]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Start implementing queue state updates using fcmpset loops.
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72
73 /*
74  *      The proverbial page-out daemon.
75  */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/kthread.h>
90 #include <sys/ktr.h>
91 #include <sys/mount.h>
92 #include <sys/racct.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sdt.h>
96 #include <sys/signalvar.h>
97 #include <sys/smp.h>
98 #include <sys/time.h>
99 #include <sys/vnode.h>
100 #include <sys/vmmeter.h>
101 #include <sys/rwlock.h>
102 #include <sys/sx.h>
103 #include <sys/sysctl.h>
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_pagequeue.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117
118 /*
119  * System initialization
120  */
121
122 /* the kernel process "vm_pageout"*/
123 static void vm_pageout(void);
124 static void vm_pageout_init(void);
125 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
126 static int vm_pageout_cluster(vm_page_t m);
127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
128     int starting_page_shortage);
129
130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
131     NULL);
132
133 struct proc *pageproc;
134
135 static struct kproc_desc page_kp = {
136         "pagedaemon",
137         vm_pageout,
138         &pageproc
139 };
140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
141     &page_kp);
142
143 SDT_PROVIDER_DEFINE(vm);
144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
145
146 /* Pagedaemon activity rates, in subdivisions of one second. */
147 #define VM_LAUNDER_RATE         10
148 #define VM_INACT_SCAN_RATE      10
149
150 static int vm_pageout_oom_seq = 12;
151
152 static int vm_pageout_update_period;
153 static int disable_swap_pageouts;
154 static int lowmem_period = 10;
155 static int swapdev_enabled;
156
157 static int vm_panic_on_oom = 0;
158
159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
160         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
161         "panic on out of memory instead of killing the largest process");
162
163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
164         CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
165         "Maximum active LRU update period");
166   
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168         "Low memory callback period");
169
170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
171         CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
172
173 static int pageout_lock_miss;
174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
175         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
178         CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
179         "back-to-back calls to oom detector to start OOM");
180
181 static int act_scan_laundry_weight = 3;
182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
183     &act_scan_laundry_weight, 0,
184     "weight given to clean vs. dirty pages in active queue scans");
185
186 static u_int vm_background_launder_rate = 4096;
187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
188     &vm_background_launder_rate, 0,
189     "background laundering rate, in kilobytes per second");
190
191 static u_int vm_background_launder_max = 20 * 1024;
192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
193     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
194
195 int vm_pageout_page_count = 32;
196
197 u_long vm_page_max_user_wired;
198 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
199     &vm_page_max_user_wired, 0,
200     "system-wide limit to user-wired page count");
201
202 static u_int isqrt(u_int num);
203 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
204     bool in_shortfall);
205 static void vm_pageout_laundry_worker(void *arg);
206
207 struct scan_state {
208         struct vm_batchqueue bq;
209         struct vm_pagequeue *pq;
210         vm_page_t       marker;
211         int             maxscan;
212         int             scanned;
213 };
214
215 static void
216 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
217     vm_page_t marker, vm_page_t after, int maxscan)
218 {
219
220         vm_pagequeue_assert_locked(pq);
221         KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
222             ("marker %p already enqueued", marker));
223
224         if (after == NULL)
225                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
226         else
227                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
228         vm_page_aflag_set(marker, PGA_ENQUEUED);
229
230         vm_batchqueue_init(&ss->bq);
231         ss->pq = pq;
232         ss->marker = marker;
233         ss->maxscan = maxscan;
234         ss->scanned = 0;
235         vm_pagequeue_unlock(pq);
236 }
237
238 static void
239 vm_pageout_end_scan(struct scan_state *ss)
240 {
241         struct vm_pagequeue *pq;
242
243         pq = ss->pq;
244         vm_pagequeue_assert_locked(pq);
245         KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
246             ("marker %p not enqueued", ss->marker));
247
248         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
249         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
250         pq->pq_pdpages += ss->scanned;
251 }
252
253 /*
254  * Add a small number of queued pages to a batch queue for later processing
255  * without the corresponding queue lock held.  The caller must have enqueued a
256  * marker page at the desired start point for the scan.  Pages will be
257  * physically dequeued if the caller so requests.  Otherwise, the returned
258  * batch may contain marker pages, and it is up to the caller to handle them.
259  *
260  * When processing the batch queue, vm_page_queue() must be used to
261  * determine whether the page has been logically dequeued by another thread.
262  * Once this check is performed, the page lock guarantees that the page will
263  * not be disassociated from the queue.
264  */
265 static __always_inline void
266 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
267 {
268         struct vm_pagequeue *pq;
269         vm_page_t m, marker, n;
270
271         marker = ss->marker;
272         pq = ss->pq;
273
274         KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
275             ("marker %p not enqueued", ss->marker));
276
277         vm_pagequeue_lock(pq);
278         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
279             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
280             m = n, ss->scanned++) {
281                 n = TAILQ_NEXT(m, plinks.q);
282                 if ((m->flags & PG_MARKER) == 0) {
283                         KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
284                             ("page %p not enqueued", m));
285                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
286                             ("Fictitious page %p cannot be in page queue", m));
287                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
288                             ("Unmanaged page %p cannot be in page queue", m));
289                 } else if (dequeue)
290                         continue;
291
292                 (void)vm_batchqueue_insert(&ss->bq, m);
293                 if (dequeue) {
294                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
295                         vm_page_aflag_clear(m, PGA_ENQUEUED);
296                 }
297         }
298         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
299         if (__predict_true(m != NULL))
300                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
301         else
302                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
303         if (dequeue)
304                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
305         vm_pagequeue_unlock(pq);
306 }
307
308 /*
309  * Return the next page to be scanned, or NULL if the scan is complete.
310  */
311 static __always_inline vm_page_t
312 vm_pageout_next(struct scan_state *ss, const bool dequeue)
313 {
314
315         if (ss->bq.bq_cnt == 0)
316                 vm_pageout_collect_batch(ss, dequeue);
317         return (vm_batchqueue_pop(&ss->bq));
318 }
319
320 /*
321  * Scan for pages at adjacent offsets within the given page's object that are
322  * eligible for laundering, form a cluster of these pages and the given page,
323  * and launder that cluster.
324  */
325 static int
326 vm_pageout_cluster(vm_page_t m)
327 {
328         vm_object_t object;
329         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
330         vm_pindex_t pindex;
331         int ib, is, page_base, pageout_count;
332
333         object = m->object;
334         VM_OBJECT_ASSERT_WLOCKED(object);
335         pindex = m->pindex;
336
337         vm_page_assert_xbusied(m);
338
339         mc[vm_pageout_page_count] = pb = ps = m;
340         pageout_count = 1;
341         page_base = vm_pageout_page_count;
342         ib = 1;
343         is = 1;
344
345         /*
346          * We can cluster only if the page is not clean, busy, or held, and
347          * the page is in the laundry queue.
348          *
349          * During heavy mmap/modification loads the pageout
350          * daemon can really fragment the underlying file
351          * due to flushing pages out of order and not trying to
352          * align the clusters (which leaves sporadic out-of-order
353          * holes).  To solve this problem we do the reverse scan
354          * first and attempt to align our cluster, then do a 
355          * forward scan if room remains.
356          */
357 more:
358         while (ib != 0 && pageout_count < vm_pageout_page_count) {
359                 if (ib > pindex) {
360                         ib = 0;
361                         break;
362                 }
363                 if ((p = vm_page_prev(pb)) == NULL ||
364                     vm_page_tryxbusy(p) == 0) {
365                         ib = 0;
366                         break;
367                 }
368                 if (vm_page_wired(p)) {
369                         ib = 0;
370                         vm_page_xunbusy(p);
371                         break;
372                 }
373                 vm_page_test_dirty(p);
374                 if (p->dirty == 0) {
375                         ib = 0;
376                         vm_page_xunbusy(p);
377                         break;
378                 }
379                 vm_page_lock(p);
380                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
381                         vm_page_unlock(p);
382                         vm_page_xunbusy(p);
383                         ib = 0;
384                         break;
385                 }
386                 vm_page_unlock(p);
387                 mc[--page_base] = pb = p;
388                 ++pageout_count;
389                 ++ib;
390
391                 /*
392                  * We are at an alignment boundary.  Stop here, and switch
393                  * directions.  Do not clear ib.
394                  */
395                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
396                         break;
397         }
398         while (pageout_count < vm_pageout_page_count && 
399             pindex + is < object->size) {
400                 if ((p = vm_page_next(ps)) == NULL ||
401                     vm_page_tryxbusy(p) == 0)
402                         break;
403                 if (vm_page_wired(p)) {
404                         vm_page_xunbusy(p);
405                         break;
406                 }
407                 vm_page_test_dirty(p);
408                 if (p->dirty == 0) {
409                         vm_page_xunbusy(p);
410                         break;
411                 }
412                 vm_page_lock(p);
413                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
414                         vm_page_unlock(p);
415                         vm_page_xunbusy(p);
416                         break;
417                 }
418                 vm_page_unlock(p);
419                 mc[page_base + pageout_count] = ps = p;
420                 ++pageout_count;
421                 ++is;
422         }
423
424         /*
425          * If we exhausted our forward scan, continue with the reverse scan
426          * when possible, even past an alignment boundary.  This catches
427          * boundary conditions.
428          */
429         if (ib != 0 && pageout_count < vm_pageout_page_count)
430                 goto more;
431
432         return (vm_pageout_flush(&mc[page_base], pageout_count,
433             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
434 }
435
436 /*
437  * vm_pageout_flush() - launder the given pages
438  *
439  *      The given pages are laundered.  Note that we setup for the start of
440  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
441  *      reference count all in here rather then in the parent.  If we want
442  *      the parent to do more sophisticated things we may have to change
443  *      the ordering.
444  *
445  *      Returned runlen is the count of pages between mreq and first
446  *      page after mreq with status VM_PAGER_AGAIN.
447  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
448  *      for any page in runlen set.
449  */
450 int
451 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
452     boolean_t *eio)
453 {
454         vm_object_t object = mc[0]->object;
455         int pageout_status[count];
456         int numpagedout = 0;
457         int i, runlen;
458
459         VM_OBJECT_ASSERT_WLOCKED(object);
460
461         /*
462          * Initiate I/O.  Mark the pages shared busy and verify that they're
463          * valid and read-only.
464          *
465          * We do not have to fixup the clean/dirty bits here... we can
466          * allow the pager to do it after the I/O completes.
467          *
468          * NOTE! mc[i]->dirty may be partial or fragmented due to an
469          * edge case with file fragments.
470          */
471         for (i = 0; i < count; i++) {
472                 KASSERT(vm_page_all_valid(mc[i]),
473                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
474                         mc[i], i, count));
475                 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
476                     ("vm_pageout_flush: writeable page %p", mc[i]));
477                 vm_page_busy_downgrade(mc[i]);
478         }
479         vm_object_pip_add(object, count);
480
481         vm_pager_put_pages(object, mc, count, flags, pageout_status);
482
483         runlen = count - mreq;
484         if (eio != NULL)
485                 *eio = FALSE;
486         for (i = 0; i < count; i++) {
487                 vm_page_t mt = mc[i];
488
489                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
490                     !pmap_page_is_write_mapped(mt),
491                     ("vm_pageout_flush: page %p is not write protected", mt));
492                 switch (pageout_status[i]) {
493                 case VM_PAGER_OK:
494                         vm_page_lock(mt);
495                         if (vm_page_in_laundry(mt))
496                                 vm_page_deactivate_noreuse(mt);
497                         vm_page_unlock(mt);
498                         /* FALLTHROUGH */
499                 case VM_PAGER_PEND:
500                         numpagedout++;
501                         break;
502                 case VM_PAGER_BAD:
503                         /*
504                          * The page is outside the object's range.  We pretend
505                          * that the page out worked and clean the page, so the
506                          * changes will be lost if the page is reclaimed by
507                          * the page daemon.
508                          */
509                         vm_page_undirty(mt);
510                         vm_page_lock(mt);
511                         if (vm_page_in_laundry(mt))
512                                 vm_page_deactivate_noreuse(mt);
513                         vm_page_unlock(mt);
514                         break;
515                 case VM_PAGER_ERROR:
516                 case VM_PAGER_FAIL:
517                         /*
518                          * If the page couldn't be paged out to swap because the
519                          * pager wasn't able to find space, place the page in
520                          * the PQ_UNSWAPPABLE holding queue.  This is an
521                          * optimization that prevents the page daemon from
522                          * wasting CPU cycles on pages that cannot be reclaimed
523                          * becase no swap device is configured.
524                          *
525                          * Otherwise, reactivate the page so that it doesn't
526                          * clog the laundry and inactive queues.  (We will try
527                          * paging it out again later.)
528                          */
529                         vm_page_lock(mt);
530                         if (object->type == OBJT_SWAP &&
531                             pageout_status[i] == VM_PAGER_FAIL) {
532                                 vm_page_unswappable(mt);
533                                 numpagedout++;
534                         } else
535                                 vm_page_activate(mt);
536                         vm_page_unlock(mt);
537                         if (eio != NULL && i >= mreq && i - mreq < runlen)
538                                 *eio = TRUE;
539                         break;
540                 case VM_PAGER_AGAIN:
541                         if (i >= mreq && i - mreq < runlen)
542                                 runlen = i - mreq;
543                         break;
544                 }
545
546                 /*
547                  * If the operation is still going, leave the page busy to
548                  * block all other accesses. Also, leave the paging in
549                  * progress indicator set so that we don't attempt an object
550                  * collapse.
551                  */
552                 if (pageout_status[i] != VM_PAGER_PEND) {
553                         vm_object_pip_wakeup(object);
554                         vm_page_sunbusy(mt);
555                 }
556         }
557         if (prunlen != NULL)
558                 *prunlen = runlen;
559         return (numpagedout);
560 }
561
562 static void
563 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
564 {
565
566         atomic_store_rel_int(&swapdev_enabled, 1);
567 }
568
569 static void
570 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
571 {
572
573         if (swap_pager_nswapdev() == 1)
574                 atomic_store_rel_int(&swapdev_enabled, 0);
575 }
576
577 /*
578  * Attempt to acquire all of the necessary locks to launder a page and
579  * then call through the clustering layer to PUTPAGES.  Wait a short
580  * time for a vnode lock.
581  *
582  * Requires the page and object lock on entry, releases both before return.
583  * Returns 0 on success and an errno otherwise.
584  */
585 static int
586 vm_pageout_clean(vm_page_t m, int *numpagedout)
587 {
588         struct vnode *vp;
589         struct mount *mp;
590         vm_object_t object;
591         vm_pindex_t pindex;
592         int error, lockmode;
593
594         vm_page_assert_locked(m);
595         object = m->object;
596         VM_OBJECT_ASSERT_WLOCKED(object);
597         error = 0;
598         vp = NULL;
599         mp = NULL;
600
601         /*
602          * The object is already known NOT to be dead.   It
603          * is possible for the vget() to block the whole
604          * pageout daemon, but the new low-memory handling
605          * code should prevent it.
606          *
607          * We can't wait forever for the vnode lock, we might
608          * deadlock due to a vn_read() getting stuck in
609          * vm_wait while holding this vnode.  We skip the 
610          * vnode if we can't get it in a reasonable amount
611          * of time.
612          */
613         if (object->type == OBJT_VNODE) {
614                 vm_page_unlock(m);
615                 vm_page_xunbusy(m);
616                 vp = object->handle;
617                 if (vp->v_type == VREG &&
618                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
619                         mp = NULL;
620                         error = EDEADLK;
621                         goto unlock_all;
622                 }
623                 KASSERT(mp != NULL,
624                     ("vp %p with NULL v_mount", vp));
625                 vm_object_reference_locked(object);
626                 pindex = m->pindex;
627                 VM_OBJECT_WUNLOCK(object);
628                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
629                     LK_SHARED : LK_EXCLUSIVE;
630                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
631                         vp = NULL;
632                         error = EDEADLK;
633                         goto unlock_mp;
634                 }
635                 VM_OBJECT_WLOCK(object);
636
637                 /*
638                  * Ensure that the object and vnode were not disassociated
639                  * while locks were dropped.
640                  */
641                 if (vp->v_object != object) {
642                         error = ENOENT;
643                         goto unlock_all;
644                 }
645                 vm_page_lock(m);
646
647                 /*
648                  * While the object and page were unlocked, the page
649                  * may have been:
650                  * (1) moved to a different queue,
651                  * (2) reallocated to a different object,
652                  * (3) reallocated to a different offset, or
653                  * (4) cleaned.
654                  */
655                 if (!vm_page_in_laundry(m) || m->object != object ||
656                     m->pindex != pindex || m->dirty == 0) {
657                         vm_page_unlock(m);
658                         error = ENXIO;
659                         goto unlock_all;
660                 }
661
662                 /*
663                  * The page may have been busied while the object and page
664                  * locks were released.
665                  */
666                 if (vm_page_tryxbusy(m) == 0) {
667                         vm_page_unlock(m);
668                         error = EBUSY;
669                         goto unlock_all;
670                 }
671         }
672
673         /*
674          * Remove all writeable mappings, failing if the page is wired.
675          */
676         if (!vm_page_try_remove_write(m)) {
677                 vm_page_xunbusy(m);
678                 vm_page_unlock(m);
679                 error = EBUSY;
680                 goto unlock_all;
681         }
682         vm_page_unlock(m);
683
684         /*
685          * If a page is dirty, then it is either being washed
686          * (but not yet cleaned) or it is still in the
687          * laundry.  If it is still in the laundry, then we
688          * start the cleaning operation. 
689          */
690         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
691                 error = EIO;
692
693 unlock_all:
694         VM_OBJECT_WUNLOCK(object);
695
696 unlock_mp:
697         vm_page_lock_assert(m, MA_NOTOWNED);
698         if (mp != NULL) {
699                 if (vp != NULL)
700                         vput(vp);
701                 vm_object_deallocate(object);
702                 vn_finished_write(mp);
703         }
704
705         return (error);
706 }
707
708 /*
709  * Attempt to launder the specified number of pages.
710  *
711  * Returns the number of pages successfully laundered.
712  */
713 static int
714 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
715 {
716         struct scan_state ss;
717         struct vm_pagequeue *pq;
718         struct mtx *mtx;
719         vm_object_t object;
720         vm_page_t m, marker;
721         vm_page_astate_t new, old;
722         int act_delta, error, numpagedout, queue, refs, starting_target;
723         int vnodes_skipped;
724         bool pageout_ok;
725
726         mtx = NULL;
727         object = NULL;
728         starting_target = launder;
729         vnodes_skipped = 0;
730
731         /*
732          * Scan the laundry queues for pages eligible to be laundered.  We stop
733          * once the target number of dirty pages have been laundered, or once
734          * we've reached the end of the queue.  A single iteration of this loop
735          * may cause more than one page to be laundered because of clustering.
736          *
737          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
738          * swap devices are configured.
739          */
740         if (atomic_load_acq_int(&swapdev_enabled))
741                 queue = PQ_UNSWAPPABLE;
742         else
743                 queue = PQ_LAUNDRY;
744
745 scan:
746         marker = &vmd->vmd_markers[queue];
747         pq = &vmd->vmd_pagequeues[queue];
748         vm_pagequeue_lock(pq);
749         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
750         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
751                 if (__predict_false((m->flags & PG_MARKER) != 0))
752                         continue;
753
754                 vm_page_change_lock(m, &mtx);
755
756 recheck:
757                 /*
758                  * The page may have been disassociated from the queue
759                  * or even freed while locks were dropped.  We thus must be
760                  * careful whenever modifying page state.  Once the object lock
761                  * has been acquired, we have a stable reference to the page.
762                  */
763                 if (vm_page_queue(m) != queue)
764                         continue;
765
766                 /*
767                  * A requeue was requested, so this page gets a second
768                  * chance.
769                  */
770                 if ((m->a.flags & PGA_REQUEUE) != 0) {
771                         vm_page_pqbatch_submit(m, queue);
772                         continue;
773                 }
774
775                 /*
776                  * Wired pages may not be freed.  Complete their removal
777                  * from the queue now to avoid needless revisits during
778                  * future scans.  This check is racy and must be reverified once
779                  * we hold the object lock and have verified that the page
780                  * is not busy.
781                  */
782                 if (vm_page_wired(m)) {
783                         vm_page_dequeue_deferred(m);
784                         continue;
785                 }
786
787                 if (object != m->object) {
788                         if (object != NULL)
789                                 VM_OBJECT_WUNLOCK(object);
790
791                         /*
792                          * A page's object pointer may be set to NULL before
793                          * the object lock is acquired.
794                          */
795                         object = (vm_object_t)atomic_load_ptr(&m->object);
796                         if (object != NULL && !VM_OBJECT_TRYWLOCK(object)) {
797                                 mtx_unlock(mtx);
798                                 /* Depends on type-stability. */
799                                 VM_OBJECT_WLOCK(object);
800                                 mtx_lock(mtx);
801                                 goto recheck;
802                         }
803                 }
804                 if (__predict_false(m->object == NULL))
805                         /*
806                          * The page has been removed from its object.
807                          */
808                         continue;
809                 KASSERT(m->object == object, ("page %p does not belong to %p",
810                     m, object));
811
812                 if (vm_page_tryxbusy(m) == 0)
813                         continue;
814
815                 /*
816                  * Re-check for wirings now that we hold the object lock and
817                  * have verified that the page is unbusied.  If the page is
818                  * mapped, it may still be wired by pmap lookups.  The call to
819                  * vm_page_try_remove_all() below atomically checks for such
820                  * wirings and removes mappings.  If the page is unmapped, the
821                  * wire count is guaranteed not to increase.
822                  */
823                 if (__predict_false(vm_page_wired(m))) {
824                         vm_page_dequeue_deferred(m);
825                         goto skip_page;
826                 }
827
828                 /*
829                  * Invalid pages can be easily freed.  They cannot be
830                  * mapped; vm_page_free() asserts this.
831                  */
832                 if (vm_page_none_valid(m))
833                         goto free_page;
834
835                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
836
837                 for (old = vm_page_astate_load(m);;) {
838                         /*
839                          * Check to see if the page has been removed from the
840                          * queue since the first such check.  Leave it alone if
841                          * so, discarding any references collected by
842                          * pmap_ts_referenced().
843                          */
844                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
845                                 goto skip_page;
846
847                         new = old;
848                         act_delta = refs;
849                         if ((old.flags & PGA_REFERENCED) != 0) {
850                                 new.flags &= ~PGA_REFERENCED;
851                                 act_delta++;
852                         }
853                         if (act_delta == 0) {
854                                 ;
855                         } else if (object->ref_count != 0) {
856                                 /*
857                                  * Increase the activation count if the page was
858                                  * referenced while in the laundry queue.  This
859                                  * makes it less likely that the page will be
860                                  * returned prematurely to the laundry queue.
861                                  */
862                                 new.act_count += ACT_ADVANCE +
863                                     act_delta;
864                                 if (new.act_count > ACT_MAX)
865                                         new.act_count = ACT_MAX;
866
867                                 new.flags |= PGA_REQUEUE;
868                                 new.queue = PQ_ACTIVE;
869                                 if (!vm_page_pqstate_commit(m, &old, new))
870                                         continue;
871
872                                 /*
873                                  * If this was a background laundering, count
874                                  * activated pages towards our target.  The
875                                  * purpose of background laundering is to ensure
876                                  * that pages are eventually cycled through the
877                                  * laundry queue, and an activation is a valid
878                                  * way out.
879                                  */
880                                 if (!in_shortfall)
881                                         launder--;
882                                 VM_CNT_INC(v_reactivated);
883                                 goto skip_page;
884                         } else if ((object->flags & OBJ_DEAD) == 0) {
885                                 new.flags |= PGA_REQUEUE;
886                                 if (!vm_page_pqstate_commit(m, &old, new))
887                                         continue;
888                                 goto skip_page;
889                         }
890                         break;
891                 }
892
893                 /*
894                  * If the page appears to be clean at the machine-independent
895                  * layer, then remove all of its mappings from the pmap in
896                  * anticipation of freeing it.  If, however, any of the page's
897                  * mappings allow write access, then the page may still be
898                  * modified until the last of those mappings are removed.
899                  */
900                 if (object->ref_count != 0) {
901                         vm_page_test_dirty(m);
902                         if (m->dirty == 0 && !vm_page_try_remove_all(m)) {
903                                 vm_page_dequeue_deferred(m);
904                                 goto skip_page;
905                         }
906                 }
907
908                 /*
909                  * Clean pages are freed, and dirty pages are paged out unless
910                  * they belong to a dead object.  Requeueing dirty pages from
911                  * dead objects is pointless, as they are being paged out and
912                  * freed by the thread that destroyed the object.
913                  */
914                 if (m->dirty == 0) {
915 free_page:
916                         vm_page_free(m);
917                         VM_CNT_INC(v_dfree);
918                 } else if ((object->flags & OBJ_DEAD) == 0) {
919                         if (object->type != OBJT_SWAP &&
920                             object->type != OBJT_DEFAULT)
921                                 pageout_ok = true;
922                         else if (disable_swap_pageouts)
923                                 pageout_ok = false;
924                         else
925                                 pageout_ok = true;
926                         if (!pageout_ok) {
927                                 vm_page_launder(m);
928                                 goto skip_page;
929                         }
930
931                         /*
932                          * Form a cluster with adjacent, dirty pages from the
933                          * same object, and page out that entire cluster.
934                          *
935                          * The adjacent, dirty pages must also be in the
936                          * laundry.  However, their mappings are not checked
937                          * for new references.  Consequently, a recently
938                          * referenced page may be paged out.  However, that
939                          * page will not be prematurely reclaimed.  After page
940                          * out, the page will be placed in the inactive queue,
941                          * where any new references will be detected and the
942                          * page reactivated.
943                          */
944                         error = vm_pageout_clean(m, &numpagedout);
945                         if (error == 0) {
946                                 launder -= numpagedout;
947                                 ss.scanned += numpagedout;
948                         } else if (error == EDEADLK) {
949                                 pageout_lock_miss++;
950                                 vnodes_skipped++;
951                         }
952                         mtx = NULL;
953                         object = NULL;
954                 } else {
955 skip_page:
956                         vm_page_xunbusy(m);
957                 }
958         }
959         if (mtx != NULL) {
960                 mtx_unlock(mtx);
961                 mtx = NULL;
962         }
963         if (object != NULL) {
964                 VM_OBJECT_WUNLOCK(object);
965                 object = NULL;
966         }
967         vm_pagequeue_lock(pq);
968         vm_pageout_end_scan(&ss);
969         vm_pagequeue_unlock(pq);
970
971         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
972                 queue = PQ_LAUNDRY;
973                 goto scan;
974         }
975
976         /*
977          * Wakeup the sync daemon if we skipped a vnode in a writeable object
978          * and we didn't launder enough pages.
979          */
980         if (vnodes_skipped > 0 && launder > 0)
981                 (void)speedup_syncer();
982
983         return (starting_target - launder);
984 }
985
986 /*
987  * Compute the integer square root.
988  */
989 static u_int
990 isqrt(u_int num)
991 {
992         u_int bit, root, tmp;
993
994         bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
995         root = 0;
996         while (bit != 0) {
997                 tmp = root + bit;
998                 root >>= 1;
999                 if (num >= tmp) {
1000                         num -= tmp;
1001                         root += bit;
1002                 }
1003                 bit >>= 2;
1004         }
1005         return (root);
1006 }
1007
1008 /*
1009  * Perform the work of the laundry thread: periodically wake up and determine
1010  * whether any pages need to be laundered.  If so, determine the number of pages
1011  * that need to be laundered, and launder them.
1012  */
1013 static void
1014 vm_pageout_laundry_worker(void *arg)
1015 {
1016         struct vm_domain *vmd;
1017         struct vm_pagequeue *pq;
1018         uint64_t nclean, ndirty, nfreed;
1019         int domain, last_target, launder, shortfall, shortfall_cycle, target;
1020         bool in_shortfall;
1021
1022         domain = (uintptr_t)arg;
1023         vmd = VM_DOMAIN(domain);
1024         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1025         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1026
1027         shortfall = 0;
1028         in_shortfall = false;
1029         shortfall_cycle = 0;
1030         last_target = target = 0;
1031         nfreed = 0;
1032
1033         /*
1034          * Calls to these handlers are serialized by the swap syscall lock.
1035          */
1036         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1037             EVENTHANDLER_PRI_ANY);
1038         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1039             EVENTHANDLER_PRI_ANY);
1040
1041         /*
1042          * The pageout laundry worker is never done, so loop forever.
1043          */
1044         for (;;) {
1045                 KASSERT(target >= 0, ("negative target %d", target));
1046                 KASSERT(shortfall_cycle >= 0,
1047                     ("negative cycle %d", shortfall_cycle));
1048                 launder = 0;
1049
1050                 /*
1051                  * First determine whether we need to launder pages to meet a
1052                  * shortage of free pages.
1053                  */
1054                 if (shortfall > 0) {
1055                         in_shortfall = true;
1056                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1057                         target = shortfall;
1058                 } else if (!in_shortfall)
1059                         goto trybackground;
1060                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1061                         /*
1062                          * We recently entered shortfall and began laundering
1063                          * pages.  If we have completed that laundering run
1064                          * (and we are no longer in shortfall) or we have met
1065                          * our laundry target through other activity, then we
1066                          * can stop laundering pages.
1067                          */
1068                         in_shortfall = false;
1069                         target = 0;
1070                         goto trybackground;
1071                 }
1072                 launder = target / shortfall_cycle--;
1073                 goto dolaundry;
1074
1075                 /*
1076                  * There's no immediate need to launder any pages; see if we
1077                  * meet the conditions to perform background laundering:
1078                  *
1079                  * 1. The ratio of dirty to clean inactive pages exceeds the
1080                  *    background laundering threshold, or
1081                  * 2. we haven't yet reached the target of the current
1082                  *    background laundering run.
1083                  *
1084                  * The background laundering threshold is not a constant.
1085                  * Instead, it is a slowly growing function of the number of
1086                  * clean pages freed by the page daemon since the last
1087                  * background laundering.  Thus, as the ratio of dirty to
1088                  * clean inactive pages grows, the amount of memory pressure
1089                  * required to trigger laundering decreases.  We ensure
1090                  * that the threshold is non-zero after an inactive queue
1091                  * scan, even if that scan failed to free a single clean page.
1092                  */
1093 trybackground:
1094                 nclean = vmd->vmd_free_count +
1095                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1096                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1097                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1098                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1099                         target = vmd->vmd_background_launder_target;
1100                 }
1101
1102                 /*
1103                  * We have a non-zero background laundering target.  If we've
1104                  * laundered up to our maximum without observing a page daemon
1105                  * request, just stop.  This is a safety belt that ensures we
1106                  * don't launder an excessive amount if memory pressure is low
1107                  * and the ratio of dirty to clean pages is large.  Otherwise,
1108                  * proceed at the background laundering rate.
1109                  */
1110                 if (target > 0) {
1111                         if (nfreed > 0) {
1112                                 nfreed = 0;
1113                                 last_target = target;
1114                         } else if (last_target - target >=
1115                             vm_background_launder_max * PAGE_SIZE / 1024) {
1116                                 target = 0;
1117                         }
1118                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1119                         launder /= VM_LAUNDER_RATE;
1120                         if (launder > target)
1121                                 launder = target;
1122                 }
1123
1124 dolaundry:
1125                 if (launder > 0) {
1126                         /*
1127                          * Because of I/O clustering, the number of laundered
1128                          * pages could exceed "target" by the maximum size of
1129                          * a cluster minus one. 
1130                          */
1131                         target -= min(vm_pageout_launder(vmd, launder,
1132                             in_shortfall), target);
1133                         pause("laundp", hz / VM_LAUNDER_RATE);
1134                 }
1135
1136                 /*
1137                  * If we're not currently laundering pages and the page daemon
1138                  * hasn't posted a new request, sleep until the page daemon
1139                  * kicks us.
1140                  */
1141                 vm_pagequeue_lock(pq);
1142                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1143                         (void)mtx_sleep(&vmd->vmd_laundry_request,
1144                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1145
1146                 /*
1147                  * If the pagedaemon has indicated that it's in shortfall, start
1148                  * a shortfall laundering unless we're already in the middle of
1149                  * one.  This may preempt a background laundering.
1150                  */
1151                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1152                     (!in_shortfall || shortfall_cycle == 0)) {
1153                         shortfall = vm_laundry_target(vmd) +
1154                             vmd->vmd_pageout_deficit;
1155                         target = 0;
1156                 } else
1157                         shortfall = 0;
1158
1159                 if (target == 0)
1160                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1161                 nfreed += vmd->vmd_clean_pages_freed;
1162                 vmd->vmd_clean_pages_freed = 0;
1163                 vm_pagequeue_unlock(pq);
1164         }
1165 }
1166
1167 /*
1168  * Compute the number of pages we want to try to move from the
1169  * active queue to either the inactive or laundry queue.
1170  *
1171  * When scanning active pages during a shortage, we make clean pages
1172  * count more heavily towards the page shortage than dirty pages.
1173  * This is because dirty pages must be laundered before they can be
1174  * reused and thus have less utility when attempting to quickly
1175  * alleviate a free page shortage.  However, this weighting also
1176  * causes the scan to deactivate dirty pages more aggressively,
1177  * improving the effectiveness of clustering.
1178  */
1179 static int
1180 vm_pageout_active_target(struct vm_domain *vmd)
1181 {
1182         int shortage;
1183
1184         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1185             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1186             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1187         shortage *= act_scan_laundry_weight;
1188         return (shortage);
1189 }
1190
1191 /*
1192  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1193  * small portion of the queue in order to maintain quasi-LRU.
1194  */
1195 static void
1196 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1197 {
1198         struct scan_state ss;
1199         struct mtx *mtx;
1200         vm_object_t object;
1201         vm_page_t m, marker;
1202         struct vm_pagequeue *pq;
1203         vm_page_astate_t old, new;
1204         long min_scan;
1205         int act_delta, max_scan, ps_delta, refs, scan_tick;
1206         uint8_t nqueue;
1207
1208         marker = &vmd->vmd_markers[PQ_ACTIVE];
1209         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1210         vm_pagequeue_lock(pq);
1211
1212         /*
1213          * If we're just idle polling attempt to visit every
1214          * active page within 'update_period' seconds.
1215          */
1216         scan_tick = ticks;
1217         if (vm_pageout_update_period != 0) {
1218                 min_scan = pq->pq_cnt;
1219                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1220                 min_scan /= hz * vm_pageout_update_period;
1221         } else
1222                 min_scan = 0;
1223         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1224                 vmd->vmd_last_active_scan = scan_tick;
1225
1226         /*
1227          * Scan the active queue for pages that can be deactivated.  Update
1228          * the per-page activity counter and use it to identify deactivation
1229          * candidates.  Held pages may be deactivated.
1230          *
1231          * To avoid requeuing each page that remains in the active queue, we
1232          * implement the CLOCK algorithm.  To keep the implementation of the
1233          * enqueue operation consistent for all page queues, we use two hands,
1234          * represented by marker pages. Scans begin at the first hand, which
1235          * precedes the second hand in the queue.  When the two hands meet,
1236          * they are moved back to the head and tail of the queue, respectively,
1237          * and scanning resumes.
1238          */
1239         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1240         mtx = NULL;
1241 act_scan:
1242         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1243         while ((m = vm_pageout_next(&ss, false)) != NULL) {
1244                 if (__predict_false(m == &vmd->vmd_clock[1])) {
1245                         vm_pagequeue_lock(pq);
1246                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1247                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1248                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1249                             plinks.q);
1250                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1251                             plinks.q);
1252                         max_scan -= ss.scanned;
1253                         vm_pageout_end_scan(&ss);
1254                         goto act_scan;
1255                 }
1256                 if (__predict_false((m->flags & PG_MARKER) != 0))
1257                         continue;
1258
1259                 vm_page_change_lock(m, &mtx);
1260
1261                 /*
1262                  * The page may have been disassociated from the queue
1263                  * or even freed while locks were dropped.  We thus must be
1264                  * careful whenever modifying page state.  Once the object lock
1265                  * has been acquired, we have a stable reference to the page.
1266                  */
1267                 if (vm_page_queue(m) != PQ_ACTIVE)
1268                         continue;
1269
1270                 /*
1271                  * Wired pages are dequeued lazily.
1272                  */
1273                 if (vm_page_wired(m)) {
1274                         vm_page_dequeue_deferred(m);
1275                         continue;
1276                 }
1277
1278                 /*
1279                  * A page's object pointer may be set to NULL before
1280                  * the object lock is acquired.
1281                  */
1282                 object = (vm_object_t)atomic_load_ptr(&m->object);
1283                 if (__predict_false(object == NULL))
1284                         /*
1285                          * The page has been removed from its object.
1286                          */
1287                         continue;
1288
1289                 /* Deferred free of swap space. */
1290                 if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1291                     VM_OBJECT_TRYWLOCK(object)) {
1292                         if (m->object == object)
1293                                 vm_pager_page_unswapped(m);
1294                         VM_OBJECT_WUNLOCK(object);
1295                 }
1296
1297                 /*
1298                  * Check to see "how much" the page has been used.
1299                  *
1300                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1301                  * that a reference from a concurrently destroyed mapping is
1302                  * observed here and now.
1303                  *
1304                  * Perform an unsynchronized object ref count check.  While
1305                  * the page lock ensures that the page is not reallocated to
1306                  * another object, in particular, one with unmanaged mappings
1307                  * that cannot support pmap_ts_referenced(), two races are,
1308                  * nonetheless, possible:
1309                  * 1) The count was transitioning to zero, but we saw a non-
1310                  *    zero value.  pmap_ts_referenced() will return zero
1311                  *    because the page is not mapped.
1312                  * 2) The count was transitioning to one, but we saw zero.
1313                  *    This race delays the detection of a new reference.  At
1314                  *    worst, we will deactivate and reactivate the page.
1315                  */
1316                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1317
1318                 old = vm_page_astate_load(m);
1319                 do {
1320                         /*
1321                          * Check to see if the page has been removed from the
1322                          * queue since the first such check.  Leave it alone if
1323                          * so, discarding any references collected by
1324                          * pmap_ts_referenced().
1325                          */
1326                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1327                                 break;
1328
1329                         /*
1330                          * Advance or decay the act_count based on recent usage.
1331                          */
1332                         new = old;
1333                         act_delta = refs;
1334                         if ((old.flags & PGA_REFERENCED) != 0) {
1335                                 new.flags &= ~PGA_REFERENCED;
1336                                 act_delta++;
1337                         }
1338                         if (act_delta != 0) {
1339                                 new.act_count += ACT_ADVANCE + act_delta;
1340                                 if (new.act_count > ACT_MAX)
1341                                         new.act_count = ACT_MAX;
1342                         } else {
1343                                 new.act_count -= min(new.act_count,
1344                                     ACT_DECLINE);
1345                         }
1346
1347                         if (new.act_count > 0) {
1348                                 /*
1349                                  * Adjust the activation count and keep the page
1350                                  * in the active queue.  The count might be left
1351                                  * unchanged if it is saturated.  The page may
1352                                  * have been moved to a different queue since we
1353                                  * started the scan, in which case we move it
1354                                  * back.
1355                                  */
1356                                 ps_delta = 0;
1357                                 if (old.queue != PQ_ACTIVE) {
1358                                         old.queue = PQ_ACTIVE;
1359                                         old.flags |= PGA_REQUEUE;
1360                                 }
1361                         } else {
1362                                 /*
1363                                  * When not short for inactive pages, let dirty
1364                                  * pages go through the inactive queue before
1365                                  * moving to the laundry queue.  This gives them
1366                                  * some extra time to be reactivated,
1367                                  * potentially avoiding an expensive pageout.
1368                                  * However, during a page shortage, the inactive
1369                                  * queue is necessarily small, and so dirty
1370                                  * pages would only spend a trivial amount of
1371                                  * time in the inactive queue.  Therefore, we
1372                                  * might as well place them directly in the
1373                                  * laundry queue to reduce queuing overhead.
1374                                  *
1375                                  * Calling vm_page_test_dirty() here would
1376                                  * require acquisition of the object's write
1377                                  * lock.  However, during a page shortage,
1378                                  * directing dirty pages into the laundry queue
1379                                  * is only an optimization and not a
1380                                  * requirement.  Therefore, we simply rely on
1381                                  * the opportunistic updates to the page's dirty
1382                                  * field by the pmap.
1383                                  */
1384                                 if (page_shortage <= 0) {
1385                                         nqueue = PQ_INACTIVE;
1386                                         ps_delta = 0;
1387                                 } else if (m->dirty == 0) {
1388                                         nqueue = PQ_INACTIVE;
1389                                         ps_delta = act_scan_laundry_weight;
1390                                 } else {
1391                                         nqueue = PQ_LAUNDRY;
1392                                         ps_delta = 1;
1393                                 }
1394
1395                                 new.flags |= PGA_REQUEUE;
1396                                 new.queue = nqueue;
1397                         }
1398                 } while (!vm_page_pqstate_commit(m, &old, new));
1399
1400                 page_shortage -= ps_delta;
1401         }
1402         if (mtx != NULL) {
1403                 mtx_unlock(mtx);
1404                 mtx = NULL;
1405         }
1406         vm_pagequeue_lock(pq);
1407         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1408         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1409         vm_pageout_end_scan(&ss);
1410         vm_pagequeue_unlock(pq);
1411 }
1412
1413 static int
1414 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1415     vm_page_t m)
1416 {
1417         vm_page_astate_t as;
1418
1419         vm_pagequeue_assert_locked(pq);
1420
1421         as = vm_page_astate_load(m);
1422         if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1423                 return (0);
1424         vm_page_aflag_set(m, PGA_ENQUEUED);
1425         TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1426         return (1);
1427 }
1428
1429 /*
1430  * Re-add stuck pages to the inactive queue.  We will examine them again
1431  * during the next scan.  If the queue state of a page has changed since
1432  * it was physically removed from the page queue in
1433  * vm_pageout_collect_batch(), don't do anything with that page.
1434  */
1435 static void
1436 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1437     vm_page_t m)
1438 {
1439         struct vm_pagequeue *pq;
1440         vm_page_t marker;
1441         int delta;
1442
1443         delta = 0;
1444         marker = ss->marker;
1445         pq = ss->pq;
1446
1447         if (m != NULL) {
1448                 if (vm_batchqueue_insert(bq, m))
1449                         return;
1450                 vm_pagequeue_lock(pq);
1451                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1452         } else
1453                 vm_pagequeue_lock(pq);
1454         while ((m = vm_batchqueue_pop(bq)) != NULL)
1455                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1456         vm_pagequeue_cnt_add(pq, delta);
1457         vm_pagequeue_unlock(pq);
1458         vm_batchqueue_init(bq);
1459 }
1460
1461 /*
1462  * Attempt to reclaim the requested number of pages from the inactive queue.
1463  * Returns true if the shortage was addressed.
1464  */
1465 static int
1466 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
1467     int *addl_shortage)
1468 {
1469         struct scan_state ss;
1470         struct vm_batchqueue rq;
1471         struct mtx *mtx;
1472         vm_page_t m, marker;
1473         struct vm_pagequeue *pq;
1474         vm_object_t object;
1475         vm_page_astate_t old, new;
1476         int act_delta, addl_page_shortage, deficit, page_shortage, refs;
1477         int starting_page_shortage;
1478
1479         /*
1480          * The addl_page_shortage is an estimate of the number of temporarily
1481          * stuck pages in the inactive queue.  In other words, the
1482          * number of pages from the inactive count that should be
1483          * discounted in setting the target for the active queue scan.
1484          */
1485         addl_page_shortage = 0;
1486
1487         /*
1488          * vmd_pageout_deficit counts the number of pages requested in
1489          * allocations that failed because of a free page shortage.  We assume
1490          * that the allocations will be reattempted and thus include the deficit
1491          * in our scan target.
1492          */
1493         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1494         starting_page_shortage = page_shortage = shortage + deficit;
1495
1496         mtx = NULL;
1497         object = NULL;
1498         vm_batchqueue_init(&rq);
1499
1500         /*
1501          * Start scanning the inactive queue for pages that we can free.  The
1502          * scan will stop when we reach the target or we have scanned the
1503          * entire queue.  (Note that m->a.act_count is not used to make
1504          * decisions for the inactive queue, only for the active queue.)
1505          */
1506         marker = &vmd->vmd_markers[PQ_INACTIVE];
1507         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1508         vm_pagequeue_lock(pq);
1509         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1510         while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1511                 KASSERT((m->flags & PG_MARKER) == 0,
1512                     ("marker page %p was dequeued", m));
1513
1514                 vm_page_change_lock(m, &mtx);
1515
1516 recheck:
1517                 /*
1518                  * The page may have been disassociated from the queue
1519                  * or even freed while locks were dropped.  We thus must be
1520                  * careful whenever modifying page state.  Once the object lock
1521                  * has been acquired, we have a stable reference to the page.
1522                  */
1523                 old = vm_page_astate_load(m);
1524                 if (old.queue != PQ_INACTIVE ||
1525                     (old.flags & PGA_QUEUE_STATE_MASK) != 0)
1526                         continue;
1527
1528                 /*
1529                  * Wired pages may not be freed.  Complete their removal
1530                  * from the queue now to avoid needless revisits during
1531                  * future scans.  This check is racy and must be reverified once
1532                  * we hold the object lock and have verified that the page
1533                  * is not busy.
1534                  */
1535                 if (vm_page_wired(m)) {
1536                         vm_page_dequeue_deferred(m);
1537                         continue;
1538                 }
1539
1540                 if (object != m->object) {
1541                         if (object != NULL)
1542                                 VM_OBJECT_WUNLOCK(object);
1543
1544                         /*
1545                          * A page's object pointer may be set to NULL before
1546                          * the object lock is acquired.
1547                          */
1548                         object = (vm_object_t)atomic_load_ptr(&m->object);
1549                         if (object != NULL && !VM_OBJECT_TRYWLOCK(object)) {
1550                                 mtx_unlock(mtx);
1551                                 /* Depends on type-stability. */
1552                                 VM_OBJECT_WLOCK(object);
1553                                 mtx_lock(mtx);
1554                                 goto recheck;
1555                         }
1556                 }
1557                 if (__predict_false(m->object == NULL))
1558                         /*
1559                          * The page has been removed from its object.
1560                          */
1561                         continue;
1562                 KASSERT(m->object == object, ("page %p does not belong to %p",
1563                     m, object));
1564
1565                 if (vm_page_tryxbusy(m) == 0) {
1566                         /*
1567                          * Don't mess with busy pages.  Leave them at
1568                          * the front of the queue.  Most likely, they
1569                          * are being paged out and will leave the
1570                          * queue shortly after the scan finishes.  So,
1571                          * they ought to be discounted from the
1572                          * inactive count.
1573                          */
1574                         addl_page_shortage++;
1575                         goto reinsert;
1576                 }
1577
1578                 /* Deferred free of swap space. */
1579                 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1580                         vm_pager_page_unswapped(m);
1581
1582                 /*
1583                  * Re-check for wirings now that we hold the object lock and
1584                  * have verified that the page is unbusied.  If the page is
1585                  * mapped, it may still be wired by pmap lookups.  The call to
1586                  * vm_page_try_remove_all() below atomically checks for such
1587                  * wirings and removes mappings.  If the page is unmapped, the
1588                  * wire count is guaranteed not to increase.
1589                  */
1590                 if (__predict_false(vm_page_wired(m))) {
1591                         vm_page_dequeue_deferred(m);
1592                         goto skip_page;
1593                 }
1594
1595                 /*
1596                  * Invalid pages can be easily freed. They cannot be
1597                  * mapped, vm_page_free() asserts this.
1598                  */
1599                 if (vm_page_none_valid(m))
1600                         goto free_page;
1601
1602                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1603
1604                 for (old = vm_page_astate_load(m);;) {
1605                         /*
1606                          * Check to see if the page has been removed from the
1607                          * queue since the first such check.  Leave it alone if
1608                          * so, discarding any references collected by
1609                          * pmap_ts_referenced().
1610                          */
1611                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1612                                 goto skip_page;
1613
1614                         new = old;
1615                         act_delta = refs;
1616                         if ((old.flags & PGA_REFERENCED) != 0) {
1617                                 new.flags &= ~PGA_REFERENCED;
1618                                 act_delta++;
1619                         }
1620                         if (act_delta == 0) {
1621                                 ;
1622                         } else if (object->ref_count != 0) {
1623                                 /*
1624                                  * Increase the activation count if the
1625                                  * page was referenced while in the
1626                                  * inactive queue.  This makes it less
1627                                  * likely that the page will be returned
1628                                  * prematurely to the inactive queue.
1629                                  */
1630                                 new.act_count += ACT_ADVANCE +
1631                                     act_delta;
1632                                 if (new.act_count > ACT_MAX)
1633                                         new.act_count = ACT_MAX;
1634
1635                                 new.flags |= PGA_REQUEUE;
1636                                 new.queue = PQ_ACTIVE;
1637                                 if (!vm_page_pqstate_commit(m, &old, new))
1638                                         continue;
1639
1640                                 VM_CNT_INC(v_reactivated);
1641                                 goto skip_page;
1642                         } else if ((object->flags & OBJ_DEAD) == 0) {
1643                                 new.queue = PQ_INACTIVE;
1644                                 new.flags |= PGA_REQUEUE;
1645                                 if (!vm_page_pqstate_commit(m, &old, new))
1646                                         continue;
1647                                 goto skip_page;
1648                         }
1649                         break;
1650                 }
1651
1652                 /*
1653                  * If the page appears to be clean at the machine-independent
1654                  * layer, then remove all of its mappings from the pmap in
1655                  * anticipation of freeing it.  If, however, any of the page's
1656                  * mappings allow write access, then the page may still be
1657                  * modified until the last of those mappings are removed.
1658                  */
1659                 if (object->ref_count != 0) {
1660                         vm_page_test_dirty(m);
1661                         if (m->dirty == 0 && !vm_page_try_remove_all(m)) {
1662                                 vm_page_dequeue_deferred(m);
1663                                 goto skip_page;
1664                         }
1665                 }
1666
1667                 /*
1668                  * Clean pages can be freed, but dirty pages must be sent back
1669                  * to the laundry, unless they belong to a dead object.
1670                  * Requeueing dirty pages from dead objects is pointless, as
1671                  * they are being paged out and freed by the thread that
1672                  * destroyed the object.
1673                  */
1674                 if (m->dirty == 0) {
1675 free_page:
1676                         /*
1677                          * Because we dequeued the page and have already
1678                          * checked for concurrent dequeue and enqueue
1679                          * requests, we can safely disassociate the page
1680                          * from the inactive queue.
1681                          */
1682                         KASSERT((m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
1683                             ("page %p has queue state", m));
1684                         m->a.queue = PQ_NONE;
1685                         vm_page_free(m);
1686                         page_shortage--;
1687                         continue;
1688                 }
1689                 if ((object->flags & OBJ_DEAD) == 0)
1690                         vm_page_launder(m);
1691 skip_page:
1692                 vm_page_xunbusy(m);
1693                 continue;
1694 reinsert:
1695                 vm_pageout_reinsert_inactive(&ss, &rq, m);
1696         }
1697         if (mtx != NULL)
1698                 mtx_unlock(mtx);
1699         if (object != NULL)
1700                 VM_OBJECT_WUNLOCK(object);
1701         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1702         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1703         vm_pagequeue_lock(pq);
1704         vm_pageout_end_scan(&ss);
1705         vm_pagequeue_unlock(pq);
1706
1707         VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage);
1708
1709         /*
1710          * Wake up the laundry thread so that it can perform any needed
1711          * laundering.  If we didn't meet our target, we're in shortfall and
1712          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1713          * swap devices are configured, the laundry thread has no work to do, so
1714          * don't bother waking it up.
1715          *
1716          * The laundry thread uses the number of inactive queue scans elapsed
1717          * since the last laundering to determine whether to launder again, so
1718          * keep count.
1719          */
1720         if (starting_page_shortage > 0) {
1721                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1722                 vm_pagequeue_lock(pq);
1723                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1724                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1725                         if (page_shortage > 0) {
1726                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1727                                 VM_CNT_INC(v_pdshortfalls);
1728                         } else if (vmd->vmd_laundry_request !=
1729                             VM_LAUNDRY_SHORTFALL)
1730                                 vmd->vmd_laundry_request =
1731                                     VM_LAUNDRY_BACKGROUND;
1732                         wakeup(&vmd->vmd_laundry_request);
1733                 }
1734                 vmd->vmd_clean_pages_freed +=
1735                     starting_page_shortage - page_shortage;
1736                 vm_pagequeue_unlock(pq);
1737         }
1738
1739         /*
1740          * Wakeup the swapout daemon if we didn't free the targeted number of
1741          * pages.
1742          */
1743         if (page_shortage > 0)
1744                 vm_swapout_run();
1745
1746         /*
1747          * If the inactive queue scan fails repeatedly to meet its
1748          * target, kill the largest process.
1749          */
1750         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1751
1752         /*
1753          * Reclaim pages by swapping out idle processes, if configured to do so.
1754          */
1755         vm_swapout_run_idle();
1756
1757         /*
1758          * See the description of addl_page_shortage above.
1759          */
1760         *addl_shortage = addl_page_shortage + deficit;
1761
1762         return (page_shortage <= 0);
1763 }
1764
1765 static int vm_pageout_oom_vote;
1766
1767 /*
1768  * The pagedaemon threads randlomly select one to perform the
1769  * OOM.  Trying to kill processes before all pagedaemons
1770  * failed to reach free target is premature.
1771  */
1772 static void
1773 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1774     int starting_page_shortage)
1775 {
1776         int old_vote;
1777
1778         if (starting_page_shortage <= 0 || starting_page_shortage !=
1779             page_shortage)
1780                 vmd->vmd_oom_seq = 0;
1781         else
1782                 vmd->vmd_oom_seq++;
1783         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1784                 if (vmd->vmd_oom) {
1785                         vmd->vmd_oom = FALSE;
1786                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1787                 }
1788                 return;
1789         }
1790
1791         /*
1792          * Do not follow the call sequence until OOM condition is
1793          * cleared.
1794          */
1795         vmd->vmd_oom_seq = 0;
1796
1797         if (vmd->vmd_oom)
1798                 return;
1799
1800         vmd->vmd_oom = TRUE;
1801         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1802         if (old_vote != vm_ndomains - 1)
1803                 return;
1804
1805         /*
1806          * The current pagedaemon thread is the last in the quorum to
1807          * start OOM.  Initiate the selection and signaling of the
1808          * victim.
1809          */
1810         vm_pageout_oom(VM_OOM_MEM);
1811
1812         /*
1813          * After one round of OOM terror, recall our vote.  On the
1814          * next pass, current pagedaemon would vote again if the low
1815          * memory condition is still there, due to vmd_oom being
1816          * false.
1817          */
1818         vmd->vmd_oom = FALSE;
1819         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1820 }
1821
1822 /*
1823  * The OOM killer is the page daemon's action of last resort when
1824  * memory allocation requests have been stalled for a prolonged period
1825  * of time because it cannot reclaim memory.  This function computes
1826  * the approximate number of physical pages that could be reclaimed if
1827  * the specified address space is destroyed.
1828  *
1829  * Private, anonymous memory owned by the address space is the
1830  * principal resource that we expect to recover after an OOM kill.
1831  * Since the physical pages mapped by the address space's COW entries
1832  * are typically shared pages, they are unlikely to be released and so
1833  * they are not counted.
1834  *
1835  * To get to the point where the page daemon runs the OOM killer, its
1836  * efforts to write-back vnode-backed pages may have stalled.  This
1837  * could be caused by a memory allocation deadlock in the write path
1838  * that might be resolved by an OOM kill.  Therefore, physical pages
1839  * belonging to vnode-backed objects are counted, because they might
1840  * be freed without being written out first if the address space holds
1841  * the last reference to an unlinked vnode.
1842  *
1843  * Similarly, physical pages belonging to OBJT_PHYS objects are
1844  * counted because the address space might hold the last reference to
1845  * the object.
1846  */
1847 static long
1848 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1849 {
1850         vm_map_t map;
1851         vm_map_entry_t entry;
1852         vm_object_t obj;
1853         long res;
1854
1855         map = &vmspace->vm_map;
1856         KASSERT(!map->system_map, ("system map"));
1857         sx_assert(&map->lock, SA_LOCKED);
1858         res = 0;
1859         VM_MAP_ENTRY_FOREACH(entry, map) {
1860                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1861                         continue;
1862                 obj = entry->object.vm_object;
1863                 if (obj == NULL)
1864                         continue;
1865                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1866                     obj->ref_count != 1)
1867                         continue;
1868                 switch (obj->type) {
1869                 case OBJT_DEFAULT:
1870                 case OBJT_SWAP:
1871                 case OBJT_PHYS:
1872                 case OBJT_VNODE:
1873                         res += obj->resident_page_count;
1874                         break;
1875                 }
1876         }
1877         return (res);
1878 }
1879
1880 static int vm_oom_ratelim_last;
1881 static int vm_oom_pf_secs = 10;
1882 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1883     "");
1884 static struct mtx vm_oom_ratelim_mtx;
1885
1886 void
1887 vm_pageout_oom(int shortage)
1888 {
1889         struct proc *p, *bigproc;
1890         vm_offset_t size, bigsize;
1891         struct thread *td;
1892         struct vmspace *vm;
1893         int now;
1894         bool breakout;
1895
1896         /*
1897          * For OOM requests originating from vm_fault(), there is a high
1898          * chance that a single large process faults simultaneously in
1899          * several threads.  Also, on an active system running many
1900          * processes of middle-size, like buildworld, all of them
1901          * could fault almost simultaneously as well.
1902          *
1903          * To avoid killing too many processes, rate-limit OOMs
1904          * initiated by vm_fault() time-outs on the waits for free
1905          * pages.
1906          */
1907         mtx_lock(&vm_oom_ratelim_mtx);
1908         now = ticks;
1909         if (shortage == VM_OOM_MEM_PF &&
1910             (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1911                 mtx_unlock(&vm_oom_ratelim_mtx);
1912                 return;
1913         }
1914         vm_oom_ratelim_last = now;
1915         mtx_unlock(&vm_oom_ratelim_mtx);
1916
1917         /*
1918          * We keep the process bigproc locked once we find it to keep anyone
1919          * from messing with it; however, there is a possibility of
1920          * deadlock if process B is bigproc and one of its child processes
1921          * attempts to propagate a signal to B while we are waiting for A's
1922          * lock while walking this list.  To avoid this, we don't block on
1923          * the process lock but just skip a process if it is already locked.
1924          */
1925         bigproc = NULL;
1926         bigsize = 0;
1927         sx_slock(&allproc_lock);
1928         FOREACH_PROC_IN_SYSTEM(p) {
1929                 PROC_LOCK(p);
1930
1931                 /*
1932                  * If this is a system, protected or killed process, skip it.
1933                  */
1934                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1935                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1936                     p->p_pid == 1 || P_KILLED(p) ||
1937                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1938                         PROC_UNLOCK(p);
1939                         continue;
1940                 }
1941                 /*
1942                  * If the process is in a non-running type state,
1943                  * don't touch it.  Check all the threads individually.
1944                  */
1945                 breakout = false;
1946                 FOREACH_THREAD_IN_PROC(p, td) {
1947                         thread_lock(td);
1948                         if (!TD_ON_RUNQ(td) &&
1949                             !TD_IS_RUNNING(td) &&
1950                             !TD_IS_SLEEPING(td) &&
1951                             !TD_IS_SUSPENDED(td) &&
1952                             !TD_IS_SWAPPED(td)) {
1953                                 thread_unlock(td);
1954                                 breakout = true;
1955                                 break;
1956                         }
1957                         thread_unlock(td);
1958                 }
1959                 if (breakout) {
1960                         PROC_UNLOCK(p);
1961                         continue;
1962                 }
1963                 /*
1964                  * get the process size
1965                  */
1966                 vm = vmspace_acquire_ref(p);
1967                 if (vm == NULL) {
1968                         PROC_UNLOCK(p);
1969                         continue;
1970                 }
1971                 _PHOLD_LITE(p);
1972                 PROC_UNLOCK(p);
1973                 sx_sunlock(&allproc_lock);
1974                 if (!vm_map_trylock_read(&vm->vm_map)) {
1975                         vmspace_free(vm);
1976                         sx_slock(&allproc_lock);
1977                         PRELE(p);
1978                         continue;
1979                 }
1980                 size = vmspace_swap_count(vm);
1981                 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1982                         size += vm_pageout_oom_pagecount(vm);
1983                 vm_map_unlock_read(&vm->vm_map);
1984                 vmspace_free(vm);
1985                 sx_slock(&allproc_lock);
1986
1987                 /*
1988                  * If this process is bigger than the biggest one,
1989                  * remember it.
1990                  */
1991                 if (size > bigsize) {
1992                         if (bigproc != NULL)
1993                                 PRELE(bigproc);
1994                         bigproc = p;
1995                         bigsize = size;
1996                 } else {
1997                         PRELE(p);
1998                 }
1999         }
2000         sx_sunlock(&allproc_lock);
2001         if (bigproc != NULL) {
2002                 if (vm_panic_on_oom != 0)
2003                         panic("out of swap space");
2004                 PROC_LOCK(bigproc);
2005                 killproc(bigproc, "out of swap space");
2006                 sched_nice(bigproc, PRIO_MIN);
2007                 _PRELE(bigproc);
2008                 PROC_UNLOCK(bigproc);
2009         }
2010 }
2011
2012 /*
2013  * Signal a free page shortage to subsystems that have registered an event
2014  * handler.  Reclaim memory from UMA in the event of a severe shortage.
2015  * Return true if the free page count should be re-evaluated.
2016  */
2017 static bool
2018 vm_pageout_lowmem(void)
2019 {
2020         static int lowmem_ticks = 0;
2021         int last;
2022         bool ret;
2023
2024         ret = false;
2025
2026         last = atomic_load_int(&lowmem_ticks);
2027         while ((u_int)(ticks - last) / hz >= lowmem_period) {
2028                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
2029                         continue;
2030
2031                 /*
2032                  * Decrease registered cache sizes.
2033                  */
2034                 SDT_PROBE0(vm, , , vm__lowmem_scan);
2035                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2036
2037                 /*
2038                  * We do this explicitly after the caches have been
2039                  * drained above.
2040                  */
2041                 uma_reclaim(UMA_RECLAIM_TRIM);
2042                 ret = true;
2043         }
2044
2045         /*
2046          * Kick off an asynchronous reclaim of cached memory if one of the
2047          * page daemons is failing to keep up with demand.  Use the "severe"
2048          * threshold instead of "min" to ensure that we do not blow away the
2049          * caches if a subset of the NUMA domains are depleted by kernel memory
2050          * allocations; the domainset iterators automatically skip domains
2051          * below the "min" threshold on the first pass.
2052          *
2053          * UMA reclaim worker has its own rate-limiting mechanism, so don't
2054          * worry about kicking it too often.
2055          */
2056         if (vm_page_count_severe())
2057                 uma_reclaim_wakeup();
2058
2059         return (ret);
2060 }
2061
2062 static void
2063 vm_pageout_worker(void *arg)
2064 {
2065         struct vm_domain *vmd;
2066         u_int ofree;
2067         int addl_shortage, domain, shortage;
2068         bool target_met;
2069
2070         domain = (uintptr_t)arg;
2071         vmd = VM_DOMAIN(domain);
2072         shortage = 0;
2073         target_met = true;
2074
2075         /*
2076          * XXXKIB It could be useful to bind pageout daemon threads to
2077          * the cores belonging to the domain, from which vm_page_array
2078          * is allocated.
2079          */
2080
2081         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2082         vmd->vmd_last_active_scan = ticks;
2083
2084         /*
2085          * The pageout daemon worker is never done, so loop forever.
2086          */
2087         while (TRUE) {
2088                 vm_domain_pageout_lock(vmd);
2089
2090                 /*
2091                  * We need to clear wanted before we check the limits.  This
2092                  * prevents races with wakers who will check wanted after they
2093                  * reach the limit.
2094                  */
2095                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2096
2097                 /*
2098                  * Might the page daemon need to run again?
2099                  */
2100                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2101                         /*
2102                          * Yes.  If the scan failed to produce enough free
2103                          * pages, sleep uninterruptibly for some time in the
2104                          * hope that the laundry thread will clean some pages.
2105                          */
2106                         vm_domain_pageout_unlock(vmd);
2107                         if (!target_met)
2108                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
2109                 } else {
2110                         /*
2111                          * No, sleep until the next wakeup or until pages
2112                          * need to have their reference stats updated.
2113                          */
2114                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
2115                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2116                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2117                                 VM_CNT_INC(v_pdwakeups);
2118                 }
2119
2120                 /* Prevent spurious wakeups by ensuring that wanted is set. */
2121                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2122
2123                 /*
2124                  * Use the controller to calculate how many pages to free in
2125                  * this interval, and scan the inactive queue.  If the lowmem
2126                  * handlers appear to have freed up some pages, subtract the
2127                  * difference from the inactive queue scan target.
2128                  */
2129                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2130                 if (shortage > 0) {
2131                         ofree = vmd->vmd_free_count;
2132                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2133                                 shortage -= min(vmd->vmd_free_count - ofree,
2134                                     (u_int)shortage);
2135                         target_met = vm_pageout_scan_inactive(vmd, shortage,
2136                             &addl_shortage);
2137                 } else
2138                         addl_shortage = 0;
2139
2140                 /*
2141                  * Scan the active queue.  A positive value for shortage
2142                  * indicates that we must aggressively deactivate pages to avoid
2143                  * a shortfall.
2144                  */
2145                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
2146                 vm_pageout_scan_active(vmd, shortage);
2147         }
2148 }
2149
2150 /*
2151  * Initialize basic pageout daemon settings.  See the comment above the
2152  * definition of vm_domain for some explanation of how these thresholds are
2153  * used.
2154  */
2155 static void
2156 vm_pageout_init_domain(int domain)
2157 {
2158         struct vm_domain *vmd;
2159         struct sysctl_oid *oid;
2160
2161         vmd = VM_DOMAIN(domain);
2162         vmd->vmd_interrupt_free_min = 2;
2163
2164         /*
2165          * v_free_reserved needs to include enough for the largest
2166          * swap pager structures plus enough for any pv_entry structs
2167          * when paging. 
2168          */
2169         vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2170             vmd->vmd_interrupt_free_min;
2171         vmd->vmd_free_reserved = vm_pageout_page_count +
2172             vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2173         vmd->vmd_free_min = vmd->vmd_page_count / 200;
2174         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2175         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2176         vmd->vmd_free_min += vmd->vmd_free_reserved;
2177         vmd->vmd_free_severe += vmd->vmd_free_reserved;
2178         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2179         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2180                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2181
2182         /*
2183          * Set the default wakeup threshold to be 10% below the paging
2184          * target.  This keeps the steady state out of shortfall.
2185          */
2186         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2187
2188         /*
2189          * Target amount of memory to move out of the laundry queue during a
2190          * background laundering.  This is proportional to the amount of system
2191          * memory.
2192          */
2193         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2194             vmd->vmd_free_min) / 10;
2195
2196         /* Initialize the pageout daemon pid controller. */
2197         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2198             vmd->vmd_free_target, PIDCTRL_BOUND,
2199             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2200         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2201             "pidctrl", CTLFLAG_RD, NULL, "");
2202         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2203 }
2204
2205 static void
2206 vm_pageout_init(void)
2207 {
2208         u_int freecount;
2209         int i;
2210
2211         /*
2212          * Initialize some paging parameters.
2213          */
2214         if (vm_cnt.v_page_count < 2000)
2215                 vm_pageout_page_count = 8;
2216
2217         freecount = 0;
2218         for (i = 0; i < vm_ndomains; i++) {
2219                 struct vm_domain *vmd;
2220
2221                 vm_pageout_init_domain(i);
2222                 vmd = VM_DOMAIN(i);
2223                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2224                 vm_cnt.v_free_target += vmd->vmd_free_target;
2225                 vm_cnt.v_free_min += vmd->vmd_free_min;
2226                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2227                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2228                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2229                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2230                 freecount += vmd->vmd_free_count;
2231         }
2232
2233         /*
2234          * Set interval in seconds for active scan.  We want to visit each
2235          * page at least once every ten minutes.  This is to prevent worst
2236          * case paging behaviors with stale active LRU.
2237          */
2238         if (vm_pageout_update_period == 0)
2239                 vm_pageout_update_period = 600;
2240
2241         if (vm_page_max_user_wired == 0)
2242                 vm_page_max_user_wired = freecount / 3;
2243 }
2244
2245 /*
2246  *     vm_pageout is the high level pageout daemon.
2247  */
2248 static void
2249 vm_pageout(void)
2250 {
2251         struct proc *p;
2252         struct thread *td;
2253         int error, first, i;
2254
2255         p = curproc;
2256         td = curthread;
2257
2258         mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2259         swap_pager_swap_init();
2260         for (first = -1, i = 0; i < vm_ndomains; i++) {
2261                 if (VM_DOMAIN_EMPTY(i)) {
2262                         if (bootverbose)
2263                                 printf("domain %d empty; skipping pageout\n",
2264                                     i);
2265                         continue;
2266                 }
2267                 if (first == -1)
2268                         first = i;
2269                 else {
2270                         error = kthread_add(vm_pageout_worker,
2271                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2272                         if (error != 0)
2273                                 panic("starting pageout for domain %d: %d\n",
2274                                     i, error);
2275                 }
2276                 error = kthread_add(vm_pageout_laundry_worker,
2277                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2278                 if (error != 0)
2279                         panic("starting laundry for domain %d: %d", i, error);
2280         }
2281         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2282         if (error != 0)
2283                 panic("starting uma_reclaim helper, error %d\n", error);
2284
2285         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2286         vm_pageout_worker((void *)(uintptr_t)first);
2287 }
2288
2289 /*
2290  * Perform an advisory wakeup of the page daemon.
2291  */
2292 void
2293 pagedaemon_wakeup(int domain)
2294 {
2295         struct vm_domain *vmd;
2296
2297         vmd = VM_DOMAIN(domain);
2298         vm_domain_pageout_assert_unlocked(vmd);
2299         if (curproc == pageproc)
2300                 return;
2301
2302         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2303                 vm_domain_pageout_lock(vmd);
2304                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2305                 wakeup(&vmd->vmd_pageout_wanted);
2306                 vm_domain_pageout_unlock(vmd);
2307         }
2308 }