]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Merge uma_int.h:1.37 from HEAD to RELENG_6:
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/resourcevar.h>
89 #include <sys/sched.h>
90 #include <sys/signalvar.h>
91 #include <sys/vnode.h>
92 #include <sys/vmmeter.h>
93 #include <sys/sx.h>
94 #include <sys/sysctl.h>
95
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_map.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_pager.h>
103 #include <vm/swap_pager.h>
104 #include <vm/vm_extern.h>
105 #include <vm/uma.h>
106
107 #include <machine/mutex.h>
108
109 /*
110  * System initialization
111  */
112
113 /* the kernel process "vm_pageout"*/
114 static void vm_pageout(void);
115 static int vm_pageout_clean(vm_page_t);
116 static void vm_pageout_pmap_collect(void);
117 static void vm_pageout_scan(int pass);
118
119 struct proc *pageproc;
120
121 static struct kproc_desc page_kp = {
122         "pagedaemon",
123         vm_pageout,
124         &pageproc
125 };
126 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
127
128 #if !defined(NO_SWAPPING)
129 /* the kernel process "vm_daemon"*/
130 static void vm_daemon(void);
131 static struct   proc *vmproc;
132
133 static struct kproc_desc vm_kp = {
134         "vmdaemon",
135         vm_daemon,
136         &vmproc
137 };
138 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
139 #endif
140
141
142 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
143 int vm_pageout_deficit;         /* Estimated number of pages deficit */
144 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
145
146 #if !defined(NO_SWAPPING)
147 static int vm_pageout_req_swapout;      /* XXX */
148 static int vm_daemon_needed;
149 #endif
150 static int vm_max_launder = 32;
151 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
152 static int vm_pageout_full_stats_interval = 0;
153 static int vm_pageout_algorithm=0;
154 static int defer_swap_pageouts=0;
155 static int disable_swap_pageouts=0;
156
157 #if defined(NO_SWAPPING)
158 static int vm_swap_enabled=0;
159 static int vm_swap_idle_enabled=0;
160 #else
161 static int vm_swap_enabled=1;
162 static int vm_swap_idle_enabled=0;
163 #endif
164
165 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
166         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
167
168 SYSCTL_INT(_vm, OID_AUTO, max_launder,
169         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
170
171 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
172         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
173
174 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
175         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
178         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
179
180 #if defined(NO_SWAPPING)
181 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
182         CTLFLAG_RD, &vm_swap_enabled, 0, "");
183 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
184         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
185 #else
186 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
187         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
188 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
189         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
190 #endif
191
192 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
193         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
194
195 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
196         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
197
198 static int pageout_lock_miss;
199 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
200         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
201
202 #define VM_PAGEOUT_PAGE_COUNT 16
203 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
204
205 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
206
207 #if !defined(NO_SWAPPING)
208 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
209 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
210 static void vm_req_vmdaemon(void);
211 #endif
212 static void vm_pageout_page_stats(void);
213
214 /*
215  * vm_pageout_fallback_object_lock:
216  * 
217  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
218  * known to have failed and page queue must be either PQ_ACTIVE or
219  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
220  * while locking the vm object.  Use marker page to detect page queue
221  * changes and maintain notion of next page on page queue.  Return
222  * TRUE if no changes were detected, FALSE otherwise.  vm object is
223  * locked on return.
224  * 
225  * This function depends on both the lock portion of struct vm_object
226  * and normal struct vm_page being type stable.
227  */
228 static boolean_t
229 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
230 {
231         struct vm_page marker;
232         boolean_t unchanged;
233         u_short queue;
234         vm_object_t object;
235
236         /*
237          * Initialize our marker
238          */
239         bzero(&marker, sizeof(marker));
240         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
241         marker.queue = m->queue;
242         marker.wire_count = 1;
243
244         queue = m->queue;
245         object = m->object;
246         
247         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
248                            m, &marker, pageq);
249         vm_page_unlock_queues();
250         VM_OBJECT_LOCK(object);
251         vm_page_lock_queues();
252
253         /* Page queue might have changed. */
254         *next = TAILQ_NEXT(&marker, pageq);
255         unchanged = (m->queue == queue &&
256                      m->object == object &&
257                      &marker == TAILQ_NEXT(m, pageq));
258         TAILQ_REMOVE(&vm_page_queues[queue].pl,
259                      &marker, pageq);
260         return (unchanged);
261 }
262
263 /*
264  * vm_pageout_clean:
265  *
266  * Clean the page and remove it from the laundry.
267  * 
268  * We set the busy bit to cause potential page faults on this page to
269  * block.  Note the careful timing, however, the busy bit isn't set till
270  * late and we cannot do anything that will mess with the page.
271  */
272 static int
273 vm_pageout_clean(m)
274         vm_page_t m;
275 {
276         vm_object_t object;
277         vm_page_t mc[2*vm_pageout_page_count];
278         int pageout_count;
279         int ib, is, page_base;
280         vm_pindex_t pindex = m->pindex;
281
282         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
283         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
284
285         /*
286          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
287          * with the new swapper, but we could have serious problems paging
288          * out other object types if there is insufficient memory.  
289          *
290          * Unfortunately, checking free memory here is far too late, so the
291          * check has been moved up a procedural level.
292          */
293
294         /*
295          * Don't mess with the page if it's busy, held, or special
296          */
297         if ((m->hold_count != 0) ||
298             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
299                 return 0;
300         }
301
302         mc[vm_pageout_page_count] = m;
303         pageout_count = 1;
304         page_base = vm_pageout_page_count;
305         ib = 1;
306         is = 1;
307
308         /*
309          * Scan object for clusterable pages.
310          *
311          * We can cluster ONLY if: ->> the page is NOT
312          * clean, wired, busy, held, or mapped into a
313          * buffer, and one of the following:
314          * 1) The page is inactive, or a seldom used
315          *    active page.
316          * -or-
317          * 2) we force the issue.
318          *
319          * During heavy mmap/modification loads the pageout
320          * daemon can really fragment the underlying file
321          * due to flushing pages out of order and not trying
322          * align the clusters (which leave sporatic out-of-order
323          * holes).  To solve this problem we do the reverse scan
324          * first and attempt to align our cluster, then do a 
325          * forward scan if room remains.
326          */
327         object = m->object;
328 more:
329         while (ib && pageout_count < vm_pageout_page_count) {
330                 vm_page_t p;
331
332                 if (ib > pindex) {
333                         ib = 0;
334                         break;
335                 }
336
337                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
338                         ib = 0;
339                         break;
340                 }
341                 if (((p->queue - p->pc) == PQ_CACHE) ||
342                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
343                         ib = 0;
344                         break;
345                 }
346                 vm_page_test_dirty(p);
347                 if ((p->dirty & p->valid) == 0 ||
348                     p->queue != PQ_INACTIVE ||
349                     p->wire_count != 0 ||       /* may be held by buf cache */
350                     p->hold_count != 0) {       /* may be undergoing I/O */
351                         ib = 0;
352                         break;
353                 }
354                 mc[--page_base] = p;
355                 ++pageout_count;
356                 ++ib;
357                 /*
358                  * alignment boundry, stop here and switch directions.  Do
359                  * not clear ib.
360                  */
361                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
362                         break;
363         }
364
365         while (pageout_count < vm_pageout_page_count && 
366             pindex + is < object->size) {
367                 vm_page_t p;
368
369                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
370                         break;
371                 if (((p->queue - p->pc) == PQ_CACHE) ||
372                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
373                         break;
374                 }
375                 vm_page_test_dirty(p);
376                 if ((p->dirty & p->valid) == 0 ||
377                     p->queue != PQ_INACTIVE ||
378                     p->wire_count != 0 ||       /* may be held by buf cache */
379                     p->hold_count != 0) {       /* may be undergoing I/O */
380                         break;
381                 }
382                 mc[page_base + pageout_count] = p;
383                 ++pageout_count;
384                 ++is;
385         }
386
387         /*
388          * If we exhausted our forward scan, continue with the reverse scan
389          * when possible, even past a page boundry.  This catches boundry
390          * conditions.
391          */
392         if (ib && pageout_count < vm_pageout_page_count)
393                 goto more;
394
395         /*
396          * we allow reads during pageouts...
397          */
398         return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
399 }
400
401 /*
402  * vm_pageout_flush() - launder the given pages
403  *
404  *      The given pages are laundered.  Note that we setup for the start of
405  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
406  *      reference count all in here rather then in the parent.  If we want
407  *      the parent to do more sophisticated things we may have to change
408  *      the ordering.
409  */
410 int
411 vm_pageout_flush(vm_page_t *mc, int count, int flags)
412 {
413         vm_object_t object = mc[0]->object;
414         int pageout_status[count];
415         int numpagedout = 0;
416         int i;
417
418         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
419         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
420         /*
421          * Initiate I/O.  Bump the vm_page_t->busy counter and
422          * mark the pages read-only.
423          *
424          * We do not have to fixup the clean/dirty bits here... we can
425          * allow the pager to do it after the I/O completes.
426          *
427          * NOTE! mc[i]->dirty may be partial or fragmented due to an
428          * edge case with file fragments.
429          */
430         for (i = 0; i < count; i++) {
431                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
432                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
433                         mc[i], i, count));
434                 vm_page_io_start(mc[i]);
435                 pmap_page_protect(mc[i], VM_PROT_READ);
436         }
437         vm_page_unlock_queues();
438         vm_object_pip_add(object, count);
439
440         vm_pager_put_pages(object, mc, count,
441             (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
442             pageout_status);
443
444         vm_page_lock_queues();
445         for (i = 0; i < count; i++) {
446                 vm_page_t mt = mc[i];
447
448                 KASSERT((mt->flags & PG_WRITEABLE) == 0,
449                     ("vm_pageout_flush: page %p is not write protected", mt));
450                 switch (pageout_status[i]) {
451                 case VM_PAGER_OK:
452                 case VM_PAGER_PEND:
453                         numpagedout++;
454                         break;
455                 case VM_PAGER_BAD:
456                         /*
457                          * Page outside of range of object. Right now we
458                          * essentially lose the changes by pretending it
459                          * worked.
460                          */
461                         pmap_clear_modify(mt);
462                         vm_page_undirty(mt);
463                         break;
464                 case VM_PAGER_ERROR:
465                 case VM_PAGER_FAIL:
466                         /*
467                          * If page couldn't be paged out, then reactivate the
468                          * page so it doesn't clog the inactive list.  (We
469                          * will try paging out it again later).
470                          */
471                         vm_page_activate(mt);
472                         break;
473                 case VM_PAGER_AGAIN:
474                         break;
475                 }
476
477                 /*
478                  * If the operation is still going, leave the page busy to
479                  * block all other accesses. Also, leave the paging in
480                  * progress indicator set so that we don't attempt an object
481                  * collapse.
482                  */
483                 if (pageout_status[i] != VM_PAGER_PEND) {
484                         vm_object_pip_wakeup(object);
485                         vm_page_io_finish(mt);
486                         if (vm_page_count_severe())
487                                 vm_page_try_to_cache(mt);
488                 }
489         }
490         return numpagedout;
491 }
492
493 #if !defined(NO_SWAPPING)
494 /*
495  *      vm_pageout_object_deactivate_pages
496  *
497  *      deactivate enough pages to satisfy the inactive target
498  *      requirements or if vm_page_proc_limit is set, then
499  *      deactivate all of the pages in the object and its
500  *      backing_objects.
501  *
502  *      The object and map must be locked.
503  */
504 static void
505 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
506         pmap_t pmap;
507         vm_object_t first_object;
508         long desired;
509 {
510         vm_object_t backing_object, object;
511         vm_page_t p, next;
512         int actcount, rcount, remove_mode;
513
514         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
515         if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
516                 return;
517         for (object = first_object;; object = backing_object) {
518                 if (pmap_resident_count(pmap) <= desired)
519                         goto unlock_return;
520                 if (object->paging_in_progress)
521                         goto unlock_return;
522
523                 remove_mode = 0;
524                 if (object->shadow_count > 1)
525                         remove_mode = 1;
526                 /*
527                  * scan the objects entire memory queue
528                  */
529                 rcount = object->resident_page_count;
530                 p = TAILQ_FIRST(&object->memq);
531                 vm_page_lock_queues();
532                 while (p && (rcount-- > 0)) {
533                         if (pmap_resident_count(pmap) <= desired) {
534                                 vm_page_unlock_queues();
535                                 goto unlock_return;
536                         }
537                         next = TAILQ_NEXT(p, listq);
538                         cnt.v_pdpages++;
539                         if (p->wire_count != 0 ||
540                             p->hold_count != 0 ||
541                             p->busy != 0 ||
542                             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
543                             !pmap_page_exists_quick(pmap, p)) {
544                                 p = next;
545                                 continue;
546                         }
547                         actcount = pmap_ts_referenced(p);
548                         if (actcount) {
549                                 vm_page_flag_set(p, PG_REFERENCED);
550                         } else if (p->flags & PG_REFERENCED) {
551                                 actcount = 1;
552                         }
553                         if ((p->queue != PQ_ACTIVE) &&
554                                 (p->flags & PG_REFERENCED)) {
555                                 vm_page_activate(p);
556                                 p->act_count += actcount;
557                                 vm_page_flag_clear(p, PG_REFERENCED);
558                         } else if (p->queue == PQ_ACTIVE) {
559                                 if ((p->flags & PG_REFERENCED) == 0) {
560                                         p->act_count -= min(p->act_count, ACT_DECLINE);
561                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
562                                                 pmap_remove_all(p);
563                                                 vm_page_deactivate(p);
564                                         } else {
565                                                 vm_pageq_requeue(p);
566                                         }
567                                 } else {
568                                         vm_page_activate(p);
569                                         vm_page_flag_clear(p, PG_REFERENCED);
570                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
571                                                 p->act_count += ACT_ADVANCE;
572                                         vm_pageq_requeue(p);
573                                 }
574                         } else if (p->queue == PQ_INACTIVE) {
575                                 pmap_remove_all(p);
576                         }
577                         p = next;
578                 }
579                 vm_page_unlock_queues();
580                 if ((backing_object = object->backing_object) == NULL)
581                         goto unlock_return;
582                 VM_OBJECT_LOCK(backing_object);
583                 if (object != first_object)
584                         VM_OBJECT_UNLOCK(object);
585         }
586 unlock_return:
587         if (object != first_object)
588                 VM_OBJECT_UNLOCK(object);
589 }
590
591 /*
592  * deactivate some number of pages in a map, try to do it fairly, but
593  * that is really hard to do.
594  */
595 static void
596 vm_pageout_map_deactivate_pages(map, desired)
597         vm_map_t map;
598         long desired;
599 {
600         vm_map_entry_t tmpe;
601         vm_object_t obj, bigobj;
602         int nothingwired;
603
604         if (!vm_map_trylock(map))
605                 return;
606
607         bigobj = NULL;
608         nothingwired = TRUE;
609
610         /*
611          * first, search out the biggest object, and try to free pages from
612          * that.
613          */
614         tmpe = map->header.next;
615         while (tmpe != &map->header) {
616                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
617                         obj = tmpe->object.vm_object;
618                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
619                                 if (obj->shadow_count <= 1 &&
620                                     (bigobj == NULL ||
621                                      bigobj->resident_page_count < obj->resident_page_count)) {
622                                         if (bigobj != NULL)
623                                                 VM_OBJECT_UNLOCK(bigobj);
624                                         bigobj = obj;
625                                 } else
626                                         VM_OBJECT_UNLOCK(obj);
627                         }
628                 }
629                 if (tmpe->wired_count > 0)
630                         nothingwired = FALSE;
631                 tmpe = tmpe->next;
632         }
633
634         if (bigobj != NULL) {
635                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
636                 VM_OBJECT_UNLOCK(bigobj);
637         }
638         /*
639          * Next, hunt around for other pages to deactivate.  We actually
640          * do this search sort of wrong -- .text first is not the best idea.
641          */
642         tmpe = map->header.next;
643         while (tmpe != &map->header) {
644                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
645                         break;
646                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
647                         obj = tmpe->object.vm_object;
648                         if (obj != NULL) {
649                                 VM_OBJECT_LOCK(obj);
650                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
651                                 VM_OBJECT_UNLOCK(obj);
652                         }
653                 }
654                 tmpe = tmpe->next;
655         }
656
657         /*
658          * Remove all mappings if a process is swapped out, this will free page
659          * table pages.
660          */
661         if (desired == 0 && nothingwired) {
662                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
663                     vm_map_max(map));
664         }
665         vm_map_unlock(map);
666 }
667 #endif          /* !defined(NO_SWAPPING) */
668
669 /*
670  * This routine is very drastic, but can save the system
671  * in a pinch.
672  */
673 static void
674 vm_pageout_pmap_collect(void)
675 {
676         int i;
677         vm_page_t m;
678         static int warningdone;
679
680         if (pmap_pagedaemon_waken == 0)
681                 return;
682         if (warningdone < 5) {
683                 printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
684                 warningdone++;
685         }
686         vm_page_lock_queues();
687         for (i = 0; i < vm_page_array_size; i++) {
688                 m = &vm_page_array[i];
689                 if (m->wire_count || m->hold_count || m->busy ||
690                     (m->flags & (PG_BUSY | PG_UNMANAGED)))
691                         continue;
692                 pmap_remove_all(m);
693         }
694         vm_page_unlock_queues();
695         pmap_pagedaemon_waken = 0;
696 }
697         
698 /*
699  *      vm_pageout_scan does the dirty work for the pageout daemon.
700  */
701 static void
702 vm_pageout_scan(int pass)
703 {
704         vm_page_t m, next;
705         struct vm_page marker;
706         int page_shortage, maxscan, pcount;
707         int addl_page_shortage, addl_page_shortage_init;
708         struct proc *p, *bigproc;
709         struct thread *td;
710         vm_offset_t size, bigsize;
711         vm_object_t object;
712         int actcount, cache_cur, cache_first_failure;
713         static int cache_last_free;
714         int vnodes_skipped = 0;
715         int maxlaunder;
716
717         mtx_lock(&Giant);
718         /*
719          * Decrease registered cache sizes.
720          */
721         EVENTHANDLER_INVOKE(vm_lowmem, 0);
722         /*
723          * We do this explicitly after the caches have been drained above.
724          */
725         uma_reclaim();
726         /*
727          * Do whatever cleanup that the pmap code can.
728          */
729         vm_pageout_pmap_collect();
730
731         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
732
733         /*
734          * Calculate the number of pages we want to either free or move
735          * to the cache.
736          */
737         page_shortage = vm_paging_target() + addl_page_shortage_init;
738
739         /*
740          * Initialize our marker
741          */
742         bzero(&marker, sizeof(marker));
743         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
744         marker.queue = PQ_INACTIVE;
745         marker.wire_count = 1;
746
747         /*
748          * Start scanning the inactive queue for pages we can move to the
749          * cache or free.  The scan will stop when the target is reached or
750          * we have scanned the entire inactive queue.  Note that m->act_count
751          * is not used to form decisions for the inactive queue, only for the
752          * active queue.
753          *
754          * maxlaunder limits the number of dirty pages we flush per scan.
755          * For most systems a smaller value (16 or 32) is more robust under
756          * extreme memory and disk pressure because any unnecessary writes
757          * to disk can result in extreme performance degredation.  However,
758          * systems with excessive dirty pages (especially when MAP_NOSYNC is
759          * used) will die horribly with limited laundering.  If the pageout
760          * daemon cannot clean enough pages in the first pass, we let it go
761          * all out in succeeding passes.
762          */
763         if ((maxlaunder = vm_max_launder) <= 1)
764                 maxlaunder = 1;
765         if (pass)
766                 maxlaunder = 10000;
767         vm_page_lock_queues();
768 rescan0:
769         addl_page_shortage = addl_page_shortage_init;
770         maxscan = cnt.v_inactive_count;
771
772         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
773              m != NULL && maxscan-- > 0 && page_shortage > 0;
774              m = next) {
775
776                 cnt.v_pdpages++;
777
778                 if (m->queue != PQ_INACTIVE) {
779                         goto rescan0;
780                 }
781
782                 next = TAILQ_NEXT(m, pageq);
783                 object = m->object;
784
785                 /*
786                  * skip marker pages
787                  */
788                 if (m->flags & PG_MARKER)
789                         continue;
790
791                 /*
792                  * A held page may be undergoing I/O, so skip it.
793                  */
794                 if (m->hold_count) {
795                         vm_pageq_requeue(m);
796                         addl_page_shortage++;
797                         continue;
798                 }
799                 /*
800                  * Don't mess with busy pages, keep in the front of the
801                  * queue, most likely are being paged out.
802                  */
803                 if (!VM_OBJECT_TRYLOCK(object) &&
804                     (!vm_pageout_fallback_object_lock(m, &next) ||
805                      m->hold_count != 0)) {
806                         VM_OBJECT_UNLOCK(object);
807                         addl_page_shortage++;
808                         continue;
809                 }
810                 if (m->busy || (m->flags & PG_BUSY)) {
811                         VM_OBJECT_UNLOCK(object);
812                         addl_page_shortage++;
813                         continue;
814                 }
815
816                 /*
817                  * If the object is not being used, we ignore previous 
818                  * references.
819                  */
820                 if (object->ref_count == 0) {
821                         vm_page_flag_clear(m, PG_REFERENCED);
822                         pmap_clear_reference(m);
823
824                 /*
825                  * Otherwise, if the page has been referenced while in the 
826                  * inactive queue, we bump the "activation count" upwards, 
827                  * making it less likely that the page will be added back to 
828                  * the inactive queue prematurely again.  Here we check the 
829                  * page tables (or emulated bits, if any), given the upper 
830                  * level VM system not knowing anything about existing 
831                  * references.
832                  */
833                 } else if (((m->flags & PG_REFERENCED) == 0) &&
834                         (actcount = pmap_ts_referenced(m))) {
835                         vm_page_activate(m);
836                         VM_OBJECT_UNLOCK(object);
837                         m->act_count += (actcount + ACT_ADVANCE);
838                         continue;
839                 }
840
841                 /*
842                  * If the upper level VM system knows about any page 
843                  * references, we activate the page.  We also set the 
844                  * "activation count" higher than normal so that we will less 
845                  * likely place pages back onto the inactive queue again.
846                  */
847                 if ((m->flags & PG_REFERENCED) != 0) {
848                         vm_page_flag_clear(m, PG_REFERENCED);
849                         actcount = pmap_ts_referenced(m);
850                         vm_page_activate(m);
851                         VM_OBJECT_UNLOCK(object);
852                         m->act_count += (actcount + ACT_ADVANCE + 1);
853                         continue;
854                 }
855
856                 /*
857                  * If the upper level VM system doesn't know anything about 
858                  * the page being dirty, we have to check for it again.  As 
859                  * far as the VM code knows, any partially dirty pages are 
860                  * fully dirty.
861                  */
862                 if (m->dirty == 0 && !pmap_is_modified(m)) {
863                         /*
864                          * Avoid a race condition: Unless write access is
865                          * removed from the page, another processor could
866                          * modify it before all access is removed by the call
867                          * to vm_page_cache() below.  If vm_page_cache() finds
868                          * that the page has been modified when it removes all
869                          * access, it panics because it cannot cache dirty
870                          * pages.  In principle, we could eliminate just write
871                          * access here rather than all access.  In the expected
872                          * case, when there are no last instant modifications
873                          * to the page, removing all access will be cheaper
874                          * overall.
875                          */
876                         if ((m->flags & PG_WRITEABLE) != 0)
877                                 pmap_remove_all(m);
878                 } else {
879                         vm_page_dirty(m);
880                 }
881
882                 if (m->valid == 0) {
883                         /*
884                          * Invalid pages can be easily freed
885                          */
886                         pmap_remove_all(m);
887                         vm_page_free(m);
888                         cnt.v_dfree++;
889                         --page_shortage;
890                 } else if (m->dirty == 0) {
891                         /*
892                          * Clean pages can be placed onto the cache queue.
893                          * This effectively frees them.
894                          */
895                         vm_page_cache(m);
896                         --page_shortage;
897                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
898                         /*
899                          * Dirty pages need to be paged out, but flushing
900                          * a page is extremely expensive verses freeing
901                          * a clean page.  Rather then artificially limiting
902                          * the number of pages we can flush, we instead give
903                          * dirty pages extra priority on the inactive queue
904                          * by forcing them to be cycled through the queue
905                          * twice before being flushed, after which the
906                          * (now clean) page will cycle through once more
907                          * before being freed.  This significantly extends
908                          * the thrash point for a heavily loaded machine.
909                          */
910                         vm_page_flag_set(m, PG_WINATCFLS);
911                         vm_pageq_requeue(m);
912                 } else if (maxlaunder > 0) {
913                         /*
914                          * We always want to try to flush some dirty pages if
915                          * we encounter them, to keep the system stable.
916                          * Normally this number is small, but under extreme
917                          * pressure where there are insufficient clean pages
918                          * on the inactive queue, we may have to go all out.
919                          */
920                         int swap_pageouts_ok;
921                         struct vnode *vp = NULL;
922                         struct mount *mp;
923
924                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
925                                 swap_pageouts_ok = 1;
926                         } else {
927                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
928                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
929                                 vm_page_count_min());
930                                                                                 
931                         }
932
933                         /*
934                          * We don't bother paging objects that are "dead".  
935                          * Those objects are in a "rundown" state.
936                          */
937                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
938                                 VM_OBJECT_UNLOCK(object);
939                                 vm_pageq_requeue(m);
940                                 continue;
941                         }
942
943                         /*
944                          * The object is already known NOT to be dead.   It
945                          * is possible for the vget() to block the whole
946                          * pageout daemon, but the new low-memory handling
947                          * code should prevent it.
948                          *
949                          * The previous code skipped locked vnodes and, worse,
950                          * reordered pages in the queue.  This results in
951                          * completely non-deterministic operation and, on a
952                          * busy system, can lead to extremely non-optimal
953                          * pageouts.  For example, it can cause clean pages
954                          * to be freed and dirty pages to be moved to the end
955                          * of the queue.  Since dirty pages are also moved to
956                          * the end of the queue once-cleaned, this gives
957                          * way too large a weighting to defering the freeing
958                          * of dirty pages.
959                          *
960                          * We can't wait forever for the vnode lock, we might
961                          * deadlock due to a vn_read() getting stuck in
962                          * vm_wait while holding this vnode.  We skip the 
963                          * vnode if we can't get it in a reasonable amount
964                          * of time.
965                          */
966                         if (object->type == OBJT_VNODE) {
967                                 vp = object->handle;
968                                 mp = NULL;
969                                 if (vp->v_type == VREG)
970                                         vn_start_write(vp, &mp, V_NOWAIT);
971                                 vm_page_unlock_queues();
972                                 VI_LOCK(vp);
973                                 VM_OBJECT_UNLOCK(object);
974                                 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
975                                     LK_TIMELOCK, curthread)) {
976                                         VM_OBJECT_LOCK(object);
977                                         vm_page_lock_queues();
978                                         ++pageout_lock_miss;
979                                         vn_finished_write(mp);
980                                         if (object->flags & OBJ_MIGHTBEDIRTY)
981                                                 vnodes_skipped++;
982                                         VM_OBJECT_UNLOCK(object);
983                                         continue;
984                                 }
985                                 VM_OBJECT_LOCK(object);
986                                 vm_page_lock_queues();
987                                 /*
988                                  * The page might have been moved to another
989                                  * queue during potential blocking in vget()
990                                  * above.  The page might have been freed and
991                                  * reused for another vnode.  The object might
992                                  * have been reused for another vnode.
993                                  */
994                                 if (m->queue != PQ_INACTIVE ||
995                                     m->object != object ||
996                                     object->handle != vp) {
997                                         if (object->flags & OBJ_MIGHTBEDIRTY)
998                                                 vnodes_skipped++;
999                                         goto unlock_and_continue;
1000                                 }
1001         
1002                                 /*
1003                                  * The page may have been busied during the
1004                                  * blocking in vput();  We don't move the
1005                                  * page back onto the end of the queue so that
1006                                  * statistics are more correct if we don't.
1007                                  */
1008                                 if (m->busy || (m->flags & PG_BUSY)) {
1009                                         goto unlock_and_continue;
1010                                 }
1011
1012                                 /*
1013                                  * If the page has become held it might
1014                                  * be undergoing I/O, so skip it
1015                                  */
1016                                 if (m->hold_count) {
1017                                         vm_pageq_requeue(m);
1018                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1019                                                 vnodes_skipped++;
1020                                         goto unlock_and_continue;
1021                                 }
1022                         }
1023
1024                         /*
1025                          * If a page is dirty, then it is either being washed
1026                          * (but not yet cleaned) or it is still in the
1027                          * laundry.  If it is still in the laundry, then we
1028                          * start the cleaning operation. 
1029                          *
1030                          * This operation may cluster, invalidating the 'next'
1031                          * pointer.  To prevent an inordinate number of
1032                          * restarts we use our marker to remember our place.
1033                          *
1034                          * decrement page_shortage on success to account for
1035                          * the (future) cleaned page.  Otherwise we could wind
1036                          * up laundering or cleaning too many pages.
1037                          */
1038                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1039                         if (vm_pageout_clean(m) != 0) {
1040                                 --page_shortage;
1041                                 --maxlaunder;
1042                         }
1043                         next = TAILQ_NEXT(&marker, pageq);
1044                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1045 unlock_and_continue:
1046                         VM_OBJECT_UNLOCK(object);
1047                         if (vp) {
1048                                 vm_page_unlock_queues();
1049                                 vput(vp);
1050                                 vn_finished_write(mp);
1051                                 vm_page_lock_queues();
1052                         }
1053                         continue;
1054                 }
1055                 VM_OBJECT_UNLOCK(object);
1056         }
1057
1058         /*
1059          * Compute the number of pages we want to try to move from the
1060          * active queue to the inactive queue.
1061          */
1062         page_shortage = vm_paging_target() +
1063                 cnt.v_inactive_target - cnt.v_inactive_count;
1064         page_shortage += addl_page_shortage;
1065
1066         /*
1067          * Scan the active queue for things we can deactivate. We nominally
1068          * track the per-page activity counter and use it to locate
1069          * deactivation candidates.
1070          */
1071         pcount = cnt.v_active_count;
1072         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1073
1074         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1075
1076                 KASSERT(m->queue == PQ_ACTIVE,
1077                     ("vm_pageout_scan: page %p isn't active", m));
1078
1079                 next = TAILQ_NEXT(m, pageq);
1080                 object = m->object;
1081                 if ((m->flags & PG_MARKER) != 0) {
1082                         m = next;
1083                         continue;
1084                 }
1085                 if (!VM_OBJECT_TRYLOCK(object) &&
1086                     !vm_pageout_fallback_object_lock(m, &next)) {
1087                         VM_OBJECT_UNLOCK(object);
1088                         m = next;
1089                         continue;
1090                 }
1091
1092                 /*
1093                  * Don't deactivate pages that are busy.
1094                  */
1095                 if ((m->busy != 0) ||
1096                     (m->flags & PG_BUSY) ||
1097                     (m->hold_count != 0)) {
1098                         VM_OBJECT_UNLOCK(object);
1099                         vm_pageq_requeue(m);
1100                         m = next;
1101                         continue;
1102                 }
1103
1104                 /*
1105                  * The count for pagedaemon pages is done after checking the
1106                  * page for eligibility...
1107                  */
1108                 cnt.v_pdpages++;
1109
1110                 /*
1111                  * Check to see "how much" the page has been used.
1112                  */
1113                 actcount = 0;
1114                 if (object->ref_count != 0) {
1115                         if (m->flags & PG_REFERENCED) {
1116                                 actcount += 1;
1117                         }
1118                         actcount += pmap_ts_referenced(m);
1119                         if (actcount) {
1120                                 m->act_count += ACT_ADVANCE + actcount;
1121                                 if (m->act_count > ACT_MAX)
1122                                         m->act_count = ACT_MAX;
1123                         }
1124                 }
1125
1126                 /*
1127                  * Since we have "tested" this bit, we need to clear it now.
1128                  */
1129                 vm_page_flag_clear(m, PG_REFERENCED);
1130
1131                 /*
1132                  * Only if an object is currently being used, do we use the
1133                  * page activation count stats.
1134                  */
1135                 if (actcount && (object->ref_count != 0)) {
1136                         vm_pageq_requeue(m);
1137                 } else {
1138                         m->act_count -= min(m->act_count, ACT_DECLINE);
1139                         if (vm_pageout_algorithm ||
1140                             object->ref_count == 0 ||
1141                             m->act_count == 0) {
1142                                 page_shortage--;
1143                                 if (object->ref_count == 0) {
1144                                         pmap_remove_all(m);
1145                                         if (m->dirty == 0)
1146                                                 vm_page_cache(m);
1147                                         else
1148                                                 vm_page_deactivate(m);
1149                                 } else {
1150                                         vm_page_deactivate(m);
1151                                 }
1152                         } else {
1153                                 vm_pageq_requeue(m);
1154                         }
1155                 }
1156                 VM_OBJECT_UNLOCK(object);
1157                 m = next;
1158         }
1159
1160         /*
1161          * We try to maintain some *really* free pages, this allows interrupt
1162          * code to be guaranteed space.  Since both cache and free queues 
1163          * are considered basically 'free', moving pages from cache to free
1164          * does not effect other calculations.
1165          */
1166         cache_cur = cache_last_free;
1167         cache_first_failure = -1;
1168         while (cnt.v_free_count < cnt.v_free_reserved && (cache_cur =
1169             (cache_cur + PQ_PRIME2) & PQ_L2_MASK) != cache_first_failure) {
1170                 TAILQ_FOREACH(m, &vm_page_queues[PQ_CACHE + cache_cur].pl,
1171                     pageq) {
1172                         KASSERT(m->dirty == 0,
1173                             ("Found dirty cache page %p", m));
1174                         KASSERT(!pmap_page_is_mapped(m),
1175                             ("Found mapped cache page %p", m));
1176                         KASSERT((m->flags & PG_UNMANAGED) == 0,
1177                             ("Found unmanaged cache page %p", m));
1178                         KASSERT(m->wire_count == 0,
1179                             ("Found wired cache page %p", m));
1180                         if (m->hold_count == 0 && VM_OBJECT_TRYLOCK(object =
1181                             m->object)) {
1182                                 KASSERT((m->flags & PG_BUSY) == 0 &&
1183                                     m->busy == 0, ("Found busy cache page %p",
1184                                     m));
1185                                 vm_page_free(m);
1186                                 VM_OBJECT_UNLOCK(object);
1187                                 cnt.v_dfree++;
1188                                 cache_last_free = cache_cur;
1189                                 cache_first_failure = -1;
1190                                 break;
1191                         }
1192                 }
1193                 if (m == NULL && cache_first_failure == -1)
1194                         cache_first_failure = cache_cur;
1195         }
1196         vm_page_unlock_queues();
1197 #if !defined(NO_SWAPPING)
1198         /*
1199          * Idle process swapout -- run once per second.
1200          */
1201         if (vm_swap_idle_enabled) {
1202                 static long lsec;
1203                 if (time_second != lsec) {
1204                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1205                         vm_req_vmdaemon();
1206                         lsec = time_second;
1207                 }
1208         }
1209 #endif
1210                 
1211         /*
1212          * If we didn't get enough free pages, and we have skipped a vnode
1213          * in a writeable object, wakeup the sync daemon.  And kick swapout
1214          * if we did not get enough free pages.
1215          */
1216         if (vm_paging_target() > 0) {
1217                 if (vnodes_skipped && vm_page_count_min())
1218                         (void) speedup_syncer();
1219 #if !defined(NO_SWAPPING)
1220                 if (vm_swap_enabled && vm_page_count_target()) {
1221                         vm_req_vmdaemon();
1222                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1223                 }
1224 #endif
1225         }
1226
1227         /*
1228          * If we are critically low on one of RAM or swap and low on
1229          * the other, kill the largest process.  However, we avoid
1230          * doing this on the first pass in order to give ourselves a
1231          * chance to flush out dirty vnode-backed pages and to allow
1232          * active pages to be moved to the inactive queue and reclaimed.
1233          *
1234          * We keep the process bigproc locked once we find it to keep anyone
1235          * from messing with it; however, there is a possibility of
1236          * deadlock if process B is bigproc and one of it's child processes
1237          * attempts to propagate a signal to B while we are waiting for A's
1238          * lock while walking this list.  To avoid this, we don't block on
1239          * the process lock but just skip a process if it is already locked.
1240          */
1241         if (pass != 0 &&
1242             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1243              (swap_pager_full && vm_paging_target() > 0))) {
1244                 bigproc = NULL;
1245                 bigsize = 0;
1246                 sx_slock(&allproc_lock);
1247                 FOREACH_PROC_IN_SYSTEM(p) {
1248                         int breakout;
1249
1250                         if (PROC_TRYLOCK(p) == 0)
1251                                 continue;
1252                         /*
1253                          * If this is a system or protected process, skip it.
1254                          */
1255                         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1256                             (p->p_flag & P_PROTECTED) ||
1257                             ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1258                                 PROC_UNLOCK(p);
1259                                 continue;
1260                         }
1261                         /*
1262                          * If the process is in a non-running type state,
1263                          * don't touch it.  Check all the threads individually.
1264                          */
1265                         mtx_lock_spin(&sched_lock);
1266                         breakout = 0;
1267                         FOREACH_THREAD_IN_PROC(p, td) {
1268                                 if (!TD_ON_RUNQ(td) &&
1269                                     !TD_IS_RUNNING(td) &&
1270                                     !TD_IS_SLEEPING(td)) {
1271                                         breakout = 1;
1272                                         break;
1273                                 }
1274                         }
1275                         if (breakout) {
1276                                 mtx_unlock_spin(&sched_lock);
1277                                 PROC_UNLOCK(p);
1278                                 continue;
1279                         }
1280                         mtx_unlock_spin(&sched_lock);
1281                         /*
1282                          * get the process size
1283                          */
1284                         if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1285                                 PROC_UNLOCK(p);
1286                                 continue;
1287                         }
1288                         size = vmspace_swap_count(p->p_vmspace);
1289                         vm_map_unlock_read(&p->p_vmspace->vm_map);
1290                         size += vmspace_resident_count(p->p_vmspace);
1291                         /*
1292                          * if the this process is bigger than the biggest one
1293                          * remember it.
1294                          */
1295                         if (size > bigsize) {
1296                                 if (bigproc != NULL)
1297                                         PROC_UNLOCK(bigproc);
1298                                 bigproc = p;
1299                                 bigsize = size;
1300                         } else
1301                                 PROC_UNLOCK(p);
1302                 }
1303                 sx_sunlock(&allproc_lock);
1304                 if (bigproc != NULL) {
1305                         killproc(bigproc, "out of swap space");
1306                         mtx_lock_spin(&sched_lock);
1307                         sched_nice(bigproc, PRIO_MIN);
1308                         mtx_unlock_spin(&sched_lock);
1309                         PROC_UNLOCK(bigproc);
1310                         wakeup(&cnt.v_free_count);
1311                 }
1312         }
1313         mtx_unlock(&Giant);
1314 }
1315
1316 /*
1317  * This routine tries to maintain the pseudo LRU active queue,
1318  * so that during long periods of time where there is no paging,
1319  * that some statistic accumulation still occurs.  This code
1320  * helps the situation where paging just starts to occur.
1321  */
1322 static void
1323 vm_pageout_page_stats()
1324 {
1325         vm_object_t object;
1326         vm_page_t m,next;
1327         int pcount,tpcount;             /* Number of pages to check */
1328         static int fullintervalcount = 0;
1329         int page_shortage;
1330
1331         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1332         page_shortage = 
1333             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1334             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1335
1336         if (page_shortage <= 0)
1337                 return;
1338
1339         pcount = cnt.v_active_count;
1340         fullintervalcount += vm_pageout_stats_interval;
1341         if (fullintervalcount < vm_pageout_full_stats_interval) {
1342                 tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1343                 if (pcount > tpcount)
1344                         pcount = tpcount;
1345         } else {
1346                 fullintervalcount = 0;
1347         }
1348
1349         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1350         while ((m != NULL) && (pcount-- > 0)) {
1351                 int actcount;
1352
1353                 KASSERT(m->queue == PQ_ACTIVE,
1354                     ("vm_pageout_page_stats: page %p isn't active", m));
1355
1356                 next = TAILQ_NEXT(m, pageq);
1357                 object = m->object;
1358
1359                 if ((m->flags & PG_MARKER) != 0) {
1360                         m = next;
1361                         continue;
1362                 }
1363                 if (!VM_OBJECT_TRYLOCK(object) &&
1364                     !vm_pageout_fallback_object_lock(m, &next)) {
1365                         VM_OBJECT_UNLOCK(object);
1366                         m = next;
1367                         continue;
1368                 }
1369
1370                 /*
1371                  * Don't deactivate pages that are busy.
1372                  */
1373                 if ((m->busy != 0) ||
1374                     (m->flags & PG_BUSY) ||
1375                     (m->hold_count != 0)) {
1376                         VM_OBJECT_UNLOCK(object);
1377                         vm_pageq_requeue(m);
1378                         m = next;
1379                         continue;
1380                 }
1381
1382                 actcount = 0;
1383                 if (m->flags & PG_REFERENCED) {
1384                         vm_page_flag_clear(m, PG_REFERENCED);
1385                         actcount += 1;
1386                 }
1387
1388                 actcount += pmap_ts_referenced(m);
1389                 if (actcount) {
1390                         m->act_count += ACT_ADVANCE + actcount;
1391                         if (m->act_count > ACT_MAX)
1392                                 m->act_count = ACT_MAX;
1393                         vm_pageq_requeue(m);
1394                 } else {
1395                         if (m->act_count == 0) {
1396                                 /*
1397                                  * We turn off page access, so that we have
1398                                  * more accurate RSS stats.  We don't do this
1399                                  * in the normal page deactivation when the
1400                                  * system is loaded VM wise, because the
1401                                  * cost of the large number of page protect
1402                                  * operations would be higher than the value
1403                                  * of doing the operation.
1404                                  */
1405                                 pmap_remove_all(m);
1406                                 vm_page_deactivate(m);
1407                         } else {
1408                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1409                                 vm_pageq_requeue(m);
1410                         }
1411                 }
1412                 VM_OBJECT_UNLOCK(object);
1413                 m = next;
1414         }
1415 }
1416
1417 /*
1418  *      vm_pageout is the high level pageout daemon.
1419  */
1420 static void
1421 vm_pageout()
1422 {
1423         int error, pass;
1424
1425         /*
1426          * Initialize some paging parameters.
1427          */
1428         cnt.v_interrupt_free_min = 2;
1429         if (cnt.v_page_count < 2000)
1430                 vm_pageout_page_count = 8;
1431
1432         /*
1433          * v_free_reserved needs to include enough for the largest
1434          * swap pager structures plus enough for any pv_entry structs
1435          * when paging. 
1436          */
1437         if (cnt.v_page_count > 1024)
1438                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1439         else
1440                 cnt.v_free_min = 4;
1441         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1442             cnt.v_interrupt_free_min;
1443         cnt.v_free_reserved = vm_pageout_page_count +
1444             cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_L2_SIZE;
1445         cnt.v_free_severe = cnt.v_free_min / 2;
1446         cnt.v_free_min += cnt.v_free_reserved;
1447         cnt.v_free_severe += cnt.v_free_reserved;
1448
1449         /*
1450          * v_free_target and v_cache_min control pageout hysteresis.  Note
1451          * that these are more a measure of the VM cache queue hysteresis
1452          * then the VM free queue.  Specifically, v_free_target is the
1453          * high water mark (free+cache pages).
1454          *
1455          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1456          * low water mark, while v_free_min is the stop.  v_cache_min must
1457          * be big enough to handle memory needs while the pageout daemon
1458          * is signalled and run to free more pages.
1459          */
1460         if (cnt.v_free_count > 6144)
1461                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1462         else
1463                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1464
1465         if (cnt.v_free_count > 2048) {
1466                 cnt.v_cache_min = cnt.v_free_target;
1467                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1468                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1469         } else {
1470                 cnt.v_cache_min = 0;
1471                 cnt.v_cache_max = 0;
1472                 cnt.v_inactive_target = cnt.v_free_count / 4;
1473         }
1474         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1475                 cnt.v_inactive_target = cnt.v_free_count / 3;
1476
1477         /* XXX does not really belong here */
1478         if (vm_page_max_wired == 0)
1479                 vm_page_max_wired = cnt.v_free_count / 3;
1480
1481         if (vm_pageout_stats_max == 0)
1482                 vm_pageout_stats_max = cnt.v_free_target;
1483
1484         /*
1485          * Set interval in seconds for stats scan.
1486          */
1487         if (vm_pageout_stats_interval == 0)
1488                 vm_pageout_stats_interval = 5;
1489         if (vm_pageout_full_stats_interval == 0)
1490                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1491
1492         swap_pager_swap_init();
1493         pass = 0;
1494         /*
1495          * The pageout daemon is never done, so loop forever.
1496          */
1497         while (TRUE) {
1498                 vm_page_lock_queues();
1499                 /*
1500                  * If we have enough free memory, wakeup waiters.  Do
1501                  * not clear vm_pages_needed until we reach our target,
1502                  * otherwise we may be woken up over and over again and
1503                  * waste a lot of cpu.
1504                  */
1505                 if (vm_pages_needed && !vm_page_count_min()) {
1506                         if (!vm_paging_needed())
1507                                 vm_pages_needed = 0;
1508                         wakeup(&cnt.v_free_count);
1509                 }
1510                 if (vm_pages_needed) {
1511                         /*
1512                          * Still not done, take a second pass without waiting
1513                          * (unlimited dirty cleaning), otherwise sleep a bit
1514                          * and try again.
1515                          */
1516                         ++pass;
1517                         if (pass > 1)
1518                                 msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1519                                        "psleep", hz/2);
1520                 } else {
1521                         /*
1522                          * Good enough, sleep & handle stats.  Prime the pass
1523                          * for the next run.
1524                          */
1525                         if (pass > 1)
1526                                 pass = 1;
1527                         else
1528                                 pass = 0;
1529                         error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1530                                     "psleep", vm_pageout_stats_interval * hz);
1531                         if (error && !vm_pages_needed) {
1532                                 pass = 0;
1533                                 vm_pageout_page_stats();
1534                                 vm_page_unlock_queues();
1535                                 continue;
1536                         }
1537                 }
1538                 if (vm_pages_needed)
1539                         cnt.v_pdwakeups++;
1540                 vm_page_unlock_queues();
1541                 vm_pageout_scan(pass);
1542         }
1543 }
1544
1545 /*
1546  * Unless the page queue lock is held by the caller, this function
1547  * should be regarded as advisory.  Specifically, the caller should
1548  * not msleep() on &cnt.v_free_count following this function unless
1549  * the page queue lock is held until the msleep() is performed.
1550  */
1551 void
1552 pagedaemon_wakeup()
1553 {
1554
1555         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1556                 vm_pages_needed = 1;
1557                 wakeup(&vm_pages_needed);
1558         }
1559 }
1560
1561 #if !defined(NO_SWAPPING)
1562 static void
1563 vm_req_vmdaemon()
1564 {
1565         static int lastrun = 0;
1566
1567         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1568                 wakeup(&vm_daemon_needed);
1569                 lastrun = ticks;
1570         }
1571 }
1572
1573 static void
1574 vm_daemon()
1575 {
1576         struct rlimit rsslim;
1577         struct proc *p;
1578         struct thread *td;
1579         int breakout;
1580
1581         mtx_lock(&Giant);
1582         while (TRUE) {
1583                 tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1584                 if (vm_pageout_req_swapout) {
1585                         swapout_procs(vm_pageout_req_swapout);
1586                         vm_pageout_req_swapout = 0;
1587                 }
1588                 /*
1589                  * scan the processes for exceeding their rlimits or if
1590                  * process is swapped out -- deactivate pages
1591                  */
1592                 sx_slock(&allproc_lock);
1593                 LIST_FOREACH(p, &allproc, p_list) {
1594                         vm_pindex_t limit, size;
1595
1596                         /*
1597                          * if this is a system process or if we have already
1598                          * looked at this process, skip it.
1599                          */
1600                         PROC_LOCK(p);
1601                         if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1602                                 PROC_UNLOCK(p);
1603                                 continue;
1604                         }
1605                         /*
1606                          * if the process is in a non-running type state,
1607                          * don't touch it.
1608                          */
1609                         mtx_lock_spin(&sched_lock);
1610                         breakout = 0;
1611                         FOREACH_THREAD_IN_PROC(p, td) {
1612                                 if (!TD_ON_RUNQ(td) &&
1613                                     !TD_IS_RUNNING(td) &&
1614                                     !TD_IS_SLEEPING(td)) {
1615                                         breakout = 1;
1616                                         break;
1617                                 }
1618                         }
1619                         mtx_unlock_spin(&sched_lock);
1620                         if (breakout) {
1621                                 PROC_UNLOCK(p);
1622                                 continue;
1623                         }
1624                         /*
1625                          * get a limit
1626                          */
1627                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1628                         limit = OFF_TO_IDX(
1629                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1630
1631                         /*
1632                          * let processes that are swapped out really be
1633                          * swapped out set the limit to nothing (will force a
1634                          * swap-out.)
1635                          */
1636                         if ((p->p_sflag & PS_INMEM) == 0)
1637                                 limit = 0;      /* XXX */
1638                         PROC_UNLOCK(p);
1639
1640                         size = vmspace_resident_count(p->p_vmspace);
1641                         if (limit >= 0 && size >= limit) {
1642                                 vm_pageout_map_deactivate_pages(
1643                                     &p->p_vmspace->vm_map, limit);
1644                         }
1645                 }
1646                 sx_sunlock(&allproc_lock);
1647         }
1648 }
1649 #endif                  /* !defined(NO_SWAPPING) */