]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_page.c
MFV: r357927
[FreeBSD/FreeBSD.git] / sys / vm / vm_page.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * The Mach Operating System project at Carnegie-Mellon University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
36  */
37
38 /*-
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64
65 /*
66  *      Resident memory management module.
67  */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_vm.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/counter.h>
77 #include <sys/domainset.h>
78 #include <sys/kernel.h>
79 #include <sys/limits.h>
80 #include <sys/linker.h>
81 #include <sys/lock.h>
82 #include <sys/malloc.h>
83 #include <sys/mman.h>
84 #include <sys/msgbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/rwlock.h>
88 #include <sys/sleepqueue.h>
89 #include <sys/sbuf.h>
90 #include <sys/sched.h>
91 #include <sys/smp.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95
96 #include <vm/vm.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_domainset.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_phys.h>
106 #include <vm/vm_pagequeue.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 #include <vm/uma_int.h>
113
114 #include <machine/md_var.h>
115
116 struct vm_domain vm_dom[MAXMEMDOM];
117
118 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
119
120 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
121
122 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
123 /* The following fields are protected by the domainset lock. */
124 domainset_t __exclusive_cache_line vm_min_domains;
125 domainset_t __exclusive_cache_line vm_severe_domains;
126 static int vm_min_waiters;
127 static int vm_severe_waiters;
128 static int vm_pageproc_waiters;
129
130 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD, 0,
131     "VM page statistics");
132
133 static counter_u64_t pqstate_commit_retries = EARLY_COUNTER;
134 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
135     CTLFLAG_RD, &pqstate_commit_retries,
136     "Number of failed per-page atomic queue state updates");
137
138 static counter_u64_t queue_ops = EARLY_COUNTER;
139 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
140     CTLFLAG_RD, &queue_ops,
141     "Number of batched queue operations");
142
143 static counter_u64_t queue_nops = EARLY_COUNTER;
144 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
145     CTLFLAG_RD, &queue_nops,
146     "Number of batched queue operations with no effects");
147
148 static void
149 counter_startup(void)
150 {
151
152         pqstate_commit_retries = counter_u64_alloc(M_WAITOK);
153         queue_ops = counter_u64_alloc(M_WAITOK);
154         queue_nops = counter_u64_alloc(M_WAITOK);
155 }
156 SYSINIT(page_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
157
158 /*
159  * bogus page -- for I/O to/from partially complete buffers,
160  * or for paging into sparsely invalid regions.
161  */
162 vm_page_t bogus_page;
163
164 vm_page_t vm_page_array;
165 long vm_page_array_size;
166 long first_page;
167
168 static TAILQ_HEAD(, vm_page) blacklist_head;
169 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
170 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
171     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
172
173 static uma_zone_t fakepg_zone;
174
175 static void vm_page_alloc_check(vm_page_t m);
176 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
177     const char *wmesg, bool nonshared, bool locked);
178 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
179 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
180 static bool vm_page_free_prep(vm_page_t m);
181 static void vm_page_free_toq(vm_page_t m);
182 static void vm_page_init(void *dummy);
183 static int vm_page_insert_after(vm_page_t m, vm_object_t object,
184     vm_pindex_t pindex, vm_page_t mpred);
185 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
186     vm_page_t mpred);
187 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
188     const uint16_t nflag);
189 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
190     vm_page_t m_run, vm_paddr_t high);
191 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
192 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
193     int req);
194 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
195     int flags);
196 static void vm_page_zone_release(void *arg, void **store, int cnt);
197
198 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
199
200 static void
201 vm_page_init(void *dummy)
202 {
203
204         fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
205             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
206         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
207             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
208 }
209
210 /*
211  * The cache page zone is initialized later since we need to be able to allocate
212  * pages before UMA is fully initialized.
213  */
214 static void
215 vm_page_init_cache_zones(void *dummy __unused)
216 {
217         struct vm_domain *vmd;
218         struct vm_pgcache *pgcache;
219         int cache, domain, maxcache, pool;
220
221         maxcache = 0;
222         TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache);
223         maxcache *= mp_ncpus;
224         for (domain = 0; domain < vm_ndomains; domain++) {
225                 vmd = VM_DOMAIN(domain);
226                 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
227                         pgcache = &vmd->vmd_pgcache[pool];
228                         pgcache->domain = domain;
229                         pgcache->pool = pool;
230                         pgcache->zone = uma_zcache_create("vm pgcache",
231                             PAGE_SIZE, NULL, NULL, NULL, NULL,
232                             vm_page_zone_import, vm_page_zone_release, pgcache,
233                             UMA_ZONE_VM);
234
235                         /*
236                          * Limit each pool's zone to 0.1% of the pages in the
237                          * domain.
238                          */
239                         cache = maxcache != 0 ? maxcache :
240                             vmd->vmd_page_count / 1000;
241                         uma_zone_set_maxcache(pgcache->zone, cache);
242                 }
243         }
244 }
245 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
246
247 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
248 #if PAGE_SIZE == 32768
249 #ifdef CTASSERT
250 CTASSERT(sizeof(u_long) >= 8);
251 #endif
252 #endif
253
254 /*
255  *      vm_set_page_size:
256  *
257  *      Sets the page size, perhaps based upon the memory
258  *      size.  Must be called before any use of page-size
259  *      dependent functions.
260  */
261 void
262 vm_set_page_size(void)
263 {
264         if (vm_cnt.v_page_size == 0)
265                 vm_cnt.v_page_size = PAGE_SIZE;
266         if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
267                 panic("vm_set_page_size: page size not a power of two");
268 }
269
270 /*
271  *      vm_page_blacklist_next:
272  *
273  *      Find the next entry in the provided string of blacklist
274  *      addresses.  Entries are separated by space, comma, or newline.
275  *      If an invalid integer is encountered then the rest of the
276  *      string is skipped.  Updates the list pointer to the next
277  *      character, or NULL if the string is exhausted or invalid.
278  */
279 static vm_paddr_t
280 vm_page_blacklist_next(char **list, char *end)
281 {
282         vm_paddr_t bad;
283         char *cp, *pos;
284
285         if (list == NULL || *list == NULL)
286                 return (0);
287         if (**list =='\0') {
288                 *list = NULL;
289                 return (0);
290         }
291
292         /*
293          * If there's no end pointer then the buffer is coming from
294          * the kenv and we know it's null-terminated.
295          */
296         if (end == NULL)
297                 end = *list + strlen(*list);
298
299         /* Ensure that strtoq() won't walk off the end */
300         if (*end != '\0') {
301                 if (*end == '\n' || *end == ' ' || *end  == ',')
302                         *end = '\0';
303                 else {
304                         printf("Blacklist not terminated, skipping\n");
305                         *list = NULL;
306                         return (0);
307                 }
308         }
309
310         for (pos = *list; *pos != '\0'; pos = cp) {
311                 bad = strtoq(pos, &cp, 0);
312                 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
313                         if (bad == 0) {
314                                 if (++cp < end)
315                                         continue;
316                                 else
317                                         break;
318                         }
319                 } else
320                         break;
321                 if (*cp == '\0' || ++cp >= end)
322                         *list = NULL;
323                 else
324                         *list = cp;
325                 return (trunc_page(bad));
326         }
327         printf("Garbage in RAM blacklist, skipping\n");
328         *list = NULL;
329         return (0);
330 }
331
332 bool
333 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
334 {
335         struct vm_domain *vmd;
336         vm_page_t m;
337         int ret;
338
339         m = vm_phys_paddr_to_vm_page(pa);
340         if (m == NULL)
341                 return (true); /* page does not exist, no failure */
342
343         vmd = vm_pagequeue_domain(m);
344         vm_domain_free_lock(vmd);
345         ret = vm_phys_unfree_page(m);
346         vm_domain_free_unlock(vmd);
347         if (ret != 0) {
348                 vm_domain_freecnt_inc(vmd, -1);
349                 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
350                 if (verbose)
351                         printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
352         }
353         return (ret);
354 }
355
356 /*
357  *      vm_page_blacklist_check:
358  *
359  *      Iterate through the provided string of blacklist addresses, pulling
360  *      each entry out of the physical allocator free list and putting it
361  *      onto a list for reporting via the vm.page_blacklist sysctl.
362  */
363 static void
364 vm_page_blacklist_check(char *list, char *end)
365 {
366         vm_paddr_t pa;
367         char *next;
368
369         next = list;
370         while (next != NULL) {
371                 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
372                         continue;
373                 vm_page_blacklist_add(pa, bootverbose);
374         }
375 }
376
377 /*
378  *      vm_page_blacklist_load:
379  *
380  *      Search for a special module named "ram_blacklist".  It'll be a
381  *      plain text file provided by the user via the loader directive
382  *      of the same name.
383  */
384 static void
385 vm_page_blacklist_load(char **list, char **end)
386 {
387         void *mod;
388         u_char *ptr;
389         u_int len;
390
391         mod = NULL;
392         ptr = NULL;
393
394         mod = preload_search_by_type("ram_blacklist");
395         if (mod != NULL) {
396                 ptr = preload_fetch_addr(mod);
397                 len = preload_fetch_size(mod);
398         }
399         *list = ptr;
400         if (ptr != NULL)
401                 *end = ptr + len;
402         else
403                 *end = NULL;
404         return;
405 }
406
407 static int
408 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
409 {
410         vm_page_t m;
411         struct sbuf sbuf;
412         int error, first;
413
414         first = 1;
415         error = sysctl_wire_old_buffer(req, 0);
416         if (error != 0)
417                 return (error);
418         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
419         TAILQ_FOREACH(m, &blacklist_head, listq) {
420                 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
421                     (uintmax_t)m->phys_addr);
422                 first = 0;
423         }
424         error = sbuf_finish(&sbuf);
425         sbuf_delete(&sbuf);
426         return (error);
427 }
428
429 /*
430  * Initialize a dummy page for use in scans of the specified paging queue.
431  * In principle, this function only needs to set the flag PG_MARKER.
432  * Nonetheless, it write busies the page as a safety precaution.
433  */
434 static void
435 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
436 {
437
438         bzero(marker, sizeof(*marker));
439         marker->flags = PG_MARKER;
440         marker->a.flags = aflags;
441         marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
442         marker->a.queue = queue;
443 }
444
445 static void
446 vm_page_domain_init(int domain)
447 {
448         struct vm_domain *vmd;
449         struct vm_pagequeue *pq;
450         int i;
451
452         vmd = VM_DOMAIN(domain);
453         bzero(vmd, sizeof(*vmd));
454         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
455             "vm inactive pagequeue";
456         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
457             "vm active pagequeue";
458         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
459             "vm laundry pagequeue";
460         *__DECONST(char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
461             "vm unswappable pagequeue";
462         vmd->vmd_domain = domain;
463         vmd->vmd_page_count = 0;
464         vmd->vmd_free_count = 0;
465         vmd->vmd_segs = 0;
466         vmd->vmd_oom = FALSE;
467         for (i = 0; i < PQ_COUNT; i++) {
468                 pq = &vmd->vmd_pagequeues[i];
469                 TAILQ_INIT(&pq->pq_pl);
470                 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
471                     MTX_DEF | MTX_DUPOK);
472                 pq->pq_pdpages = 0;
473                 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
474         }
475         mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
476         mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
477         snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
478
479         /*
480          * inacthead is used to provide FIFO ordering for LRU-bypassing
481          * insertions.
482          */
483         vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
484         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
485             &vmd->vmd_inacthead, plinks.q);
486
487         /*
488          * The clock pages are used to implement active queue scanning without
489          * requeues.  Scans start at clock[0], which is advanced after the scan
490          * ends.  When the two clock hands meet, they are reset and scanning
491          * resumes from the head of the queue.
492          */
493         vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
494         vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
495         TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
496             &vmd->vmd_clock[0], plinks.q);
497         TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
498             &vmd->vmd_clock[1], plinks.q);
499 }
500
501 /*
502  * Initialize a physical page in preparation for adding it to the free
503  * lists.
504  */
505 static void
506 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
507 {
508
509         m->object = NULL;
510         m->ref_count = 0;
511         m->busy_lock = VPB_FREED;
512         m->flags = m->a.flags = 0;
513         m->phys_addr = pa;
514         m->a.queue = PQ_NONE;
515         m->psind = 0;
516         m->segind = segind;
517         m->order = VM_NFREEORDER;
518         m->pool = VM_FREEPOOL_DEFAULT;
519         m->valid = m->dirty = 0;
520         pmap_page_init(m);
521 }
522
523 #ifndef PMAP_HAS_PAGE_ARRAY
524 static vm_paddr_t
525 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
526 {
527         vm_paddr_t new_end;
528
529         /*
530          * Reserve an unmapped guard page to trap access to vm_page_array[-1].
531          * However, because this page is allocated from KVM, out-of-bounds
532          * accesses using the direct map will not be trapped.
533          */
534         *vaddr += PAGE_SIZE;
535
536         /*
537          * Allocate physical memory for the page structures, and map it.
538          */
539         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
540         vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
541             VM_PROT_READ | VM_PROT_WRITE);
542         vm_page_array_size = page_range;
543
544         return (new_end);
545 }
546 #endif
547
548 /*
549  *      vm_page_startup:
550  *
551  *      Initializes the resident memory module.  Allocates physical memory for
552  *      bootstrapping UMA and some data structures that are used to manage
553  *      physical pages.  Initializes these structures, and populates the free
554  *      page queues.
555  */
556 vm_offset_t
557 vm_page_startup(vm_offset_t vaddr)
558 {
559         struct vm_phys_seg *seg;
560         vm_page_t m;
561         char *list, *listend;
562         vm_paddr_t end, high_avail, low_avail, new_end, size;
563         vm_paddr_t page_range __unused;
564         vm_paddr_t last_pa, pa;
565         u_long pagecount;
566         int biggestone, i, segind;
567 #ifdef WITNESS
568         vm_offset_t mapped;
569         int witness_size;
570 #endif
571 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
572         long ii;
573 #endif
574
575         vaddr = round_page(vaddr);
576
577         vm_phys_early_startup();
578         biggestone = vm_phys_avail_largest();
579         end = phys_avail[biggestone+1];
580
581         /*
582          * Initialize the page and queue locks.
583          */
584         mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
585         for (i = 0; i < PA_LOCK_COUNT; i++)
586                 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
587         for (i = 0; i < vm_ndomains; i++)
588                 vm_page_domain_init(i);
589
590         new_end = end;
591 #ifdef WITNESS
592         witness_size = round_page(witness_startup_count());
593         new_end -= witness_size;
594         mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
595             VM_PROT_READ | VM_PROT_WRITE);
596         bzero((void *)mapped, witness_size);
597         witness_startup((void *)mapped);
598 #endif
599
600 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
601     defined(__i386__) || defined(__mips__) || defined(__riscv) || \
602     defined(__powerpc64__)
603         /*
604          * Allocate a bitmap to indicate that a random physical page
605          * needs to be included in a minidump.
606          *
607          * The amd64 port needs this to indicate which direct map pages
608          * need to be dumped, via calls to dump_add_page()/dump_drop_page().
609          *
610          * However, i386 still needs this workspace internally within the
611          * minidump code.  In theory, they are not needed on i386, but are
612          * included should the sf_buf code decide to use them.
613          */
614         last_pa = 0;
615         for (i = 0; dump_avail[i + 1] != 0; i += 2)
616                 if (dump_avail[i + 1] > last_pa)
617                         last_pa = dump_avail[i + 1];
618         page_range = last_pa / PAGE_SIZE;
619         vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
620         new_end -= vm_page_dump_size;
621         vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
622             new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
623         bzero((void *)vm_page_dump, vm_page_dump_size);
624 #else
625         (void)last_pa;
626 #endif
627 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
628     defined(__riscv) || defined(__powerpc64__)
629         /*
630          * Include the UMA bootstrap pages, witness pages and vm_page_dump
631          * in a crash dump.  When pmap_map() uses the direct map, they are
632          * not automatically included.
633          */
634         for (pa = new_end; pa < end; pa += PAGE_SIZE)
635                 dump_add_page(pa);
636 #endif
637         phys_avail[biggestone + 1] = new_end;
638 #ifdef __amd64__
639         /*
640          * Request that the physical pages underlying the message buffer be
641          * included in a crash dump.  Since the message buffer is accessed
642          * through the direct map, they are not automatically included.
643          */
644         pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
645         last_pa = pa + round_page(msgbufsize);
646         while (pa < last_pa) {
647                 dump_add_page(pa);
648                 pa += PAGE_SIZE;
649         }
650 #endif
651         /*
652          * Compute the number of pages of memory that will be available for
653          * use, taking into account the overhead of a page structure per page.
654          * In other words, solve
655          *      "available physical memory" - round_page(page_range *
656          *          sizeof(struct vm_page)) = page_range * PAGE_SIZE 
657          * for page_range.  
658          */
659         low_avail = phys_avail[0];
660         high_avail = phys_avail[1];
661         for (i = 0; i < vm_phys_nsegs; i++) {
662                 if (vm_phys_segs[i].start < low_avail)
663                         low_avail = vm_phys_segs[i].start;
664                 if (vm_phys_segs[i].end > high_avail)
665                         high_avail = vm_phys_segs[i].end;
666         }
667         /* Skip the first chunk.  It is already accounted for. */
668         for (i = 2; phys_avail[i + 1] != 0; i += 2) {
669                 if (phys_avail[i] < low_avail)
670                         low_avail = phys_avail[i];
671                 if (phys_avail[i + 1] > high_avail)
672                         high_avail = phys_avail[i + 1];
673         }
674         first_page = low_avail / PAGE_SIZE;
675 #ifdef VM_PHYSSEG_SPARSE
676         size = 0;
677         for (i = 0; i < vm_phys_nsegs; i++)
678                 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
679         for (i = 0; phys_avail[i + 1] != 0; i += 2)
680                 size += phys_avail[i + 1] - phys_avail[i];
681 #elif defined(VM_PHYSSEG_DENSE)
682         size = high_avail - low_avail;
683 #else
684 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
685 #endif
686
687 #ifdef PMAP_HAS_PAGE_ARRAY
688         pmap_page_array_startup(size / PAGE_SIZE);
689         biggestone = vm_phys_avail_largest();
690         end = new_end = phys_avail[biggestone + 1];
691 #else
692 #ifdef VM_PHYSSEG_DENSE
693         /*
694          * In the VM_PHYSSEG_DENSE case, the number of pages can account for
695          * the overhead of a page structure per page only if vm_page_array is
696          * allocated from the last physical memory chunk.  Otherwise, we must
697          * allocate page structures representing the physical memory
698          * underlying vm_page_array, even though they will not be used.
699          */
700         if (new_end != high_avail)
701                 page_range = size / PAGE_SIZE;
702         else
703 #endif
704         {
705                 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
706
707                 /*
708                  * If the partial bytes remaining are large enough for
709                  * a page (PAGE_SIZE) without a corresponding
710                  * 'struct vm_page', then new_end will contain an
711                  * extra page after subtracting the length of the VM
712                  * page array.  Compensate by subtracting an extra
713                  * page from new_end.
714                  */
715                 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
716                         if (new_end == high_avail)
717                                 high_avail -= PAGE_SIZE;
718                         new_end -= PAGE_SIZE;
719                 }
720         }
721         end = new_end;
722         new_end = vm_page_array_alloc(&vaddr, end, page_range);
723 #endif
724
725 #if VM_NRESERVLEVEL > 0
726         /*
727          * Allocate physical memory for the reservation management system's
728          * data structures, and map it.
729          */
730         new_end = vm_reserv_startup(&vaddr, new_end);
731 #endif
732 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
733     defined(__riscv) || defined(__powerpc64__)
734         /*
735          * Include vm_page_array and vm_reserv_array in a crash dump.
736          */
737         for (pa = new_end; pa < end; pa += PAGE_SIZE)
738                 dump_add_page(pa);
739 #endif
740         phys_avail[biggestone + 1] = new_end;
741
742         /*
743          * Add physical memory segments corresponding to the available
744          * physical pages.
745          */
746         for (i = 0; phys_avail[i + 1] != 0; i += 2)
747                 if (vm_phys_avail_size(i) != 0)
748                         vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
749
750         /*
751          * Initialize the physical memory allocator.
752          */
753         vm_phys_init();
754
755         /*
756          * Initialize the page structures and add every available page to the
757          * physical memory allocator's free lists.
758          */
759 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
760         for (ii = 0; ii < vm_page_array_size; ii++) {
761                 m = &vm_page_array[ii];
762                 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0);
763                 m->flags = PG_FICTITIOUS;
764         }
765 #endif
766         vm_cnt.v_page_count = 0;
767         for (segind = 0; segind < vm_phys_nsegs; segind++) {
768                 seg = &vm_phys_segs[segind];
769                 for (m = seg->first_page, pa = seg->start; pa < seg->end;
770                     m++, pa += PAGE_SIZE)
771                         vm_page_init_page(m, pa, segind);
772
773                 /*
774                  * Add the segment to the free lists only if it is covered by
775                  * one of the ranges in phys_avail.  Because we've added the
776                  * ranges to the vm_phys_segs array, we can assume that each
777                  * segment is either entirely contained in one of the ranges,
778                  * or doesn't overlap any of them.
779                  */
780                 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
781                         struct vm_domain *vmd;
782
783                         if (seg->start < phys_avail[i] ||
784                             seg->end > phys_avail[i + 1])
785                                 continue;
786
787                         m = seg->first_page;
788                         pagecount = (u_long)atop(seg->end - seg->start);
789
790                         vmd = VM_DOMAIN(seg->domain);
791                         vm_domain_free_lock(vmd);
792                         vm_phys_enqueue_contig(m, pagecount);
793                         vm_domain_free_unlock(vmd);
794                         vm_domain_freecnt_inc(vmd, pagecount);
795                         vm_cnt.v_page_count += (u_int)pagecount;
796
797                         vmd = VM_DOMAIN(seg->domain);
798                         vmd->vmd_page_count += (u_int)pagecount;
799                         vmd->vmd_segs |= 1UL << m->segind;
800                         break;
801                 }
802         }
803
804         /*
805          * Remove blacklisted pages from the physical memory allocator.
806          */
807         TAILQ_INIT(&blacklist_head);
808         vm_page_blacklist_load(&list, &listend);
809         vm_page_blacklist_check(list, listend);
810
811         list = kern_getenv("vm.blacklist");
812         vm_page_blacklist_check(list, NULL);
813
814         freeenv(list);
815 #if VM_NRESERVLEVEL > 0
816         /*
817          * Initialize the reservation management system.
818          */
819         vm_reserv_init();
820 #endif
821
822         return (vaddr);
823 }
824
825 void
826 vm_page_reference(vm_page_t m)
827 {
828
829         vm_page_aflag_set(m, PGA_REFERENCED);
830 }
831
832 static bool
833 vm_page_acquire_flags(vm_page_t m, int allocflags)
834 {
835         bool locked;
836
837         if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
838                 locked = vm_page_trysbusy(m);
839         else
840                 locked = vm_page_tryxbusy(m);
841         if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
842                 vm_page_wire(m);
843         return (locked);
844 }
845
846 /*
847  *      vm_page_busy_sleep_flags
848  *
849  *      Sleep for busy according to VM_ALLOC_ parameters.
850  */
851 static bool
852 vm_page_busy_sleep_flags(vm_object_t object, vm_page_t m, const char *wmesg,
853     int allocflags)
854 {
855
856         if ((allocflags & VM_ALLOC_NOWAIT) != 0)
857                 return (false);
858         /*
859          * Reference the page before unlocking and
860          * sleeping so that the page daemon is less
861          * likely to reclaim it.
862          */
863         if ((allocflags & VM_ALLOC_NOCREAT) == 0)
864                 vm_page_aflag_set(m, PGA_REFERENCED);
865         if (_vm_page_busy_sleep(object, m, wmesg, (allocflags &
866             VM_ALLOC_IGN_SBUSY) != 0, true))
867                 VM_OBJECT_WLOCK(object);
868         if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
869                 return (false);
870         return (true);
871 }
872
873 /*
874  *      vm_page_busy_acquire:
875  *
876  *      Acquire the busy lock as described by VM_ALLOC_* flags.  Will loop
877  *      and drop the object lock if necessary.
878  */
879 bool
880 vm_page_busy_acquire(vm_page_t m, int allocflags)
881 {
882         vm_object_t obj;
883         bool locked;
884
885         /*
886          * The page-specific object must be cached because page
887          * identity can change during the sleep, causing the
888          * re-lock of a different object.
889          * It is assumed that a reference to the object is already
890          * held by the callers.
891          */
892         obj = m->object;
893         for (;;) {
894                 if (vm_page_acquire_flags(m, allocflags))
895                         return (true);
896                 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
897                         return (false);
898                 if (obj != NULL)
899                         locked = VM_OBJECT_WOWNED(obj);
900                 else
901                         locked = false;
902                 MPASS(locked || vm_page_wired(m));
903                 if (_vm_page_busy_sleep(obj, m, "vmpba",
904                     (allocflags & VM_ALLOC_SBUSY) != 0, locked))
905                         VM_OBJECT_WLOCK(obj);
906                 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
907                         return (false);
908                 KASSERT(m->object == obj || m->object == NULL,
909                     ("vm_page_busy_acquire: page %p does not belong to %p",
910                     m, obj));
911         }
912 }
913
914 /*
915  *      vm_page_busy_downgrade:
916  *
917  *      Downgrade an exclusive busy page into a single shared busy page.
918  */
919 void
920 vm_page_busy_downgrade(vm_page_t m)
921 {
922         u_int x;
923
924         vm_page_assert_xbusied(m);
925
926         x = m->busy_lock;
927         for (;;) {
928                 if (atomic_fcmpset_rel_int(&m->busy_lock,
929                     &x, VPB_SHARERS_WORD(1)))
930                         break;
931         }
932         if ((x & VPB_BIT_WAITERS) != 0)
933                 wakeup(m);
934 }
935
936 /*
937  *
938  *      vm_page_busy_tryupgrade:
939  *
940  *      Attempt to upgrade a single shared busy into an exclusive busy.
941  */
942 int
943 vm_page_busy_tryupgrade(vm_page_t m)
944 {
945         u_int ce, x;
946
947         vm_page_assert_sbusied(m);
948
949         x = m->busy_lock;
950         ce = VPB_CURTHREAD_EXCLUSIVE;
951         for (;;) {
952                 if (VPB_SHARERS(x) > 1)
953                         return (0);
954                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
955                     ("vm_page_busy_tryupgrade: invalid lock state"));
956                 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
957                     ce | (x & VPB_BIT_WAITERS)))
958                         continue;
959                 return (1);
960         }
961 }
962
963 /*
964  *      vm_page_sbusied:
965  *
966  *      Return a positive value if the page is shared busied, 0 otherwise.
967  */
968 int
969 vm_page_sbusied(vm_page_t m)
970 {
971         u_int x;
972
973         x = m->busy_lock;
974         return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
975 }
976
977 /*
978  *      vm_page_sunbusy:
979  *
980  *      Shared unbusy a page.
981  */
982 void
983 vm_page_sunbusy(vm_page_t m)
984 {
985         u_int x;
986
987         vm_page_assert_sbusied(m);
988
989         x = m->busy_lock;
990         for (;;) {
991                 KASSERT(x != VPB_FREED,
992                     ("vm_page_sunbusy: Unlocking freed page."));
993                 if (VPB_SHARERS(x) > 1) {
994                         if (atomic_fcmpset_int(&m->busy_lock, &x,
995                             x - VPB_ONE_SHARER))
996                                 break;
997                         continue;
998                 }
999                 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1000                     ("vm_page_sunbusy: invalid lock state"));
1001                 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1002                         continue;
1003                 if ((x & VPB_BIT_WAITERS) == 0)
1004                         break;
1005                 wakeup(m);
1006                 break;
1007         }
1008 }
1009
1010 /*
1011  *      vm_page_busy_sleep:
1012  *
1013  *      Sleep if the page is busy, using the page pointer as wchan.
1014  *      This is used to implement the hard-path of busying mechanism.
1015  *
1016  *      If nonshared is true, sleep only if the page is xbusy.
1017  *
1018  *      The object lock must be held on entry and will be released on exit.
1019  */
1020 void
1021 vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
1022 {
1023         vm_object_t obj;
1024
1025         obj = m->object;
1026         VM_OBJECT_ASSERT_LOCKED(obj);
1027         vm_page_lock_assert(m, MA_NOTOWNED);
1028
1029         if (!_vm_page_busy_sleep(obj, m, wmesg, nonshared, true))
1030                 VM_OBJECT_DROP(obj);
1031 }
1032
1033 /*
1034  *      _vm_page_busy_sleep:
1035  *
1036  *      Internal busy sleep function.
1037  */
1038 static bool
1039 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, const char *wmesg,
1040     bool nonshared, bool locked)
1041 {
1042         u_int x;
1043
1044         /*
1045          * If the object is busy we must wait for that to drain to zero
1046          * before trying the page again.
1047          */
1048         if (obj != NULL && vm_object_busied(obj)) {
1049                 if (locked)
1050                         VM_OBJECT_DROP(obj);
1051                 vm_object_busy_wait(obj, wmesg);
1052                 return (locked);
1053         }
1054         sleepq_lock(m);
1055         x = m->busy_lock;
1056         if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
1057             ((x & VPB_BIT_WAITERS) == 0 &&
1058             !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
1059                 sleepq_release(m);
1060                 return (false);
1061         }
1062         if (locked)
1063                 VM_OBJECT_DROP(obj);
1064         DROP_GIANT();
1065         sleepq_add(m, NULL, wmesg, 0, 0);
1066         sleepq_wait(m, PVM);
1067         PICKUP_GIANT();
1068         return (locked);
1069 }
1070
1071 /*
1072  *      vm_page_trysbusy:
1073  *
1074  *      Try to shared busy a page.
1075  *      If the operation succeeds 1 is returned otherwise 0.
1076  *      The operation never sleeps.
1077  */
1078 int
1079 vm_page_trysbusy(vm_page_t m)
1080 {
1081         vm_object_t obj;
1082         u_int x;
1083
1084         obj = m->object;
1085         x = m->busy_lock;
1086         for (;;) {
1087                 if ((x & VPB_BIT_SHARED) == 0)
1088                         return (0);
1089                 /*
1090                  * Reduce the window for transient busies that will trigger
1091                  * false negatives in vm_page_ps_test().
1092                  */
1093                 if (obj != NULL && vm_object_busied(obj))
1094                         return (0);
1095                 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1096                     x + VPB_ONE_SHARER))
1097                         break;
1098         }
1099
1100         /* Refetch the object now that we're guaranteed that it is stable. */
1101         obj = m->object;
1102         if (obj != NULL && vm_object_busied(obj)) {
1103                 vm_page_sunbusy(m);
1104                 return (0);
1105         }
1106         return (1);
1107 }
1108
1109 /*
1110  *      vm_page_tryxbusy:
1111  *
1112  *      Try to exclusive busy a page.
1113  *      If the operation succeeds 1 is returned otherwise 0.
1114  *      The operation never sleeps.
1115  */
1116 int
1117 vm_page_tryxbusy(vm_page_t m)
1118 {
1119         vm_object_t obj;
1120
1121         if (atomic_cmpset_acq_int(&(m)->busy_lock, VPB_UNBUSIED,
1122             VPB_CURTHREAD_EXCLUSIVE) == 0)
1123                 return (0);
1124
1125         obj = m->object;
1126         if (obj != NULL && vm_object_busied(obj)) {
1127                 vm_page_xunbusy(m);
1128                 return (0);
1129         }
1130         return (1);
1131 }
1132
1133 static void
1134 vm_page_xunbusy_hard_tail(vm_page_t m)
1135 {
1136         atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1137         /* Wake the waiter. */
1138         wakeup(m);
1139 }
1140
1141 /*
1142  *      vm_page_xunbusy_hard:
1143  *
1144  *      Called when unbusy has failed because there is a waiter.
1145  */
1146 void
1147 vm_page_xunbusy_hard(vm_page_t m)
1148 {
1149         vm_page_assert_xbusied(m);
1150         vm_page_xunbusy_hard_tail(m);
1151 }
1152
1153 void
1154 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1155 {
1156         vm_page_assert_xbusied_unchecked(m);
1157         vm_page_xunbusy_hard_tail(m);
1158 }
1159
1160 static void
1161 vm_page_busy_free(vm_page_t m)
1162 {
1163         u_int x;
1164
1165         atomic_thread_fence_rel();
1166         x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1167         if ((x & VPB_BIT_WAITERS) != 0)
1168                 wakeup(m);
1169 }
1170
1171 /*
1172  *      vm_page_unhold_pages:
1173  *
1174  *      Unhold each of the pages that is referenced by the given array.
1175  */
1176 void
1177 vm_page_unhold_pages(vm_page_t *ma, int count)
1178 {
1179
1180         for (; count != 0; count--) {
1181                 vm_page_unwire(*ma, PQ_ACTIVE);
1182                 ma++;
1183         }
1184 }
1185
1186 vm_page_t
1187 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1188 {
1189         vm_page_t m;
1190
1191 #ifdef VM_PHYSSEG_SPARSE
1192         m = vm_phys_paddr_to_vm_page(pa);
1193         if (m == NULL)
1194                 m = vm_phys_fictitious_to_vm_page(pa);
1195         return (m);
1196 #elif defined(VM_PHYSSEG_DENSE)
1197         long pi;
1198
1199         pi = atop(pa);
1200         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1201                 m = &vm_page_array[pi - first_page];
1202                 return (m);
1203         }
1204         return (vm_phys_fictitious_to_vm_page(pa));
1205 #else
1206 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1207 #endif
1208 }
1209
1210 /*
1211  *      vm_page_getfake:
1212  *
1213  *      Create a fictitious page with the specified physical address and
1214  *      memory attribute.  The memory attribute is the only the machine-
1215  *      dependent aspect of a fictitious page that must be initialized.
1216  */
1217 vm_page_t
1218 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1219 {
1220         vm_page_t m;
1221
1222         m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1223         vm_page_initfake(m, paddr, memattr);
1224         return (m);
1225 }
1226
1227 void
1228 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1229 {
1230
1231         if ((m->flags & PG_FICTITIOUS) != 0) {
1232                 /*
1233                  * The page's memattr might have changed since the
1234                  * previous initialization.  Update the pmap to the
1235                  * new memattr.
1236                  */
1237                 goto memattr;
1238         }
1239         m->phys_addr = paddr;
1240         m->a.queue = PQ_NONE;
1241         /* Fictitious pages don't use "segind". */
1242         m->flags = PG_FICTITIOUS;
1243         /* Fictitious pages don't use "order" or "pool". */
1244         m->oflags = VPO_UNMANAGED;
1245         m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1246         /* Fictitious pages are unevictable. */
1247         m->ref_count = 1;
1248         pmap_page_init(m);
1249 memattr:
1250         pmap_page_set_memattr(m, memattr);
1251 }
1252
1253 /*
1254  *      vm_page_putfake:
1255  *
1256  *      Release a fictitious page.
1257  */
1258 void
1259 vm_page_putfake(vm_page_t m)
1260 {
1261
1262         KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1263         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1264             ("vm_page_putfake: bad page %p", m));
1265         vm_page_assert_xbusied(m);
1266         vm_page_busy_free(m);
1267         uma_zfree(fakepg_zone, m);
1268 }
1269
1270 /*
1271  *      vm_page_updatefake:
1272  *
1273  *      Update the given fictitious page to the specified physical address and
1274  *      memory attribute.
1275  */
1276 void
1277 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1278 {
1279
1280         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1281             ("vm_page_updatefake: bad page %p", m));
1282         m->phys_addr = paddr;
1283         pmap_page_set_memattr(m, memattr);
1284 }
1285
1286 /*
1287  *      vm_page_free:
1288  *
1289  *      Free a page.
1290  */
1291 void
1292 vm_page_free(vm_page_t m)
1293 {
1294
1295         m->flags &= ~PG_ZERO;
1296         vm_page_free_toq(m);
1297 }
1298
1299 /*
1300  *      vm_page_free_zero:
1301  *
1302  *      Free a page to the zerod-pages queue
1303  */
1304 void
1305 vm_page_free_zero(vm_page_t m)
1306 {
1307
1308         m->flags |= PG_ZERO;
1309         vm_page_free_toq(m);
1310 }
1311
1312 /*
1313  * Unbusy and handle the page queueing for a page from a getpages request that
1314  * was optionally read ahead or behind.
1315  */
1316 void
1317 vm_page_readahead_finish(vm_page_t m)
1318 {
1319
1320         /* We shouldn't put invalid pages on queues. */
1321         KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1322
1323         /*
1324          * Since the page is not the actually needed one, whether it should
1325          * be activated or deactivated is not obvious.  Empirical results
1326          * have shown that deactivating the page is usually the best choice,
1327          * unless the page is wanted by another thread.
1328          */
1329         if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
1330                 vm_page_activate(m);
1331         else
1332                 vm_page_deactivate(m);
1333         vm_page_xunbusy_unchecked(m);
1334 }
1335
1336 /*
1337  *      vm_page_sleep_if_busy:
1338  *
1339  *      Sleep and release the object lock if the page is busied.
1340  *      Returns TRUE if the thread slept.
1341  *
1342  *      The given page must be unlocked and object containing it must
1343  *      be locked.
1344  */
1345 int
1346 vm_page_sleep_if_busy(vm_page_t m, const char *msg)
1347 {
1348         vm_object_t obj;
1349
1350         vm_page_lock_assert(m, MA_NOTOWNED);
1351         VM_OBJECT_ASSERT_WLOCKED(m->object);
1352
1353         /*
1354          * The page-specific object must be cached because page
1355          * identity can change during the sleep, causing the
1356          * re-lock of a different object.
1357          * It is assumed that a reference to the object is already
1358          * held by the callers.
1359          */
1360         obj = m->object;
1361         if (vm_page_busied(m) || (obj != NULL && obj->busy)) {
1362                 vm_page_busy_sleep(m, msg, false);
1363                 VM_OBJECT_WLOCK(obj);
1364                 return (TRUE);
1365         }
1366         return (FALSE);
1367 }
1368
1369 /*
1370  *      vm_page_sleep_if_xbusy:
1371  *
1372  *      Sleep and release the object lock if the page is xbusied.
1373  *      Returns TRUE if the thread slept.
1374  *
1375  *      The given page must be unlocked and object containing it must
1376  *      be locked.
1377  */
1378 int
1379 vm_page_sleep_if_xbusy(vm_page_t m, const char *msg)
1380 {
1381         vm_object_t obj;
1382
1383         vm_page_lock_assert(m, MA_NOTOWNED);
1384         VM_OBJECT_ASSERT_WLOCKED(m->object);
1385
1386         /*
1387          * The page-specific object must be cached because page
1388          * identity can change during the sleep, causing the
1389          * re-lock of a different object.
1390          * It is assumed that a reference to the object is already
1391          * held by the callers.
1392          */
1393         obj = m->object;
1394         if (vm_page_xbusied(m) || (obj != NULL && obj->busy)) {
1395                 vm_page_busy_sleep(m, msg, true);
1396                 VM_OBJECT_WLOCK(obj);
1397                 return (TRUE);
1398         }
1399         return (FALSE);
1400 }
1401
1402 /*
1403  *      vm_page_dirty_KBI:              [ internal use only ]
1404  *
1405  *      Set all bits in the page's dirty field.
1406  *
1407  *      The object containing the specified page must be locked if the
1408  *      call is made from the machine-independent layer.
1409  *
1410  *      See vm_page_clear_dirty_mask().
1411  *
1412  *      This function should only be called by vm_page_dirty().
1413  */
1414 void
1415 vm_page_dirty_KBI(vm_page_t m)
1416 {
1417
1418         /* Refer to this operation by its public name. */
1419         KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1420         m->dirty = VM_PAGE_BITS_ALL;
1421 }
1422
1423 /*
1424  *      vm_page_insert:         [ internal use only ]
1425  *
1426  *      Inserts the given mem entry into the object and object list.
1427  *
1428  *      The object must be locked.
1429  */
1430 int
1431 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1432 {
1433         vm_page_t mpred;
1434
1435         VM_OBJECT_ASSERT_WLOCKED(object);
1436         mpred = vm_radix_lookup_le(&object->rtree, pindex);
1437         return (vm_page_insert_after(m, object, pindex, mpred));
1438 }
1439
1440 /*
1441  *      vm_page_insert_after:
1442  *
1443  *      Inserts the page "m" into the specified object at offset "pindex".
1444  *
1445  *      The page "mpred" must immediately precede the offset "pindex" within
1446  *      the specified object.
1447  *
1448  *      The object must be locked.
1449  */
1450 static int
1451 vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1452     vm_page_t mpred)
1453 {
1454         vm_page_t msucc;
1455
1456         VM_OBJECT_ASSERT_WLOCKED(object);
1457         KASSERT(m->object == NULL,
1458             ("vm_page_insert_after: page already inserted"));
1459         if (mpred != NULL) {
1460                 KASSERT(mpred->object == object,
1461                     ("vm_page_insert_after: object doesn't contain mpred"));
1462                 KASSERT(mpred->pindex < pindex,
1463                     ("vm_page_insert_after: mpred doesn't precede pindex"));
1464                 msucc = TAILQ_NEXT(mpred, listq);
1465         } else
1466                 msucc = TAILQ_FIRST(&object->memq);
1467         if (msucc != NULL)
1468                 KASSERT(msucc->pindex > pindex,
1469                     ("vm_page_insert_after: msucc doesn't succeed pindex"));
1470
1471         /*
1472          * Record the object/offset pair in this page.
1473          */
1474         m->object = object;
1475         m->pindex = pindex;
1476         m->ref_count |= VPRC_OBJREF;
1477
1478         /*
1479          * Now link into the object's ordered list of backed pages.
1480          */
1481         if (vm_radix_insert(&object->rtree, m)) {
1482                 m->object = NULL;
1483                 m->pindex = 0;
1484                 m->ref_count &= ~VPRC_OBJREF;
1485                 return (1);
1486         }
1487         vm_page_insert_radixdone(m, object, mpred);
1488         return (0);
1489 }
1490
1491 /*
1492  *      vm_page_insert_radixdone:
1493  *
1494  *      Complete page "m" insertion into the specified object after the
1495  *      radix trie hooking.
1496  *
1497  *      The page "mpred" must precede the offset "m->pindex" within the
1498  *      specified object.
1499  *
1500  *      The object must be locked.
1501  */
1502 static void
1503 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1504 {
1505
1506         VM_OBJECT_ASSERT_WLOCKED(object);
1507         KASSERT(object != NULL && m->object == object,
1508             ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1509         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1510             ("vm_page_insert_radixdone: page %p is missing object ref", m));
1511         if (mpred != NULL) {
1512                 KASSERT(mpred->object == object,
1513                     ("vm_page_insert_radixdone: object doesn't contain mpred"));
1514                 KASSERT(mpred->pindex < m->pindex,
1515                     ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1516         }
1517
1518         if (mpred != NULL)
1519                 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1520         else
1521                 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1522
1523         /*
1524          * Show that the object has one more resident page.
1525          */
1526         object->resident_page_count++;
1527
1528         /*
1529          * Hold the vnode until the last page is released.
1530          */
1531         if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1532                 vhold(object->handle);
1533
1534         /*
1535          * Since we are inserting a new and possibly dirty page,
1536          * update the object's generation count.
1537          */
1538         if (pmap_page_is_write_mapped(m))
1539                 vm_object_set_writeable_dirty(object);
1540 }
1541
1542 /*
1543  * Do the work to remove a page from its object.  The caller is responsible for
1544  * updating the page's fields to reflect this removal.
1545  */
1546 static void
1547 vm_page_object_remove(vm_page_t m)
1548 {
1549         vm_object_t object;
1550         vm_page_t mrem;
1551
1552         vm_page_assert_xbusied(m);
1553         object = m->object;
1554         VM_OBJECT_ASSERT_WLOCKED(object);
1555         KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1556             ("page %p is missing its object ref", m));
1557
1558         /* Deferred free of swap space. */
1559         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1560                 vm_pager_page_unswapped(m);
1561
1562         mrem = vm_radix_remove(&object->rtree, m->pindex);
1563         KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));
1564
1565         /*
1566          * Now remove from the object's list of backed pages.
1567          */
1568         TAILQ_REMOVE(&object->memq, m, listq);
1569
1570         /*
1571          * And show that the object has one fewer resident page.
1572          */
1573         object->resident_page_count--;
1574
1575         /*
1576          * The vnode may now be recycled.
1577          */
1578         if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1579                 vdrop(object->handle);
1580 }
1581
1582 /*
1583  *      vm_page_remove:
1584  *
1585  *      Removes the specified page from its containing object, but does not
1586  *      invalidate any backing storage.  Returns true if the object's reference
1587  *      was the last reference to the page, and false otherwise.
1588  *
1589  *      The object must be locked and the page must be exclusively busied.
1590  *      The exclusive busy will be released on return.  If this is not the
1591  *      final ref and the caller does not hold a wire reference it may not
1592  *      continue to access the page.
1593  */
1594 bool
1595 vm_page_remove(vm_page_t m)
1596 {
1597         bool dropped;
1598
1599         dropped = vm_page_remove_xbusy(m);
1600         vm_page_xunbusy(m);
1601
1602         return (dropped);
1603 }
1604
1605 /*
1606  *      vm_page_remove_xbusy
1607  *
1608  *      Removes the page but leaves the xbusy held.  Returns true if this
1609  *      removed the final ref and false otherwise.
1610  */
1611 bool
1612 vm_page_remove_xbusy(vm_page_t m)
1613 {
1614
1615         vm_page_object_remove(m);
1616         m->object = NULL;
1617         return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1618 }
1619
1620 /*
1621  *      vm_page_lookup:
1622  *
1623  *      Returns the page associated with the object/offset
1624  *      pair specified; if none is found, NULL is returned.
1625  *
1626  *      The object must be locked.
1627  */
1628 vm_page_t
1629 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1630 {
1631
1632         VM_OBJECT_ASSERT_LOCKED(object);
1633         return (vm_radix_lookup(&object->rtree, pindex));
1634 }
1635
1636 /*
1637  *      vm_page_find_least:
1638  *
1639  *      Returns the page associated with the object with least pindex
1640  *      greater than or equal to the parameter pindex, or NULL.
1641  *
1642  *      The object must be locked.
1643  */
1644 vm_page_t
1645 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1646 {
1647         vm_page_t m;
1648
1649         VM_OBJECT_ASSERT_LOCKED(object);
1650         if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1651                 m = vm_radix_lookup_ge(&object->rtree, pindex);
1652         return (m);
1653 }
1654
1655 /*
1656  * Returns the given page's successor (by pindex) within the object if it is
1657  * resident; if none is found, NULL is returned.
1658  *
1659  * The object must be locked.
1660  */
1661 vm_page_t
1662 vm_page_next(vm_page_t m)
1663 {
1664         vm_page_t next;
1665
1666         VM_OBJECT_ASSERT_LOCKED(m->object);
1667         if ((next = TAILQ_NEXT(m, listq)) != NULL) {
1668                 MPASS(next->object == m->object);
1669                 if (next->pindex != m->pindex + 1)
1670                         next = NULL;
1671         }
1672         return (next);
1673 }
1674
1675 /*
1676  * Returns the given page's predecessor (by pindex) within the object if it is
1677  * resident; if none is found, NULL is returned.
1678  *
1679  * The object must be locked.
1680  */
1681 vm_page_t
1682 vm_page_prev(vm_page_t m)
1683 {
1684         vm_page_t prev;
1685
1686         VM_OBJECT_ASSERT_LOCKED(m->object);
1687         if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
1688                 MPASS(prev->object == m->object);
1689                 if (prev->pindex != m->pindex - 1)
1690                         prev = NULL;
1691         }
1692         return (prev);
1693 }
1694
1695 /*
1696  * Uses the page mnew as a replacement for an existing page at index
1697  * pindex which must be already present in the object.
1698  *
1699  * Both pages must be exclusively busied on enter.  The old page is
1700  * unbusied on exit.
1701  *
1702  * A return value of true means mold is now free.  If this is not the
1703  * final ref and the caller does not hold a wire reference it may not
1704  * continue to access the page.
1705  */
1706 static bool
1707 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1708     vm_page_t mold)
1709 {
1710         vm_page_t mret;
1711         bool dropped;
1712
1713         VM_OBJECT_ASSERT_WLOCKED(object);
1714         vm_page_assert_xbusied(mold);
1715         KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1716             ("vm_page_replace: page %p already in object", mnew));
1717
1718         /*
1719          * This function mostly follows vm_page_insert() and
1720          * vm_page_remove() without the radix, object count and vnode
1721          * dance.  Double check such functions for more comments.
1722          */
1723
1724         mnew->object = object;
1725         mnew->pindex = pindex;
1726         atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1727         mret = vm_radix_replace(&object->rtree, mnew);
1728         KASSERT(mret == mold,
1729             ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1730         KASSERT((mold->oflags & VPO_UNMANAGED) ==
1731             (mnew->oflags & VPO_UNMANAGED),
1732             ("vm_page_replace: mismatched VPO_UNMANAGED"));
1733
1734         /* Keep the resident page list in sorted order. */
1735         TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1736         TAILQ_REMOVE(&object->memq, mold, listq);
1737         mold->object = NULL;
1738
1739         /*
1740          * The object's resident_page_count does not change because we have
1741          * swapped one page for another, but the generation count should
1742          * change if the page is dirty.
1743          */
1744         if (pmap_page_is_write_mapped(mnew))
1745                 vm_object_set_writeable_dirty(object);
1746         dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1747         vm_page_xunbusy(mold);
1748
1749         return (dropped);
1750 }
1751
1752 void
1753 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1754     vm_page_t mold)
1755 {
1756
1757         vm_page_assert_xbusied(mnew);
1758
1759         if (vm_page_replace_hold(mnew, object, pindex, mold))
1760                 vm_page_free(mold);
1761 }
1762
1763 /*
1764  *      vm_page_rename:
1765  *
1766  *      Move the given memory entry from its
1767  *      current object to the specified target object/offset.
1768  *
1769  *      Note: swap associated with the page must be invalidated by the move.  We
1770  *            have to do this for several reasons:  (1) we aren't freeing the
1771  *            page, (2) we are dirtying the page, (3) the VM system is probably
1772  *            moving the page from object A to B, and will then later move
1773  *            the backing store from A to B and we can't have a conflict.
1774  *
1775  *      Note: we *always* dirty the page.  It is necessary both for the
1776  *            fact that we moved it, and because we may be invalidating
1777  *            swap.
1778  *
1779  *      The objects must be locked.
1780  */
1781 int
1782 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1783 {
1784         vm_page_t mpred;
1785         vm_pindex_t opidx;
1786
1787         VM_OBJECT_ASSERT_WLOCKED(new_object);
1788
1789         KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m));
1790         mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
1791         KASSERT(mpred == NULL || mpred->pindex != new_pindex,
1792             ("vm_page_rename: pindex already renamed"));
1793
1794         /*
1795          * Create a custom version of vm_page_insert() which does not depend
1796          * by m_prev and can cheat on the implementation aspects of the
1797          * function.
1798          */
1799         opidx = m->pindex;
1800         m->pindex = new_pindex;
1801         if (vm_radix_insert(&new_object->rtree, m)) {
1802                 m->pindex = opidx;
1803                 return (1);
1804         }
1805
1806         /*
1807          * The operation cannot fail anymore.  The removal must happen before
1808          * the listq iterator is tainted.
1809          */
1810         m->pindex = opidx;
1811         vm_page_object_remove(m);
1812
1813         /* Return back to the new pindex to complete vm_page_insert(). */
1814         m->pindex = new_pindex;
1815         m->object = new_object;
1816
1817         vm_page_insert_radixdone(m, new_object, mpred);
1818         vm_page_dirty(m);
1819         return (0);
1820 }
1821
1822 /*
1823  *      vm_page_alloc:
1824  *
1825  *      Allocate and return a page that is associated with the specified
1826  *      object and offset pair.  By default, this page is exclusive busied.
1827  *
1828  *      The caller must always specify an allocation class.
1829  *
1830  *      allocation classes:
1831  *      VM_ALLOC_NORMAL         normal process request
1832  *      VM_ALLOC_SYSTEM         system *really* needs a page
1833  *      VM_ALLOC_INTERRUPT      interrupt time request
1834  *
1835  *      optional allocation flags:
1836  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
1837  *                              intends to allocate
1838  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
1839  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
1840  *      VM_ALLOC_NOOBJ          page is not associated with an object and
1841  *                              should not be exclusive busy
1842  *      VM_ALLOC_SBUSY          shared busy the allocated page
1843  *      VM_ALLOC_WIRED          wire the allocated page
1844  *      VM_ALLOC_ZERO           prefer a zeroed page
1845  */
1846 vm_page_t
1847 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
1848 {
1849
1850         return (vm_page_alloc_after(object, pindex, req, object != NULL ?
1851             vm_radix_lookup_le(&object->rtree, pindex) : NULL));
1852 }
1853
1854 vm_page_t
1855 vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain,
1856     int req)
1857 {
1858
1859         return (vm_page_alloc_domain_after(object, pindex, domain, req,
1860             object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) :
1861             NULL));
1862 }
1863
1864 /*
1865  * Allocate a page in the specified object with the given page index.  To
1866  * optimize insertion of the page into the object, the caller must also specifiy
1867  * the resident page in the object with largest index smaller than the given
1868  * page index, or NULL if no such page exists.
1869  */
1870 vm_page_t
1871 vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex,
1872     int req, vm_page_t mpred)
1873 {
1874         struct vm_domainset_iter di;
1875         vm_page_t m;
1876         int domain;
1877
1878         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
1879         do {
1880                 m = vm_page_alloc_domain_after(object, pindex, domain, req,
1881                     mpred);
1882                 if (m != NULL)
1883                         break;
1884         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
1885
1886         return (m);
1887 }
1888
1889 /*
1890  * Returns true if the number of free pages exceeds the minimum
1891  * for the request class and false otherwise.
1892  */
1893 static int
1894 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
1895 {
1896         u_int limit, old, new;
1897
1898         if (req_class == VM_ALLOC_INTERRUPT)
1899                 limit = 0;
1900         else if (req_class == VM_ALLOC_SYSTEM)
1901                 limit = vmd->vmd_interrupt_free_min;
1902         else
1903                 limit = vmd->vmd_free_reserved;
1904
1905         /*
1906          * Attempt to reserve the pages.  Fail if we're below the limit.
1907          */
1908         limit += npages;
1909         old = vmd->vmd_free_count;
1910         do {
1911                 if (old < limit)
1912                         return (0);
1913                 new = old - npages;
1914         } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
1915
1916         /* Wake the page daemon if we've crossed the threshold. */
1917         if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
1918                 pagedaemon_wakeup(vmd->vmd_domain);
1919
1920         /* Only update bitsets on transitions. */
1921         if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
1922             (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
1923                 vm_domain_set(vmd);
1924
1925         return (1);
1926 }
1927
1928 int
1929 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
1930 {
1931         int req_class;
1932
1933         /*
1934          * The page daemon is allowed to dig deeper into the free page list.
1935          */
1936         req_class = req & VM_ALLOC_CLASS_MASK;
1937         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
1938                 req_class = VM_ALLOC_SYSTEM;
1939         return (_vm_domain_allocate(vmd, req_class, npages));
1940 }
1941
1942 vm_page_t
1943 vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain,
1944     int req, vm_page_t mpred)
1945 {
1946         struct vm_domain *vmd;
1947         vm_page_t m;
1948         int flags, pool;
1949
1950         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
1951             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
1952             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
1953             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
1954             ("inconsistent object(%p)/req(%x)", object, req));
1955         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
1956             ("Can't sleep and retry object insertion."));
1957         KASSERT(mpred == NULL || mpred->pindex < pindex,
1958             ("mpred %p doesn't precede pindex 0x%jx", mpred,
1959             (uintmax_t)pindex));
1960         if (object != NULL)
1961                 VM_OBJECT_ASSERT_WLOCKED(object);
1962
1963         flags = 0;
1964         m = NULL;
1965         pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT;
1966 again:
1967 #if VM_NRESERVLEVEL > 0
1968         /*
1969          * Can we allocate the page from a reservation?
1970          */
1971         if (vm_object_reserv(object) &&
1972             (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) !=
1973             NULL) {
1974                 domain = vm_phys_domain(m);
1975                 vmd = VM_DOMAIN(domain);
1976                 goto found;
1977         }
1978 #endif
1979         vmd = VM_DOMAIN(domain);
1980         if (vmd->vmd_pgcache[pool].zone != NULL) {
1981                 m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT);
1982                 if (m != NULL) {
1983                         flags |= PG_PCPU_CACHE;
1984                         goto found;
1985                 }
1986         }
1987         if (vm_domain_allocate(vmd, req, 1)) {
1988                 /*
1989                  * If not, allocate it from the free page queues.
1990                  */
1991                 vm_domain_free_lock(vmd);
1992                 m = vm_phys_alloc_pages(domain, pool, 0);
1993                 vm_domain_free_unlock(vmd);
1994                 if (m == NULL) {
1995                         vm_domain_freecnt_inc(vmd, 1);
1996 #if VM_NRESERVLEVEL > 0
1997                         if (vm_reserv_reclaim_inactive(domain))
1998                                 goto again;
1999 #endif
2000                 }
2001         }
2002         if (m == NULL) {
2003                 /*
2004                  * Not allocatable, give up.
2005                  */
2006                 if (vm_domain_alloc_fail(vmd, object, req))
2007                         goto again;
2008                 return (NULL);
2009         }
2010
2011         /*
2012          * At this point we had better have found a good page.
2013          */
2014 found:
2015         vm_page_dequeue(m);
2016         vm_page_alloc_check(m);
2017
2018         /*
2019          * Initialize the page.  Only the PG_ZERO flag is inherited.
2020          */
2021         if ((req & VM_ALLOC_ZERO) != 0)
2022                 flags |= (m->flags & PG_ZERO);
2023         if ((req & VM_ALLOC_NODUMP) != 0)
2024                 flags |= PG_NODUMP;
2025         m->flags = flags;
2026         m->a.flags = 0;
2027         m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2028             VPO_UNMANAGED : 0;
2029         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2030                 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2031         else if ((req & VM_ALLOC_SBUSY) != 0)
2032                 m->busy_lock = VPB_SHARERS_WORD(1);
2033         else
2034                 m->busy_lock = VPB_UNBUSIED;
2035         if (req & VM_ALLOC_WIRED) {
2036                 vm_wire_add(1);
2037                 m->ref_count = 1;
2038         }
2039         m->a.act_count = 0;
2040
2041         if (object != NULL) {
2042                 if (vm_page_insert_after(m, object, pindex, mpred)) {
2043                         if (req & VM_ALLOC_WIRED) {
2044                                 vm_wire_sub(1);
2045                                 m->ref_count = 0;
2046                         }
2047                         KASSERT(m->object == NULL, ("page %p has object", m));
2048                         m->oflags = VPO_UNMANAGED;
2049                         m->busy_lock = VPB_UNBUSIED;
2050                         /* Don't change PG_ZERO. */
2051                         vm_page_free_toq(m);
2052                         if (req & VM_ALLOC_WAITFAIL) {
2053                                 VM_OBJECT_WUNLOCK(object);
2054                                 vm_radix_wait();
2055                                 VM_OBJECT_WLOCK(object);
2056                         }
2057                         return (NULL);
2058                 }
2059
2060                 /* Ignore device objects; the pager sets "memattr" for them. */
2061                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2062                     (object->flags & OBJ_FICTITIOUS) == 0)
2063                         pmap_page_set_memattr(m, object->memattr);
2064         } else
2065                 m->pindex = pindex;
2066
2067         return (m);
2068 }
2069
2070 /*
2071  *      vm_page_alloc_contig:
2072  *
2073  *      Allocate a contiguous set of physical pages of the given size "npages"
2074  *      from the free lists.  All of the physical pages must be at or above
2075  *      the given physical address "low" and below the given physical address
2076  *      "high".  The given value "alignment" determines the alignment of the
2077  *      first physical page in the set.  If the given value "boundary" is
2078  *      non-zero, then the set of physical pages cannot cross any physical
2079  *      address boundary that is a multiple of that value.  Both "alignment"
2080  *      and "boundary" must be a power of two.
2081  *
2082  *      If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2083  *      then the memory attribute setting for the physical pages is configured
2084  *      to the object's memory attribute setting.  Otherwise, the memory
2085  *      attribute setting for the physical pages is configured to "memattr",
2086  *      overriding the object's memory attribute setting.  However, if the
2087  *      object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2088  *      memory attribute setting for the physical pages cannot be configured
2089  *      to VM_MEMATTR_DEFAULT.
2090  *
2091  *      The specified object may not contain fictitious pages.
2092  *
2093  *      The caller must always specify an allocation class.
2094  *
2095  *      allocation classes:
2096  *      VM_ALLOC_NORMAL         normal process request
2097  *      VM_ALLOC_SYSTEM         system *really* needs a page
2098  *      VM_ALLOC_INTERRUPT      interrupt time request
2099  *
2100  *      optional allocation flags:
2101  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
2102  *      VM_ALLOC_NODUMP         do not include the page in a kernel core dump
2103  *      VM_ALLOC_NOOBJ          page is not associated with an object and
2104  *                              should not be exclusive busy
2105  *      VM_ALLOC_SBUSY          shared busy the allocated page
2106  *      VM_ALLOC_WIRED          wire the allocated page
2107  *      VM_ALLOC_ZERO           prefer a zeroed page
2108  */
2109 vm_page_t
2110 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2111     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2112     vm_paddr_t boundary, vm_memattr_t memattr)
2113 {
2114         struct vm_domainset_iter di;
2115         vm_page_t m;
2116         int domain;
2117
2118         vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2119         do {
2120                 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2121                     npages, low, high, alignment, boundary, memattr);
2122                 if (m != NULL)
2123                         break;
2124         } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2125
2126         return (m);
2127 }
2128
2129 vm_page_t
2130 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2131     int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2132     vm_paddr_t boundary, vm_memattr_t memattr)
2133 {
2134         struct vm_domain *vmd;
2135         vm_page_t m, m_ret, mpred;
2136         u_int busy_lock, flags, oflags;
2137
2138         mpred = NULL;   /* XXX: pacify gcc */
2139         KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
2140             (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
2141             ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2142             (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2143             ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
2144             req));
2145         KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0,
2146             ("Can't sleep and retry object insertion."));
2147         if (object != NULL) {
2148                 VM_OBJECT_ASSERT_WLOCKED(object);
2149                 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2150                     ("vm_page_alloc_contig: object %p has fictitious pages",
2151                     object));
2152         }
2153         KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2154
2155         if (object != NULL) {
2156                 mpred = vm_radix_lookup_le(&object->rtree, pindex);
2157                 KASSERT(mpred == NULL || mpred->pindex != pindex,
2158                     ("vm_page_alloc_contig: pindex already allocated"));
2159         }
2160
2161         /*
2162          * Can we allocate the pages without the number of free pages falling
2163          * below the lower bound for the allocation class?
2164          */
2165         m_ret = NULL;
2166 again:
2167 #if VM_NRESERVLEVEL > 0
2168         /*
2169          * Can we allocate the pages from a reservation?
2170          */
2171         if (vm_object_reserv(object) &&
2172             (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req,
2173             mpred, npages, low, high, alignment, boundary)) != NULL) {
2174                 domain = vm_phys_domain(m_ret);
2175                 vmd = VM_DOMAIN(domain);
2176                 goto found;
2177         }
2178 #endif
2179         vmd = VM_DOMAIN(domain);
2180         if (vm_domain_allocate(vmd, req, npages)) {
2181                 /*
2182                  * allocate them from the free page queues.
2183                  */
2184                 vm_domain_free_lock(vmd);
2185                 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2186                     alignment, boundary);
2187                 vm_domain_free_unlock(vmd);
2188                 if (m_ret == NULL) {
2189                         vm_domain_freecnt_inc(vmd, npages);
2190 #if VM_NRESERVLEVEL > 0
2191                         if (vm_reserv_reclaim_contig(domain, npages, low,
2192                             high, alignment, boundary))
2193                                 goto again;
2194 #endif
2195                 }
2196         }
2197         if (m_ret == NULL) {
2198                 if (vm_domain_alloc_fail(vmd, object, req))
2199                         goto again;
2200                 return (NULL);
2201         }
2202 #if VM_NRESERVLEVEL > 0
2203 found:
2204 #endif
2205         for (m = m_ret; m < &m_ret[npages]; m++) {
2206                 vm_page_dequeue(m);
2207                 vm_page_alloc_check(m);
2208         }
2209
2210         /*
2211          * Initialize the pages.  Only the PG_ZERO flag is inherited.
2212          */
2213         flags = 0;
2214         if ((req & VM_ALLOC_ZERO) != 0)
2215                 flags = PG_ZERO;
2216         if ((req & VM_ALLOC_NODUMP) != 0)
2217                 flags |= PG_NODUMP;
2218         oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
2219             VPO_UNMANAGED : 0;
2220         if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
2221                 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2222         else if ((req & VM_ALLOC_SBUSY) != 0)
2223                 busy_lock = VPB_SHARERS_WORD(1);
2224         else
2225                 busy_lock = VPB_UNBUSIED;
2226         if ((req & VM_ALLOC_WIRED) != 0)
2227                 vm_wire_add(npages);
2228         if (object != NULL) {
2229                 if (object->memattr != VM_MEMATTR_DEFAULT &&
2230                     memattr == VM_MEMATTR_DEFAULT)
2231                         memattr = object->memattr;
2232         }
2233         for (m = m_ret; m < &m_ret[npages]; m++) {
2234                 m->a.flags = 0;
2235                 m->flags = (m->flags | PG_NODUMP) & flags;
2236                 m->busy_lock = busy_lock;
2237                 if ((req & VM_ALLOC_WIRED) != 0)
2238                         m->ref_count = 1;
2239                 m->a.act_count = 0;
2240                 m->oflags = oflags;
2241                 if (object != NULL) {
2242                         if (vm_page_insert_after(m, object, pindex, mpred)) {
2243                                 if ((req & VM_ALLOC_WIRED) != 0)
2244                                         vm_wire_sub(npages);
2245                                 KASSERT(m->object == NULL,
2246                                     ("page %p has object", m));
2247                                 mpred = m;
2248                                 for (m = m_ret; m < &m_ret[npages]; m++) {
2249                                         if (m <= mpred &&
2250                                             (req & VM_ALLOC_WIRED) != 0)
2251                                                 m->ref_count = 0;
2252                                         m->oflags = VPO_UNMANAGED;
2253                                         m->busy_lock = VPB_UNBUSIED;
2254                                         /* Don't change PG_ZERO. */
2255                                         vm_page_free_toq(m);
2256                                 }
2257                                 if (req & VM_ALLOC_WAITFAIL) {
2258                                         VM_OBJECT_WUNLOCK(object);
2259                                         vm_radix_wait();
2260                                         VM_OBJECT_WLOCK(object);
2261                                 }
2262                                 return (NULL);
2263                         }
2264                         mpred = m;
2265                 } else
2266                         m->pindex = pindex;
2267                 if (memattr != VM_MEMATTR_DEFAULT)
2268                         pmap_page_set_memattr(m, memattr);
2269                 pindex++;
2270         }
2271         return (m_ret);
2272 }
2273
2274 /*
2275  * Check a page that has been freshly dequeued from a freelist.
2276  */
2277 static void
2278 vm_page_alloc_check(vm_page_t m)
2279 {
2280
2281         KASSERT(m->object == NULL, ("page %p has object", m));
2282         KASSERT(m->a.queue == PQ_NONE &&
2283             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2284             ("page %p has unexpected queue %d, flags %#x",
2285             m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2286         KASSERT(m->ref_count == 0, ("page %p has references", m));
2287         KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2288         KASSERT(m->dirty == 0, ("page %p is dirty", m));
2289         KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2290             ("page %p has unexpected memattr %d",
2291             m, pmap_page_get_memattr(m)));
2292         KASSERT(m->valid == 0, ("free page %p is valid", m));
2293 }
2294
2295 /*
2296  *      vm_page_alloc_freelist:
2297  *
2298  *      Allocate a physical page from the specified free page list.
2299  *
2300  *      The caller must always specify an allocation class.
2301  *
2302  *      allocation classes:
2303  *      VM_ALLOC_NORMAL         normal process request
2304  *      VM_ALLOC_SYSTEM         system *really* needs a page
2305  *      VM_ALLOC_INTERRUPT      interrupt time request
2306  *
2307  *      optional allocation flags:
2308  *      VM_ALLOC_COUNT(number)  the number of additional pages that the caller
2309  *                              intends to allocate
2310  *      VM_ALLOC_WIRED          wire the allocated page
2311  *      VM_ALLOC_ZERO           prefer a zeroed page
2312  */
2313 vm_page_t
2314 vm_page_alloc_freelist(int freelist, int req)
2315 {
2316         struct vm_domainset_iter di;
2317         vm_page_t m;
2318         int domain;
2319
2320         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2321         do {
2322                 m = vm_page_alloc_freelist_domain(domain, freelist, req);
2323                 if (m != NULL)
2324                         break;
2325         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2326
2327         return (m);
2328 }
2329
2330 vm_page_t
2331 vm_page_alloc_freelist_domain(int domain, int freelist, int req)
2332 {
2333         struct vm_domain *vmd;
2334         vm_page_t m;
2335         u_int flags;
2336
2337         m = NULL;
2338         vmd = VM_DOMAIN(domain);
2339 again:
2340         if (vm_domain_allocate(vmd, req, 1)) {
2341                 vm_domain_free_lock(vmd);
2342                 m = vm_phys_alloc_freelist_pages(domain, freelist,
2343                     VM_FREEPOOL_DIRECT, 0);
2344                 vm_domain_free_unlock(vmd);
2345                 if (m == NULL)
2346                         vm_domain_freecnt_inc(vmd, 1);
2347         }
2348         if (m == NULL) {
2349                 if (vm_domain_alloc_fail(vmd, NULL, req))
2350                         goto again;
2351                 return (NULL);
2352         }
2353         vm_page_dequeue(m);
2354         vm_page_alloc_check(m);
2355
2356         /*
2357          * Initialize the page.  Only the PG_ZERO flag is inherited.
2358          */
2359         m->a.flags = 0;
2360         flags = 0;
2361         if ((req & VM_ALLOC_ZERO) != 0)
2362                 flags = PG_ZERO;
2363         m->flags &= flags;
2364         if ((req & VM_ALLOC_WIRED) != 0) {
2365                 vm_wire_add(1);
2366                 m->ref_count = 1;
2367         }
2368         /* Unmanaged pages don't use "act_count". */
2369         m->oflags = VPO_UNMANAGED;
2370         return (m);
2371 }
2372
2373 static int
2374 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2375 {
2376         struct vm_domain *vmd;
2377         struct vm_pgcache *pgcache;
2378         int i;
2379
2380         pgcache = arg;
2381         vmd = VM_DOMAIN(pgcache->domain);
2382
2383         /*
2384          * The page daemon should avoid creating extra memory pressure since its
2385          * main purpose is to replenish the store of free pages.
2386          */
2387         if (vmd->vmd_severeset || curproc == pageproc ||
2388             !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2389                 return (0);
2390         domain = vmd->vmd_domain;
2391         vm_domain_free_lock(vmd);
2392         i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2393             (vm_page_t *)store);
2394         vm_domain_free_unlock(vmd);
2395         if (cnt != i)
2396                 vm_domain_freecnt_inc(vmd, cnt - i);
2397
2398         return (i);
2399 }
2400
2401 static void
2402 vm_page_zone_release(void *arg, void **store, int cnt)
2403 {
2404         struct vm_domain *vmd;
2405         struct vm_pgcache *pgcache;
2406         vm_page_t m;
2407         int i;
2408
2409         pgcache = arg;
2410         vmd = VM_DOMAIN(pgcache->domain);
2411         vm_domain_free_lock(vmd);
2412         for (i = 0; i < cnt; i++) {
2413                 m = (vm_page_t)store[i];
2414                 vm_phys_free_pages(m, 0);
2415         }
2416         vm_domain_free_unlock(vmd);
2417         vm_domain_freecnt_inc(vmd, cnt);
2418 }
2419
2420 #define VPSC_ANY        0       /* No restrictions. */
2421 #define VPSC_NORESERV   1       /* Skip reservations; implies VPSC_NOSUPER. */
2422 #define VPSC_NOSUPER    2       /* Skip superpages. */
2423
2424 /*
2425  *      vm_page_scan_contig:
2426  *
2427  *      Scan vm_page_array[] between the specified entries "m_start" and
2428  *      "m_end" for a run of contiguous physical pages that satisfy the
2429  *      specified conditions, and return the lowest page in the run.  The
2430  *      specified "alignment" determines the alignment of the lowest physical
2431  *      page in the run.  If the specified "boundary" is non-zero, then the
2432  *      run of physical pages cannot span a physical address that is a
2433  *      multiple of "boundary".
2434  *
2435  *      "m_end" is never dereferenced, so it need not point to a vm_page
2436  *      structure within vm_page_array[].
2437  *
2438  *      "npages" must be greater than zero.  "m_start" and "m_end" must not
2439  *      span a hole (or discontiguity) in the physical address space.  Both
2440  *      "alignment" and "boundary" must be a power of two.
2441  */
2442 vm_page_t
2443 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2444     u_long alignment, vm_paddr_t boundary, int options)
2445 {
2446         vm_object_t object;
2447         vm_paddr_t pa;
2448         vm_page_t m, m_run;
2449 #if VM_NRESERVLEVEL > 0
2450         int level;
2451 #endif
2452         int m_inc, order, run_ext, run_len;
2453
2454         KASSERT(npages > 0, ("npages is 0"));
2455         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2456         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2457         m_run = NULL;
2458         run_len = 0;
2459         for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2460                 KASSERT((m->flags & PG_MARKER) == 0,
2461                     ("page %p is PG_MARKER", m));
2462                 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2463                     ("fictitious page %p has invalid ref count", m));
2464
2465                 /*
2466                  * If the current page would be the start of a run, check its
2467                  * physical address against the end, alignment, and boundary
2468                  * conditions.  If it doesn't satisfy these conditions, either
2469                  * terminate the scan or advance to the next page that
2470                  * satisfies the failed condition.
2471                  */
2472                 if (run_len == 0) {
2473                         KASSERT(m_run == NULL, ("m_run != NULL"));
2474                         if (m + npages > m_end)
2475                                 break;
2476                         pa = VM_PAGE_TO_PHYS(m);
2477                         if ((pa & (alignment - 1)) != 0) {
2478                                 m_inc = atop(roundup2(pa, alignment) - pa);
2479                                 continue;
2480                         }
2481                         if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
2482                             boundary) != 0) {
2483                                 m_inc = atop(roundup2(pa, boundary) - pa);
2484                                 continue;
2485                         }
2486                 } else
2487                         KASSERT(m_run != NULL, ("m_run == NULL"));
2488
2489 retry:
2490                 m_inc = 1;
2491                 if (vm_page_wired(m))
2492                         run_ext = 0;
2493 #if VM_NRESERVLEVEL > 0
2494                 else if ((level = vm_reserv_level(m)) >= 0 &&
2495                     (options & VPSC_NORESERV) != 0) {
2496                         run_ext = 0;
2497                         /* Advance to the end of the reservation. */
2498                         pa = VM_PAGE_TO_PHYS(m);
2499                         m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2500                             pa);
2501                 }
2502 #endif
2503                 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2504                         /*
2505                          * The page is considered eligible for relocation if
2506                          * and only if it could be laundered or reclaimed by
2507                          * the page daemon.
2508                          */
2509                         VM_OBJECT_RLOCK(object);
2510                         if (object != m->object) {
2511                                 VM_OBJECT_RUNLOCK(object);
2512                                 goto retry;
2513                         }
2514                         /* Don't care: PG_NODUMP, PG_ZERO. */
2515                         if (object->type != OBJT_DEFAULT &&
2516                             object->type != OBJT_SWAP &&
2517                             object->type != OBJT_VNODE) {
2518                                 run_ext = 0;
2519 #if VM_NRESERVLEVEL > 0
2520                         } else if ((options & VPSC_NOSUPER) != 0 &&
2521                             (level = vm_reserv_level_iffullpop(m)) >= 0) {
2522                                 run_ext = 0;
2523                                 /* Advance to the end of the superpage. */
2524                                 pa = VM_PAGE_TO_PHYS(m);
2525                                 m_inc = atop(roundup2(pa + 1,
2526                                     vm_reserv_size(level)) - pa);
2527 #endif
2528                         } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2529                             vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2530                                 /*
2531                                  * The page is allocated but eligible for
2532                                  * relocation.  Extend the current run by one
2533                                  * page.
2534                                  */
2535                                 KASSERT(pmap_page_get_memattr(m) ==
2536                                     VM_MEMATTR_DEFAULT,
2537                                     ("page %p has an unexpected memattr", m));
2538                                 KASSERT((m->oflags & (VPO_SWAPINPROG |
2539                                     VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2540                                     ("page %p has unexpected oflags", m));
2541                                 /* Don't care: PGA_NOSYNC. */
2542                                 run_ext = 1;
2543                         } else
2544                                 run_ext = 0;
2545                         VM_OBJECT_RUNLOCK(object);
2546 #if VM_NRESERVLEVEL > 0
2547                 } else if (level >= 0) {
2548                         /*
2549                          * The page is reserved but not yet allocated.  In
2550                          * other words, it is still free.  Extend the current
2551                          * run by one page.
2552                          */
2553                         run_ext = 1;
2554 #endif
2555                 } else if ((order = m->order) < VM_NFREEORDER) {
2556                         /*
2557                          * The page is enqueued in the physical memory
2558                          * allocator's free page queues.  Moreover, it is the
2559                          * first page in a power-of-two-sized run of
2560                          * contiguous free pages.  Add these pages to the end
2561                          * of the current run, and jump ahead.
2562                          */
2563                         run_ext = 1 << order;
2564                         m_inc = 1 << order;
2565                 } else {
2566                         /*
2567                          * Skip the page for one of the following reasons: (1)
2568                          * It is enqueued in the physical memory allocator's
2569                          * free page queues.  However, it is not the first
2570                          * page in a run of contiguous free pages.  (This case
2571                          * rarely occurs because the scan is performed in
2572                          * ascending order.) (2) It is not reserved, and it is
2573                          * transitioning from free to allocated.  (Conversely,
2574                          * the transition from allocated to free for managed
2575                          * pages is blocked by the page lock.) (3) It is
2576                          * allocated but not contained by an object and not
2577                          * wired, e.g., allocated by Xen's balloon driver.
2578                          */
2579                         run_ext = 0;
2580                 }
2581
2582                 /*
2583                  * Extend or reset the current run of pages.
2584                  */
2585                 if (run_ext > 0) {
2586                         if (run_len == 0)
2587                                 m_run = m;
2588                         run_len += run_ext;
2589                 } else {
2590                         if (run_len > 0) {
2591                                 m_run = NULL;
2592                                 run_len = 0;
2593                         }
2594                 }
2595         }
2596         if (run_len >= npages)
2597                 return (m_run);
2598         return (NULL);
2599 }
2600
2601 /*
2602  *      vm_page_reclaim_run:
2603  *
2604  *      Try to relocate each of the allocated virtual pages within the
2605  *      specified run of physical pages to a new physical address.  Free the
2606  *      physical pages underlying the relocated virtual pages.  A virtual page
2607  *      is relocatable if and only if it could be laundered or reclaimed by
2608  *      the page daemon.  Whenever possible, a virtual page is relocated to a
2609  *      physical address above "high".
2610  *
2611  *      Returns 0 if every physical page within the run was already free or
2612  *      just freed by a successful relocation.  Otherwise, returns a non-zero
2613  *      value indicating why the last attempt to relocate a virtual page was
2614  *      unsuccessful.
2615  *
2616  *      "req_class" must be an allocation class.
2617  */
2618 static int
2619 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
2620     vm_paddr_t high)
2621 {
2622         struct vm_domain *vmd;
2623         struct spglist free;
2624         vm_object_t object;
2625         vm_paddr_t pa;
2626         vm_page_t m, m_end, m_new;
2627         int error, order, req;
2628
2629         KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
2630             ("req_class is not an allocation class"));
2631         SLIST_INIT(&free);
2632         error = 0;
2633         m = m_run;
2634         m_end = m_run + npages;
2635         for (; error == 0 && m < m_end; m++) {
2636                 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
2637                     ("page %p is PG_FICTITIOUS or PG_MARKER", m));
2638
2639                 /*
2640                  * Racily check for wirings.  Races are handled once the object
2641                  * lock is held and the page is unmapped.
2642                  */
2643                 if (vm_page_wired(m))
2644                         error = EBUSY;
2645                 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2646                         /*
2647                          * The page is relocated if and only if it could be
2648                          * laundered or reclaimed by the page daemon.
2649                          */
2650                         VM_OBJECT_WLOCK(object);
2651                         /* Don't care: PG_NODUMP, PG_ZERO. */
2652                         if (m->object != object ||
2653                             (object->type != OBJT_DEFAULT &&
2654                             object->type != OBJT_SWAP &&
2655                             object->type != OBJT_VNODE))
2656                                 error = EINVAL;
2657                         else if (object->memattr != VM_MEMATTR_DEFAULT)
2658                                 error = EINVAL;
2659                         else if (vm_page_queue(m) != PQ_NONE &&
2660                             vm_page_tryxbusy(m) != 0) {
2661                                 if (vm_page_wired(m)) {
2662                                         vm_page_xunbusy(m);
2663                                         error = EBUSY;
2664                                         goto unlock;
2665                                 }
2666                                 KASSERT(pmap_page_get_memattr(m) ==
2667                                     VM_MEMATTR_DEFAULT,
2668                                     ("page %p has an unexpected memattr", m));
2669                                 KASSERT(m->oflags == 0,
2670                                     ("page %p has unexpected oflags", m));
2671                                 /* Don't care: PGA_NOSYNC. */
2672                                 if (!vm_page_none_valid(m)) {
2673                                         /*
2674                                          * First, try to allocate a new page
2675                                          * that is above "high".  Failing
2676                                          * that, try to allocate a new page
2677                                          * that is below "m_run".  Allocate
2678                                          * the new page between the end of
2679                                          * "m_run" and "high" only as a last
2680                                          * resort.
2681                                          */
2682                                         req = req_class | VM_ALLOC_NOOBJ;
2683                                         if ((m->flags & PG_NODUMP) != 0)
2684                                                 req |= VM_ALLOC_NODUMP;
2685                                         if (trunc_page(high) !=
2686                                             ~(vm_paddr_t)PAGE_MASK) {
2687                                                 m_new = vm_page_alloc_contig(
2688                                                     NULL, 0, req, 1,
2689                                                     round_page(high),
2690                                                     ~(vm_paddr_t)0,
2691                                                     PAGE_SIZE, 0,
2692                                                     VM_MEMATTR_DEFAULT);
2693                                         } else
2694                                                 m_new = NULL;
2695                                         if (m_new == NULL) {
2696                                                 pa = VM_PAGE_TO_PHYS(m_run);
2697                                                 m_new = vm_page_alloc_contig(
2698                                                     NULL, 0, req, 1,
2699                                                     0, pa - 1, PAGE_SIZE, 0,
2700                                                     VM_MEMATTR_DEFAULT);
2701                                         }
2702                                         if (m_new == NULL) {
2703                                                 pa += ptoa(npages);
2704                                                 m_new = vm_page_alloc_contig(
2705                                                     NULL, 0, req, 1,
2706                                                     pa, high, PAGE_SIZE, 0,
2707                                                     VM_MEMATTR_DEFAULT);
2708                                         }
2709                                         if (m_new == NULL) {
2710                                                 vm_page_xunbusy(m);
2711                                                 error = ENOMEM;
2712                                                 goto unlock;
2713                                         }
2714
2715                                         /*
2716                                          * Unmap the page and check for new
2717                                          * wirings that may have been acquired
2718                                          * through a pmap lookup.
2719                                          */
2720                                         if (object->ref_count != 0 &&
2721                                             !vm_page_try_remove_all(m)) {
2722                                                 vm_page_xunbusy(m);
2723                                                 vm_page_free(m_new);
2724                                                 error = EBUSY;
2725                                                 goto unlock;
2726                                         }
2727
2728                                         /*
2729                                          * Replace "m" with the new page.  For
2730                                          * vm_page_replace(), "m" must be busy
2731                                          * and dequeued.  Finally, change "m"
2732                                          * as if vm_page_free() was called.
2733                                          */
2734                                         m_new->a.flags = m->a.flags &
2735                                             ~PGA_QUEUE_STATE_MASK;
2736                                         KASSERT(m_new->oflags == VPO_UNMANAGED,
2737                                             ("page %p is managed", m_new));
2738                                         m_new->oflags = 0;
2739                                         pmap_copy_page(m, m_new);
2740                                         m_new->valid = m->valid;
2741                                         m_new->dirty = m->dirty;
2742                                         m->flags &= ~PG_ZERO;
2743                                         vm_page_dequeue(m);
2744                                         if (vm_page_replace_hold(m_new, object,
2745                                             m->pindex, m) &&
2746                                             vm_page_free_prep(m))
2747                                                 SLIST_INSERT_HEAD(&free, m,
2748                                                     plinks.s.ss);
2749
2750                                         /*
2751                                          * The new page must be deactivated
2752                                          * before the object is unlocked.
2753                                          */
2754                                         vm_page_deactivate(m_new);
2755                                 } else {
2756                                         m->flags &= ~PG_ZERO;
2757                                         vm_page_dequeue(m);
2758                                         if (vm_page_free_prep(m))
2759                                                 SLIST_INSERT_HEAD(&free, m,
2760                                                     plinks.s.ss);
2761                                         KASSERT(m->dirty == 0,
2762                                             ("page %p is dirty", m));
2763                                 }
2764                         } else
2765                                 error = EBUSY;
2766 unlock:
2767                         VM_OBJECT_WUNLOCK(object);
2768                 } else {
2769                         MPASS(vm_phys_domain(m) == domain);
2770                         vmd = VM_DOMAIN(domain);
2771                         vm_domain_free_lock(vmd);
2772                         order = m->order;
2773                         if (order < VM_NFREEORDER) {
2774                                 /*
2775                                  * The page is enqueued in the physical memory
2776                                  * allocator's free page queues.  Moreover, it
2777                                  * is the first page in a power-of-two-sized
2778                                  * run of contiguous free pages.  Jump ahead
2779                                  * to the last page within that run, and
2780                                  * continue from there.
2781                                  */
2782                                 m += (1 << order) - 1;
2783                         }
2784 #if VM_NRESERVLEVEL > 0
2785                         else if (vm_reserv_is_page_free(m))
2786                                 order = 0;
2787 #endif
2788                         vm_domain_free_unlock(vmd);
2789                         if (order == VM_NFREEORDER)
2790                                 error = EINVAL;
2791                 }
2792         }
2793         if ((m = SLIST_FIRST(&free)) != NULL) {
2794                 int cnt;
2795
2796                 vmd = VM_DOMAIN(domain);
2797                 cnt = 0;
2798                 vm_domain_free_lock(vmd);
2799                 do {
2800                         MPASS(vm_phys_domain(m) == domain);
2801                         SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2802                         vm_phys_free_pages(m, 0);
2803                         cnt++;
2804                 } while ((m = SLIST_FIRST(&free)) != NULL);
2805                 vm_domain_free_unlock(vmd);
2806                 vm_domain_freecnt_inc(vmd, cnt);
2807         }
2808         return (error);
2809 }
2810
2811 #define NRUNS   16
2812
2813 CTASSERT(powerof2(NRUNS));
2814
2815 #define RUN_INDEX(count)        ((count) & (NRUNS - 1))
2816
2817 #define MIN_RECLAIM     8
2818
2819 /*
2820  *      vm_page_reclaim_contig:
2821  *
2822  *      Reclaim allocated, contiguous physical memory satisfying the specified
2823  *      conditions by relocating the virtual pages using that physical memory.
2824  *      Returns true if reclamation is successful and false otherwise.  Since
2825  *      relocation requires the allocation of physical pages, reclamation may
2826  *      fail due to a shortage of free pages.  When reclamation fails, callers
2827  *      are expected to perform vm_wait() before retrying a failed allocation
2828  *      operation, e.g., vm_page_alloc_contig().
2829  *
2830  *      The caller must always specify an allocation class through "req".
2831  *
2832  *      allocation classes:
2833  *      VM_ALLOC_NORMAL         normal process request
2834  *      VM_ALLOC_SYSTEM         system *really* needs a page
2835  *      VM_ALLOC_INTERRUPT      interrupt time request
2836  *
2837  *      The optional allocation flags are ignored.
2838  *
2839  *      "npages" must be greater than zero.  Both "alignment" and "boundary"
2840  *      must be a power of two.
2841  */
2842 bool
2843 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
2844     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2845 {
2846         struct vm_domain *vmd;
2847         vm_paddr_t curr_low;
2848         vm_page_t m_run, m_runs[NRUNS];
2849         u_long count, reclaimed;
2850         int error, i, options, req_class;
2851
2852         KASSERT(npages > 0, ("npages is 0"));
2853         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2854         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2855         req_class = req & VM_ALLOC_CLASS_MASK;
2856
2857         /*
2858          * The page daemon is allowed to dig deeper into the free page list.
2859          */
2860         if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2861                 req_class = VM_ALLOC_SYSTEM;
2862
2863         /*
2864          * Return if the number of free pages cannot satisfy the requested
2865          * allocation.
2866          */
2867         vmd = VM_DOMAIN(domain);
2868         count = vmd->vmd_free_count;
2869         if (count < npages + vmd->vmd_free_reserved || (count < npages +
2870             vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
2871             (count < npages && req_class == VM_ALLOC_INTERRUPT))
2872                 return (false);
2873
2874         /*
2875          * Scan up to three times, relaxing the restrictions ("options") on
2876          * the reclamation of reservations and superpages each time.
2877          */
2878         for (options = VPSC_NORESERV;;) {
2879                 /*
2880                  * Find the highest runs that satisfy the given constraints
2881                  * and restrictions, and record them in "m_runs".
2882                  */
2883                 curr_low = low;
2884                 count = 0;
2885                 for (;;) {
2886                         m_run = vm_phys_scan_contig(domain, npages, curr_low,
2887                             high, alignment, boundary, options);
2888                         if (m_run == NULL)
2889                                 break;
2890                         curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
2891                         m_runs[RUN_INDEX(count)] = m_run;
2892                         count++;
2893                 }
2894
2895                 /*
2896                  * Reclaim the highest runs in LIFO (descending) order until
2897                  * the number of reclaimed pages, "reclaimed", is at least
2898                  * MIN_RECLAIM.  Reset "reclaimed" each time because each
2899                  * reclamation is idempotent, and runs will (likely) recur
2900                  * from one scan to the next as restrictions are relaxed.
2901                  */
2902                 reclaimed = 0;
2903                 for (i = 0; count > 0 && i < NRUNS; i++) {
2904                         count--;
2905                         m_run = m_runs[RUN_INDEX(count)];
2906                         error = vm_page_reclaim_run(req_class, domain, npages,
2907                             m_run, high);
2908                         if (error == 0) {
2909                                 reclaimed += npages;
2910                                 if (reclaimed >= MIN_RECLAIM)
2911                                         return (true);
2912                         }
2913                 }
2914
2915                 /*
2916                  * Either relax the restrictions on the next scan or return if
2917                  * the last scan had no restrictions.
2918                  */
2919                 if (options == VPSC_NORESERV)
2920                         options = VPSC_NOSUPER;
2921                 else if (options == VPSC_NOSUPER)
2922                         options = VPSC_ANY;
2923                 else if (options == VPSC_ANY)
2924                         return (reclaimed != 0);
2925         }
2926 }
2927
2928 bool
2929 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
2930     u_long alignment, vm_paddr_t boundary)
2931 {
2932         struct vm_domainset_iter di;
2933         int domain;
2934         bool ret;
2935
2936         vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2937         do {
2938                 ret = vm_page_reclaim_contig_domain(domain, req, npages, low,
2939                     high, alignment, boundary);
2940                 if (ret)
2941                         break;
2942         } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2943
2944         return (ret);
2945 }
2946
2947 /*
2948  * Set the domain in the appropriate page level domainset.
2949  */
2950 void
2951 vm_domain_set(struct vm_domain *vmd)
2952 {
2953
2954         mtx_lock(&vm_domainset_lock);
2955         if (!vmd->vmd_minset && vm_paging_min(vmd)) {
2956                 vmd->vmd_minset = 1;
2957                 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
2958         }
2959         if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
2960                 vmd->vmd_severeset = 1;
2961                 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
2962         }
2963         mtx_unlock(&vm_domainset_lock);
2964 }
2965
2966 /*
2967  * Clear the domain from the appropriate page level domainset.
2968  */
2969 void
2970 vm_domain_clear(struct vm_domain *vmd)
2971 {
2972
2973         mtx_lock(&vm_domainset_lock);
2974         if (vmd->vmd_minset && !vm_paging_min(vmd)) {
2975                 vmd->vmd_minset = 0;
2976                 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
2977                 if (vm_min_waiters != 0) {
2978                         vm_min_waiters = 0;
2979                         wakeup(&vm_min_domains);
2980                 }
2981         }
2982         if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
2983                 vmd->vmd_severeset = 0;
2984                 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
2985                 if (vm_severe_waiters != 0) {
2986                         vm_severe_waiters = 0;
2987                         wakeup(&vm_severe_domains);
2988                 }
2989         }
2990
2991         /*
2992          * If pageout daemon needs pages, then tell it that there are
2993          * some free.
2994          */
2995         if (vmd->vmd_pageout_pages_needed &&
2996             vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
2997                 wakeup(&vmd->vmd_pageout_pages_needed);
2998                 vmd->vmd_pageout_pages_needed = 0;
2999         }
3000
3001         /* See comments in vm_wait_doms(). */
3002         if (vm_pageproc_waiters) {
3003                 vm_pageproc_waiters = 0;
3004                 wakeup(&vm_pageproc_waiters);
3005         }
3006         mtx_unlock(&vm_domainset_lock);
3007 }
3008
3009 /*
3010  * Wait for free pages to exceed the min threshold globally.
3011  */
3012 void
3013 vm_wait_min(void)
3014 {
3015
3016         mtx_lock(&vm_domainset_lock);
3017         while (vm_page_count_min()) {
3018                 vm_min_waiters++;
3019                 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3020         }
3021         mtx_unlock(&vm_domainset_lock);
3022 }
3023
3024 /*
3025  * Wait for free pages to exceed the severe threshold globally.
3026  */
3027 void
3028 vm_wait_severe(void)
3029 {
3030
3031         mtx_lock(&vm_domainset_lock);
3032         while (vm_page_count_severe()) {
3033                 vm_severe_waiters++;
3034                 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3035                     "vmwait", 0);
3036         }
3037         mtx_unlock(&vm_domainset_lock);
3038 }
3039
3040 u_int
3041 vm_wait_count(void)
3042 {
3043
3044         return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3045 }
3046
3047 void
3048 vm_wait_doms(const domainset_t *wdoms)
3049 {
3050
3051         /*
3052          * We use racey wakeup synchronization to avoid expensive global
3053          * locking for the pageproc when sleeping with a non-specific vm_wait.
3054          * To handle this, we only sleep for one tick in this instance.  It
3055          * is expected that most allocations for the pageproc will come from
3056          * kmem or vm_page_grab* which will use the more specific and
3057          * race-free vm_wait_domain().
3058          */
3059         if (curproc == pageproc) {
3060                 mtx_lock(&vm_domainset_lock);
3061                 vm_pageproc_waiters++;
3062                 msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP,
3063                     "pageprocwait", 1);
3064         } else {
3065                 /*
3066                  * XXX Ideally we would wait only until the allocation could
3067                  * be satisfied.  This condition can cause new allocators to
3068                  * consume all freed pages while old allocators wait.
3069                  */
3070                 mtx_lock(&vm_domainset_lock);
3071                 if (vm_page_count_min_set(wdoms)) {
3072                         vm_min_waiters++;
3073                         msleep(&vm_min_domains, &vm_domainset_lock,
3074                             PVM | PDROP, "vmwait", 0);
3075                 } else
3076                         mtx_unlock(&vm_domainset_lock);
3077         }
3078 }
3079
3080 /*
3081  *      vm_wait_domain:
3082  *
3083  *      Sleep until free pages are available for allocation.
3084  *      - Called in various places after failed memory allocations.
3085  */
3086 void
3087 vm_wait_domain(int domain)
3088 {
3089         struct vm_domain *vmd;
3090         domainset_t wdom;
3091
3092         vmd = VM_DOMAIN(domain);
3093         vm_domain_free_assert_unlocked(vmd);
3094
3095         if (curproc == pageproc) {
3096                 mtx_lock(&vm_domainset_lock);
3097                 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3098                         vmd->vmd_pageout_pages_needed = 1;
3099                         msleep(&vmd->vmd_pageout_pages_needed,
3100                             &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3101                 } else
3102                         mtx_unlock(&vm_domainset_lock);
3103         } else {
3104                 if (pageproc == NULL)
3105                         panic("vm_wait in early boot");
3106                 DOMAINSET_ZERO(&wdom);
3107                 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3108                 vm_wait_doms(&wdom);
3109         }
3110 }
3111
3112 /*
3113  *      vm_wait:
3114  *
3115  *      Sleep until free pages are available for allocation in the
3116  *      affinity domains of the obj.  If obj is NULL, the domain set
3117  *      for the calling thread is used.
3118  *      Called in various places after failed memory allocations.
3119  */
3120 void
3121 vm_wait(vm_object_t obj)
3122 {
3123         struct domainset *d;
3124
3125         d = NULL;
3126
3127         /*
3128          * Carefully fetch pointers only once: the struct domainset
3129          * itself is ummutable but the pointer might change.
3130          */
3131         if (obj != NULL)
3132                 d = obj->domain.dr_policy;
3133         if (d == NULL)
3134                 d = curthread->td_domain.dr_policy;
3135
3136         vm_wait_doms(&d->ds_mask);
3137 }
3138
3139 /*
3140  *      vm_domain_alloc_fail:
3141  *
3142  *      Called when a page allocation function fails.  Informs the
3143  *      pagedaemon and performs the requested wait.  Requires the
3144  *      domain_free and object lock on entry.  Returns with the
3145  *      object lock held and free lock released.  Returns an error when
3146  *      retry is necessary.
3147  *
3148  */
3149 static int
3150 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3151 {
3152
3153         vm_domain_free_assert_unlocked(vmd);
3154
3155         atomic_add_int(&vmd->vmd_pageout_deficit,
3156             max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3157         if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3158                 if (object != NULL) 
3159                         VM_OBJECT_WUNLOCK(object);
3160                 vm_wait_domain(vmd->vmd_domain);
3161                 if (object != NULL) 
3162                         VM_OBJECT_WLOCK(object);
3163                 if (req & VM_ALLOC_WAITOK)
3164                         return (EAGAIN);
3165         }
3166
3167         return (0);
3168 }
3169
3170 /*
3171  *      vm_waitpfault:
3172  *
3173  *      Sleep until free pages are available for allocation.
3174  *      - Called only in vm_fault so that processes page faulting
3175  *        can be easily tracked.
3176  *      - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3177  *        processes will be able to grab memory first.  Do not change
3178  *        this balance without careful testing first.
3179  */
3180 void
3181 vm_waitpfault(struct domainset *dset, int timo)
3182 {
3183
3184         /*
3185          * XXX Ideally we would wait only until the allocation could
3186          * be satisfied.  This condition can cause new allocators to
3187          * consume all freed pages while old allocators wait.
3188          */
3189         mtx_lock(&vm_domainset_lock);
3190         if (vm_page_count_min_set(&dset->ds_mask)) {
3191                 vm_min_waiters++;
3192                 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3193                     "pfault", timo);
3194         } else
3195                 mtx_unlock(&vm_domainset_lock);
3196 }
3197
3198 static struct vm_pagequeue *
3199 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3200 {
3201
3202         return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3203 }
3204
3205 #ifdef INVARIANTS
3206 static struct vm_pagequeue *
3207 vm_page_pagequeue(vm_page_t m)
3208 {
3209
3210         return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3211 }
3212 #endif
3213
3214 static __always_inline bool
3215 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3216 {
3217         vm_page_astate_t tmp;
3218
3219         tmp = *old;
3220         do {
3221                 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3222                         return (true);
3223                 counter_u64_add(pqstate_commit_retries, 1);
3224         } while (old->_bits == tmp._bits);
3225
3226         return (false);
3227 }
3228
3229 /*
3230  * Do the work of committing a queue state update that moves the page out of
3231  * its current queue.
3232  */
3233 static bool
3234 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3235     vm_page_astate_t *old, vm_page_astate_t new)
3236 {
3237         vm_page_t next;
3238
3239         vm_pagequeue_assert_locked(pq);
3240         KASSERT(vm_page_pagequeue(m) == pq,
3241             ("%s: queue %p does not match page %p", __func__, pq, m));
3242         KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3243             ("%s: invalid queue indices %d %d",
3244             __func__, old->queue, new.queue));
3245
3246         /*
3247          * Once the queue index of the page changes there is nothing
3248          * synchronizing with further updates to the page's physical
3249          * queue state.  Therefore we must speculatively remove the page
3250          * from the queue now and be prepared to roll back if the queue
3251          * state update fails.  If the page is not physically enqueued then
3252          * we just update its queue index.
3253          */
3254         if ((old->flags & PGA_ENQUEUED) != 0) {
3255                 new.flags &= ~PGA_ENQUEUED;
3256                 next = TAILQ_NEXT(m, plinks.q);
3257                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3258                 vm_pagequeue_cnt_dec(pq);
3259                 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3260                         if (next == NULL)
3261                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3262                         else
3263                                 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3264                         vm_pagequeue_cnt_inc(pq);
3265                         return (false);
3266                 } else {
3267                         return (true);
3268                 }
3269         } else {
3270                 return (vm_page_pqstate_fcmpset(m, old, new));
3271         }
3272 }
3273
3274 static bool
3275 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3276     vm_page_astate_t new)
3277 {
3278         struct vm_pagequeue *pq;
3279         vm_page_astate_t as;
3280         bool ret;
3281
3282         pq = _vm_page_pagequeue(m, old->queue);
3283
3284         /*
3285          * The queue field and PGA_ENQUEUED flag are stable only so long as the
3286          * corresponding page queue lock is held.
3287          */
3288         vm_pagequeue_lock(pq);
3289         as = vm_page_astate_load(m);
3290         if (__predict_false(as._bits != old->_bits)) {
3291                 *old = as;
3292                 ret = false;
3293         } else {
3294                 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3295         }
3296         vm_pagequeue_unlock(pq);
3297         return (ret);
3298 }
3299
3300 /*
3301  * Commit a queue state update that enqueues or requeues a page.
3302  */
3303 static bool
3304 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3305     vm_page_astate_t *old, vm_page_astate_t new)
3306 {
3307         struct vm_domain *vmd;
3308
3309         vm_pagequeue_assert_locked(pq);
3310         KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3311             ("%s: invalid queue indices %d %d",
3312             __func__, old->queue, new.queue));
3313
3314         new.flags |= PGA_ENQUEUED;
3315         if (!vm_page_pqstate_fcmpset(m, old, new))
3316                 return (false);
3317
3318         if ((old->flags & PGA_ENQUEUED) != 0)
3319                 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3320         else
3321                 vm_pagequeue_cnt_inc(pq);
3322
3323         /*
3324          * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE.  In particular, if
3325          * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3326          * applied, even if it was set first.
3327          */
3328         if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3329                 vmd = vm_pagequeue_domain(m);
3330                 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3331                     ("%s: invalid page queue for page %p", __func__, m));
3332                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3333         } else {
3334                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3335         }
3336         return (true);
3337 }
3338
3339 /*
3340  * Commit a queue state update that encodes a request for a deferred queue
3341  * operation.
3342  */
3343 static bool
3344 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3345     vm_page_astate_t new)
3346 {
3347
3348         KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3349             ("%s: invalid state, queue %d flags %x",
3350             __func__, new.queue, new.flags));
3351
3352         if (old->_bits != new._bits &&
3353             !vm_page_pqstate_fcmpset(m, old, new))
3354                 return (false);
3355         vm_page_pqbatch_submit(m, new.queue);
3356         return (true);
3357 }
3358
3359 /*
3360  * A generic queue state update function.  This handles more cases than the
3361  * specialized functions above.
3362  */
3363 bool
3364 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3365 {
3366
3367         if (old->_bits == new._bits)
3368                 return (true);
3369
3370         if (old->queue != PQ_NONE && new.queue != old->queue) {
3371                 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3372                         return (false);
3373                 if (new.queue != PQ_NONE)
3374                         vm_page_pqbatch_submit(m, new.queue);
3375         } else {
3376                 if (!vm_page_pqstate_fcmpset(m, old, new))
3377                         return (false);
3378                 if (new.queue != PQ_NONE &&
3379                     ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3380                         vm_page_pqbatch_submit(m, new.queue);
3381         }
3382         return (true);
3383 }
3384
3385 /*
3386  * Apply deferred queue state updates to a page.
3387  */
3388 static inline void
3389 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3390 {
3391         vm_page_astate_t new, old;
3392
3393         CRITICAL_ASSERT(curthread);
3394         vm_pagequeue_assert_locked(pq);
3395         KASSERT(queue < PQ_COUNT,
3396             ("%s: invalid queue index %d", __func__, queue));
3397         KASSERT(pq == _vm_page_pagequeue(m, queue),
3398             ("%s: page %p does not belong to queue %p", __func__, m, pq));
3399
3400         for (old = vm_page_astate_load(m);;) {
3401                 if (__predict_false(old.queue != queue ||
3402                     (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3403                         counter_u64_add(queue_nops, 1);
3404                         break;
3405                 }
3406                 KASSERT(old.queue != PQ_NONE || (old.flags & PGA_QUEUE_STATE_MASK) == 0,
3407                     ("%s: page %p has unexpected queue state", __func__, m));
3408
3409                 new = old;
3410                 if ((old.flags & PGA_DEQUEUE) != 0) {
3411                         new.flags &= ~PGA_QUEUE_OP_MASK;
3412                         new.queue = PQ_NONE;
3413                         if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3414                             m, &old, new))) {
3415                                 counter_u64_add(queue_ops, 1);
3416                                 break;
3417                         }
3418                 } else {
3419                         new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3420                         if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3421                             m, &old, new))) {
3422                                 counter_u64_add(queue_ops, 1);
3423                                 break;
3424                         }
3425                 }
3426         }
3427 }
3428
3429 static void
3430 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3431     uint8_t queue)
3432 {
3433         int i;
3434
3435         for (i = 0; i < bq->bq_cnt; i++)
3436                 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3437         vm_batchqueue_init(bq);
3438 }
3439
3440 /*
3441  *      vm_page_pqbatch_submit:         [ internal use only ]
3442  *
3443  *      Enqueue a page in the specified page queue's batched work queue.
3444  *      The caller must have encoded the requested operation in the page
3445  *      structure's a.flags field.
3446  */
3447 void
3448 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3449 {
3450         struct vm_batchqueue *bq;
3451         struct vm_pagequeue *pq;
3452         int domain;
3453
3454         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3455             ("page %p is unmanaged", m));
3456         KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3457
3458         domain = vm_phys_domain(m);
3459         pq = &vm_pagequeue_domain(m)->vmd_pagequeues[queue];
3460
3461         critical_enter();
3462         bq = DPCPU_PTR(pqbatch[domain][queue]);
3463         if (vm_batchqueue_insert(bq, m)) {
3464                 critical_exit();
3465                 return;
3466         }
3467         critical_exit();
3468         vm_pagequeue_lock(pq);
3469         critical_enter();
3470         bq = DPCPU_PTR(pqbatch[domain][queue]);
3471         vm_pqbatch_process(pq, bq, queue);
3472         vm_pqbatch_process_page(pq, m, queue);
3473         vm_pagequeue_unlock(pq);
3474         critical_exit();
3475 }
3476
3477 /*
3478  *      vm_page_pqbatch_drain:          [ internal use only ]
3479  *
3480  *      Force all per-CPU page queue batch queues to be drained.  This is
3481  *      intended for use in severe memory shortages, to ensure that pages
3482  *      do not remain stuck in the batch queues.
3483  */
3484 void
3485 vm_page_pqbatch_drain(void)
3486 {
3487         struct thread *td;
3488         struct vm_domain *vmd;
3489         struct vm_pagequeue *pq;
3490         int cpu, domain, queue;
3491
3492         td = curthread;
3493         CPU_FOREACH(cpu) {
3494                 thread_lock(td);
3495                 sched_bind(td, cpu);
3496                 thread_unlock(td);
3497
3498                 for (domain = 0; domain < vm_ndomains; domain++) {
3499                         vmd = VM_DOMAIN(domain);
3500                         for (queue = 0; queue < PQ_COUNT; queue++) {
3501                                 pq = &vmd->vmd_pagequeues[queue];
3502                                 vm_pagequeue_lock(pq);
3503                                 critical_enter();
3504                                 vm_pqbatch_process(pq,
3505                                     DPCPU_PTR(pqbatch[domain][queue]), queue);
3506                                 critical_exit();
3507                                 vm_pagequeue_unlock(pq);
3508                         }
3509                 }
3510         }
3511         thread_lock(td);
3512         sched_unbind(td);
3513         thread_unlock(td);
3514 }
3515
3516 /*
3517  *      vm_page_dequeue_deferred:       [ internal use only ]
3518  *
3519  *      Request removal of the given page from its current page
3520  *      queue.  Physical removal from the queue may be deferred
3521  *      indefinitely.
3522  *
3523  *      The page must be locked.
3524  */
3525 void
3526 vm_page_dequeue_deferred(vm_page_t m)
3527 {
3528         vm_page_astate_t new, old;
3529
3530         old = vm_page_astate_load(m);
3531         do {
3532                 if (old.queue == PQ_NONE) {
3533                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3534                             ("%s: page %p has unexpected queue state",
3535                             __func__, m));
3536                         break;
3537                 }
3538                 new = old;
3539                 new.flags |= PGA_DEQUEUE;
3540         } while (!vm_page_pqstate_commit_request(m, &old, new));
3541 }
3542
3543 /*
3544  *      vm_page_dequeue:
3545  *
3546  *      Remove the page from whichever page queue it's in, if any, before
3547  *      returning.
3548  */
3549 void
3550 vm_page_dequeue(vm_page_t m)
3551 {
3552         vm_page_astate_t new, old;
3553
3554         old = vm_page_astate_load(m);
3555         do {
3556                 if (old.queue == PQ_NONE) {
3557                         KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
3558                             ("%s: page %p has unexpected queue state",
3559                             __func__, m));
3560                         break;
3561                 }
3562                 new = old;
3563                 new.flags &= ~PGA_QUEUE_OP_MASK;
3564                 new.queue = PQ_NONE;
3565         } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
3566
3567 }
3568
3569 /*
3570  * Schedule the given page for insertion into the specified page queue.
3571  * Physical insertion of the page may be deferred indefinitely.
3572  */
3573 static void
3574 vm_page_enqueue(vm_page_t m, uint8_t queue)
3575 {
3576
3577         KASSERT(m->a.queue == PQ_NONE &&
3578             (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
3579             ("%s: page %p is already enqueued", __func__, m));
3580         KASSERT(m->ref_count > 0,
3581             ("%s: page %p does not carry any references", __func__, m));
3582
3583         m->a.queue = queue;
3584         if ((m->a.flags & PGA_REQUEUE) == 0)
3585                 vm_page_aflag_set(m, PGA_REQUEUE);
3586         vm_page_pqbatch_submit(m, queue);
3587 }
3588
3589 /*
3590  *      vm_page_free_prep:
3591  *
3592  *      Prepares the given page to be put on the free list,
3593  *      disassociating it from any VM object. The caller may return
3594  *      the page to the free list only if this function returns true.
3595  *
3596  *      The object must be locked.  The page must be locked if it is
3597  *      managed.
3598  */
3599 static bool
3600 vm_page_free_prep(vm_page_t m)
3601 {
3602
3603         /*
3604          * Synchronize with threads that have dropped a reference to this
3605          * page.
3606          */
3607         atomic_thread_fence_acq();
3608
3609 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
3610         if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
3611                 uint64_t *p;
3612                 int i;
3613                 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3614                 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
3615                         KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
3616                             m, i, (uintmax_t)*p));
3617         }
3618 #endif
3619         if ((m->oflags & VPO_UNMANAGED) == 0) {
3620                 KASSERT(!pmap_page_is_mapped(m),
3621                     ("vm_page_free_prep: freeing mapped page %p", m));
3622                 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
3623                     ("vm_page_free_prep: mapping flags set in page %p", m));
3624         } else {
3625                 KASSERT(m->a.queue == PQ_NONE,
3626                     ("vm_page_free_prep: unmanaged page %p is queued", m));
3627         }
3628         VM_CNT_INC(v_tfree);
3629
3630         if (m->object != NULL) {
3631                 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
3632                     ((m->object->flags & OBJ_UNMANAGED) != 0),
3633                     ("vm_page_free_prep: managed flag mismatch for page %p",
3634                     m));
3635                 vm_page_assert_xbusied(m);
3636
3637                 /*
3638                  * The object reference can be released without an atomic
3639                  * operation.
3640                  */
3641                 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
3642                     m->ref_count == VPRC_OBJREF,
3643                     ("vm_page_free_prep: page %p has unexpected ref_count %u",
3644                     m, m->ref_count));
3645                 vm_page_object_remove(m);
3646                 m->object = NULL;
3647                 m->ref_count -= VPRC_OBJREF;
3648         } else
3649                 vm_page_assert_unbusied(m);
3650
3651         vm_page_busy_free(m);
3652
3653         /*
3654          * If fictitious remove object association and
3655          * return.
3656          */
3657         if ((m->flags & PG_FICTITIOUS) != 0) {
3658                 KASSERT(m->ref_count == 1,
3659                     ("fictitious page %p is referenced", m));
3660                 KASSERT(m->a.queue == PQ_NONE,
3661                     ("fictitious page %p is queued", m));
3662                 return (false);
3663         }
3664
3665         /*
3666          * Pages need not be dequeued before they are returned to the physical
3667          * memory allocator, but they must at least be marked for a deferred
3668          * dequeue.
3669          */
3670         if ((m->oflags & VPO_UNMANAGED) == 0)
3671                 vm_page_dequeue_deferred(m);
3672
3673         m->valid = 0;
3674         vm_page_undirty(m);
3675
3676         if (m->ref_count != 0)
3677                 panic("vm_page_free_prep: page %p has references", m);
3678
3679         /*
3680          * Restore the default memory attribute to the page.
3681          */
3682         if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
3683                 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
3684
3685 #if VM_NRESERVLEVEL > 0
3686         /*
3687          * Determine whether the page belongs to a reservation.  If the page was
3688          * allocated from a per-CPU cache, it cannot belong to a reservation, so
3689          * as an optimization, we avoid the check in that case.
3690          */
3691         if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
3692                 return (false);
3693 #endif
3694
3695         return (true);
3696 }
3697
3698 /*
3699  *      vm_page_free_toq:
3700  *
3701  *      Returns the given page to the free list, disassociating it
3702  *      from any VM object.
3703  *
3704  *      The object must be locked.  The page must be locked if it is
3705  *      managed.
3706  */
3707 static void
3708 vm_page_free_toq(vm_page_t m)
3709 {
3710         struct vm_domain *vmd;
3711         uma_zone_t zone;
3712
3713         if (!vm_page_free_prep(m))
3714                 return;
3715
3716         vmd = vm_pagequeue_domain(m);
3717         zone = vmd->vmd_pgcache[m->pool].zone;
3718         if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
3719                 uma_zfree(zone, m);
3720                 return;
3721         }
3722         vm_domain_free_lock(vmd);
3723         vm_phys_free_pages(m, 0);
3724         vm_domain_free_unlock(vmd);
3725         vm_domain_freecnt_inc(vmd, 1);
3726 }
3727
3728 /*
3729  *      vm_page_free_pages_toq:
3730  *
3731  *      Returns a list of pages to the free list, disassociating it
3732  *      from any VM object.  In other words, this is equivalent to
3733  *      calling vm_page_free_toq() for each page of a list of VM objects.
3734  *
3735  *      The objects must be locked.  The pages must be locked if it is
3736  *      managed.
3737  */
3738 void
3739 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
3740 {
3741         vm_page_t m;
3742         int count;
3743
3744         if (SLIST_EMPTY(free))
3745                 return;
3746
3747         count = 0;
3748         while ((m = SLIST_FIRST(free)) != NULL) {
3749                 count++;
3750                 SLIST_REMOVE_HEAD(free, plinks.s.ss);
3751                 vm_page_free_toq(m);
3752         }
3753
3754         if (update_wire_count)
3755                 vm_wire_sub(count);
3756 }
3757
3758 /*
3759  * Mark this page as wired down, preventing reclamation by the page daemon
3760  * or when the containing object is destroyed.
3761  */
3762 void
3763 vm_page_wire(vm_page_t m)
3764 {
3765         u_int old;
3766
3767         KASSERT(m->object != NULL,
3768             ("vm_page_wire: page %p does not belong to an object", m));
3769         if (!vm_page_busied(m) && !vm_object_busied(m->object))
3770                 VM_OBJECT_ASSERT_LOCKED(m->object);
3771         KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
3772             VPRC_WIRE_COUNT(m->ref_count) >= 1,
3773             ("vm_page_wire: fictitious page %p has zero wirings", m));
3774
3775         old = atomic_fetchadd_int(&m->ref_count, 1);
3776         KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
3777             ("vm_page_wire: counter overflow for page %p", m));
3778         if (VPRC_WIRE_COUNT(old) == 0) {
3779                 if ((m->oflags & VPO_UNMANAGED) == 0)
3780                         vm_page_aflag_set(m, PGA_DEQUEUE);
3781                 vm_wire_add(1);
3782         }
3783 }
3784
3785 /*
3786  * Attempt to wire a mapped page following a pmap lookup of that page.
3787  * This may fail if a thread is concurrently tearing down mappings of the page.
3788  * The transient failure is acceptable because it translates to the
3789  * failure of the caller pmap_extract_and_hold(), which should be then
3790  * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
3791  */
3792 bool
3793 vm_page_wire_mapped(vm_page_t m)
3794 {
3795         u_int old;
3796
3797         old = m->ref_count;
3798         do {
3799                 KASSERT(old > 0,
3800                     ("vm_page_wire_mapped: wiring unreferenced page %p", m));
3801                 if ((old & VPRC_BLOCKED) != 0)
3802                         return (false);
3803         } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
3804
3805         if (VPRC_WIRE_COUNT(old) == 0) {
3806                 if ((m->oflags & VPO_UNMANAGED) == 0)
3807                         vm_page_aflag_set(m, PGA_DEQUEUE);
3808                 vm_wire_add(1);
3809         }
3810         return (true);
3811 }
3812
3813 /*
3814  * Release a wiring reference to a managed page.  If the page still belongs to
3815  * an object, update its position in the page queues to reflect the reference.
3816  * If the wiring was the last reference to the page, free the page.
3817  */
3818 static void
3819 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
3820 {
3821         u_int old;
3822
3823         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3824             ("%s: page %p is unmanaged", __func__, m));
3825
3826         /*
3827          * Update LRU state before releasing the wiring reference.
3828          * Use a release store when updating the reference count to
3829          * synchronize with vm_page_free_prep().
3830          */
3831         old = m->ref_count;
3832         do {
3833                 KASSERT(VPRC_WIRE_COUNT(old) > 0,
3834                     ("vm_page_unwire: wire count underflow for page %p", m));
3835
3836                 if (old > VPRC_OBJREF + 1) {
3837                         /*
3838                          * The page has at least one other wiring reference.  An
3839                          * earlier iteration of this loop may have called
3840                          * vm_page_release_toq() and cleared PGA_DEQUEUE, so
3841                          * re-set it if necessary.
3842                          */
3843                         if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
3844                                 vm_page_aflag_set(m, PGA_DEQUEUE);
3845                 } else if (old == VPRC_OBJREF + 1) {
3846                         /*
3847                          * This is the last wiring.  Clear PGA_DEQUEUE and
3848                          * update the page's queue state to reflect the
3849                          * reference.  If the page does not belong to an object
3850                          * (i.e., the VPRC_OBJREF bit is clear), we only need to
3851                          * clear leftover queue state.
3852                          */
3853                         vm_page_release_toq(m, nqueue, false);
3854                 } else if (old == 1) {
3855                         vm_page_aflag_clear(m, PGA_DEQUEUE);
3856                 }
3857         } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
3858
3859         if (VPRC_WIRE_COUNT(old) == 1) {
3860                 vm_wire_sub(1);
3861                 if (old == 1)
3862                         vm_page_free(m);
3863         }
3864 }
3865
3866 /*
3867  * Release one wiring of the specified page, potentially allowing it to be
3868  * paged out.
3869  *
3870  * Only managed pages belonging to an object can be paged out.  If the number
3871  * of wirings transitions to zero and the page is eligible for page out, then
3872  * the page is added to the specified paging queue.  If the released wiring
3873  * represented the last reference to the page, the page is freed.
3874  *
3875  * A managed page must be locked.
3876  */
3877 void
3878 vm_page_unwire(vm_page_t m, uint8_t nqueue)
3879 {
3880
3881         KASSERT(nqueue < PQ_COUNT,
3882             ("vm_page_unwire: invalid queue %u request for page %p",
3883             nqueue, m));
3884
3885         if ((m->oflags & VPO_UNMANAGED) != 0) {
3886                 if (vm_page_unwire_noq(m) && m->ref_count == 0)
3887                         vm_page_free(m);
3888                 return;
3889         }
3890         vm_page_unwire_managed(m, nqueue, false);
3891 }
3892
3893 /*
3894  * Unwire a page without (re-)inserting it into a page queue.  It is up
3895  * to the caller to enqueue, requeue, or free the page as appropriate.
3896  * In most cases involving managed pages, vm_page_unwire() should be used
3897  * instead.
3898  */
3899 bool
3900 vm_page_unwire_noq(vm_page_t m)
3901 {
3902         u_int old;
3903
3904         old = vm_page_drop(m, 1);
3905         KASSERT(VPRC_WIRE_COUNT(old) != 0,
3906             ("vm_page_unref: counter underflow for page %p", m));
3907         KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
3908             ("vm_page_unref: missing ref on fictitious page %p", m));
3909
3910         if (VPRC_WIRE_COUNT(old) > 1)
3911                 return (false);
3912         if ((m->oflags & VPO_UNMANAGED) == 0)
3913                 vm_page_aflag_clear(m, PGA_DEQUEUE);
3914         vm_wire_sub(1);
3915         return (true);
3916 }
3917
3918 /*
3919  * Ensure that the page ends up in the specified page queue.  If the page is
3920  * active or being moved to the active queue, ensure that its act_count is
3921  * at least ACT_INIT but do not otherwise mess with it.
3922  *
3923  * A managed page must be locked.
3924  */
3925 static __always_inline void
3926 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
3927 {
3928         vm_page_astate_t old, new;
3929
3930         KASSERT(m->ref_count > 0,
3931             ("%s: page %p does not carry any references", __func__, m));
3932         KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
3933             ("%s: invalid flags %x", __func__, nflag));
3934
3935         if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
3936                 return;
3937
3938         old = vm_page_astate_load(m);
3939         do {
3940                 if ((old.flags & PGA_DEQUEUE) != 0)
3941                         break;
3942                 new = old;
3943                 new.flags &= ~PGA_QUEUE_OP_MASK;
3944                 if (nqueue == PQ_ACTIVE)
3945                         new.act_count = max(old.act_count, ACT_INIT);
3946                 if (old.queue == nqueue) {
3947                         if (nqueue != PQ_ACTIVE)
3948                                 new.flags |= nflag;
3949                 } else {
3950                         new.flags |= nflag;
3951                         new.queue = nqueue;
3952                 }
3953         } while (!vm_page_pqstate_commit(m, &old, new));
3954 }
3955
3956 /*
3957  * Put the specified page on the active list (if appropriate).
3958  */
3959 void
3960 vm_page_activate(vm_page_t m)
3961 {
3962
3963         vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
3964 }
3965
3966 /*
3967  * Move the specified page to the tail of the inactive queue, or requeue
3968  * the page if it is already in the inactive queue.
3969  */
3970 void
3971 vm_page_deactivate(vm_page_t m)
3972 {
3973
3974         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
3975 }
3976
3977 void
3978 vm_page_deactivate_noreuse(vm_page_t m)
3979 {
3980
3981         vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
3982 }
3983
3984 /*
3985  * Put a page in the laundry, or requeue it if it is already there.
3986  */
3987 void
3988 vm_page_launder(vm_page_t m)
3989 {
3990
3991         vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
3992 }
3993
3994 /*
3995  * Put a page in the PQ_UNSWAPPABLE holding queue.
3996  */
3997 void
3998 vm_page_unswappable(vm_page_t m)
3999 {
4000
4001         KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0,
4002             ("page %p already unswappable", m));
4003
4004         vm_page_dequeue(m);
4005         vm_page_enqueue(m, PQ_UNSWAPPABLE);
4006 }
4007
4008 /*
4009  * Release a page back to the page queues in preparation for unwiring.
4010  */
4011 static void
4012 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4013 {
4014         vm_page_astate_t old, new;
4015         uint16_t nflag;
4016
4017         /*
4018          * Use a check of the valid bits to determine whether we should
4019          * accelerate reclamation of the page.  The object lock might not be
4020          * held here, in which case the check is racy.  At worst we will either
4021          * accelerate reclamation of a valid page and violate LRU, or
4022          * unnecessarily defer reclamation of an invalid page.
4023          *
4024          * If we were asked to not cache the page, place it near the head of the
4025          * inactive queue so that is reclaimed sooner.
4026          */
4027         if (noreuse || m->valid == 0) {
4028                 nqueue = PQ_INACTIVE;
4029                 nflag = PGA_REQUEUE_HEAD;
4030         } else {
4031                 nflag = PGA_REQUEUE;
4032         }
4033
4034         old = vm_page_astate_load(m);
4035         do {
4036                 new = old;
4037
4038                 /*
4039                  * If the page is already in the active queue and we are not
4040                  * trying to accelerate reclamation, simply mark it as
4041                  * referenced and avoid any queue operations.
4042                  */
4043                 new.flags &= ~PGA_QUEUE_OP_MASK;
4044                 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE)
4045                         new.flags |= PGA_REFERENCED;
4046                 else {
4047                         new.flags |= nflag;
4048                         new.queue = nqueue;
4049                 }
4050         } while (!vm_page_pqstate_commit(m, &old, new));
4051 }
4052
4053 /*
4054  * Unwire a page and either attempt to free it or re-add it to the page queues.
4055  */
4056 void
4057 vm_page_release(vm_page_t m, int flags)
4058 {
4059         vm_object_t object;
4060
4061         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4062             ("vm_page_release: page %p is unmanaged", m));
4063
4064         if ((flags & VPR_TRYFREE) != 0) {
4065                 for (;;) {
4066                         object = atomic_load_ptr(&m->object);
4067                         if (object == NULL)
4068                                 break;
4069                         /* Depends on type-stability. */
4070                         if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4071                                 break;
4072                         if (object == m->object) {
4073                                 vm_page_release_locked(m, flags);
4074                                 VM_OBJECT_WUNLOCK(object);
4075                                 return;
4076                         }
4077                         VM_OBJECT_WUNLOCK(object);
4078                 }
4079         }
4080         vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4081 }
4082
4083 /* See vm_page_release(). */
4084 void
4085 vm_page_release_locked(vm_page_t m, int flags)
4086 {
4087
4088         VM_OBJECT_ASSERT_WLOCKED(m->object);
4089         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4090             ("vm_page_release_locked: page %p is unmanaged", m));
4091
4092         if (vm_page_unwire_noq(m)) {
4093                 if ((flags & VPR_TRYFREE) != 0 &&
4094                     (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4095                     m->dirty == 0 && vm_page_tryxbusy(m)) {
4096                         vm_page_free(m);
4097                 } else {
4098                         vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4099                 }
4100         }
4101 }
4102
4103 static bool
4104 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4105 {
4106         u_int old;
4107
4108         KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4109             ("vm_page_try_blocked_op: page %p has no object", m));
4110         KASSERT(vm_page_busied(m),
4111             ("vm_page_try_blocked_op: page %p is not busy", m));
4112         VM_OBJECT_ASSERT_LOCKED(m->object);
4113
4114         old = m->ref_count;
4115         do {
4116                 KASSERT(old != 0,
4117                     ("vm_page_try_blocked_op: page %p has no references", m));
4118                 if (VPRC_WIRE_COUNT(old) != 0)
4119                         return (false);
4120         } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4121
4122         (op)(m);
4123
4124         /*
4125          * If the object is read-locked, new wirings may be created via an
4126          * object lookup.
4127          */
4128         old = vm_page_drop(m, VPRC_BLOCKED);
4129         KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4130             old == (VPRC_BLOCKED | VPRC_OBJREF),
4131             ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4132             old, m));
4133         return (true);
4134 }
4135
4136 /*
4137  * Atomically check for wirings and remove all mappings of the page.
4138  */
4139 bool
4140 vm_page_try_remove_all(vm_page_t m)
4141 {
4142
4143         return (vm_page_try_blocked_op(m, pmap_remove_all));
4144 }
4145
4146 /*
4147  * Atomically check for wirings and remove all writeable mappings of the page.
4148  */
4149 bool
4150 vm_page_try_remove_write(vm_page_t m)
4151 {
4152
4153         return (vm_page_try_blocked_op(m, pmap_remove_write));
4154 }
4155
4156 /*
4157  * vm_page_advise
4158  *
4159  *      Apply the specified advice to the given page.
4160  *
4161  *      The object and page must be locked.
4162  */
4163 void
4164 vm_page_advise(vm_page_t m, int advice)
4165 {
4166
4167         VM_OBJECT_ASSERT_WLOCKED(m->object);
4168         if (advice == MADV_FREE)
4169                 /*
4170                  * Mark the page clean.  This will allow the page to be freed
4171                  * without first paging it out.  MADV_FREE pages are often
4172                  * quickly reused by malloc(3), so we do not do anything that
4173                  * would result in a page fault on a later access.
4174                  */
4175                 vm_page_undirty(m);
4176         else if (advice != MADV_DONTNEED) {
4177                 if (advice == MADV_WILLNEED)
4178                         vm_page_activate(m);
4179                 return;
4180         }
4181
4182         if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4183                 vm_page_dirty(m);
4184
4185         /*
4186          * Clear any references to the page.  Otherwise, the page daemon will
4187          * immediately reactivate the page.
4188          */
4189         vm_page_aflag_clear(m, PGA_REFERENCED);
4190
4191         /*
4192          * Place clean pages near the head of the inactive queue rather than
4193          * the tail, thus defeating the queue's LRU operation and ensuring that
4194          * the page will be reused quickly.  Dirty pages not already in the
4195          * laundry are moved there.
4196          */
4197         if (m->dirty == 0)
4198                 vm_page_deactivate_noreuse(m);
4199         else if (!vm_page_in_laundry(m))
4200                 vm_page_launder(m);
4201 }
4202
4203 static inline int
4204 vm_page_grab_pflags(int allocflags)
4205 {
4206         int pflags;
4207
4208         KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4209             (allocflags & VM_ALLOC_WIRED) != 0,
4210             ("vm_page_grab_pflags: the pages must be busied or wired"));
4211         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4212             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4213             ("vm_page_grab_pflags: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
4214             "mismatch"));
4215         pflags = allocflags &
4216             ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4217             VM_ALLOC_NOBUSY);
4218         if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4219                 pflags |= VM_ALLOC_WAITFAIL;
4220         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4221                 pflags |= VM_ALLOC_SBUSY;
4222
4223         return (pflags);
4224 }
4225
4226 /*
4227  * Grab a page, waiting until we are waken up due to the page
4228  * changing state.  We keep on waiting, if the page continues
4229  * to be in the object.  If the page doesn't exist, first allocate it
4230  * and then conditionally zero it.
4231  *
4232  * This routine may sleep.
4233  *
4234  * The object must be locked on entry.  The lock will, however, be released
4235  * and reacquired if the routine sleeps.
4236  */
4237 vm_page_t
4238 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4239 {
4240         vm_page_t m;
4241         int pflags;
4242
4243         VM_OBJECT_ASSERT_WLOCKED(object);
4244         pflags = vm_page_grab_pflags(allocflags);
4245 retrylookup:
4246         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4247                 if (!vm_page_acquire_flags(m, allocflags)) {
4248                         if (vm_page_busy_sleep_flags(object, m, "pgrbwt",
4249                             allocflags))
4250                                 goto retrylookup;
4251                         return (NULL);
4252                 }
4253                 goto out;
4254         }
4255         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4256                 return (NULL);
4257         m = vm_page_alloc(object, pindex, pflags);
4258         if (m == NULL) {
4259                 if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4260                         return (NULL);
4261                 goto retrylookup;
4262         }
4263         if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
4264                 pmap_zero_page(m);
4265
4266 out:
4267         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4268                 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4269                         vm_page_sunbusy(m);
4270                 else
4271                         vm_page_xunbusy(m);
4272         }
4273         return (m);
4274 }
4275
4276 /*
4277  * Grab a page and make it valid, paging in if necessary.  Pages missing from
4278  * their pager are zero filled and validated.  If a VM_ALLOC_COUNT is supplied
4279  * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4280  * in simultaneously.  Additional pages will be left on a paging queue but
4281  * will neither be wired nor busy regardless of allocflags.
4282  */
4283 int
4284 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags)
4285 {
4286         vm_page_t m;
4287         vm_page_t ma[VM_INITIAL_PAGEIN];
4288         bool sleep, xbusy;
4289         int after, i, pflags, rv;
4290
4291         KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4292             (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4293             ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4294         KASSERT((allocflags &
4295             (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4296             ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4297         VM_OBJECT_ASSERT_WLOCKED(object);
4298         pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY);
4299         pflags |= VM_ALLOC_WAITFAIL;
4300
4301 retrylookup:
4302         xbusy = false;
4303         if ((m = vm_page_lookup(object, pindex)) != NULL) {
4304                 /*
4305                  * If the page is fully valid it can only become invalid
4306                  * with the object lock held.  If it is not valid it can
4307                  * become valid with the busy lock held.  Therefore, we
4308                  * may unnecessarily lock the exclusive busy here if we
4309                  * race with I/O completion not using the object lock.
4310                  * However, we will not end up with an invalid page and a
4311                  * shared lock.
4312                  */
4313                 if (!vm_page_all_valid(m) ||
4314                     (allocflags & (VM_ALLOC_IGN_SBUSY | VM_ALLOC_SBUSY)) == 0) {
4315                         sleep = !vm_page_tryxbusy(m);
4316                         xbusy = true;
4317                 } else
4318                         sleep = !vm_page_trysbusy(m);
4319                 if (sleep) {
4320                         (void)vm_page_busy_sleep_flags(object, m, "pgrbwt",
4321                             allocflags);
4322                         goto retrylookup;
4323                 }
4324                 if ((allocflags & VM_ALLOC_NOCREAT) != 0 &&
4325                    !vm_page_all_valid(m)) {
4326                         if (xbusy)
4327                                 vm_page_xunbusy(m);
4328                         else
4329                                 vm_page_sunbusy(m);
4330                         *mp = NULL;
4331                         return (VM_PAGER_FAIL);
4332                 }
4333                 if ((allocflags & VM_ALLOC_WIRED) != 0)
4334                         vm_page_wire(m);
4335                 if (vm_page_all_valid(m))
4336                         goto out;
4337         } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4338                 *mp = NULL;
4339                 return (VM_PAGER_FAIL);
4340         } else if ((m = vm_page_alloc(object, pindex, pflags)) != NULL) {
4341                 xbusy = true;
4342         } else {
4343                 goto retrylookup;
4344         }
4345
4346         vm_page_assert_xbusied(m);
4347         MPASS(xbusy);
4348         if (vm_pager_has_page(object, pindex, NULL, &after)) {
4349                 after = MIN(after, VM_INITIAL_PAGEIN);
4350                 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
4351                 after = MAX(after, 1);
4352                 ma[0] = m;
4353                 for (i = 1; i < after; i++) {
4354                         if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) {
4355                                 if (ma[i]->valid || !vm_page_tryxbusy(ma[i]))
4356                                         break;
4357                         } else {
4358                                 ma[i] = vm_page_alloc(object, m->pindex + i,
4359                                     VM_ALLOC_NORMAL);
4360                                 if (ma[i] == NULL)
4361                                         break;
4362                         }
4363                 }
4364                 after = i;
4365                 vm_object_pip_add(object, after);
4366                 VM_OBJECT_WUNLOCK(object);
4367                 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
4368                 VM_OBJECT_WLOCK(object);
4369                 vm_object_pip_wakeupn(object, after);
4370                 /* Pager may have replaced a page. */
4371                 m = ma[0];
4372                 if (rv != VM_PAGER_OK) {
4373                         if ((allocflags & VM_ALLOC_WIRED) != 0)
4374                                 vm_page_unwire_noq(m);
4375                         for (i = 0; i < after; i++) {
4376                                 if (!vm_page_wired(ma[i]))
4377                                         vm_page_free(ma[i]);
4378                                 else
4379                                         vm_page_xunbusy(ma[i]);
4380                         }
4381                         *mp = NULL;
4382                         return (rv);
4383                 }
4384                 for (i = 1; i < after; i++)
4385                         vm_page_readahead_finish(ma[i]);
4386                 MPASS(vm_page_all_valid(m));
4387         } else {
4388                 vm_page_zero_invalid(m, TRUE);
4389         }
4390 out:
4391         if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4392                 if (xbusy)
4393                         vm_page_xunbusy(m);
4394                 else
4395                         vm_page_sunbusy(m);
4396         }
4397         if ((allocflags & VM_ALLOC_SBUSY) != 0 && xbusy)
4398                 vm_page_busy_downgrade(m);
4399         *mp = m;
4400         return (VM_PAGER_OK);
4401 }
4402
4403 /*
4404  * Return the specified range of pages from the given object.  For each
4405  * page offset within the range, if a page already exists within the object
4406  * at that offset and it is busy, then wait for it to change state.  If,
4407  * instead, the page doesn't exist, then allocate it.
4408  *
4409  * The caller must always specify an allocation class.
4410  *
4411  * allocation classes:
4412  *      VM_ALLOC_NORMAL         normal process request
4413  *      VM_ALLOC_SYSTEM         system *really* needs the pages
4414  *
4415  * The caller must always specify that the pages are to be busied and/or
4416  * wired.
4417  *
4418  * optional allocation flags:
4419  *      VM_ALLOC_IGN_SBUSY      do not sleep on soft busy pages
4420  *      VM_ALLOC_NOBUSY         do not exclusive busy the page
4421  *      VM_ALLOC_NOWAIT         do not sleep
4422  *      VM_ALLOC_SBUSY          set page to sbusy state
4423  *      VM_ALLOC_WIRED          wire the pages
4424  *      VM_ALLOC_ZERO           zero and validate any invalid pages
4425  *
4426  * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
4427  * may return a partial prefix of the requested range.
4428  */
4429 int
4430 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
4431     vm_page_t *ma, int count)
4432 {
4433         vm_page_t m, mpred;
4434         int pflags;
4435         int i;
4436
4437         VM_OBJECT_ASSERT_WLOCKED(object);
4438         KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
4439             ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
4440
4441         pflags = vm_page_grab_pflags(allocflags);
4442         if (count == 0)
4443                 return (0);
4444
4445         i = 0;
4446 retrylookup:
4447         m = vm_radix_lookup_le(&object->rtree, pindex + i);
4448         if (m == NULL || m->pindex != pindex + i) {
4449                 mpred = m;
4450                 m = NULL;
4451         } else
4452                 mpred = TAILQ_PREV(m, pglist, listq);
4453         for (; i < count; i++) {
4454                 if (m != NULL) {
4455                         if (!vm_page_acquire_flags(m, allocflags)) {
4456                                 if (vm_page_busy_sleep_flags(object, m,
4457                                     "grbmaw", allocflags))
4458                                         goto retrylookup;
4459                                 break;
4460                         }
4461                 } else {
4462                         if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4463                                 break;
4464                         m = vm_page_alloc_after(object, pindex + i,
4465                             pflags | VM_ALLOC_COUNT(count - i), mpred);
4466                         if (m == NULL) {
4467                                 if ((allocflags & (VM_ALLOC_NOWAIT |
4468                                     VM_ALLOC_WAITFAIL)) != 0)
4469                                         break;
4470                                 goto retrylookup;
4471                         }
4472                 }
4473                 if (vm_page_none_valid(m) &&
4474                     (allocflags & VM_ALLOC_ZERO) != 0) {
4475                         if ((m->flags & PG_ZERO) == 0)
4476                                 pmap_zero_page(m);
4477                         vm_page_valid(m);
4478                 }
4479                 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4480                         if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4481                                 vm_page_sunbusy(m);
4482                         else
4483                                 vm_page_xunbusy(m);
4484                 }
4485                 ma[i] = mpred = m;
4486                 m = vm_page_next(m);
4487         }
4488         return (i);
4489 }
4490
4491 /*
4492  * Mapping function for valid or dirty bits in a page.
4493  *
4494  * Inputs are required to range within a page.
4495  */
4496 vm_page_bits_t
4497 vm_page_bits(int base, int size)
4498 {
4499         int first_bit;
4500         int last_bit;
4501
4502         KASSERT(
4503             base + size <= PAGE_SIZE,
4504             ("vm_page_bits: illegal base/size %d/%d", base, size)
4505         );
4506
4507         if (size == 0)          /* handle degenerate case */
4508                 return (0);
4509
4510         first_bit = base >> DEV_BSHIFT;
4511         last_bit = (base + size - 1) >> DEV_BSHIFT;
4512
4513         return (((vm_page_bits_t)2 << last_bit) -
4514             ((vm_page_bits_t)1 << first_bit));
4515 }
4516
4517 void
4518 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
4519 {
4520
4521 #if PAGE_SIZE == 32768
4522         atomic_set_64((uint64_t *)bits, set);
4523 #elif PAGE_SIZE == 16384
4524         atomic_set_32((uint32_t *)bits, set);
4525 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
4526         atomic_set_16((uint16_t *)bits, set);
4527 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
4528         atomic_set_8((uint8_t *)bits, set);
4529 #else           /* PAGE_SIZE <= 8192 */
4530         uintptr_t addr;
4531         int shift;
4532
4533         addr = (uintptr_t)bits;
4534         /*
4535          * Use a trick to perform a 32-bit atomic on the
4536          * containing aligned word, to not depend on the existence
4537          * of atomic_{set, clear}_{8, 16}.
4538          */
4539         shift = addr & (sizeof(uint32_t) - 1);
4540 #if BYTE_ORDER == BIG_ENDIAN
4541         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4542 #else
4543         shift *= NBBY;
4544 #endif
4545         addr &= ~(sizeof(uint32_t) - 1);
4546         atomic_set_32((uint32_t *)addr, set << shift);
4547 #endif          /* PAGE_SIZE */
4548 }
4549
4550 static inline void
4551 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
4552 {
4553
4554 #if PAGE_SIZE == 32768
4555         atomic_clear_64((uint64_t *)bits, clear);
4556 #elif PAGE_SIZE == 16384
4557         atomic_clear_32((uint32_t *)bits, clear);
4558 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
4559         atomic_clear_16((uint16_t *)bits, clear);
4560 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
4561         atomic_clear_8((uint8_t *)bits, clear);
4562 #else           /* PAGE_SIZE <= 8192 */
4563         uintptr_t addr;
4564         int shift;
4565
4566         addr = (uintptr_t)bits;
4567         /*
4568          * Use a trick to perform a 32-bit atomic on the
4569          * containing aligned word, to not depend on the existence
4570          * of atomic_{set, clear}_{8, 16}.
4571          */
4572         shift = addr & (sizeof(uint32_t) - 1);
4573 #if BYTE_ORDER == BIG_ENDIAN
4574         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4575 #else
4576         shift *= NBBY;
4577 #endif
4578         addr &= ~(sizeof(uint32_t) - 1);
4579         atomic_clear_32((uint32_t *)addr, clear << shift);
4580 #endif          /* PAGE_SIZE */
4581 }
4582
4583 static inline vm_page_bits_t
4584 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
4585 {
4586 #if PAGE_SIZE == 32768
4587         uint64_t old;
4588
4589         old = *bits;
4590         while (atomic_fcmpset_64(bits, &old, newbits) == 0);
4591         return (old);
4592 #elif PAGE_SIZE == 16384
4593         uint32_t old;
4594
4595         old = *bits;
4596         while (atomic_fcmpset_32(bits, &old, newbits) == 0);
4597         return (old);
4598 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
4599         uint16_t old;
4600
4601         old = *bits;
4602         while (atomic_fcmpset_16(bits, &old, newbits) == 0);
4603         return (old);
4604 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
4605         uint8_t old;
4606
4607         old = *bits;
4608         while (atomic_fcmpset_8(bits, &old, newbits) == 0);
4609         return (old);
4610 #else           /* PAGE_SIZE <= 4096*/
4611         uintptr_t addr;
4612         uint32_t old, new, mask;
4613         int shift;
4614
4615         addr = (uintptr_t)bits;
4616         /*
4617          * Use a trick to perform a 32-bit atomic on the
4618          * containing aligned word, to not depend on the existence
4619          * of atomic_{set, swap, clear}_{8, 16}.
4620          */
4621         shift = addr & (sizeof(uint32_t) - 1);
4622 #if BYTE_ORDER == BIG_ENDIAN
4623         shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
4624 #else
4625         shift *= NBBY;
4626 #endif
4627         addr &= ~(sizeof(uint32_t) - 1);
4628         mask = VM_PAGE_BITS_ALL << shift;
4629
4630         old = *bits;
4631         do {
4632                 new = old & ~mask;
4633                 new |= newbits << shift;
4634         } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
4635         return (old >> shift);
4636 #endif          /* PAGE_SIZE */
4637 }
4638
4639 /*
4640  *      vm_page_set_valid_range:
4641  *
4642  *      Sets portions of a page valid.  The arguments are expected
4643  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4644  *      of any partial chunks touched by the range.  The invalid portion of
4645  *      such chunks will be zeroed.
4646  *
4647  *      (base + size) must be less then or equal to PAGE_SIZE.
4648  */
4649 void
4650 vm_page_set_valid_range(vm_page_t m, int base, int size)
4651 {
4652         int endoff, frag;
4653         vm_page_bits_t pagebits;
4654
4655         vm_page_assert_busied(m);
4656         if (size == 0)  /* handle degenerate case */
4657                 return;
4658
4659         /*
4660          * If the base is not DEV_BSIZE aligned and the valid
4661          * bit is clear, we have to zero out a portion of the
4662          * first block.
4663          */
4664         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4665             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
4666                 pmap_zero_page_area(m, frag, base - frag);
4667
4668         /*
4669          * If the ending offset is not DEV_BSIZE aligned and the
4670          * valid bit is clear, we have to zero out a portion of
4671          * the last block.
4672          */
4673         endoff = base + size;
4674         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4675             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
4676                 pmap_zero_page_area(m, endoff,
4677                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4678
4679         /*
4680          * Assert that no previously invalid block that is now being validated
4681          * is already dirty.
4682          */
4683         KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
4684             ("vm_page_set_valid_range: page %p is dirty", m));
4685
4686         /*
4687          * Set valid bits inclusive of any overlap.
4688          */
4689         pagebits = vm_page_bits(base, size);
4690         if (vm_page_xbusied(m))
4691                 m->valid |= pagebits;
4692         else
4693                 vm_page_bits_set(m, &m->valid, pagebits);
4694 }
4695
4696 /*
4697  * Set the page dirty bits and free the invalid swap space if
4698  * present.  Returns the previous dirty bits.
4699  */
4700 vm_page_bits_t
4701 vm_page_set_dirty(vm_page_t m)
4702 {
4703         vm_page_bits_t old;
4704
4705         VM_PAGE_OBJECT_BUSY_ASSERT(m);
4706
4707         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
4708                 old = m->dirty;
4709                 m->dirty = VM_PAGE_BITS_ALL;
4710         } else
4711                 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
4712         if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
4713                 vm_pager_page_unswapped(m);
4714
4715         return (old);
4716 }
4717
4718 /*
4719  * Clear the given bits from the specified page's dirty field.
4720  */
4721 static __inline void
4722 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
4723 {
4724
4725         vm_page_assert_busied(m);
4726
4727         /*
4728          * If the page is xbusied and not write mapped we are the
4729          * only thread that can modify dirty bits.  Otherwise, The pmap
4730          * layer can call vm_page_dirty() without holding a distinguished
4731          * lock.  The combination of page busy and atomic operations
4732          * suffice to guarantee consistency of the page dirty field.
4733          */
4734         if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
4735                 m->dirty &= ~pagebits;
4736         else
4737                 vm_page_bits_clear(m, &m->dirty, pagebits);
4738 }
4739
4740 /*
4741  *      vm_page_set_validclean:
4742  *
4743  *      Sets portions of a page valid and clean.  The arguments are expected
4744  *      to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
4745  *      of any partial chunks touched by the range.  The invalid portion of
4746  *      such chunks will be zero'd.
4747  *
4748  *      (base + size) must be less then or equal to PAGE_SIZE.
4749  */
4750 void
4751 vm_page_set_validclean(vm_page_t m, int base, int size)
4752 {
4753         vm_page_bits_t oldvalid, pagebits;
4754         int endoff, frag;
4755
4756         vm_page_assert_busied(m);
4757         if (size == 0)  /* handle degenerate case */
4758                 return;
4759
4760         /*
4761          * If the base is not DEV_BSIZE aligned and the valid
4762          * bit is clear, we have to zero out a portion of the
4763          * first block.
4764          */
4765         if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
4766             (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
4767                 pmap_zero_page_area(m, frag, base - frag);
4768
4769         /*
4770          * If the ending offset is not DEV_BSIZE aligned and the
4771          * valid bit is clear, we have to zero out a portion of
4772          * the last block.
4773          */
4774         endoff = base + size;
4775         if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
4776             (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
4777                 pmap_zero_page_area(m, endoff,
4778                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
4779
4780         /*
4781          * Set valid, clear dirty bits.  If validating the entire
4782          * page we can safely clear the pmap modify bit.  We also
4783          * use this opportunity to clear the PGA_NOSYNC flag.  If a process
4784          * takes a write fault on a MAP_NOSYNC memory area the flag will
4785          * be set again.
4786          *
4787          * We set valid bits inclusive of any overlap, but we can only
4788          * clear dirty bits for DEV_BSIZE chunks that are fully within
4789          * the range.
4790          */
4791         oldvalid = m->valid;
4792         pagebits = vm_page_bits(base, size);
4793         if (vm_page_xbusied(m))
4794                 m->valid |= pagebits;
4795         else
4796                 vm_page_bits_set(m, &m->valid, pagebits);
4797 #if 0   /* NOT YET */
4798         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
4799                 frag = DEV_BSIZE - frag;
4800                 base += frag;
4801                 size -= frag;
4802                 if (size < 0)
4803                         size = 0;
4804         }
4805         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
4806 #endif
4807         if (base == 0 && size == PAGE_SIZE) {
4808                 /*
4809                  * The page can only be modified within the pmap if it is
4810                  * mapped, and it can only be mapped if it was previously
4811                  * fully valid.
4812                  */
4813                 if (oldvalid == VM_PAGE_BITS_ALL)
4814                         /*
4815                          * Perform the pmap_clear_modify() first.  Otherwise,
4816                          * a concurrent pmap operation, such as
4817                          * pmap_protect(), could clear a modification in the
4818                          * pmap and set the dirty field on the page before
4819                          * pmap_clear_modify() had begun and after the dirty
4820                          * field was cleared here.
4821                          */
4822                         pmap_clear_modify(m);
4823                 m->dirty = 0;
4824                 vm_page_aflag_clear(m, PGA_NOSYNC);
4825         } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
4826                 m->dirty &= ~pagebits;
4827         else
4828                 vm_page_clear_dirty_mask(m, pagebits);
4829 }
4830
4831 void
4832 vm_page_clear_dirty(vm_page_t m, int base, int size)
4833 {
4834
4835         vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
4836 }
4837
4838 /*
4839  *      vm_page_set_invalid:
4840  *
4841  *      Invalidates DEV_BSIZE'd chunks within a page.  Both the
4842  *      valid and dirty bits for the effected areas are cleared.
4843  */
4844 void
4845 vm_page_set_invalid(vm_page_t m, int base, int size)
4846 {
4847         vm_page_bits_t bits;
4848         vm_object_t object;
4849
4850         /*
4851          * The object lock is required so that pages can't be mapped
4852          * read-only while we're in the process of invalidating them.
4853          */
4854         object = m->object;
4855         VM_OBJECT_ASSERT_WLOCKED(object);
4856         vm_page_assert_busied(m);
4857
4858         if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
4859             size >= object->un_pager.vnp.vnp_size)
4860                 bits = VM_PAGE_BITS_ALL;
4861         else
4862                 bits = vm_page_bits(base, size);
4863         if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
4864                 pmap_remove_all(m);
4865         KASSERT((bits == 0 && vm_page_all_valid(m)) ||
4866             !pmap_page_is_mapped(m),
4867             ("vm_page_set_invalid: page %p is mapped", m));
4868         if (vm_page_xbusied(m)) {
4869                 m->valid &= ~bits;
4870                 m->dirty &= ~bits;
4871         } else {
4872                 vm_page_bits_clear(m, &m->valid, bits);
4873                 vm_page_bits_clear(m, &m->dirty, bits);
4874         }
4875 }
4876
4877 /*
4878  *      vm_page_invalid:
4879  *
4880  *      Invalidates the entire page.  The page must be busy, unmapped, and
4881  *      the enclosing object must be locked.  The object locks protects
4882  *      against concurrent read-only pmap enter which is done without
4883  *      busy.
4884  */
4885 void
4886 vm_page_invalid(vm_page_t m)
4887 {
4888
4889         vm_page_assert_busied(m);
4890         VM_OBJECT_ASSERT_LOCKED(m->object);
4891         MPASS(!pmap_page_is_mapped(m));
4892
4893         if (vm_page_xbusied(m))
4894                 m->valid = 0;
4895         else
4896                 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
4897 }
4898
4899 /*
4900  * vm_page_zero_invalid()
4901  *
4902  *      The kernel assumes that the invalid portions of a page contain
4903  *      garbage, but such pages can be mapped into memory by user code.
4904  *      When this occurs, we must zero out the non-valid portions of the
4905  *      page so user code sees what it expects.
4906  *
4907  *      Pages are most often semi-valid when the end of a file is mapped
4908  *      into memory and the file's size is not page aligned.
4909  */
4910 void
4911 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
4912 {
4913         int b;
4914         int i;
4915
4916         /*
4917          * Scan the valid bits looking for invalid sections that
4918          * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
4919          * valid bit may be set ) have already been zeroed by
4920          * vm_page_set_validclean().
4921          */
4922         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
4923                 if (i == (PAGE_SIZE / DEV_BSIZE) ||
4924                     (m->valid & ((vm_page_bits_t)1 << i))) {
4925                         if (i > b) {
4926                                 pmap_zero_page_area(m,
4927                                     b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
4928                         }
4929                         b = i + 1;
4930                 }
4931         }
4932
4933         /*
4934          * setvalid is TRUE when we can safely set the zero'd areas
4935          * as being valid.  We can do this if there are no cache consistancy
4936          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
4937          */
4938         if (setvalid)
4939                 vm_page_valid(m);
4940 }
4941
4942 /*
4943  *      vm_page_is_valid:
4944  *
4945  *      Is (partial) page valid?  Note that the case where size == 0
4946  *      will return FALSE in the degenerate case where the page is
4947  *      entirely invalid, and TRUE otherwise.
4948  *
4949  *      Some callers envoke this routine without the busy lock held and
4950  *      handle races via higher level locks.  Typical callers should
4951  *      hold a busy lock to prevent invalidation.
4952  */
4953 int
4954 vm_page_is_valid(vm_page_t m, int base, int size)
4955 {
4956         vm_page_bits_t bits;
4957
4958         bits = vm_page_bits(base, size);
4959         return (m->valid != 0 && (m->valid & bits) == bits);
4960 }
4961
4962 /*
4963  * Returns true if all of the specified predicates are true for the entire
4964  * (super)page and false otherwise.
4965  */
4966 bool
4967 vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
4968 {
4969         vm_object_t object;
4970         int i, npages;
4971
4972         object = m->object;
4973         if (skip_m != NULL && skip_m->object != object)
4974                 return (false);
4975         VM_OBJECT_ASSERT_LOCKED(object);
4976         npages = atop(pagesizes[m->psind]);
4977
4978         /*
4979          * The physically contiguous pages that make up a superpage, i.e., a
4980          * page with a page size index ("psind") greater than zero, will
4981          * occupy adjacent entries in vm_page_array[].
4982          */
4983         for (i = 0; i < npages; i++) {
4984                 /* Always test object consistency, including "skip_m". */
4985                 if (m[i].object != object)
4986                         return (false);
4987                 if (&m[i] == skip_m)
4988                         continue;
4989                 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
4990                         return (false);
4991                 if ((flags & PS_ALL_DIRTY) != 0) {
4992                         /*
4993                          * Calling vm_page_test_dirty() or pmap_is_modified()
4994                          * might stop this case from spuriously returning
4995                          * "false".  However, that would require a write lock
4996                          * on the object containing "m[i]".
4997                          */
4998                         if (m[i].dirty != VM_PAGE_BITS_ALL)
4999                                 return (false);
5000                 }
5001                 if ((flags & PS_ALL_VALID) != 0 &&
5002                     m[i].valid != VM_PAGE_BITS_ALL)
5003                         return (false);
5004         }
5005         return (true);
5006 }
5007
5008 /*
5009  * Set the page's dirty bits if the page is modified.
5010  */
5011 void
5012 vm_page_test_dirty(vm_page_t m)
5013 {
5014
5015         vm_page_assert_busied(m);
5016         if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5017                 vm_page_dirty(m);
5018 }
5019
5020 void
5021 vm_page_valid(vm_page_t m)
5022 {
5023
5024         vm_page_assert_busied(m);
5025         if (vm_page_xbusied(m))
5026                 m->valid = VM_PAGE_BITS_ALL;
5027         else
5028                 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5029 }
5030
5031 void
5032 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5033 {
5034
5035         mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5036 }
5037
5038 void
5039 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5040 {
5041
5042         mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5043 }
5044
5045 int
5046 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5047 {
5048
5049         return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5050 }
5051
5052 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5053 void
5054 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5055 {
5056
5057         vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5058 }
5059
5060 void
5061 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5062 {
5063
5064         mtx_assert_(vm_page_lockptr(m), a, file, line);
5065 }
5066 #endif
5067
5068 #ifdef INVARIANTS
5069 void
5070 vm_page_object_busy_assert(vm_page_t m)
5071 {
5072
5073         /*
5074          * Certain of the page's fields may only be modified by the
5075          * holder of a page or object busy.
5076          */
5077         if (m->object != NULL && !vm_page_busied(m))
5078                 VM_OBJECT_ASSERT_BUSY(m->object);
5079 }
5080
5081 void
5082 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5083 {
5084
5085         if ((bits & PGA_WRITEABLE) == 0)
5086                 return;
5087
5088         /*
5089          * The PGA_WRITEABLE flag can only be set if the page is
5090          * managed, is exclusively busied or the object is locked.
5091          * Currently, this flag is only set by pmap_enter().
5092          */
5093         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5094             ("PGA_WRITEABLE on unmanaged page"));
5095         if (!vm_page_xbusied(m))
5096                 VM_OBJECT_ASSERT_BUSY(m->object);
5097 }
5098 #endif
5099
5100 #include "opt_ddb.h"
5101 #ifdef DDB
5102 #include <sys/kernel.h>
5103
5104 #include <ddb/ddb.h>
5105
5106 DB_SHOW_COMMAND(page, vm_page_print_page_info)
5107 {
5108
5109         db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5110         db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5111         db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5112         db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5113         db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5114         db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5115         db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5116         db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5117         db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5118 }
5119
5120 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
5121 {
5122         int dom;
5123
5124         db_printf("pq_free %d\n", vm_free_count());
5125         for (dom = 0; dom < vm_ndomains; dom++) {
5126                 db_printf(
5127     "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5128                     dom,
5129                     vm_dom[dom].vmd_page_count,
5130                     vm_dom[dom].vmd_free_count,
5131                     vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5132                     vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5133                     vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5134                     vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5135         }
5136 }
5137
5138 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5139 {
5140         vm_page_t m;
5141         boolean_t phys, virt;
5142
5143         if (!have_addr) {
5144                 db_printf("show pginfo addr\n");
5145                 return;
5146         }
5147
5148         phys = strchr(modif, 'p') != NULL;
5149         virt = strchr(modif, 'v') != NULL;
5150         if (virt)
5151                 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5152         else if (phys)
5153                 m = PHYS_TO_VM_PAGE(addr);
5154         else
5155                 m = (vm_page_t)addr;
5156         db_printf(
5157     "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref %u\n"
5158     "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5159             m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5160             m->a.queue, m->ref_count, m->a.flags, m->oflags,
5161             m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5162 }
5163 #endif /* DDB */