and false otherwise.
1571  *
1572  *      The object must be locked.
1573  */
1574 bool
1575 vm_page_remove(vm_page_t m)
1576 {
1577
1578         vm_page_object_remove(m);
1579         m->object = NULL;
1580         return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1581 }
1582
1583 /*
1584  *      vm_page_lookup:
1585  *
1586  *      Returns the page associated with the object/offset
1587  *      pair specified; if none is found, NULL is returned.
1588  *
1589  *      The object must be locked.
1590  */
1591 vm_page_t
1592 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1593 {
1594
1595         VM_OBJECT_ASSERT_LOCKED(object);
1596         return (vm_radix_lookup(&object->rtree, pindex));
1597 }
1598
1599 /*
1600  *      vm_page_find_least:
1601  *
1602  *      Returns the page associated with the object with least pindex
1603  *      greater than or equal to the parameter pindex, or NULL.
1604  *
1605  *      The object must be locked.
1606  */
1607 vm_page_t
1608 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1609 {
1610         vm_page_t m;
1611
1612         VM_OBJECT_ASSERT_LOCKED(object);
1613         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1614                 m = vm_radix_lookup_ge(&object->rtree, pindex);
1615         return (m);
1616 }
1617
1618 /*
1619  * Returns the given page's successor (by pindex) within the object if it is
1620  * resident; if none is found, NULL is returned.
1621  *
1622  * The object must be locked.
1623  */
1624 vm_page_t
1625 vm_page_next(vm_page_t m)
1626 {
1627         vm_page_t next;
1628
1629         VM_OBJECT_ASSERT_LOCKED(m->object);
1630         if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1631                 MPASS(next->object == m->object);
1632                 if (next->pindex != m->pindex + 1)
1633                         next = NULL;
1634         }
1635         return (next);
1636 }
1637
1638 /*
1639  * Returns the given page's predecessor (by pindex) within the object if it is
1640  * resident; if none is found, NULL is returned.
1641  *
1642  * The object must be locked.
1643  */
1644 vm_page_t
1645 vm_page_prev(vm_page_t m)
1646 {
1647         vm_page_t prev;
1648
1649         VM_OBJECT_ASSERT_LOCKED(m->object);
1650         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1651                 MPASS(prev->object == m->object);
1652                 if (prev->pindex != m->pindex - 1)
1653                         prev = NULL;
1654         }
1655         return (prev);
1656 }
1657
1658 /*
1659  * Uses the page mnew as a replacement for an existing page at index
1660  * pindex which must be already present in the object.
1661  */
1662 vm_page_t
1663 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
1664 {
1665         vm_page_t mold;
1666
1667         VM_OBJECT_ASSERT_WLOCKED(object);
1668         KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1669             ("vm_page_replace: page %p already in object", mnew));
1670
1671         /*
1672          * This function mostly follows vm_page_insert() and
1673          * vm_page_remove() without the radix, object count and vnode
1674          * dance.  Double check such functions for more comments.
1675          */
1676
1677         mnew->object = object;
1678         mnew->pindex = pindex;
1679         atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1680         mold = vm_radix_replace(&object->rtree, mnew);
1681         KASSERT(mold->queue == PQ_NONE,
1682             ("vm_page_replace: old page %p is on a paging queue", mold));
1683
1684         /* Keep the resident page list in sorted order. */
1685         TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1686         TAILQ_REMOVE(&object->memq, mold, listq);
1687
1688         mold->object = NULL;
1689         atomic_clear_int(&mold->ref_count, VPRC_OBJREF);
1690         vm_page_xunbusy(mold);
1691
1692         /*
1693          * The object's resident_page_count does not change because we have
1694          * swapped one page for another, but the generation count should
1695          * change if the page is dirty.
1696          */
1697         if (pmap_page_is_write_mapped(mnew))
1698                 vm_object_set_writeable_dirty(object);
1699         return (mold);
1700 }
1701
1702 /*
1703  *      vm_page_rename:
1704  *
1705  *      Move the given memory entry from its
1706  *      current object to the specified target object/offset.
1707  *
1708  *      Note: swap associated with the page must be invalidated by the move.  We
1709  *            have to do this for several reasons:  (1) we aren't freeing the
1710  *            page, (2) we are dirtying the page, (3) the VM system is probably
1711  *            moving the page from object A to B, and will then later move
1712  *            the backing store from A to B and we can't have a conflict.
1713  *
1714  *      Note: we *always* dirty the page.  It is necessary both for the
1715  *            fact that we moved it, and because we may be invalidating
1716  *            swap.
1717  *
1718  *      The objects must be locked.
1719  */
1720 int
1721 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1722 {
1723         vm_page_t mpred;
1724         vm_pindex_t opidx;
1725
1726         VM_OBJECT_ASSERT_WLOCKED(new_object);
1727
1728         KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1729         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1730         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1731             ("vm_page_rename: pindex already renamed"));
1732
1733         /*
1734          * Create a custom version of vm_page_insert() which does not depend
1735          * by m_prev and can cheat on the implementation aspects of the
1736          * function.
1737          */
1738         opidx = m->pindex;
1739         m->pindex = new_pindex;
1740         if (vm_radix_insert(&new_object->rtree, m)) {
1741                 m->pindex = opidx;
1742                 return (1);
1743         }
1744
1745         /*
1746          * The operation cannot fail anymore.  The removal must happen before
1747          * the listq iterator is tainted.
1748          */
1749         m->pindex = opidx;
1750         vm_page_object_remove(m);
1751
1752         /* Return back to the new pindex to complete vm_page_insert(). */
1753         m->pindex = new_pindex;
1754         m->object = new_object;
1755
1756         vm_page_insert_radixdone(m, new_object, mpred);
1757         vm_page_dirty(m);
1758         return (0);
1759 }
1760
1761 /*
1762  *      vm_page_alloc:
1763  *
1764  *      Allocate and return a page that is associated with the specified
1765  *      object and offset pair.  By default, this page is exclusive busied.
1766  *
1767  *      The caller must always specify an allocation class.
1768  *
1769  *      allocation classes:
1770  *      VM_ALLOC_NORMAL         normal process request
1771  *      VM_ALLOC_SYSTEM         system *really* needs a page
1772  *      VM_ALLOC_INTERRUPT      interrupt time request
1773  *
1774  *      optional allocation flags:
1775  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
1776  *                              intends to allocate
1777  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1778  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1779  *      VM_ALLOC_NOOBJ          page is not associated with an object and
1780  *                              should not be exclusive busy
1781  *      VM_ALLOC_SBUSY          shared busy the allocated page
1782  *      VM_ALLOC_WIRED          wire the allocated page
1783  *      VM_ALLOC_ZERO           prefer a zeroed page
1784  */
1785 vm_page_t
1786 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1787 {
1788
1789         return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1790             vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1791 }
1792
1793 vm_page_t
1794 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1795     int req)
1796 {
1797
1798         return (vm_page_alloc_domain_after(object, pindex, domain, req,
1799             object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1800             NULL));
1801 }
1802
1803 /*
1804  * Allocate a page in the specified object with the given page index.  To
1805  * optimize insertion of the page into the object, the caller must also specifiy
1806  * the resident page in the object with largest index smaller than the given
1807  * page index, or NULL if no such page exists.
1808  */
1809 vm_page_t
1810 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1811     int req, vm_page_t mpred)
1812 {
1813         struct vm_domainset_iter di;
1814         vm_page_t m;
1815         int domain;
1816
1817         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1818         do {
1819                 m = vm_page_alloc_domain_after(object, pindex, domain, req,
1820                     mpred);
1821                 if (m != NULL)
1822                         break;
1823         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
1824
1825         return (m);
1826 }
1827
1828 /*
1829  * Returns true if the number of free pages exceeds the minimum
1830  * for the request class and false otherwise.
1831  */
1832 int
1833 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1834 {
1835         u_int limit, old, new;
1836
1837         req = req & VM_ALLOC_CLASS_MASK;
1838
1839         /*
1840          * The page daemon is allowed to dig deeper into the free page list.
1841          */
1842         if (curproc == pageproc && req != VM_ALLOC_INTERRUPT)
1843                 req = VM_ALLOC_SYSTEM;
1844         if (req == VM_ALLOC_INTERRUPT)
1845                 limit = 0;
1846         else if (req == VM_ALLOC_SYSTEM)
1847                 limit = vmd->vmd_interrupt_free_min;
1848         else
1849                 limit = vmd->vmd_free_reserved;
1850
1851         /*
1852          * Attempt to reserve the pages.  Fail if we're below the limit.
1853          */
1854         limit += npages;
1855         old = vmd->vmd_free_count;
1856         do {
1857                 if (old < limit)
1858                         return (0);
1859                 new = old - npages;
1860         } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1861
1862         /* Wake the page daemon if we've crossed the threshold. */
1863         if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1864                 pagedaemon_wakeup(vmd->vmd_domain);
1865
1866         /* Only update bitsets on transitions. */
1867         if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1868             (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1869                 vm_domain_set(vmd);
1870
1871         return (1);
1872 }
1873
1874 vm_page_t
1875 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1876     int req, vm_page_t mpred)
1877 {
1878         struct vm_domain *vmd;
1879         vm_page_t m;
1880         int flags, pool;
1881
1882         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1883             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1884             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1885             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1886             ("inconsistent object(%p)/req(%x)", object, req));
1887         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1888             ("Can't sleep and retry object insertion."));
1889         KASSERT(mpred == NULL || mpred->pindex < pindex,
1890             ("mpred %p doesn't precede pindex 0x%jx", mpred,
1891             (uintmax_t)pindex));
1892         if (object != NULL)
1893                 VM_OBJECT_ASSERT_WLOCKED(object);
1894
1895         flags = 0;
1896         m = NULL;
1897         pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
1898 again:
1899 #if VM_NRESERVLEVEL > 0
1900         /*
1901          * Can we allocate the page from a reservation?
1902          */
1903         if (vm_object_reserv(object) &&
1904             (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
1905             NULL) {
1906                 domain = vm_phys_domain(m);
1907                 vmd = VM_DOMAIN(domain);
1908                 goto found;
1909         }
1910 #endif
1911         vmd = VM_DOMAIN(domain);
1912         if (vmd->vmd_pgcache[pool].zone != NULL) {
1913                 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
1914                 if (m != NULL) {
1915                         flags |= PG_PCPU_CACHE;
1916                         goto found;
1917                 }
1918         }
1919         if (vm_domain_allocate(vmd, req, 1)) {
1920                 /*
1921                  * If not, allocate it from the free page queues.
1922                  */
1923                 vm_domain_free_lock(vmd);
1924                 m = vm_phys_alloc_pages(domain, pool, 0);
1925                 vm_domain_free_unlock(vmd);
1926                 if (m == NULL) {
1927                         vm_domain_freecnt_inc(vmd, 1);
1928 #if VM_NRESERVLEVEL > 0
1929                         if (vm_reserv_reclaim_inactive(domain))
1930                                 goto again;
1931 #endif
1932                 }
1933         }
1934         if (m == NULL) {
1935                 /*
1936                  * Not allocatable, give up.
1937                  */
1938                 if (vm_domain_alloc_fail(vmd, object, req))
1939                         goto again;
1940                 return (NULL);
1941         }
1942
1943         /*
1944          * At this point we had better have found a good page.
1945          */
1946 found:
1947         vm_page_dequeue(m);
1948         vm_page_alloc_check(m);
1949
1950         /*
1951          * Initialize the page.  Only the PG_ZERO flag is inherited.
1952          */
1953         if ((req & VM_ALLOC_ZERO) != 0)
1954                 flags |= (m->flags & PG_ZERO);
1955         if ((req & VM_ALLOC_NODUMP) != 0)
1956                 flags |= PG_NODUMP;
1957         m->flags = flags;
1958         m->aflags = 0;
1959         m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
1960             VPO_UNMANAGED : 0;
1961         m->busy_lock = VPB_UNBUSIED;
1962         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
1963                 m->busy_lock = VPB_SINGLE_EXCLUSIVER;
1964         if ((req & VM_ALLOC_SBUSY) != 0)
1965                 m->busy_lock = VPB_SHARERS_WORD(1);
1966         if (req & VM_ALLOC_WIRED) {
1967                 /*
1968                  * The page lock is not required for wiring a page until that
1969                  * page is inserted into the object.
1970                  */
1971                 vm_wire_add(1);
1972                 m->ref_count = 1;
1973         }
1974         m->act_count = 0;
1975
1976         if (object != NULL) {
1977                 if (vm_page_insert_after(m, object, pindex, mpred)) {
1978                         if (req & VM_ALLOC_WIRED) {
1979                                 vm_wire_sub(1);
1980                                 m->ref_count = 0;
1981                         }
1982                         KASSERT(m->object == NULL, ("page %p has object", m));
1983                         m->oflags = VPO_UNMANAGED;
1984                         m->busy_lock = VPB_UNBUSIED;
1985                         /* Don't change PG_ZERO. */
1986                         vm_page_free_toq(m);
1987                         if (req & VM_ALLOC_WAITFAIL) {
1988                                 VM_OBJECT_WUNLOCK(object);
1989                                 vm_radix_wait();
1990                                 VM_OBJECT_WLOCK(object);
1991                         }
1992                         return (NULL);
1993                 }
1994
1995                 /* Ignore device objects; the pager sets "memattr" for them. */
1996                 if (object->memattr != VM_MEMATTR_DEFAULT &&
1997                     (object->flags & OBJ_FICTITIOUS) == 0)
1998                         pmap_page_set_memattr(m, object->memattr);
1999         } else
2000                 m->pindex = pindex;
2001
2002         return (m);
2003 }
2004
2005 /*
2006  *      vm_page_alloc_contig:
2007  *
2008  *      Allocate a contiguous set of physical pages of the given size "npages"
2009  *      from the free lists.  All of the physical pages must be at or above
2010  *      the given physical address "low" and below the given physical address
2011  *      "high".  The given value "alignment" determines the alignment of the
2012  *      first physical page in the set.  If the given value "boundary" is
2013  *      non-zero, then the set of physical pages cannot cross any physical
2014  *      address boundary that is a multiple of that value.  Both "alignment"
2015  *      and "boundary" must be a power of two.
2016  *
2017  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2018  *      then the memory attribute setting for the physical pages is configured
2019  *      to the object's memory attribute setting.  Otherwise, the memory
2020  *      attribute setting for the physical pages is configured to "memattr",
2021  *      overriding the object's memory attribute setting.  However, if the
2022  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2023  *      memory attribute setting for the physical pages cannot be configured
2024  *      to VM_MEMATTR_DEFAULT.
2025  *
2026  *      The specified object may not contain fictitious pages.
2027  *
2028  *      The caller must always specify an allocation class.
2029  *
2030  *      allocation classes:
2031  *      VM_ALLOC_NORMAL         normal process request
2032  *      VM_ALLOC_SYSTEM         system *really* needs a page
2033  *      VM_ALLOC_INTERRUPT      interrupt time request
2034  *
2035  *      optional allocation flags:
2036  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
2037  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
2038  *      VM_ALLOC_NOOBJ          page is not associated with an object and
2039  *                              should not be exclusive busy
2040  *      VM_ALLOC_SBUSY          shared busy the allocated page
2041  *      VM_ALLOC_WIRED          wire the allocated page
2042  *      VM_ALLOC_ZERO           prefer a zeroed page
2043  */
2044 vm_page_t
2045 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2046     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2047     vm_paddr_t boundary, vm_memattr_t memattr)
2048 {
2049         struct vm_domainset_iter di;
2050         vm_page_t m;
2051         int domain;
2052
2053         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2054         do {
2055                 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2056                     npages, low, high, alignment, boundary, memattr);
2057                 if (m != NULL)
2058                         break;
2059         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2060
2061         return (m);
2062 }
2063
2064 vm_page_t
2065 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2066     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2067     vm_paddr_t boundary, vm_memattr_t memattr)
2068 {
2069         struct vm_domain *vmd;
2070         vm_page_t m, m_ret, mpred;
2071         u_int busy_lock, flags, oflags;
2072
2073         mpred = NULL;   /* XXX: pacify gcc */
2074         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2075             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2076             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2077             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2078             ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2079             req));
2080         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2081             ("Can't sleep and retry object insertion."));
2082         if (object != NULL) {
2083                 VM_OBJECT_ASSERT_WLOCKED(object);
2084                 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2085                     ("vm_page_alloc_contig: object %p has fictitious pages",
2086                     object));
2087         }
2088         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2089
2090         if (object != NULL) {
2091                 mpred = vm_radix_lookup_le(&object->rtree, pindex);
2092                 KASSERT(mpred == NULL || mpred->pindex != pindex,
2093                     ("vm_page_alloc_contig: pindex already allocated"));
2094         }
2095
2096         /*
2097          * Can we allocate the pages without the number of free pages falling
2098          * below the lower bound for the allocation class?
2099          */
2100         m_ret = NULL;
2101 again:
2102 #if VM_NRESERVLEVEL > 0
2103         /*
2104          * Can we allocate the pages from a reservation?
2105          */
2106         if (vm_object_reserv(object) &&
2107             (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2108             mpred, npages, low, high, alignment, boundary)) != NULL) {
2109                 domain = vm_phys_domain(m_ret);
2110                 vmd = VM_DOMAIN(domain);
2111                 goto found;
2112         }
2113 #endif
2114         vmd = VM_DOMAIN(domain);
2115         if (vm_domain_allocate(vmd, req, npages)) {
2116                 /*
2117                  * allocate them from the free page queues.
2118                  */
2119                 vm_domain_free_lock(vmd);
2120                 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2121                     alignment, boundary);
2122                 vm_domain_free_unlock(vmd);
2123                 if (m_ret == NULL) {
2124                         vm_domain_freecnt_inc(vmd, npages);
2125 #if VM_NRESERVLEVEL > 0
2126                         if (vm_reserv_reclaim_contig(domain, npages, low,
2127                             high, alignment, boundary))
2128                                 goto again;
2129 #endif
2130                 }
2131         }
2132         if (m_ret == NULL) {
2133                 if (vm_domain_alloc_fail(vmd, object, req))
2134                         goto again;
2135                 return (NULL);
2136         }
2137 #if VM_NRESERVLEVEL > 0
2138 found:
2139 #endif
2140         for (m = m_ret; m < &m_ret[npages]; m++) {
2141                 vm_page_dequeue(m);
2142                 vm_page_alloc_check(m);
2143         }
2144
2145         /*
2146          * Initialize the pages.  Only the PG_ZERO flag is inherited.
2147          */
2148         flags = 0;
2149         if ((req & VM_ALLOC_ZERO) != 0)
2150                 flags = PG_ZERO;
2151         if ((req & VM_ALLOC_NODUMP) != 0)
2152                 flags |= PG_NODUMP;
2153         oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2154             VPO_UNMANAGED : 0;
2155         busy_lock = VPB_UNBUSIED;
2156         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2157                 busy_lock = VPB_SINGLE_EXCLUSIVER;
2158         if ((req & VM_ALLOC_SBUSY) != 0)
2159                 busy_lock = VPB_SHARERS_WORD(1);
2160         if ((req & VM_ALLOC_WIRED) != 0)
2161                 vm_wire_add(npages);
2162         if (object != NULL) {
2163                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2164                     memattr == VM_MEMATTR_DEFAULT)
2165                         memattr = object->memattr;
2166         }
2167         for (m = m_ret; m < &m_ret[npages]; m++) {
2168                 m->aflags = 0;
2169                 m->flags = (m->flags | PG_NODUMP) & flags;
2170                 m->busy_lock = busy_lock;
2171                 if ((req & VM_ALLOC_WIRED) != 0)
2172                         m->ref_count = 1;
2173                 m->act_count = 0;
2174                 m->oflags = oflags;
2175                 if (object != NULL) {
2176                         if (vm_page_insert_after(m, object, pindex, mpred)) {
2177                                 if ((req & VM_ALLOC_WIRED) != 0)
2178                                         vm_wire_sub(npages);
2179                                 KASSERT(m->object == NULL,
2180                                     ("page %p has object", m));
2181                                 mpred = m;
2182                                 for (m = m_ret; m < &m_ret[npages]; m++) {
2183                                         if (m <= mpred &&
2184                                             (req & VM_ALLOC_WIRED) != 0)
2185                                                 m->ref_count = 0;
2186                                         m->oflags = VPO_UNMANAGED;
2187                                         m->busy_lock = VPB_UNBUSIED;
2188                                         /* Don't change PG_ZERO. */
2189                                         vm_page_free_toq(m);
2190                                 }
2191                                 if (req & VM_ALLOC_WAITFAIL) {
2192                                         VM_OBJECT_WUNLOCK(object);
2193                                         vm_radix_wait();
2194                                         VM_OBJECT_WLOCK(object);
2195                                 }
2196                                 return (NULL);
2197                         }
2198                         mpred = m;
2199                 } else
2200                         m->pindex = pindex;
2201                 if (memattr != VM_MEMATTR_DEFAULT)
2202                         pmap_page_set_memattr(m, memattr);
2203                 pindex++;
2204         }
2205         return (m_ret);
2206 }
2207
2208 /*
2209  * Check a page that has been freshly dequeued from a freelist.
2210  */
2211 static void
2212 vm_page_alloc_check(vm_page_t m)
2213 {
2214
2215         KASSERT(m->object == NULL, ("page %p has object", m));
2216         KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
2217             ("page %p has unexpected queue %d, flags %#x",
2218             m, m->queue, (m->aflags & PGA_QUEUE_STATE_MASK)));
2219         KASSERT(m->ref_count == 0, ("page %p has references", m));
2220         KASSERT(!vm_page_busied(m), ("page %p is busy", m));
2221         KASSERT(m->dirty == 0, ("page %p is dirty", m));
2222         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2223             ("page %p has unexpected memattr %d",
2224             m, pmap_page_get_memattr(m)));
2225         KASSERT(m->valid == 0, ("free page %p is valid", m));
2226 }
2227
2228 /*
2229  *      vm_page_alloc_freelist:
2230  *
2231  *      Allocate a physical page from the specified free page list.
2232  *
2233  *      The caller must always specify an allocation class.
2234  *
2235  *      allocation classes:
2236  *      VM_ALLOC_NORMAL         normal process request
2237  *      VM_ALLOC_SYSTEM         system *really* needs a page
2238  *      VM_ALLOC_INTERRUPT      interrupt time request
2239  *
2240  *      optional allocation flags:
2241  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
2242  *                              intends to allocate
2243  *      VM_ALLOC_WIRED          wire the allocated page
2244  *      VM_ALLOC_ZERO           prefer a zeroed page
2245  */
2246 vm_page_t
2247 vm_page_alloc_freelist(int freelist, int req)
2248 {
2249         struct vm_domainset_iter di;
2250         vm_page_t m;
2251         int domain;
2252
2253         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2254         do {
2255                 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2256                 if (m != NULL)
2257                         break;
2258         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2259
2260         return (m);
2261 }
2262
2263 vm_page_t
2264 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2265 {
2266         struct vm_domain *vmd;
2267         vm_page_t m;
2268         u_int flags;
2269
2270         m = NULL;
2271         vmd = VM_DOMAIN(domain);
2272 again:
2273         if (vm_domain_allocate(vmd, req, 1)) {
2274                 vm_domain_free_lock(vmd);
2275                 m = vm_phys_alloc_freelist_pages(domain, freelist,
2276                     VM_FREEPOOL_DIRECT, 0);
2277                 vm_domain_free_unlock(vmd);
2278                 if (m == NULL)
2279                         vm_domain_freecnt_inc(vmd, 1);
2280         }
2281         if (m == NULL) {
2282                 if (vm_domain_alloc_fail(vmd, NULL, req))
2283                         goto again;
2284                 return (NULL);
2285         }
2286         vm_page_dequeue(m);
2287         vm_page_alloc_check(m);
2288
2289         /*
2290          * Initialize the page.  Only the PG_ZERO flag is inherited.
2291          */
2292         m->aflags = 0;
2293         flags = 0;
2294         if ((req & VM_ALLOC_ZERO) != 0)
2295                 flags = PG_ZERO;
2296         m->flags &= flags;
2297         if ((req & VM_ALLOC_WIRED) != 0) {
2298                 /*
2299                  * The page lock is not required for wiring a page that does
2300                  * not belong to an object.
2301                  */
2302                 vm_wire_add(1);
2303                 m->ref_count = 1;
2304         }
2305         /* Unmanaged pages don't use "act_count". */
2306         m->oflags = VPO_UNMANAGED;
2307         return (m);
2308 }
2309
2310 static int
2311 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2312 {
2313         struct vm_domain *vmd;
2314         struct vm_pgcache *pgcache;
2315         int i;
2316
2317         pgcache = arg;
2318         vmd = VM_DOMAIN(pgcache->domain);
2319         /* Only import if we can bring in a full bucket. */
2320         if (cnt == 1 || !vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2321                 return (0);
2322         domain = vmd->vmd_domain;
2323         vm_domain_free_lock(vmd);
2324         i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2325             (vm_page_t *)store);
2326         vm_domain_free_unlock(vmd);
2327         if (cnt != i)
2328                 vm_domain_freecnt_inc(vmd, cnt - i);
2329
2330         return (i);
2331 }
2332
2333 static void
2334 vm_page_zone_release(void *arg, void **store, int cnt)
2335 {
2336         struct vm_domain *vmd;
2337         struct vm_pgcache *pgcache;
2338         vm_page_t m;
2339         int i;
2340
2341         pgcache = arg;
2342         vmd = VM_DOMAIN(pgcache->domain);
2343         vm_domain_free_lock(vmd);
2344         for (i = 0; i < cnt; i++) {
2345                 m = (vm_page_t)store[i];
2346                 vm_phys_free_pages(m, 0);
2347         }
2348         vm_domain_free_unlock(vmd);
2349         vm_domain_freecnt_inc(vmd, cnt);
2350 }
2351
2352 #define VPSC_ANY        0       /* No restrictions. */
2353 #define VPSC_NORESERV   1       /* Skip reservations; implies VPSC_NOSUPER. */
2354 #define VPSC_NOSUPER    2       /* Skip superpages. */
2355
2356 /*
2357  *      vm_page_scan_contig:
2358  *
2359  *      Scan vm_page_array[] between the specified entries "m_start" and
2360  *      "m_end" for a run of contiguous physical pages that satisfy the
2361  *      specified conditions, and return the lowest page in the run.  The
2362  *      specified "alignment" determines the alignment of the lowest physical
2363  *      page in the run.  If the specified "boundary" is non-zero, then the
2364  *      run of physical pages cannot span a physical address that is a
2365  *      multiple of "boundary".
2366  *
2367  *      "m_end" is never dereferenced, so it need not point to a vm_page
2368  *      structure within vm_page_array[].
2369  *
2370  *      "npages" must be greater than zero.  "m_start" and "m_end" must not
2371  *      span a hole (or discontiguity) in the physical address space.  Both
2372  *      "alignment" and "boundary" must be a power of two.
2373  */
2374 vm_page_t
2375 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2376     u_long alignment, vm_paddr_t boundary, int options)
2377 {
2378         struct mtx *m_mtx;
2379         vm_object_t object;
2380         vm_paddr_t pa;
2381         vm_page_t m, m_run;
2382 #if VM_NRESERVLEVEL > 0
2383         int level;
2384 #endif
2385         int m_inc, order, run_ext, run_len;
2386
2387         KASSERT(npages > 0, ("npages is 0"));
2388         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2389         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2390         m_run = NULL;
2391         run_len = 0;
2392         m_mtx = NULL;
2393         for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2394                 KASSERT((m->flags & PG_MARKER) == 0,
2395                     ("page %p is PG_MARKER", m));
2396                 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2397                     ("fictitious page %p has invalid ref count", m));
2398
2399                 /*
2400                  * If the current page would be the start of a run, check its
2401                  * physical address against the end, alignment, and boundary
2402                  * conditions.  If it doesn't satisfy these conditions, either
2403                  * terminate the scan or advance to the next page that
2404                  * satisfies the failed condition.
2405                  */
2406                 if (run_len == 0) {
2407                         KASSERT(m_run == NULL, ("m_run != NULL"));
2408                         if (m + npages > m_end)
2409                                 break;
2410                         pa = VM_PAGE_TO_PHYS(m);
2411                         if ((pa & (alignment - 1)) != 0) {
2412                                 m_inc = atop(roundup2(pa, alignment) - pa);
2413                                 continue;
2414                         }
2415                         if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2416                             boundary) != 0) {
2417                                 m_inc = atop(roundup2(pa, boundary) - pa);
2418                                 continue;
2419                         }
2420                 } else
2421                         KASSERT(m_run != NULL, ("m_run == NULL"));
2422
2423                 vm_page_change_lock(m, &m_mtx);
2424                 m_inc = 1;
2425 retry:
2426                 if (vm_page_wired(m))
2427                         run_ext = 0;
2428 #if VM_NRESERVLEVEL > 0
2429                 else if ((level = vm_reserv_level(m)) >= 0 &&
2430                     (options & VPSC_NORESERV) != 0) {
2431                         run_ext = 0;
2432                         /* Advance to the end of the reservation. */
2433                         pa = VM_PAGE_TO_PHYS(m);
2434                         m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2435                             pa);
2436                 }
2437 #endif
2438                 else if ((object = m->object) != NULL) {
2439                         /*
2440                          * The page is considered eligible for relocation if
2441                          * and only if it could be laundered or reclaimed by
2442                          * the page daemon.
2443                          */
2444                         if (!VM_OBJECT_TRYRLOCK(object)) {
2445                                 mtx_unlock(m_mtx);
2446                                 VM_OBJECT_RLOCK(object);
2447                                 mtx_lock(m_mtx);
2448                                 if (m->object != object) {
2449                                         /*
2450                                          * The page may have been freed.
2451                                          */
2452                                         VM_OBJECT_RUNLOCK(object);
2453                                         goto retry;
2454                                 }
2455                         }
2456                         /* Don't care: PG_NODUMP, PG_ZERO. */
2457                         if (object->type != OBJT_DEFAULT &&
2458                             object->type != OBJT_SWAP &&
2459                             object->type != OBJT_VNODE) {
2460                                 run_ext = 0;
2461 #if VM_NRESERVLEVEL > 0
2462                         } else if ((options & VPSC_NOSUPER) != 0 &&
2463                             (level = vm_reserv_level_iffullpop(m)) >= 0) {
2464                                 run_ext = 0;
2465                                 /* Advance to the end of the superpage. */
2466                                 pa = VM_PAGE_TO_PHYS(m);
2467                                 m_inc = atop(roundup2(pa + 1,
2468                                     vm_reserv_size(level)) - pa);
2469 #endif
2470                         } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2471                             vm_page_queue(m) != PQ_NONE && !vm_page_busied(m) &&
2472                             !vm_page_wired(m)) {
2473                                 /*
2474                                  * The page is allocated but eligible for
2475                                  * relocation.  Extend the current run by one
2476                                  * page.
2477                                  */
2478                                 KASSERT(pmap_page_get_memattr(m) ==
2479                                     VM_MEMATTR_DEFAULT,
2480                                     ("page %p has an unexpected memattr", m));
2481                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2482                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2483                                     ("page %p has unexpected oflags", m));
2484                                 /* Don't care: PGA_NOSYNC. */
2485                                 run_ext = 1;
2486                         } else
2487                                 run_ext = 0;
2488                         VM_OBJECT_RUNLOCK(object);
2489 #if VM_NRESERVLEVEL > 0
2490                 } else if (level >= 0) {
2491                         /*
2492                          * The page is reserved but not yet allocated.  In
2493                          * other words, it is still free.  Extend the current
2494                          * run by one page.
2495                          */
2496                         run_ext = 1;
2497 #endif
2498                 } else if ((order = m->order) < VM_NFREEORDER) {
2499                         /*
2500                          * The page is enqueued in the physical memory
2501                          * allocator's free page queues.  Moreover, it is the
2502                          * first page in a power-of-two-sized run of
2503                          * contiguous free pages.  Add these pages to the end
2504                          * of the current run, and jump ahead.
2505                          */
2506                         run_ext = 1 << order;
2507                         m_inc = 1 << order;
2508                 } else {
2509                         /*
2510                          * Skip the page for one of the following reasons: (1)
2511                          * It is enqueued in the physical memory allocator's
2512                          * free page queues.  However, it is not the first
2513                          * page in a run of contiguous free pages.  (This case
2514                          * rarely occurs because the scan is performed in
2515                          * ascending order.) (2) It is not reserved, and it is
2516                          * transitioning from free to allocated.  (Conversely,
2517                          * the transition from allocated to free for managed
2518                          * pages is blocked by the page lock.) (3) It is
2519                          * allocated but not contained by an object and not
2520                          * wired, e.g., allocated by Xen's balloon driver.
2521                          */
2522                         run_ext = 0;
2523                 }
2524
2525                 /*
2526                  * Extend or reset the current run of pages.
2527                  */
2528                 if (run_ext > 0) {
2529                         if (run_len == 0)
2530                                 m_run = m;
2531                         run_len += run_ext;
2532                 } else {
2533                         if (run_len > 0) {
2534                                 m_run = NULL;
2535                                 run_len = 0;
2536                         }
2537                 }
2538         }
2539         if (m_mtx != NULL)
2540                 mtx_unlock(m_mtx);
2541         if (run_len >= npages)
2542                 return (m_run);
2543         return (NULL);
2544 }
2545
2546 /*
2547  *      vm_page_reclaim_run:
2548  *
2549  *      Try to relocate each of the allocated virtual pages within the
2550  *      specified run of physical pages to a new physical address.  Free the
2551  *      physical pages underlying the relocated virtual pages.  A virtual page
2552  *      is relocatable if and only if it could be laundered or reclaimed by
2553  *      the page daemon.  Whenever possible, a virtual page is relocated to a
2554  *      physical address above "high".
2555  *
2556  *      Returns 0 if every physical page within the run was already free or
2557  *      just freed by a successful relocation.  Otherwise, returns a non-zero
2558  *      value indicating why the last attempt to relocate a virtual page was
2559  *      unsuccessful.
2560  *
2561  *      "req_class" must be an allocation class.
2562  */
2563 static int
2564 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2565     vm_paddr_t high)
2566 {
2567         struct vm_domain *vmd;
2568         struct mtx *m_mtx;
2569         struct spglist free;
2570         vm_object_t object;
2571         vm_paddr_t pa;
2572         vm_page_t m, m_end, m_new;
2573         int error, order, req;
2574
2575         KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2576             ("req_class is not an allocation class"));
2577         SLIST_INIT(&free);
2578         error = 0;
2579         m = m_run;
2580         m_end = m_run + npages;
2581         m_mtx = NULL;
2582         for (; error == 0 && m < m_end; m++) {
2583                 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2584                     ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2585
2586                 /*
2587                  * Avoid releasing and reacquiring the same page lock.
2588                  */
2589                 vm_page_change_lock(m, &m_mtx);
2590 retry:
2591                 /*
2592                  * Racily check for wirings.  Races are handled below.
2593                  */
2594                 if (vm_page_wired(m))
2595                         error = EBUSY;
2596                 else if ((object = m->object) != NULL) {
2597                         /*
2598                          * The page is relocated if and only if it could be
2599                          * laundered or reclaimed by the page daemon.
2600                          */
2601                         if (!VM_OBJECT_TRYWLOCK(object)) {
2602                                 mtx_unlock(m_mtx);
2603                                 VM_OBJECT_WLOCK(object);
2604                                 mtx_lock(m_mtx);
2605                                 if (m->object != object) {
2606                                         /*
2607                                          * The page may have been freed.
2608                                          */
2609                                         VM_OBJECT_WUNLOCK(object);
2610                                         goto retry;
2611                                 }
2612                         }
2613                         /* Don't care: PG_NODUMP, PG_ZERO. */
2614                         if (object->type != OBJT_DEFAULT &&
2615                             object->type != OBJT_SWAP &&
2616                             object->type != OBJT_VNODE)
2617                                 error = EINVAL;
2618                         else if (object->memattr != VM_MEMATTR_DEFAULT)
2619                                 error = EINVAL;
2620                         else if (vm_page_queue(m) != PQ_NONE &&
2621                             vm_page_tryxbusy(m) != 0) {
2622                                 if (vm_page_wired(m)) {
2623                                         vm_page_xunbusy(m);
2624                                         error = EBUSY;
2625                                         goto unlock;
2626                                 }
2627                                 KASSERT(pmap_page_get_memattr(m) ==
2628                                     VM_MEMATTR_DEFAULT,
2629                                     ("page %p has an unexpected memattr", m));
2630                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2631                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2632                                     ("page %p has unexpected oflags", m));
2633                                 /* Don't care: PGA_NOSYNC. */
2634                                 if (!vm_page_none_valid(m)) {
2635                                         /*
2636                                          * First, try to allocate a new page
2637                                          * that is above "high".  Failing
2638                                          * that, try to allocate a new page
2639                                          * that is below "m_run".  Allocate
2640                                          * the new page between the end of
2641                                          * "m_run" and "high" only as a last
2642                                          * resort.
2643                                          */
2644                                         req = req_class | VM_ALLOC_NOOBJ;
2645                                         if ((m->flags & PG_NODUMP) != 0)
2646                                                 req |= VM_ALLOC_NODUMP;
2647                                         if (trunc_page(high) !=
2648                                             ~(vm_paddr_t)PAGE_MASK) {
2649                                                 m_new = vm_page_alloc_contig(
2650                                                     NULL, 0, req, 1,
2651                                                     round_page(high),
2652                                                     ~(vm_paddr_t)0,
2653                                                     PAGE_SIZE, 0,
2654                                                     VM_MEMATTR_DEFAULT);
2655                                         } else
2656                                                 m_new = NULL;
2657                                         if (m_new == NULL) {
2658                                                 pa = VM_PAGE_TO_PHYS(m_run);
2659                                                 m_new = vm_page_alloc_contig(
2660                                                     NULL, 0, req, 1,
2661                                                     0, pa - 1, PAGE_SIZE, 0,
2662                                                     VM_MEMATTR_DEFAULT);
2663                                         }
2664                                         if (m_new == NULL) {
2665                                                 pa += ptoa(npages);
2666                                                 m_new = vm_page_alloc_contig(
2667                                                     NULL, 0, req, 1,
2668                                                     pa, high, PAGE_SIZE, 0,
2669                                                     VM_MEMATTR_DEFAULT);
2670                                         }
2671                                         if (m_new == NULL) {
2672                                                 vm_page_xunbusy(m);
2673                                                 error = ENOMEM;
2674                                                 goto unlock;
2675                                         }
2676
2677                                         /*
2678                                          * Unmap the page and check for new
2679                                          * wirings that may have been acquired
2680                                          * through a pmap lookup.
2681                                          */
2682                                         if (object->ref_count != 0 &&
2683                                             !vm_page_try_remove_all(m)) {
2684                                                 vm_page_free(m_new);
2685                                                 error = EBUSY;
2686                                                 goto unlock;
2687                                         }
2688
2689                                         /*
2690                                          * Replace "m" with the new page.  For
2691                                          * vm_page_replace(), "m" must be busy
2692                                          * and dequeued.  Finally, change "m"
2693                                          * as if vm_page_free() was called.
2694                                          */
2695                                         m_new->aflags = m->aflags &
2696                                             ~PGA_QUEUE_STATE_MASK;
2697                                         KASSERT(m_new->oflags == VPO_UNMANAGED,
2698                                             ("page %p is managed", m_new));
2699                                         pmap_copy_page(m, m_new);
2700                                         m_new->valid = m->valid;
2701                                         m_new->dirty = m->dirty;
2702                                         m->flags &= ~PG_ZERO;
2703                                         vm_page_dequeue(m);
2704                                         vm_page_replace_checked(m_new, object,
2705                                             m->pindex, m);
2706                                         if (vm_page_free_prep(m))
2707                                                 SLIST_INSERT_HEAD(&free, m,
2708                                                     plinks.s.ss);
2709
2710                                         /*
2711                                          * The new page must be deactivated
2712                                          * before the object is unlocked.
2713                                          */
2714                                         vm_page_change_lock(m_new, &m_mtx);
2715                                         vm_page_deactivate(m_new);
2716                                 } else {
2717                                         m->flags &= ~PG_ZERO;
2718                                         vm_page_dequeue(m);
2719                                         if (vm_page_free_prep(m))
2720                                                 SLIST_INSERT_HEAD(&free, m,
2721                                                     plinks.s.ss);
2722                                         KASSERT(m->dirty == 0,
2723                                             ("page %p is dirty", m));
2724                                 }
2725                         } else
2726                                 error = EBUSY;
2727 unlock:
2728                         VM_OBJECT_WUNLOCK(object);
2729                 } else {
2730                         MPASS(vm_phys_domain(m) == domain);
2731                         vmd = VM_DOMAIN(domain);
2732                         vm_domain_free_lock(vmd);
2733                         order = m->order;
2734                         if (order < VM_NFREEORDER) {
2735                                 /*
2736                                  * The page is enqueued in the physical memory
2737                                  * allocator's free page queues.  Moreover, it
2738                                  * is the first page in a power-of-two-sized
2739                                  * run of contiguous free pages.  Jump ahead
2740                                  * to the last page within that run, and
2741                                  * continue from there.
2742                                  */
2743                                 m += (1 << order) - 1;
2744                         }
2745 #if VM_NRESERVLEVEL > 0
2746                         else if (vm_reserv_is_page_free(m))
2747                                 order = 0;
2748 #endif
2749                         vm_domain_free_unlock(vmd);
2750                         if (order == VM_NFREEORDER)
2751                                 error = EINVAL;
2752                 }
2753         }
2754         if (m_mtx != NULL)
2755                 mtx_unlock(m_mtx);
2756         if ((m = SLIST_FIRST(&free)) != NULL) {
2757                 int cnt;
2758
2759                 vmd = VM_DOMAIN(domain);
2760                 cnt = 0;
2761                 vm_domain_free_lock(vmd);
2762                 do {
2763                         MPASS(vm_phys_domain(m) == domain);
2764                         SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2765                         vm_phys_free_pages(m, 0);
2766                         cnt++;
2767                 } while ((m = SLIST_FIRST(&free)) != NULL);
2768                 vm_domain_free_unlock(vmd);
2769                 vm_domain_freecnt_inc(vmd, cnt);
2770         }
2771         return (error);
2772 }
2773
2774 #define NRUNS   16
2775
2776 CTASSERT(powerof2(NRUNS));
2777
2778 #define RUN_INDEX(count)        ((count) & (NRUNS - 1))
2779
2780 #define MIN_RECLAIM     8
2781
2782 /*
2783  *      vm_page_reclaim_contig:
2784  *
2785  *      Reclaim allocated, contiguous physical memory satisfying the specified
2786  *      conditions by relocating the virtual pages using that physical memory.
2787  *      Returns true if reclamation is successful and false otherwise.  Since
2788  *      relocation requires the allocation of physical pages, reclamation may
2789  *      fail due to a shortage of free pages.  When reclamation fails, callers
2790  *      are expected to perform vm_wait() before retrying a failed allocation
2791  *      operation, e.g., vm_page_alloc_contig().
2792  *
2793  *      The caller must always specify an allocation class through "req".
2794  *
2795  *      allocation classes:
2796  *      VM_ALLOC_NORMAL         normal process request
2797  *      VM_ALLOC_SYSTEM         system *really* needs a page
2798  *      VM_ALLOC_INTERRUPT      interrupt time request
2799  *
2800  *      The optional allocation flags are ignored.
2801  *
2802  *      "npages" must be greater than zero.  Both "alignment" and "boundary"
2803  *      must be a power of two.
2804  */
2805 bool
2806 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2807     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2808 {
2809         struct vm_domain *vmd;
2810         vm_paddr_t curr_low;
2811         vm_page_t m_run, m_runs[NRUNS];
2812         u_long count, reclaimed;
2813         int error, i, options, req_class;
2814
2815         KASSERT(npages > 0, ("npages is 0"));
2816         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2817         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2818         req_class = req & VM_ALLOC_CLASS_MASK;
2819
2820         /*
2821          * The page daemon is allowed to dig deeper into the free page list.
2822          */
2823         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2824                 req_class = VM_ALLOC_SYSTEM;
2825
2826         /*
2827          * Return if the number of free pages cannot satisfy the requested
2828          * allocation.
2829          */
2830         vmd = VM_DOMAIN(domain);
2831         count = vmd->vmd_free_count;
2832         if (count < npages + vmd->vmd_free_reserved || (count < npages +
2833             vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2834             (count < npages && req_class == VM_ALLOC_INTERRUPT))
2835                 return (false);
2836
2837         /*
2838          * Scan up to three times, relaxing the restrictions ("options") on
2839          * the reclamation of reservations and superpages each time.
2840          */
2841         for (options = VPSC_NORESERV;;) {
2842                 /*
2843                  * Find the highest runs that satisfy the given constraints
2844                  * and restrictions, and record them in "m_runs".
2845                  */
2846                 curr_low = low;
2847                 count = 0;
2848                 for (;;) {
2849                         m_run = vm_phys_scan_contig(domain, npages, curr_low,
2850                             high, alignment, boundary, options);
2851                         if (m_run == NULL)
2852                                 break;
2853                         curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2854                         m_runs[RUN_INDEX(count)] = m_run;
2855                         count++;
2856                 }
2857
2858                 /*
2859                  * Reclaim the highest runs in LIFO (descending) order until
2860                  * the number of reclaimed pages, "reclaimed", is at least
2861                  * MIN_RECLAIM.  Reset "reclaimed" each time because each
2862                  * reclamation is idempotent, and runs will (likely) recur
2863                  * from one scan to the next as restrictions are relaxed.
2864                  */
2865                 reclaimed = 0;
2866                 for (i = 0; count > 0 && i < NRUNS; i++) {
2867                         count--;
2868                         m_run = m_runs[RUN_INDEX(count)];
2869                         error = vm_page_reclaim_run(req_class, domain, npages,
2870                             m_run, high);
2871                         if (error == 0) {
2872                                 reclaimed += npages;
2873                                 if (reclaimed >= MIN_RECLAIM)
2874                                         return (true);
2875                         }
2876                 }
2877
2878                 /*
2879                  * Either relax the restrictions on the next scan or return if
2880                  * the last scan had no restrictions.
2881                  */
2882                 if (options == VPSC_NORESERV)
2883                         options = VPSC_NOSUPER;
2884                 else if (options == VPSC_NOSUPER)
2885                         options = VPSC_ANY;
2886                 else if (options == VPSC_ANY)
2887                         return (reclaimed != 0);
2888         }
2889 }
2890
2891 bool
2892 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2893     u_long alignment, vm_paddr_t boundary)
2894 {
2895         struct vm_domainset_iter di;
2896         int domain;
2897         bool ret;
2898
2899         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2900         do {
2901                 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2902                     high, alignment, boundary);
2903                 if (ret)
2904                         break;
2905         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2906
2907         return (ret);
2908 }
2909
2910 /*
2911  * Set the domain in the appropriate page level domainset.
2912  */
2913 void
2914 vm_domain_set(struct vm_domain *vmd)
2915 {
2916
2917         mtx_lock(&vm_domainset_lock);
2918         if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2919                 vmd->vmd_minset = 1;
2920                 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2921         }
2922         if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2923                 vmd->vmd_severeset = 1;
2924                 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
2925         }
2926         mtx_unlock(&vm_domainset_lock);
2927 }
2928
2929 /*
2930  * Clear the domain from the appropriate page level domainset.
2931  */
2932 void
2933 vm_domain_clear(struct vm_domain *vmd)
2934 {
2935
2936         mtx_lock(&vm_domainset_lock);
2937         if (vmd->vmd_minset && !vm_paging_min(vmd)) {
2938                 vmd->vmd_minset = 0;
2939                 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
2940                 if (vm_min_waiters != 0) {
2941                         vm_min_waiters = 0;
2942                         wakeup(&vm_min_domains);
2943                 }
2944         }
2945         if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
2946                 vmd->vmd_severeset = 0;
2947                 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
2948                 if (vm_severe_waiters != 0) {
2949                         vm_severe_waiters = 0;
2950                         wakeup(&vm_severe_domains);
2951                 }
2952         }
2953
2954         /*
2955          * If pageout daemon needs pages, then tell it that there are
2956          * some free.
2957          */
2958         if (vmd->vmd_pageout_pages_needed &&
2959             vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
2960                 wakeup(&vmd->vmd_pageout_pages_needed);
2961                 vmd->vmd_pageout_pages_needed = 0;
2962         }
2963
2964         /* See comments in vm_wait_doms(). */
2965         if (vm_pageproc_waiters) {
2966                 vm_pageproc_waiters = 0;
2967                 wakeup(&vm_pageproc_waiters);
2968         }
2969         mtx_unlock(&vm_domainset_lock);
2970 }
2971
2972 /*
2973  * Wait for free pages to exceed the min threshold globally.
2974  */
2975 void
2976 vm_wait_min(void)
2977 {
2978
2979         mtx_lock(&vm_domainset_lock);
2980         while (vm_page_count_min()) {
2981                 vm_min_waiters++;
2982                 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
2983         }
2984         mtx_unlock(&vm_domainset_lock);
2985 }
2986
2987 /*
2988  * Wait for free pages to exceed the severe threshold globally.
2989  */
2990 void
2991 vm_wait_severe(void)
2992 {
2993
2994         mtx_lock(&vm_domainset_lock);
2995         while (vm_page_count_severe()) {
2996                 vm_severe_waiters++;
2997                 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
2998                     "vmwait", 0);
2999         }
3000         mtx_unlock(&vm_domainset_lock);
3001 }
3002
3003 u_int
3004 vm_wait_count(void)
3005 {
3006
3007         return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3008 }
3009
3010 void
3011 vm_wait_doms(const domainset_t *wdoms)
3012 {
3013
3014         /*
3015          * We use racey wakeup synchronization to avoid expensive global
3016          * locking for the pageproc when sleeping with a non-specific vm_wait.
3017          * To handle this, we only sleep for one tick in this instance.  It
3018          * is expected that most allocations for the pageproc will come from
3019          * kmem or vm_page_grab* which will use the more specific and
3020          * race-free vm_wait_domain().
3021          */
3022         if (curproc == pageproc) {
3023                 mtx_lock(&vm_domainset_lock);
3024                 vm_pageproc_waiters++;
3025                 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3026                     "pageprocwait", 1);
3027         } else {
3028                 /*
3029                  * XXX Ideally we would wait only until the allocation could
3030                  * be satisfied.  This condition can cause new allocators to
3031                  * consume all freed pages while old allocators wait.
3032                  */
3033                 mtx_lock(&vm_domainset_lock);
3034                 if (vm_page_count_min_set(wdoms)) {
3035                         vm_min_waiters++;
3036                         msleep(&vm_min_domains, &vm_domainset_lock,
3037                             PVM | PDROP, "vmwait", 0);
3038                 } else
3039                         mtx_unlock(&vm_domainset_lock);
3040         }
3041 }
3042
3043 /*
3044  *      vm_wait_domain:
3045  *
3046  *      Sleep until free pages are available for allocation.
3047  *      - Called in various places after failed memory allocations.
3048  */
3049 void
3050 vm_wait_domain(int domain)
3051 {
3052         struct vm_domain *vmd;
3053         domainset_t wdom;
3054
3055         vmd = VM_DOMAIN(domain);
3056         vm_domain_free_assert_unlocked(vmd);
3057
3058         if (curproc == pageproc) {
3059                 mtx_lock(&vm_domainset_lock);
3060                 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3061                         vmd->vmd_pageout_pages_needed = 1;
3062                         msleep(&vmd->vmd_pageout_pages_needed,
3063                             &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3064                 } else
3065                         mtx_unlock(&vm_domainset_lock);
3066         } else {
3067                 if (pageproc == NULL)
3068                         panic("vm_wait in early boot");
3069                 DOMAINSET_ZERO(&wdom);
3070                 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3071                 vm_wait_doms(&wdom);
3072         }
3073 }
3074
3075 /*
3076  *      vm_wait:
3077  *
3078  *      Sleep until free pages are available for allocation in the
3079  *      affinity domains of the obj.  If obj is NULL, the domain set
3080  *      for the calling thread is used.
3081  *      Called in various places after failed memory allocations.
3082  */
3083 void
3084 vm_wait(vm_object_t obj)
3085 {
3086         struct domainset *d;
3087
3088         d = NULL;
3089
3090         /*
3091          * Carefully fetch pointers only once: the struct domainset
3092          * itself is ummutable but the pointer might change.
3093          */
3094         if (obj != NULL)
3095                 d = obj->domain.dr_policy;
3096         if (d == NULL)
3097                 d = curthread->td_domain.dr_policy;
3098
3099         vm_wait_doms(&d->ds_mask);
3100 }
3101
3102 /*
3103  *      vm_domain_alloc_fail:
3104  *
3105  *      Called when a page allocation function fails.  Informs the
3106  *      pagedaemon and performs the requested wait.  Requires the
3107  *      domain_free and object lock on entry.  Returns with the
3108  *      object lock held and free lock released.  Returns an error when
3109  *      retry is necessary.
3110  *
3111  */
3112 static int
3113 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3114 {
3115
3116         vm_domain_free_assert_unlocked(vmd);
3117
3118         atomic_add_int(&vmd->vmd_pageout_deficit,
3119             max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3120         if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3121                 if (object != NULL) 
3122                         VM_OBJECT_WUNLOCK(object);
3123                 vm_wait_domain(vmd->vmd_domain);
3124                 if (object != NULL) 
3125                         VM_OBJECT_WLOCK(object);
3126                 if (req & VM_ALLOC_WAITOK)
3127                         return (EAGAIN);
3128         }
3129
3130         return (0);
3131 }
3132
3133 /*
3134  *      vm_waitpfault:
3135  *
3136  *      Sleep until free pages are available for allocation.
3137  *      - Called only in vm_fault so that processes page faulting
3138  *        can be easily tracked.
3139  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3140  *        processes will be able to grab memory first.  Do not change
3141  *        this balance without careful testing first.
3142  */
3143 void
3144 vm_waitpfault(struct domainset *dset, int timo)
3145 {
3146
3147         /*
3148          * XXX Ideally we would wait only until the allocation could
3149          * be satisfied.  This condition can cause new allocators to
3150          * consume all freed pages while old allocators wait.
3151          */
3152         mtx_lock(&vm_domainset_lock);
3153         if (vm_page_count_min_set(&dset->ds_mask)) {
3154                 vm_min_waiters++;
3155                 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3156                     "pfault", timo);
3157         } else
3158                 mtx_unlock(&vm_domainset_lock);
3159 }
3160
3161 static struct vm_pagequeue *
3162 vm_page_pagequeue(vm_page_t m)
3163 {
3164
3165         uint8_t queue;
3166
3167         if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3168                 return (NULL);
3169         return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3170 }
3171
3172 static inline void
3173 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m)
3174 {
3175         struct vm_domain *vmd;
3176         uint8_t qflags;
3177
3178         CRITICAL_ASSERT(curthread);
3179         vm_pagequeue_assert_locked(pq);
3180
3181         /*
3182          * The page daemon is allowed to set m->queue = PQ_NONE without
3183          * the page queue lock held.  In this case it is about to free the page,
3184          * which must not have any queue state.
3185          */
3186         qflags = atomic_load_8(&m->aflags);
3187         KASSERT(pq == vm_page_pagequeue(m) ||
3188             (qflags & PGA_QUEUE_STATE_MASK) == 0,
3189             ("page %p doesn't belong to queue %p but has aflags %#x",
3190             m, pq, qflags));
3191
3192         if ((qflags & PGA_DEQUEUE) != 0) {
3193                 if (__predict_true((qflags & PGA_ENQUEUED) != 0))
3194                         vm_pagequeue_remove(pq, m);
3195                 vm_page_dequeue_complete(m);
3196                 counter_u64_add(queue_ops, 1);
3197         } else if ((qflags & (PGA_REQUEUE | PGA_REQUEUE_HEAD)) != 0) {
3198                 if ((qflags & PGA_ENQUEUED) != 0)
3199                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3200                 else {
3201                         vm_pagequeue_cnt_inc(pq);
3202                         vm_page_aflag_set(m, PGA_ENQUEUED);
3203                 }
3204
3205                 /*
3206                  * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.
3207                  * In particular, if both flags are set in close succession,
3208                  * only PGA_REQUEUE_HEAD will be applied, even if it was set
3209                  * first.
3210                  */
3211                 if ((qflags & PGA_REQUEUE_HEAD) != 0) {
3212                         KASSERT(m->queue == PQ_INACTIVE,
3213                             ("head enqueue not supported for page %p", m));
3214                         vmd = vm_pagequeue_domain(m);
3215                         TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3216                 } else
3217                         TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3218
3219                 vm_page_aflag_clear(m, qflags & (PGA_REQUEUE |
3220                     PGA_REQUEUE_HEAD));
3221                 counter_u64_add(queue_ops, 1);
3222         } else {
3223                 counter_u64_add(queue_nops, 1);
3224         }
3225 }
3226
3227 static void
3228 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3229     uint8_t queue)
3230 {
3231         vm_page_t m;
3232         int i;
3233
3234         for (i = 0; i < bq->bq_cnt; i++) {
3235                 m = bq->bq_pa[i];
3236                 if (__predict_false(m->queue != queue))
3237                         continue;
3238                 vm_pqbatch_process_page(pq, m);
3239         }
3240         vm_batchqueue_init(bq);
3241 }
3242
3243 /*
3244  *      vm_page_pqbatch_submit:         [ internal use only ]
3245  *
3246  *      Enqueue a page in the specified page queue's batched work queue.
3247  *      The caller must have encoded the requested operation in the page
3248  *      structure's aflags field.
3249  */
3250 void
3251 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3252 {
3253         struct vm_batchqueue *bq;
3254         struct vm_pagequeue *pq;
3255         int domain;
3256
3257         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3258             ("page %p is unmanaged", m));
3259         KASSERT(mtx_owned(vm_page_lockptr(m)) || m->object == NULL,
3260             ("missing synchronization for page %p", m));
3261         KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3262
3263         domain = vm_phys_domain(m);
3264         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3265
3266         critical_enter();
3267         bq = DPCPU_PTR(pqbatch[domain][queue]);
3268         if (vm_batchqueue_insert(bq, m)) {
3269                 critical_exit();
3270                 return;
3271         }
3272         critical_exit();
3273         vm_pagequeue_lock(pq);
3274         critical_enter();
3275         bq = DPCPU_PTR(pqbatch[domain][queue]);
3276         vm_pqbatch_process(pq, bq, queue);
3277
3278         /*
3279          * The page may have been logically dequeued before we acquired the
3280          * page queue lock.  In this case, since we either hold the page lock
3281          * or the page is being freed, a different thread cannot be concurrently
3282          * enqueuing the page.
3283          */
3284         if (__predict_true(m->queue == queue))
3285                 vm_pqbatch_process_page(pq, m);
3286         else {
3287                 KASSERT(m->queue == PQ_NONE,
3288                     ("invalid queue transition for page %p", m));
3289                 KASSERT((m->aflags & PGA_ENQUEUED) == 0,
3290                     ("page %p is enqueued with invalid queue index", m));
3291         }
3292         vm_pagequeue_unlock(pq);
3293         critical_exit();
3294 }
3295
3296 /*
3297  *      vm_page_pqbatch_drain:          [ internal use only ]
3298  *
3299  *      Force all per-CPU page queue batch queues to be drained.  This is
3300  *      intended for use in severe memory shortages, to ensure that pages
3301  *      do not remain stuck in the batch queues.
3302  */
3303 void
3304 vm_page_pqbatch_drain(void)
3305 {
3306         struct thread *td;
3307         struct vm_domain *vmd;
3308         struct vm_pagequeue *pq;
3309         int cpu, domain, queue;
3310
3311         td = curthread;
3312         CPU_FOREACH(cpu) {
3313                 thread_lock(td);
3314                 sched_bind(td, cpu);
3315                 thread_unlock(td);
3316
3317                 for (domain = 0; domain < vm_ndomains; domain++) {
3318                         vmd = VM_DOMAIN(domain);
3319                         for (queue = 0; queue < PQ_COUNT; queue++) {
3320                                 pq = &vmd->vmd_pagequeues[queue];
3321                                 vm_pagequeue_lock(pq);
3322                                 critical_enter();
3323                                 vm_pqbatch_process(pq,
3324                                     DPCPU_PTR(pqbatch[domain][queue]), queue);
3325                                 critical_exit();
3326                                 vm_pagequeue_unlock(pq);
3327                         }
3328                 }
3329         }
3330         thread_lock(td);
3331         sched_unbind(td);
3332         thread_unlock(td);
3333 }
3334
3335 /*
3336  * Complete the logical removal of a page from a page queue.  We must be
3337  * careful to synchronize with the page daemon, which may be concurrently
3338  * examining the page with only the page lock held.  The page must not be
3339  * in a state where it appears to be logically enqueued.
3340  */
3341 static void
3342 vm_page_dequeue_complete(vm_page_t m)
3343 {
3344
3345         m->queue = PQ_NONE;
3346         atomic_thread_fence_rel();
3347         vm_page_aflag_clear(m, PGA_QUEUE_STATE_MASK);
3348 }
3349
3350 /*
3351  *      vm_page_dequeue_deferred:       [ internal use only ]
3352  *
3353  *      Request removal of the given page from its current page
3354  *      queue.  Physical removal from the queue may be deferred
3355  *      indefinitely.
3356  *
3357  *      The page must be locked.
3358  */
3359 void
3360 vm_page_dequeue_deferred(vm_page_t m)
3361 {
3362         uint8_t queue;
3363
3364         vm_page_assert_locked(m);
3365
3366         if ((queue = vm_page_queue(m)) == PQ_NONE)
3367                 return;
3368
3369         /*
3370          * Set PGA_DEQUEUE if it is not already set to handle a concurrent call
3371          * to vm_page_dequeue_deferred_free().  In particular, avoid modifying
3372          * the page's queue state once vm_page_dequeue_deferred_free() has been
3373          * called.  In the event of a race, two batch queue entries for the page
3374          * will be created, but the second will have no effect.
3375          */
3376         if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE, PGA_DEQUEUE))
3377                 vm_page_pqbatch_submit(m, queue);
3378 }
3379
3380 /*
3381  * A variant of vm_page_dequeue_deferred() that does not assert the page
3382  * lock and is only to be called from vm_page_free_prep().  Because the
3383  * page is being freed, we can assume that nothing other than the page
3384  * daemon is scheduling queue operations on this page, so we get for
3385  * free the mutual exclusion that is otherwise provided by the page lock.
3386  * To handle races, the page daemon must take care to atomically check
3387  * for PGA_DEQUEUE when updating queue state.
3388  */
3389 static void
3390 vm_page_dequeue_deferred_free(vm_page_t m)
3391 {
3392         uint8_t queue;
3393
3394         KASSERT(m->ref_count == 0, ("page %p has references", m));
3395
3396         for (;;) {
3397                 if ((m->aflags & PGA_DEQUEUE) != 0)
3398                         return;
3399                 atomic_thread_fence_acq();
3400                 if ((queue = atomic_load_8(&m->queue)) == PQ_NONE)
3401                         return;
3402                 if (vm_page_pqstate_cmpset(m, queue, queue, PGA_DEQUEUE,
3403                     PGA_DEQUEUE)) {
3404                         vm_page_pqbatch_submit(m, queue);
3405                         break;
3406                 }
3407         }
3408 }
3409
3410 /*
3411  *      vm_page_dequeue:
3412  *
3413  *      Remove the page from whichever page queue it's in, if any.
3414  *      The page must either be locked or unallocated.  This constraint
3415  *      ensures that the queue state of the page will remain consistent
3416  *      after this function returns.
3417  */
3418 void
3419 vm_page_dequeue(vm_page_t m)
3420 {
3421         struct vm_pagequeue *pq, *pq1;
3422         uint8_t aflags;
3423
3424         KASSERT(mtx_owned(vm_page_lockptr(m)) || m->ref_count == 0,
3425             ("page %p is allocated and unlocked", m));
3426
3427         for (pq = vm_page_pagequeue(m);; pq = pq1) {
3428                 if (pq == NULL) {
3429                         /*
3430                          * A thread may be concurrently executing
3431                          * vm_page_dequeue_complete().  Ensure that all queue
3432                          * state is cleared before we return.
3433                          */
3434                         aflags = atomic_load_8(&m->aflags);
3435                         if ((aflags & PGA_QUEUE_STATE_MASK) == 0)
3436                                 return;
3437                         KASSERT((aflags & PGA_DEQUEUE) != 0,
3438                             ("page %p has unexpected queue state flags %#x",
3439                             m, aflags));
3440
3441                         /*
3442                          * Busy wait until the thread updating queue state is
3443                          * finished.  Such a thread must be executing in a
3444                          * critical section.
3445                          */
3446                         cpu_spinwait();
3447                         pq1 = vm_page_pagequeue(m);
3448                         continue;
3449                 }
3450                 vm_pagequeue_lock(pq);
3451                 if ((pq1 = vm_page_pagequeue(m)) == pq)
3452                         break;
3453                 vm_pagequeue_unlock(pq);
3454         }
3455         KASSERT(pq == vm_page_pagequeue(m),
3456             ("%s: page %p migrated directly between queues", __func__, m));
3457         KASSERT((m->aflags & PGA_DEQUEUE) != 0 ||
3458             mtx_owned(vm_page_lockptr(m)),
3459             ("%s: queued unlocked page %p", __func__, m));
3460
3461         if ((m->aflags & PGA_ENQUEUED) != 0)
3462                 vm_pagequeue_remove(pq, m);
3463         vm_page_dequeue_complete(m);
3464         vm_pagequeue_unlock(pq);
3465 }
3466
3467 /*
3468  * Schedule the given page for insertion into the specified page queue.
3469  * Physical insertion of the page may be deferred indefinitely.
3470  */
3471 static void
3472 vm_page_enqueue(vm_page_t m, uint8_t queue)
3473 {
3474
3475         vm_page_assert_locked(m);
3476         KASSERT(m->queue == PQ_NONE && (m->aflags & PGA_QUEUE_STATE_MASK) == 0,
3477             ("%s: page %p is already enqueued", __func__, m));
3478         KASSERT(m->ref_count > 0,
3479             ("%s: page %p does not carry any references", __func__, m));
3480
3481         m->queue = queue;
3482         if ((m->aflags & PGA_REQUEUE) == 0)
3483                 vm_page_aflag_set(m, PGA_REQUEUE);
3484         vm_page_pqbatch_submit(m, queue);
3485 }
3486
3487 /*
3488  *      vm_page_requeue:                [ internal use only ]
3489  *
3490  *      Schedule a requeue of the given page.
3491  *
3492  *      The page must be locked.
3493  */
3494 void
3495 vm_page_requeue(vm_page_t m)
3496 {
3497
3498         vm_page_assert_locked(m);
3499         KASSERT(vm_page_queue(m) != PQ_NONE,
3500             ("%s: page %p is not logically enqueued", __func__, m));
3501         KASSERT(m->ref_count > 0,
3502             ("%s: page %p does not carry any references", __func__, m));
3503
3504         if ((m->aflags & PGA_REQUEUE) == 0)
3505                 vm_page_aflag_set(m, PGA_REQUEUE);
3506         vm_page_pqbatch_submit(m, atomic_load_8(&m->queue));
3507 }
3508
3509 /*
3510  *      vm_page_swapqueue:              [ internal use only ]
3511  *
3512  *      Move the page from one queue to another, or to the tail of its
3513  *      current queue, in the face of a possible concurrent call to
3514  *      vm_page_dequeue_deferred_free().
3515  */
3516 void
3517 vm_page_swapqueue(vm_page_t m, uint8_t oldq, uint8_t newq)
3518 {
3519         struct vm_pagequeue *pq;
3520         vm_page_t next;
3521         bool queued;
3522
3523         KASSERT(oldq < PQ_COUNT && newq < PQ_COUNT && oldq != newq,
3524             ("vm_page_swapqueue: invalid queues (%d, %d)", oldq, newq));
3525         vm_page_assert_locked(m);
3526
3527         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[oldq];
3528         vm_pagequeue_lock(pq);
3529
3530         /*
3531          * The physical queue state might change at any point before the page
3532          * queue lock is acquired, so we must verify that we hold the correct
3533          * lock before proceeding.
3534          */
3535         if (__predict_false(m->queue != oldq)) {
3536                 vm_pagequeue_unlock(pq);
3537                 return;
3538         }
3539
3540         /*
3541          * Once the queue index of the page changes, there is nothing
3542          * synchronizing with further updates to the physical queue state.
3543          * Therefore we must remove the page from the queue now in anticipation
3544          * of a successful commit, and be prepared to roll back.
3545          */
3546         if (__predict_true((m->aflags & PGA_ENQUEUED) != 0)) {
3547                 next = TAILQ_NEXT(m, plinks.q);
3548                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3549                 vm_page_aflag_clear(m, PGA_ENQUEUED);
3550                 queued = true;
3551         } else {
3552                 queued = false;
3553         }
3554
3555         /*
3556          * Atomically update the queue field and set PGA_REQUEUE while
3557          * ensuring that PGA_DEQUEUE has not been set.
3558          */
3559         if (__predict_false(!vm_page_pqstate_cmpset(m, oldq, newq, PGA_DEQUEUE,
3560             PGA_REQUEUE))) {
3561                 if (queued) {
3562                         vm_page_aflag_set(m, PGA_ENQUEUED);
3563                         if (next != NULL)
3564                                 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3565                         else
3566                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3567                 }
3568                 vm_pagequeue_unlock(pq);
3569                 return;
3570         }
3571         vm_pagequeue_cnt_dec(pq);
3572         vm_pagequeue_unlock(pq);
3573         vm_page_pqbatch_submit(m, newq);
3574 }
3575
3576 /*
3577  *      vm_page_free_prep:
3578  *
3579  *      Prepares the given page to be put on the free list,
3580  *      disassociating it from any VM object. The caller may return
3581  *      the page to the free list only if this function returns true.
3582  *
3583  *      The object must be locked.  The page must be locked if it is
3584  *      managed.
3585  */
3586 bool
3587 vm_page_free_prep(vm_page_t m)
3588 {
3589
3590         /*
3591          * Synchronize with threads that have dropped a reference to this
3592          * page.
3593          */
3594         atomic_thread_fence_acq();
3595
3596 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3597         if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3598                 uint64_t *p;
3599                 int i;
3600                 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3601                 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3602                         KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3603                             m, i, (uintmax_t)*p));
3604         }
3605 #endif
3606         if ((m->oflags & VPO_UNMANAGED) == 0) {
3607                 KASSERT(!pmap_page_is_mapped(m),
3608                     ("vm_page_free_prep: freeing mapped page %p", m));
3609                 KASSERT((m->aflags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3610                     ("vm_page_free_prep: mapping flags set in page %p", m));
3611         } else {
3612                 KASSERT(m->queue == PQ_NONE,
3613                     ("vm_page_free_prep: unmanaged page %p is queued", m));
3614         }
3615         VM_CNT_INC(v_tfree);
3616
3617         if (vm_page_sbusied(m))
3618                 panic("vm_page_free_prep: freeing shared busy page %p", m);
3619
3620         if (m->object != NULL) {
3621                 vm_page_object_remove(m);
3622
3623                 /*
3624                  * The object reference can be released without an atomic
3625                  * operation.
3626                  */
3627                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3628                     m->ref_count == VPRC_OBJREF,
3629                     ("vm_page_free_prep: page %p has unexpected ref_count %u",
3630                     m, m->ref_count));
3631                 m->object = NULL;
3632                 m->ref_count -= VPRC_OBJREF;
3633         }
3634
3635         if (vm_page_xbusied(m))
3636                 vm_page_xunbusy(m);
3637
3638         /*
3639          * If fictitious remove object association and
3640          * return.
3641          */
3642         if ((m->flags & PG_FICTITIOUS) != 0) {
3643                 KASSERT(m->ref_count == 1,
3644                     ("fictitious page %p is referenced", m));
3645                 KASSERT(m->queue == PQ_NONE,
3646                     ("fictitious page %p is queued", m));
3647                 return (false);
3648         }
3649
3650         /*
3651          * Pages need not be dequeued before they are returned to the physical
3652          * memory allocator, but they must at least be marked for a deferred
3653          * dequeue.
3654          */
3655         if ((m->oflags & VPO_UNMANAGED) == 0)
3656                 vm_page_dequeue_deferred_free(m);
3657
3658         m->valid = 0;
3659         vm_page_undirty(m);
3660
3661         if (m->ref_count != 0)
3662                 panic("vm_page_free_prep: page %p has references", m);
3663
3664         /*
3665          * Restore the default memory attribute to the page.
3666          */
3667         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3668                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3669
3670 #if VM_NRESERVLEVEL > 0
3671         /*
3672          * Determine whether the page belongs to a reservation.  If the page was
3673          * allocated from a per-CPU cache, it cannot belong to a reservation, so
3674          * as an optimization, we avoid the check in that case.
3675          */
3676         if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3677                 return (false);
3678 #endif
3679
3680         return (true);
3681 }
3682
3683 /*
3684  *      vm_page_free_toq:
3685  *
3686  *      Returns the given page to the free list, disassociating it
3687  *      from any VM object.
3688  *
3689  *      The object must be locked.  The page must be locked if it is
3690  *      managed.
3691  */
3692 void
3693 vm_page_free_toq(vm_page_t m)
3694 {
3695         struct vm_domain *vmd;
3696         uma_zone_t zone;
3697
3698         if (!vm_page_free_prep(m))
3699                 return;
3700
3701         vmd = vm_pagequeue_domain(m);
3702         zone = vmd->vmd_pgcache[m->pool].zone;
3703         if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3704                 uma_zfree(zone, m);
3705                 return;
3706         }
3707         vm_domain_free_lock(vmd);
3708         vm_phys_free_pages(m, 0);
3709         vm_domain_free_unlock(vmd);
3710         vm_domain_freecnt_inc(vmd, 1);
3711 }
3712
3713 /*
3714  *      vm_page_free_pages_toq:
3715  *
3716  *      Returns a list of pages to the free list, disassociating it
3717  *      from any VM object.  In other words, this is equivalent to
3718  *      calling vm_page_free_toq() for each page of a list of VM objects.
3719  *
3720  *      The objects must be locked.  The pages must be locked if it is
3721  *      managed.
3722  */
3723 void
3724 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3725 {
3726         vm_page_t m;
3727         int count;
3728
3729         if (SLIST_EMPTY(free))
3730                 return;
3731
3732         count = 0;
3733         while ((m = SLIST_FIRST(free)) != NULL) {
3734                 count++;
3735                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
3736                 vm_page_free_toq(m);
3737         }
3738
3739         if (update_wire_count)
3740                 vm_wire_sub(count);
3741 }
3742
3743 /*
3744  * Mark this page as wired down, preventing reclamation by the page daemon
3745  * or when the containing object is destroyed.
3746  */
3747 void
3748 vm_page_wire(vm_page_t m)
3749 {
3750         u_int old;
3751
3752         KASSERT(m->object != NULL,
3753             ("vm_page_wire: page %p does not belong to an object", m));
3754         if (!vm_page_busied(m))
3755                 VM_OBJECT_ASSERT_LOCKED(m->object);
3756         KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3757             VPRC_WIRE_COUNT(m->ref_count) >= 1,
3758             ("vm_page_wire: fictitious page %p has zero wirings", m));
3759
3760         old = atomic_fetchadd_int(&m->ref_count, 1);
3761         KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3762             ("vm_page_wire: counter overflow for page %p", m));
3763         if (VPRC_WIRE_COUNT(old) == 0)
3764                 vm_wire_add(1);
3765 }
3766
3767 /*
3768  * Attempt to wire a mapped page following a pmap lookup of that page.
3769  * This may fail if a thread is concurrently tearing down mappings of the page.
3770  * The transient failure is acceptable because it translates to the
3771  * failure of the caller pmap_extract_and_hold(), which should be then
3772  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3773  */
3774 bool
3775 vm_page_wire_mapped(vm_page_t m)
3776 {
3777         u_int old;
3778
3779         old = m->ref_count;
3780         do {
3781                 KASSERT(old > 0,
3782                     ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3783                 if ((old & VPRC_BLOCKED) != 0)
3784                         return (false);
3785         } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3786
3787         if (VPRC_WIRE_COUNT(old) == 0)
3788                 vm_wire_add(1);
3789         return (true);
3790 }
3791
3792 /*
3793  * Release one wiring of the specified page, potentially allowing it to be
3794  * paged out.
3795  *
3796  * Only managed pages belonging to an object can be paged out.  If the number
3797  * of wirings transitions to zero and the page is eligible for page out, then
3798  * the page is added to the specified paging queue.  If the released wiring
3799  * represented the last reference to the page, the page is freed.
3800  *
3801  * A managed page must be locked.
3802  */
3803 void
3804 vm_page_unwire(vm_page_t m, uint8_t queue)
3805 {
3806         u_int old;
3807         bool locked;
3808
3809         KASSERT(queue < PQ_COUNT,
3810             ("vm_page_unwire: invalid queue %u request for page %p", queue, m));
3811
3812         if ((m->oflags & VPO_UNMANAGED) != 0) {
3813                 if (vm_page_unwire_noq(m) && m->ref_count == 0)
3814                         vm_page_free(m);
3815                 return;
3816         }
3817
3818         /*
3819          * Update LRU state before releasing the wiring reference.
3820          * We only need to do this once since we hold the page lock.
3821          * Use a release store when updating the reference count to
3822          * synchronize with vm_page_free_prep().
3823          */
3824         old = m->ref_count;
3825         locked = false;
3826         do {
3827                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
3828                     ("vm_page_unwire: wire count underflow for page %p", m));
3829                 if (!locked && VPRC_WIRE_COUNT(old) == 1) {
3830                         vm_page_lock(m);
3831                         locked = true;
3832                         if (queue == PQ_ACTIVE && vm_page_queue(m) == PQ_ACTIVE)
3833                                 vm_page_reference(m);
3834                         else
3835                                 vm_page_mvqueue(m, queue);
3836                 }
3837         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3838
3839         /*
3840          * Release the lock only after the wiring is released, to ensure that
3841          * the page daemon does not encounter and dequeue the page while it is
3842          * still wired.
3843          */
3844         if (locked)
3845                 vm_page_unlock(m);
3846
3847         if (VPRC_WIRE_COUNT(old) == 1) {
3848                 vm_wire_sub(1);
3849                 if (old == 1)
3850                         vm_page_free(m);
3851         }
3852 }
3853
3854 /*
3855  * Unwire a page without (re-)inserting it into a page queue.  It is up
3856  * to the caller to enqueue, requeue, or free the page as appropriate.
3857  * In most cases involving managed pages, vm_page_unwire() should be used
3858  * instead.
3859  */
3860 bool
3861 vm_page_unwire_noq(vm_page_t m)
3862 {
3863         u_int old;
3864
3865         old = vm_page_drop(m, 1);
3866         KASSERT(VPRC_WIRE_COUNT(old) != 0,
3867             ("vm_page_unref: counter underflow for page %p", m));
3868         KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3869             ("vm_page_unref: missing ref on fictitious page %p", m));
3870
3871         if (VPRC_WIRE_COUNT(old) > 1)
3872                 return (false);
3873         vm_wire_sub(1);
3874         return (true);
3875 }
3876
3877 /*
3878  * Ensure that the page is in the specified page queue.  If the page is
3879  * active or being moved to the active queue, ensure that its act_count is
3880  * at least ACT_INIT but do not otherwise mess with it.  Otherwise, ensure that
3881  * the page is at the tail of its page queue.
3882  *
3883  * The page may be wired.  The caller should release its wiring reference
3884  * before releasing the page lock, otherwise the page daemon may immediately
3885  * dequeue the page.
3886  *
3887  * A managed page must be locked.
3888  */
3889 static __always_inline void
3890 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue)
3891 {
3892
3893         vm_page_assert_locked(m);
3894         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3895             ("vm_page_mvqueue: page %p is unmanaged", m));
3896         KASSERT(m->ref_count > 0,
3897             ("%s: page %p does not carry any references", __func__, m));
3898
3899         if (vm_page_queue(m) != nqueue) {
3900                 vm_page_dequeue(m);
3901                 vm_page_enqueue(m, nqueue);
3902         } else if (nqueue != PQ_ACTIVE) {
3903                 vm_page_requeue(m);
3904         }
3905
3906         if (nqueue == PQ_ACTIVE && m->act_count < ACT_INIT)
3907                 m->act_count = ACT_INIT;
3908 }
3909
3910 /*
3911  * Put the specified page on the active list (if appropriate).
3912  */
3913 void
3914 vm_page_activate(vm_page_t m)
3915 {
3916
3917         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3918                 return;
3919         vm_page_mvqueue(m, PQ_ACTIVE);
3920 }
3921
3922 /*
3923  * Move the specified page to the tail of the inactive queue, or requeue
3924  * the page if it is already in the inactive queue.
3925  */
3926 void
3927 vm_page_deactivate(vm_page_t m)
3928 {
3929
3930         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3931                 return;
3932         vm_page_mvqueue(m, PQ_INACTIVE);
3933 }
3934
3935 /*
3936  * Move the specified page close to the head of the inactive queue,
3937  * bypassing LRU.  A marker page is used to maintain FIFO ordering.
3938  * As with regular enqueues, we use a per-CPU batch queue to reduce
3939  * contention on the page queue lock.
3940  */
3941 static void
3942 _vm_page_deactivate_noreuse(vm_page_t m)
3943 {
3944
3945         vm_page_assert_locked(m);
3946
3947         if (!vm_page_inactive(m)) {
3948                 vm_page_dequeue(m);
3949                 m->queue = PQ_INACTIVE;
3950         }
3951         if ((m->aflags & PGA_REQUEUE_HEAD) == 0)
3952                 vm_page_aflag_set(m, PGA_REQUEUE_HEAD);
3953         vm_page_pqbatch_submit(m, PQ_INACTIVE);
3954 }
3955
3956 void
3957 vm_page_deactivate_noreuse(vm_page_t m)
3958 {
3959
3960         KASSERT(m->object != NULL,
3961             ("vm_page_deactivate_noreuse: page %p has no object", m));
3962
3963         if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_wired(m))
3964                 _vm_page_deactivate_noreuse(m);
3965 }
3966
3967 /*
3968  * Put a page in the laundry, or requeue it if it is already there.
3969  */
3970 void
3971 vm_page_launder(vm_page_t m)
3972 {
3973
3974         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3975                 return;
3976         vm_page_mvqueue(m, PQ_LAUNDRY);
3977 }
3978
3979 /*
3980  * Put a page in the PQ_UNSWAPPABLE holding queue.
3981  */
3982 void
3983 vm_page_unswappable(vm_page_t m)
3984 {
3985
3986         vm_page_assert_locked(m);
3987         KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
3988             ("page %p already unswappable", m));
3989
3990         vm_page_dequeue(m);
3991         vm_page_enqueue(m, PQ_UNSWAPPABLE);
3992 }
3993
3994 static void
3995 vm_page_release_toq(vm_page_t m, int flags)
3996 {
3997
3998         vm_page_assert_locked(m);
3999
4000         /*
4001          * Use a check of the valid bits to determine whether we should
4002          * accelerate reclamation of the page.  The object lock might not be
4003          * held here, in which case the check is racy.  At worst we will either
4004          * accelerate reclamation of a valid page and violate LRU, or
4005          * unnecessarily defer reclamation of an invalid page.
4006          *
4007          * If we were asked to not cache the page, place it near the head of the
4008          * inactive queue so that is reclaimed sooner.
4009          */
4010         if ((flags & (VPR_TRYFREE | VPR_NOREUSE)) != 0 || m->valid == 0)
4011                 _vm_page_deactivate_noreuse(m);
4012         else if (vm_page_active(m))
4013                 vm_page_reference(m);
4014         else
4015                 vm_page_mvqueue(m, PQ_INACTIVE);
4016 }
4017
4018 /*
4019  * Unwire a page and either attempt to free it or re-add it to the page queues.
4020  */
4021 void
4022 vm_page_release(vm_page_t m, int flags)
4023 {
4024         vm_object_t object;
4025         u_int old;
4026         bool locked;
4027
4028         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4029             ("vm_page_release: page %p is unmanaged", m));
4030
4031         if ((flags & VPR_TRYFREE) != 0) {
4032                 for (;;) {
4033                         object = (vm_object_t)atomic_load_ptr(&m->object);
4034                         if (object == NULL)
4035                                 break;
4036                         /* Depends on type-stability. */
4037                         if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) {
4038                                 object = NULL;
4039                                 break;
4040                         }
4041                         if (object == m->object)
4042                                 break;
4043                         VM_OBJECT_WUNLOCK(object);
4044                 }
4045                 if (__predict_true(object != NULL)) {
4046                         vm_page_release_locked(m, flags);
4047                         VM_OBJECT_WUNLOCK(object);
4048                         return;
4049                 }
4050         }
4051
4052         /*
4053          * Update LRU state before releasing the wiring reference.
4054          * Use a release store when updating the reference count to
4055          * synchronize with vm_page_free_prep().
4056          */
4057         old = m->ref_count;
4058         locked = false;
4059         do {
4060                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
4061                     ("vm_page_unwire: wire count underflow for page %p", m));
4062                 if (!locked && VPRC_WIRE_COUNT(old) == 1) {
4063                         vm_page_lock(m);
4064                         locked = true;
4065                         vm_page_release_toq(m, flags);
4066                 }
4067         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4068
4069         /*
4070          * Release the lock only after the wiring is released, to ensure that
4071          * the page daemon does not encounter and dequeue the page while it is
4072          * still wired.
4073          */
4074         if (locked)
4075                 vm_page_unlock(m);
4076
4077         if (VPRC_WIRE_COUNT(old) == 1) {
4078                 vm_wire_sub(1);
4079                 if (old == 1)
4080                         vm_page_free(m);
4081         }
4082 }
4083
4084 /* See vm_page_release(). */
4085 void
4086 vm_page_release_locked(vm_page_t m, int flags)
4087 {
4088
4089         VM_OBJECT_ASSERT_WLOCKED(m->object);
4090         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4091             ("vm_page_release_locked: page %p is unmanaged", m));
4092
4093         if (vm_page_unwire_noq(m)) {
4094                 if ((flags & VPR_TRYFREE) != 0 &&
4095                     (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4096                     m->dirty == 0 && !vm_page_busied(m)) {
4097                         vm_page_free(m);
4098                 } else {
4099                         vm_page_lock(m);
4100                         vm_page_release_toq(m, flags);
4101                         vm_page_unlock(m);
4102                 }
4103         }
4104 }
4105
4106 static bool
4107 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4108 {
4109         u_int old;
4110
4111         KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4112             ("vm_page_try_blocked_op: page %p has no object", m));
4113         KASSERT(vm_page_busied(m),
4114             ("vm_page_try_blocked_op: page %p is not busy", m));
4115         VM_OBJECT_ASSERT_LOCKED(m->object);
4116
4117         old = m->ref_count;
4118         do {
4119                 KASSERT(old != 0,
4120                     ("vm_page_try_blocked_op: page %p has no references", m));
4121                 if (VPRC_WIRE_COUNT(old) != 0)
4122                         return (false);
4123         } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4124
4125         (op)(m);
4126
4127         /*
4128          * If the object is read-locked, new wirings may be created via an
4129          * object lookup.
4130          */
4131         old = vm_page_drop(m, VPRC_BLOCKED);
4132         KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4133             old == (VPRC_BLOCKED | VPRC_OBJREF),
4134             ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4135             old, m));
4136         return (true);
4137 }
4138
4139 /*
4140  * Atomically check for wirings and remove all mappings of the page.
4141  */
4142 bool
4143 vm_page_try_remove_all(vm_page_t m)
4144 {
4145
4146         return (vm_page_try_blocked_op(m, pmap_remove_all));
4147 }
4148
4149 /*
4150  * Atomically check for wirings and remove all writeable mappings of the page.
4151  */
4152 bool
4153 vm_page_try_remove_write(vm_page_t m)
4154 {
4155
4156         return (vm_page_try_blocked_op(m, pmap_remove_write));
4157 }
4158
4159 /*
4160  * vm_page_advise
4161  *
4162  *      Apply the specified advice to the given page.
4163  *
4164  *      The object and page must be locked.
4165  */
4166 void
4167 vm_page_advise(vm_page_t m, int advice)
4168 {
4169
4170         vm_page_assert_locked(m);
4171         VM_OBJECT_ASSERT_WLOCKED(m->object);
4172         if (advice == MADV_FREE)
4173                 /*
4174                  * Mark the page clean.  This will allow the page to be freed
4175                  * without first paging it out.  MADV_FREE pages are often
4176                  * quickly reused by malloc(3), so we do not do anything that
4177                  * would result in a page fault on a later access.
4178                  */
4179                 vm_page_undirty(m);
4180         else if (advice != MADV_DONTNEED) {
4181                 if (advice == MADV_WILLNEED)
4182                         vm_page_activate(m);
4183                 return;
4184         }
4185
4186         /*
4187          * Clear any references to the page.  Otherwise, the page daemon will
4188          * immediately reactivate the page.
4189          */
4190         vm_page_aflag_clear(m, PGA_REFERENCED);
4191
4192         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4193                 vm_page_dirty(m);
4194
4195         /*
4196          * Place clean pages near the head of the inactive queue rather than
4197          * the tail, thus defeating the queue's LRU operation and ensuring that
4198          * the page will be reused quickly.  Dirty pages not already in the
4199          * laundry are moved there.
4200          */
4201         if (m->dirty == 0)
4202                 vm_page_deactivate_noreuse(m);
4203         else if (!vm_page_in_laundry(m))
4204                 vm_page_launder(m);
4205 }
4206
4207 /*
4208  * Grab a page, waiting until we are waken up due to the page
4209  * changing state.  We keep on waiting, if the page continues
4210  * to be in the object.  If the page doesn't exist, first allocate it
4211  * and then conditionally zero it.
4212  *
4213  * This routine may sleep.
4214  *
4215  * The object must be locked on entry.  The lock will, however, be released
4216  * and reacquired if the routine sleeps.
4217  */
4218 vm_page_t
4219 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4220 {
4221         vm_page_t m;
4222         int sleep;
4223         int pflags;
4224
4225         VM_OBJECT_ASSERT_WLOCKED(object);
4226         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4227             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4228             ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4229         pflags = allocflags &
4230             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4231             VM_ALLOC_NOBUSY);
4232         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4233                 pflags |= VM_ALLOC_WAITFAIL;
4234         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4235                 pflags |= VM_ALLOC_SBUSY;
4236 retrylookup:
4237         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4238                 if ((allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) != 0)
4239                         sleep = !vm_page_trysbusy(m);
4240                 else
4241                         sleep = !vm_page_tryxbusy(m);
4242                 if (sleep) {
4243                         if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4244                                 return (NULL);
4245                         /*
4246                          * Reference the page before unlocking and
4247                          * sleeping so that the page daemon is less
4248                          * likely to reclaim it.
4249                          */
4250                         if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4251                                 vm_page_aflag_set(m, PGA_REFERENCED);
4252                         vm_page_busy_sleep(m, "pgrbwt", (allocflags &
4253                             VM_ALLOC_IGN_SBUSY) != 0);
4254                         VM_OBJECT_WLOCK(object);
4255                         if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4256                                 return (NULL);
4257                         goto retrylookup;
4258                 } else {
4259                         if ((allocflags & VM_ALLOC_WIRED) != 0)
4260                                 vm_page_wire(m);
4261                         goto out;
4262                 }
4263         }
4264         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4265                 return (NULL);
4266         m = vm_page_alloc(object, pindex, pflags);
4267         if (m == NULL) {
4268                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4269                         return (NULL);
4270                 goto retrylookup;
4271         }
4272         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4273                 pmap_zero_page(m);
4274
4275 out:
4276         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4277                 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4278                         vm_page_sunbusy(m);
4279                 else
4280                         vm_page_xunbusy(m);
4281         }
4282         return (m);
4283 }
4284
4285 /*
4286  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4287  * their pager are zero filled and validated.
4288  */
4289 int
4290 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4291 {
4292         vm_page_t m;
4293         bool sleep, xbusy;
4294         int pflags;
4295         int rv;
4296
4297         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4298             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4299             ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4300         KASSERT((allocflags &
4301             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4302             ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4303         VM_OBJECT_ASSERT_WLOCKED(object);
4304         pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY);
4305         pflags |= VM_ALLOC_WAITFAIL;
4306
4307 retrylookup:
4308         xbusy = false;
4309         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4310                 /*
4311                  * If the page is fully valid it can only become invalid
4312                  * with the object lock held.  If it is not valid it can
4313                  * become valid with the busy lock held.  Therefore, we
4314                  * may unnecessarily lock the exclusive busy here if we
4315                  * race with I/O completion not using the object lock.
4316                  * However, we will not end up with an invalid page and a
4317                  * shared lock.
4318                  */
4319                 if (!vm_page_all_valid(m) ||
4320                     (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) {
4321                         sleep = !vm_page_tryxbusy(m);
4322                         xbusy = true;
4323                 } else
4324                         sleep = !vm_page_trysbusy(m);
4325                 if (sleep) {
4326                         /*
4327                          * Reference the page before unlocking and
4328                          * sleeping so that the page daemon is less
4329                          * likely to reclaim it.
4330                          */
4331                         if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4332                                 vm_page_aflag_set(m, PGA_REFERENCED);
4333                         vm_page_busy_sleep(m, "pgrbwt", (allocflags &
4334                             VM_ALLOC_IGN_SBUSY) != 0);
4335                         VM_OBJECT_WLOCK(object);
4336                         goto retrylookup;
4337                 }
4338                 if ((allocflags & VM_ALLOC_NOCREAT) != 0 &&
4339                    !vm_page_all_valid(m)) {
4340                         if (xbusy)
4341                                 vm_page_xunbusy(m);
4342                         else
4343                                 vm_page_sunbusy(m);
4344                         *mp = NULL;
4345                         return (VM_PAGER_FAIL);
4346                 }
4347                 if ((allocflags & VM_ALLOC_WIRED) != 0)
4348                         vm_page_wire(m);
4349                 if (vm_page_all_valid(m))
4350                         goto out;
4351         } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4352                 *mp = NULL;
4353                 return (VM_PAGER_FAIL);
4354         } else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) {
4355                 xbusy = true;
4356         } else {
4357                 goto retrylookup;
4358         }
4359
4360         vm_page_assert_xbusied(m);
4361         MPASS(xbusy);
4362         if (vm_pager_has_page(object, pindex, NULL, NULL)) {
4363                 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
4364                 if (rv != VM_PAGER_OK) {
4365                         if (allocflags & VM_ALLOC_WIRED)
4366                                 vm_page_unwire_noq(m);
4367                         vm_page_free(m);
4368                         *mp = NULL;
4369                         return (rv);
4370                 }
4371                 MPASS(vm_page_all_valid(m));
4372         } else {
4373                 vm_page_zero_invalid(m, TRUE);
4374         }
4375 out:
4376         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4377                 if (xbusy)
4378                         vm_page_xunbusy(m);
4379                 else
4380                         vm_page_sunbusy(m);
4381         }
4382         if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy)
4383                 vm_page_busy_downgrade(m);
4384         *mp = m;
4385         return (VM_PAGER_OK);
4386 }
4387
4388 /*
4389  * Return the specified range of pages from the given object.  For each
4390  * page offset within the range, if a page already exists within the object
4391  * at that offset and it is busy, then wait for it to change state.  If,
4392  * instead, the page doesn't exist, then allocate it.
4393  *
4394  * The caller must always specify an allocation class.
4395  *
4396  * allocation classes:
4397  *      VM_ALLOC_NORMAL         normal process request
4398  *      VM_ALLOC_SYSTEM         system *really* needs the pages
4399  *
4400  * The caller must always specify that the pages are to be busied and/or
4401  * wired.
4402  *
4403  * optional allocation flags:
4404  *      VM_ALLOC_IGN_SBUSY      do not sleep on soft busy pages
4405  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
4406  *      VM_ALLOC_NOWAIT         do not sleep
4407  *      VM_ALLOC_SBUSY          set page to sbusy state
4408  *      VM_ALLOC_WIRED          wire the pages
4409  *      VM_ALLOC_ZERO           zero and validate any invalid pages
4410  *
4411  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4412  * may return a partial prefix of the requested range.
4413  */
4414 int
4415 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4416     vm_page_t *ma, int count)
4417 {
4418         vm_page_t m, mpred;
4419         int pflags;
4420         int i;
4421         bool sleep;
4422
4423         VM_OBJECT_ASSERT_WLOCKED(object);
4424         KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4425             ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4426         KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4427             (allocflags & VM_ALLOC_WIRED) != 0,
4428             ("vm_page_grab_pages: the pages must be busied or wired"));
4429         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4430             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4431             ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
4432         if (count == 0)
4433                 return (0);
4434         pflags = allocflags &
4435             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4436             VM_ALLOC_NOBUSY);
4437         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4438                 pflags |= VM_ALLOC_WAITFAIL;
4439         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4440                 pflags |= VM_ALLOC_SBUSY;
4441         i = 0;
4442 retrylookup:
4443         m = vm_radix_lookup_le(&object->rtree, pindex + i);
4444         if (m == NULL || m->pindex != pindex + i) {
4445                 mpred = m;
4446                 m = NULL;
4447         } else
4448                 mpred = TAILQ_PREV(m, pglist, listq);
4449         for (; i < count; i++) {
4450                 if (m != NULL) {
4451                         if ((allocflags &
4452                             (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
4453                                 sleep = !vm_page_trysbusy(m);
4454                         else
4455                                 sleep = !vm_page_tryxbusy(m);
4456                         if (sleep) {
4457                                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4458                                         break;
4459                                 /*
4460                                  * Reference the page before unlocking and
4461                                  * sleeping so that the page daemon is less
4462                                  * likely to reclaim it.
4463                                  */
4464                                 if ((allocflags & VM_ALLOC_NOCREAT) == 0)
4465                                         vm_page_aflag_set(m, PGA_REFERENCED);
4466                                 vm_page_busy_sleep(m, "grbmaw", (allocflags &
4467                                     VM_ALLOC_IGN_SBUSY) != 0);
4468                                 VM_OBJECT_WLOCK(object);
4469                                 goto retrylookup;
4470                         }
4471                         if ((allocflags & VM_ALLOC_WIRED) != 0)
4472                                 vm_page_wire(m);
4473                 } else {
4474                         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4475                                 break;
4476                         m = vm_page_alloc_after(object, pindex + i,
4477                             pflags | VM_ALLOC_COUNT(count - i), mpred);
4478                         if (m == NULL) {
4479                                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4480                                         break;
4481                                 goto retrylookup;
4482                         }
4483                 }
4484                 if (vm_page_none_valid(m) &&
4485                     (allocflags & VM_ALLOC_ZERO) != 0) {
4486                         if ((m->flags & PG_ZERO) == 0)
4487                                 pmap_zero_page(m);
4488                         vm_page_valid(m);
4489                 }
4490                 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4491                         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4492                                 vm_page_sunbusy(m);
4493                         else
4494                                 vm_page_xunbusy(m);
4495                 }
4496                 ma[i] = mpred = m;
4497                 m = vm_page_next(m);
4498         }
4499         return (i);
4500 }
4501
4502 /*
4503  * Mapping function for valid or dirty bits in a page.
4504  *
4505  * Inputs are required to range within a page.
4506  */
4507 vm_page_bits_t
4508 vm_page_bits(int base, int size)
4509 {
4510         int first_bit;
4511         int last_bit;
4512
4513         KASSERT(
4514             base + size <= PAGE_SIZE,
4515             ("vm_page_bits: illegal base/size %d/%d", base, size)
4516         );
4517
4518         if (size == 0)          /* handle degenerate case */
4519                 return (0);
4520
4521         first_bit = base >> DEV_BSHIFT;
4522         last_bit = (base + size - 1) >> DEV_BSHIFT;
4523
4524         return (((vm_page_bits_t)2 << last_bit) -
4525             ((vm_page_bits_t)1 << first_bit));
4526 }
4527
4528 static inline void
4529 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4530 {
4531
4532 #if PAGE_SIZE == 32768
4533         atomic_set_64((uint64_t *)bits, set);
4534 #elif PAGE_SIZE == 16384
4535         atomic_set_32((uint32_t *)bits, set);
4536 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4537         atomic_set_16((uint16_t *)bits, set);
4538 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4539         atomic_set_8((uint8_t *)bits, set);
4540 #else           /* PAGE_SIZE <= 8192 */
4541         uintptr_t addr;
4542         int shift;
4543
4544         addr = (uintptr_t)bits;
4545         /*
4546          * Use a trick to perform a 32-bit atomic on the
4547          * containing aligned word, to not depend on the existence
4548          * of atomic_{set, clear}_{8, 16}.
4549          */
4550         shift = addr & (sizeof(uint32_t) - 1);
4551 #if BYTE_ORDER == BIG_ENDIAN
4552         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4553 #else
4554         shift *= NBBY;
4555 #endif
4556         addr &= ~(sizeof(uint32_t) - 1);
4557         atomic_set_32((uint32_t *)addr, set << shift);
4558 #endif          /* PAGE_SIZE */
4559 }
4560
4561 static inline void
4562 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4563 {
4564
4565 #if PAGE_SIZE == 32768
4566         atomic_clear_64((uint64_t *)bits, clear);
4567 #elif PAGE_SIZE == 16384
4568         atomic_clear_32((uint32_t *)bits, clear);
4569 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4570         atomic_clear_16((uint16_t *)bits, clear);
4571 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4572         atomic_clear_8((uint8_t *)bits, clear);
4573 #else           /* PAGE_SIZE <= 8192 */
4574         uintptr_t addr;
4575         int shift;
4576
4577         addr = (uintptr_t)bits;
4578         /*
4579          * Use a trick to perform a 32-bit atomic on the
4580          * containing aligned word, to not depend on the existence
4581          * of atomic_{set, clear}_{8, 16}.
4582          */
4583         shift = addr & (sizeof(uint32_t) - 1);
4584 #if BYTE_ORDER == BIG_ENDIAN
4585         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4586 #else
4587         shift *= NBBY;
4588 #endif
4589         addr &= ~(sizeof(uint32_t) - 1);
4590         atomic_clear_32((uint32_t *)addr, clear << shift);
4591 #endif          /* PAGE_SIZE */
4592 }
4593
4594 /*
4595  *      vm_page_set_valid_range:
4596  *
4597  *      Sets portions of a page valid.  The arguments are expected
4598  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4599  *      of any partial chunks touched by the range.  The invalid portion of
4600  *      such chunks will be zeroed.
4601  *
4602  *      (base + size) must be less then or equal to PAGE_SIZE.
4603  */
4604 void
4605 vm_page_set_valid_range(vm_page_t m, int base, int size)
4606 {
4607         int endoff, frag;
4608         vm_page_bits_t pagebits;
4609
4610         vm_page_assert_busied(m);
4611         if (size == 0)  /* handle degenerate case */
4612                 return;
4613
4614         /*
4615          * If the base is not DEV_BSIZE aligned and the valid
4616          * bit is clear, we have to zero out a portion of the
4617          * first block.
4618          */
4619         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4620             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4621                 pmap_zero_page_area(m, frag, base - frag);
4622
4623         /*
4624          * If the ending offset is not DEV_BSIZE aligned and the
4625          * valid bit is clear, we have to zero out a portion of
4626          * the last block.
4627          */
4628         endoff = base + size;
4629         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4630             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4631                 pmap_zero_page_area(m, endoff,
4632                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4633
4634         /*
4635          * Assert that no previously invalid block that is now being validated
4636          * is already dirty.
4637          */
4638         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4639             ("vm_page_set_valid_range: page %p is dirty", m));
4640
4641         /*
4642          * Set valid bits inclusive of any overlap.
4643          */
4644         pagebits = vm_page_bits(base, size);
4645         if (vm_page_xbusied(m))
4646                 m->valid |= pagebits;
4647         else
4648                 vm_page_bits_set(m, &m->valid, pagebits);
4649 }
4650
4651 /*
4652  * Clear the given bits from the specified page's dirty field.
4653  */
4654 static __inline void
4655 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4656 {
4657
4658         vm_page_assert_busied(m);
4659
4660         /*
4661          * If the page is xbusied and not write mapped we are the
4662          * only thread that can modify dirty bits.  Otherwise, The pmap
4663          * layer can call vm_page_dirty() without holding a distinguished
4664          * lock.  The combination of page busy and atomic operations
4665          * suffice to guarantee consistency of the page dirty field.
4666          */
4667         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4668                 m->dirty &= ~pagebits;
4669         else
4670                 vm_page_bits_clear(m, &m->dirty, pagebits);
4671 }
4672
4673 /*
4674  *      vm_page_set_validclean:
4675  *
4676  *      Sets portions of a page valid and clean.  The arguments are expected
4677  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4678  *      of any partial chunks touched by the range.  The invalid portion of
4679  *      such chunks will be zero'd.
4680  *
4681  *      (base + size) must be less then or equal to PAGE_SIZE.
4682  */
4683 void
4684 vm_page_set_validclean(vm_page_t m, int base, int size)
4685 {
4686         vm_page_bits_t oldvalid, pagebits;
4687         int endoff, frag;
4688
4689         vm_page_assert_busied(m);
4690         if (size == 0)  /* handle degenerate case */
4691                 return;
4692
4693         /*
4694          * If the base is not DEV_BSIZE aligned and the valid
4695          * bit is clear, we have to zero out a portion of the
4696          * first block.
4697          */
4698         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4699             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4700                 pmap_zero_page_area(m, frag, base - frag);
4701
4702         /*
4703          * If the ending offset is not DEV_BSIZE aligned and the
4704          * valid bit is clear, we have to zero out a portion of
4705          * the last block.
4706          */
4707         endoff = base + size;
4708         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4709             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4710                 pmap_zero_page_area(m, endoff,
4711                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4712
4713         /*
4714          * Set valid, clear dirty bits.  If validating the entire
4715          * page we can safely clear the pmap modify bit.  We also
4716          * use this opportunity to clear the PGA_NOSYNC flag.  If a process
4717          * takes a write fault on a MAP_NOSYNC memory area the flag will
4718          * be set again.
4719          *
4720          * We set valid bits inclusive of any overlap, but we can only
4721          * clear dirty bits for DEV_BSIZE chunks that are fully within
4722          * the range.
4723          */
4724         oldvalid = m->valid;
4725         pagebits = vm_page_bits(base, size);
4726         if (vm_page_xbusied(m))
4727                 m->valid |= pagebits;
4728         else
4729                 vm_page_bits_set(m, &m->valid, pagebits);
4730 #if 0   /* NOT YET */
4731         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4732                 frag = DEV_BSIZE - frag;
4733                 base += frag;
4734                 size -= frag;
4735                 if (size < 0)
4736                         size = 0;
4737         }
4738         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4739 #endif
4740         if (base == 0 && size == PAGE_SIZE) {
4741                 /*
4742                  * The page can only be modified within the pmap if it is
4743                  * mapped, and it can only be mapped if it was previously
4744                  * fully valid.
4745                  */
4746                 if (oldvalid == VM_PAGE_BITS_ALL)
4747                         /*
4748                          * Perform the pmap_clear_modify() first.  Otherwise,
4749                          * a concurrent pmap operation, such as
4750                          * pmap_protect(), could clear a modification in the
4751                          * pmap and set the dirty field on the page before
4752                          * pmap_clear_modify() had begun and after the dirty
4753                          * field was cleared here.
4754                          */
4755                         pmap_clear_modify(m);
4756                 m->dirty = 0;
4757                 vm_page_aflag_clear(m, PGA_NOSYNC);
4758         } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
4759                 m->dirty &= ~pagebits;
4760         else
4761                 vm_page_clear_dirty_mask(m, pagebits);
4762 }
4763
4764 void
4765 vm_page_clear_dirty(vm_page_t m, int base, int size)
4766 {
4767
4768         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4769 }
4770
4771 /*
4772  *      vm_page_set_invalid:
4773  *
4774  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
4775  *      valid and dirty bits for the effected areas are cleared.
4776  */
4777 void
4778 vm_page_set_invalid(vm_page_t m, int base, int size)
4779 {
4780         vm_page_bits_t bits;
4781         vm_object_t object;
4782
4783         /*
4784          * The object lock is required so that pages can't be mapped
4785          * read-only while we're in the process of invalidating them.
4786          */
4787         object = m->object;
4788         VM_OBJECT_ASSERT_WLOCKED(object);
4789         vm_page_assert_busied(m);
4790
4791         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4792             size >= object->un_pager.vnp.vnp_size)
4793                 bits = VM_PAGE_BITS_ALL;
4794         else
4795                 bits = vm_page_bits(base, size);
4796         if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
4797                 pmap_remove_all(m);
4798         KASSERT((bits == 0 && vm_page_all_valid(m)) ||
4799             !pmap_page_is_mapped(m),
4800             ("vm_page_set_invalid: page %p is mapped", m));
4801         if (vm_page_xbusied(m)) {
4802                 m->valid &= ~bits;
4803                 m->dirty &= ~bits;
4804         } else {
4805                 vm_page_bits_clear(m, &m->valid, bits);
4806                 vm_page_bits_clear(m, &m->dirty, bits);
4807         }
4808 }
4809
4810 /*
4811  *      vm_page_invalid:
4812  *
4813  *      Invalidates the entire page.  The page must be busy, unmapped, and
4814  *      the enclosing object must be locked.  The object locks protects
4815  *      against concurrent read-only pmap enter which is done without
4816  *      busy.
4817  */
4818 void
4819 vm_page_invalid(vm_page_t m)
4820 {
4821
4822         vm_page_assert_busied(m);
4823         VM_OBJECT_ASSERT_LOCKED(m->object);
4824         MPASS(!pmap_page_is_mapped(m));
4825
4826         if (vm_page_xbusied(m))
4827                 m->valid = 0;
4828         else
4829                 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
4830 }
4831
4832 /*
4833  * vm_page_zero_invalid()
4834  *
4835  *      The kernel assumes that the invalid portions of a page contain
4836  *      garbage, but such pages can be mapped into memory by user code.
4837  *      When this occurs, we must zero out the non-valid portions of the
4838  *      page so user code sees what it expects.
4839  *
4840  *      Pages are most often semi-valid when the end of a file is mapped
4841  *      into memory and the file's size is not page aligned.
4842  */
4843 void
4844 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4845 {
4846         int b;
4847         int i;
4848
4849         /*
4850          * Scan the valid bits looking for invalid sections that
4851          * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4852          * valid bit may be set ) have already been zeroed by
4853          * vm_page_set_validclean().
4854          */
4855         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4856                 if (i == (PAGE_SIZE / DEV_BSIZE) ||
4857                     (m->valid & ((vm_page_bits_t)1 << i))) {
4858                         if (i > b) {
4859                                 pmap_zero_page_area(m,
4860                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4861                         }
4862                         b = i + 1;
4863                 }
4864         }
4865
4866         /*
4867          * setvalid is TRUE when we can safely set the zero'd areas
4868          * as being valid.  We can do this if there are no cache consistancy
4869          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4870          */
4871         if (setvalid)
4872                 vm_page_valid(m);
4873 }
4874
4875 /*
4876  *      vm_page_is_valid:
4877  *
4878  *      Is (partial) page valid?  Note that the case where size == 0
4879  *      will return FALSE in the degenerate case where the page is
4880  *      entirely invalid, and TRUE otherwise.
4881  *
4882  *      Some callers envoke this routine without the busy lock held and
4883  *      handle races via higher level locks.  Typical callers should
4884  *      hold a busy lock to prevent invalidation.
4885  */
4886 int
4887 vm_page_is_valid(vm_page_t m, int base, int size)
4888 {
4889         vm_page_bits_t bits;
4890
4891         bits = vm_page_bits(base, size);
4892         return (m->valid != 0 && (m->valid & bits) == bits);
4893 }
4894
4895 /*
4896  * Returns true if all of the specified predicates are true for the entire
4897  * (super)page and false otherwise.
4898  */
4899 bool
4900 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
4901 {
4902         vm_object_t object;
4903         int i, npages;
4904
4905         object = m->object;
4906         if (skip_m != NULL && skip_m->object != object)
4907                 return (false);
4908         VM_OBJECT_ASSERT_LOCKED(object);
4909         npages = atop(pagesizes[m->psind]);
4910
4911         /*
4912          * The physically contiguous pages that make up a superpage, i.e., a
4913          * page with a page size index ("psind") greater than zero, will
4914          * occupy adjacent entries in vm_page_array[].
4915          */
4916         for (i = 0; i < npages; i++) {
4917                 /* Always test object consistency, including "skip_m". */
4918                 if (m[i].object != object)
4919                         return (false);
4920                 if (&m[i] == skip_m)
4921                         continue;
4922                 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
4923                         return (false);
4924                 if ((flags & PS_ALL_DIRTY) != 0) {
4925                         /*
4926                          * Calling vm_page_test_dirty() or pmap_is_modified()
4927                          * might stop this case from spuriously returning
4928                          * "false".  However, that would require a write lock
4929                          * on the object containing "m[i]".
4930                          */
4931                         if (m[i].dirty != VM_PAGE_BITS_ALL)
4932                                 return (false);
4933                 }
4934                 if ((flags & PS_ALL_VALID) != 0 &&
4935                     m[i].valid != VM_PAGE_BITS_ALL)
4936                         return (false);
4937         }
4938         return (true);
4939 }
4940
4941 /*
4942  * Set the page's dirty bits if the page is modified.
4943  */
4944 void
4945 vm_page_test_dirty(vm_page_t m)
4946 {
4947
4948         vm_page_assert_busied(m);
4949         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
4950                 vm_page_dirty(m);
4951 }
4952
4953 void
4954 vm_page_valid(vm_page_t m)
4955 {
4956
4957         vm_page_assert_busied(m);
4958         if (vm_page_xbusied(m))
4959                 m->valid = VM_PAGE_BITS_ALL;
4960         else
4961                 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
4962 }
4963
4964 void
4965 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
4966 {
4967
4968         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
4969 }
4970
4971 void
4972 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
4973 {
4974
4975         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
4976 }
4977
4978 int
4979 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
4980 {
4981
4982         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
4983 }
4984
4985 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
4986 void
4987 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
4988 {
4989
4990         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
4991 }
4992
4993 void
4994 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
4995 {
4996
4997         mtx_assert_(vm_page_lockptr(m), a, file, line);
4998 }
4999 #endif
5000
5001 #ifdef INVARIANTS
5002 void
5003 vm_page_object_busy_assert(vm_page_t m)
5004 {
5005
5006         /*
5007          * Certain of the page's fields may only be modified by the
5008          * holder of a page or object busy.
5009          */
5010         if (m->object != NULL && !vm_page_busied(m))
5011                 VM_OBJECT_ASSERT_BUSY(m->object);
5012 }
5013
5014 void
5015 vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
5016 {
5017
5018         if ((bits & PGA_WRITEABLE) == 0)
5019                 return;
5020
5021         /*
5022          * The PGA_WRITEABLE flag can only be set if the page is
5023          * managed, is exclusively busied or the object is locked.
5024          * Currently, this flag is only set by pmap_enter().
5025          */
5026         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5027             ("PGA_WRITEABLE on unmanaged page"));
5028         if (!vm_page_xbusied(m))
5029                 VM_OBJECT_ASSERT_BUSY(m->object);
5030 }
5031 #endif
5032
5033 #include "opt_ddb.h"
5034 #ifdef DDB
5035 #include <sys/kernel.h>
5036
5037 #include <ddb/ddb.h>
5038
5039 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5040 {
5041
5042         db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5043         db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5044         db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5045         db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5046         db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5047         db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5048         db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5049         db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5050         db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5051 }
5052
5053 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5054 {
5055         int dom;
5056
5057         db_printf("pq_free %d\n", vm_free_count());
5058         for (dom = 0; dom < vm_ndomains; dom++) {
5059                 db_printf(
5060     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5061                     dom,
5062                     vm_dom[dom].vmd_page_count,
5063                     vm_dom[dom].vmd_free_count,
5064                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5065                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5066                     vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5067                     vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5068         }
5069 }
5070
5071 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5072 {
5073         vm_page_t m;
5074         boolean_t phys, virt;
5075
5076         if (!have_addr) {
5077                 db_printf("show pginfo addr\n");
5078                 return;
5079         }
5080
5081         phys = strchr(modif, 'p') != NULL;
5082         virt = strchr(modif, 'v') != NULL;
5083         if (virt)
5084                 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5085         else if (phys)
5086                 m = PHYS_TO_VM_PAGE(addr);
5087         else
5088                 m = (vm_page_t)addr;
5089         db_printf(
5090     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
5091     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5092             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5093             m->queue, m->ref_count, m->aflags, m->oflags,
5094             m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
5095 }
5096 #endif /* DDB */