]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Use existing tag name for the vm_object' memq.
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/lock.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/mount.h>
90 #include <sys/racct.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sched.h>
93 #include <sys/sdt.h>
94 #include <sys/signalvar.h>
95 #include <sys/smp.h>
96 #include <sys/time.h>
97 #include <sys/vnode.h>
98 #include <sys/vmmeter.h>
99 #include <sys/rwlock.h>
100 #include <sys/sx.h>
101 #include <sys/sysctl.h>
102
103 #include <vm/vm.h>
104 #include <vm/vm_param.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_page.h>
107 #include <vm/vm_map.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_pager.h>
110 #include <vm/vm_phys.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114
115 /*
116  * System initialization
117  */
118
119 /* the kernel process "vm_pageout"*/
120 static void vm_pageout(void);
121 static void vm_pageout_init(void);
122 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
123 static int vm_pageout_cluster(vm_page_t m);
124 static bool vm_pageout_scan(struct vm_domain *vmd, int pass);
125 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
126     int starting_page_shortage);
127
128 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
129     NULL);
130
131 struct proc *pageproc;
132
133 static struct kproc_desc page_kp = {
134         "pagedaemon",
135         vm_pageout,
136         &pageproc
137 };
138 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
139     &page_kp);
140
141 SDT_PROVIDER_DEFINE(vm);
142 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
143
144 #if !defined(NO_SWAPPING)
145 /* the kernel process "vm_daemon"*/
146 static void vm_daemon(void);
147 static struct   proc *vmproc;
148
149 static struct kproc_desc vm_kp = {
150         "vmdaemon",
151         vm_daemon,
152         &vmproc
153 };
154 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
155 #endif
156
157 /* Pagedaemon activity rates, in subdivisions of one second. */
158 #define VM_LAUNDER_RATE         10
159 #define VM_INACT_SCAN_RATE      2
160
161 int vm_pageout_deficit;         /* Estimated number of pages deficit */
162 u_int vm_pageout_wakeup_thresh;
163 static int vm_pageout_oom_seq = 12;
164 bool vm_pageout_wanted;         /* Event on which pageout daemon sleeps */
165 bool vm_pages_needed;           /* Are threads waiting for free pages? */
166
167 /* Pending request for dirty page laundering. */
168 static enum {
169         VM_LAUNDRY_IDLE,
170         VM_LAUNDRY_BACKGROUND,
171         VM_LAUNDRY_SHORTFALL
172 } vm_laundry_request = VM_LAUNDRY_IDLE;
173
174 #if !defined(NO_SWAPPING)
175 static int vm_pageout_req_swapout;      /* XXX */
176 static int vm_daemon_needed;
177 static struct mtx vm_daemon_mtx;
178 /* Allow for use by vm_pageout before vm_daemon is initialized. */
179 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
180 #endif
181 static int vm_pageout_update_period;
182 static int disable_swap_pageouts;
183 static int lowmem_period = 10;
184 static time_t lowmem_uptime;
185 static int swapdev_enabled;
186
187 #if defined(NO_SWAPPING)
188 static int vm_swap_enabled = 0;
189 static int vm_swap_idle_enabled = 0;
190 #else
191 static int vm_swap_enabled = 1;
192 static int vm_swap_idle_enabled = 0;
193 #endif
194
195 static int vm_panic_on_oom = 0;
196
197 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
198         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
199         "panic on out of memory instead of killing the largest process");
200
201 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
202         CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
203         "free page threshold for waking up the pageout daemon");
204
205 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
206         CTLFLAG_RW, &vm_pageout_update_period, 0,
207         "Maximum active LRU update period");
208   
209 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
210         "Low memory callback period");
211
212 #if defined(NO_SWAPPING)
213 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
214         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
215 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
216         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
217 #else
218 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
219         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
220 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
221         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
222 #endif
223
224 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
225         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
226
227 static int pageout_lock_miss;
228 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
229         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
230
231 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
232         CTLFLAG_RW, &vm_pageout_oom_seq, 0,
233         "back-to-back calls to oom detector to start OOM");
234
235 static int act_scan_laundry_weight = 3;
236 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RW,
237     &act_scan_laundry_weight, 0,
238     "weight given to clean vs. dirty pages in active queue scans");
239
240 static u_int vm_background_launder_target;
241 SYSCTL_UINT(_vm, OID_AUTO, background_launder_target, CTLFLAG_RW,
242     &vm_background_launder_target, 0,
243     "background laundering target, in pages");
244
245 static u_int vm_background_launder_rate = 4096;
246 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RW,
247     &vm_background_launder_rate, 0,
248     "background laundering rate, in kilobytes per second");
249
250 static u_int vm_background_launder_max = 20 * 1024;
251 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RW,
252     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
253
254 int vm_pageout_page_count = 32;
255
256 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
257 SYSCTL_INT(_vm, OID_AUTO, max_wired,
258         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
259
260 static u_int isqrt(u_int num);
261 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
262 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
263     bool in_shortfall);
264 static void vm_pageout_laundry_worker(void *arg);
265 #if !defined(NO_SWAPPING)
266 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
267 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
268 static void vm_req_vmdaemon(int req);
269 #endif
270 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
271
272 /*
273  * Initialize a dummy page for marking the caller's place in the specified
274  * paging queue.  In principle, this function only needs to set the flag
275  * PG_MARKER.  Nonetheless, it write busies and initializes the hold count
276  * to one as safety precautions.
277  */ 
278 static void
279 vm_pageout_init_marker(vm_page_t marker, u_short queue)
280 {
281
282         bzero(marker, sizeof(*marker));
283         marker->flags = PG_MARKER;
284         marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
285         marker->queue = queue;
286         marker->hold_count = 1;
287 }
288
289 /*
290  * vm_pageout_fallback_object_lock:
291  * 
292  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
293  * known to have failed and page queue must be either PQ_ACTIVE or
294  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queue
295  * while locking the vm object.  Use marker page to detect page queue
296  * changes and maintain notion of next page on page queue.  Return
297  * TRUE if no changes were detected, FALSE otherwise.  vm object is
298  * locked on return.
299  * 
300  * This function depends on both the lock portion of struct vm_object
301  * and normal struct vm_page being type stable.
302  */
303 static boolean_t
304 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
305 {
306         struct vm_page marker;
307         struct vm_pagequeue *pq;
308         boolean_t unchanged;
309         u_short queue;
310         vm_object_t object;
311
312         queue = m->queue;
313         vm_pageout_init_marker(&marker, queue);
314         pq = vm_page_pagequeue(m);
315         object = m->object;
316         
317         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
318         vm_pagequeue_unlock(pq);
319         vm_page_unlock(m);
320         VM_OBJECT_WLOCK(object);
321         vm_page_lock(m);
322         vm_pagequeue_lock(pq);
323
324         /*
325          * The page's object might have changed, and/or the page might
326          * have moved from its original position in the queue.  If the
327          * page's object has changed, then the caller should abandon
328          * processing the page because the wrong object lock was
329          * acquired.  Use the marker's plinks.q, not the page's, to
330          * determine if the page has been moved.  The state of the
331          * page's plinks.q can be indeterminate; whereas, the marker's
332          * plinks.q must be valid.
333          */
334         *next = TAILQ_NEXT(&marker, plinks.q);
335         unchanged = m->object == object &&
336             m == TAILQ_PREV(&marker, pglist, plinks.q);
337         KASSERT(!unchanged || m->queue == queue,
338             ("page %p queue %d %d", m, queue, m->queue));
339         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
340         return (unchanged);
341 }
342
343 /*
344  * Lock the page while holding the page queue lock.  Use marker page
345  * to detect page queue changes and maintain notion of next page on
346  * page queue.  Return TRUE if no changes were detected, FALSE
347  * otherwise.  The page is locked on return. The page queue lock might
348  * be dropped and reacquired.
349  *
350  * This function depends on normal struct vm_page being type stable.
351  */
352 static boolean_t
353 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
354 {
355         struct vm_page marker;
356         struct vm_pagequeue *pq;
357         boolean_t unchanged;
358         u_short queue;
359
360         vm_page_lock_assert(m, MA_NOTOWNED);
361         if (vm_page_trylock(m))
362                 return (TRUE);
363
364         queue = m->queue;
365         vm_pageout_init_marker(&marker, queue);
366         pq = vm_page_pagequeue(m);
367
368         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
369         vm_pagequeue_unlock(pq);
370         vm_page_lock(m);
371         vm_pagequeue_lock(pq);
372
373         /* Page queue might have changed. */
374         *next = TAILQ_NEXT(&marker, plinks.q);
375         unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q);
376         KASSERT(!unchanged || m->queue == queue,
377             ("page %p queue %d %d", m, queue, m->queue));
378         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
379         return (unchanged);
380 }
381
382 /*
383  * Scan for pages at adjacent offsets within the given page's object that are
384  * eligible for laundering, form a cluster of these pages and the given page,
385  * and launder that cluster.
386  */
387 static int
388 vm_pageout_cluster(vm_page_t m)
389 {
390         vm_object_t object;
391         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
392         vm_pindex_t pindex;
393         int ib, is, page_base, pageout_count;
394
395         vm_page_assert_locked(m);
396         object = m->object;
397         VM_OBJECT_ASSERT_WLOCKED(object);
398         pindex = m->pindex;
399
400         /*
401          * We can't clean the page if it is busy or held.
402          */
403         vm_page_assert_unbusied(m);
404         KASSERT(m->hold_count == 0, ("page %p is held", m));
405
406         pmap_remove_write(m);
407         vm_page_unlock(m);
408
409         mc[vm_pageout_page_count] = pb = ps = m;
410         pageout_count = 1;
411         page_base = vm_pageout_page_count;
412         ib = 1;
413         is = 1;
414
415         /*
416          * We can cluster only if the page is not clean, busy, or held, and
417          * the page is in the laundry queue.
418          *
419          * During heavy mmap/modification loads the pageout
420          * daemon can really fragment the underlying file
421          * due to flushing pages out of order and not trying to
422          * align the clusters (which leaves sporadic out-of-order
423          * holes).  To solve this problem we do the reverse scan
424          * first and attempt to align our cluster, then do a 
425          * forward scan if room remains.
426          */
427 more:
428         while (ib != 0 && pageout_count < vm_pageout_page_count) {
429                 if (ib > pindex) {
430                         ib = 0;
431                         break;
432                 }
433                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
434                         ib = 0;
435                         break;
436                 }
437                 vm_page_test_dirty(p);
438                 if (p->dirty == 0) {
439                         ib = 0;
440                         break;
441                 }
442                 vm_page_lock(p);
443                 if (!vm_page_in_laundry(p) ||
444                     p->hold_count != 0) {       /* may be undergoing I/O */
445                         vm_page_unlock(p);
446                         ib = 0;
447                         break;
448                 }
449                 pmap_remove_write(p);
450                 vm_page_unlock(p);
451                 mc[--page_base] = pb = p;
452                 ++pageout_count;
453                 ++ib;
454
455                 /*
456                  * We are at an alignment boundary.  Stop here, and switch
457                  * directions.  Do not clear ib.
458                  */
459                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
460                         break;
461         }
462         while (pageout_count < vm_pageout_page_count && 
463             pindex + is < object->size) {
464                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
465                         break;
466                 vm_page_test_dirty(p);
467                 if (p->dirty == 0)
468                         break;
469                 vm_page_lock(p);
470                 if (!vm_page_in_laundry(p) ||
471                     p->hold_count != 0) {       /* may be undergoing I/O */
472                         vm_page_unlock(p);
473                         break;
474                 }
475                 pmap_remove_write(p);
476                 vm_page_unlock(p);
477                 mc[page_base + pageout_count] = ps = p;
478                 ++pageout_count;
479                 ++is;
480         }
481
482         /*
483          * If we exhausted our forward scan, continue with the reverse scan
484          * when possible, even past an alignment boundary.  This catches
485          * boundary conditions.
486          */
487         if (ib != 0 && pageout_count < vm_pageout_page_count)
488                 goto more;
489
490         return (vm_pageout_flush(&mc[page_base], pageout_count,
491             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
492 }
493
494 /*
495  * vm_pageout_flush() - launder the given pages
496  *
497  *      The given pages are laundered.  Note that we setup for the start of
498  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
499  *      reference count all in here rather then in the parent.  If we want
500  *      the parent to do more sophisticated things we may have to change
501  *      the ordering.
502  *
503  *      Returned runlen is the count of pages between mreq and first
504  *      page after mreq with status VM_PAGER_AGAIN.
505  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
506  *      for any page in runlen set.
507  */
508 int
509 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
510     boolean_t *eio)
511 {
512         vm_object_t object = mc[0]->object;
513         int pageout_status[count];
514         int numpagedout = 0;
515         int i, runlen;
516
517         VM_OBJECT_ASSERT_WLOCKED(object);
518
519         /*
520          * Initiate I/O.  Mark the pages busy and verify that they're valid
521          * and read-only.
522          *
523          * We do not have to fixup the clean/dirty bits here... we can
524          * allow the pager to do it after the I/O completes.
525          *
526          * NOTE! mc[i]->dirty may be partial or fragmented due to an
527          * edge case with file fragments.
528          */
529         for (i = 0; i < count; i++) {
530                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
531                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
532                         mc[i], i, count));
533                 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0,
534                     ("vm_pageout_flush: writeable page %p", mc[i]));
535                 vm_page_sbusy(mc[i]);
536         }
537         vm_object_pip_add(object, count);
538
539         vm_pager_put_pages(object, mc, count, flags, pageout_status);
540
541         runlen = count - mreq;
542         if (eio != NULL)
543                 *eio = FALSE;
544         for (i = 0; i < count; i++) {
545                 vm_page_t mt = mc[i];
546
547                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
548                     !pmap_page_is_write_mapped(mt),
549                     ("vm_pageout_flush: page %p is not write protected", mt));
550                 switch (pageout_status[i]) {
551                 case VM_PAGER_OK:
552                         vm_page_lock(mt);
553                         if (vm_page_in_laundry(mt))
554                                 vm_page_deactivate_noreuse(mt);
555                         vm_page_unlock(mt);
556                         /* FALLTHROUGH */
557                 case VM_PAGER_PEND:
558                         numpagedout++;
559                         break;
560                 case VM_PAGER_BAD:
561                         /*
562                          * The page is outside the object's range.  We pretend
563                          * that the page out worked and clean the page, so the
564                          * changes will be lost if the page is reclaimed by
565                          * the page daemon.
566                          */
567                         vm_page_undirty(mt);
568                         vm_page_lock(mt);
569                         if (vm_page_in_laundry(mt))
570                                 vm_page_deactivate_noreuse(mt);
571                         vm_page_unlock(mt);
572                         break;
573                 case VM_PAGER_ERROR:
574                 case VM_PAGER_FAIL:
575                         /*
576                          * If the page couldn't be paged out to swap because the
577                          * pager wasn't able to find space, place the page in
578                          * the PQ_UNSWAPPABLE holding queue.  This is an
579                          * optimization that prevents the page daemon from
580                          * wasting CPU cycles on pages that cannot be reclaimed
581                          * becase no swap device is configured.
582                          *
583                          * Otherwise, reactivate the page so that it doesn't
584                          * clog the laundry and inactive queues.  (We will try
585                          * paging it out again later.)
586                          */
587                         vm_page_lock(mt);
588                         if (object->type == OBJT_SWAP &&
589                             pageout_status[i] == VM_PAGER_FAIL) {
590                                 vm_page_unswappable(mt);
591                                 numpagedout++;
592                         } else
593                                 vm_page_activate(mt);
594                         vm_page_unlock(mt);
595                         if (eio != NULL && i >= mreq && i - mreq < runlen)
596                                 *eio = TRUE;
597                         break;
598                 case VM_PAGER_AGAIN:
599                         if (i >= mreq && i - mreq < runlen)
600                                 runlen = i - mreq;
601                         break;
602                 }
603
604                 /*
605                  * If the operation is still going, leave the page busy to
606                  * block all other accesses. Also, leave the paging in
607                  * progress indicator set so that we don't attempt an object
608                  * collapse.
609                  */
610                 if (pageout_status[i] != VM_PAGER_PEND) {
611                         vm_object_pip_wakeup(object);
612                         vm_page_sunbusy(mt);
613                 }
614         }
615         if (prunlen != NULL)
616                 *prunlen = runlen;
617         return (numpagedout);
618 }
619
620 static void
621 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
622 {
623
624         atomic_store_rel_int(&swapdev_enabled, 1);
625 }
626
627 static void
628 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
629 {
630
631         if (swap_pager_nswapdev() == 1)
632                 atomic_store_rel_int(&swapdev_enabled, 0);
633 }
634
635 #if !defined(NO_SWAPPING)
636 /*
637  *      vm_pageout_object_deactivate_pages
638  *
639  *      Deactivate enough pages to satisfy the inactive target
640  *      requirements.
641  *
642  *      The object and map must be locked.
643  */
644 static void
645 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
646     long desired)
647 {
648         vm_object_t backing_object, object;
649         vm_page_t p;
650         int act_delta, remove_mode;
651
652         VM_OBJECT_ASSERT_LOCKED(first_object);
653         if ((first_object->flags & OBJ_FICTITIOUS) != 0)
654                 return;
655         for (object = first_object;; object = backing_object) {
656                 if (pmap_resident_count(pmap) <= desired)
657                         goto unlock_return;
658                 VM_OBJECT_ASSERT_LOCKED(object);
659                 if ((object->flags & OBJ_UNMANAGED) != 0 ||
660                     object->paging_in_progress != 0)
661                         goto unlock_return;
662
663                 remove_mode = 0;
664                 if (object->shadow_count > 1)
665                         remove_mode = 1;
666                 /*
667                  * Scan the object's entire memory queue.
668                  */
669                 TAILQ_FOREACH(p, &object->memq, listq) {
670                         if (pmap_resident_count(pmap) <= desired)
671                                 goto unlock_return;
672                         if (vm_page_busied(p))
673                                 continue;
674                         VM_CNT_INC(v_pdpages);
675                         vm_page_lock(p);
676                         if (p->wire_count != 0 || p->hold_count != 0 ||
677                             !pmap_page_exists_quick(pmap, p)) {
678                                 vm_page_unlock(p);
679                                 continue;
680                         }
681                         act_delta = pmap_ts_referenced(p);
682                         if ((p->aflags & PGA_REFERENCED) != 0) {
683                                 if (act_delta == 0)
684                                         act_delta = 1;
685                                 vm_page_aflag_clear(p, PGA_REFERENCED);
686                         }
687                         if (!vm_page_active(p) && act_delta != 0) {
688                                 vm_page_activate(p);
689                                 p->act_count += act_delta;
690                         } else if (vm_page_active(p)) {
691                                 if (act_delta == 0) {
692                                         p->act_count -= min(p->act_count,
693                                             ACT_DECLINE);
694                                         if (!remove_mode && p->act_count == 0) {
695                                                 pmap_remove_all(p);
696                                                 vm_page_deactivate(p);
697                                         } else
698                                                 vm_page_requeue(p);
699                                 } else {
700                                         vm_page_activate(p);
701                                         if (p->act_count < ACT_MAX -
702                                             ACT_ADVANCE)
703                                                 p->act_count += ACT_ADVANCE;
704                                         vm_page_requeue(p);
705                                 }
706                         } else if (vm_page_inactive(p))
707                                 pmap_remove_all(p);
708                         vm_page_unlock(p);
709                 }
710                 if ((backing_object = object->backing_object) == NULL)
711                         goto unlock_return;
712                 VM_OBJECT_RLOCK(backing_object);
713                 if (object != first_object)
714                         VM_OBJECT_RUNLOCK(object);
715         }
716 unlock_return:
717         if (object != first_object)
718                 VM_OBJECT_RUNLOCK(object);
719 }
720
721 /*
722  * deactivate some number of pages in a map, try to do it fairly, but
723  * that is really hard to do.
724  */
725 static void
726 vm_pageout_map_deactivate_pages(map, desired)
727         vm_map_t map;
728         long desired;
729 {
730         vm_map_entry_t tmpe;
731         vm_object_t obj, bigobj;
732         int nothingwired;
733
734         if (!vm_map_trylock(map))
735                 return;
736
737         bigobj = NULL;
738         nothingwired = TRUE;
739
740         /*
741          * first, search out the biggest object, and try to free pages from
742          * that.
743          */
744         tmpe = map->header.next;
745         while (tmpe != &map->header) {
746                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
747                         obj = tmpe->object.vm_object;
748                         if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
749                                 if (obj->shadow_count <= 1 &&
750                                     (bigobj == NULL ||
751                                      bigobj->resident_page_count < obj->resident_page_count)) {
752                                         if (bigobj != NULL)
753                                                 VM_OBJECT_RUNLOCK(bigobj);
754                                         bigobj = obj;
755                                 } else
756                                         VM_OBJECT_RUNLOCK(obj);
757                         }
758                 }
759                 if (tmpe->wired_count > 0)
760                         nothingwired = FALSE;
761                 tmpe = tmpe->next;
762         }
763
764         if (bigobj != NULL) {
765                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
766                 VM_OBJECT_RUNLOCK(bigobj);
767         }
768         /*
769          * Next, hunt around for other pages to deactivate.  We actually
770          * do this search sort of wrong -- .text first is not the best idea.
771          */
772         tmpe = map->header.next;
773         while (tmpe != &map->header) {
774                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
775                         break;
776                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
777                         obj = tmpe->object.vm_object;
778                         if (obj != NULL) {
779                                 VM_OBJECT_RLOCK(obj);
780                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
781                                 VM_OBJECT_RUNLOCK(obj);
782                         }
783                 }
784                 tmpe = tmpe->next;
785         }
786
787         /*
788          * Remove all mappings if a process is swapped out, this will free page
789          * table pages.
790          */
791         if (desired == 0 && nothingwired) {
792                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
793                     vm_map_max(map));
794         }
795
796         vm_map_unlock(map);
797 }
798 #endif          /* !defined(NO_SWAPPING) */
799
800 /*
801  * Attempt to acquire all of the necessary locks to launder a page and
802  * then call through the clustering layer to PUTPAGES.  Wait a short
803  * time for a vnode lock.
804  *
805  * Requires the page and object lock on entry, releases both before return.
806  * Returns 0 on success and an errno otherwise.
807  */
808 static int
809 vm_pageout_clean(vm_page_t m, int *numpagedout)
810 {
811         struct vnode *vp;
812         struct mount *mp;
813         vm_object_t object;
814         vm_pindex_t pindex;
815         int error, lockmode;
816
817         vm_page_assert_locked(m);
818         object = m->object;
819         VM_OBJECT_ASSERT_WLOCKED(object);
820         error = 0;
821         vp = NULL;
822         mp = NULL;
823
824         /*
825          * The object is already known NOT to be dead.   It
826          * is possible for the vget() to block the whole
827          * pageout daemon, but the new low-memory handling
828          * code should prevent it.
829          *
830          * We can't wait forever for the vnode lock, we might
831          * deadlock due to a vn_read() getting stuck in
832          * vm_wait while holding this vnode.  We skip the 
833          * vnode if we can't get it in a reasonable amount
834          * of time.
835          */
836         if (object->type == OBJT_VNODE) {
837                 vm_page_unlock(m);
838                 vp = object->handle;
839                 if (vp->v_type == VREG &&
840                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
841                         mp = NULL;
842                         error = EDEADLK;
843                         goto unlock_all;
844                 }
845                 KASSERT(mp != NULL,
846                     ("vp %p with NULL v_mount", vp));
847                 vm_object_reference_locked(object);
848                 pindex = m->pindex;
849                 VM_OBJECT_WUNLOCK(object);
850                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
851                     LK_SHARED : LK_EXCLUSIVE;
852                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
853                         vp = NULL;
854                         error = EDEADLK;
855                         goto unlock_mp;
856                 }
857                 VM_OBJECT_WLOCK(object);
858                 vm_page_lock(m);
859                 /*
860                  * While the object and page were unlocked, the page
861                  * may have been:
862                  * (1) moved to a different queue,
863                  * (2) reallocated to a different object,
864                  * (3) reallocated to a different offset, or
865                  * (4) cleaned.
866                  */
867                 if (!vm_page_in_laundry(m) || m->object != object ||
868                     m->pindex != pindex || m->dirty == 0) {
869                         vm_page_unlock(m);
870                         error = ENXIO;
871                         goto unlock_all;
872                 }
873
874                 /*
875                  * The page may have been busied or held while the object
876                  * and page locks were released.
877                  */
878                 if (vm_page_busied(m) || m->hold_count != 0) {
879                         vm_page_unlock(m);
880                         error = EBUSY;
881                         goto unlock_all;
882                 }
883         }
884
885         /*
886          * If a page is dirty, then it is either being washed
887          * (but not yet cleaned) or it is still in the
888          * laundry.  If it is still in the laundry, then we
889          * start the cleaning operation. 
890          */
891         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
892                 error = EIO;
893
894 unlock_all:
895         VM_OBJECT_WUNLOCK(object);
896
897 unlock_mp:
898         vm_page_lock_assert(m, MA_NOTOWNED);
899         if (mp != NULL) {
900                 if (vp != NULL)
901                         vput(vp);
902                 vm_object_deallocate(object);
903                 vn_finished_write(mp);
904         }
905
906         return (error);
907 }
908
909 /*
910  * Attempt to launder the specified number of pages.
911  *
912  * Returns the number of pages successfully laundered.
913  */
914 static int
915 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
916 {
917         struct vm_pagequeue *pq;
918         vm_object_t object;
919         vm_page_t m, next;
920         int act_delta, error, maxscan, numpagedout, starting_target;
921         int vnodes_skipped;
922         bool pageout_ok, queue_locked;
923
924         starting_target = launder;
925         vnodes_skipped = 0;
926
927         /*
928          * Scan the laundry queues for pages eligible to be laundered.  We stop
929          * once the target number of dirty pages have been laundered, or once
930          * we've reached the end of the queue.  A single iteration of this loop
931          * may cause more than one page to be laundered because of clustering.
932          *
933          * maxscan ensures that we don't re-examine requeued pages.  Any
934          * additional pages written as part of a cluster are subtracted from
935          * maxscan since they must be taken from the laundry queue.
936          *
937          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
938          * swap devices are configured.
939          */
940         if (atomic_load_acq_int(&swapdev_enabled))
941                 pq = &vmd->vmd_pagequeues[PQ_UNSWAPPABLE];
942         else
943                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
944
945 scan:
946         vm_pagequeue_lock(pq);
947         maxscan = pq->pq_cnt;
948         queue_locked = true;
949         for (m = TAILQ_FIRST(&pq->pq_pl);
950             m != NULL && maxscan-- > 0 && launder > 0;
951             m = next) {
952                 vm_pagequeue_assert_locked(pq);
953                 KASSERT(queue_locked, ("unlocked laundry queue"));
954                 KASSERT(vm_page_in_laundry(m),
955                     ("page %p has an inconsistent queue", m));
956                 next = TAILQ_NEXT(m, plinks.q);
957                 if ((m->flags & PG_MARKER) != 0)
958                         continue;
959                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
960                     ("PG_FICTITIOUS page %p cannot be in laundry queue", m));
961                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
962                     ("VPO_UNMANAGED page %p cannot be in laundry queue", m));
963                 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
964                         vm_page_unlock(m);
965                         continue;
966                 }
967                 object = m->object;
968                 if ((!VM_OBJECT_TRYWLOCK(object) &&
969                     (!vm_pageout_fallback_object_lock(m, &next) ||
970                     m->hold_count != 0)) || vm_page_busied(m)) {
971                         VM_OBJECT_WUNLOCK(object);
972                         vm_page_unlock(m);
973                         continue;
974                 }
975
976                 /*
977                  * Unlock the laundry queue, invalidating the 'next' pointer.
978                  * Use a marker to remember our place in the laundry queue.
979                  */
980                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_laundry_marker,
981                     plinks.q);
982                 vm_pagequeue_unlock(pq);
983                 queue_locked = false;
984
985                 /*
986                  * Invalid pages can be easily freed.  They cannot be
987                  * mapped; vm_page_free() asserts this.
988                  */
989                 if (m->valid == 0)
990                         goto free_page;
991
992                 /*
993                  * If the page has been referenced and the object is not dead,
994                  * reactivate or requeue the page depending on whether the
995                  * object is mapped.
996                  */
997                 if ((m->aflags & PGA_REFERENCED) != 0) {
998                         vm_page_aflag_clear(m, PGA_REFERENCED);
999                         act_delta = 1;
1000                 } else
1001                         act_delta = 0;
1002                 if (object->ref_count != 0)
1003                         act_delta += pmap_ts_referenced(m);
1004                 else {
1005                         KASSERT(!pmap_page_is_mapped(m),
1006                             ("page %p is mapped", m));
1007                 }
1008                 if (act_delta != 0) {
1009                         if (object->ref_count != 0) {
1010                                 VM_CNT_INC(v_reactivated);
1011                                 vm_page_activate(m);
1012
1013                                 /*
1014                                  * Increase the activation count if the page
1015                                  * was referenced while in the laundry queue.
1016                                  * This makes it less likely that the page will
1017                                  * be returned prematurely to the inactive
1018                                  * queue.
1019                                  */
1020                                 m->act_count += act_delta + ACT_ADVANCE;
1021
1022                                 /*
1023                                  * If this was a background laundering, count
1024                                  * activated pages towards our target.  The
1025                                  * purpose of background laundering is to ensure
1026                                  * that pages are eventually cycled through the
1027                                  * laundry queue, and an activation is a valid
1028                                  * way out.
1029                                  */
1030                                 if (!in_shortfall)
1031                                         launder--;
1032                                 goto drop_page;
1033                         } else if ((object->flags & OBJ_DEAD) == 0)
1034                                 goto requeue_page;
1035                 }
1036
1037                 /*
1038                  * If the page appears to be clean at the machine-independent
1039                  * layer, then remove all of its mappings from the pmap in
1040                  * anticipation of freeing it.  If, however, any of the page's
1041                  * mappings allow write access, then the page may still be
1042                  * modified until the last of those mappings are removed.
1043                  */
1044                 if (object->ref_count != 0) {
1045                         vm_page_test_dirty(m);
1046                         if (m->dirty == 0)
1047                                 pmap_remove_all(m);
1048                 }
1049
1050                 /*
1051                  * Clean pages are freed, and dirty pages are paged out unless
1052                  * they belong to a dead object.  Requeueing dirty pages from
1053                  * dead objects is pointless, as they are being paged out and
1054                  * freed by the thread that destroyed the object.
1055                  */
1056                 if (m->dirty == 0) {
1057 free_page:
1058                         vm_page_free(m);
1059                         VM_CNT_INC(v_dfree);
1060                 } else if ((object->flags & OBJ_DEAD) == 0) {
1061                         if (object->type != OBJT_SWAP &&
1062                             object->type != OBJT_DEFAULT)
1063                                 pageout_ok = true;
1064                         else if (disable_swap_pageouts)
1065                                 pageout_ok = false;
1066                         else
1067                                 pageout_ok = true;
1068                         if (!pageout_ok) {
1069 requeue_page:
1070                                 vm_pagequeue_lock(pq);
1071                                 queue_locked = true;
1072                                 vm_page_requeue_locked(m);
1073                                 goto drop_page;
1074                         }
1075
1076                         /*
1077                          * Form a cluster with adjacent, dirty pages from the
1078                          * same object, and page out that entire cluster.
1079                          *
1080                          * The adjacent, dirty pages must also be in the
1081                          * laundry.  However, their mappings are not checked
1082                          * for new references.  Consequently, a recently
1083                          * referenced page may be paged out.  However, that
1084                          * page will not be prematurely reclaimed.  After page
1085                          * out, the page will be placed in the inactive queue,
1086                          * where any new references will be detected and the
1087                          * page reactivated.
1088                          */
1089                         error = vm_pageout_clean(m, &numpagedout);
1090                         if (error == 0) {
1091                                 launder -= numpagedout;
1092                                 maxscan -= numpagedout - 1;
1093                         } else if (error == EDEADLK) {
1094                                 pageout_lock_miss++;
1095                                 vnodes_skipped++;
1096                         }
1097                         goto relock_queue;
1098                 }
1099 drop_page:
1100                 vm_page_unlock(m);
1101                 VM_OBJECT_WUNLOCK(object);
1102 relock_queue:
1103                 if (!queue_locked) {
1104                         vm_pagequeue_lock(pq);
1105                         queue_locked = true;
1106                 }
1107                 next = TAILQ_NEXT(&vmd->vmd_laundry_marker, plinks.q);
1108                 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_laundry_marker, plinks.q);
1109         }
1110         vm_pagequeue_unlock(pq);
1111
1112         if (launder > 0 && pq == &vmd->vmd_pagequeues[PQ_UNSWAPPABLE]) {
1113                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1114                 goto scan;
1115         }
1116
1117         /*
1118          * Wakeup the sync daemon if we skipped a vnode in a writeable object
1119          * and we didn't launder enough pages.
1120          */
1121         if (vnodes_skipped > 0 && launder > 0)
1122                 (void)speedup_syncer();
1123
1124         return (starting_target - launder);
1125 }
1126
1127 /*
1128  * Compute the integer square root.
1129  */
1130 static u_int
1131 isqrt(u_int num)
1132 {
1133         u_int bit, root, tmp;
1134
1135         bit = 1u << ((NBBY * sizeof(u_int)) - 2);
1136         while (bit > num)
1137                 bit >>= 2;
1138         root = 0;
1139         while (bit != 0) {
1140                 tmp = root + bit;
1141                 root >>= 1;
1142                 if (num >= tmp) {
1143                         num -= tmp;
1144                         root += bit;
1145                 }
1146                 bit >>= 2;
1147         }
1148         return (root);
1149 }
1150
1151 /*
1152  * Perform the work of the laundry thread: periodically wake up and determine
1153  * whether any pages need to be laundered.  If so, determine the number of pages
1154  * that need to be laundered, and launder them.
1155  */
1156 static void
1157 vm_pageout_laundry_worker(void *arg)
1158 {
1159         struct vm_domain *domain;
1160         struct vm_pagequeue *pq;
1161         uint64_t nclean, ndirty;
1162         u_int last_launder, wakeups;
1163         int domidx, last_target, launder, shortfall, shortfall_cycle, target;
1164         bool in_shortfall;
1165
1166         domidx = (uintptr_t)arg;
1167         domain = &vm_dom[domidx];
1168         pq = &domain->vmd_pagequeues[PQ_LAUNDRY];
1169         KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1170         vm_pageout_init_marker(&domain->vmd_laundry_marker, PQ_LAUNDRY);
1171
1172         shortfall = 0;
1173         in_shortfall = false;
1174         shortfall_cycle = 0;
1175         target = 0;
1176         last_launder = 0;
1177
1178         /*
1179          * Calls to these handlers are serialized by the swap syscall lock.
1180          */
1181         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, domain,
1182             EVENTHANDLER_PRI_ANY);
1183         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, domain,
1184             EVENTHANDLER_PRI_ANY);
1185
1186         /*
1187          * The pageout laundry worker is never done, so loop forever.
1188          */
1189         for (;;) {
1190                 KASSERT(target >= 0, ("negative target %d", target));
1191                 KASSERT(shortfall_cycle >= 0,
1192                     ("negative cycle %d", shortfall_cycle));
1193                 launder = 0;
1194                 wakeups = VM_CNT_FETCH(v_pdwakeups);
1195
1196                 /*
1197                  * First determine whether we need to launder pages to meet a
1198                  * shortage of free pages.
1199                  */
1200                 if (shortfall > 0) {
1201                         in_shortfall = true;
1202                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1203                         target = shortfall;
1204                 } else if (!in_shortfall)
1205                         goto trybackground;
1206                 else if (shortfall_cycle == 0 || vm_laundry_target() <= 0) {
1207                         /*
1208                          * We recently entered shortfall and began laundering
1209                          * pages.  If we have completed that laundering run
1210                          * (and we are no longer in shortfall) or we have met
1211                          * our laundry target through other activity, then we
1212                          * can stop laundering pages.
1213                          */
1214                         in_shortfall = false;
1215                         target = 0;
1216                         goto trybackground;
1217                 }
1218                 last_launder = wakeups;
1219                 launder = target / shortfall_cycle--;
1220                 goto dolaundry;
1221
1222                 /*
1223                  * There's no immediate need to launder any pages; see if we
1224                  * meet the conditions to perform background laundering:
1225                  *
1226                  * 1. The ratio of dirty to clean inactive pages exceeds the
1227                  *    background laundering threshold and the pagedaemon has
1228                  *    been woken up to reclaim pages since our last
1229                  *    laundering, or
1230                  * 2. we haven't yet reached the target of the current
1231                  *    background laundering run.
1232                  *
1233                  * The background laundering threshold is not a constant.
1234                  * Instead, it is a slowly growing function of the number of
1235                  * page daemon wakeups since the last laundering.  Thus, as the
1236                  * ratio of dirty to clean inactive pages grows, the amount of
1237                  * memory pressure required to trigger laundering decreases.
1238                  */
1239 trybackground:
1240                 nclean = vm_cnt.v_inactive_count + vm_cnt.v_free_count;
1241                 ndirty = vm_cnt.v_laundry_count;
1242                 if (target == 0 && wakeups != last_launder &&
1243                     ndirty * isqrt(wakeups - last_launder) >= nclean) {
1244                         target = vm_background_launder_target;
1245                 }
1246
1247                 /*
1248                  * We have a non-zero background laundering target.  If we've
1249                  * laundered up to our maximum without observing a page daemon
1250                  * wakeup, just stop.  This is a safety belt that ensures we
1251                  * don't launder an excessive amount if memory pressure is low
1252                  * and the ratio of dirty to clean pages is large.  Otherwise,
1253                  * proceed at the background laundering rate.
1254                  */
1255                 if (target > 0) {
1256                         if (wakeups != last_launder) {
1257                                 last_launder = wakeups;
1258                                 last_target = target;
1259                         } else if (last_target - target >=
1260                             vm_background_launder_max * PAGE_SIZE / 1024) {
1261                                 target = 0;
1262                         }
1263                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1264                         launder /= VM_LAUNDER_RATE;
1265                         if (launder > target)
1266                                 launder = target;
1267                 }
1268
1269 dolaundry:
1270                 if (launder > 0) {
1271                         /*
1272                          * Because of I/O clustering, the number of laundered
1273                          * pages could exceed "target" by the maximum size of
1274                          * a cluster minus one. 
1275                          */
1276                         target -= min(vm_pageout_launder(domain, launder,
1277                             in_shortfall), target);
1278                         pause("laundp", hz / VM_LAUNDER_RATE);
1279                 }
1280
1281                 /*
1282                  * If we're not currently laundering pages and the page daemon
1283                  * hasn't posted a new request, sleep until the page daemon
1284                  * kicks us.
1285                  */
1286                 vm_pagequeue_lock(pq);
1287                 if (target == 0 && vm_laundry_request == VM_LAUNDRY_IDLE)
1288                         (void)mtx_sleep(&vm_laundry_request,
1289                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1290
1291                 /*
1292                  * If the pagedaemon has indicated that it's in shortfall, start
1293                  * a shortfall laundering unless we're already in the middle of
1294                  * one.  This may preempt a background laundering.
1295                  */
1296                 if (vm_laundry_request == VM_LAUNDRY_SHORTFALL &&
1297                     (!in_shortfall || shortfall_cycle == 0)) {
1298                         shortfall = vm_laundry_target() + vm_pageout_deficit;
1299                         target = 0;
1300                 } else
1301                         shortfall = 0;
1302
1303                 if (target == 0)
1304                         vm_laundry_request = VM_LAUNDRY_IDLE;
1305                 vm_pagequeue_unlock(pq);
1306         }
1307 }
1308
1309 /*
1310  *      vm_pageout_scan does the dirty work for the pageout daemon.
1311  *
1312  *      pass == 0: Update active LRU/deactivate pages
1313  *      pass >= 1: Free inactive pages
1314  *
1315  * Returns true if pass was zero or enough pages were freed by the inactive
1316  * queue scan to meet the target.
1317  */
1318 static bool
1319 vm_pageout_scan(struct vm_domain *vmd, int pass)
1320 {
1321         vm_page_t m, next;
1322         struct vm_pagequeue *pq;
1323         vm_object_t object;
1324         long min_scan;
1325         int act_delta, addl_page_shortage, deficit, inactq_shortage, maxscan;
1326         int page_shortage, scan_tick, scanned, starting_page_shortage;
1327         boolean_t queue_locked;
1328
1329         /*
1330          * If we need to reclaim memory ask kernel caches to return
1331          * some.  We rate limit to avoid thrashing.
1332          */
1333         if (vmd == &vm_dom[0] && pass > 0 &&
1334             (time_uptime - lowmem_uptime) >= lowmem_period) {
1335                 /*
1336                  * Decrease registered cache sizes.
1337                  */
1338                 SDT_PROBE0(vm, , , vm__lowmem_scan);
1339                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
1340                 /*
1341                  * We do this explicitly after the caches have been
1342                  * drained above.
1343                  */
1344                 uma_reclaim();
1345                 lowmem_uptime = time_uptime;
1346         }
1347
1348         /*
1349          * The addl_page_shortage is the number of temporarily
1350          * stuck pages in the inactive queue.  In other words, the
1351          * number of pages from the inactive count that should be
1352          * discounted in setting the target for the active queue scan.
1353          */
1354         addl_page_shortage = 0;
1355
1356         /*
1357          * Calculate the number of pages that we want to free.  This number
1358          * can be negative if many pages are freed between the wakeup call to
1359          * the page daemon and this calculation.
1360          */
1361         if (pass > 0) {
1362                 deficit = atomic_readandclear_int(&vm_pageout_deficit);
1363                 page_shortage = vm_paging_target() + deficit;
1364         } else
1365                 page_shortage = deficit = 0;
1366         starting_page_shortage = page_shortage;
1367
1368         /*
1369          * Start scanning the inactive queue for pages that we can free.  The
1370          * scan will stop when we reach the target or we have scanned the
1371          * entire queue.  (Note that m->act_count is not used to make
1372          * decisions for the inactive queue, only for the active queue.)
1373          */
1374         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1375         maxscan = pq->pq_cnt;
1376         vm_pagequeue_lock(pq);
1377         queue_locked = TRUE;
1378         for (m = TAILQ_FIRST(&pq->pq_pl);
1379              m != NULL && maxscan-- > 0 && page_shortage > 0;
1380              m = next) {
1381                 vm_pagequeue_assert_locked(pq);
1382                 KASSERT(queue_locked, ("unlocked inactive queue"));
1383                 KASSERT(vm_page_inactive(m), ("Inactive queue %p", m));
1384
1385                 VM_CNT_INC(v_pdpages);
1386                 next = TAILQ_NEXT(m, plinks.q);
1387
1388                 /*
1389                  * skip marker pages
1390                  */
1391                 if (m->flags & PG_MARKER)
1392                         continue;
1393
1394                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1395                     ("Fictitious page %p cannot be in inactive queue", m));
1396                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1397                     ("Unmanaged page %p cannot be in inactive queue", m));
1398
1399                 /*
1400                  * The page or object lock acquisitions fail if the
1401                  * page was removed from the queue or moved to a
1402                  * different position within the queue.  In either
1403                  * case, addl_page_shortage should not be incremented.
1404                  */
1405                 if (!vm_pageout_page_lock(m, &next))
1406                         goto unlock_page;
1407                 else if (m->hold_count != 0) {
1408                         /*
1409                          * Held pages are essentially stuck in the
1410                          * queue.  So, they ought to be discounted
1411                          * from the inactive count.  See the
1412                          * calculation of inactq_shortage before the
1413                          * loop over the active queue below.
1414                          */
1415                         addl_page_shortage++;
1416                         goto unlock_page;
1417                 }
1418                 object = m->object;
1419                 if (!VM_OBJECT_TRYWLOCK(object)) {
1420                         if (!vm_pageout_fallback_object_lock(m, &next))
1421                                 goto unlock_object;
1422                         else if (m->hold_count != 0) {
1423                                 addl_page_shortage++;
1424                                 goto unlock_object;
1425                         }
1426                 }
1427                 if (vm_page_busied(m)) {
1428                         /*
1429                          * Don't mess with busy pages.  Leave them at
1430                          * the front of the queue.  Most likely, they
1431                          * are being paged out and will leave the
1432                          * queue shortly after the scan finishes.  So,
1433                          * they ought to be discounted from the
1434                          * inactive count.
1435                          */
1436                         addl_page_shortage++;
1437 unlock_object:
1438                         VM_OBJECT_WUNLOCK(object);
1439 unlock_page:
1440                         vm_page_unlock(m);
1441                         continue;
1442                 }
1443                 KASSERT(m->hold_count == 0, ("Held page %p", m));
1444
1445                 /*
1446                  * Dequeue the inactive page and unlock the inactive page
1447                  * queue, invalidating the 'next' pointer.  Dequeueing the
1448                  * page here avoids a later reacquisition (and release) of
1449                  * the inactive page queue lock when vm_page_activate(),
1450                  * vm_page_free(), or vm_page_launder() is called.  Use a
1451                  * marker to remember our place in the inactive queue.
1452                  */
1453                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1454                 vm_page_dequeue_locked(m);
1455                 vm_pagequeue_unlock(pq);
1456                 queue_locked = FALSE;
1457
1458                 /*
1459                  * Invalid pages can be easily freed. They cannot be
1460                  * mapped, vm_page_free() asserts this.
1461                  */
1462                 if (m->valid == 0)
1463                         goto free_page;
1464
1465                 /*
1466                  * If the page has been referenced and the object is not dead,
1467                  * reactivate or requeue the page depending on whether the
1468                  * object is mapped.
1469                  */
1470                 if ((m->aflags & PGA_REFERENCED) != 0) {
1471                         vm_page_aflag_clear(m, PGA_REFERENCED);
1472                         act_delta = 1;
1473                 } else
1474                         act_delta = 0;
1475                 if (object->ref_count != 0) {
1476                         act_delta += pmap_ts_referenced(m);
1477                 } else {
1478                         KASSERT(!pmap_page_is_mapped(m),
1479                             ("vm_pageout_scan: page %p is mapped", m));
1480                 }
1481                 if (act_delta != 0) {
1482                         if (object->ref_count != 0) {
1483                                 VM_CNT_INC(v_reactivated);
1484                                 vm_page_activate(m);
1485
1486                                 /*
1487                                  * Increase the activation count if the page
1488                                  * was referenced while in the inactive queue.
1489                                  * This makes it less likely that the page will
1490                                  * be returned prematurely to the inactive
1491                                  * queue.
1492                                  */
1493                                 m->act_count += act_delta + ACT_ADVANCE;
1494                                 goto drop_page;
1495                         } else if ((object->flags & OBJ_DEAD) == 0) {
1496                                 vm_pagequeue_lock(pq);
1497                                 queue_locked = TRUE;
1498                                 m->queue = PQ_INACTIVE;
1499                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
1500                                 vm_pagequeue_cnt_inc(pq);
1501                                 goto drop_page;
1502                         }
1503                 }
1504
1505                 /*
1506                  * If the page appears to be clean at the machine-independent
1507                  * layer, then remove all of its mappings from the pmap in
1508                  * anticipation of freeing it.  If, however, any of the page's
1509                  * mappings allow write access, then the page may still be
1510                  * modified until the last of those mappings are removed.
1511                  */
1512                 if (object->ref_count != 0) {
1513                         vm_page_test_dirty(m);
1514                         if (m->dirty == 0)
1515                                 pmap_remove_all(m);
1516                 }
1517
1518                 /*
1519                  * Clean pages can be freed, but dirty pages must be sent back
1520                  * to the laundry, unless they belong to a dead object.
1521                  * Requeueing dirty pages from dead objects is pointless, as
1522                  * they are being paged out and freed by the thread that
1523                  * destroyed the object.
1524                  */
1525                 if (m->dirty == 0) {
1526 free_page:
1527                         vm_page_free(m);
1528                         VM_CNT_INC(v_dfree);
1529                         --page_shortage;
1530                 } else if ((object->flags & OBJ_DEAD) == 0)
1531                         vm_page_launder(m);
1532 drop_page:
1533                 vm_page_unlock(m);
1534                 VM_OBJECT_WUNLOCK(object);
1535                 if (!queue_locked) {
1536                         vm_pagequeue_lock(pq);
1537                         queue_locked = TRUE;
1538                 }
1539                 next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1540                 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1541         }
1542         vm_pagequeue_unlock(pq);
1543
1544         /*
1545          * Wake up the laundry thread so that it can perform any needed
1546          * laundering.  If we didn't meet our target, we're in shortfall and
1547          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1548          * swap devices are configured, the laundry thread has no work to do, so
1549          * don't bother waking it up.
1550          */
1551         if (vm_laundry_request == VM_LAUNDRY_IDLE &&
1552             starting_page_shortage > 0) {
1553                 pq = &vm_dom[0].vmd_pagequeues[PQ_LAUNDRY];
1554                 vm_pagequeue_lock(pq);
1555                 if (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled)) {
1556                         if (page_shortage > 0) {
1557                                 vm_laundry_request = VM_LAUNDRY_SHORTFALL;
1558                                 VM_CNT_INC(v_pdshortfalls);
1559                         } else if (vm_laundry_request != VM_LAUNDRY_SHORTFALL)
1560                                 vm_laundry_request = VM_LAUNDRY_BACKGROUND;
1561                         wakeup(&vm_laundry_request);
1562                 }
1563                 vm_pagequeue_unlock(pq);
1564         }
1565
1566 #if !defined(NO_SWAPPING)
1567         /*
1568          * Wakeup the swapout daemon if we didn't free the targeted number of
1569          * pages.
1570          */
1571         if (vm_swap_enabled && page_shortage > 0)
1572                 vm_req_vmdaemon(VM_SWAP_NORMAL);
1573 #endif
1574
1575         /*
1576          * If the inactive queue scan fails repeatedly to meet its
1577          * target, kill the largest process.
1578          */
1579         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1580
1581         /*
1582          * Compute the number of pages we want to try to move from the
1583          * active queue to either the inactive or laundry queue.
1584          *
1585          * When scanning active pages, we make clean pages count more heavily
1586          * towards the page shortage than dirty pages.  This is because dirty
1587          * pages must be laundered before they can be reused and thus have less
1588          * utility when attempting to quickly alleviate a shortage.  However,
1589          * this weighting also causes the scan to deactivate dirty pages more
1590          * more aggressively, improving the effectiveness of clustering and
1591          * ensuring that they can eventually be reused.
1592          */
1593         inactq_shortage = vm_cnt.v_inactive_target - (vm_cnt.v_inactive_count +
1594             vm_cnt.v_laundry_count / act_scan_laundry_weight) +
1595             vm_paging_target() + deficit + addl_page_shortage;
1596         page_shortage *= act_scan_laundry_weight;
1597
1598         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1599         vm_pagequeue_lock(pq);
1600         maxscan = pq->pq_cnt;
1601
1602         /*
1603          * If we're just idle polling attempt to visit every
1604          * active page within 'update_period' seconds.
1605          */
1606         scan_tick = ticks;
1607         if (vm_pageout_update_period != 0) {
1608                 min_scan = pq->pq_cnt;
1609                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1610                 min_scan /= hz * vm_pageout_update_period;
1611         } else
1612                 min_scan = 0;
1613         if (min_scan > 0 || (inactq_shortage > 0 && maxscan > 0))
1614                 vmd->vmd_last_active_scan = scan_tick;
1615
1616         /*
1617          * Scan the active queue for pages that can be deactivated.  Update
1618          * the per-page activity counter and use it to identify deactivation
1619          * candidates.  Held pages may be deactivated.
1620          */
1621         for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned <
1622             min_scan || (inactq_shortage > 0 && scanned < maxscan)); m = next,
1623             scanned++) {
1624                 KASSERT(m->queue == PQ_ACTIVE,
1625                     ("vm_pageout_scan: page %p isn't active", m));
1626                 next = TAILQ_NEXT(m, plinks.q);
1627                 if ((m->flags & PG_MARKER) != 0)
1628                         continue;
1629                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1630                     ("Fictitious page %p cannot be in active queue", m));
1631                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1632                     ("Unmanaged page %p cannot be in active queue", m));
1633                 if (!vm_pageout_page_lock(m, &next)) {
1634                         vm_page_unlock(m);
1635                         continue;
1636                 }
1637
1638                 /*
1639                  * The count for page daemon pages is updated after checking
1640                  * the page for eligibility.
1641                  */
1642                 VM_CNT_INC(v_pdpages);
1643
1644                 /*
1645                  * Check to see "how much" the page has been used.
1646                  */
1647                 if ((m->aflags & PGA_REFERENCED) != 0) {
1648                         vm_page_aflag_clear(m, PGA_REFERENCED);
1649                         act_delta = 1;
1650                 } else
1651                         act_delta = 0;
1652
1653                 /*
1654                  * Perform an unsynchronized object ref count check.  While
1655                  * the page lock ensures that the page is not reallocated to
1656                  * another object, in particular, one with unmanaged mappings
1657                  * that cannot support pmap_ts_referenced(), two races are,
1658                  * nonetheless, possible:
1659                  * 1) The count was transitioning to zero, but we saw a non-
1660                  *    zero value.  pmap_ts_referenced() will return zero
1661                  *    because the page is not mapped.
1662                  * 2) The count was transitioning to one, but we saw zero. 
1663                  *    This race delays the detection of a new reference.  At
1664                  *    worst, we will deactivate and reactivate the page.
1665                  */
1666                 if (m->object->ref_count != 0)
1667                         act_delta += pmap_ts_referenced(m);
1668
1669                 /*
1670                  * Advance or decay the act_count based on recent usage.
1671                  */
1672                 if (act_delta != 0) {
1673                         m->act_count += ACT_ADVANCE + act_delta;
1674                         if (m->act_count > ACT_MAX)
1675                                 m->act_count = ACT_MAX;
1676                 } else
1677                         m->act_count -= min(m->act_count, ACT_DECLINE);
1678
1679                 /*
1680                  * Move this page to the tail of the active, inactive or laundry
1681                  * queue depending on usage.
1682                  */
1683                 if (m->act_count == 0) {
1684                         /* Dequeue to avoid later lock recursion. */
1685                         vm_page_dequeue_locked(m);
1686
1687                         /*
1688                          * When not short for inactive pages, let dirty pages go
1689                          * through the inactive queue before moving to the
1690                          * laundry queues.  This gives them some extra time to
1691                          * be reactivated, potentially avoiding an expensive
1692                          * pageout.  During a page shortage, the inactive queue
1693                          * is necessarily small, so we may move dirty pages
1694                          * directly to the laundry queue.
1695                          */
1696                         if (inactq_shortage <= 0)
1697                                 vm_page_deactivate(m);
1698                         else {
1699                                 /*
1700                                  * Calling vm_page_test_dirty() here would
1701                                  * require acquisition of the object's write
1702                                  * lock.  However, during a page shortage,
1703                                  * directing dirty pages into the laundry
1704                                  * queue is only an optimization and not a
1705                                  * requirement.  Therefore, we simply rely on
1706                                  * the opportunistic updates to the page's
1707                                  * dirty field by the pmap.
1708                                  */
1709                                 if (m->dirty == 0) {
1710                                         vm_page_deactivate(m);
1711                                         inactq_shortage -=
1712                                             act_scan_laundry_weight;
1713                                 } else {
1714                                         vm_page_launder(m);
1715                                         inactq_shortage--;
1716                                 }
1717                         }
1718                 } else
1719                         vm_page_requeue_locked(m);
1720                 vm_page_unlock(m);
1721         }
1722         vm_pagequeue_unlock(pq);
1723 #if !defined(NO_SWAPPING)
1724         /*
1725          * Idle process swapout -- run once per second when we are reclaiming
1726          * pages.
1727          */
1728         if (vm_swap_idle_enabled && pass > 0) {
1729                 static long lsec;
1730                 if (time_second != lsec) {
1731                         vm_req_vmdaemon(VM_SWAP_IDLE);
1732                         lsec = time_second;
1733                 }
1734         }
1735 #endif
1736         return (page_shortage <= 0);
1737 }
1738
1739 static int vm_pageout_oom_vote;
1740
1741 /*
1742  * The pagedaemon threads randlomly select one to perform the
1743  * OOM.  Trying to kill processes before all pagedaemons
1744  * failed to reach free target is premature.
1745  */
1746 static void
1747 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1748     int starting_page_shortage)
1749 {
1750         int old_vote;
1751
1752         if (starting_page_shortage <= 0 || starting_page_shortage !=
1753             page_shortage)
1754                 vmd->vmd_oom_seq = 0;
1755         else
1756                 vmd->vmd_oom_seq++;
1757         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1758                 if (vmd->vmd_oom) {
1759                         vmd->vmd_oom = FALSE;
1760                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1761                 }
1762                 return;
1763         }
1764
1765         /*
1766          * Do not follow the call sequence until OOM condition is
1767          * cleared.
1768          */
1769         vmd->vmd_oom_seq = 0;
1770
1771         if (vmd->vmd_oom)
1772                 return;
1773
1774         vmd->vmd_oom = TRUE;
1775         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1776         if (old_vote != vm_ndomains - 1)
1777                 return;
1778
1779         /*
1780          * The current pagedaemon thread is the last in the quorum to
1781          * start OOM.  Initiate the selection and signaling of the
1782          * victim.
1783          */
1784         vm_pageout_oom(VM_OOM_MEM);
1785
1786         /*
1787          * After one round of OOM terror, recall our vote.  On the
1788          * next pass, current pagedaemon would vote again if the low
1789          * memory condition is still there, due to vmd_oom being
1790          * false.
1791          */
1792         vmd->vmd_oom = FALSE;
1793         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1794 }
1795
1796 /*
1797  * The OOM killer is the page daemon's action of last resort when
1798  * memory allocation requests have been stalled for a prolonged period
1799  * of time because it cannot reclaim memory.  This function computes
1800  * the approximate number of physical pages that could be reclaimed if
1801  * the specified address space is destroyed.
1802  *
1803  * Private, anonymous memory owned by the address space is the
1804  * principal resource that we expect to recover after an OOM kill.
1805  * Since the physical pages mapped by the address space's COW entries
1806  * are typically shared pages, they are unlikely to be released and so
1807  * they are not counted.
1808  *
1809  * To get to the point where the page daemon runs the OOM killer, its
1810  * efforts to write-back vnode-backed pages may have stalled.  This
1811  * could be caused by a memory allocation deadlock in the write path
1812  * that might be resolved by an OOM kill.  Therefore, physical pages
1813  * belonging to vnode-backed objects are counted, because they might
1814  * be freed without being written out first if the address space holds
1815  * the last reference to an unlinked vnode.
1816  *
1817  * Similarly, physical pages belonging to OBJT_PHYS objects are
1818  * counted because the address space might hold the last reference to
1819  * the object.
1820  */
1821 static long
1822 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1823 {
1824         vm_map_t map;
1825         vm_map_entry_t entry;
1826         vm_object_t obj;
1827         long res;
1828
1829         map = &vmspace->vm_map;
1830         KASSERT(!map->system_map, ("system map"));
1831         sx_assert(&map->lock, SA_LOCKED);
1832         res = 0;
1833         for (entry = map->header.next; entry != &map->header;
1834             entry = entry->next) {
1835                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1836                         continue;
1837                 obj = entry->object.vm_object;
1838                 if (obj == NULL)
1839                         continue;
1840                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1841                     obj->ref_count != 1)
1842                         continue;
1843                 switch (obj->type) {
1844                 case OBJT_DEFAULT:
1845                 case OBJT_SWAP:
1846                 case OBJT_PHYS:
1847                 case OBJT_VNODE:
1848                         res += obj->resident_page_count;
1849                         break;
1850                 }
1851         }
1852         return (res);
1853 }
1854
1855 void
1856 vm_pageout_oom(int shortage)
1857 {
1858         struct proc *p, *bigproc;
1859         vm_offset_t size, bigsize;
1860         struct thread *td;
1861         struct vmspace *vm;
1862         bool breakout;
1863
1864         /*
1865          * We keep the process bigproc locked once we find it to keep anyone
1866          * from messing with it; however, there is a possibility of
1867          * deadlock if process B is bigproc and one of its child processes
1868          * attempts to propagate a signal to B while we are waiting for A's
1869          * lock while walking this list.  To avoid this, we don't block on
1870          * the process lock but just skip a process if it is already locked.
1871          */
1872         bigproc = NULL;
1873         bigsize = 0;
1874         sx_slock(&allproc_lock);
1875         FOREACH_PROC_IN_SYSTEM(p) {
1876                 PROC_LOCK(p);
1877
1878                 /*
1879                  * If this is a system, protected or killed process, skip it.
1880                  */
1881                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1882                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1883                     p->p_pid == 1 || P_KILLED(p) ||
1884                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1885                         PROC_UNLOCK(p);
1886                         continue;
1887                 }
1888                 /*
1889                  * If the process is in a non-running type state,
1890                  * don't touch it.  Check all the threads individually.
1891                  */
1892                 breakout = false;
1893                 FOREACH_THREAD_IN_PROC(p, td) {
1894                         thread_lock(td);
1895                         if (!TD_ON_RUNQ(td) &&
1896                             !TD_IS_RUNNING(td) &&
1897                             !TD_IS_SLEEPING(td) &&
1898                             !TD_IS_SUSPENDED(td) &&
1899                             !TD_IS_SWAPPED(td)) {
1900                                 thread_unlock(td);
1901                                 breakout = true;
1902                                 break;
1903                         }
1904                         thread_unlock(td);
1905                 }
1906                 if (breakout) {
1907                         PROC_UNLOCK(p);
1908                         continue;
1909                 }
1910                 /*
1911                  * get the process size
1912                  */
1913                 vm = vmspace_acquire_ref(p);
1914                 if (vm == NULL) {
1915                         PROC_UNLOCK(p);
1916                         continue;
1917                 }
1918                 _PHOLD_LITE(p);
1919                 PROC_UNLOCK(p);
1920                 sx_sunlock(&allproc_lock);
1921                 if (!vm_map_trylock_read(&vm->vm_map)) {
1922                         vmspace_free(vm);
1923                         sx_slock(&allproc_lock);
1924                         PRELE(p);
1925                         continue;
1926                 }
1927                 size = vmspace_swap_count(vm);
1928                 if (shortage == VM_OOM_MEM)
1929                         size += vm_pageout_oom_pagecount(vm);
1930                 vm_map_unlock_read(&vm->vm_map);
1931                 vmspace_free(vm);
1932                 sx_slock(&allproc_lock);
1933
1934                 /*
1935                  * If this process is bigger than the biggest one,
1936                  * remember it.
1937                  */
1938                 if (size > bigsize) {
1939                         if (bigproc != NULL)
1940                                 PRELE(bigproc);
1941                         bigproc = p;
1942                         bigsize = size;
1943                 } else {
1944                         PRELE(p);
1945                 }
1946         }
1947         sx_sunlock(&allproc_lock);
1948         if (bigproc != NULL) {
1949                 if (vm_panic_on_oom != 0)
1950                         panic("out of swap space");
1951                 PROC_LOCK(bigproc);
1952                 killproc(bigproc, "out of swap space");
1953                 sched_nice(bigproc, PRIO_MIN);
1954                 _PRELE(bigproc);
1955                 PROC_UNLOCK(bigproc);
1956                 wakeup(&vm_cnt.v_free_count);
1957         }
1958 }
1959
1960 static void
1961 vm_pageout_worker(void *arg)
1962 {
1963         struct vm_domain *domain;
1964         int domidx, pass;
1965         bool target_met;
1966
1967         domidx = (uintptr_t)arg;
1968         domain = &vm_dom[domidx];
1969         pass = 0;
1970         target_met = true;
1971
1972         /*
1973          * XXXKIB It could be useful to bind pageout daemon threads to
1974          * the cores belonging to the domain, from which vm_page_array
1975          * is allocated.
1976          */
1977
1978         KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1979         domain->vmd_last_active_scan = ticks;
1980         vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1981         vm_pageout_init_marker(&domain->vmd_inacthead, PQ_INACTIVE);
1982         TAILQ_INSERT_HEAD(&domain->vmd_pagequeues[PQ_INACTIVE].pq_pl,
1983             &domain->vmd_inacthead, plinks.q);
1984
1985         /*
1986          * The pageout daemon worker is never done, so loop forever.
1987          */
1988         while (TRUE) {
1989                 mtx_lock(&vm_page_queue_free_mtx);
1990
1991                 /*
1992                  * Generally, after a level >= 1 scan, if there are enough
1993                  * free pages to wakeup the waiters, then they are already
1994                  * awake.  A call to vm_page_free() during the scan awakened
1995                  * them.  However, in the following case, this wakeup serves
1996                  * to bound the amount of time that a thread might wait.
1997                  * Suppose a thread's call to vm_page_alloc() fails, but
1998                  * before that thread calls VM_WAIT, enough pages are freed by
1999                  * other threads to alleviate the free page shortage.  The
2000                  * thread will, nonetheless, wait until another page is freed
2001                  * or this wakeup is performed.
2002                  */
2003                 if (vm_pages_needed && !vm_page_count_min()) {
2004                         vm_pages_needed = false;
2005                         wakeup(&vm_cnt.v_free_count);
2006                 }
2007
2008                 /*
2009                  * Do not clear vm_pageout_wanted until we reach our free page
2010                  * target.  Otherwise, we may be awakened over and over again,
2011                  * wasting CPU time.
2012                  */
2013                 if (vm_pageout_wanted && target_met)
2014                         vm_pageout_wanted = false;
2015
2016                 /*
2017                  * Might the page daemon receive a wakeup call?
2018                  */
2019                 if (vm_pageout_wanted) {
2020                         /*
2021                          * No.  Either vm_pageout_wanted was set by another
2022                          * thread during the previous scan, which must have
2023                          * been a level 0 scan, or vm_pageout_wanted was
2024                          * already set and the scan failed to free enough
2025                          * pages.  If we haven't yet performed a level >= 1
2026                          * (page reclamation) scan, then increase the level
2027                          * and scan again now.  Otherwise, sleep a bit and
2028                          * try again later.
2029                          */
2030                         mtx_unlock(&vm_page_queue_free_mtx);
2031                         if (pass >= 1)
2032                                 pause("psleep", hz / VM_INACT_SCAN_RATE);
2033                         pass++;
2034                 } else {
2035                         /*
2036                          * Yes.  Sleep until pages need to be reclaimed or
2037                          * have their reference stats updated.
2038                          */
2039                         if (mtx_sleep(&vm_pageout_wanted,
2040                             &vm_page_queue_free_mtx, PDROP | PVM, "psleep",
2041                             hz) == 0) {
2042                                 VM_CNT_INC(v_pdwakeups);
2043                                 pass = 1;
2044                         } else
2045                                 pass = 0;
2046                 }
2047
2048                 target_met = vm_pageout_scan(domain, pass);
2049         }
2050 }
2051
2052 /*
2053  *      vm_pageout_init initialises basic pageout daemon settings.
2054  */
2055 static void
2056 vm_pageout_init(void)
2057 {
2058         /*
2059          * Initialize some paging parameters.
2060          */
2061         vm_cnt.v_interrupt_free_min = 2;
2062         if (vm_cnt.v_page_count < 2000)
2063                 vm_pageout_page_count = 8;
2064
2065         /*
2066          * v_free_reserved needs to include enough for the largest
2067          * swap pager structures plus enough for any pv_entry structs
2068          * when paging. 
2069          */
2070         if (vm_cnt.v_page_count > 1024)
2071                 vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200;
2072         else
2073                 vm_cnt.v_free_min = 4;
2074         vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
2075             vm_cnt.v_interrupt_free_min;
2076         vm_cnt.v_free_reserved = vm_pageout_page_count +
2077             vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768);
2078         vm_cnt.v_free_severe = vm_cnt.v_free_min / 2;
2079         vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved;
2080         vm_cnt.v_free_min += vm_cnt.v_free_reserved;
2081         vm_cnt.v_free_severe += vm_cnt.v_free_reserved;
2082         vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2;
2083         if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3)
2084                 vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3;
2085
2086         /*
2087          * Set the default wakeup threshold to be 10% above the minimum
2088          * page limit.  This keeps the steady state out of shortfall.
2089          */
2090         vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11;
2091
2092         /*
2093          * Set interval in seconds for active scan.  We want to visit each
2094          * page at least once every ten minutes.  This is to prevent worst
2095          * case paging behaviors with stale active LRU.
2096          */
2097         if (vm_pageout_update_period == 0)
2098                 vm_pageout_update_period = 600;
2099
2100         /* XXX does not really belong here */
2101         if (vm_page_max_wired == 0)
2102                 vm_page_max_wired = vm_cnt.v_free_count / 3;
2103
2104         /*
2105          * Target amount of memory to move out of the laundry queue during a
2106          * background laundering.  This is proportional to the amount of system
2107          * memory.
2108          */
2109         vm_background_launder_target = (vm_cnt.v_free_target -
2110             vm_cnt.v_free_min) / 10;
2111 }
2112
2113 /*
2114  *     vm_pageout is the high level pageout daemon.
2115  */
2116 static void
2117 vm_pageout(void)
2118 {
2119         int error;
2120 #ifdef VM_NUMA_ALLOC
2121         int i;
2122 #endif
2123
2124         swap_pager_swap_init();
2125         error = kthread_add(vm_pageout_laundry_worker, NULL, curproc, NULL,
2126             0, 0, "laundry: dom0");
2127         if (error != 0)
2128                 panic("starting laundry for domain 0, error %d", error);
2129 #ifdef VM_NUMA_ALLOC
2130         for (i = 1; i < vm_ndomains; i++) {
2131                 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
2132                     curproc, NULL, 0, 0, "dom%d", i);
2133                 if (error != 0) {
2134                         panic("starting pageout for domain %d, error %d\n",
2135                             i, error);
2136                 }
2137         }
2138 #endif
2139         error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
2140             0, 0, "uma");
2141         if (error != 0)
2142                 panic("starting uma_reclaim helper, error %d\n", error);
2143         vm_pageout_worker((void *)(uintptr_t)0);
2144 }
2145
2146 /*
2147  * Unless the free page queue lock is held by the caller, this function
2148  * should be regarded as advisory.  Specifically, the caller should
2149  * not msleep() on &vm_cnt.v_free_count following this function unless
2150  * the free page queue lock is held until the msleep() is performed.
2151  */
2152 void
2153 pagedaemon_wakeup(void)
2154 {
2155
2156         if (!vm_pageout_wanted && curthread->td_proc != pageproc) {
2157                 vm_pageout_wanted = true;
2158                 wakeup(&vm_pageout_wanted);
2159         }
2160 }
2161
2162 #if !defined(NO_SWAPPING)
2163 static void
2164 vm_req_vmdaemon(int req)
2165 {
2166         static int lastrun = 0;
2167
2168         mtx_lock(&vm_daemon_mtx);
2169         vm_pageout_req_swapout |= req;
2170         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
2171                 wakeup(&vm_daemon_needed);
2172                 lastrun = ticks;
2173         }
2174         mtx_unlock(&vm_daemon_mtx);
2175 }
2176
2177 static void
2178 vm_daemon(void)
2179 {
2180         struct rlimit rsslim;
2181         struct proc *p;
2182         struct thread *td;
2183         struct vmspace *vm;
2184         int breakout, swapout_flags, tryagain, attempts;
2185 #ifdef RACCT
2186         uint64_t rsize, ravailable;
2187 #endif
2188
2189         while (TRUE) {
2190                 mtx_lock(&vm_daemon_mtx);
2191                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
2192 #ifdef RACCT
2193                     racct_enable ? hz : 0
2194 #else
2195                     0
2196 #endif
2197                 );
2198                 swapout_flags = vm_pageout_req_swapout;
2199                 vm_pageout_req_swapout = 0;
2200                 mtx_unlock(&vm_daemon_mtx);
2201                 if (swapout_flags)
2202                         swapout_procs(swapout_flags);
2203
2204                 /*
2205                  * scan the processes for exceeding their rlimits or if
2206                  * process is swapped out -- deactivate pages
2207                  */
2208                 tryagain = 0;
2209                 attempts = 0;
2210 again:
2211                 attempts++;
2212                 sx_slock(&allproc_lock);
2213                 FOREACH_PROC_IN_SYSTEM(p) {
2214                         vm_pindex_t limit, size;
2215
2216                         /*
2217                          * if this is a system process or if we have already
2218                          * looked at this process, skip it.
2219                          */
2220                         PROC_LOCK(p);
2221                         if (p->p_state != PRS_NORMAL ||
2222                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
2223                                 PROC_UNLOCK(p);
2224                                 continue;
2225                         }
2226                         /*
2227                          * if the process is in a non-running type state,
2228                          * don't touch it.
2229                          */
2230                         breakout = 0;
2231                         FOREACH_THREAD_IN_PROC(p, td) {
2232                                 thread_lock(td);
2233                                 if (!TD_ON_RUNQ(td) &&
2234                                     !TD_IS_RUNNING(td) &&
2235                                     !TD_IS_SLEEPING(td) &&
2236                                     !TD_IS_SUSPENDED(td)) {
2237                                         thread_unlock(td);
2238                                         breakout = 1;
2239                                         break;
2240                                 }
2241                                 thread_unlock(td);
2242                         }
2243                         if (breakout) {
2244                                 PROC_UNLOCK(p);
2245                                 continue;
2246                         }
2247                         /*
2248                          * get a limit
2249                          */
2250                         lim_rlimit_proc(p, RLIMIT_RSS, &rsslim);
2251                         limit = OFF_TO_IDX(
2252                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
2253
2254                         /*
2255                          * let processes that are swapped out really be
2256                          * swapped out set the limit to nothing (will force a
2257                          * swap-out.)
2258                          */
2259                         if ((p->p_flag & P_INMEM) == 0)
2260                                 limit = 0;      /* XXX */
2261                         vm = vmspace_acquire_ref(p);
2262                         _PHOLD_LITE(p);
2263                         PROC_UNLOCK(p);
2264                         if (vm == NULL) {
2265                                 PRELE(p);
2266                                 continue;
2267                         }
2268                         sx_sunlock(&allproc_lock);
2269
2270                         size = vmspace_resident_count(vm);
2271                         if (size >= limit) {
2272                                 vm_pageout_map_deactivate_pages(
2273                                     &vm->vm_map, limit);
2274                                 size = vmspace_resident_count(vm);
2275                         }
2276 #ifdef RACCT
2277                         if (racct_enable) {
2278                                 rsize = IDX_TO_OFF(size);
2279                                 PROC_LOCK(p);
2280                                 if (p->p_state == PRS_NORMAL)
2281                                         racct_set(p, RACCT_RSS, rsize);
2282                                 ravailable = racct_get_available(p, RACCT_RSS);
2283                                 PROC_UNLOCK(p);
2284                                 if (rsize > ravailable) {
2285                                         /*
2286                                          * Don't be overly aggressive; this
2287                                          * might be an innocent process,
2288                                          * and the limit could've been exceeded
2289                                          * by some memory hog.  Don't try
2290                                          * to deactivate more than 1/4th
2291                                          * of process' resident set size.
2292                                          */
2293                                         if (attempts <= 8) {
2294                                                 if (ravailable < rsize -
2295                                                     (rsize / 4)) {
2296                                                         ravailable = rsize -
2297                                                             (rsize / 4);
2298                                                 }
2299                                         }
2300                                         vm_pageout_map_deactivate_pages(
2301                                             &vm->vm_map,
2302                                             OFF_TO_IDX(ravailable));
2303                                         /* Update RSS usage after paging out. */
2304                                         size = vmspace_resident_count(vm);
2305                                         rsize = IDX_TO_OFF(size);
2306                                         PROC_LOCK(p);
2307                                         if (p->p_state == PRS_NORMAL)
2308                                                 racct_set(p, RACCT_RSS, rsize);
2309                                         PROC_UNLOCK(p);
2310                                         if (rsize > ravailable)
2311                                                 tryagain = 1;
2312                                 }
2313                         }
2314 #endif
2315                         vmspace_free(vm);
2316                         sx_slock(&allproc_lock);
2317                         PRELE(p);
2318                 }
2319                 sx_sunlock(&allproc_lock);
2320                 if (tryagain != 0 && attempts <= 10)
2321                         goto again;
2322         }
2323 }
2324 #endif                  /* !defined(NO_SWAPPING) */