]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
merge fix for boot-time hang on centos' xen
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/signalvar.h>
92 #include <sys/vnode.h>
93 #include <sys/vmmeter.h>
94 #include <sys/sx.h>
95 #include <sys/sysctl.h>
96
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/uma.h>
107
108 #include <machine/mutex.h>
109
110 /*
111  * System initialization
112  */
113
114 /* the kernel process "vm_pageout"*/
115 static void vm_pageout(void);
116 static int vm_pageout_clean(vm_page_t);
117 static void vm_pageout_pmap_collect(void);
118 static void vm_pageout_scan(int pass);
119
120 struct proc *pageproc;
121
122 static struct kproc_desc page_kp = {
123         "pagedaemon",
124         vm_pageout,
125         &pageproc
126 };
127 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
128
129 #if !defined(NO_SWAPPING)
130 /* the kernel process "vm_daemon"*/
131 static void vm_daemon(void);
132 static struct   proc *vmproc;
133
134 static struct kproc_desc vm_kp = {
135         "vmdaemon",
136         vm_daemon,
137         &vmproc
138 };
139 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
140 #endif
141
142
143 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
144 int vm_pageout_deficit;         /* Estimated number of pages deficit */
145 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
146
147 #if !defined(NO_SWAPPING)
148 static int vm_pageout_req_swapout;      /* XXX */
149 static int vm_daemon_needed;
150 static struct mtx vm_daemon_mtx;
151 /* Allow for use by vm_pageout before vm_daemon is initialized. */
152 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
153 #endif
154 static int vm_max_launder = 32;
155 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
156 static int vm_pageout_full_stats_interval = 0;
157 static int vm_pageout_algorithm=0;
158 static int defer_swap_pageouts=0;
159 static int disable_swap_pageouts=0;
160
161 #if defined(NO_SWAPPING)
162 static int vm_swap_enabled=0;
163 static int vm_swap_idle_enabled=0;
164 #else
165 static int vm_swap_enabled=1;
166 static int vm_swap_idle_enabled=0;
167 #endif
168
169 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
170         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
171
172 SYSCTL_INT(_vm, OID_AUTO, max_launder,
173         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
174
175 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
176         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
177
178 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
179         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
180
181 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
182         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
183
184 #if defined(NO_SWAPPING)
185 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
186         CTLFLAG_RD, &vm_swap_enabled, 0, "");
187 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
188         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
189 #else
190 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
191         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
192 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
193         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
194 #endif
195
196 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
197         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
198
199 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
200         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
201
202 static int pageout_lock_miss;
203 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
204         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
205
206 #define VM_PAGEOUT_PAGE_COUNT 16
207 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
208
209 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
210 SYSCTL_INT(_vm, OID_AUTO, max_wired,
211         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
212
213 #if !defined(NO_SWAPPING)
214 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
215 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
216 static void vm_req_vmdaemon(int req);
217 #endif
218 static void vm_pageout_page_stats(void);
219
220 /*
221  * vm_pageout_fallback_object_lock:
222  * 
223  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
224  * known to have failed and page queue must be either PQ_ACTIVE or
225  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
226  * while locking the vm object.  Use marker page to detect page queue
227  * changes and maintain notion of next page on page queue.  Return
228  * TRUE if no changes were detected, FALSE otherwise.  vm object is
229  * locked on return.
230  * 
231  * This function depends on both the lock portion of struct vm_object
232  * and normal struct vm_page being type stable.
233  */
234 static boolean_t
235 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
236 {
237         struct vm_page marker;
238         boolean_t unchanged;
239         u_short queue;
240         vm_object_t object;
241
242         /*
243          * Initialize our marker
244          */
245         bzero(&marker, sizeof(marker));
246         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
247         marker.queue = m->queue;
248         marker.wire_count = 1;
249
250         queue = m->queue;
251         object = m->object;
252         
253         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
254                            m, &marker, pageq);
255         vm_page_unlock_queues();
256         VM_OBJECT_LOCK(object);
257         vm_page_lock_queues();
258
259         /* Page queue might have changed. */
260         *next = TAILQ_NEXT(&marker, pageq);
261         unchanged = (m->queue == queue &&
262                      m->object == object &&
263                      &marker == TAILQ_NEXT(m, pageq));
264         TAILQ_REMOVE(&vm_page_queues[queue].pl,
265                      &marker, pageq);
266         return (unchanged);
267 }
268
269 /*
270  * vm_pageout_clean:
271  *
272  * Clean the page and remove it from the laundry.
273  * 
274  * We set the busy bit to cause potential page faults on this page to
275  * block.  Note the careful timing, however, the busy bit isn't set till
276  * late and we cannot do anything that will mess with the page.
277  */
278 static int
279 vm_pageout_clean(m)
280         vm_page_t m;
281 {
282         vm_object_t object;
283         vm_page_t mc[2*vm_pageout_page_count];
284         int pageout_count;
285         int ib, is, page_base;
286         vm_pindex_t pindex = m->pindex;
287
288         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
289         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
290
291         /*
292          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
293          * with the new swapper, but we could have serious problems paging
294          * out other object types if there is insufficient memory.  
295          *
296          * Unfortunately, checking free memory here is far too late, so the
297          * check has been moved up a procedural level.
298          */
299
300         /*
301          * Don't mess with the page if it's busy, held, or special
302          */
303         if ((m->hold_count != 0) ||
304             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
305                 return 0;
306         }
307
308         mc[vm_pageout_page_count] = m;
309         pageout_count = 1;
310         page_base = vm_pageout_page_count;
311         ib = 1;
312         is = 1;
313
314         /*
315          * Scan object for clusterable pages.
316          *
317          * We can cluster ONLY if: ->> the page is NOT
318          * clean, wired, busy, held, or mapped into a
319          * buffer, and one of the following:
320          * 1) The page is inactive, or a seldom used
321          *    active page.
322          * -or-
323          * 2) we force the issue.
324          *
325          * During heavy mmap/modification loads the pageout
326          * daemon can really fragment the underlying file
327          * due to flushing pages out of order and not trying
328          * align the clusters (which leave sporatic out-of-order
329          * holes).  To solve this problem we do the reverse scan
330          * first and attempt to align our cluster, then do a 
331          * forward scan if room remains.
332          */
333         object = m->object;
334 more:
335         while (ib && pageout_count < vm_pageout_page_count) {
336                 vm_page_t p;
337
338                 if (ib > pindex) {
339                         ib = 0;
340                         break;
341                 }
342
343                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
344                         ib = 0;
345                         break;
346                 }
347                 if (((p->queue - p->pc) == PQ_CACHE) ||
348                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
349                         ib = 0;
350                         break;
351                 }
352                 vm_page_test_dirty(p);
353                 if ((p->dirty & p->valid) == 0 ||
354                     p->queue != PQ_INACTIVE ||
355                     p->wire_count != 0 ||       /* may be held by buf cache */
356                     p->hold_count != 0) {       /* may be undergoing I/O */
357                         ib = 0;
358                         break;
359                 }
360                 mc[--page_base] = p;
361                 ++pageout_count;
362                 ++ib;
363                 /*
364                  * alignment boundry, stop here and switch directions.  Do
365                  * not clear ib.
366                  */
367                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
368                         break;
369         }
370
371         while (pageout_count < vm_pageout_page_count && 
372             pindex + is < object->size) {
373                 vm_page_t p;
374
375                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
376                         break;
377                 if (((p->queue - p->pc) == PQ_CACHE) ||
378                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
379                         break;
380                 }
381                 vm_page_test_dirty(p);
382                 if ((p->dirty & p->valid) == 0 ||
383                     p->queue != PQ_INACTIVE ||
384                     p->wire_count != 0 ||       /* may be held by buf cache */
385                     p->hold_count != 0) {       /* may be undergoing I/O */
386                         break;
387                 }
388                 mc[page_base + pageout_count] = p;
389                 ++pageout_count;
390                 ++is;
391         }
392
393         /*
394          * If we exhausted our forward scan, continue with the reverse scan
395          * when possible, even past a page boundry.  This catches boundry
396          * conditions.
397          */
398         if (ib && pageout_count < vm_pageout_page_count)
399                 goto more;
400
401         /*
402          * we allow reads during pageouts...
403          */
404         return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
405 }
406
407 /*
408  * vm_pageout_flush() - launder the given pages
409  *
410  *      The given pages are laundered.  Note that we setup for the start of
411  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
412  *      reference count all in here rather then in the parent.  If we want
413  *      the parent to do more sophisticated things we may have to change
414  *      the ordering.
415  */
416 int
417 vm_pageout_flush(vm_page_t *mc, int count, int flags)
418 {
419         vm_object_t object = mc[0]->object;
420         int pageout_status[count];
421         int numpagedout = 0;
422         int i;
423
424         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
425         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
426         /*
427          * Initiate I/O.  Bump the vm_page_t->busy counter and
428          * mark the pages read-only.
429          *
430          * We do not have to fixup the clean/dirty bits here... we can
431          * allow the pager to do it after the I/O completes.
432          *
433          * NOTE! mc[i]->dirty may be partial or fragmented due to an
434          * edge case with file fragments.
435          */
436         for (i = 0; i < count; i++) {
437                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
438                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
439                         mc[i], i, count));
440                 vm_page_io_start(mc[i]);
441                 pmap_page_protect(mc[i], VM_PROT_READ);
442         }
443         vm_page_unlock_queues();
444         vm_object_pip_add(object, count);
445
446         vm_pager_put_pages(object, mc, count,
447             (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
448             pageout_status);
449
450         vm_page_lock_queues();
451         for (i = 0; i < count; i++) {
452                 vm_page_t mt = mc[i];
453
454                 KASSERT((mt->flags & PG_WRITEABLE) == 0,
455                     ("vm_pageout_flush: page %p is not write protected", mt));
456                 switch (pageout_status[i]) {
457                 case VM_PAGER_OK:
458                 case VM_PAGER_PEND:
459                         numpagedout++;
460                         break;
461                 case VM_PAGER_BAD:
462                         /*
463                          * Page outside of range of object. Right now we
464                          * essentially lose the changes by pretending it
465                          * worked.
466                          */
467                         pmap_clear_modify(mt);
468                         vm_page_undirty(mt);
469                         break;
470                 case VM_PAGER_ERROR:
471                 case VM_PAGER_FAIL:
472                         /*
473                          * If page couldn't be paged out, then reactivate the
474                          * page so it doesn't clog the inactive list.  (We
475                          * will try paging out it again later).
476                          */
477                         vm_page_activate(mt);
478                         break;
479                 case VM_PAGER_AGAIN:
480                         break;
481                 }
482
483                 /*
484                  * If the operation is still going, leave the page busy to
485                  * block all other accesses. Also, leave the paging in
486                  * progress indicator set so that we don't attempt an object
487                  * collapse.
488                  */
489                 if (pageout_status[i] != VM_PAGER_PEND) {
490                         vm_object_pip_wakeup(object);
491                         vm_page_io_finish(mt);
492                         if (vm_page_count_severe())
493                                 vm_page_try_to_cache(mt);
494                 }
495         }
496         return numpagedout;
497 }
498
499 #if !defined(NO_SWAPPING)
500 /*
501  *      vm_pageout_object_deactivate_pages
502  *
503  *      deactivate enough pages to satisfy the inactive target
504  *      requirements or if vm_page_proc_limit is set, then
505  *      deactivate all of the pages in the object and its
506  *      backing_objects.
507  *
508  *      The object and map must be locked.
509  */
510 static void
511 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
512         pmap_t pmap;
513         vm_object_t first_object;
514         long desired;
515 {
516         vm_object_t backing_object, object;
517         vm_page_t p, next;
518         int actcount, rcount, remove_mode;
519
520         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
521         if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
522                 return;
523         for (object = first_object;; object = backing_object) {
524                 if (pmap_resident_count(pmap) <= desired)
525                         goto unlock_return;
526                 if (object->paging_in_progress)
527                         goto unlock_return;
528
529                 remove_mode = 0;
530                 if (object->shadow_count > 1)
531                         remove_mode = 1;
532                 /*
533                  * scan the objects entire memory queue
534                  */
535                 rcount = object->resident_page_count;
536                 p = TAILQ_FIRST(&object->memq);
537                 vm_page_lock_queues();
538                 while (p && (rcount-- > 0)) {
539                         if (pmap_resident_count(pmap) <= desired) {
540                                 vm_page_unlock_queues();
541                                 goto unlock_return;
542                         }
543                         next = TAILQ_NEXT(p, listq);
544                         cnt.v_pdpages++;
545                         if (p->wire_count != 0 ||
546                             p->hold_count != 0 ||
547                             p->busy != 0 ||
548                             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
549                             !pmap_page_exists_quick(pmap, p)) {
550                                 p = next;
551                                 continue;
552                         }
553                         actcount = pmap_ts_referenced(p);
554                         if (actcount) {
555                                 vm_page_flag_set(p, PG_REFERENCED);
556                         } else if (p->flags & PG_REFERENCED) {
557                                 actcount = 1;
558                         }
559                         if ((p->queue != PQ_ACTIVE) &&
560                                 (p->flags & PG_REFERENCED)) {
561                                 vm_page_activate(p);
562                                 p->act_count += actcount;
563                                 vm_page_flag_clear(p, PG_REFERENCED);
564                         } else if (p->queue == PQ_ACTIVE) {
565                                 if ((p->flags & PG_REFERENCED) == 0) {
566                                         p->act_count -= min(p->act_count, ACT_DECLINE);
567                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
568                                                 pmap_remove_all(p);
569                                                 vm_page_deactivate(p);
570                                         } else {
571                                                 vm_pageq_requeue(p);
572                                         }
573                                 } else {
574                                         vm_page_activate(p);
575                                         vm_page_flag_clear(p, PG_REFERENCED);
576                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
577                                                 p->act_count += ACT_ADVANCE;
578                                         vm_pageq_requeue(p);
579                                 }
580                         } else if (p->queue == PQ_INACTIVE) {
581                                 pmap_remove_all(p);
582                         }
583                         p = next;
584                 }
585                 vm_page_unlock_queues();
586                 if ((backing_object = object->backing_object) == NULL)
587                         goto unlock_return;
588                 VM_OBJECT_LOCK(backing_object);
589                 if (object != first_object)
590                         VM_OBJECT_UNLOCK(object);
591         }
592 unlock_return:
593         if (object != first_object)
594                 VM_OBJECT_UNLOCK(object);
595 }
596
597 /*
598  * deactivate some number of pages in a map, try to do it fairly, but
599  * that is really hard to do.
600  */
601 static void
602 vm_pageout_map_deactivate_pages(map, desired)
603         vm_map_t map;
604         long desired;
605 {
606         vm_map_entry_t tmpe;
607         vm_object_t obj, bigobj;
608         int nothingwired;
609
610         if (!vm_map_trylock(map))
611                 return;
612
613         bigobj = NULL;
614         nothingwired = TRUE;
615
616         /*
617          * first, search out the biggest object, and try to free pages from
618          * that.
619          */
620         tmpe = map->header.next;
621         while (tmpe != &map->header) {
622                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
623                         obj = tmpe->object.vm_object;
624                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
625                                 if (obj->shadow_count <= 1 &&
626                                     (bigobj == NULL ||
627                                      bigobj->resident_page_count < obj->resident_page_count)) {
628                                         if (bigobj != NULL)
629                                                 VM_OBJECT_UNLOCK(bigobj);
630                                         bigobj = obj;
631                                 } else
632                                         VM_OBJECT_UNLOCK(obj);
633                         }
634                 }
635                 if (tmpe->wired_count > 0)
636                         nothingwired = FALSE;
637                 tmpe = tmpe->next;
638         }
639
640         if (bigobj != NULL) {
641                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
642                 VM_OBJECT_UNLOCK(bigobj);
643         }
644         /*
645          * Next, hunt around for other pages to deactivate.  We actually
646          * do this search sort of wrong -- .text first is not the best idea.
647          */
648         tmpe = map->header.next;
649         while (tmpe != &map->header) {
650                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
651                         break;
652                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
653                         obj = tmpe->object.vm_object;
654                         if (obj != NULL) {
655                                 VM_OBJECT_LOCK(obj);
656                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
657                                 VM_OBJECT_UNLOCK(obj);
658                         }
659                 }
660                 tmpe = tmpe->next;
661         }
662
663         /*
664          * Remove all mappings if a process is swapped out, this will free page
665          * table pages.
666          */
667         if (desired == 0 && nothingwired) {
668                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
669                     vm_map_max(map));
670         }
671         vm_map_unlock(map);
672 }
673 #endif          /* !defined(NO_SWAPPING) */
674
675 /*
676  * This routine is very drastic, but can save the system
677  * in a pinch.
678  */
679 static void
680 vm_pageout_pmap_collect(void)
681 {
682         int i;
683         vm_page_t m;
684         static int warningdone;
685
686         if (pmap_pagedaemon_waken == 0)
687                 return;
688         if (warningdone < 5) {
689                 printf("collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
690                 warningdone++;
691         }
692         vm_page_lock_queues();
693         for (i = 0; i < vm_page_array_size; i++) {
694                 m = &vm_page_array[i];
695                 if (m->wire_count || m->hold_count || m->busy ||
696                     (m->flags & (PG_BUSY | PG_UNMANAGED)))
697                         continue;
698                 pmap_remove_all(m);
699         }
700         vm_page_unlock_queues();
701         pmap_pagedaemon_waken = 0;
702 }
703         
704 /*
705  *      vm_pageout_scan does the dirty work for the pageout daemon.
706  */
707 static void
708 vm_pageout_scan(int pass)
709 {
710         vm_page_t m, next;
711         struct vm_page marker;
712         int page_shortage, maxscan, pcount;
713         int addl_page_shortage, addl_page_shortage_init;
714         struct proc *p, *bigproc;
715         struct thread *td;
716         vm_offset_t size, bigsize;
717         vm_object_t object;
718         int actcount, cache_cur, cache_first_failure;
719         static int cache_last_free;
720         int vnodes_skipped = 0;
721         int maxlaunder;
722
723         /*
724          * Decrease registered cache sizes.
725          */
726         EVENTHANDLER_INVOKE(vm_lowmem, 0);
727         /*
728          * We do this explicitly after the caches have been drained above.
729          */
730         uma_reclaim();
731         /*
732          * Do whatever cleanup that the pmap code can.
733          */
734         vm_pageout_pmap_collect();
735
736         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
737
738         /*
739          * Calculate the number of pages we want to either free or move
740          * to the cache.
741          */
742         page_shortage = vm_paging_target() + addl_page_shortage_init;
743
744         /*
745          * Initialize our marker
746          */
747         bzero(&marker, sizeof(marker));
748         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
749         marker.queue = PQ_INACTIVE;
750         marker.wire_count = 1;
751
752         /*
753          * Start scanning the inactive queue for pages we can move to the
754          * cache or free.  The scan will stop when the target is reached or
755          * we have scanned the entire inactive queue.  Note that m->act_count
756          * is not used to form decisions for the inactive queue, only for the
757          * active queue.
758          *
759          * maxlaunder limits the number of dirty pages we flush per scan.
760          * For most systems a smaller value (16 or 32) is more robust under
761          * extreme memory and disk pressure because any unnecessary writes
762          * to disk can result in extreme performance degredation.  However,
763          * systems with excessive dirty pages (especially when MAP_NOSYNC is
764          * used) will die horribly with limited laundering.  If the pageout
765          * daemon cannot clean enough pages in the first pass, we let it go
766          * all out in succeeding passes.
767          */
768         if ((maxlaunder = vm_max_launder) <= 1)
769                 maxlaunder = 1;
770         if (pass)
771                 maxlaunder = 10000;
772         vm_page_lock_queues();
773 rescan0:
774         addl_page_shortage = addl_page_shortage_init;
775         maxscan = cnt.v_inactive_count;
776
777         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
778              m != NULL && maxscan-- > 0 && page_shortage > 0;
779              m = next) {
780
781                 cnt.v_pdpages++;
782
783                 if (m->queue != PQ_INACTIVE) {
784                         goto rescan0;
785                 }
786
787                 next = TAILQ_NEXT(m, pageq);
788                 object = m->object;
789
790                 /*
791                  * skip marker pages
792                  */
793                 if (m->flags & PG_MARKER)
794                         continue;
795
796                 /*
797                  * A held page may be undergoing I/O, so skip it.
798                  */
799                 if (m->hold_count) {
800                         vm_pageq_requeue(m);
801                         addl_page_shortage++;
802                         continue;
803                 }
804                 /*
805                  * Don't mess with busy pages, keep in the front of the
806                  * queue, most likely are being paged out.
807                  */
808                 if (!VM_OBJECT_TRYLOCK(object) &&
809                     (!vm_pageout_fallback_object_lock(m, &next) ||
810                      m->hold_count != 0)) {
811                         VM_OBJECT_UNLOCK(object);
812                         addl_page_shortage++;
813                         continue;
814                 }
815                 if (m->busy || (m->flags & PG_BUSY)) {
816                         VM_OBJECT_UNLOCK(object);
817                         addl_page_shortage++;
818                         continue;
819                 }
820
821                 /*
822                  * If the object is not being used, we ignore previous 
823                  * references.
824                  */
825                 if (object->ref_count == 0) {
826                         vm_page_flag_clear(m, PG_REFERENCED);
827                         pmap_clear_reference(m);
828
829                 /*
830                  * Otherwise, if the page has been referenced while in the 
831                  * inactive queue, we bump the "activation count" upwards, 
832                  * making it less likely that the page will be added back to 
833                  * the inactive queue prematurely again.  Here we check the 
834                  * page tables (or emulated bits, if any), given the upper 
835                  * level VM system not knowing anything about existing 
836                  * references.
837                  */
838                 } else if (((m->flags & PG_REFERENCED) == 0) &&
839                         (actcount = pmap_ts_referenced(m))) {
840                         vm_page_activate(m);
841                         VM_OBJECT_UNLOCK(object);
842                         m->act_count += (actcount + ACT_ADVANCE);
843                         continue;
844                 }
845
846                 /*
847                  * If the upper level VM system knows about any page 
848                  * references, we activate the page.  We also set the 
849                  * "activation count" higher than normal so that we will less 
850                  * likely place pages back onto the inactive queue again.
851                  */
852                 if ((m->flags & PG_REFERENCED) != 0) {
853                         vm_page_flag_clear(m, PG_REFERENCED);
854                         actcount = pmap_ts_referenced(m);
855                         vm_page_activate(m);
856                         VM_OBJECT_UNLOCK(object);
857                         m->act_count += (actcount + ACT_ADVANCE + 1);
858                         continue;
859                 }
860
861                 /*
862                  * If the upper level VM system doesn't know anything about 
863                  * the page being dirty, we have to check for it again.  As 
864                  * far as the VM code knows, any partially dirty pages are 
865                  * fully dirty.
866                  */
867                 if (m->dirty == 0 && !pmap_is_modified(m)) {
868                         /*
869                          * Avoid a race condition: Unless write access is
870                          * removed from the page, another processor could
871                          * modify it before all access is removed by the call
872                          * to vm_page_cache() below.  If vm_page_cache() finds
873                          * that the page has been modified when it removes all
874                          * access, it panics because it cannot cache dirty
875                          * pages.  In principle, we could eliminate just write
876                          * access here rather than all access.  In the expected
877                          * case, when there are no last instant modifications
878                          * to the page, removing all access will be cheaper
879                          * overall.
880                          */
881                         if ((m->flags & PG_WRITEABLE) != 0)
882                                 pmap_remove_all(m);
883                 } else {
884                         vm_page_dirty(m);
885                 }
886
887                 if (m->valid == 0) {
888                         /*
889                          * Invalid pages can be easily freed
890                          */
891                         pmap_remove_all(m);
892                         vm_page_free(m);
893                         cnt.v_dfree++;
894                         --page_shortage;
895                 } else if (m->dirty == 0) {
896                         /*
897                          * Clean pages can be placed onto the cache queue.
898                          * This effectively frees them.
899                          */
900                         vm_page_cache(m);
901                         --page_shortage;
902                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
903                         /*
904                          * Dirty pages need to be paged out, but flushing
905                          * a page is extremely expensive verses freeing
906                          * a clean page.  Rather then artificially limiting
907                          * the number of pages we can flush, we instead give
908                          * dirty pages extra priority on the inactive queue
909                          * by forcing them to be cycled through the queue
910                          * twice before being flushed, after which the
911                          * (now clean) page will cycle through once more
912                          * before being freed.  This significantly extends
913                          * the thrash point for a heavily loaded machine.
914                          */
915                         vm_page_flag_set(m, PG_WINATCFLS);
916                         vm_pageq_requeue(m);
917                 } else if (maxlaunder > 0) {
918                         /*
919                          * We always want to try to flush some dirty pages if
920                          * we encounter them, to keep the system stable.
921                          * Normally this number is small, but under extreme
922                          * pressure where there are insufficient clean pages
923                          * on the inactive queue, we may have to go all out.
924                          */
925                         int swap_pageouts_ok, vfslocked = 0;
926                         struct vnode *vp = NULL;
927                         struct mount *mp = NULL;
928
929                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
930                                 swap_pageouts_ok = 1;
931                         } else {
932                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
933                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
934                                 vm_page_count_min());
935                                                                                 
936                         }
937
938                         /*
939                          * We don't bother paging objects that are "dead".  
940                          * Those objects are in a "rundown" state.
941                          */
942                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
943                                 VM_OBJECT_UNLOCK(object);
944                                 vm_pageq_requeue(m);
945                                 continue;
946                         }
947
948                         /*
949                          * Following operations may unlock
950                          * vm_page_queue_mtx, invalidating the 'next'
951                          * pointer.  To prevent an inordinate number
952                          * of restarts we use our marker to remember
953                          * our place.
954                          *
955                          */
956                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
957                                            m, &marker, pageq);
958                         /*
959                          * The object is already known NOT to be dead.   It
960                          * is possible for the vget() to block the whole
961                          * pageout daemon, but the new low-memory handling
962                          * code should prevent it.
963                          *
964                          * The previous code skipped locked vnodes and, worse,
965                          * reordered pages in the queue.  This results in
966                          * completely non-deterministic operation and, on a
967                          * busy system, can lead to extremely non-optimal
968                          * pageouts.  For example, it can cause clean pages
969                          * to be freed and dirty pages to be moved to the end
970                          * of the queue.  Since dirty pages are also moved to
971                          * the end of the queue once-cleaned, this gives
972                          * way too large a weighting to defering the freeing
973                          * of dirty pages.
974                          *
975                          * We can't wait forever for the vnode lock, we might
976                          * deadlock due to a vn_read() getting stuck in
977                          * vm_wait while holding this vnode.  We skip the 
978                          * vnode if we can't get it in a reasonable amount
979                          * of time.
980                          */
981                         if (object->type == OBJT_VNODE) {
982                                 vp = object->handle;
983                                 if (vp->v_type == VREG &&
984                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
985                                         KASSERT(mp == NULL,
986                                             ("vm_pageout_scan: mp != NULL"));
987                                         ++pageout_lock_miss;
988                                         if (object->flags & OBJ_MIGHTBEDIRTY)
989                                                 vnodes_skipped++;
990                                         goto unlock_and_continue;
991                                 }
992                                 vm_page_unlock_queues();
993                                 vm_object_reference_locked(object);
994                                 VM_OBJECT_UNLOCK(object);
995                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
996                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
997                                     curthread)) {
998                                         VM_OBJECT_LOCK(object);
999                                         vm_page_lock_queues();
1000                                         ++pageout_lock_miss;
1001                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1002                                                 vnodes_skipped++;
1003                                         vp = NULL;
1004                                         goto unlock_and_continue;
1005                                 }
1006                                 VM_OBJECT_LOCK(object);
1007                                 vm_page_lock_queues();
1008                                 /*
1009                                  * The page might have been moved to another
1010                                  * queue during potential blocking in vget()
1011                                  * above.  The page might have been freed and
1012                                  * reused for another vnode.
1013                                  */
1014                                 if (m->queue != PQ_INACTIVE ||
1015                                     m->object != object ||
1016                                     TAILQ_NEXT(m, pageq) != &marker) {
1017                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1018                                                 vnodes_skipped++;
1019                                         goto unlock_and_continue;
1020                                 }
1021         
1022                                 /*
1023                                  * The page may have been busied during the
1024                                  * blocking in vget().  We don't move the
1025                                  * page back onto the end of the queue so that
1026                                  * statistics are more correct if we don't.
1027                                  */
1028                                 if (m->busy || (m->flags & PG_BUSY)) {
1029                                         goto unlock_and_continue;
1030                                 }
1031
1032                                 /*
1033                                  * If the page has become held it might
1034                                  * be undergoing I/O, so skip it
1035                                  */
1036                                 if (m->hold_count) {
1037                                         vm_pageq_requeue(m);
1038                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1039                                                 vnodes_skipped++;
1040                                         goto unlock_and_continue;
1041                                 }
1042                         }
1043
1044                         /*
1045                          * If a page is dirty, then it is either being washed
1046                          * (but not yet cleaned) or it is still in the
1047                          * laundry.  If it is still in the laundry, then we
1048                          * start the cleaning operation. 
1049                          *
1050                          * decrement page_shortage on success to account for
1051                          * the (future) cleaned page.  Otherwise we could wind
1052                          * up laundering or cleaning too many pages.
1053                          */
1054                         if (vm_pageout_clean(m) != 0) {
1055                                 --page_shortage;
1056                                 --maxlaunder;
1057                         }
1058 unlock_and_continue:
1059                         VM_OBJECT_UNLOCK(object);
1060                         if (mp != NULL) {
1061                                 vm_page_unlock_queues();
1062                                 if (vp != NULL)
1063                                         vput(vp);
1064                                 VFS_UNLOCK_GIANT(vfslocked);
1065                                 vm_object_deallocate(object);
1066                                 vn_finished_write(mp);
1067                                 vm_page_lock_queues();
1068                         }
1069                         next = TAILQ_NEXT(&marker, pageq);
1070                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1071                                      &marker, pageq);
1072                         continue;
1073                 }
1074                 VM_OBJECT_UNLOCK(object);
1075         }
1076
1077         /*
1078          * Compute the number of pages we want to try to move from the
1079          * active queue to the inactive queue.
1080          */
1081         page_shortage = vm_paging_target() +
1082                 cnt.v_inactive_target - cnt.v_inactive_count;
1083         page_shortage += addl_page_shortage;
1084
1085         /*
1086          * Scan the active queue for things we can deactivate. We nominally
1087          * track the per-page activity counter and use it to locate
1088          * deactivation candidates.
1089          */
1090         pcount = cnt.v_active_count;
1091         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1092
1093         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1094
1095                 KASSERT(m->queue == PQ_ACTIVE,
1096                     ("vm_pageout_scan: page %p isn't active", m));
1097
1098                 next = TAILQ_NEXT(m, pageq);
1099                 object = m->object;
1100                 if ((m->flags & PG_MARKER) != 0) {
1101                         m = next;
1102                         continue;
1103                 }
1104                 if (!VM_OBJECT_TRYLOCK(object) &&
1105                     !vm_pageout_fallback_object_lock(m, &next)) {
1106                         VM_OBJECT_UNLOCK(object);
1107                         m = next;
1108                         continue;
1109                 }
1110
1111                 /*
1112                  * Don't deactivate pages that are busy.
1113                  */
1114                 if ((m->busy != 0) ||
1115                     (m->flags & PG_BUSY) ||
1116                     (m->hold_count != 0)) {
1117                         VM_OBJECT_UNLOCK(object);
1118                         vm_pageq_requeue(m);
1119                         m = next;
1120                         continue;
1121                 }
1122
1123                 /*
1124                  * The count for pagedaemon pages is done after checking the
1125                  * page for eligibility...
1126                  */
1127                 cnt.v_pdpages++;
1128
1129                 /*
1130                  * Check to see "how much" the page has been used.
1131                  */
1132                 actcount = 0;
1133                 if (object->ref_count != 0) {
1134                         if (m->flags & PG_REFERENCED) {
1135                                 actcount += 1;
1136                         }
1137                         actcount += pmap_ts_referenced(m);
1138                         if (actcount) {
1139                                 m->act_count += ACT_ADVANCE + actcount;
1140                                 if (m->act_count > ACT_MAX)
1141                                         m->act_count = ACT_MAX;
1142                         }
1143                 }
1144
1145                 /*
1146                  * Since we have "tested" this bit, we need to clear it now.
1147                  */
1148                 vm_page_flag_clear(m, PG_REFERENCED);
1149
1150                 /*
1151                  * Only if an object is currently being used, do we use the
1152                  * page activation count stats.
1153                  */
1154                 if (actcount && (object->ref_count != 0)) {
1155                         vm_pageq_requeue(m);
1156                 } else {
1157                         m->act_count -= min(m->act_count, ACT_DECLINE);
1158                         if (vm_pageout_algorithm ||
1159                             object->ref_count == 0 ||
1160                             m->act_count == 0) {
1161                                 page_shortage--;
1162                                 if (object->ref_count == 0) {
1163                                         pmap_remove_all(m);
1164                                         if (m->dirty == 0)
1165                                                 vm_page_cache(m);
1166                                         else
1167                                                 vm_page_deactivate(m);
1168                                 } else {
1169                                         vm_page_deactivate(m);
1170                                 }
1171                         } else {
1172                                 vm_pageq_requeue(m);
1173                         }
1174                 }
1175                 VM_OBJECT_UNLOCK(object);
1176                 m = next;
1177         }
1178
1179         /*
1180          * We try to maintain some *really* free pages, this allows interrupt
1181          * code to be guaranteed space.  Since both cache and free queues 
1182          * are considered basically 'free', moving pages from cache to free
1183          * does not effect other calculations.
1184          */
1185         cache_cur = cache_last_free;
1186         cache_first_failure = -1;
1187         while (cnt.v_free_count < cnt.v_free_reserved && (cache_cur =
1188             (cache_cur + PQ_PRIME2) & PQ_L2_MASK) != cache_first_failure) {
1189                 TAILQ_FOREACH(m, &vm_page_queues[PQ_CACHE + cache_cur].pl,
1190                     pageq) {
1191                         KASSERT(m->dirty == 0,
1192                             ("Found dirty cache page %p", m));
1193                         KASSERT(!pmap_page_is_mapped(m),
1194                             ("Found mapped cache page %p", m));
1195                         KASSERT((m->flags & PG_UNMANAGED) == 0,
1196                             ("Found unmanaged cache page %p", m));
1197                         KASSERT(m->wire_count == 0,
1198                             ("Found wired cache page %p", m));
1199                         if (m->hold_count == 0 && VM_OBJECT_TRYLOCK(object =
1200                             m->object)) {
1201                                 KASSERT((m->flags & PG_BUSY) == 0 &&
1202                                     m->busy == 0, ("Found busy cache page %p",
1203                                     m));
1204                                 vm_page_free(m);
1205                                 VM_OBJECT_UNLOCK(object);
1206                                 cnt.v_dfree++;
1207                                 cache_last_free = cache_cur;
1208                                 cache_first_failure = -1;
1209                                 break;
1210                         }
1211                 }
1212                 if (m == NULL && cache_first_failure == -1)
1213                         cache_first_failure = cache_cur;
1214         }
1215         vm_page_unlock_queues();
1216 #if !defined(NO_SWAPPING)
1217         /*
1218          * Idle process swapout -- run once per second.
1219          */
1220         if (vm_swap_idle_enabled) {
1221                 static long lsec;
1222                 if (time_second != lsec) {
1223                         vm_req_vmdaemon(VM_SWAP_IDLE);
1224                         lsec = time_second;
1225                 }
1226         }
1227 #endif
1228                 
1229         /*
1230          * If we didn't get enough free pages, and we have skipped a vnode
1231          * in a writeable object, wakeup the sync daemon.  And kick swapout
1232          * if we did not get enough free pages.
1233          */
1234         if (vm_paging_target() > 0) {
1235                 if (vnodes_skipped && vm_page_count_min())
1236                         (void) speedup_syncer();
1237 #if !defined(NO_SWAPPING)
1238                 if (vm_swap_enabled && vm_page_count_target())
1239                         vm_req_vmdaemon(VM_SWAP_NORMAL);
1240 #endif
1241         }
1242
1243         /*
1244          * If we are critically low on one of RAM or swap and low on
1245          * the other, kill the largest process.  However, we avoid
1246          * doing this on the first pass in order to give ourselves a
1247          * chance to flush out dirty vnode-backed pages and to allow
1248          * active pages to be moved to the inactive queue and reclaimed.
1249          *
1250          * We keep the process bigproc locked once we find it to keep anyone
1251          * from messing with it; however, there is a possibility of
1252          * deadlock if process B is bigproc and one of it's child processes
1253          * attempts to propagate a signal to B while we are waiting for A's
1254          * lock while walking this list.  To avoid this, we don't block on
1255          * the process lock but just skip a process if it is already locked.
1256          */
1257         if (pass != 0 &&
1258             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1259              (swap_pager_full && vm_paging_target() > 0))) {
1260                 bigproc = NULL;
1261                 bigsize = 0;
1262                 sx_slock(&allproc_lock);
1263                 FOREACH_PROC_IN_SYSTEM(p) {
1264                         int breakout;
1265
1266                         if (PROC_TRYLOCK(p) == 0)
1267                                 continue;
1268                         /*
1269                          * If this is a system or protected process, skip it.
1270                          */
1271                         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1272                             (p->p_flag & P_PROTECTED) ||
1273                             ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1274                                 PROC_UNLOCK(p);
1275                                 continue;
1276                         }
1277                         /*
1278                          * If the process is in a non-running type state,
1279                          * don't touch it.  Check all the threads individually.
1280                          */
1281                         mtx_lock_spin(&sched_lock);
1282                         breakout = 0;
1283                         FOREACH_THREAD_IN_PROC(p, td) {
1284                                 if (!TD_ON_RUNQ(td) &&
1285                                     !TD_IS_RUNNING(td) &&
1286                                     !TD_IS_SLEEPING(td)) {
1287                                         breakout = 1;
1288                                         break;
1289                                 }
1290                         }
1291                         if (breakout) {
1292                                 mtx_unlock_spin(&sched_lock);
1293                                 PROC_UNLOCK(p);
1294                                 continue;
1295                         }
1296                         mtx_unlock_spin(&sched_lock);
1297                         /*
1298                          * get the process size
1299                          */
1300                         if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1301                                 PROC_UNLOCK(p);
1302                                 continue;
1303                         }
1304                         size = vmspace_swap_count(p->p_vmspace);
1305                         vm_map_unlock_read(&p->p_vmspace->vm_map);
1306                         size += vmspace_resident_count(p->p_vmspace);
1307                         /*
1308                          * if the this process is bigger than the biggest one
1309                          * remember it.
1310                          */
1311                         if (size > bigsize) {
1312                                 if (bigproc != NULL)
1313                                         PROC_UNLOCK(bigproc);
1314                                 bigproc = p;
1315                                 bigsize = size;
1316                         } else
1317                                 PROC_UNLOCK(p);
1318                 }
1319                 sx_sunlock(&allproc_lock);
1320                 if (bigproc != NULL) {
1321                         killproc(bigproc, "out of swap space");
1322                         mtx_lock_spin(&sched_lock);
1323                         sched_nice(bigproc, PRIO_MIN);
1324                         mtx_unlock_spin(&sched_lock);
1325                         PROC_UNLOCK(bigproc);
1326                         wakeup(&cnt.v_free_count);
1327                 }
1328         }
1329 }
1330
1331 /*
1332  * This routine tries to maintain the pseudo LRU active queue,
1333  * so that during long periods of time where there is no paging,
1334  * that some statistic accumulation still occurs.  This code
1335  * helps the situation where paging just starts to occur.
1336  */
1337 static void
1338 vm_pageout_page_stats()
1339 {
1340         vm_object_t object;
1341         vm_page_t m,next;
1342         int pcount,tpcount;             /* Number of pages to check */
1343         static int fullintervalcount = 0;
1344         int page_shortage;
1345
1346         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1347         page_shortage = 
1348             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1349             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1350
1351         if (page_shortage <= 0)
1352                 return;
1353
1354         pcount = cnt.v_active_count;
1355         fullintervalcount += vm_pageout_stats_interval;
1356         if (fullintervalcount < vm_pageout_full_stats_interval) {
1357                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1358                     cnt.v_page_count;
1359                 if (pcount > tpcount)
1360                         pcount = tpcount;
1361         } else {
1362                 fullintervalcount = 0;
1363         }
1364
1365         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1366         while ((m != NULL) && (pcount-- > 0)) {
1367                 int actcount;
1368
1369                 KASSERT(m->queue == PQ_ACTIVE,
1370                     ("vm_pageout_page_stats: page %p isn't active", m));
1371
1372                 next = TAILQ_NEXT(m, pageq);
1373                 object = m->object;
1374
1375                 if ((m->flags & PG_MARKER) != 0) {
1376                         m = next;
1377                         continue;
1378                 }
1379                 if (!VM_OBJECT_TRYLOCK(object) &&
1380                     !vm_pageout_fallback_object_lock(m, &next)) {
1381                         VM_OBJECT_UNLOCK(object);
1382                         m = next;
1383                         continue;
1384                 }
1385
1386                 /*
1387                  * Don't deactivate pages that are busy.
1388                  */
1389                 if ((m->busy != 0) ||
1390                     (m->flags & PG_BUSY) ||
1391                     (m->hold_count != 0)) {
1392                         VM_OBJECT_UNLOCK(object);
1393                         vm_pageq_requeue(m);
1394                         m = next;
1395                         continue;
1396                 }
1397
1398                 actcount = 0;
1399                 if (m->flags & PG_REFERENCED) {
1400                         vm_page_flag_clear(m, PG_REFERENCED);
1401                         actcount += 1;
1402                 }
1403
1404                 actcount += pmap_ts_referenced(m);
1405                 if (actcount) {
1406                         m->act_count += ACT_ADVANCE + actcount;
1407                         if (m->act_count > ACT_MAX)
1408                                 m->act_count = ACT_MAX;
1409                         vm_pageq_requeue(m);
1410                 } else {
1411                         if (m->act_count == 0) {
1412                                 /*
1413                                  * We turn off page access, so that we have
1414                                  * more accurate RSS stats.  We don't do this
1415                                  * in the normal page deactivation when the
1416                                  * system is loaded VM wise, because the
1417                                  * cost of the large number of page protect
1418                                  * operations would be higher than the value
1419                                  * of doing the operation.
1420                                  */
1421                                 pmap_remove_all(m);
1422                                 vm_page_deactivate(m);
1423                         } else {
1424                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1425                                 vm_pageq_requeue(m);
1426                         }
1427                 }
1428                 VM_OBJECT_UNLOCK(object);
1429                 m = next;
1430         }
1431 }
1432
1433 /*
1434  *      vm_pageout is the high level pageout daemon.
1435  */
1436 static void
1437 vm_pageout()
1438 {
1439         int error, pass;
1440
1441         /*
1442          * Initialize some paging parameters.
1443          */
1444         cnt.v_interrupt_free_min = 2;
1445         if (cnt.v_page_count < 2000)
1446                 vm_pageout_page_count = 8;
1447
1448         /*
1449          * v_free_reserved needs to include enough for the largest
1450          * swap pager structures plus enough for any pv_entry structs
1451          * when paging. 
1452          */
1453         if (cnt.v_page_count > 1024)
1454                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1455         else
1456                 cnt.v_free_min = 4;
1457         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1458             cnt.v_interrupt_free_min;
1459         cnt.v_free_reserved = vm_pageout_page_count +
1460             cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_L2_SIZE;
1461         cnt.v_free_severe = cnt.v_free_min / 2;
1462         cnt.v_free_min += cnt.v_free_reserved;
1463         cnt.v_free_severe += cnt.v_free_reserved;
1464
1465         /*
1466          * v_free_target and v_cache_min control pageout hysteresis.  Note
1467          * that these are more a measure of the VM cache queue hysteresis
1468          * then the VM free queue.  Specifically, v_free_target is the
1469          * high water mark (free+cache pages).
1470          *
1471          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1472          * low water mark, while v_free_min is the stop.  v_cache_min must
1473          * be big enough to handle memory needs while the pageout daemon
1474          * is signalled and run to free more pages.
1475          */
1476         if (cnt.v_free_count > 6144)
1477                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1478         else
1479                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1480
1481         if (cnt.v_free_count > 2048) {
1482                 cnt.v_cache_min = cnt.v_free_target;
1483                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1484                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1485         } else {
1486                 cnt.v_cache_min = 0;
1487                 cnt.v_cache_max = 0;
1488                 cnt.v_inactive_target = cnt.v_free_count / 4;
1489         }
1490         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1491                 cnt.v_inactive_target = cnt.v_free_count / 3;
1492
1493         /* XXX does not really belong here */
1494         if (vm_page_max_wired == 0)
1495                 vm_page_max_wired = cnt.v_free_count / 3;
1496
1497         if (vm_pageout_stats_max == 0)
1498                 vm_pageout_stats_max = cnt.v_free_target;
1499
1500         /*
1501          * Set interval in seconds for stats scan.
1502          */
1503         if (vm_pageout_stats_interval == 0)
1504                 vm_pageout_stats_interval = 5;
1505         if (vm_pageout_full_stats_interval == 0)
1506                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1507
1508         swap_pager_swap_init();
1509         pass = 0;
1510         /*
1511          * The pageout daemon is never done, so loop forever.
1512          */
1513         while (TRUE) {
1514                 vm_page_lock_queues();
1515                 /*
1516                  * If we have enough free memory, wakeup waiters.  Do
1517                  * not clear vm_pages_needed until we reach our target,
1518                  * otherwise we may be woken up over and over again and
1519                  * waste a lot of cpu.
1520                  */
1521                 if (vm_pages_needed && !vm_page_count_min()) {
1522                         if (!vm_paging_needed())
1523                                 vm_pages_needed = 0;
1524                         wakeup(&cnt.v_free_count);
1525                 }
1526                 if (vm_pages_needed) {
1527                         /*
1528                          * Still not done, take a second pass without waiting
1529                          * (unlimited dirty cleaning), otherwise sleep a bit
1530                          * and try again.
1531                          */
1532                         ++pass;
1533                         if (pass > 1)
1534                                 msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1535                                        "psleep", hz/2);
1536                 } else {
1537                         /*
1538                          * Good enough, sleep & handle stats.  Prime the pass
1539                          * for the next run.
1540                          */
1541                         if (pass > 1)
1542                                 pass = 1;
1543                         else
1544                                 pass = 0;
1545                         error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
1546                                     "psleep", vm_pageout_stats_interval * hz);
1547                         if (error && !vm_pages_needed) {
1548                                 pass = 0;
1549                                 vm_pageout_page_stats();
1550                                 vm_page_unlock_queues();
1551                                 continue;
1552                         }
1553                 }
1554                 if (vm_pages_needed)
1555                         cnt.v_pdwakeups++;
1556                 vm_page_unlock_queues();
1557                 vm_pageout_scan(pass);
1558         }
1559 }
1560
1561 /*
1562  * Unless the page queue lock is held by the caller, this function
1563  * should be regarded as advisory.  Specifically, the caller should
1564  * not msleep() on &cnt.v_free_count following this function unless
1565  * the page queue lock is held until the msleep() is performed.
1566  */
1567 void
1568 pagedaemon_wakeup()
1569 {
1570
1571         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1572                 vm_pages_needed = 1;
1573                 wakeup(&vm_pages_needed);
1574         }
1575 }
1576
1577 #if !defined(NO_SWAPPING)
1578 static void
1579 vm_req_vmdaemon(int req)
1580 {
1581         static int lastrun = 0;
1582
1583         mtx_lock(&vm_daemon_mtx);
1584         vm_pageout_req_swapout |= req;
1585         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1586                 wakeup(&vm_daemon_needed);
1587                 lastrun = ticks;
1588         }
1589         mtx_unlock(&vm_daemon_mtx);
1590 }
1591
1592 static void
1593 vm_daemon()
1594 {
1595         struct rlimit rsslim;
1596         struct proc *p;
1597         struct thread *td;
1598         int breakout, swapout_flags;
1599
1600         while (TRUE) {
1601                 mtx_lock(&vm_daemon_mtx);
1602                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1603                 swapout_flags = vm_pageout_req_swapout;
1604                 vm_pageout_req_swapout = 0;
1605                 mtx_unlock(&vm_daemon_mtx);
1606                 if (swapout_flags)
1607                         swapout_procs(swapout_flags);
1608
1609                 /*
1610                  * scan the processes for exceeding their rlimits or if
1611                  * process is swapped out -- deactivate pages
1612                  */
1613                 sx_slock(&allproc_lock);
1614                 LIST_FOREACH(p, &allproc, p_list) {
1615                         vm_pindex_t limit, size;
1616
1617                         /*
1618                          * if this is a system process or if we have already
1619                          * looked at this process, skip it.
1620                          */
1621                         PROC_LOCK(p);
1622                         if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1623                                 PROC_UNLOCK(p);
1624                                 continue;
1625                         }
1626                         /*
1627                          * if the process is in a non-running type state,
1628                          * don't touch it.
1629                          */
1630                         mtx_lock_spin(&sched_lock);
1631                         breakout = 0;
1632                         FOREACH_THREAD_IN_PROC(p, td) {
1633                                 if (!TD_ON_RUNQ(td) &&
1634                                     !TD_IS_RUNNING(td) &&
1635                                     !TD_IS_SLEEPING(td)) {
1636                                         breakout = 1;
1637                                         break;
1638                                 }
1639                         }
1640                         mtx_unlock_spin(&sched_lock);
1641                         if (breakout) {
1642                                 PROC_UNLOCK(p);
1643                                 continue;
1644                         }
1645                         /*
1646                          * get a limit
1647                          */
1648                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1649                         limit = OFF_TO_IDX(
1650                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1651
1652                         /*
1653                          * let processes that are swapped out really be
1654                          * swapped out set the limit to nothing (will force a
1655                          * swap-out.)
1656                          */
1657                         if ((p->p_sflag & PS_INMEM) == 0)
1658                                 limit = 0;      /* XXX */
1659                         PROC_UNLOCK(p);
1660
1661                         size = vmspace_resident_count(p->p_vmspace);
1662                         if (limit >= 0 && size >= limit) {
1663                                 vm_pageout_map_deactivate_pages(
1664                                     &p->p_vmspace->vm_map, limit);
1665                         }
1666                 }
1667                 sx_sunlock(&allproc_lock);
1668         }
1669 }
1670 #endif                  /* !defined(NO_SWAPPING) */