]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
src.sys.obj.mk: Export OBJTOP
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 #include "opt_vm.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/blockcount.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/sdt.h>
93 #include <sys/signalvar.h>
94 #include <sys/smp.h>
95 #include <sys/time.h>
96 #include <sys/vnode.h>
97 #include <sys/vmmeter.h>
98 #include <sys/rwlock.h>
99 #include <sys/sx.h>
100 #include <sys/sysctl.h>
101
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/vm_object.h>
105 #include <vm/vm_page.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_phys.h>
110 #include <vm/vm_pagequeue.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114
115 /*
116  * System initialization
117  */
118
119 /* the kernel process "vm_pageout"*/
120 static void vm_pageout(void);
121 static void vm_pageout_init(void);
122 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
123 static int vm_pageout_cluster(vm_page_t m);
124 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
125     int starting_page_shortage);
126
127 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
128     NULL);
129
130 struct proc *pageproc;
131
132 static struct kproc_desc page_kp = {
133         "pagedaemon",
134         vm_pageout,
135         &pageproc
136 };
137 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
138     &page_kp);
139
140 SDT_PROVIDER_DEFINE(vm);
141 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
142
143 /* Pagedaemon activity rates, in subdivisions of one second. */
144 #define VM_LAUNDER_RATE         10
145 #define VM_INACT_SCAN_RATE      10
146
147 static int swapdev_enabled;
148 int vm_pageout_page_count = 32;
149
150 static int vm_panic_on_oom = 0;
151 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
152     CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
153     "Panic on the given number of out-of-memory errors instead of "
154     "killing the largest process");
155
156 static int vm_pageout_update_period;
157 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
158     CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
159     "Maximum active LRU update period");
160
161 static int pageout_cpus_per_thread = 16;
162 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN,
163     &pageout_cpus_per_thread, 0,
164     "Number of CPUs per pagedaemon worker thread");
165   
166 static int lowmem_period = 10;
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168     "Low memory callback period");
169
170 static int disable_swap_pageouts;
171 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
172     CTLFLAG_RWTUN, &disable_swap_pageouts, 0,
173     "Disallow swapout of dirty pages");
174
175 static int pageout_lock_miss;
176 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
177     CTLFLAG_RD, &pageout_lock_miss, 0,
178     "vget() lock misses during pageout");
179
180 static int vm_pageout_oom_seq = 12;
181 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
182     CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
183     "back-to-back calls to oom detector to start OOM");
184
185 static int act_scan_laundry_weight = 3;
186 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
187     &act_scan_laundry_weight, 0,
188     "weight given to clean vs. dirty pages in active queue scans");
189
190 static u_int vm_background_launder_rate = 4096;
191 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
192     &vm_background_launder_rate, 0,
193     "background laundering rate, in kilobytes per second");
194
195 static u_int vm_background_launder_max = 20 * 1024;
196 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
197     &vm_background_launder_max, 0,
198     "background laundering cap, in kilobytes");
199
200 u_long vm_page_max_user_wired;
201 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
202     &vm_page_max_user_wired, 0,
203     "system-wide limit to user-wired page count");
204
205 static u_int isqrt(u_int num);
206 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
207     bool in_shortfall);
208 static void vm_pageout_laundry_worker(void *arg);
209
210 struct scan_state {
211         struct vm_batchqueue bq;
212         struct vm_pagequeue *pq;
213         vm_page_t       marker;
214         int             maxscan;
215         int             scanned;
216 };
217
218 static void
219 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
220     vm_page_t marker, vm_page_t after, int maxscan)
221 {
222
223         vm_pagequeue_assert_locked(pq);
224         KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
225             ("marker %p already enqueued", marker));
226
227         if (after == NULL)
228                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
229         else
230                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
231         vm_page_aflag_set(marker, PGA_ENQUEUED);
232
233         vm_batchqueue_init(&ss->bq);
234         ss->pq = pq;
235         ss->marker = marker;
236         ss->maxscan = maxscan;
237         ss->scanned = 0;
238         vm_pagequeue_unlock(pq);
239 }
240
241 static void
242 vm_pageout_end_scan(struct scan_state *ss)
243 {
244         struct vm_pagequeue *pq;
245
246         pq = ss->pq;
247         vm_pagequeue_assert_locked(pq);
248         KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
249             ("marker %p not enqueued", ss->marker));
250
251         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
252         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
253         pq->pq_pdpages += ss->scanned;
254 }
255
256 /*
257  * Add a small number of queued pages to a batch queue for later processing
258  * without the corresponding queue lock held.  The caller must have enqueued a
259  * marker page at the desired start point for the scan.  Pages will be
260  * physically dequeued if the caller so requests.  Otherwise, the returned
261  * batch may contain marker pages, and it is up to the caller to handle them.
262  *
263  * When processing the batch queue, vm_pageout_defer() must be used to
264  * determine whether the page has been logically dequeued since the batch was
265  * collected.
266  */
267 static __always_inline void
268 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
269 {
270         struct vm_pagequeue *pq;
271         vm_page_t m, marker, n;
272
273         marker = ss->marker;
274         pq = ss->pq;
275
276         KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
277             ("marker %p not enqueued", ss->marker));
278
279         vm_pagequeue_lock(pq);
280         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
281             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
282             m = n, ss->scanned++) {
283                 n = TAILQ_NEXT(m, plinks.q);
284                 if ((m->flags & PG_MARKER) == 0) {
285                         KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
286                             ("page %p not enqueued", m));
287                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
288                             ("Fictitious page %p cannot be in page queue", m));
289                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
290                             ("Unmanaged page %p cannot be in page queue", m));
291                 } else if (dequeue)
292                         continue;
293
294                 (void)vm_batchqueue_insert(&ss->bq, m);
295                 if (dequeue) {
296                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
297                         vm_page_aflag_clear(m, PGA_ENQUEUED);
298                 }
299         }
300         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
301         if (__predict_true(m != NULL))
302                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
303         else
304                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
305         if (dequeue)
306                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
307         vm_pagequeue_unlock(pq);
308 }
309
310 /*
311  * Return the next page to be scanned, or NULL if the scan is complete.
312  */
313 static __always_inline vm_page_t
314 vm_pageout_next(struct scan_state *ss, const bool dequeue)
315 {
316
317         if (ss->bq.bq_cnt == 0)
318                 vm_pageout_collect_batch(ss, dequeue);
319         return (vm_batchqueue_pop(&ss->bq));
320 }
321
322 /*
323  * Determine whether processing of a page should be deferred and ensure that any
324  * outstanding queue operations are processed.
325  */
326 static __always_inline bool
327 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
328 {
329         vm_page_astate_t as;
330
331         as = vm_page_astate_load(m);
332         if (__predict_false(as.queue != queue ||
333             ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
334                 return (true);
335         if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
336                 vm_page_pqbatch_submit(m, queue);
337                 return (true);
338         }
339         return (false);
340 }
341
342 /*
343  * Scan for pages at adjacent offsets within the given page's object that are
344  * eligible for laundering, form a cluster of these pages and the given page,
345  * and launder that cluster.
346  */
347 static int
348 vm_pageout_cluster(vm_page_t m)
349 {
350         vm_object_t object;
351         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
352         vm_pindex_t pindex;
353         int ib, is, page_base, pageout_count;
354
355         object = m->object;
356         VM_OBJECT_ASSERT_WLOCKED(object);
357         pindex = m->pindex;
358
359         vm_page_assert_xbusied(m);
360
361         mc[vm_pageout_page_count] = pb = ps = m;
362         pageout_count = 1;
363         page_base = vm_pageout_page_count;
364         ib = 1;
365         is = 1;
366
367         /*
368          * We can cluster only if the page is not clean, busy, or held, and
369          * the page is in the laundry queue.
370          *
371          * During heavy mmap/modification loads the pageout
372          * daemon can really fragment the underlying file
373          * due to flushing pages out of order and not trying to
374          * align the clusters (which leaves sporadic out-of-order
375          * holes).  To solve this problem we do the reverse scan
376          * first and attempt to align our cluster, then do a 
377          * forward scan if room remains.
378          */
379 more:
380         while (ib != 0 && pageout_count < vm_pageout_page_count) {
381                 if (ib > pindex) {
382                         ib = 0;
383                         break;
384                 }
385                 if ((p = vm_page_prev(pb)) == NULL ||
386                     vm_page_tryxbusy(p) == 0) {
387                         ib = 0;
388                         break;
389                 }
390                 if (vm_page_wired(p)) {
391                         ib = 0;
392                         vm_page_xunbusy(p);
393                         break;
394                 }
395                 vm_page_test_dirty(p);
396                 if (p->dirty == 0) {
397                         ib = 0;
398                         vm_page_xunbusy(p);
399                         break;
400                 }
401                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
402                         vm_page_xunbusy(p);
403                         ib = 0;
404                         break;
405                 }
406                 mc[--page_base] = pb = p;
407                 ++pageout_count;
408                 ++ib;
409
410                 /*
411                  * We are at an alignment boundary.  Stop here, and switch
412                  * directions.  Do not clear ib.
413                  */
414                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
415                         break;
416         }
417         while (pageout_count < vm_pageout_page_count && 
418             pindex + is < object->size) {
419                 if ((p = vm_page_next(ps)) == NULL ||
420                     vm_page_tryxbusy(p) == 0)
421                         break;
422                 if (vm_page_wired(p)) {
423                         vm_page_xunbusy(p);
424                         break;
425                 }
426                 vm_page_test_dirty(p);
427                 if (p->dirty == 0) {
428                         vm_page_xunbusy(p);
429                         break;
430                 }
431                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
432                         vm_page_xunbusy(p);
433                         break;
434                 }
435                 mc[page_base + pageout_count] = ps = p;
436                 ++pageout_count;
437                 ++is;
438         }
439
440         /*
441          * If we exhausted our forward scan, continue with the reverse scan
442          * when possible, even past an alignment boundary.  This catches
443          * boundary conditions.
444          */
445         if (ib != 0 && pageout_count < vm_pageout_page_count)
446                 goto more;
447
448         return (vm_pageout_flush(&mc[page_base], pageout_count,
449             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
450 }
451
452 /*
453  * vm_pageout_flush() - launder the given pages
454  *
455  *      The given pages are laundered.  Note that we setup for the start of
456  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
457  *      reference count all in here rather then in the parent.  If we want
458  *      the parent to do more sophisticated things we may have to change
459  *      the ordering.
460  *
461  *      Returned runlen is the count of pages between mreq and first
462  *      page after mreq with status VM_PAGER_AGAIN.
463  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
464  *      for any page in runlen set.
465  */
466 int
467 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
468     boolean_t *eio)
469 {
470         vm_object_t object = mc[0]->object;
471         int pageout_status[count];
472         int numpagedout = 0;
473         int i, runlen;
474
475         VM_OBJECT_ASSERT_WLOCKED(object);
476
477         /*
478          * Initiate I/O.  Mark the pages shared busy and verify that they're
479          * valid and read-only.
480          *
481          * We do not have to fixup the clean/dirty bits here... we can
482          * allow the pager to do it after the I/O completes.
483          *
484          * NOTE! mc[i]->dirty may be partial or fragmented due to an
485          * edge case with file fragments.
486          */
487         for (i = 0; i < count; i++) {
488                 KASSERT(vm_page_all_valid(mc[i]),
489                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
490                         mc[i], i, count));
491                 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
492                     ("vm_pageout_flush: writeable page %p", mc[i]));
493                 vm_page_busy_downgrade(mc[i]);
494         }
495         vm_object_pip_add(object, count);
496
497         vm_pager_put_pages(object, mc, count, flags, pageout_status);
498
499         runlen = count - mreq;
500         if (eio != NULL)
501                 *eio = FALSE;
502         for (i = 0; i < count; i++) {
503                 vm_page_t mt = mc[i];
504
505                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
506                     !pmap_page_is_write_mapped(mt),
507                     ("vm_pageout_flush: page %p is not write protected", mt));
508                 switch (pageout_status[i]) {
509                 case VM_PAGER_OK:
510                         /*
511                          * The page may have moved since laundering started, in
512                          * which case it should be left alone.
513                          */
514                         if (vm_page_in_laundry(mt))
515                                 vm_page_deactivate_noreuse(mt);
516                         /* FALLTHROUGH */
517                 case VM_PAGER_PEND:
518                         numpagedout++;
519                         break;
520                 case VM_PAGER_BAD:
521                         /*
522                          * The page is outside the object's range.  We pretend
523                          * that the page out worked and clean the page, so the
524                          * changes will be lost if the page is reclaimed by
525                          * the page daemon.
526                          */
527                         vm_page_undirty(mt);
528                         if (vm_page_in_laundry(mt))
529                                 vm_page_deactivate_noreuse(mt);
530                         break;
531                 case VM_PAGER_ERROR:
532                 case VM_PAGER_FAIL:
533                         /*
534                          * If the page couldn't be paged out to swap because the
535                          * pager wasn't able to find space, place the page in
536                          * the PQ_UNSWAPPABLE holding queue.  This is an
537                          * optimization that prevents the page daemon from
538                          * wasting CPU cycles on pages that cannot be reclaimed
539                          * because no swap device is configured.
540                          *
541                          * Otherwise, reactivate the page so that it doesn't
542                          * clog the laundry and inactive queues.  (We will try
543                          * paging it out again later.)
544                          */
545                         if ((object->flags & OBJ_SWAP) != 0 &&
546                             pageout_status[i] == VM_PAGER_FAIL) {
547                                 vm_page_unswappable(mt);
548                                 numpagedout++;
549                         } else
550                                 vm_page_activate(mt);
551                         if (eio != NULL && i >= mreq && i - mreq < runlen)
552                                 *eio = TRUE;
553                         break;
554                 case VM_PAGER_AGAIN:
555                         if (i >= mreq && i - mreq < runlen)
556                                 runlen = i - mreq;
557                         break;
558                 }
559
560                 /*
561                  * If the operation is still going, leave the page busy to
562                  * block all other accesses. Also, leave the paging in
563                  * progress indicator set so that we don't attempt an object
564                  * collapse.
565                  */
566                 if (pageout_status[i] != VM_PAGER_PEND) {
567                         vm_object_pip_wakeup(object);
568                         vm_page_sunbusy(mt);
569                 }
570         }
571         if (prunlen != NULL)
572                 *prunlen = runlen;
573         return (numpagedout);
574 }
575
576 static void
577 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
578 {
579
580         atomic_store_rel_int(&swapdev_enabled, 1);
581 }
582
583 static void
584 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
585 {
586
587         if (swap_pager_nswapdev() == 1)
588                 atomic_store_rel_int(&swapdev_enabled, 0);
589 }
590
591 /*
592  * Attempt to acquire all of the necessary locks to launder a page and
593  * then call through the clustering layer to PUTPAGES.  Wait a short
594  * time for a vnode lock.
595  *
596  * Requires the page and object lock on entry, releases both before return.
597  * Returns 0 on success and an errno otherwise.
598  */
599 static int
600 vm_pageout_clean(vm_page_t m, int *numpagedout)
601 {
602         struct vnode *vp;
603         struct mount *mp;
604         vm_object_t object;
605         vm_pindex_t pindex;
606         int error;
607
608         object = m->object;
609         VM_OBJECT_ASSERT_WLOCKED(object);
610         error = 0;
611         vp = NULL;
612         mp = NULL;
613
614         /*
615          * The object is already known NOT to be dead.   It
616          * is possible for the vget() to block the whole
617          * pageout daemon, but the new low-memory handling
618          * code should prevent it.
619          *
620          * We can't wait forever for the vnode lock, we might
621          * deadlock due to a vn_read() getting stuck in
622          * vm_wait while holding this vnode.  We skip the 
623          * vnode if we can't get it in a reasonable amount
624          * of time.
625          */
626         if (object->type == OBJT_VNODE) {
627                 vm_page_xunbusy(m);
628                 vp = object->handle;
629                 if (vp->v_type == VREG &&
630                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
631                         mp = NULL;
632                         error = EDEADLK;
633                         goto unlock_all;
634                 }
635                 KASSERT(mp != NULL,
636                     ("vp %p with NULL v_mount", vp));
637                 vm_object_reference_locked(object);
638                 pindex = m->pindex;
639                 VM_OBJECT_WUNLOCK(object);
640                 if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) {
641                         vp = NULL;
642                         error = EDEADLK;
643                         goto unlock_mp;
644                 }
645                 VM_OBJECT_WLOCK(object);
646
647                 /*
648                  * Ensure that the object and vnode were not disassociated
649                  * while locks were dropped.
650                  */
651                 if (vp->v_object != object) {
652                         error = ENOENT;
653                         goto unlock_all;
654                 }
655
656                 /*
657                  * While the object was unlocked, the page may have been:
658                  * (1) moved to a different queue,
659                  * (2) reallocated to a different object,
660                  * (3) reallocated to a different offset, or
661                  * (4) cleaned.
662                  */
663                 if (!vm_page_in_laundry(m) || m->object != object ||
664                     m->pindex != pindex || m->dirty == 0) {
665                         error = ENXIO;
666                         goto unlock_all;
667                 }
668
669                 /*
670                  * The page may have been busied while the object lock was
671                  * released.
672                  */
673                 if (vm_page_tryxbusy(m) == 0) {
674                         error = EBUSY;
675                         goto unlock_all;
676                 }
677         }
678
679         /*
680          * Remove all writeable mappings, failing if the page is wired.
681          */
682         if (!vm_page_try_remove_write(m)) {
683                 vm_page_xunbusy(m);
684                 error = EBUSY;
685                 goto unlock_all;
686         }
687
688         /*
689          * If a page is dirty, then it is either being washed
690          * (but not yet cleaned) or it is still in the
691          * laundry.  If it is still in the laundry, then we
692          * start the cleaning operation. 
693          */
694         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
695                 error = EIO;
696
697 unlock_all:
698         VM_OBJECT_WUNLOCK(object);
699
700 unlock_mp:
701         if (mp != NULL) {
702                 if (vp != NULL)
703                         vput(vp);
704                 vm_object_deallocate(object);
705                 vn_finished_write(mp);
706         }
707
708         return (error);
709 }
710
711 /*
712  * Attempt to launder the specified number of pages.
713  *
714  * Returns the number of pages successfully laundered.
715  */
716 static int
717 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
718 {
719         struct scan_state ss;
720         struct vm_pagequeue *pq;
721         vm_object_t object;
722         vm_page_t m, marker;
723         vm_page_astate_t new, old;
724         int act_delta, error, numpagedout, queue, refs, starting_target;
725         int vnodes_skipped;
726         bool pageout_ok;
727
728         object = NULL;
729         starting_target = launder;
730         vnodes_skipped = 0;
731
732         /*
733          * Scan the laundry queues for pages eligible to be laundered.  We stop
734          * once the target number of dirty pages have been laundered, or once
735          * we've reached the end of the queue.  A single iteration of this loop
736          * may cause more than one page to be laundered because of clustering.
737          *
738          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
739          * swap devices are configured.
740          */
741         if (atomic_load_acq_int(&swapdev_enabled))
742                 queue = PQ_UNSWAPPABLE;
743         else
744                 queue = PQ_LAUNDRY;
745
746 scan:
747         marker = &vmd->vmd_markers[queue];
748         pq = &vmd->vmd_pagequeues[queue];
749         vm_pagequeue_lock(pq);
750         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
751         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
752                 if (__predict_false((m->flags & PG_MARKER) != 0))
753                         continue;
754
755                 /*
756                  * Don't touch a page that was removed from the queue after the
757                  * page queue lock was released.  Otherwise, ensure that any
758                  * pending queue operations, such as dequeues for wired pages,
759                  * are handled.
760                  */
761                 if (vm_pageout_defer(m, queue, true))
762                         continue;
763
764                 /*
765                  * Lock the page's object.
766                  */
767                 if (object == NULL || object != m->object) {
768                         if (object != NULL)
769                                 VM_OBJECT_WUNLOCK(object);
770                         object = atomic_load_ptr(&m->object);
771                         if (__predict_false(object == NULL))
772                                 /* The page is being freed by another thread. */
773                                 continue;
774
775                         /* Depends on type-stability. */
776                         VM_OBJECT_WLOCK(object);
777                         if (__predict_false(m->object != object)) {
778                                 VM_OBJECT_WUNLOCK(object);
779                                 object = NULL;
780                                 continue;
781                         }
782                 }
783
784                 if (vm_page_tryxbusy(m) == 0)
785                         continue;
786
787                 /*
788                  * Check for wirings now that we hold the object lock and have
789                  * exclusively busied the page.  If the page is mapped, it may
790                  * still be wired by pmap lookups.  The call to
791                  * vm_page_try_remove_all() below atomically checks for such
792                  * wirings and removes mappings.  If the page is unmapped, the
793                  * wire count is guaranteed not to increase after this check.
794                  */
795                 if (__predict_false(vm_page_wired(m)))
796                         goto skip_page;
797
798                 /*
799                  * Invalid pages can be easily freed.  They cannot be
800                  * mapped; vm_page_free() asserts this.
801                  */
802                 if (vm_page_none_valid(m))
803                         goto free_page;
804
805                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
806
807                 for (old = vm_page_astate_load(m);;) {
808                         /*
809                          * Check to see if the page has been removed from the
810                          * queue since the first such check.  Leave it alone if
811                          * so, discarding any references collected by
812                          * pmap_ts_referenced().
813                          */
814                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
815                                 goto skip_page;
816
817                         new = old;
818                         act_delta = refs;
819                         if ((old.flags & PGA_REFERENCED) != 0) {
820                                 new.flags &= ~PGA_REFERENCED;
821                                 act_delta++;
822                         }
823                         if (act_delta == 0) {
824                                 ;
825                         } else if (object->ref_count != 0) {
826                                 /*
827                                  * Increase the activation count if the page was
828                                  * referenced while in the laundry queue.  This
829                                  * makes it less likely that the page will be
830                                  * returned prematurely to the laundry queue.
831                                  */
832                                 new.act_count += ACT_ADVANCE +
833                                     act_delta;
834                                 if (new.act_count > ACT_MAX)
835                                         new.act_count = ACT_MAX;
836
837                                 new.flags &= ~PGA_QUEUE_OP_MASK;
838                                 new.flags |= PGA_REQUEUE;
839                                 new.queue = PQ_ACTIVE;
840                                 if (!vm_page_pqstate_commit(m, &old, new))
841                                         continue;
842
843                                 /*
844                                  * If this was a background laundering, count
845                                  * activated pages towards our target.  The
846                                  * purpose of background laundering is to ensure
847                                  * that pages are eventually cycled through the
848                                  * laundry queue, and an activation is a valid
849                                  * way out.
850                                  */
851                                 if (!in_shortfall)
852                                         launder--;
853                                 VM_CNT_INC(v_reactivated);
854                                 goto skip_page;
855                         } else if ((object->flags & OBJ_DEAD) == 0) {
856                                 new.flags |= PGA_REQUEUE;
857                                 if (!vm_page_pqstate_commit(m, &old, new))
858                                         continue;
859                                 goto skip_page;
860                         }
861                         break;
862                 }
863
864                 /*
865                  * If the page appears to be clean at the machine-independent
866                  * layer, then remove all of its mappings from the pmap in
867                  * anticipation of freeing it.  If, however, any of the page's
868                  * mappings allow write access, then the page may still be
869                  * modified until the last of those mappings are removed.
870                  */
871                 if (object->ref_count != 0) {
872                         vm_page_test_dirty(m);
873                         if (m->dirty == 0 && !vm_page_try_remove_all(m))
874                                 goto skip_page;
875                 }
876
877                 /*
878                  * Clean pages are freed, and dirty pages are paged out unless
879                  * they belong to a dead object.  Requeueing dirty pages from
880                  * dead objects is pointless, as they are being paged out and
881                  * freed by the thread that destroyed the object.
882                  */
883                 if (m->dirty == 0) {
884 free_page:
885                         /*
886                          * Now we are guaranteed that no other threads are
887                          * manipulating the page, check for a last-second
888                          * reference.
889                          */
890                         if (vm_pageout_defer(m, queue, true))
891                                 goto skip_page;
892                         vm_page_free(m);
893                         VM_CNT_INC(v_dfree);
894                 } else if ((object->flags & OBJ_DEAD) == 0) {
895                         if ((object->flags & OBJ_SWAP) != 0)
896                                 pageout_ok = disable_swap_pageouts == 0;
897                         else
898                                 pageout_ok = true;
899                         if (!pageout_ok) {
900                                 vm_page_launder(m);
901                                 goto skip_page;
902                         }
903
904                         /*
905                          * Form a cluster with adjacent, dirty pages from the
906                          * same object, and page out that entire cluster.
907                          *
908                          * The adjacent, dirty pages must also be in the
909                          * laundry.  However, their mappings are not checked
910                          * for new references.  Consequently, a recently
911                          * referenced page may be paged out.  However, that
912                          * page will not be prematurely reclaimed.  After page
913                          * out, the page will be placed in the inactive queue,
914                          * where any new references will be detected and the
915                          * page reactivated.
916                          */
917                         error = vm_pageout_clean(m, &numpagedout);
918                         if (error == 0) {
919                                 launder -= numpagedout;
920                                 ss.scanned += numpagedout;
921                         } else if (error == EDEADLK) {
922                                 pageout_lock_miss++;
923                                 vnodes_skipped++;
924                         }
925                         object = NULL;
926                 } else {
927 skip_page:
928                         vm_page_xunbusy(m);
929                 }
930         }
931         if (object != NULL) {
932                 VM_OBJECT_WUNLOCK(object);
933                 object = NULL;
934         }
935         vm_pagequeue_lock(pq);
936         vm_pageout_end_scan(&ss);
937         vm_pagequeue_unlock(pq);
938
939         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
940                 queue = PQ_LAUNDRY;
941                 goto scan;
942         }
943
944         /*
945          * Wakeup the sync daemon if we skipped a vnode in a writeable object
946          * and we didn't launder enough pages.
947          */
948         if (vnodes_skipped > 0 && launder > 0)
949                 (void)speedup_syncer();
950
951         return (starting_target - launder);
952 }
953
954 /*
955  * Compute the integer square root.
956  */
957 static u_int
958 isqrt(u_int num)
959 {
960         u_int bit, root, tmp;
961
962         bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
963         root = 0;
964         while (bit != 0) {
965                 tmp = root + bit;
966                 root >>= 1;
967                 if (num >= tmp) {
968                         num -= tmp;
969                         root += bit;
970                 }
971                 bit >>= 2;
972         }
973         return (root);
974 }
975
976 /*
977  * Perform the work of the laundry thread: periodically wake up and determine
978  * whether any pages need to be laundered.  If so, determine the number of pages
979  * that need to be laundered, and launder them.
980  */
981 static void
982 vm_pageout_laundry_worker(void *arg)
983 {
984         struct vm_domain *vmd;
985         struct vm_pagequeue *pq;
986         uint64_t nclean, ndirty, nfreed;
987         int domain, last_target, launder, shortfall, shortfall_cycle, target;
988         bool in_shortfall;
989
990         domain = (uintptr_t)arg;
991         vmd = VM_DOMAIN(domain);
992         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
993         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
994
995         shortfall = 0;
996         in_shortfall = false;
997         shortfall_cycle = 0;
998         last_target = target = 0;
999         nfreed = 0;
1000
1001         /*
1002          * Calls to these handlers are serialized by the swap syscall lock.
1003          */
1004         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1005             EVENTHANDLER_PRI_ANY);
1006         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1007             EVENTHANDLER_PRI_ANY);
1008
1009         /*
1010          * The pageout laundry worker is never done, so loop forever.
1011          */
1012         for (;;) {
1013                 KASSERT(target >= 0, ("negative target %d", target));
1014                 KASSERT(shortfall_cycle >= 0,
1015                     ("negative cycle %d", shortfall_cycle));
1016                 launder = 0;
1017
1018                 /*
1019                  * First determine whether we need to launder pages to meet a
1020                  * shortage of free pages.
1021                  */
1022                 if (shortfall > 0) {
1023                         in_shortfall = true;
1024                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1025                         target = shortfall;
1026                 } else if (!in_shortfall)
1027                         goto trybackground;
1028                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1029                         /*
1030                          * We recently entered shortfall and began laundering
1031                          * pages.  If we have completed that laundering run
1032                          * (and we are no longer in shortfall) or we have met
1033                          * our laundry target through other activity, then we
1034                          * can stop laundering pages.
1035                          */
1036                         in_shortfall = false;
1037                         target = 0;
1038                         goto trybackground;
1039                 }
1040                 launder = target / shortfall_cycle--;
1041                 goto dolaundry;
1042
1043                 /*
1044                  * There's no immediate need to launder any pages; see if we
1045                  * meet the conditions to perform background laundering:
1046                  *
1047                  * 1. The ratio of dirty to clean inactive pages exceeds the
1048                  *    background laundering threshold, or
1049                  * 2. we haven't yet reached the target of the current
1050                  *    background laundering run.
1051                  *
1052                  * The background laundering threshold is not a constant.
1053                  * Instead, it is a slowly growing function of the number of
1054                  * clean pages freed by the page daemon since the last
1055                  * background laundering.  Thus, as the ratio of dirty to
1056                  * clean inactive pages grows, the amount of memory pressure
1057                  * required to trigger laundering decreases.  We ensure
1058                  * that the threshold is non-zero after an inactive queue
1059                  * scan, even if that scan failed to free a single clean page.
1060                  */
1061 trybackground:
1062                 nclean = vmd->vmd_free_count +
1063                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1064                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1065                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1066                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1067                         target = vmd->vmd_background_launder_target;
1068                 }
1069
1070                 /*
1071                  * We have a non-zero background laundering target.  If we've
1072                  * laundered up to our maximum without observing a page daemon
1073                  * request, just stop.  This is a safety belt that ensures we
1074                  * don't launder an excessive amount if memory pressure is low
1075                  * and the ratio of dirty to clean pages is large.  Otherwise,
1076                  * proceed at the background laundering rate.
1077                  */
1078                 if (target > 0) {
1079                         if (nfreed > 0) {
1080                                 nfreed = 0;
1081                                 last_target = target;
1082                         } else if (last_target - target >=
1083                             vm_background_launder_max * PAGE_SIZE / 1024) {
1084                                 target = 0;
1085                         }
1086                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1087                         launder /= VM_LAUNDER_RATE;
1088                         if (launder > target)
1089                                 launder = target;
1090                 }
1091
1092 dolaundry:
1093                 if (launder > 0) {
1094                         /*
1095                          * Because of I/O clustering, the number of laundered
1096                          * pages could exceed "target" by the maximum size of
1097                          * a cluster minus one. 
1098                          */
1099                         target -= min(vm_pageout_launder(vmd, launder,
1100                             in_shortfall), target);
1101                         pause("laundp", hz / VM_LAUNDER_RATE);
1102                 }
1103
1104                 /*
1105                  * If we're not currently laundering pages and the page daemon
1106                  * hasn't posted a new request, sleep until the page daemon
1107                  * kicks us.
1108                  */
1109                 vm_pagequeue_lock(pq);
1110                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1111                         (void)mtx_sleep(&vmd->vmd_laundry_request,
1112                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1113
1114                 /*
1115                  * If the pagedaemon has indicated that it's in shortfall, start
1116                  * a shortfall laundering unless we're already in the middle of
1117                  * one.  This may preempt a background laundering.
1118                  */
1119                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1120                     (!in_shortfall || shortfall_cycle == 0)) {
1121                         shortfall = vm_laundry_target(vmd) +
1122                             vmd->vmd_pageout_deficit;
1123                         target = 0;
1124                 } else
1125                         shortfall = 0;
1126
1127                 if (target == 0)
1128                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1129                 nfreed += vmd->vmd_clean_pages_freed;
1130                 vmd->vmd_clean_pages_freed = 0;
1131                 vm_pagequeue_unlock(pq);
1132         }
1133 }
1134
1135 /*
1136  * Compute the number of pages we want to try to move from the
1137  * active queue to either the inactive or laundry queue.
1138  *
1139  * When scanning active pages during a shortage, we make clean pages
1140  * count more heavily towards the page shortage than dirty pages.
1141  * This is because dirty pages must be laundered before they can be
1142  * reused and thus have less utility when attempting to quickly
1143  * alleviate a free page shortage.  However, this weighting also
1144  * causes the scan to deactivate dirty pages more aggressively,
1145  * improving the effectiveness of clustering.
1146  */
1147 static int
1148 vm_pageout_active_target(struct vm_domain *vmd)
1149 {
1150         int shortage;
1151
1152         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1153             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1154             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1155         shortage *= act_scan_laundry_weight;
1156         return (shortage);
1157 }
1158
1159 /*
1160  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1161  * small portion of the queue in order to maintain quasi-LRU.
1162  */
1163 static void
1164 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1165 {
1166         struct scan_state ss;
1167         vm_object_t object;
1168         vm_page_t m, marker;
1169         struct vm_pagequeue *pq;
1170         vm_page_astate_t old, new;
1171         long min_scan;
1172         int act_delta, max_scan, ps_delta, refs, scan_tick;
1173         uint8_t nqueue;
1174
1175         marker = &vmd->vmd_markers[PQ_ACTIVE];
1176         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1177         vm_pagequeue_lock(pq);
1178
1179         /*
1180          * If we're just idle polling attempt to visit every
1181          * active page within 'update_period' seconds.
1182          */
1183         scan_tick = ticks;
1184         if (vm_pageout_update_period != 0) {
1185                 min_scan = pq->pq_cnt;
1186                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1187                 min_scan /= hz * vm_pageout_update_period;
1188         } else
1189                 min_scan = 0;
1190         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1191                 vmd->vmd_last_active_scan = scan_tick;
1192
1193         /*
1194          * Scan the active queue for pages that can be deactivated.  Update
1195          * the per-page activity counter and use it to identify deactivation
1196          * candidates.  Held pages may be deactivated.
1197          *
1198          * To avoid requeuing each page that remains in the active queue, we
1199          * implement the CLOCK algorithm.  To keep the implementation of the
1200          * enqueue operation consistent for all page queues, we use two hands,
1201          * represented by marker pages. Scans begin at the first hand, which
1202          * precedes the second hand in the queue.  When the two hands meet,
1203          * they are moved back to the head and tail of the queue, respectively,
1204          * and scanning resumes.
1205          */
1206         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1207 act_scan:
1208         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1209         while ((m = vm_pageout_next(&ss, false)) != NULL) {
1210                 if (__predict_false(m == &vmd->vmd_clock[1])) {
1211                         vm_pagequeue_lock(pq);
1212                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1213                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1214                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1215                             plinks.q);
1216                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1217                             plinks.q);
1218                         max_scan -= ss.scanned;
1219                         vm_pageout_end_scan(&ss);
1220                         goto act_scan;
1221                 }
1222                 if (__predict_false((m->flags & PG_MARKER) != 0))
1223                         continue;
1224
1225                 /*
1226                  * Don't touch a page that was removed from the queue after the
1227                  * page queue lock was released.  Otherwise, ensure that any
1228                  * pending queue operations, such as dequeues for wired pages,
1229                  * are handled.
1230                  */
1231                 if (vm_pageout_defer(m, PQ_ACTIVE, true))
1232                         continue;
1233
1234                 /*
1235                  * A page's object pointer may be set to NULL before
1236                  * the object lock is acquired.
1237                  */
1238                 object = atomic_load_ptr(&m->object);
1239                 if (__predict_false(object == NULL))
1240                         /*
1241                          * The page has been removed from its object.
1242                          */
1243                         continue;
1244
1245                 /* Deferred free of swap space. */
1246                 if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1247                     VM_OBJECT_TRYWLOCK(object)) {
1248                         if (m->object == object)
1249                                 vm_pager_page_unswapped(m);
1250                         VM_OBJECT_WUNLOCK(object);
1251                 }
1252
1253                 /*
1254                  * Check to see "how much" the page has been used.
1255                  *
1256                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1257                  * that a reference from a concurrently destroyed mapping is
1258                  * observed here and now.
1259                  *
1260                  * Perform an unsynchronized object ref count check.  While
1261                  * the page lock ensures that the page is not reallocated to
1262                  * another object, in particular, one with unmanaged mappings
1263                  * that cannot support pmap_ts_referenced(), two races are,
1264                  * nonetheless, possible:
1265                  * 1) The count was transitioning to zero, but we saw a non-
1266                  *    zero value.  pmap_ts_referenced() will return zero
1267                  *    because the page is not mapped.
1268                  * 2) The count was transitioning to one, but we saw zero.
1269                  *    This race delays the detection of a new reference.  At
1270                  *    worst, we will deactivate and reactivate the page.
1271                  */
1272                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1273
1274                 old = vm_page_astate_load(m);
1275                 do {
1276                         /*
1277                          * Check to see if the page has been removed from the
1278                          * queue since the first such check.  Leave it alone if
1279                          * so, discarding any references collected by
1280                          * pmap_ts_referenced().
1281                          */
1282                         if (__predict_false(_vm_page_queue(old) == PQ_NONE)) {
1283                                 ps_delta = 0;
1284                                 break;
1285                         }
1286
1287                         /*
1288                          * Advance or decay the act_count based on recent usage.
1289                          */
1290                         new = old;
1291                         act_delta = refs;
1292                         if ((old.flags & PGA_REFERENCED) != 0) {
1293                                 new.flags &= ~PGA_REFERENCED;
1294                                 act_delta++;
1295                         }
1296                         if (act_delta != 0) {
1297                                 new.act_count += ACT_ADVANCE + act_delta;
1298                                 if (new.act_count > ACT_MAX)
1299                                         new.act_count = ACT_MAX;
1300                         } else {
1301                                 new.act_count -= min(new.act_count,
1302                                     ACT_DECLINE);
1303                         }
1304
1305                         if (new.act_count > 0) {
1306                                 /*
1307                                  * Adjust the activation count and keep the page
1308                                  * in the active queue.  The count might be left
1309                                  * unchanged if it is saturated.  The page may
1310                                  * have been moved to a different queue since we
1311                                  * started the scan, in which case we move it
1312                                  * back.
1313                                  */
1314                                 ps_delta = 0;
1315                                 if (old.queue != PQ_ACTIVE) {
1316                                         new.flags &= ~PGA_QUEUE_OP_MASK;
1317                                         new.flags |= PGA_REQUEUE;
1318                                         new.queue = PQ_ACTIVE;
1319                                 }
1320                         } else {
1321                                 /*
1322                                  * When not short for inactive pages, let dirty
1323                                  * pages go through the inactive queue before
1324                                  * moving to the laundry queue.  This gives them
1325                                  * some extra time to be reactivated,
1326                                  * potentially avoiding an expensive pageout.
1327                                  * However, during a page shortage, the inactive
1328                                  * queue is necessarily small, and so dirty
1329                                  * pages would only spend a trivial amount of
1330                                  * time in the inactive queue.  Therefore, we
1331                                  * might as well place them directly in the
1332                                  * laundry queue to reduce queuing overhead.
1333                                  *
1334                                  * Calling vm_page_test_dirty() here would
1335                                  * require acquisition of the object's write
1336                                  * lock.  However, during a page shortage,
1337                                  * directing dirty pages into the laundry queue
1338                                  * is only an optimization and not a
1339                                  * requirement.  Therefore, we simply rely on
1340                                  * the opportunistic updates to the page's dirty
1341                                  * field by the pmap.
1342                                  */
1343                                 if (page_shortage <= 0) {
1344                                         nqueue = PQ_INACTIVE;
1345                                         ps_delta = 0;
1346                                 } else if (m->dirty == 0) {
1347                                         nqueue = PQ_INACTIVE;
1348                                         ps_delta = act_scan_laundry_weight;
1349                                 } else {
1350                                         nqueue = PQ_LAUNDRY;
1351                                         ps_delta = 1;
1352                                 }
1353
1354                                 new.flags &= ~PGA_QUEUE_OP_MASK;
1355                                 new.flags |= PGA_REQUEUE;
1356                                 new.queue = nqueue;
1357                         }
1358                 } while (!vm_page_pqstate_commit(m, &old, new));
1359
1360                 page_shortage -= ps_delta;
1361         }
1362         vm_pagequeue_lock(pq);
1363         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1364         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1365         vm_pageout_end_scan(&ss);
1366         vm_pagequeue_unlock(pq);
1367 }
1368
1369 static int
1370 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1371     vm_page_t m)
1372 {
1373         vm_page_astate_t as;
1374
1375         vm_pagequeue_assert_locked(pq);
1376
1377         as = vm_page_astate_load(m);
1378         if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1379                 return (0);
1380         vm_page_aflag_set(m, PGA_ENQUEUED);
1381         TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1382         return (1);
1383 }
1384
1385 /*
1386  * Re-add stuck pages to the inactive queue.  We will examine them again
1387  * during the next scan.  If the queue state of a page has changed since
1388  * it was physically removed from the page queue in
1389  * vm_pageout_collect_batch(), don't do anything with that page.
1390  */
1391 static void
1392 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1393     vm_page_t m)
1394 {
1395         struct vm_pagequeue *pq;
1396         vm_page_t marker;
1397         int delta;
1398
1399         delta = 0;
1400         marker = ss->marker;
1401         pq = ss->pq;
1402
1403         if (m != NULL) {
1404                 if (vm_batchqueue_insert(bq, m) != 0)
1405                         return;
1406                 vm_pagequeue_lock(pq);
1407                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1408         } else
1409                 vm_pagequeue_lock(pq);
1410         while ((m = vm_batchqueue_pop(bq)) != NULL)
1411                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1412         vm_pagequeue_cnt_add(pq, delta);
1413         vm_pagequeue_unlock(pq);
1414         vm_batchqueue_init(bq);
1415 }
1416
1417 static void
1418 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
1419 {
1420         struct timeval start, end;
1421         struct scan_state ss;
1422         struct vm_batchqueue rq;
1423         struct vm_page marker_page;
1424         vm_page_t m, marker;
1425         struct vm_pagequeue *pq;
1426         vm_object_t object;
1427         vm_page_astate_t old, new;
1428         int act_delta, addl_page_shortage, starting_page_shortage, refs;
1429
1430         object = NULL;
1431         vm_batchqueue_init(&rq);
1432         getmicrouptime(&start);
1433
1434         /*
1435          * The addl_page_shortage is an estimate of the number of temporarily
1436          * stuck pages in the inactive queue.  In other words, the
1437          * number of pages from the inactive count that should be
1438          * discounted in setting the target for the active queue scan.
1439          */
1440         addl_page_shortage = 0;
1441
1442         /*
1443          * Start scanning the inactive queue for pages that we can free.  The
1444          * scan will stop when we reach the target or we have scanned the
1445          * entire queue.  (Note that m->a.act_count is not used to make
1446          * decisions for the inactive queue, only for the active queue.)
1447          */
1448         starting_page_shortage = page_shortage;
1449         marker = &marker_page;
1450         vm_page_init_marker(marker, PQ_INACTIVE, 0);
1451         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1452         vm_pagequeue_lock(pq);
1453         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1454         while (page_shortage > 0) {
1455                 /*
1456                  * If we need to refill the scan batch queue, release any
1457                  * optimistically held object lock.  This gives someone else a
1458                  * chance to grab the lock, and also avoids holding it while we
1459                  * do unrelated work.
1460                  */
1461                 if (object != NULL && vm_batchqueue_empty(&ss.bq)) {
1462                         VM_OBJECT_WUNLOCK(object);
1463                         object = NULL;
1464                 }
1465
1466                 m = vm_pageout_next(&ss, true);
1467                 if (m == NULL)
1468                         break;
1469                 KASSERT((m->flags & PG_MARKER) == 0,
1470                     ("marker page %p was dequeued", m));
1471
1472                 /*
1473                  * Don't touch a page that was removed from the queue after the
1474                  * page queue lock was released.  Otherwise, ensure that any
1475                  * pending queue operations, such as dequeues for wired pages,
1476                  * are handled.
1477                  */
1478                 if (vm_pageout_defer(m, PQ_INACTIVE, false))
1479                         continue;
1480
1481                 /*
1482                  * Lock the page's object.
1483                  */
1484                 if (object == NULL || object != m->object) {
1485                         if (object != NULL)
1486                                 VM_OBJECT_WUNLOCK(object);
1487                         object = atomic_load_ptr(&m->object);
1488                         if (__predict_false(object == NULL))
1489                                 /* The page is being freed by another thread. */
1490                                 continue;
1491
1492                         /* Depends on type-stability. */
1493                         VM_OBJECT_WLOCK(object);
1494                         if (__predict_false(m->object != object)) {
1495                                 VM_OBJECT_WUNLOCK(object);
1496                                 object = NULL;
1497                                 goto reinsert;
1498                         }
1499                 }
1500
1501                 if (vm_page_tryxbusy(m) == 0) {
1502                         /*
1503                          * Don't mess with busy pages.  Leave them at
1504                          * the front of the queue.  Most likely, they
1505                          * are being paged out and will leave the
1506                          * queue shortly after the scan finishes.  So,
1507                          * they ought to be discounted from the
1508                          * inactive count.
1509                          */
1510                         addl_page_shortage++;
1511                         goto reinsert;
1512                 }
1513
1514                 /* Deferred free of swap space. */
1515                 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1516                         vm_pager_page_unswapped(m);
1517
1518                 /*
1519                  * Check for wirings now that we hold the object lock and have
1520                  * exclusively busied the page.  If the page is mapped, it may
1521                  * still be wired by pmap lookups.  The call to
1522                  * vm_page_try_remove_all() below atomically checks for such
1523                  * wirings and removes mappings.  If the page is unmapped, the
1524                  * wire count is guaranteed not to increase after this check.
1525                  */
1526                 if (__predict_false(vm_page_wired(m)))
1527                         goto skip_page;
1528
1529                 /*
1530                  * Invalid pages can be easily freed. They cannot be
1531                  * mapped, vm_page_free() asserts this.
1532                  */
1533                 if (vm_page_none_valid(m))
1534                         goto free_page;
1535
1536                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1537
1538                 for (old = vm_page_astate_load(m);;) {
1539                         /*
1540                          * Check to see if the page has been removed from the
1541                          * queue since the first such check.  Leave it alone if
1542                          * so, discarding any references collected by
1543                          * pmap_ts_referenced().
1544                          */
1545                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1546                                 goto skip_page;
1547
1548                         new = old;
1549                         act_delta = refs;
1550                         if ((old.flags & PGA_REFERENCED) != 0) {
1551                                 new.flags &= ~PGA_REFERENCED;
1552                                 act_delta++;
1553                         }
1554                         if (act_delta == 0) {
1555                                 ;
1556                         } else if (object->ref_count != 0) {
1557                                 /*
1558                                  * Increase the activation count if the
1559                                  * page was referenced while in the
1560                                  * inactive queue.  This makes it less
1561                                  * likely that the page will be returned
1562                                  * prematurely to the inactive queue.
1563                                  */
1564                                 new.act_count += ACT_ADVANCE +
1565                                     act_delta;
1566                                 if (new.act_count > ACT_MAX)
1567                                         new.act_count = ACT_MAX;
1568
1569                                 new.flags &= ~PGA_QUEUE_OP_MASK;
1570                                 new.flags |= PGA_REQUEUE;
1571                                 new.queue = PQ_ACTIVE;
1572                                 if (!vm_page_pqstate_commit(m, &old, new))
1573                                         continue;
1574
1575                                 VM_CNT_INC(v_reactivated);
1576                                 goto skip_page;
1577                         } else if ((object->flags & OBJ_DEAD) == 0) {
1578                                 new.queue = PQ_INACTIVE;
1579                                 new.flags |= PGA_REQUEUE;
1580                                 if (!vm_page_pqstate_commit(m, &old, new))
1581                                         continue;
1582                                 goto skip_page;
1583                         }
1584                         break;
1585                 }
1586
1587                 /*
1588                  * If the page appears to be clean at the machine-independent
1589                  * layer, then remove all of its mappings from the pmap in
1590                  * anticipation of freeing it.  If, however, any of the page's
1591                  * mappings allow write access, then the page may still be
1592                  * modified until the last of those mappings are removed.
1593                  */
1594                 if (object->ref_count != 0) {
1595                         vm_page_test_dirty(m);
1596                         if (m->dirty == 0 && !vm_page_try_remove_all(m))
1597                                 goto skip_page;
1598                 }
1599
1600                 /*
1601                  * Clean pages can be freed, but dirty pages must be sent back
1602                  * to the laundry, unless they belong to a dead object.
1603                  * Requeueing dirty pages from dead objects is pointless, as
1604                  * they are being paged out and freed by the thread that
1605                  * destroyed the object.
1606                  */
1607                 if (m->dirty == 0) {
1608 free_page:
1609                         /*
1610                          * Now we are guaranteed that no other threads are
1611                          * manipulating the page, check for a last-second
1612                          * reference that would save it from doom.
1613                          */
1614                         if (vm_pageout_defer(m, PQ_INACTIVE, false))
1615                                 goto skip_page;
1616
1617                         /*
1618                          * Because we dequeued the page and have already checked
1619                          * for pending dequeue and enqueue requests, we can
1620                          * safely disassociate the page from the inactive queue
1621                          * without holding the queue lock.
1622                          */
1623                         m->a.queue = PQ_NONE;
1624                         vm_page_free(m);
1625                         page_shortage--;
1626                         continue;
1627                 }
1628                 if ((object->flags & OBJ_DEAD) == 0)
1629                         vm_page_launder(m);
1630 skip_page:
1631                 vm_page_xunbusy(m);
1632                 continue;
1633 reinsert:
1634                 vm_pageout_reinsert_inactive(&ss, &rq, m);
1635         }
1636         if (object != NULL)
1637                 VM_OBJECT_WUNLOCK(object);
1638         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1639         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1640         vm_pagequeue_lock(pq);
1641         vm_pageout_end_scan(&ss);
1642         vm_pagequeue_unlock(pq);
1643
1644         /*
1645          * Record the remaining shortage and the progress and rate it was made.
1646          */
1647         atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
1648         getmicrouptime(&end);
1649         timevalsub(&end, &start);
1650         atomic_add_int(&vmd->vmd_inactive_us,
1651             end.tv_sec * 1000000 + end.tv_usec);
1652         atomic_add_int(&vmd->vmd_inactive_freed,
1653             starting_page_shortage - page_shortage);
1654 }
1655
1656 /*
1657  * Dispatch a number of inactive threads according to load and collect the
1658  * results to present a coherent view of paging activity on this domain.
1659  */
1660 static int
1661 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
1662 {
1663         u_int freed, pps, slop, threads, us;
1664
1665         vmd->vmd_inactive_shortage = shortage;
1666         slop = 0;
1667
1668         /*
1669          * If we have more work than we can do in a quarter of our interval, we
1670          * fire off multiple threads to process it.
1671          */
1672         threads = vmd->vmd_inactive_threads;
1673         if (threads > 1 && vmd->vmd_inactive_pps != 0 &&
1674             shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
1675                 vmd->vmd_inactive_shortage /= threads;
1676                 slop = shortage % threads;
1677                 vm_domain_pageout_lock(vmd);
1678                 blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
1679                 blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
1680                 wakeup(&vmd->vmd_inactive_shortage);
1681                 vm_domain_pageout_unlock(vmd);
1682         }
1683
1684         /* Run the local thread scan. */
1685         vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop);
1686
1687         /*
1688          * Block until helper threads report results and then accumulate
1689          * totals.
1690          */
1691         blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
1692         freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
1693         VM_CNT_ADD(v_dfree, freed);
1694
1695         /*
1696          * Calculate the per-thread paging rate with an exponential decay of
1697          * prior results.  Careful to avoid integer rounding errors with large
1698          * us values.
1699          */
1700         us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
1701         if (us > 1000000)
1702                 /* Keep rounding to tenths */
1703                 pps = (freed * 10) / ((us * 10) / 1000000);
1704         else
1705                 pps = (1000000 / us) * freed;
1706         vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
1707
1708         return (shortage - freed);
1709 }
1710
1711 /*
1712  * Attempt to reclaim the requested number of pages from the inactive queue.
1713  * Returns true if the shortage was addressed.
1714  */
1715 static int
1716 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
1717 {
1718         struct vm_pagequeue *pq;
1719         u_int addl_page_shortage, deficit, page_shortage;
1720         u_int starting_page_shortage;
1721
1722         /*
1723          * vmd_pageout_deficit counts the number of pages requested in
1724          * allocations that failed because of a free page shortage.  We assume
1725          * that the allocations will be reattempted and thus include the deficit
1726          * in our scan target.
1727          */
1728         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1729         starting_page_shortage = shortage + deficit;
1730
1731         /*
1732          * Run the inactive scan on as many threads as is necessary.
1733          */
1734         page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
1735         addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
1736
1737         /*
1738          * Wake up the laundry thread so that it can perform any needed
1739          * laundering.  If we didn't meet our target, we're in shortfall and
1740          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1741          * swap devices are configured, the laundry thread has no work to do, so
1742          * don't bother waking it up.
1743          *
1744          * The laundry thread uses the number of inactive queue scans elapsed
1745          * since the last laundering to determine whether to launder again, so
1746          * keep count.
1747          */
1748         if (starting_page_shortage > 0) {
1749                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1750                 vm_pagequeue_lock(pq);
1751                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1752                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1753                         if (page_shortage > 0) {
1754                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1755                                 VM_CNT_INC(v_pdshortfalls);
1756                         } else if (vmd->vmd_laundry_request !=
1757                             VM_LAUNDRY_SHORTFALL)
1758                                 vmd->vmd_laundry_request =
1759                                     VM_LAUNDRY_BACKGROUND;
1760                         wakeup(&vmd->vmd_laundry_request);
1761                 }
1762                 vmd->vmd_clean_pages_freed +=
1763                     starting_page_shortage - page_shortage;
1764                 vm_pagequeue_unlock(pq);
1765         }
1766
1767         /*
1768          * Wakeup the swapout daemon if we didn't free the targeted number of
1769          * pages.
1770          */
1771         if (page_shortage > 0)
1772                 vm_swapout_run();
1773
1774         /*
1775          * If the inactive queue scan fails repeatedly to meet its
1776          * target, kill the largest process.
1777          */
1778         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1779
1780         /*
1781          * Reclaim pages by swapping out idle processes, if configured to do so.
1782          */
1783         vm_swapout_run_idle();
1784
1785         /*
1786          * See the description of addl_page_shortage above.
1787          */
1788         *addl_shortage = addl_page_shortage + deficit;
1789
1790         return (page_shortage <= 0);
1791 }
1792
1793 static int vm_pageout_oom_vote;
1794
1795 /*
1796  * The pagedaemon threads randlomly select one to perform the
1797  * OOM.  Trying to kill processes before all pagedaemons
1798  * failed to reach free target is premature.
1799  */
1800 static void
1801 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1802     int starting_page_shortage)
1803 {
1804         int old_vote;
1805
1806         if (starting_page_shortage <= 0 || starting_page_shortage !=
1807             page_shortage)
1808                 vmd->vmd_oom_seq = 0;
1809         else
1810                 vmd->vmd_oom_seq++;
1811         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1812                 if (vmd->vmd_oom) {
1813                         vmd->vmd_oom = FALSE;
1814                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1815                 }
1816                 return;
1817         }
1818
1819         /*
1820          * Do not follow the call sequence until OOM condition is
1821          * cleared.
1822          */
1823         vmd->vmd_oom_seq = 0;
1824
1825         if (vmd->vmd_oom)
1826                 return;
1827
1828         vmd->vmd_oom = TRUE;
1829         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1830         if (old_vote != vm_ndomains - 1)
1831                 return;
1832
1833         /*
1834          * The current pagedaemon thread is the last in the quorum to
1835          * start OOM.  Initiate the selection and signaling of the
1836          * victim.
1837          */
1838         vm_pageout_oom(VM_OOM_MEM);
1839
1840         /*
1841          * After one round of OOM terror, recall our vote.  On the
1842          * next pass, current pagedaemon would vote again if the low
1843          * memory condition is still there, due to vmd_oom being
1844          * false.
1845          */
1846         vmd->vmd_oom = FALSE;
1847         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1848 }
1849
1850 /*
1851  * The OOM killer is the page daemon's action of last resort when
1852  * memory allocation requests have been stalled for a prolonged period
1853  * of time because it cannot reclaim memory.  This function computes
1854  * the approximate number of physical pages that could be reclaimed if
1855  * the specified address space is destroyed.
1856  *
1857  * Private, anonymous memory owned by the address space is the
1858  * principal resource that we expect to recover after an OOM kill.
1859  * Since the physical pages mapped by the address space's COW entries
1860  * are typically shared pages, they are unlikely to be released and so
1861  * they are not counted.
1862  *
1863  * To get to the point where the page daemon runs the OOM killer, its
1864  * efforts to write-back vnode-backed pages may have stalled.  This
1865  * could be caused by a memory allocation deadlock in the write path
1866  * that might be resolved by an OOM kill.  Therefore, physical pages
1867  * belonging to vnode-backed objects are counted, because they might
1868  * be freed without being written out first if the address space holds
1869  * the last reference to an unlinked vnode.
1870  *
1871  * Similarly, physical pages belonging to OBJT_PHYS objects are
1872  * counted because the address space might hold the last reference to
1873  * the object.
1874  */
1875 static long
1876 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1877 {
1878         vm_map_t map;
1879         vm_map_entry_t entry;
1880         vm_object_t obj;
1881         long res;
1882
1883         map = &vmspace->vm_map;
1884         KASSERT(!map->system_map, ("system map"));
1885         sx_assert(&map->lock, SA_LOCKED);
1886         res = 0;
1887         VM_MAP_ENTRY_FOREACH(entry, map) {
1888                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1889                         continue;
1890                 obj = entry->object.vm_object;
1891                 if (obj == NULL)
1892                         continue;
1893                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1894                     obj->ref_count != 1)
1895                         continue;
1896                 if (obj->type == OBJT_PHYS || obj->type == OBJT_VNODE ||
1897                     (obj->flags & OBJ_SWAP) != 0)
1898                         res += obj->resident_page_count;
1899         }
1900         return (res);
1901 }
1902
1903 static int vm_oom_ratelim_last;
1904 static int vm_oom_pf_secs = 10;
1905 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1906     "");
1907 static struct mtx vm_oom_ratelim_mtx;
1908
1909 void
1910 vm_pageout_oom(int shortage)
1911 {
1912         const char *reason;
1913         struct proc *p, *bigproc;
1914         vm_offset_t size, bigsize;
1915         struct thread *td;
1916         struct vmspace *vm;
1917         int now;
1918         bool breakout;
1919
1920         /*
1921          * For OOM requests originating from vm_fault(), there is a high
1922          * chance that a single large process faults simultaneously in
1923          * several threads.  Also, on an active system running many
1924          * processes of middle-size, like buildworld, all of them
1925          * could fault almost simultaneously as well.
1926          *
1927          * To avoid killing too many processes, rate-limit OOMs
1928          * initiated by vm_fault() time-outs on the waits for free
1929          * pages.
1930          */
1931         mtx_lock(&vm_oom_ratelim_mtx);
1932         now = ticks;
1933         if (shortage == VM_OOM_MEM_PF &&
1934             (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1935                 mtx_unlock(&vm_oom_ratelim_mtx);
1936                 return;
1937         }
1938         vm_oom_ratelim_last = now;
1939         mtx_unlock(&vm_oom_ratelim_mtx);
1940
1941         /*
1942          * We keep the process bigproc locked once we find it to keep anyone
1943          * from messing with it; however, there is a possibility of
1944          * deadlock if process B is bigproc and one of its child processes
1945          * attempts to propagate a signal to B while we are waiting for A's
1946          * lock while walking this list.  To avoid this, we don't block on
1947          * the process lock but just skip a process if it is already locked.
1948          */
1949         bigproc = NULL;
1950         bigsize = 0;
1951         sx_slock(&allproc_lock);
1952         FOREACH_PROC_IN_SYSTEM(p) {
1953                 PROC_LOCK(p);
1954
1955                 /*
1956                  * If this is a system, protected or killed process, skip it.
1957                  */
1958                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1959                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1960                     p->p_pid == 1 || P_KILLED(p) ||
1961                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1962                         PROC_UNLOCK(p);
1963                         continue;
1964                 }
1965                 /*
1966                  * If the process is in a non-running type state,
1967                  * don't touch it.  Check all the threads individually.
1968                  */
1969                 breakout = false;
1970                 FOREACH_THREAD_IN_PROC(p, td) {
1971                         thread_lock(td);
1972                         if (!TD_ON_RUNQ(td) &&
1973                             !TD_IS_RUNNING(td) &&
1974                             !TD_IS_SLEEPING(td) &&
1975                             !TD_IS_SUSPENDED(td) &&
1976                             !TD_IS_SWAPPED(td)) {
1977                                 thread_unlock(td);
1978                                 breakout = true;
1979                                 break;
1980                         }
1981                         thread_unlock(td);
1982                 }
1983                 if (breakout) {
1984                         PROC_UNLOCK(p);
1985                         continue;
1986                 }
1987                 /*
1988                  * get the process size
1989                  */
1990                 vm = vmspace_acquire_ref(p);
1991                 if (vm == NULL) {
1992                         PROC_UNLOCK(p);
1993                         continue;
1994                 }
1995                 _PHOLD_LITE(p);
1996                 PROC_UNLOCK(p);
1997                 sx_sunlock(&allproc_lock);
1998                 if (!vm_map_trylock_read(&vm->vm_map)) {
1999                         vmspace_free(vm);
2000                         sx_slock(&allproc_lock);
2001                         PRELE(p);
2002                         continue;
2003                 }
2004                 size = vmspace_swap_count(vm);
2005                 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
2006                         size += vm_pageout_oom_pagecount(vm);
2007                 vm_map_unlock_read(&vm->vm_map);
2008                 vmspace_free(vm);
2009                 sx_slock(&allproc_lock);
2010
2011                 /*
2012                  * If this process is bigger than the biggest one,
2013                  * remember it.
2014                  */
2015                 if (size > bigsize) {
2016                         if (bigproc != NULL)
2017                                 PRELE(bigproc);
2018                         bigproc = p;
2019                         bigsize = size;
2020                 } else {
2021                         PRELE(p);
2022                 }
2023         }
2024         sx_sunlock(&allproc_lock);
2025
2026         if (bigproc != NULL) {
2027                 switch (shortage) {
2028                 case VM_OOM_MEM:
2029                         reason = "failed to reclaim memory";
2030                         break;
2031                 case VM_OOM_MEM_PF:
2032                         reason = "a thread waited too long to allocate a page";
2033                         break;
2034                 case VM_OOM_SWAPZ:
2035                         reason = "out of swap space";
2036                         break;
2037                 default:
2038                         panic("unknown OOM reason %d", shortage);
2039                 }
2040                 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
2041                         panic("%s", reason);
2042                 PROC_LOCK(bigproc);
2043                 killproc(bigproc, reason);
2044                 sched_nice(bigproc, PRIO_MIN);
2045                 _PRELE(bigproc);
2046                 PROC_UNLOCK(bigproc);
2047         }
2048 }
2049
2050 /*
2051  * Signal a free page shortage to subsystems that have registered an event
2052  * handler.  Reclaim memory from UMA in the event of a severe shortage.
2053  * Return true if the free page count should be re-evaluated.
2054  */
2055 static bool
2056 vm_pageout_lowmem(void)
2057 {
2058         static int lowmem_ticks = 0;
2059         int last;
2060         bool ret;
2061
2062         ret = false;
2063
2064         last = atomic_load_int(&lowmem_ticks);
2065         while ((u_int)(ticks - last) / hz >= lowmem_period) {
2066                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
2067                         continue;
2068
2069                 /*
2070                  * Decrease registered cache sizes.
2071                  */
2072                 SDT_PROBE0(vm, , , vm__lowmem_scan);
2073                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2074
2075                 /*
2076                  * We do this explicitly after the caches have been
2077                  * drained above.
2078                  */
2079                 uma_reclaim(UMA_RECLAIM_TRIM);
2080                 ret = true;
2081                 break;
2082         }
2083
2084         /*
2085          * Kick off an asynchronous reclaim of cached memory if one of the
2086          * page daemons is failing to keep up with demand.  Use the "severe"
2087          * threshold instead of "min" to ensure that we do not blow away the
2088          * caches if a subset of the NUMA domains are depleted by kernel memory
2089          * allocations; the domainset iterators automatically skip domains
2090          * below the "min" threshold on the first pass.
2091          *
2092          * UMA reclaim worker has its own rate-limiting mechanism, so don't
2093          * worry about kicking it too often.
2094          */
2095         if (vm_page_count_severe())
2096                 uma_reclaim_wakeup();
2097
2098         return (ret);
2099 }
2100
2101 static void
2102 vm_pageout_worker(void *arg)
2103 {
2104         struct vm_domain *vmd;
2105         u_int ofree;
2106         int addl_shortage, domain, shortage;
2107         bool target_met;
2108
2109         domain = (uintptr_t)arg;
2110         vmd = VM_DOMAIN(domain);
2111         shortage = 0;
2112         target_met = true;
2113
2114         /*
2115          * XXXKIB It could be useful to bind pageout daemon threads to
2116          * the cores belonging to the domain, from which vm_page_array
2117          * is allocated.
2118          */
2119
2120         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2121         vmd->vmd_last_active_scan = ticks;
2122
2123         /*
2124          * The pageout daemon worker is never done, so loop forever.
2125          */
2126         while (TRUE) {
2127                 vm_domain_pageout_lock(vmd);
2128
2129                 /*
2130                  * We need to clear wanted before we check the limits.  This
2131                  * prevents races with wakers who will check wanted after they
2132                  * reach the limit.
2133                  */
2134                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2135
2136                 /*
2137                  * Might the page daemon need to run again?
2138                  */
2139                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2140                         /*
2141                          * Yes.  If the scan failed to produce enough free
2142                          * pages, sleep uninterruptibly for some time in the
2143                          * hope that the laundry thread will clean some pages.
2144                          */
2145                         vm_domain_pageout_unlock(vmd);
2146                         if (!target_met)
2147                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
2148                 } else {
2149                         /*
2150                          * No, sleep until the next wakeup or until pages
2151                          * need to have their reference stats updated.
2152                          */
2153                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
2154                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2155                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2156                                 VM_CNT_INC(v_pdwakeups);
2157                 }
2158
2159                 /* Prevent spurious wakeups by ensuring that wanted is set. */
2160                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2161
2162                 /*
2163                  * Use the controller to calculate how many pages to free in
2164                  * this interval, and scan the inactive queue.  If the lowmem
2165                  * handlers appear to have freed up some pages, subtract the
2166                  * difference from the inactive queue scan target.
2167                  */
2168                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2169                 if (shortage > 0) {
2170                         ofree = vmd->vmd_free_count;
2171                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2172                                 shortage -= min(vmd->vmd_free_count - ofree,
2173                                     (u_int)shortage);
2174                         target_met = vm_pageout_inactive(vmd, shortage,
2175                             &addl_shortage);
2176                 } else
2177                         addl_shortage = 0;
2178
2179                 /*
2180                  * Scan the active queue.  A positive value for shortage
2181                  * indicates that we must aggressively deactivate pages to avoid
2182                  * a shortfall.
2183                  */
2184                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
2185                 vm_pageout_scan_active(vmd, shortage);
2186         }
2187 }
2188
2189 /*
2190  * vm_pageout_helper runs additional pageout daemons in times of high paging
2191  * activity.
2192  */
2193 static void
2194 vm_pageout_helper(void *arg)
2195 {
2196         struct vm_domain *vmd;
2197         int domain;
2198
2199         domain = (uintptr_t)arg;
2200         vmd = VM_DOMAIN(domain);
2201
2202         vm_domain_pageout_lock(vmd);
2203         for (;;) {
2204                 msleep(&vmd->vmd_inactive_shortage,
2205                     vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
2206                 blockcount_release(&vmd->vmd_inactive_starting, 1);
2207
2208                 vm_domain_pageout_unlock(vmd);
2209                 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
2210                 vm_domain_pageout_lock(vmd);
2211
2212                 /*
2213                  * Release the running count while the pageout lock is held to
2214                  * prevent wakeup races.
2215                  */
2216                 blockcount_release(&vmd->vmd_inactive_running, 1);
2217         }
2218 }
2219
2220 static int
2221 get_pageout_threads_per_domain(const struct vm_domain *vmd)
2222 {
2223         unsigned total_pageout_threads, eligible_cpus, domain_cpus;
2224
2225         if (VM_DOMAIN_EMPTY(vmd->vmd_domain))
2226                 return (0);
2227
2228         /*
2229          * Semi-arbitrarily constrain pagedaemon threads to less than half the
2230          * total number of CPUs in the system as an upper limit.
2231          */
2232         if (pageout_cpus_per_thread < 2)
2233                 pageout_cpus_per_thread = 2;
2234         else if (pageout_cpus_per_thread > mp_ncpus)
2235                 pageout_cpus_per_thread = mp_ncpus;
2236
2237         total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread);
2238         domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]);
2239
2240         /* Pagedaemons are not run in empty domains. */
2241         eligible_cpus = mp_ncpus;
2242         for (unsigned i = 0; i < vm_ndomains; i++)
2243                 if (VM_DOMAIN_EMPTY(i))
2244                         eligible_cpus -= CPU_COUNT(&cpuset_domain[i]);
2245
2246         /*
2247          * Assign a portion of the total pageout threads to this domain
2248          * corresponding to the fraction of pagedaemon-eligible CPUs in the
2249          * domain.  In asymmetric NUMA systems, domains with more CPUs may be
2250          * allocated more threads than domains with fewer CPUs.
2251          */
2252         return (howmany(total_pageout_threads * domain_cpus, eligible_cpus));
2253 }
2254
2255 /*
2256  * Initialize basic pageout daemon settings.  See the comment above the
2257  * definition of vm_domain for some explanation of how these thresholds are
2258  * used.
2259  */
2260 static void
2261 vm_pageout_init_domain(int domain)
2262 {
2263         struct vm_domain *vmd;
2264         struct sysctl_oid *oid;
2265
2266         vmd = VM_DOMAIN(domain);
2267         vmd->vmd_interrupt_free_min = 2;
2268
2269         /*
2270          * v_free_reserved needs to include enough for the largest
2271          * swap pager structures plus enough for any pv_entry structs
2272          * when paging. 
2273          */
2274         vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2275             vmd->vmd_interrupt_free_min;
2276         vmd->vmd_free_reserved = vm_pageout_page_count +
2277             vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2278         vmd->vmd_free_min = vmd->vmd_page_count / 200;
2279         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2280         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2281         vmd->vmd_free_min += vmd->vmd_free_reserved;
2282         vmd->vmd_free_severe += vmd->vmd_free_reserved;
2283         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2284         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2285                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2286
2287         /*
2288          * Set the default wakeup threshold to be 10% below the paging
2289          * target.  This keeps the steady state out of shortfall.
2290          */
2291         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2292
2293         /*
2294          * Target amount of memory to move out of the laundry queue during a
2295          * background laundering.  This is proportional to the amount of system
2296          * memory.
2297          */
2298         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2299             vmd->vmd_free_min) / 10;
2300
2301         /* Initialize the pageout daemon pid controller. */
2302         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2303             vmd->vmd_free_target, PIDCTRL_BOUND,
2304             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2305         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2306             "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2307         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2308
2309         vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd);
2310 }
2311
2312 static void
2313 vm_pageout_init(void)
2314 {
2315         u_long freecount;
2316         int i;
2317
2318         /*
2319          * Initialize some paging parameters.
2320          */
2321         if (vm_cnt.v_page_count < 2000)
2322                 vm_pageout_page_count = 8;
2323
2324         freecount = 0;
2325         for (i = 0; i < vm_ndomains; i++) {
2326                 struct vm_domain *vmd;
2327
2328                 vm_pageout_init_domain(i);
2329                 vmd = VM_DOMAIN(i);
2330                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2331                 vm_cnt.v_free_target += vmd->vmd_free_target;
2332                 vm_cnt.v_free_min += vmd->vmd_free_min;
2333                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2334                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2335                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2336                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2337                 freecount += vmd->vmd_free_count;
2338         }
2339
2340         /*
2341          * Set interval in seconds for active scan.  We want to visit each
2342          * page at least once every ten minutes.  This is to prevent worst
2343          * case paging behaviors with stale active LRU.
2344          */
2345         if (vm_pageout_update_period == 0)
2346                 vm_pageout_update_period = 600;
2347
2348         /*
2349          * Set the maximum number of user-wired virtual pages.  Historically the
2350          * main source of such pages was mlock(2) and mlockall(2).  Hypervisors
2351          * may also request user-wired memory.
2352          */
2353         if (vm_page_max_user_wired == 0)
2354                 vm_page_max_user_wired = 4 * freecount / 5;
2355 }
2356
2357 /*
2358  *     vm_pageout is the high level pageout daemon.
2359  */
2360 static void
2361 vm_pageout(void)
2362 {
2363         struct proc *p;
2364         struct thread *td;
2365         int error, first, i, j, pageout_threads;
2366
2367         p = curproc;
2368         td = curthread;
2369
2370         mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2371         swap_pager_swap_init();
2372         for (first = -1, i = 0; i < vm_ndomains; i++) {
2373                 if (VM_DOMAIN_EMPTY(i)) {
2374                         if (bootverbose)
2375                                 printf("domain %d empty; skipping pageout\n",
2376                                     i);
2377                         continue;
2378                 }
2379                 if (first == -1)
2380                         first = i;
2381                 else {
2382                         error = kthread_add(vm_pageout_worker,
2383                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2384                         if (error != 0)
2385                                 panic("starting pageout for domain %d: %d\n",
2386                                     i, error);
2387                 }
2388                 pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads;
2389                 for (j = 0; j < pageout_threads - 1; j++) {
2390                         error = kthread_add(vm_pageout_helper,
2391                             (void *)(uintptr_t)i, p, NULL, 0, 0,
2392                             "dom%d helper%d", i, j);
2393                         if (error != 0)
2394                                 panic("starting pageout helper %d for domain "
2395                                     "%d: %d\n", j, i, error);
2396                 }
2397                 error = kthread_add(vm_pageout_laundry_worker,
2398                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2399                 if (error != 0)
2400                         panic("starting laundry for domain %d: %d", i, error);
2401         }
2402         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2403         if (error != 0)
2404                 panic("starting uma_reclaim helper, error %d\n", error);
2405
2406         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2407         vm_pageout_worker((void *)(uintptr_t)first);
2408 }
2409
2410 /*
2411  * Perform an advisory wakeup of the page daemon.
2412  */
2413 void
2414 pagedaemon_wakeup(int domain)
2415 {
2416         struct vm_domain *vmd;
2417
2418         vmd = VM_DOMAIN(domain);
2419         vm_domain_pageout_assert_unlocked(vmd);
2420         if (curproc == pageproc)
2421                 return;
2422
2423         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2424                 vm_domain_pageout_lock(vmd);
2425                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2426                 wakeup(&vmd->vmd_pageout_wanted);
2427                 vm_domain_pageout_unlock(vmd);
2428         }
2429 }