]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
stand: TARGET_ARCH is spelled MACHINE_ARCH in Makefiles
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72
73 /*
74  *      The proverbial page-out daemon.
75  */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/kthread.h>
90 #include <sys/ktr.h>
91 #include <sys/mount.h>
92 #include <sys/racct.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sdt.h>
96 #include <sys/signalvar.h>
97 #include <sys/smp.h>
98 #include <sys/time.h>
99 #include <sys/vnode.h>
100 #include <sys/vmmeter.h>
101 #include <sys/rwlock.h>
102 #include <sys/sx.h>
103 #include <sys/sysctl.h>
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_pagequeue.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117
118 /*
119  * System initialization
120  */
121
122 /* the kernel process "vm_pageout"*/
123 static void vm_pageout(void);
124 static void vm_pageout_init(void);
125 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
126 static int vm_pageout_cluster(vm_page_t m);
127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
128     int starting_page_shortage);
129
130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
131     NULL);
132
133 struct proc *pageproc;
134
135 static struct kproc_desc page_kp = {
136         "pagedaemon",
137         vm_pageout,
138         &pageproc
139 };
140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
141     &page_kp);
142
143 SDT_PROVIDER_DEFINE(vm);
144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
145
146 /* Pagedaemon activity rates, in subdivisions of one second. */
147 #define VM_LAUNDER_RATE         10
148 #define VM_INACT_SCAN_RATE      10
149
150 static int vm_pageout_oom_seq = 12;
151
152 static int vm_pageout_update_period;
153 static int disable_swap_pageouts;
154 static int lowmem_period = 10;
155 static int swapdev_enabled;
156
157 static int vm_panic_on_oom = 0;
158
159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
160         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
161         "panic on out of memory instead of killing the largest process");
162
163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
164         CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
165         "Maximum active LRU update period");
166   
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168         "Low memory callback period");
169
170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
171         CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
172
173 static int pageout_lock_miss;
174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
175         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
178         CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
179         "back-to-back calls to oom detector to start OOM");
180
181 static int act_scan_laundry_weight = 3;
182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
183     &act_scan_laundry_weight, 0,
184     "weight given to clean vs. dirty pages in active queue scans");
185
186 static u_int vm_background_launder_rate = 4096;
187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
188     &vm_background_launder_rate, 0,
189     "background laundering rate, in kilobytes per second");
190
191 static u_int vm_background_launder_max = 20 * 1024;
192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
193     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
194
195 int vm_pageout_page_count = 32;
196
197 u_long vm_page_max_user_wired;
198 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
199     &vm_page_max_user_wired, 0,
200     "system-wide limit to user-wired page count");
201
202 static u_int isqrt(u_int num);
203 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
204     bool in_shortfall);
205 static void vm_pageout_laundry_worker(void *arg);
206
207 struct scan_state {
208         struct vm_batchqueue bq;
209         struct vm_pagequeue *pq;
210         vm_page_t       marker;
211         int             maxscan;
212         int             scanned;
213 };
214
215 static void
216 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
217     vm_page_t marker, vm_page_t after, int maxscan)
218 {
219
220         vm_pagequeue_assert_locked(pq);
221         KASSERT((marker->aflags & PGA_ENQUEUED) == 0,
222             ("marker %p already enqueued", marker));
223
224         if (after == NULL)
225                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
226         else
227                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
228         vm_page_aflag_set(marker, PGA_ENQUEUED);
229
230         vm_batchqueue_init(&ss->bq);
231         ss->pq = pq;
232         ss->marker = marker;
233         ss->maxscan = maxscan;
234         ss->scanned = 0;
235         vm_pagequeue_unlock(pq);
236 }
237
238 static void
239 vm_pageout_end_scan(struct scan_state *ss)
240 {
241         struct vm_pagequeue *pq;
242
243         pq = ss->pq;
244         vm_pagequeue_assert_locked(pq);
245         KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0,
246             ("marker %p not enqueued", ss->marker));
247
248         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
249         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
250         pq->pq_pdpages += ss->scanned;
251 }
252
253 /*
254  * Add a small number of queued pages to a batch queue for later processing
255  * without the corresponding queue lock held.  The caller must have enqueued a
256  * marker page at the desired start point for the scan.  Pages will be
257  * physically dequeued if the caller so requests.  Otherwise, the returned
258  * batch may contain marker pages, and it is up to the caller to handle them.
259  *
260  * When processing the batch queue, vm_page_queue() must be used to
261  * determine whether the page has been logically dequeued by another thread.
262  * Once this check is performed, the page lock guarantees that the page will
263  * not be disassociated from the queue.
264  */
265 static __always_inline void
266 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
267 {
268         struct vm_pagequeue *pq;
269         vm_page_t m, marker;
270
271         marker = ss->marker;
272         pq = ss->pq;
273
274         KASSERT((marker->aflags & PGA_ENQUEUED) != 0,
275             ("marker %p not enqueued", ss->marker));
276
277         vm_pagequeue_lock(pq);
278         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
279             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
280             m = TAILQ_NEXT(m, plinks.q), ss->scanned++) {
281                 if ((m->flags & PG_MARKER) == 0) {
282                         KASSERT((m->aflags & PGA_ENQUEUED) != 0,
283                             ("page %p not enqueued", m));
284                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
285                             ("Fictitious page %p cannot be in page queue", m));
286                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
287                             ("Unmanaged page %p cannot be in page queue", m));
288                 } else if (dequeue)
289                         continue;
290
291                 (void)vm_batchqueue_insert(&ss->bq, m);
292                 if (dequeue) {
293                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
294                         vm_page_aflag_clear(m, PGA_ENQUEUED);
295                 }
296         }
297         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
298         if (__predict_true(m != NULL))
299                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
300         else
301                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
302         if (dequeue)
303                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
304         vm_pagequeue_unlock(pq);
305 }
306
307 /* Return the next page to be scanned, or NULL if the scan is complete. */
308 static __always_inline vm_page_t
309 vm_pageout_next(struct scan_state *ss, const bool dequeue)
310 {
311
312         if (ss->bq.bq_cnt == 0)
313                 vm_pageout_collect_batch(ss, dequeue);
314         return (vm_batchqueue_pop(&ss->bq));
315 }
316
317 /*
318  * Scan for pages at adjacent offsets within the given page's object that are
319  * eligible for laundering, form a cluster of these pages and the given page,
320  * and launder that cluster.
321  */
322 static int
323 vm_pageout_cluster(vm_page_t m)
324 {
325         vm_object_t object;
326         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
327         vm_pindex_t pindex;
328         int ib, is, page_base, pageout_count;
329
330         vm_page_assert_locked(m);
331         object = m->object;
332         VM_OBJECT_ASSERT_WLOCKED(object);
333         pindex = m->pindex;
334
335         vm_page_assert_unbusied(m);
336         KASSERT(!vm_page_held(m), ("page %p is held", m));
337
338         pmap_remove_write(m);
339         vm_page_unlock(m);
340
341         mc[vm_pageout_page_count] = pb = ps = m;
342         pageout_count = 1;
343         page_base = vm_pageout_page_count;
344         ib = 1;
345         is = 1;
346
347         /*
348          * We can cluster only if the page is not clean, busy, or held, and
349          * the page is in the laundry queue.
350          *
351          * During heavy mmap/modification loads the pageout
352          * daemon can really fragment the underlying file
353          * due to flushing pages out of order and not trying to
354          * align the clusters (which leaves sporadic out-of-order
355          * holes).  To solve this problem we do the reverse scan
356          * first and attempt to align our cluster, then do a 
357          * forward scan if room remains.
358          */
359 more:
360         while (ib != 0 && pageout_count < vm_pageout_page_count) {
361                 if (ib > pindex) {
362                         ib = 0;
363                         break;
364                 }
365                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
366                         ib = 0;
367                         break;
368                 }
369                 vm_page_test_dirty(p);
370                 if (p->dirty == 0) {
371                         ib = 0;
372                         break;
373                 }
374                 vm_page_lock(p);
375                 if (vm_page_held(p) || !vm_page_in_laundry(p)) {
376                         vm_page_unlock(p);
377                         ib = 0;
378                         break;
379                 }
380                 pmap_remove_write(p);
381                 vm_page_unlock(p);
382                 mc[--page_base] = pb = p;
383                 ++pageout_count;
384                 ++ib;
385
386                 /*
387                  * We are at an alignment boundary.  Stop here, and switch
388                  * directions.  Do not clear ib.
389                  */
390                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
391                         break;
392         }
393         while (pageout_count < vm_pageout_page_count && 
394             pindex + is < object->size) {
395                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
396                         break;
397                 vm_page_test_dirty(p);
398                 if (p->dirty == 0)
399                         break;
400                 vm_page_lock(p);
401                 if (vm_page_held(p) || !vm_page_in_laundry(p)) {
402                         vm_page_unlock(p);
403                         break;
404                 }
405                 pmap_remove_write(p);
406                 vm_page_unlock(p);
407                 mc[page_base + pageout_count] = ps = p;
408                 ++pageout_count;
409                 ++is;
410         }
411
412         /*
413          * If we exhausted our forward scan, continue with the reverse scan
414          * when possible, even past an alignment boundary.  This catches
415          * boundary conditions.
416          */
417         if (ib != 0 && pageout_count < vm_pageout_page_count)
418                 goto more;
419
420         return (vm_pageout_flush(&mc[page_base], pageout_count,
421             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
422 }
423
424 /*
425  * vm_pageout_flush() - launder the given pages
426  *
427  *      The given pages are laundered.  Note that we setup for the start of
428  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
429  *      reference count all in here rather then in the parent.  If we want
430  *      the parent to do more sophisticated things we may have to change
431  *      the ordering.
432  *
433  *      Returned runlen is the count of pages between mreq and first
434  *      page after mreq with status VM_PAGER_AGAIN.
435  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
436  *      for any page in runlen set.
437  */
438 int
439 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
440     boolean_t *eio)
441 {
442         vm_object_t object = mc[0]->object;
443         int pageout_status[count];
444         int numpagedout = 0;
445         int i, runlen;
446
447         VM_OBJECT_ASSERT_WLOCKED(object);
448
449         /*
450          * Initiate I/O.  Mark the pages busy and verify that they're valid
451          * and read-only.
452          *
453          * We do not have to fixup the clean/dirty bits here... we can
454          * allow the pager to do it after the I/O completes.
455          *
456          * NOTE! mc[i]->dirty may be partial or fragmented due to an
457          * edge case with file fragments.
458          */
459         for (i = 0; i < count; i++) {
460                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
461                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
462                         mc[i], i, count));
463                 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0,
464                     ("vm_pageout_flush: writeable page %p", mc[i]));
465                 vm_page_sbusy(mc[i]);
466         }
467         vm_object_pip_add(object, count);
468
469         vm_pager_put_pages(object, mc, count, flags, pageout_status);
470
471         runlen = count - mreq;
472         if (eio != NULL)
473                 *eio = FALSE;
474         for (i = 0; i < count; i++) {
475                 vm_page_t mt = mc[i];
476
477                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
478                     !pmap_page_is_write_mapped(mt),
479                     ("vm_pageout_flush: page %p is not write protected", mt));
480                 switch (pageout_status[i]) {
481                 case VM_PAGER_OK:
482                         vm_page_lock(mt);
483                         if (vm_page_in_laundry(mt))
484                                 vm_page_deactivate_noreuse(mt);
485                         vm_page_unlock(mt);
486                         /* FALLTHROUGH */
487                 case VM_PAGER_PEND:
488                         numpagedout++;
489                         break;
490                 case VM_PAGER_BAD:
491                         /*
492                          * The page is outside the object's range.  We pretend
493                          * that the page out worked and clean the page, so the
494                          * changes will be lost if the page is reclaimed by
495                          * the page daemon.
496                          */
497                         vm_page_undirty(mt);
498                         vm_page_lock(mt);
499                         if (vm_page_in_laundry(mt))
500                                 vm_page_deactivate_noreuse(mt);
501                         vm_page_unlock(mt);
502                         break;
503                 case VM_PAGER_ERROR:
504                 case VM_PAGER_FAIL:
505                         /*
506                          * If the page couldn't be paged out to swap because the
507                          * pager wasn't able to find space, place the page in
508                          * the PQ_UNSWAPPABLE holding queue.  This is an
509                          * optimization that prevents the page daemon from
510                          * wasting CPU cycles on pages that cannot be reclaimed
511                          * becase no swap device is configured.
512                          *
513                          * Otherwise, reactivate the page so that it doesn't
514                          * clog the laundry and inactive queues.  (We will try
515                          * paging it out again later.)
516                          */
517                         vm_page_lock(mt);
518                         if (object->type == OBJT_SWAP &&
519                             pageout_status[i] == VM_PAGER_FAIL) {
520                                 vm_page_unswappable(mt);
521                                 numpagedout++;
522                         } else
523                                 vm_page_activate(mt);
524                         vm_page_unlock(mt);
525                         if (eio != NULL && i >= mreq && i - mreq < runlen)
526                                 *eio = TRUE;
527                         break;
528                 case VM_PAGER_AGAIN:
529                         if (i >= mreq && i - mreq < runlen)
530                                 runlen = i - mreq;
531                         break;
532                 }
533
534                 /*
535                  * If the operation is still going, leave the page busy to
536                  * block all other accesses. Also, leave the paging in
537                  * progress indicator set so that we don't attempt an object
538                  * collapse.
539                  */
540                 if (pageout_status[i] != VM_PAGER_PEND) {
541                         vm_object_pip_wakeup(object);
542                         vm_page_sunbusy(mt);
543                 }
544         }
545         if (prunlen != NULL)
546                 *prunlen = runlen;
547         return (numpagedout);
548 }
549
550 static void
551 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
552 {
553
554         atomic_store_rel_int(&swapdev_enabled, 1);
555 }
556
557 static void
558 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
559 {
560
561         if (swap_pager_nswapdev() == 1)
562                 atomic_store_rel_int(&swapdev_enabled, 0);
563 }
564
565 /*
566  * Attempt to acquire all of the necessary locks to launder a page and
567  * then call through the clustering layer to PUTPAGES.  Wait a short
568  * time for a vnode lock.
569  *
570  * Requires the page and object lock on entry, releases both before return.
571  * Returns 0 on success and an errno otherwise.
572  */
573 static int
574 vm_pageout_clean(vm_page_t m, int *numpagedout)
575 {
576         struct vnode *vp;
577         struct mount *mp;
578         vm_object_t object;
579         vm_pindex_t pindex;
580         int error, lockmode;
581
582         vm_page_assert_locked(m);
583         object = m->object;
584         VM_OBJECT_ASSERT_WLOCKED(object);
585         error = 0;
586         vp = NULL;
587         mp = NULL;
588
589         /*
590          * The object is already known NOT to be dead.   It
591          * is possible for the vget() to block the whole
592          * pageout daemon, but the new low-memory handling
593          * code should prevent it.
594          *
595          * We can't wait forever for the vnode lock, we might
596          * deadlock due to a vn_read() getting stuck in
597          * vm_wait while holding this vnode.  We skip the 
598          * vnode if we can't get it in a reasonable amount
599          * of time.
600          */
601         if (object->type == OBJT_VNODE) {
602                 vm_page_unlock(m);
603                 vp = object->handle;
604                 if (vp->v_type == VREG &&
605                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
606                         mp = NULL;
607                         error = EDEADLK;
608                         goto unlock_all;
609                 }
610                 KASSERT(mp != NULL,
611                     ("vp %p with NULL v_mount", vp));
612                 vm_object_reference_locked(object);
613                 pindex = m->pindex;
614                 VM_OBJECT_WUNLOCK(object);
615                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
616                     LK_SHARED : LK_EXCLUSIVE;
617                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
618                         vp = NULL;
619                         error = EDEADLK;
620                         goto unlock_mp;
621                 }
622                 VM_OBJECT_WLOCK(object);
623
624                 /*
625                  * Ensure that the object and vnode were not disassociated
626                  * while locks were dropped.
627                  */
628                 if (vp->v_object != object) {
629                         error = ENOENT;
630                         goto unlock_all;
631                 }
632                 vm_page_lock(m);
633
634                 /*
635                  * While the object and page were unlocked, the page
636                  * may have been:
637                  * (1) moved to a different queue,
638                  * (2) reallocated to a different object,
639                  * (3) reallocated to a different offset, or
640                  * (4) cleaned.
641                  */
642                 if (!vm_page_in_laundry(m) || m->object != object ||
643                     m->pindex != pindex || m->dirty == 0) {
644                         vm_page_unlock(m);
645                         error = ENXIO;
646                         goto unlock_all;
647                 }
648
649                 /*
650                  * The page may have been busied or referenced while the object
651                  * and page locks were released.
652                  */
653                 if (vm_page_busied(m) || vm_page_held(m)) {
654                         vm_page_unlock(m);
655                         error = EBUSY;
656                         goto unlock_all;
657                 }
658         }
659
660         /*
661          * If a page is dirty, then it is either being washed
662          * (but not yet cleaned) or it is still in the
663          * laundry.  If it is still in the laundry, then we
664          * start the cleaning operation. 
665          */
666         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
667                 error = EIO;
668
669 unlock_all:
670         VM_OBJECT_WUNLOCK(object);
671
672 unlock_mp:
673         vm_page_lock_assert(m, MA_NOTOWNED);
674         if (mp != NULL) {
675                 if (vp != NULL)
676                         vput(vp);
677                 vm_object_deallocate(object);
678                 vn_finished_write(mp);
679         }
680
681         return (error);
682 }
683
684 /*
685  * Attempt to launder the specified number of pages.
686  *
687  * Returns the number of pages successfully laundered.
688  */
689 static int
690 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
691 {
692         struct scan_state ss;
693         struct vm_pagequeue *pq;
694         struct mtx *mtx;
695         vm_object_t object;
696         vm_page_t m, marker;
697         int act_delta, error, numpagedout, queue, starting_target;
698         int vnodes_skipped;
699         bool pageout_ok;
700
701         mtx = NULL;
702         object = NULL;
703         starting_target = launder;
704         vnodes_skipped = 0;
705
706         /*
707          * Scan the laundry queues for pages eligible to be laundered.  We stop
708          * once the target number of dirty pages have been laundered, or once
709          * we've reached the end of the queue.  A single iteration of this loop
710          * may cause more than one page to be laundered because of clustering.
711          *
712          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
713          * swap devices are configured.
714          */
715         if (atomic_load_acq_int(&swapdev_enabled))
716                 queue = PQ_UNSWAPPABLE;
717         else
718                 queue = PQ_LAUNDRY;
719
720 scan:
721         marker = &vmd->vmd_markers[queue];
722         pq = &vmd->vmd_pagequeues[queue];
723         vm_pagequeue_lock(pq);
724         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
725         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
726                 if (__predict_false((m->flags & PG_MARKER) != 0))
727                         continue;
728
729                 vm_page_change_lock(m, &mtx);
730
731 recheck:
732                 /*
733                  * The page may have been disassociated from the queue
734                  * while locks were dropped.
735                  */
736                 if (vm_page_queue(m) != queue)
737                         continue;
738
739                 /*
740                  * A requeue was requested, so this page gets a second
741                  * chance.
742                  */
743                 if ((m->aflags & PGA_REQUEUE) != 0) {
744                         vm_page_requeue(m);
745                         continue;
746                 }
747
748                 /*
749                  * Held pages are essentially stuck in the queue.
750                  *
751                  * Wired pages may not be freed.  Complete their removal
752                  * from the queue now to avoid needless revisits during
753                  * future scans.
754                  */
755                 if (m->hold_count != 0)
756                         continue;
757                 if (m->wire_count != 0) {
758                         vm_page_dequeue_deferred(m);
759                         continue;
760                 }
761
762                 if (object != m->object) {
763                         if (object != NULL)
764                                 VM_OBJECT_WUNLOCK(object);
765                         object = m->object;
766                         if (!VM_OBJECT_TRYWLOCK(object)) {
767                                 mtx_unlock(mtx);
768                                 /* Depends on type-stability. */
769                                 VM_OBJECT_WLOCK(object);
770                                 mtx_lock(mtx);
771                                 goto recheck;
772                         }
773                 }
774
775                 if (vm_page_busied(m))
776                         continue;
777
778                 /*
779                  * Invalid pages can be easily freed.  They cannot be
780                  * mapped; vm_page_free() asserts this.
781                  */
782                 if (m->valid == 0)
783                         goto free_page;
784
785                 /*
786                  * If the page has been referenced and the object is not dead,
787                  * reactivate or requeue the page depending on whether the
788                  * object is mapped.
789                  *
790                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
791                  * that a reference from a concurrently destroyed mapping is
792                  * observed here and now.
793                  */
794                 if (object->ref_count != 0)
795                         act_delta = pmap_ts_referenced(m);
796                 else {
797                         KASSERT(!pmap_page_is_mapped(m),
798                             ("page %p is mapped", m));
799                         act_delta = 0;
800                 }
801                 if ((m->aflags & PGA_REFERENCED) != 0) {
802                         vm_page_aflag_clear(m, PGA_REFERENCED);
803                         act_delta++;
804                 }
805                 if (act_delta != 0) {
806                         if (object->ref_count != 0) {
807                                 VM_CNT_INC(v_reactivated);
808                                 vm_page_activate(m);
809
810                                 /*
811                                  * Increase the activation count if the page
812                                  * was referenced while in the laundry queue.
813                                  * This makes it less likely that the page will
814                                  * be returned prematurely to the inactive
815                                  * queue.
816                                  */
817                                 m->act_count += act_delta + ACT_ADVANCE;
818
819                                 /*
820                                  * If this was a background laundering, count
821                                  * activated pages towards our target.  The
822                                  * purpose of background laundering is to ensure
823                                  * that pages are eventually cycled through the
824                                  * laundry queue, and an activation is a valid
825                                  * way out.
826                                  */
827                                 if (!in_shortfall)
828                                         launder--;
829                                 continue;
830                         } else if ((object->flags & OBJ_DEAD) == 0) {
831                                 vm_page_requeue(m);
832                                 continue;
833                         }
834                 }
835
836                 /*
837                  * If the page appears to be clean at the machine-independent
838                  * layer, then remove all of its mappings from the pmap in
839                  * anticipation of freeing it.  If, however, any of the page's
840                  * mappings allow write access, then the page may still be
841                  * modified until the last of those mappings are removed.
842                  */
843                 if (object->ref_count != 0) {
844                         vm_page_test_dirty(m);
845                         if (m->dirty == 0)
846                                 pmap_remove_all(m);
847                 }
848
849                 /*
850                  * Clean pages are freed, and dirty pages are paged out unless
851                  * they belong to a dead object.  Requeueing dirty pages from
852                  * dead objects is pointless, as they are being paged out and
853                  * freed by the thread that destroyed the object.
854                  */
855                 if (m->dirty == 0) {
856 free_page:
857                         vm_page_free(m);
858                         VM_CNT_INC(v_dfree);
859                 } else if ((object->flags & OBJ_DEAD) == 0) {
860                         if (object->type != OBJT_SWAP &&
861                             object->type != OBJT_DEFAULT)
862                                 pageout_ok = true;
863                         else if (disable_swap_pageouts)
864                                 pageout_ok = false;
865                         else
866                                 pageout_ok = true;
867                         if (!pageout_ok) {
868                                 vm_page_requeue(m);
869                                 continue;
870                         }
871
872                         /*
873                          * Form a cluster with adjacent, dirty pages from the
874                          * same object, and page out that entire cluster.
875                          *
876                          * The adjacent, dirty pages must also be in the
877                          * laundry.  However, their mappings are not checked
878                          * for new references.  Consequently, a recently
879                          * referenced page may be paged out.  However, that
880                          * page will not be prematurely reclaimed.  After page
881                          * out, the page will be placed in the inactive queue,
882                          * where any new references will be detected and the
883                          * page reactivated.
884                          */
885                         error = vm_pageout_clean(m, &numpagedout);
886                         if (error == 0) {
887                                 launder -= numpagedout;
888                                 ss.scanned += numpagedout;
889                         } else if (error == EDEADLK) {
890                                 pageout_lock_miss++;
891                                 vnodes_skipped++;
892                         }
893                         mtx = NULL;
894                         object = NULL;
895                 }
896         }
897         if (mtx != NULL) {
898                 mtx_unlock(mtx);
899                 mtx = NULL;
900         }
901         if (object != NULL) {
902                 VM_OBJECT_WUNLOCK(object);
903                 object = NULL;
904         }
905         vm_pagequeue_lock(pq);
906         vm_pageout_end_scan(&ss);
907         vm_pagequeue_unlock(pq);
908
909         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
910                 queue = PQ_LAUNDRY;
911                 goto scan;
912         }
913
914         /*
915          * Wakeup the sync daemon if we skipped a vnode in a writeable object
916          * and we didn't launder enough pages.
917          */
918         if (vnodes_skipped > 0 && launder > 0)
919                 (void)speedup_syncer();
920
921         return (starting_target - launder);
922 }
923
924 /*
925  * Compute the integer square root.
926  */
927 static u_int
928 isqrt(u_int num)
929 {
930         u_int bit, root, tmp;
931
932         bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
933         root = 0;
934         while (bit != 0) {
935                 tmp = root + bit;
936                 root >>= 1;
937                 if (num >= tmp) {
938                         num -= tmp;
939                         root += bit;
940                 }
941                 bit >>= 2;
942         }
943         return (root);
944 }
945
946 /*
947  * Perform the work of the laundry thread: periodically wake up and determine
948  * whether any pages need to be laundered.  If so, determine the number of pages
949  * that need to be laundered, and launder them.
950  */
951 static void
952 vm_pageout_laundry_worker(void *arg)
953 {
954         struct vm_domain *vmd;
955         struct vm_pagequeue *pq;
956         uint64_t nclean, ndirty, nfreed;
957         int domain, last_target, launder, shortfall, shortfall_cycle, target;
958         bool in_shortfall;
959
960         domain = (uintptr_t)arg;
961         vmd = VM_DOMAIN(domain);
962         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
963         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
964
965         shortfall = 0;
966         in_shortfall = false;
967         shortfall_cycle = 0;
968         last_target = target = 0;
969         nfreed = 0;
970
971         /*
972          * Calls to these handlers are serialized by the swap syscall lock.
973          */
974         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
975             EVENTHANDLER_PRI_ANY);
976         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
977             EVENTHANDLER_PRI_ANY);
978
979         /*
980          * The pageout laundry worker is never done, so loop forever.
981          */
982         for (;;) {
983                 KASSERT(target >= 0, ("negative target %d", target));
984                 KASSERT(shortfall_cycle >= 0,
985                     ("negative cycle %d", shortfall_cycle));
986                 launder = 0;
987
988                 /*
989                  * First determine whether we need to launder pages to meet a
990                  * shortage of free pages.
991                  */
992                 if (shortfall > 0) {
993                         in_shortfall = true;
994                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
995                         target = shortfall;
996                 } else if (!in_shortfall)
997                         goto trybackground;
998                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
999                         /*
1000                          * We recently entered shortfall and began laundering
1001                          * pages.  If we have completed that laundering run
1002                          * (and we are no longer in shortfall) or we have met
1003                          * our laundry target through other activity, then we
1004                          * can stop laundering pages.
1005                          */
1006                         in_shortfall = false;
1007                         target = 0;
1008                         goto trybackground;
1009                 }
1010                 launder = target / shortfall_cycle--;
1011                 goto dolaundry;
1012
1013                 /*
1014                  * There's no immediate need to launder any pages; see if we
1015                  * meet the conditions to perform background laundering:
1016                  *
1017                  * 1. The ratio of dirty to clean inactive pages exceeds the
1018                  *    background laundering threshold, or
1019                  * 2. we haven't yet reached the target of the current
1020                  *    background laundering run.
1021                  *
1022                  * The background laundering threshold is not a constant.
1023                  * Instead, it is a slowly growing function of the number of
1024                  * clean pages freed by the page daemon since the last
1025                  * background laundering.  Thus, as the ratio of dirty to
1026                  * clean inactive pages grows, the amount of memory pressure
1027                  * required to trigger laundering decreases.  We ensure
1028                  * that the threshold is non-zero after an inactive queue
1029                  * scan, even if that scan failed to free a single clean page.
1030                  */
1031 trybackground:
1032                 nclean = vmd->vmd_free_count +
1033                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1034                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1035                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1036                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1037                         target = vmd->vmd_background_launder_target;
1038                 }
1039
1040                 /*
1041                  * We have a non-zero background laundering target.  If we've
1042                  * laundered up to our maximum without observing a page daemon
1043                  * request, just stop.  This is a safety belt that ensures we
1044                  * don't launder an excessive amount if memory pressure is low
1045                  * and the ratio of dirty to clean pages is large.  Otherwise,
1046                  * proceed at the background laundering rate.
1047                  */
1048                 if (target > 0) {
1049                         if (nfreed > 0) {
1050                                 nfreed = 0;
1051                                 last_target = target;
1052                         } else if (last_target - target >=
1053                             vm_background_launder_max * PAGE_SIZE / 1024) {
1054                                 target = 0;
1055                         }
1056                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1057                         launder /= VM_LAUNDER_RATE;
1058                         if (launder > target)
1059                                 launder = target;
1060                 }
1061
1062 dolaundry:
1063                 if (launder > 0) {
1064                         /*
1065                          * Because of I/O clustering, the number of laundered
1066                          * pages could exceed "target" by the maximum size of
1067                          * a cluster minus one. 
1068                          */
1069                         target -= min(vm_pageout_launder(vmd, launder,
1070                             in_shortfall), target);
1071                         pause("laundp", hz / VM_LAUNDER_RATE);
1072                 }
1073
1074                 /*
1075                  * If we're not currently laundering pages and the page daemon
1076                  * hasn't posted a new request, sleep until the page daemon
1077                  * kicks us.
1078                  */
1079                 vm_pagequeue_lock(pq);
1080                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1081                         (void)mtx_sleep(&vmd->vmd_laundry_request,
1082                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1083
1084                 /*
1085                  * If the pagedaemon has indicated that it's in shortfall, start
1086                  * a shortfall laundering unless we're already in the middle of
1087                  * one.  This may preempt a background laundering.
1088                  */
1089                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1090                     (!in_shortfall || shortfall_cycle == 0)) {
1091                         shortfall = vm_laundry_target(vmd) +
1092                             vmd->vmd_pageout_deficit;
1093                         target = 0;
1094                 } else
1095                         shortfall = 0;
1096
1097                 if (target == 0)
1098                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1099                 nfreed += vmd->vmd_clean_pages_freed;
1100                 vmd->vmd_clean_pages_freed = 0;
1101                 vm_pagequeue_unlock(pq);
1102         }
1103 }
1104
1105 /*
1106  * Compute the number of pages we want to try to move from the
1107  * active queue to either the inactive or laundry queue.
1108  *
1109  * When scanning active pages during a shortage, we make clean pages
1110  * count more heavily towards the page shortage than dirty pages.
1111  * This is because dirty pages must be laundered before they can be
1112  * reused and thus have less utility when attempting to quickly
1113  * alleviate a free page shortage.  However, this weighting also
1114  * causes the scan to deactivate dirty pages more aggressively,
1115  * improving the effectiveness of clustering.
1116  */
1117 static int
1118 vm_pageout_active_target(struct vm_domain *vmd)
1119 {
1120         int shortage;
1121
1122         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1123             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1124             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1125         shortage *= act_scan_laundry_weight;
1126         return (shortage);
1127 }
1128
1129 /*
1130  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1131  * small portion of the queue in order to maintain quasi-LRU.
1132  */
1133 static void
1134 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1135 {
1136         struct scan_state ss;
1137         struct mtx *mtx;
1138         vm_page_t m, marker;
1139         struct vm_pagequeue *pq;
1140         long min_scan;
1141         int act_delta, max_scan, scan_tick;
1142
1143         marker = &vmd->vmd_markers[PQ_ACTIVE];
1144         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1145         vm_pagequeue_lock(pq);
1146
1147         /*
1148          * If we're just idle polling attempt to visit every
1149          * active page within 'update_period' seconds.
1150          */
1151         scan_tick = ticks;
1152         if (vm_pageout_update_period != 0) {
1153                 min_scan = pq->pq_cnt;
1154                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1155                 min_scan /= hz * vm_pageout_update_period;
1156         } else
1157                 min_scan = 0;
1158         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1159                 vmd->vmd_last_active_scan = scan_tick;
1160
1161         /*
1162          * Scan the active queue for pages that can be deactivated.  Update
1163          * the per-page activity counter and use it to identify deactivation
1164          * candidates.  Held pages may be deactivated.
1165          *
1166          * To avoid requeuing each page that remains in the active queue, we
1167          * implement the CLOCK algorithm.  To keep the implementation of the
1168          * enqueue operation consistent for all page queues, we use two hands,
1169          * represented by marker pages. Scans begin at the first hand, which
1170          * precedes the second hand in the queue.  When the two hands meet,
1171          * they are moved back to the head and tail of the queue, respectively,
1172          * and scanning resumes.
1173          */
1174         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1175         mtx = NULL;
1176 act_scan:
1177         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1178         while ((m = vm_pageout_next(&ss, false)) != NULL) {
1179                 if (__predict_false(m == &vmd->vmd_clock[1])) {
1180                         vm_pagequeue_lock(pq);
1181                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1182                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1183                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1184                             plinks.q);
1185                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1186                             plinks.q);
1187                         max_scan -= ss.scanned;
1188                         vm_pageout_end_scan(&ss);
1189                         goto act_scan;
1190                 }
1191                 if (__predict_false((m->flags & PG_MARKER) != 0))
1192                         continue;
1193
1194                 vm_page_change_lock(m, &mtx);
1195
1196                 /*
1197                  * The page may have been disassociated from the queue
1198                  * while locks were dropped.
1199                  */
1200                 if (vm_page_queue(m) != PQ_ACTIVE)
1201                         continue;
1202
1203                 /*
1204                  * Wired pages are dequeued lazily.
1205                  */
1206                 if (m->wire_count != 0) {
1207                         vm_page_dequeue_deferred(m);
1208                         continue;
1209                 }
1210
1211                 /*
1212                  * Check to see "how much" the page has been used.
1213                  *
1214                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1215                  * that a reference from a concurrently destroyed mapping is
1216                  * observed here and now.
1217                  *
1218                  * Perform an unsynchronized object ref count check.  While
1219                  * the page lock ensures that the page is not reallocated to
1220                  * another object, in particular, one with unmanaged mappings
1221                  * that cannot support pmap_ts_referenced(), two races are,
1222                  * nonetheless, possible:
1223                  * 1) The count was transitioning to zero, but we saw a non-
1224                  *    zero value.  pmap_ts_referenced() will return zero
1225                  *    because the page is not mapped.
1226                  * 2) The count was transitioning to one, but we saw zero.
1227                  *    This race delays the detection of a new reference.  At
1228                  *    worst, we will deactivate and reactivate the page.
1229                  */
1230                 if (m->object->ref_count != 0)
1231                         act_delta = pmap_ts_referenced(m);
1232                 else
1233                         act_delta = 0;
1234                 if ((m->aflags & PGA_REFERENCED) != 0) {
1235                         vm_page_aflag_clear(m, PGA_REFERENCED);
1236                         act_delta++;
1237                 }
1238
1239                 /*
1240                  * Advance or decay the act_count based on recent usage.
1241                  */
1242                 if (act_delta != 0) {
1243                         m->act_count += ACT_ADVANCE + act_delta;
1244                         if (m->act_count > ACT_MAX)
1245                                 m->act_count = ACT_MAX;
1246                 } else
1247                         m->act_count -= min(m->act_count, ACT_DECLINE);
1248
1249                 if (m->act_count == 0) {
1250                         /*
1251                          * When not short for inactive pages, let dirty pages go
1252                          * through the inactive queue before moving to the
1253                          * laundry queues.  This gives them some extra time to
1254                          * be reactivated, potentially avoiding an expensive
1255                          * pageout.  However, during a page shortage, the
1256                          * inactive queue is necessarily small, and so dirty
1257                          * pages would only spend a trivial amount of time in
1258                          * the inactive queue.  Therefore, we might as well
1259                          * place them directly in the laundry queue to reduce
1260                          * queuing overhead.
1261                          */
1262                         if (page_shortage <= 0)
1263                                 vm_page_deactivate(m);
1264                         else {
1265                                 /*
1266                                  * Calling vm_page_test_dirty() here would
1267                                  * require acquisition of the object's write
1268                                  * lock.  However, during a page shortage,
1269                                  * directing dirty pages into the laundry
1270                                  * queue is only an optimization and not a
1271                                  * requirement.  Therefore, we simply rely on
1272                                  * the opportunistic updates to the page's
1273                                  * dirty field by the pmap.
1274                                  */
1275                                 if (m->dirty == 0) {
1276                                         vm_page_deactivate(m);
1277                                         page_shortage -=
1278                                             act_scan_laundry_weight;
1279                                 } else {
1280                                         vm_page_launder(m);
1281                                         page_shortage--;
1282                                 }
1283                         }
1284                 }
1285         }
1286         if (mtx != NULL) {
1287                 mtx_unlock(mtx);
1288                 mtx = NULL;
1289         }
1290         vm_pagequeue_lock(pq);
1291         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1292         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1293         vm_pageout_end_scan(&ss);
1294         vm_pagequeue_unlock(pq);
1295 }
1296
1297 static int
1298 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m)
1299 {
1300         struct vm_domain *vmd;
1301
1302         if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0)
1303                 return (0);
1304         vm_page_aflag_set(m, PGA_ENQUEUED);
1305         if ((m->aflags & PGA_REQUEUE_HEAD) != 0) {
1306                 vmd = vm_pagequeue_domain(m);
1307                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
1308                 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1309         } else if ((m->aflags & PGA_REQUEUE) != 0) {
1310                 TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q);
1311                 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1312         } else
1313                 TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q);
1314         return (1);
1315 }
1316
1317 /*
1318  * Re-add stuck pages to the inactive queue.  We will examine them again
1319  * during the next scan.  If the queue state of a page has changed since
1320  * it was physically removed from the page queue in
1321  * vm_pageout_collect_batch(), don't do anything with that page.
1322  */
1323 static void
1324 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1325     vm_page_t m)
1326 {
1327         struct vm_pagequeue *pq;
1328         int delta;
1329
1330         delta = 0;
1331         pq = ss->pq;
1332
1333         if (m != NULL) {
1334                 if (vm_batchqueue_insert(bq, m))
1335                         return;
1336                 vm_pagequeue_lock(pq);
1337                 delta += vm_pageout_reinsert_inactive_page(ss, m);
1338         } else
1339                 vm_pagequeue_lock(pq);
1340         while ((m = vm_batchqueue_pop(bq)) != NULL)
1341                 delta += vm_pageout_reinsert_inactive_page(ss, m);
1342         vm_pagequeue_cnt_add(pq, delta);
1343         vm_pagequeue_unlock(pq);
1344         vm_batchqueue_init(bq);
1345 }
1346
1347 /*
1348  * Attempt to reclaim the requested number of pages from the inactive queue.
1349  * Returns true if the shortage was addressed.
1350  */
1351 static int
1352 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
1353     int *addl_shortage)
1354 {
1355         struct scan_state ss;
1356         struct vm_batchqueue rq;
1357         struct mtx *mtx;
1358         vm_page_t m, marker;
1359         struct vm_pagequeue *pq;
1360         vm_object_t object;
1361         int act_delta, addl_page_shortage, deficit, page_shortage;
1362         int starting_page_shortage;
1363
1364         /*
1365          * The addl_page_shortage is an estimate of the number of temporarily
1366          * stuck pages in the inactive queue.  In other words, the
1367          * number of pages from the inactive count that should be
1368          * discounted in setting the target for the active queue scan.
1369          */
1370         addl_page_shortage = 0;
1371
1372         /*
1373          * vmd_pageout_deficit counts the number of pages requested in
1374          * allocations that failed because of a free page shortage.  We assume
1375          * that the allocations will be reattempted and thus include the deficit
1376          * in our scan target.
1377          */
1378         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1379         starting_page_shortage = page_shortage = shortage + deficit;
1380
1381         mtx = NULL;
1382         object = NULL;
1383         vm_batchqueue_init(&rq);
1384
1385         /*
1386          * Start scanning the inactive queue for pages that we can free.  The
1387          * scan will stop when we reach the target or we have scanned the
1388          * entire queue.  (Note that m->act_count is not used to make
1389          * decisions for the inactive queue, only for the active queue.)
1390          */
1391         marker = &vmd->vmd_markers[PQ_INACTIVE];
1392         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1393         vm_pagequeue_lock(pq);
1394         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1395         while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1396                 KASSERT((m->flags & PG_MARKER) == 0,
1397                     ("marker page %p was dequeued", m));
1398
1399                 vm_page_change_lock(m, &mtx);
1400
1401 recheck:
1402                 /*
1403                  * The page may have been disassociated from the queue
1404                  * while locks were dropped.
1405                  */
1406                 if (vm_page_queue(m) != PQ_INACTIVE) {
1407                         addl_page_shortage++;
1408                         continue;
1409                 }
1410
1411                 /*
1412                  * The page was re-enqueued after the page queue lock was
1413                  * dropped, or a requeue was requested.  This page gets a second
1414                  * chance.
1415                  */
1416                 if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE |
1417                     PGA_REQUEUE_HEAD)) != 0)
1418                         goto reinsert;
1419
1420                 /*
1421                  * Held pages are essentially stuck in the queue.  So,
1422                  * they ought to be discounted from the inactive count.
1423                  * See the description of addl_page_shortage above.
1424                  *
1425                  * Wired pages may not be freed.  Complete their removal
1426                  * from the queue now to avoid needless revisits during
1427                  * future scans.
1428                  */
1429                 if (m->hold_count != 0) {
1430                         addl_page_shortage++;
1431                         goto reinsert;
1432                 }
1433                 if (m->wire_count != 0) {
1434                         vm_page_dequeue_deferred(m);
1435                         continue;
1436                 }
1437
1438                 if (object != m->object) {
1439                         if (object != NULL)
1440                                 VM_OBJECT_WUNLOCK(object);
1441                         object = m->object;
1442                         if (!VM_OBJECT_TRYWLOCK(object)) {
1443                                 mtx_unlock(mtx);
1444                                 /* Depends on type-stability. */
1445                                 VM_OBJECT_WLOCK(object);
1446                                 mtx_lock(mtx);
1447                                 goto recheck;
1448                         }
1449                 }
1450
1451                 if (vm_page_busied(m)) {
1452                         /*
1453                          * Don't mess with busy pages.  Leave them at
1454                          * the front of the queue.  Most likely, they
1455                          * are being paged out and will leave the
1456                          * queue shortly after the scan finishes.  So,
1457                          * they ought to be discounted from the
1458                          * inactive count.
1459                          */
1460                         addl_page_shortage++;
1461                         goto reinsert;
1462                 }
1463
1464                 /*
1465                  * Invalid pages can be easily freed. They cannot be
1466                  * mapped, vm_page_free() asserts this.
1467                  */
1468                 if (m->valid == 0)
1469                         goto free_page;
1470
1471                 /*
1472                  * If the page has been referenced and the object is not dead,
1473                  * reactivate or requeue the page depending on whether the
1474                  * object is mapped.
1475                  *
1476                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1477                  * that a reference from a concurrently destroyed mapping is
1478                  * observed here and now.
1479                  */
1480                 if (object->ref_count != 0)
1481                         act_delta = pmap_ts_referenced(m);
1482                 else {
1483                         KASSERT(!pmap_page_is_mapped(m),
1484                             ("page %p is mapped", m));
1485                         act_delta = 0;
1486                 }
1487                 if ((m->aflags & PGA_REFERENCED) != 0) {
1488                         vm_page_aflag_clear(m, PGA_REFERENCED);
1489                         act_delta++;
1490                 }
1491                 if (act_delta != 0) {
1492                         if (object->ref_count != 0) {
1493                                 VM_CNT_INC(v_reactivated);
1494                                 vm_page_activate(m);
1495
1496                                 /*
1497                                  * Increase the activation count if the page
1498                                  * was referenced while in the inactive queue.
1499                                  * This makes it less likely that the page will
1500                                  * be returned prematurely to the inactive
1501                                  * queue.
1502                                  */
1503                                 m->act_count += act_delta + ACT_ADVANCE;
1504                                 continue;
1505                         } else if ((object->flags & OBJ_DEAD) == 0) {
1506                                 vm_page_aflag_set(m, PGA_REQUEUE);
1507                                 goto reinsert;
1508                         }
1509                 }
1510
1511                 /*
1512                  * If the page appears to be clean at the machine-independent
1513                  * layer, then remove all of its mappings from the pmap in
1514                  * anticipation of freeing it.  If, however, any of the page's
1515                  * mappings allow write access, then the page may still be
1516                  * modified until the last of those mappings are removed.
1517                  */
1518                 if (object->ref_count != 0) {
1519                         vm_page_test_dirty(m);
1520                         if (m->dirty == 0)
1521                                 pmap_remove_all(m);
1522                 }
1523
1524                 /*
1525                  * Clean pages can be freed, but dirty pages must be sent back
1526                  * to the laundry, unless they belong to a dead object.
1527                  * Requeueing dirty pages from dead objects is pointless, as
1528                  * they are being paged out and freed by the thread that
1529                  * destroyed the object.
1530                  */
1531                 if (m->dirty == 0) {
1532 free_page:
1533                         /*
1534                          * Because we dequeued the page and have already
1535                          * checked for concurrent dequeue and enqueue
1536                          * requests, we can safely disassociate the page
1537                          * from the inactive queue.
1538                          */
1539                         KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0,
1540                             ("page %p has queue state", m));
1541                         m->queue = PQ_NONE;
1542                         vm_page_free(m);
1543                         page_shortage--;
1544                 } else if ((object->flags & OBJ_DEAD) == 0)
1545                         vm_page_launder(m);
1546                 continue;
1547 reinsert:
1548                 vm_pageout_reinsert_inactive(&ss, &rq, m);
1549         }
1550         if (mtx != NULL)
1551                 mtx_unlock(mtx);
1552         if (object != NULL)
1553                 VM_OBJECT_WUNLOCK(object);
1554         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1555         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1556         vm_pagequeue_lock(pq);
1557         vm_pageout_end_scan(&ss);
1558         vm_pagequeue_unlock(pq);
1559
1560         VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage);
1561
1562         /*
1563          * Wake up the laundry thread so that it can perform any needed
1564          * laundering.  If we didn't meet our target, we're in shortfall and
1565          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1566          * swap devices are configured, the laundry thread has no work to do, so
1567          * don't bother waking it up.
1568          *
1569          * The laundry thread uses the number of inactive queue scans elapsed
1570          * since the last laundering to determine whether to launder again, so
1571          * keep count.
1572          */
1573         if (starting_page_shortage > 0) {
1574                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1575                 vm_pagequeue_lock(pq);
1576                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1577                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1578                         if (page_shortage > 0) {
1579                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1580                                 VM_CNT_INC(v_pdshortfalls);
1581                         } else if (vmd->vmd_laundry_request !=
1582                             VM_LAUNDRY_SHORTFALL)
1583                                 vmd->vmd_laundry_request =
1584                                     VM_LAUNDRY_BACKGROUND;
1585                         wakeup(&vmd->vmd_laundry_request);
1586                 }
1587                 vmd->vmd_clean_pages_freed +=
1588                     starting_page_shortage - page_shortage;
1589                 vm_pagequeue_unlock(pq);
1590         }
1591
1592         /*
1593          * Wakeup the swapout daemon if we didn't free the targeted number of
1594          * pages.
1595          */
1596         if (page_shortage > 0)
1597                 vm_swapout_run();
1598
1599         /*
1600          * If the inactive queue scan fails repeatedly to meet its
1601          * target, kill the largest process.
1602          */
1603         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1604
1605         /*
1606          * Reclaim pages by swapping out idle processes, if configured to do so.
1607          */
1608         vm_swapout_run_idle();
1609
1610         /*
1611          * See the description of addl_page_shortage above.
1612          */
1613         *addl_shortage = addl_page_shortage + deficit;
1614
1615         return (page_shortage <= 0);
1616 }
1617
1618 static int vm_pageout_oom_vote;
1619
1620 /*
1621  * The pagedaemon threads randlomly select one to perform the
1622  * OOM.  Trying to kill processes before all pagedaemons
1623  * failed to reach free target is premature.
1624  */
1625 static void
1626 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1627     int starting_page_shortage)
1628 {
1629         int old_vote;
1630
1631         if (starting_page_shortage <= 0 || starting_page_shortage !=
1632             page_shortage)
1633                 vmd->vmd_oom_seq = 0;
1634         else
1635                 vmd->vmd_oom_seq++;
1636         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1637                 if (vmd->vmd_oom) {
1638                         vmd->vmd_oom = FALSE;
1639                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1640                 }
1641                 return;
1642         }
1643
1644         /*
1645          * Do not follow the call sequence until OOM condition is
1646          * cleared.
1647          */
1648         vmd->vmd_oom_seq = 0;
1649
1650         if (vmd->vmd_oom)
1651                 return;
1652
1653         vmd->vmd_oom = TRUE;
1654         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1655         if (old_vote != vm_ndomains - 1)
1656                 return;
1657
1658         /*
1659          * The current pagedaemon thread is the last in the quorum to
1660          * start OOM.  Initiate the selection and signaling of the
1661          * victim.
1662          */
1663         vm_pageout_oom(VM_OOM_MEM);
1664
1665         /*
1666          * After one round of OOM terror, recall our vote.  On the
1667          * next pass, current pagedaemon would vote again if the low
1668          * memory condition is still there, due to vmd_oom being
1669          * false.
1670          */
1671         vmd->vmd_oom = FALSE;
1672         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1673 }
1674
1675 /*
1676  * The OOM killer is the page daemon's action of last resort when
1677  * memory allocation requests have been stalled for a prolonged period
1678  * of time because it cannot reclaim memory.  This function computes
1679  * the approximate number of physical pages that could be reclaimed if
1680  * the specified address space is destroyed.
1681  *
1682  * Private, anonymous memory owned by the address space is the
1683  * principal resource that we expect to recover after an OOM kill.
1684  * Since the physical pages mapped by the address space's COW entries
1685  * are typically shared pages, they are unlikely to be released and so
1686  * they are not counted.
1687  *
1688  * To get to the point where the page daemon runs the OOM killer, its
1689  * efforts to write-back vnode-backed pages may have stalled.  This
1690  * could be caused by a memory allocation deadlock in the write path
1691  * that might be resolved by an OOM kill.  Therefore, physical pages
1692  * belonging to vnode-backed objects are counted, because they might
1693  * be freed without being written out first if the address space holds
1694  * the last reference to an unlinked vnode.
1695  *
1696  * Similarly, physical pages belonging to OBJT_PHYS objects are
1697  * counted because the address space might hold the last reference to
1698  * the object.
1699  */
1700 static long
1701 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1702 {
1703         vm_map_t map;
1704         vm_map_entry_t entry;
1705         vm_object_t obj;
1706         long res;
1707
1708         map = &vmspace->vm_map;
1709         KASSERT(!map->system_map, ("system map"));
1710         sx_assert(&map->lock, SA_LOCKED);
1711         res = 0;
1712         for (entry = map->header.next; entry != &map->header;
1713             entry = entry->next) {
1714                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1715                         continue;
1716                 obj = entry->object.vm_object;
1717                 if (obj == NULL)
1718                         continue;
1719                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1720                     obj->ref_count != 1)
1721                         continue;
1722                 switch (obj->type) {
1723                 case OBJT_DEFAULT:
1724                 case OBJT_SWAP:
1725                 case OBJT_PHYS:
1726                 case OBJT_VNODE:
1727                         res += obj->resident_page_count;
1728                         break;
1729                 }
1730         }
1731         return (res);
1732 }
1733
1734 void
1735 vm_pageout_oom(int shortage)
1736 {
1737         struct proc *p, *bigproc;
1738         vm_offset_t size, bigsize;
1739         struct thread *td;
1740         struct vmspace *vm;
1741         bool breakout;
1742
1743         /*
1744          * We keep the process bigproc locked once we find it to keep anyone
1745          * from messing with it; however, there is a possibility of
1746          * deadlock if process B is bigproc and one of its child processes
1747          * attempts to propagate a signal to B while we are waiting for A's
1748          * lock while walking this list.  To avoid this, we don't block on
1749          * the process lock but just skip a process if it is already locked.
1750          */
1751         bigproc = NULL;
1752         bigsize = 0;
1753         sx_slock(&allproc_lock);
1754         FOREACH_PROC_IN_SYSTEM(p) {
1755                 PROC_LOCK(p);
1756
1757                 /*
1758                  * If this is a system, protected or killed process, skip it.
1759                  */
1760                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1761                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1762                     p->p_pid == 1 || P_KILLED(p) ||
1763                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1764                         PROC_UNLOCK(p);
1765                         continue;
1766                 }
1767                 /*
1768                  * If the process is in a non-running type state,
1769                  * don't touch it.  Check all the threads individually.
1770                  */
1771                 breakout = false;
1772                 FOREACH_THREAD_IN_PROC(p, td) {
1773                         thread_lock(td);
1774                         if (!TD_ON_RUNQ(td) &&
1775                             !TD_IS_RUNNING(td) &&
1776                             !TD_IS_SLEEPING(td) &&
1777                             !TD_IS_SUSPENDED(td) &&
1778                             !TD_IS_SWAPPED(td)) {
1779                                 thread_unlock(td);
1780                                 breakout = true;
1781                                 break;
1782                         }
1783                         thread_unlock(td);
1784                 }
1785                 if (breakout) {
1786                         PROC_UNLOCK(p);
1787                         continue;
1788                 }
1789                 /*
1790                  * get the process size
1791                  */
1792                 vm = vmspace_acquire_ref(p);
1793                 if (vm == NULL) {
1794                         PROC_UNLOCK(p);
1795                         continue;
1796                 }
1797                 _PHOLD_LITE(p);
1798                 PROC_UNLOCK(p);
1799                 sx_sunlock(&allproc_lock);
1800                 if (!vm_map_trylock_read(&vm->vm_map)) {
1801                         vmspace_free(vm);
1802                         sx_slock(&allproc_lock);
1803                         PRELE(p);
1804                         continue;
1805                 }
1806                 size = vmspace_swap_count(vm);
1807                 if (shortage == VM_OOM_MEM)
1808                         size += vm_pageout_oom_pagecount(vm);
1809                 vm_map_unlock_read(&vm->vm_map);
1810                 vmspace_free(vm);
1811                 sx_slock(&allproc_lock);
1812
1813                 /*
1814                  * If this process is bigger than the biggest one,
1815                  * remember it.
1816                  */
1817                 if (size > bigsize) {
1818                         if (bigproc != NULL)
1819                                 PRELE(bigproc);
1820                         bigproc = p;
1821                         bigsize = size;
1822                 } else {
1823                         PRELE(p);
1824                 }
1825         }
1826         sx_sunlock(&allproc_lock);
1827         if (bigproc != NULL) {
1828                 if (vm_panic_on_oom != 0)
1829                         panic("out of swap space");
1830                 PROC_LOCK(bigproc);
1831                 killproc(bigproc, "out of swap space");
1832                 sched_nice(bigproc, PRIO_MIN);
1833                 _PRELE(bigproc);
1834                 PROC_UNLOCK(bigproc);
1835         }
1836 }
1837
1838 static bool
1839 vm_pageout_lowmem(void)
1840 {
1841         static int lowmem_ticks = 0;
1842         int last;
1843
1844         last = atomic_load_int(&lowmem_ticks);
1845         while ((u_int)(ticks - last) / hz >= lowmem_period) {
1846                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
1847                         continue;
1848
1849                 /*
1850                  * Decrease registered cache sizes.
1851                  */
1852                 SDT_PROBE0(vm, , , vm__lowmem_scan);
1853                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
1854
1855                 /*
1856                  * We do this explicitly after the caches have been
1857                  * drained above.
1858                  */
1859                 uma_reclaim();
1860                 return (true);
1861         }
1862         return (false);
1863 }
1864
1865 static void
1866 vm_pageout_worker(void *arg)
1867 {
1868         struct vm_domain *vmd;
1869         u_int ofree;
1870         int addl_shortage, domain, shortage;
1871         bool target_met;
1872
1873         domain = (uintptr_t)arg;
1874         vmd = VM_DOMAIN(domain);
1875         shortage = 0;
1876         target_met = true;
1877
1878         /*
1879          * XXXKIB It could be useful to bind pageout daemon threads to
1880          * the cores belonging to the domain, from which vm_page_array
1881          * is allocated.
1882          */
1883
1884         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1885         vmd->vmd_last_active_scan = ticks;
1886
1887         /*
1888          * The pageout daemon worker is never done, so loop forever.
1889          */
1890         while (TRUE) {
1891                 vm_domain_pageout_lock(vmd);
1892
1893                 /*
1894                  * We need to clear wanted before we check the limits.  This
1895                  * prevents races with wakers who will check wanted after they
1896                  * reach the limit.
1897                  */
1898                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
1899
1900                 /*
1901                  * Might the page daemon need to run again?
1902                  */
1903                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
1904                         /*
1905                          * Yes.  If the scan failed to produce enough free
1906                          * pages, sleep uninterruptibly for some time in the
1907                          * hope that the laundry thread will clean some pages.
1908                          */
1909                         vm_domain_pageout_unlock(vmd);
1910                         if (!target_met)
1911                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
1912                 } else {
1913                         /*
1914                          * No, sleep until the next wakeup or until pages
1915                          * need to have their reference stats updated.
1916                          */
1917                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
1918                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
1919                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
1920                                 VM_CNT_INC(v_pdwakeups);
1921                 }
1922
1923                 /* Prevent spurious wakeups by ensuring that wanted is set. */
1924                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
1925
1926                 /*
1927                  * Use the controller to calculate how many pages to free in
1928                  * this interval, and scan the inactive queue.  If the lowmem
1929                  * handlers appear to have freed up some pages, subtract the
1930                  * difference from the inactive queue scan target.
1931                  */
1932                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
1933                 if (shortage > 0) {
1934                         ofree = vmd->vmd_free_count;
1935                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
1936                                 shortage -= min(vmd->vmd_free_count - ofree,
1937                                     (u_int)shortage);
1938                         target_met = vm_pageout_scan_inactive(vmd, shortage,
1939                             &addl_shortage);
1940                 } else
1941                         addl_shortage = 0;
1942
1943                 /*
1944                  * Scan the active queue.  A positive value for shortage
1945                  * indicates that we must aggressively deactivate pages to avoid
1946                  * a shortfall.
1947                  */
1948                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
1949                 vm_pageout_scan_active(vmd, shortage);
1950         }
1951 }
1952
1953 /*
1954  *      vm_pageout_init initialises basic pageout daemon settings.
1955  */
1956 static void
1957 vm_pageout_init_domain(int domain)
1958 {
1959         struct vm_domain *vmd;
1960         struct sysctl_oid *oid;
1961
1962         vmd = VM_DOMAIN(domain);
1963         vmd->vmd_interrupt_free_min = 2;
1964
1965         /*
1966          * v_free_reserved needs to include enough for the largest
1967          * swap pager structures plus enough for any pv_entry structs
1968          * when paging. 
1969          */
1970         if (vmd->vmd_page_count > 1024)
1971                 vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200;
1972         else
1973                 vmd->vmd_free_min = 4;
1974         vmd->vmd_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1975             vmd->vmd_interrupt_free_min;
1976         vmd->vmd_free_reserved = vm_pageout_page_count +
1977             vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768);
1978         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
1979         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
1980         vmd->vmd_free_min += vmd->vmd_free_reserved;
1981         vmd->vmd_free_severe += vmd->vmd_free_reserved;
1982         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
1983         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
1984                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
1985
1986         /*
1987          * Set the default wakeup threshold to be 10% below the paging
1988          * target.  This keeps the steady state out of shortfall.
1989          */
1990         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
1991
1992         /*
1993          * Target amount of memory to move out of the laundry queue during a
1994          * background laundering.  This is proportional to the amount of system
1995          * memory.
1996          */
1997         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
1998             vmd->vmd_free_min) / 10;
1999
2000         /* Initialize the pageout daemon pid controller. */
2001         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2002             vmd->vmd_free_target, PIDCTRL_BOUND,
2003             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2004         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2005             "pidctrl", CTLFLAG_RD, NULL, "");
2006         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2007 }
2008
2009 static void
2010 vm_pageout_init(void)
2011 {
2012         u_int freecount;
2013         int i;
2014
2015         /*
2016          * Initialize some paging parameters.
2017          */
2018         if (vm_cnt.v_page_count < 2000)
2019                 vm_pageout_page_count = 8;
2020
2021         freecount = 0;
2022         for (i = 0; i < vm_ndomains; i++) {
2023                 struct vm_domain *vmd;
2024
2025                 vm_pageout_init_domain(i);
2026                 vmd = VM_DOMAIN(i);
2027                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2028                 vm_cnt.v_free_target += vmd->vmd_free_target;
2029                 vm_cnt.v_free_min += vmd->vmd_free_min;
2030                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2031                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2032                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2033                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2034                 freecount += vmd->vmd_free_count;
2035         }
2036
2037         /*
2038          * Set interval in seconds for active scan.  We want to visit each
2039          * page at least once every ten minutes.  This is to prevent worst
2040          * case paging behaviors with stale active LRU.
2041          */
2042         if (vm_pageout_update_period == 0)
2043                 vm_pageout_update_period = 600;
2044
2045         if (vm_page_max_user_wired == 0)
2046                 vm_page_max_user_wired = freecount / 3;
2047 }
2048
2049 /*
2050  *     vm_pageout is the high level pageout daemon.
2051  */
2052 static void
2053 vm_pageout(void)
2054 {
2055         struct proc *p;
2056         struct thread *td;
2057         int error, first, i;
2058
2059         p = curproc;
2060         td = curthread;
2061
2062         swap_pager_swap_init();
2063         for (first = -1, i = 0; i < vm_ndomains; i++) {
2064                 if (VM_DOMAIN_EMPTY(i)) {
2065                         if (bootverbose)
2066                                 printf("domain %d empty; skipping pageout\n",
2067                                     i);
2068                         continue;
2069                 }
2070                 if (first == -1)
2071                         first = i;
2072                 else {
2073                         error = kthread_add(vm_pageout_worker,
2074                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2075                         if (error != 0)
2076                                 panic("starting pageout for domain %d: %d\n",
2077                                     i, error);
2078                 }
2079                 error = kthread_add(vm_pageout_laundry_worker,
2080                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2081                 if (error != 0)
2082                         panic("starting laundry for domain %d: %d", i, error);
2083         }
2084         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2085         if (error != 0)
2086                 panic("starting uma_reclaim helper, error %d\n", error);
2087
2088         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2089         vm_pageout_worker((void *)(uintptr_t)first);
2090 }
2091
2092 /*
2093  * Perform an advisory wakeup of the page daemon.
2094  */
2095 void
2096 pagedaemon_wakeup(int domain)
2097 {
2098         struct vm_domain *vmd;
2099
2100         vmd = VM_DOMAIN(domain);
2101         vm_domain_pageout_assert_unlocked(vmd);
2102         if (curproc == pageproc)
2103                 return;
2104
2105         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2106                 vm_domain_pageout_lock(vmd);
2107                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2108                 wakeup(&vmd->vmd_pageout_wanted);
2109                 vm_domain_pageout_unlock(vmd);
2110         }
2111 }