]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
vmm: Remove vcpuid from I/O port handlers.
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72
73 /*
74  *      The proverbial page-out daemon.
75  */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/blockcount.h>
86 #include <sys/eventhandler.h>
87 #include <sys/lock.h>
88 #include <sys/mutex.h>
89 #include <sys/proc.h>
90 #include <sys/kthread.h>
91 #include <sys/ktr.h>
92 #include <sys/mount.h>
93 #include <sys/racct.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sched.h>
96 #include <sys/sdt.h>
97 #include <sys/signalvar.h>
98 #include <sys/smp.h>
99 #include <sys/time.h>
100 #include <sys/vnode.h>
101 #include <sys/vmmeter.h>
102 #include <sys/rwlock.h>
103 #include <sys/sx.h>
104 #include <sys/sysctl.h>
105
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_object.h>
109 #include <vm/vm_page.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_pageout.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_phys.h>
114 #include <vm/vm_pagequeue.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118
119 /*
120  * System initialization
121  */
122
123 /* the kernel process "vm_pageout"*/
124 static void vm_pageout(void);
125 static void vm_pageout_init(void);
126 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
127 static int vm_pageout_cluster(vm_page_t m);
128 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
129     int starting_page_shortage);
130
131 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
132     NULL);
133
134 struct proc *pageproc;
135
136 static struct kproc_desc page_kp = {
137         "pagedaemon",
138         vm_pageout,
139         &pageproc
140 };
141 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
142     &page_kp);
143
144 SDT_PROVIDER_DEFINE(vm);
145 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
146
147 /* Pagedaemon activity rates, in subdivisions of one second. */
148 #define VM_LAUNDER_RATE         10
149 #define VM_INACT_SCAN_RATE      10
150
151 static int swapdev_enabled;
152 int vm_pageout_page_count = 32;
153
154 static int vm_panic_on_oom = 0;
155 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
156     CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
157     "Panic on the given number of out-of-memory errors instead of "
158     "killing the largest process");
159
160 static int vm_pageout_update_period;
161 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
162     CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
163     "Maximum active LRU update period");
164
165 static int pageout_cpus_per_thread = 16;
166 SYSCTL_INT(_vm, OID_AUTO, pageout_cpus_per_thread, CTLFLAG_RDTUN,
167     &pageout_cpus_per_thread, 0,
168     "Number of CPUs per pagedaemon worker thread");
169   
170 static int lowmem_period = 10;
171 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
172     "Low memory callback period");
173
174 static int disable_swap_pageouts;
175 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
176     CTLFLAG_RWTUN, &disable_swap_pageouts, 0,
177     "Disallow swapout of dirty pages");
178
179 static int pageout_lock_miss;
180 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
181     CTLFLAG_RD, &pageout_lock_miss, 0,
182     "vget() lock misses during pageout");
183
184 static int vm_pageout_oom_seq = 12;
185 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
186     CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
187     "back-to-back calls to oom detector to start OOM");
188
189 static int act_scan_laundry_weight = 3;
190 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
191     &act_scan_laundry_weight, 0,
192     "weight given to clean vs. dirty pages in active queue scans");
193
194 static u_int vm_background_launder_rate = 4096;
195 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
196     &vm_background_launder_rate, 0,
197     "background laundering rate, in kilobytes per second");
198
199 static u_int vm_background_launder_max = 20 * 1024;
200 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
201     &vm_background_launder_max, 0,
202     "background laundering cap, in kilobytes");
203
204 u_long vm_page_max_user_wired;
205 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
206     &vm_page_max_user_wired, 0,
207     "system-wide limit to user-wired page count");
208
209 static u_int isqrt(u_int num);
210 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
211     bool in_shortfall);
212 static void vm_pageout_laundry_worker(void *arg);
213
214 struct scan_state {
215         struct vm_batchqueue bq;
216         struct vm_pagequeue *pq;
217         vm_page_t       marker;
218         int             maxscan;
219         int             scanned;
220 };
221
222 static void
223 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
224     vm_page_t marker, vm_page_t after, int maxscan)
225 {
226
227         vm_pagequeue_assert_locked(pq);
228         KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
229             ("marker %p already enqueued", marker));
230
231         if (after == NULL)
232                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
233         else
234                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
235         vm_page_aflag_set(marker, PGA_ENQUEUED);
236
237         vm_batchqueue_init(&ss->bq);
238         ss->pq = pq;
239         ss->marker = marker;
240         ss->maxscan = maxscan;
241         ss->scanned = 0;
242         vm_pagequeue_unlock(pq);
243 }
244
245 static void
246 vm_pageout_end_scan(struct scan_state *ss)
247 {
248         struct vm_pagequeue *pq;
249
250         pq = ss->pq;
251         vm_pagequeue_assert_locked(pq);
252         KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
253             ("marker %p not enqueued", ss->marker));
254
255         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
256         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
257         pq->pq_pdpages += ss->scanned;
258 }
259
260 /*
261  * Add a small number of queued pages to a batch queue for later processing
262  * without the corresponding queue lock held.  The caller must have enqueued a
263  * marker page at the desired start point for the scan.  Pages will be
264  * physically dequeued if the caller so requests.  Otherwise, the returned
265  * batch may contain marker pages, and it is up to the caller to handle them.
266  *
267  * When processing the batch queue, vm_pageout_defer() must be used to
268  * determine whether the page has been logically dequeued since the batch was
269  * collected.
270  */
271 static __always_inline void
272 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
273 {
274         struct vm_pagequeue *pq;
275         vm_page_t m, marker, n;
276
277         marker = ss->marker;
278         pq = ss->pq;
279
280         KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
281             ("marker %p not enqueued", ss->marker));
282
283         vm_pagequeue_lock(pq);
284         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
285             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
286             m = n, ss->scanned++) {
287                 n = TAILQ_NEXT(m, plinks.q);
288                 if ((m->flags & PG_MARKER) == 0) {
289                         KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
290                             ("page %p not enqueued", m));
291                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
292                             ("Fictitious page %p cannot be in page queue", m));
293                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
294                             ("Unmanaged page %p cannot be in page queue", m));
295                 } else if (dequeue)
296                         continue;
297
298                 (void)vm_batchqueue_insert(&ss->bq, m);
299                 if (dequeue) {
300                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
301                         vm_page_aflag_clear(m, PGA_ENQUEUED);
302                 }
303         }
304         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
305         if (__predict_true(m != NULL))
306                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
307         else
308                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
309         if (dequeue)
310                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
311         vm_pagequeue_unlock(pq);
312 }
313
314 /*
315  * Return the next page to be scanned, or NULL if the scan is complete.
316  */
317 static __always_inline vm_page_t
318 vm_pageout_next(struct scan_state *ss, const bool dequeue)
319 {
320
321         if (ss->bq.bq_cnt == 0)
322                 vm_pageout_collect_batch(ss, dequeue);
323         return (vm_batchqueue_pop(&ss->bq));
324 }
325
326 /*
327  * Determine whether processing of a page should be deferred and ensure that any
328  * outstanding queue operations are processed.
329  */
330 static __always_inline bool
331 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
332 {
333         vm_page_astate_t as;
334
335         as = vm_page_astate_load(m);
336         if (__predict_false(as.queue != queue ||
337             ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
338                 return (true);
339         if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
340                 vm_page_pqbatch_submit(m, queue);
341                 return (true);
342         }
343         return (false);
344 }
345
346 /*
347  * Scan for pages at adjacent offsets within the given page's object that are
348  * eligible for laundering, form a cluster of these pages and the given page,
349  * and launder that cluster.
350  */
351 static int
352 vm_pageout_cluster(vm_page_t m)
353 {
354         vm_object_t object;
355         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
356         vm_pindex_t pindex;
357         int ib, is, page_base, pageout_count;
358
359         object = m->object;
360         VM_OBJECT_ASSERT_WLOCKED(object);
361         pindex = m->pindex;
362
363         vm_page_assert_xbusied(m);
364
365         mc[vm_pageout_page_count] = pb = ps = m;
366         pageout_count = 1;
367         page_base = vm_pageout_page_count;
368         ib = 1;
369         is = 1;
370
371         /*
372          * We can cluster only if the page is not clean, busy, or held, and
373          * the page is in the laundry queue.
374          *
375          * During heavy mmap/modification loads the pageout
376          * daemon can really fragment the underlying file
377          * due to flushing pages out of order and not trying to
378          * align the clusters (which leaves sporadic out-of-order
379          * holes).  To solve this problem we do the reverse scan
380          * first and attempt to align our cluster, then do a 
381          * forward scan if room remains.
382          */
383 more:
384         while (ib != 0 && pageout_count < vm_pageout_page_count) {
385                 if (ib > pindex) {
386                         ib = 0;
387                         break;
388                 }
389                 if ((p = vm_page_prev(pb)) == NULL ||
390                     vm_page_tryxbusy(p) == 0) {
391                         ib = 0;
392                         break;
393                 }
394                 if (vm_page_wired(p)) {
395                         ib = 0;
396                         vm_page_xunbusy(p);
397                         break;
398                 }
399                 vm_page_test_dirty(p);
400                 if (p->dirty == 0) {
401                         ib = 0;
402                         vm_page_xunbusy(p);
403                         break;
404                 }
405                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
406                         vm_page_xunbusy(p);
407                         ib = 0;
408                         break;
409                 }
410                 mc[--page_base] = pb = p;
411                 ++pageout_count;
412                 ++ib;
413
414                 /*
415                  * We are at an alignment boundary.  Stop here, and switch
416                  * directions.  Do not clear ib.
417                  */
418                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
419                         break;
420         }
421         while (pageout_count < vm_pageout_page_count && 
422             pindex + is < object->size) {
423                 if ((p = vm_page_next(ps)) == NULL ||
424                     vm_page_tryxbusy(p) == 0)
425                         break;
426                 if (vm_page_wired(p)) {
427                         vm_page_xunbusy(p);
428                         break;
429                 }
430                 vm_page_test_dirty(p);
431                 if (p->dirty == 0) {
432                         vm_page_xunbusy(p);
433                         break;
434                 }
435                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
436                         vm_page_xunbusy(p);
437                         break;
438                 }
439                 mc[page_base + pageout_count] = ps = p;
440                 ++pageout_count;
441                 ++is;
442         }
443
444         /*
445          * If we exhausted our forward scan, continue with the reverse scan
446          * when possible, even past an alignment boundary.  This catches
447          * boundary conditions.
448          */
449         if (ib != 0 && pageout_count < vm_pageout_page_count)
450                 goto more;
451
452         return (vm_pageout_flush(&mc[page_base], pageout_count,
453             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
454 }
455
456 /*
457  * vm_pageout_flush() - launder the given pages
458  *
459  *      The given pages are laundered.  Note that we setup for the start of
460  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
461  *      reference count all in here rather then in the parent.  If we want
462  *      the parent to do more sophisticated things we may have to change
463  *      the ordering.
464  *
465  *      Returned runlen is the count of pages between mreq and first
466  *      page after mreq with status VM_PAGER_AGAIN.
467  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
468  *      for any page in runlen set.
469  */
470 int
471 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
472     boolean_t *eio)
473 {
474         vm_object_t object = mc[0]->object;
475         int pageout_status[count];
476         int numpagedout = 0;
477         int i, runlen;
478
479         VM_OBJECT_ASSERT_WLOCKED(object);
480
481         /*
482          * Initiate I/O.  Mark the pages shared busy and verify that they're
483          * valid and read-only.
484          *
485          * We do not have to fixup the clean/dirty bits here... we can
486          * allow the pager to do it after the I/O completes.
487          *
488          * NOTE! mc[i]->dirty may be partial or fragmented due to an
489          * edge case with file fragments.
490          */
491         for (i = 0; i < count; i++) {
492                 KASSERT(vm_page_all_valid(mc[i]),
493                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
494                         mc[i], i, count));
495                 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
496                     ("vm_pageout_flush: writeable page %p", mc[i]));
497                 vm_page_busy_downgrade(mc[i]);
498         }
499         vm_object_pip_add(object, count);
500
501         vm_pager_put_pages(object, mc, count, flags, pageout_status);
502
503         runlen = count - mreq;
504         if (eio != NULL)
505                 *eio = FALSE;
506         for (i = 0; i < count; i++) {
507                 vm_page_t mt = mc[i];
508
509                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
510                     !pmap_page_is_write_mapped(mt),
511                     ("vm_pageout_flush: page %p is not write protected", mt));
512                 switch (pageout_status[i]) {
513                 case VM_PAGER_OK:
514                         /*
515                          * The page may have moved since laundering started, in
516                          * which case it should be left alone.
517                          */
518                         if (vm_page_in_laundry(mt))
519                                 vm_page_deactivate_noreuse(mt);
520                         /* FALLTHROUGH */
521                 case VM_PAGER_PEND:
522                         numpagedout++;
523                         break;
524                 case VM_PAGER_BAD:
525                         /*
526                          * The page is outside the object's range.  We pretend
527                          * that the page out worked and clean the page, so the
528                          * changes will be lost if the page is reclaimed by
529                          * the page daemon.
530                          */
531                         vm_page_undirty(mt);
532                         if (vm_page_in_laundry(mt))
533                                 vm_page_deactivate_noreuse(mt);
534                         break;
535                 case VM_PAGER_ERROR:
536                 case VM_PAGER_FAIL:
537                         /*
538                          * If the page couldn't be paged out to swap because the
539                          * pager wasn't able to find space, place the page in
540                          * the PQ_UNSWAPPABLE holding queue.  This is an
541                          * optimization that prevents the page daemon from
542                          * wasting CPU cycles on pages that cannot be reclaimed
543                          * because no swap device is configured.
544                          *
545                          * Otherwise, reactivate the page so that it doesn't
546                          * clog the laundry and inactive queues.  (We will try
547                          * paging it out again later.)
548                          */
549                         if ((object->flags & OBJ_SWAP) != 0 &&
550                             pageout_status[i] == VM_PAGER_FAIL) {
551                                 vm_page_unswappable(mt);
552                                 numpagedout++;
553                         } else
554                                 vm_page_activate(mt);
555                         if (eio != NULL && i >= mreq && i - mreq < runlen)
556                                 *eio = TRUE;
557                         break;
558                 case VM_PAGER_AGAIN:
559                         if (i >= mreq && i - mreq < runlen)
560                                 runlen = i - mreq;
561                         break;
562                 }
563
564                 /*
565                  * If the operation is still going, leave the page busy to
566                  * block all other accesses. Also, leave the paging in
567                  * progress indicator set so that we don't attempt an object
568                  * collapse.
569                  */
570                 if (pageout_status[i] != VM_PAGER_PEND) {
571                         vm_object_pip_wakeup(object);
572                         vm_page_sunbusy(mt);
573                 }
574         }
575         if (prunlen != NULL)
576                 *prunlen = runlen;
577         return (numpagedout);
578 }
579
580 static void
581 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
582 {
583
584         atomic_store_rel_int(&swapdev_enabled, 1);
585 }
586
587 static void
588 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
589 {
590
591         if (swap_pager_nswapdev() == 1)
592                 atomic_store_rel_int(&swapdev_enabled, 0);
593 }
594
595 /*
596  * Attempt to acquire all of the necessary locks to launder a page and
597  * then call through the clustering layer to PUTPAGES.  Wait a short
598  * time for a vnode lock.
599  *
600  * Requires the page and object lock on entry, releases both before return.
601  * Returns 0 on success and an errno otherwise.
602  */
603 static int
604 vm_pageout_clean(vm_page_t m, int *numpagedout)
605 {
606         struct vnode *vp;
607         struct mount *mp;
608         vm_object_t object;
609         vm_pindex_t pindex;
610         int error;
611
612         object = m->object;
613         VM_OBJECT_ASSERT_WLOCKED(object);
614         error = 0;
615         vp = NULL;
616         mp = NULL;
617
618         /*
619          * The object is already known NOT to be dead.   It
620          * is possible for the vget() to block the whole
621          * pageout daemon, but the new low-memory handling
622          * code should prevent it.
623          *
624          * We can't wait forever for the vnode lock, we might
625          * deadlock due to a vn_read() getting stuck in
626          * vm_wait while holding this vnode.  We skip the 
627          * vnode if we can't get it in a reasonable amount
628          * of time.
629          */
630         if (object->type == OBJT_VNODE) {
631                 vm_page_xunbusy(m);
632                 vp = object->handle;
633                 if (vp->v_type == VREG &&
634                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
635                         mp = NULL;
636                         error = EDEADLK;
637                         goto unlock_all;
638                 }
639                 KASSERT(mp != NULL,
640                     ("vp %p with NULL v_mount", vp));
641                 vm_object_reference_locked(object);
642                 pindex = m->pindex;
643                 VM_OBJECT_WUNLOCK(object);
644                 if (vget(vp, vn_lktype_write(NULL, vp) | LK_TIMELOCK) != 0) {
645                         vp = NULL;
646                         error = EDEADLK;
647                         goto unlock_mp;
648                 }
649                 VM_OBJECT_WLOCK(object);
650
651                 /*
652                  * Ensure that the object and vnode were not disassociated
653                  * while locks were dropped.
654                  */
655                 if (vp->v_object != object) {
656                         error = ENOENT;
657                         goto unlock_all;
658                 }
659
660                 /*
661                  * While the object was unlocked, the page may have been:
662                  * (1) moved to a different queue,
663                  * (2) reallocated to a different object,
664                  * (3) reallocated to a different offset, or
665                  * (4) cleaned.
666                  */
667                 if (!vm_page_in_laundry(m) || m->object != object ||
668                     m->pindex != pindex || m->dirty == 0) {
669                         error = ENXIO;
670                         goto unlock_all;
671                 }
672
673                 /*
674                  * The page may have been busied while the object lock was
675                  * released.
676                  */
677                 if (vm_page_tryxbusy(m) == 0) {
678                         error = EBUSY;
679                         goto unlock_all;
680                 }
681         }
682
683         /*
684          * Remove all writeable mappings, failing if the page is wired.
685          */
686         if (!vm_page_try_remove_write(m)) {
687                 vm_page_xunbusy(m);
688                 error = EBUSY;
689                 goto unlock_all;
690         }
691
692         /*
693          * If a page is dirty, then it is either being washed
694          * (but not yet cleaned) or it is still in the
695          * laundry.  If it is still in the laundry, then we
696          * start the cleaning operation. 
697          */
698         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
699                 error = EIO;
700
701 unlock_all:
702         VM_OBJECT_WUNLOCK(object);
703
704 unlock_mp:
705         if (mp != NULL) {
706                 if (vp != NULL)
707                         vput(vp);
708                 vm_object_deallocate(object);
709                 vn_finished_write(mp);
710         }
711
712         return (error);
713 }
714
715 /*
716  * Attempt to launder the specified number of pages.
717  *
718  * Returns the number of pages successfully laundered.
719  */
720 static int
721 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
722 {
723         struct scan_state ss;
724         struct vm_pagequeue *pq;
725         vm_object_t object;
726         vm_page_t m, marker;
727         vm_page_astate_t new, old;
728         int act_delta, error, numpagedout, queue, refs, starting_target;
729         int vnodes_skipped;
730         bool pageout_ok;
731
732         object = NULL;
733         starting_target = launder;
734         vnodes_skipped = 0;
735
736         /*
737          * Scan the laundry queues for pages eligible to be laundered.  We stop
738          * once the target number of dirty pages have been laundered, or once
739          * we've reached the end of the queue.  A single iteration of this loop
740          * may cause more than one page to be laundered because of clustering.
741          *
742          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
743          * swap devices are configured.
744          */
745         if (atomic_load_acq_int(&swapdev_enabled))
746                 queue = PQ_UNSWAPPABLE;
747         else
748                 queue = PQ_LAUNDRY;
749
750 scan:
751         marker = &vmd->vmd_markers[queue];
752         pq = &vmd->vmd_pagequeues[queue];
753         vm_pagequeue_lock(pq);
754         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
755         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
756                 if (__predict_false((m->flags & PG_MARKER) != 0))
757                         continue;
758
759                 /*
760                  * Don't touch a page that was removed from the queue after the
761                  * page queue lock was released.  Otherwise, ensure that any
762                  * pending queue operations, such as dequeues for wired pages,
763                  * are handled.
764                  */
765                 if (vm_pageout_defer(m, queue, true))
766                         continue;
767
768                 /*
769                  * Lock the page's object.
770                  */
771                 if (object == NULL || object != m->object) {
772                         if (object != NULL)
773                                 VM_OBJECT_WUNLOCK(object);
774                         object = atomic_load_ptr(&m->object);
775                         if (__predict_false(object == NULL))
776                                 /* The page is being freed by another thread. */
777                                 continue;
778
779                         /* Depends on type-stability. */
780                         VM_OBJECT_WLOCK(object);
781                         if (__predict_false(m->object != object)) {
782                                 VM_OBJECT_WUNLOCK(object);
783                                 object = NULL;
784                                 continue;
785                         }
786                 }
787
788                 if (vm_page_tryxbusy(m) == 0)
789                         continue;
790
791                 /*
792                  * Check for wirings now that we hold the object lock and have
793                  * exclusively busied the page.  If the page is mapped, it may
794                  * still be wired by pmap lookups.  The call to
795                  * vm_page_try_remove_all() below atomically checks for such
796                  * wirings and removes mappings.  If the page is unmapped, the
797                  * wire count is guaranteed not to increase after this check.
798                  */
799                 if (__predict_false(vm_page_wired(m)))
800                         goto skip_page;
801
802                 /*
803                  * Invalid pages can be easily freed.  They cannot be
804                  * mapped; vm_page_free() asserts this.
805                  */
806                 if (vm_page_none_valid(m))
807                         goto free_page;
808
809                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
810
811                 for (old = vm_page_astate_load(m);;) {
812                         /*
813                          * Check to see if the page has been removed from the
814                          * queue since the first such check.  Leave it alone if
815                          * so, discarding any references collected by
816                          * pmap_ts_referenced().
817                          */
818                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
819                                 goto skip_page;
820
821                         new = old;
822                         act_delta = refs;
823                         if ((old.flags & PGA_REFERENCED) != 0) {
824                                 new.flags &= ~PGA_REFERENCED;
825                                 act_delta++;
826                         }
827                         if (act_delta == 0) {
828                                 ;
829                         } else if (object->ref_count != 0) {
830                                 /*
831                                  * Increase the activation count if the page was
832                                  * referenced while in the laundry queue.  This
833                                  * makes it less likely that the page will be
834                                  * returned prematurely to the laundry queue.
835                                  */
836                                 new.act_count += ACT_ADVANCE +
837                                     act_delta;
838                                 if (new.act_count > ACT_MAX)
839                                         new.act_count = ACT_MAX;
840
841                                 new.flags &= ~PGA_QUEUE_OP_MASK;
842                                 new.flags |= PGA_REQUEUE;
843                                 new.queue = PQ_ACTIVE;
844                                 if (!vm_page_pqstate_commit(m, &old, new))
845                                         continue;
846
847                                 /*
848                                  * If this was a background laundering, count
849                                  * activated pages towards our target.  The
850                                  * purpose of background laundering is to ensure
851                                  * that pages are eventually cycled through the
852                                  * laundry queue, and an activation is a valid
853                                  * way out.
854                                  */
855                                 if (!in_shortfall)
856                                         launder--;
857                                 VM_CNT_INC(v_reactivated);
858                                 goto skip_page;
859                         } else if ((object->flags & OBJ_DEAD) == 0) {
860                                 new.flags |= PGA_REQUEUE;
861                                 if (!vm_page_pqstate_commit(m, &old, new))
862                                         continue;
863                                 goto skip_page;
864                         }
865                         break;
866                 }
867
868                 /*
869                  * If the page appears to be clean at the machine-independent
870                  * layer, then remove all of its mappings from the pmap in
871                  * anticipation of freeing it.  If, however, any of the page's
872                  * mappings allow write access, then the page may still be
873                  * modified until the last of those mappings are removed.
874                  */
875                 if (object->ref_count != 0) {
876                         vm_page_test_dirty(m);
877                         if (m->dirty == 0 && !vm_page_try_remove_all(m))
878                                 goto skip_page;
879                 }
880
881                 /*
882                  * Clean pages are freed, and dirty pages are paged out unless
883                  * they belong to a dead object.  Requeueing dirty pages from
884                  * dead objects is pointless, as they are being paged out and
885                  * freed by the thread that destroyed the object.
886                  */
887                 if (m->dirty == 0) {
888 free_page:
889                         /*
890                          * Now we are guaranteed that no other threads are
891                          * manipulating the page, check for a last-second
892                          * reference.
893                          */
894                         if (vm_pageout_defer(m, queue, true))
895                                 goto skip_page;
896                         vm_page_free(m);
897                         VM_CNT_INC(v_dfree);
898                 } else if ((object->flags & OBJ_DEAD) == 0) {
899                         if ((object->flags & OBJ_SWAP) != 0)
900                                 pageout_ok = disable_swap_pageouts == 0;
901                         else
902                                 pageout_ok = true;
903                         if (!pageout_ok) {
904                                 vm_page_launder(m);
905                                 goto skip_page;
906                         }
907
908                         /*
909                          * Form a cluster with adjacent, dirty pages from the
910                          * same object, and page out that entire cluster.
911                          *
912                          * The adjacent, dirty pages must also be in the
913                          * laundry.  However, their mappings are not checked
914                          * for new references.  Consequently, a recently
915                          * referenced page may be paged out.  However, that
916                          * page will not be prematurely reclaimed.  After page
917                          * out, the page will be placed in the inactive queue,
918                          * where any new references will be detected and the
919                          * page reactivated.
920                          */
921                         error = vm_pageout_clean(m, &numpagedout);
922                         if (error == 0) {
923                                 launder -= numpagedout;
924                                 ss.scanned += numpagedout;
925                         } else if (error == EDEADLK) {
926                                 pageout_lock_miss++;
927                                 vnodes_skipped++;
928                         }
929                         object = NULL;
930                 } else {
931 skip_page:
932                         vm_page_xunbusy(m);
933                 }
934         }
935         if (object != NULL) {
936                 VM_OBJECT_WUNLOCK(object);
937                 object = NULL;
938         }
939         vm_pagequeue_lock(pq);
940         vm_pageout_end_scan(&ss);
941         vm_pagequeue_unlock(pq);
942
943         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
944                 queue = PQ_LAUNDRY;
945                 goto scan;
946         }
947
948         /*
949          * Wakeup the sync daemon if we skipped a vnode in a writeable object
950          * and we didn't launder enough pages.
951          */
952         if (vnodes_skipped > 0 && launder > 0)
953                 (void)speedup_syncer();
954
955         return (starting_target - launder);
956 }
957
958 /*
959  * Compute the integer square root.
960  */
961 static u_int
962 isqrt(u_int num)
963 {
964         u_int bit, root, tmp;
965
966         bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
967         root = 0;
968         while (bit != 0) {
969                 tmp = root + bit;
970                 root >>= 1;
971                 if (num >= tmp) {
972                         num -= tmp;
973                         root += bit;
974                 }
975                 bit >>= 2;
976         }
977         return (root);
978 }
979
980 /*
981  * Perform the work of the laundry thread: periodically wake up and determine
982  * whether any pages need to be laundered.  If so, determine the number of pages
983  * that need to be laundered, and launder them.
984  */
985 static void
986 vm_pageout_laundry_worker(void *arg)
987 {
988         struct vm_domain *vmd;
989         struct vm_pagequeue *pq;
990         uint64_t nclean, ndirty, nfreed;
991         int domain, last_target, launder, shortfall, shortfall_cycle, target;
992         bool in_shortfall;
993
994         domain = (uintptr_t)arg;
995         vmd = VM_DOMAIN(domain);
996         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
997         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
998
999         shortfall = 0;
1000         in_shortfall = false;
1001         shortfall_cycle = 0;
1002         last_target = target = 0;
1003         nfreed = 0;
1004
1005         /*
1006          * Calls to these handlers are serialized by the swap syscall lock.
1007          */
1008         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1009             EVENTHANDLER_PRI_ANY);
1010         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1011             EVENTHANDLER_PRI_ANY);
1012
1013         /*
1014          * The pageout laundry worker is never done, so loop forever.
1015          */
1016         for (;;) {
1017                 KASSERT(target >= 0, ("negative target %d", target));
1018                 KASSERT(shortfall_cycle >= 0,
1019                     ("negative cycle %d", shortfall_cycle));
1020                 launder = 0;
1021
1022                 /*
1023                  * First determine whether we need to launder pages to meet a
1024                  * shortage of free pages.
1025                  */
1026                 if (shortfall > 0) {
1027                         in_shortfall = true;
1028                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1029                         target = shortfall;
1030                 } else if (!in_shortfall)
1031                         goto trybackground;
1032                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1033                         /*
1034                          * We recently entered shortfall and began laundering
1035                          * pages.  If we have completed that laundering run
1036                          * (and we are no longer in shortfall) or we have met
1037                          * our laundry target through other activity, then we
1038                          * can stop laundering pages.
1039                          */
1040                         in_shortfall = false;
1041                         target = 0;
1042                         goto trybackground;
1043                 }
1044                 launder = target / shortfall_cycle--;
1045                 goto dolaundry;
1046
1047                 /*
1048                  * There's no immediate need to launder any pages; see if we
1049                  * meet the conditions to perform background laundering:
1050                  *
1051                  * 1. The ratio of dirty to clean inactive pages exceeds the
1052                  *    background laundering threshold, or
1053                  * 2. we haven't yet reached the target of the current
1054                  *    background laundering run.
1055                  *
1056                  * The background laundering threshold is not a constant.
1057                  * Instead, it is a slowly growing function of the number of
1058                  * clean pages freed by the page daemon since the last
1059                  * background laundering.  Thus, as the ratio of dirty to
1060                  * clean inactive pages grows, the amount of memory pressure
1061                  * required to trigger laundering decreases.  We ensure
1062                  * that the threshold is non-zero after an inactive queue
1063                  * scan, even if that scan failed to free a single clean page.
1064                  */
1065 trybackground:
1066                 nclean = vmd->vmd_free_count +
1067                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1068                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1069                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1070                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1071                         target = vmd->vmd_background_launder_target;
1072                 }
1073
1074                 /*
1075                  * We have a non-zero background laundering target.  If we've
1076                  * laundered up to our maximum without observing a page daemon
1077                  * request, just stop.  This is a safety belt that ensures we
1078                  * don't launder an excessive amount if memory pressure is low
1079                  * and the ratio of dirty to clean pages is large.  Otherwise,
1080                  * proceed at the background laundering rate.
1081                  */
1082                 if (target > 0) {
1083                         if (nfreed > 0) {
1084                                 nfreed = 0;
1085                                 last_target = target;
1086                         } else if (last_target - target >=
1087                             vm_background_launder_max * PAGE_SIZE / 1024) {
1088                                 target = 0;
1089                         }
1090                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1091                         launder /= VM_LAUNDER_RATE;
1092                         if (launder > target)
1093                                 launder = target;
1094                 }
1095
1096 dolaundry:
1097                 if (launder > 0) {
1098                         /*
1099                          * Because of I/O clustering, the number of laundered
1100                          * pages could exceed "target" by the maximum size of
1101                          * a cluster minus one. 
1102                          */
1103                         target -= min(vm_pageout_launder(vmd, launder,
1104                             in_shortfall), target);
1105                         pause("laundp", hz / VM_LAUNDER_RATE);
1106                 }
1107
1108                 /*
1109                  * If we're not currently laundering pages and the page daemon
1110                  * hasn't posted a new request, sleep until the page daemon
1111                  * kicks us.
1112                  */
1113                 vm_pagequeue_lock(pq);
1114                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1115                         (void)mtx_sleep(&vmd->vmd_laundry_request,
1116                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1117
1118                 /*
1119                  * If the pagedaemon has indicated that it's in shortfall, start
1120                  * a shortfall laundering unless we're already in the middle of
1121                  * one.  This may preempt a background laundering.
1122                  */
1123                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1124                     (!in_shortfall || shortfall_cycle == 0)) {
1125                         shortfall = vm_laundry_target(vmd) +
1126                             vmd->vmd_pageout_deficit;
1127                         target = 0;
1128                 } else
1129                         shortfall = 0;
1130
1131                 if (target == 0)
1132                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1133                 nfreed += vmd->vmd_clean_pages_freed;
1134                 vmd->vmd_clean_pages_freed = 0;
1135                 vm_pagequeue_unlock(pq);
1136         }
1137 }
1138
1139 /*
1140  * Compute the number of pages we want to try to move from the
1141  * active queue to either the inactive or laundry queue.
1142  *
1143  * When scanning active pages during a shortage, we make clean pages
1144  * count more heavily towards the page shortage than dirty pages.
1145  * This is because dirty pages must be laundered before they can be
1146  * reused and thus have less utility when attempting to quickly
1147  * alleviate a free page shortage.  However, this weighting also
1148  * causes the scan to deactivate dirty pages more aggressively,
1149  * improving the effectiveness of clustering.
1150  */
1151 static int
1152 vm_pageout_active_target(struct vm_domain *vmd)
1153 {
1154         int shortage;
1155
1156         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1157             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1158             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1159         shortage *= act_scan_laundry_weight;
1160         return (shortage);
1161 }
1162
1163 /*
1164  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1165  * small portion of the queue in order to maintain quasi-LRU.
1166  */
1167 static void
1168 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1169 {
1170         struct scan_state ss;
1171         vm_object_t object;
1172         vm_page_t m, marker;
1173         struct vm_pagequeue *pq;
1174         vm_page_astate_t old, new;
1175         long min_scan;
1176         int act_delta, max_scan, ps_delta, refs, scan_tick;
1177         uint8_t nqueue;
1178
1179         marker = &vmd->vmd_markers[PQ_ACTIVE];
1180         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1181         vm_pagequeue_lock(pq);
1182
1183         /*
1184          * If we're just idle polling attempt to visit every
1185          * active page within 'update_period' seconds.
1186          */
1187         scan_tick = ticks;
1188         if (vm_pageout_update_period != 0) {
1189                 min_scan = pq->pq_cnt;
1190                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1191                 min_scan /= hz * vm_pageout_update_period;
1192         } else
1193                 min_scan = 0;
1194         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1195                 vmd->vmd_last_active_scan = scan_tick;
1196
1197         /*
1198          * Scan the active queue for pages that can be deactivated.  Update
1199          * the per-page activity counter and use it to identify deactivation
1200          * candidates.  Held pages may be deactivated.
1201          *
1202          * To avoid requeuing each page that remains in the active queue, we
1203          * implement the CLOCK algorithm.  To keep the implementation of the
1204          * enqueue operation consistent for all page queues, we use two hands,
1205          * represented by marker pages. Scans begin at the first hand, which
1206          * precedes the second hand in the queue.  When the two hands meet,
1207          * they are moved back to the head and tail of the queue, respectively,
1208          * and scanning resumes.
1209          */
1210         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1211 act_scan:
1212         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1213         while ((m = vm_pageout_next(&ss, false)) != NULL) {
1214                 if (__predict_false(m == &vmd->vmd_clock[1])) {
1215                         vm_pagequeue_lock(pq);
1216                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1217                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1218                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1219                             plinks.q);
1220                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1221                             plinks.q);
1222                         max_scan -= ss.scanned;
1223                         vm_pageout_end_scan(&ss);
1224                         goto act_scan;
1225                 }
1226                 if (__predict_false((m->flags & PG_MARKER) != 0))
1227                         continue;
1228
1229                 /*
1230                  * Don't touch a page that was removed from the queue after the
1231                  * page queue lock was released.  Otherwise, ensure that any
1232                  * pending queue operations, such as dequeues for wired pages,
1233                  * are handled.
1234                  */
1235                 if (vm_pageout_defer(m, PQ_ACTIVE, true))
1236                         continue;
1237
1238                 /*
1239                  * A page's object pointer may be set to NULL before
1240                  * the object lock is acquired.
1241                  */
1242                 object = atomic_load_ptr(&m->object);
1243                 if (__predict_false(object == NULL))
1244                         /*
1245                          * The page has been removed from its object.
1246                          */
1247                         continue;
1248
1249                 /* Deferred free of swap space. */
1250                 if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1251                     VM_OBJECT_TRYWLOCK(object)) {
1252                         if (m->object == object)
1253                                 vm_pager_page_unswapped(m);
1254                         VM_OBJECT_WUNLOCK(object);
1255                 }
1256
1257                 /*
1258                  * Check to see "how much" the page has been used.
1259                  *
1260                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1261                  * that a reference from a concurrently destroyed mapping is
1262                  * observed here and now.
1263                  *
1264                  * Perform an unsynchronized object ref count check.  While
1265                  * the page lock ensures that the page is not reallocated to
1266                  * another object, in particular, one with unmanaged mappings
1267                  * that cannot support pmap_ts_referenced(), two races are,
1268                  * nonetheless, possible:
1269                  * 1) The count was transitioning to zero, but we saw a non-
1270                  *    zero value.  pmap_ts_referenced() will return zero
1271                  *    because the page is not mapped.
1272                  * 2) The count was transitioning to one, but we saw zero.
1273                  *    This race delays the detection of a new reference.  At
1274                  *    worst, we will deactivate and reactivate the page.
1275                  */
1276                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1277
1278                 old = vm_page_astate_load(m);
1279                 do {
1280                         /*
1281                          * Check to see if the page has been removed from the
1282                          * queue since the first such check.  Leave it alone if
1283                          * so, discarding any references collected by
1284                          * pmap_ts_referenced().
1285                          */
1286                         if (__predict_false(_vm_page_queue(old) == PQ_NONE)) {
1287                                 ps_delta = 0;
1288                                 break;
1289                         }
1290
1291                         /*
1292                          * Advance or decay the act_count based on recent usage.
1293                          */
1294                         new = old;
1295                         act_delta = refs;
1296                         if ((old.flags & PGA_REFERENCED) != 0) {
1297                                 new.flags &= ~PGA_REFERENCED;
1298                                 act_delta++;
1299                         }
1300                         if (act_delta != 0) {
1301                                 new.act_count += ACT_ADVANCE + act_delta;
1302                                 if (new.act_count > ACT_MAX)
1303                                         new.act_count = ACT_MAX;
1304                         } else {
1305                                 new.act_count -= min(new.act_count,
1306                                     ACT_DECLINE);
1307                         }
1308
1309                         if (new.act_count > 0) {
1310                                 /*
1311                                  * Adjust the activation count and keep the page
1312                                  * in the active queue.  The count might be left
1313                                  * unchanged if it is saturated.  The page may
1314                                  * have been moved to a different queue since we
1315                                  * started the scan, in which case we move it
1316                                  * back.
1317                                  */
1318                                 ps_delta = 0;
1319                                 if (old.queue != PQ_ACTIVE) {
1320                                         new.flags &= ~PGA_QUEUE_OP_MASK;
1321                                         new.flags |= PGA_REQUEUE;
1322                                         new.queue = PQ_ACTIVE;
1323                                 }
1324                         } else {
1325                                 /*
1326                                  * When not short for inactive pages, let dirty
1327                                  * pages go through the inactive queue before
1328                                  * moving to the laundry queue.  This gives them
1329                                  * some extra time to be reactivated,
1330                                  * potentially avoiding an expensive pageout.
1331                                  * However, during a page shortage, the inactive
1332                                  * queue is necessarily small, and so dirty
1333                                  * pages would only spend a trivial amount of
1334                                  * time in the inactive queue.  Therefore, we
1335                                  * might as well place them directly in the
1336                                  * laundry queue to reduce queuing overhead.
1337                                  *
1338                                  * Calling vm_page_test_dirty() here would
1339                                  * require acquisition of the object's write
1340                                  * lock.  However, during a page shortage,
1341                                  * directing dirty pages into the laundry queue
1342                                  * is only an optimization and not a
1343                                  * requirement.  Therefore, we simply rely on
1344                                  * the opportunistic updates to the page's dirty
1345                                  * field by the pmap.
1346                                  */
1347                                 if (page_shortage <= 0) {
1348                                         nqueue = PQ_INACTIVE;
1349                                         ps_delta = 0;
1350                                 } else if (m->dirty == 0) {
1351                                         nqueue = PQ_INACTIVE;
1352                                         ps_delta = act_scan_laundry_weight;
1353                                 } else {
1354                                         nqueue = PQ_LAUNDRY;
1355                                         ps_delta = 1;
1356                                 }
1357
1358                                 new.flags &= ~PGA_QUEUE_OP_MASK;
1359                                 new.flags |= PGA_REQUEUE;
1360                                 new.queue = nqueue;
1361                         }
1362                 } while (!vm_page_pqstate_commit(m, &old, new));
1363
1364                 page_shortage -= ps_delta;
1365         }
1366         vm_pagequeue_lock(pq);
1367         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1368         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1369         vm_pageout_end_scan(&ss);
1370         vm_pagequeue_unlock(pq);
1371 }
1372
1373 static int
1374 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1375     vm_page_t m)
1376 {
1377         vm_page_astate_t as;
1378
1379         vm_pagequeue_assert_locked(pq);
1380
1381         as = vm_page_astate_load(m);
1382         if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1383                 return (0);
1384         vm_page_aflag_set(m, PGA_ENQUEUED);
1385         TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1386         return (1);
1387 }
1388
1389 /*
1390  * Re-add stuck pages to the inactive queue.  We will examine them again
1391  * during the next scan.  If the queue state of a page has changed since
1392  * it was physically removed from the page queue in
1393  * vm_pageout_collect_batch(), don't do anything with that page.
1394  */
1395 static void
1396 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1397     vm_page_t m)
1398 {
1399         struct vm_pagequeue *pq;
1400         vm_page_t marker;
1401         int delta;
1402
1403         delta = 0;
1404         marker = ss->marker;
1405         pq = ss->pq;
1406
1407         if (m != NULL) {
1408                 if (vm_batchqueue_insert(bq, m))
1409                         return;
1410                 vm_pagequeue_lock(pq);
1411                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1412         } else
1413                 vm_pagequeue_lock(pq);
1414         while ((m = vm_batchqueue_pop(bq)) != NULL)
1415                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1416         vm_pagequeue_cnt_add(pq, delta);
1417         vm_pagequeue_unlock(pq);
1418         vm_batchqueue_init(bq);
1419 }
1420
1421 static void
1422 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
1423 {
1424         struct timeval start, end;
1425         struct scan_state ss;
1426         struct vm_batchqueue rq;
1427         struct vm_page marker_page;
1428         vm_page_t m, marker;
1429         struct vm_pagequeue *pq;
1430         vm_object_t object;
1431         vm_page_astate_t old, new;
1432         int act_delta, addl_page_shortage, starting_page_shortage, refs;
1433
1434         object = NULL;
1435         vm_batchqueue_init(&rq);
1436         getmicrouptime(&start);
1437
1438         /*
1439          * The addl_page_shortage is an estimate of the number of temporarily
1440          * stuck pages in the inactive queue.  In other words, the
1441          * number of pages from the inactive count that should be
1442          * discounted in setting the target for the active queue scan.
1443          */
1444         addl_page_shortage = 0;
1445
1446         /*
1447          * Start scanning the inactive queue for pages that we can free.  The
1448          * scan will stop when we reach the target or we have scanned the
1449          * entire queue.  (Note that m->a.act_count is not used to make
1450          * decisions for the inactive queue, only for the active queue.)
1451          */
1452         starting_page_shortage = page_shortage;
1453         marker = &marker_page;
1454         vm_page_init_marker(marker, PQ_INACTIVE, 0);
1455         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1456         vm_pagequeue_lock(pq);
1457         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1458         while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1459                 KASSERT((m->flags & PG_MARKER) == 0,
1460                     ("marker page %p was dequeued", m));
1461
1462                 /*
1463                  * Don't touch a page that was removed from the queue after the
1464                  * page queue lock was released.  Otherwise, ensure that any
1465                  * pending queue operations, such as dequeues for wired pages,
1466                  * are handled.
1467                  */
1468                 if (vm_pageout_defer(m, PQ_INACTIVE, false))
1469                         continue;
1470
1471                 /*
1472                  * Lock the page's object.
1473                  */
1474                 if (object == NULL || object != m->object) {
1475                         if (object != NULL)
1476                                 VM_OBJECT_WUNLOCK(object);
1477                         object = atomic_load_ptr(&m->object);
1478                         if (__predict_false(object == NULL))
1479                                 /* The page is being freed by another thread. */
1480                                 continue;
1481
1482                         /* Depends on type-stability. */
1483                         VM_OBJECT_WLOCK(object);
1484                         if (__predict_false(m->object != object)) {
1485                                 VM_OBJECT_WUNLOCK(object);
1486                                 object = NULL;
1487                                 goto reinsert;
1488                         }
1489                 }
1490
1491                 if (vm_page_tryxbusy(m) == 0) {
1492                         /*
1493                          * Don't mess with busy pages.  Leave them at
1494                          * the front of the queue.  Most likely, they
1495                          * are being paged out and will leave the
1496                          * queue shortly after the scan finishes.  So,
1497                          * they ought to be discounted from the
1498                          * inactive count.
1499                          */
1500                         addl_page_shortage++;
1501                         goto reinsert;
1502                 }
1503
1504                 /* Deferred free of swap space. */
1505                 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1506                         vm_pager_page_unswapped(m);
1507
1508                 /*
1509                  * Check for wirings now that we hold the object lock and have
1510                  * exclusively busied the page.  If the page is mapped, it may
1511                  * still be wired by pmap lookups.  The call to
1512                  * vm_page_try_remove_all() below atomically checks for such
1513                  * wirings and removes mappings.  If the page is unmapped, the
1514                  * wire count is guaranteed not to increase after this check.
1515                  */
1516                 if (__predict_false(vm_page_wired(m)))
1517                         goto skip_page;
1518
1519                 /*
1520                  * Invalid pages can be easily freed. They cannot be
1521                  * mapped, vm_page_free() asserts this.
1522                  */
1523                 if (vm_page_none_valid(m))
1524                         goto free_page;
1525
1526                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1527
1528                 for (old = vm_page_astate_load(m);;) {
1529                         /*
1530                          * Check to see if the page has been removed from the
1531                          * queue since the first such check.  Leave it alone if
1532                          * so, discarding any references collected by
1533                          * pmap_ts_referenced().
1534                          */
1535                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1536                                 goto skip_page;
1537
1538                         new = old;
1539                         act_delta = refs;
1540                         if ((old.flags & PGA_REFERENCED) != 0) {
1541                                 new.flags &= ~PGA_REFERENCED;
1542                                 act_delta++;
1543                         }
1544                         if (act_delta == 0) {
1545                                 ;
1546                         } else if (object->ref_count != 0) {
1547                                 /*
1548                                  * Increase the activation count if the
1549                                  * page was referenced while in the
1550                                  * inactive queue.  This makes it less
1551                                  * likely that the page will be returned
1552                                  * prematurely to the inactive queue.
1553                                  */
1554                                 new.act_count += ACT_ADVANCE +
1555                                     act_delta;
1556                                 if (new.act_count > ACT_MAX)
1557                                         new.act_count = ACT_MAX;
1558
1559                                 new.flags &= ~PGA_QUEUE_OP_MASK;
1560                                 new.flags |= PGA_REQUEUE;
1561                                 new.queue = PQ_ACTIVE;
1562                                 if (!vm_page_pqstate_commit(m, &old, new))
1563                                         continue;
1564
1565                                 VM_CNT_INC(v_reactivated);
1566                                 goto skip_page;
1567                         } else if ((object->flags & OBJ_DEAD) == 0) {
1568                                 new.queue = PQ_INACTIVE;
1569                                 new.flags |= PGA_REQUEUE;
1570                                 if (!vm_page_pqstate_commit(m, &old, new))
1571                                         continue;
1572                                 goto skip_page;
1573                         }
1574                         break;
1575                 }
1576
1577                 /*
1578                  * If the page appears to be clean at the machine-independent
1579                  * layer, then remove all of its mappings from the pmap in
1580                  * anticipation of freeing it.  If, however, any of the page's
1581                  * mappings allow write access, then the page may still be
1582                  * modified until the last of those mappings are removed.
1583                  */
1584                 if (object->ref_count != 0) {
1585                         vm_page_test_dirty(m);
1586                         if (m->dirty == 0 && !vm_page_try_remove_all(m))
1587                                 goto skip_page;
1588                 }
1589
1590                 /*
1591                  * Clean pages can be freed, but dirty pages must be sent back
1592                  * to the laundry, unless they belong to a dead object.
1593                  * Requeueing dirty pages from dead objects is pointless, as
1594                  * they are being paged out and freed by the thread that
1595                  * destroyed the object.
1596                  */
1597                 if (m->dirty == 0) {
1598 free_page:
1599                         /*
1600                          * Now we are guaranteed that no other threads are
1601                          * manipulating the page, check for a last-second
1602                          * reference that would save it from doom.
1603                          */
1604                         if (vm_pageout_defer(m, PQ_INACTIVE, false))
1605                                 goto skip_page;
1606
1607                         /*
1608                          * Because we dequeued the page and have already checked
1609                          * for pending dequeue and enqueue requests, we can
1610                          * safely disassociate the page from the inactive queue
1611                          * without holding the queue lock.
1612                          */
1613                         m->a.queue = PQ_NONE;
1614                         vm_page_free(m);
1615                         page_shortage--;
1616                         continue;
1617                 }
1618                 if ((object->flags & OBJ_DEAD) == 0)
1619                         vm_page_launder(m);
1620 skip_page:
1621                 vm_page_xunbusy(m);
1622                 continue;
1623 reinsert:
1624                 vm_pageout_reinsert_inactive(&ss, &rq, m);
1625         }
1626         if (object != NULL)
1627                 VM_OBJECT_WUNLOCK(object);
1628         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1629         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1630         vm_pagequeue_lock(pq);
1631         vm_pageout_end_scan(&ss);
1632         vm_pagequeue_unlock(pq);
1633
1634         /*
1635          * Record the remaining shortage and the progress and rate it was made.
1636          */
1637         atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
1638         getmicrouptime(&end);
1639         timevalsub(&end, &start);
1640         atomic_add_int(&vmd->vmd_inactive_us,
1641             end.tv_sec * 1000000 + end.tv_usec);
1642         atomic_add_int(&vmd->vmd_inactive_freed,
1643             starting_page_shortage - page_shortage);
1644 }
1645
1646 /*
1647  * Dispatch a number of inactive threads according to load and collect the
1648  * results to present a coherent view of paging activity on this domain.
1649  */
1650 static int
1651 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
1652 {
1653         u_int freed, pps, slop, threads, us;
1654
1655         vmd->vmd_inactive_shortage = shortage;
1656         slop = 0;
1657
1658         /*
1659          * If we have more work than we can do in a quarter of our interval, we
1660          * fire off multiple threads to process it.
1661          */
1662         threads = vmd->vmd_inactive_threads;
1663         if (threads > 1 && vmd->vmd_inactive_pps != 0 &&
1664             shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
1665                 vmd->vmd_inactive_shortage /= threads;
1666                 slop = shortage % threads;
1667                 vm_domain_pageout_lock(vmd);
1668                 blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
1669                 blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
1670                 wakeup(&vmd->vmd_inactive_shortage);
1671                 vm_domain_pageout_unlock(vmd);
1672         }
1673
1674         /* Run the local thread scan. */
1675         vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage + slop);
1676
1677         /*
1678          * Block until helper threads report results and then accumulate
1679          * totals.
1680          */
1681         blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
1682         freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
1683         VM_CNT_ADD(v_dfree, freed);
1684
1685         /*
1686          * Calculate the per-thread paging rate with an exponential decay of
1687          * prior results.  Careful to avoid integer rounding errors with large
1688          * us values.
1689          */
1690         us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
1691         if (us > 1000000)
1692                 /* Keep rounding to tenths */
1693                 pps = (freed * 10) / ((us * 10) / 1000000);
1694         else
1695                 pps = (1000000 / us) * freed;
1696         vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
1697
1698         return (shortage - freed);
1699 }
1700
1701 /*
1702  * Attempt to reclaim the requested number of pages from the inactive queue.
1703  * Returns true if the shortage was addressed.
1704  */
1705 static int
1706 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
1707 {
1708         struct vm_pagequeue *pq;
1709         u_int addl_page_shortage, deficit, page_shortage;
1710         u_int starting_page_shortage;
1711
1712         /*
1713          * vmd_pageout_deficit counts the number of pages requested in
1714          * allocations that failed because of a free page shortage.  We assume
1715          * that the allocations will be reattempted and thus include the deficit
1716          * in our scan target.
1717          */
1718         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1719         starting_page_shortage = shortage + deficit;
1720
1721         /*
1722          * Run the inactive scan on as many threads as is necessary.
1723          */
1724         page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
1725         addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
1726
1727         /*
1728          * Wake up the laundry thread so that it can perform any needed
1729          * laundering.  If we didn't meet our target, we're in shortfall and
1730          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1731          * swap devices are configured, the laundry thread has no work to do, so
1732          * don't bother waking it up.
1733          *
1734          * The laundry thread uses the number of inactive queue scans elapsed
1735          * since the last laundering to determine whether to launder again, so
1736          * keep count.
1737          */
1738         if (starting_page_shortage > 0) {
1739                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1740                 vm_pagequeue_lock(pq);
1741                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1742                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1743                         if (page_shortage > 0) {
1744                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1745                                 VM_CNT_INC(v_pdshortfalls);
1746                         } else if (vmd->vmd_laundry_request !=
1747                             VM_LAUNDRY_SHORTFALL)
1748                                 vmd->vmd_laundry_request =
1749                                     VM_LAUNDRY_BACKGROUND;
1750                         wakeup(&vmd->vmd_laundry_request);
1751                 }
1752                 vmd->vmd_clean_pages_freed +=
1753                     starting_page_shortage - page_shortage;
1754                 vm_pagequeue_unlock(pq);
1755         }
1756
1757         /*
1758          * Wakeup the swapout daemon if we didn't free the targeted number of
1759          * pages.
1760          */
1761         if (page_shortage > 0)
1762                 vm_swapout_run();
1763
1764         /*
1765          * If the inactive queue scan fails repeatedly to meet its
1766          * target, kill the largest process.
1767          */
1768         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1769
1770         /*
1771          * Reclaim pages by swapping out idle processes, if configured to do so.
1772          */
1773         vm_swapout_run_idle();
1774
1775         /*
1776          * See the description of addl_page_shortage above.
1777          */
1778         *addl_shortage = addl_page_shortage + deficit;
1779
1780         return (page_shortage <= 0);
1781 }
1782
1783 static int vm_pageout_oom_vote;
1784
1785 /*
1786  * The pagedaemon threads randlomly select one to perform the
1787  * OOM.  Trying to kill processes before all pagedaemons
1788  * failed to reach free target is premature.
1789  */
1790 static void
1791 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1792     int starting_page_shortage)
1793 {
1794         int old_vote;
1795
1796         if (starting_page_shortage <= 0 || starting_page_shortage !=
1797             page_shortage)
1798                 vmd->vmd_oom_seq = 0;
1799         else
1800                 vmd->vmd_oom_seq++;
1801         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1802                 if (vmd->vmd_oom) {
1803                         vmd->vmd_oom = FALSE;
1804                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1805                 }
1806                 return;
1807         }
1808
1809         /*
1810          * Do not follow the call sequence until OOM condition is
1811          * cleared.
1812          */
1813         vmd->vmd_oom_seq = 0;
1814
1815         if (vmd->vmd_oom)
1816                 return;
1817
1818         vmd->vmd_oom = TRUE;
1819         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1820         if (old_vote != vm_ndomains - 1)
1821                 return;
1822
1823         /*
1824          * The current pagedaemon thread is the last in the quorum to
1825          * start OOM.  Initiate the selection and signaling of the
1826          * victim.
1827          */
1828         vm_pageout_oom(VM_OOM_MEM);
1829
1830         /*
1831          * After one round of OOM terror, recall our vote.  On the
1832          * next pass, current pagedaemon would vote again if the low
1833          * memory condition is still there, due to vmd_oom being
1834          * false.
1835          */
1836         vmd->vmd_oom = FALSE;
1837         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1838 }
1839
1840 /*
1841  * The OOM killer is the page daemon's action of last resort when
1842  * memory allocation requests have been stalled for a prolonged period
1843  * of time because it cannot reclaim memory.  This function computes
1844  * the approximate number of physical pages that could be reclaimed if
1845  * the specified address space is destroyed.
1846  *
1847  * Private, anonymous memory owned by the address space is the
1848  * principal resource that we expect to recover after an OOM kill.
1849  * Since the physical pages mapped by the address space's COW entries
1850  * are typically shared pages, they are unlikely to be released and so
1851  * they are not counted.
1852  *
1853  * To get to the point where the page daemon runs the OOM killer, its
1854  * efforts to write-back vnode-backed pages may have stalled.  This
1855  * could be caused by a memory allocation deadlock in the write path
1856  * that might be resolved by an OOM kill.  Therefore, physical pages
1857  * belonging to vnode-backed objects are counted, because they might
1858  * be freed without being written out first if the address space holds
1859  * the last reference to an unlinked vnode.
1860  *
1861  * Similarly, physical pages belonging to OBJT_PHYS objects are
1862  * counted because the address space might hold the last reference to
1863  * the object.
1864  */
1865 static long
1866 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1867 {
1868         vm_map_t map;
1869         vm_map_entry_t entry;
1870         vm_object_t obj;
1871         long res;
1872
1873         map = &vmspace->vm_map;
1874         KASSERT(!map->system_map, ("system map"));
1875         sx_assert(&map->lock, SA_LOCKED);
1876         res = 0;
1877         VM_MAP_ENTRY_FOREACH(entry, map) {
1878                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1879                         continue;
1880                 obj = entry->object.vm_object;
1881                 if (obj == NULL)
1882                         continue;
1883                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1884                     obj->ref_count != 1)
1885                         continue;
1886                 if (obj->type == OBJT_PHYS || obj->type == OBJT_VNODE ||
1887                     (obj->flags & OBJ_SWAP) != 0)
1888                         res += obj->resident_page_count;
1889         }
1890         return (res);
1891 }
1892
1893 static int vm_oom_ratelim_last;
1894 static int vm_oom_pf_secs = 10;
1895 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1896     "");
1897 static struct mtx vm_oom_ratelim_mtx;
1898
1899 void
1900 vm_pageout_oom(int shortage)
1901 {
1902         const char *reason;
1903         struct proc *p, *bigproc;
1904         vm_offset_t size, bigsize;
1905         struct thread *td;
1906         struct vmspace *vm;
1907         int now;
1908         bool breakout;
1909
1910         /*
1911          * For OOM requests originating from vm_fault(), there is a high
1912          * chance that a single large process faults simultaneously in
1913          * several threads.  Also, on an active system running many
1914          * processes of middle-size, like buildworld, all of them
1915          * could fault almost simultaneously as well.
1916          *
1917          * To avoid killing too many processes, rate-limit OOMs
1918          * initiated by vm_fault() time-outs on the waits for free
1919          * pages.
1920          */
1921         mtx_lock(&vm_oom_ratelim_mtx);
1922         now = ticks;
1923         if (shortage == VM_OOM_MEM_PF &&
1924             (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1925                 mtx_unlock(&vm_oom_ratelim_mtx);
1926                 return;
1927         }
1928         vm_oom_ratelim_last = now;
1929         mtx_unlock(&vm_oom_ratelim_mtx);
1930
1931         /*
1932          * We keep the process bigproc locked once we find it to keep anyone
1933          * from messing with it; however, there is a possibility of
1934          * deadlock if process B is bigproc and one of its child processes
1935          * attempts to propagate a signal to B while we are waiting for A's
1936          * lock while walking this list.  To avoid this, we don't block on
1937          * the process lock but just skip a process if it is already locked.
1938          */
1939         bigproc = NULL;
1940         bigsize = 0;
1941         sx_slock(&allproc_lock);
1942         FOREACH_PROC_IN_SYSTEM(p) {
1943                 PROC_LOCK(p);
1944
1945                 /*
1946                  * If this is a system, protected or killed process, skip it.
1947                  */
1948                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1949                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1950                     p->p_pid == 1 || P_KILLED(p) ||
1951                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1952                         PROC_UNLOCK(p);
1953                         continue;
1954                 }
1955                 /*
1956                  * If the process is in a non-running type state,
1957                  * don't touch it.  Check all the threads individually.
1958                  */
1959                 breakout = false;
1960                 FOREACH_THREAD_IN_PROC(p, td) {
1961                         thread_lock(td);
1962                         if (!TD_ON_RUNQ(td) &&
1963                             !TD_IS_RUNNING(td) &&
1964                             !TD_IS_SLEEPING(td) &&
1965                             !TD_IS_SUSPENDED(td) &&
1966                             !TD_IS_SWAPPED(td)) {
1967                                 thread_unlock(td);
1968                                 breakout = true;
1969                                 break;
1970                         }
1971                         thread_unlock(td);
1972                 }
1973                 if (breakout) {
1974                         PROC_UNLOCK(p);
1975                         continue;
1976                 }
1977                 /*
1978                  * get the process size
1979                  */
1980                 vm = vmspace_acquire_ref(p);
1981                 if (vm == NULL) {
1982                         PROC_UNLOCK(p);
1983                         continue;
1984                 }
1985                 _PHOLD_LITE(p);
1986                 PROC_UNLOCK(p);
1987                 sx_sunlock(&allproc_lock);
1988                 if (!vm_map_trylock_read(&vm->vm_map)) {
1989                         vmspace_free(vm);
1990                         sx_slock(&allproc_lock);
1991                         PRELE(p);
1992                         continue;
1993                 }
1994                 size = vmspace_swap_count(vm);
1995                 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1996                         size += vm_pageout_oom_pagecount(vm);
1997                 vm_map_unlock_read(&vm->vm_map);
1998                 vmspace_free(vm);
1999                 sx_slock(&allproc_lock);
2000
2001                 /*
2002                  * If this process is bigger than the biggest one,
2003                  * remember it.
2004                  */
2005                 if (size > bigsize) {
2006                         if (bigproc != NULL)
2007                                 PRELE(bigproc);
2008                         bigproc = p;
2009                         bigsize = size;
2010                 } else {
2011                         PRELE(p);
2012                 }
2013         }
2014         sx_sunlock(&allproc_lock);
2015
2016         if (bigproc != NULL) {
2017                 switch (shortage) {
2018                 case VM_OOM_MEM:
2019                         reason = "failed to reclaim memory";
2020                         break;
2021                 case VM_OOM_MEM_PF:
2022                         reason = "a thread waited too long to allocate a page";
2023                         break;
2024                 case VM_OOM_SWAPZ:
2025                         reason = "out of swap space";
2026                         break;
2027                 default:
2028                         panic("unknown OOM reason %d", shortage);
2029                 }
2030                 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
2031                         panic("%s", reason);
2032                 PROC_LOCK(bigproc);
2033                 killproc(bigproc, reason);
2034                 sched_nice(bigproc, PRIO_MIN);
2035                 _PRELE(bigproc);
2036                 PROC_UNLOCK(bigproc);
2037         }
2038 }
2039
2040 /*
2041  * Signal a free page shortage to subsystems that have registered an event
2042  * handler.  Reclaim memory from UMA in the event of a severe shortage.
2043  * Return true if the free page count should be re-evaluated.
2044  */
2045 static bool
2046 vm_pageout_lowmem(void)
2047 {
2048         static int lowmem_ticks = 0;
2049         int last;
2050         bool ret;
2051
2052         ret = false;
2053
2054         last = atomic_load_int(&lowmem_ticks);
2055         while ((u_int)(ticks - last) / hz >= lowmem_period) {
2056                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
2057                         continue;
2058
2059                 /*
2060                  * Decrease registered cache sizes.
2061                  */
2062                 SDT_PROBE0(vm, , , vm__lowmem_scan);
2063                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2064
2065                 /*
2066                  * We do this explicitly after the caches have been
2067                  * drained above.
2068                  */
2069                 uma_reclaim(UMA_RECLAIM_TRIM);
2070                 ret = true;
2071                 break;
2072         }
2073
2074         /*
2075          * Kick off an asynchronous reclaim of cached memory if one of the
2076          * page daemons is failing to keep up with demand.  Use the "severe"
2077          * threshold instead of "min" to ensure that we do not blow away the
2078          * caches if a subset of the NUMA domains are depleted by kernel memory
2079          * allocations; the domainset iterators automatically skip domains
2080          * below the "min" threshold on the first pass.
2081          *
2082          * UMA reclaim worker has its own rate-limiting mechanism, so don't
2083          * worry about kicking it too often.
2084          */
2085         if (vm_page_count_severe())
2086                 uma_reclaim_wakeup();
2087
2088         return (ret);
2089 }
2090
2091 static void
2092 vm_pageout_worker(void *arg)
2093 {
2094         struct vm_domain *vmd;
2095         u_int ofree;
2096         int addl_shortage, domain, shortage;
2097         bool target_met;
2098
2099         domain = (uintptr_t)arg;
2100         vmd = VM_DOMAIN(domain);
2101         shortage = 0;
2102         target_met = true;
2103
2104         /*
2105          * XXXKIB It could be useful to bind pageout daemon threads to
2106          * the cores belonging to the domain, from which vm_page_array
2107          * is allocated.
2108          */
2109
2110         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2111         vmd->vmd_last_active_scan = ticks;
2112
2113         /*
2114          * The pageout daemon worker is never done, so loop forever.
2115          */
2116         while (TRUE) {
2117                 vm_domain_pageout_lock(vmd);
2118
2119                 /*
2120                  * We need to clear wanted before we check the limits.  This
2121                  * prevents races with wakers who will check wanted after they
2122                  * reach the limit.
2123                  */
2124                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2125
2126                 /*
2127                  * Might the page daemon need to run again?
2128                  */
2129                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2130                         /*
2131                          * Yes.  If the scan failed to produce enough free
2132                          * pages, sleep uninterruptibly for some time in the
2133                          * hope that the laundry thread will clean some pages.
2134                          */
2135                         vm_domain_pageout_unlock(vmd);
2136                         if (!target_met)
2137                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
2138                 } else {
2139                         /*
2140                          * No, sleep until the next wakeup or until pages
2141                          * need to have their reference stats updated.
2142                          */
2143                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
2144                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2145                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2146                                 VM_CNT_INC(v_pdwakeups);
2147                 }
2148
2149                 /* Prevent spurious wakeups by ensuring that wanted is set. */
2150                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2151
2152                 /*
2153                  * Use the controller to calculate how many pages to free in
2154                  * this interval, and scan the inactive queue.  If the lowmem
2155                  * handlers appear to have freed up some pages, subtract the
2156                  * difference from the inactive queue scan target.
2157                  */
2158                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2159                 if (shortage > 0) {
2160                         ofree = vmd->vmd_free_count;
2161                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2162                                 shortage -= min(vmd->vmd_free_count - ofree,
2163                                     (u_int)shortage);
2164                         target_met = vm_pageout_inactive(vmd, shortage,
2165                             &addl_shortage);
2166                 } else
2167                         addl_shortage = 0;
2168
2169                 /*
2170                  * Scan the active queue.  A positive value for shortage
2171                  * indicates that we must aggressively deactivate pages to avoid
2172                  * a shortfall.
2173                  */
2174                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
2175                 vm_pageout_scan_active(vmd, shortage);
2176         }
2177 }
2178
2179 /*
2180  * vm_pageout_helper runs additional pageout daemons in times of high paging
2181  * activity.
2182  */
2183 static void
2184 vm_pageout_helper(void *arg)
2185 {
2186         struct vm_domain *vmd;
2187         int domain;
2188
2189         domain = (uintptr_t)arg;
2190         vmd = VM_DOMAIN(domain);
2191
2192         vm_domain_pageout_lock(vmd);
2193         for (;;) {
2194                 msleep(&vmd->vmd_inactive_shortage,
2195                     vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
2196                 blockcount_release(&vmd->vmd_inactive_starting, 1);
2197
2198                 vm_domain_pageout_unlock(vmd);
2199                 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
2200                 vm_domain_pageout_lock(vmd);
2201
2202                 /*
2203                  * Release the running count while the pageout lock is held to
2204                  * prevent wakeup races.
2205                  */
2206                 blockcount_release(&vmd->vmd_inactive_running, 1);
2207         }
2208 }
2209
2210 static int
2211 get_pageout_threads_per_domain(const struct vm_domain *vmd)
2212 {
2213         unsigned total_pageout_threads, eligible_cpus, domain_cpus;
2214
2215         if (VM_DOMAIN_EMPTY(vmd->vmd_domain))
2216                 return (0);
2217
2218         /*
2219          * Semi-arbitrarily constrain pagedaemon threads to less than half the
2220          * total number of CPUs in the system as an upper limit.
2221          */
2222         if (pageout_cpus_per_thread < 2)
2223                 pageout_cpus_per_thread = 2;
2224         else if (pageout_cpus_per_thread > mp_ncpus)
2225                 pageout_cpus_per_thread = mp_ncpus;
2226
2227         total_pageout_threads = howmany(mp_ncpus, pageout_cpus_per_thread);
2228         domain_cpus = CPU_COUNT(&cpuset_domain[vmd->vmd_domain]);
2229
2230         /* Pagedaemons are not run in empty domains. */
2231         eligible_cpus = mp_ncpus;
2232         for (unsigned i = 0; i < vm_ndomains; i++)
2233                 if (VM_DOMAIN_EMPTY(i))
2234                         eligible_cpus -= CPU_COUNT(&cpuset_domain[i]);
2235
2236         /*
2237          * Assign a portion of the total pageout threads to this domain
2238          * corresponding to the fraction of pagedaemon-eligible CPUs in the
2239          * domain.  In asymmetric NUMA systems, domains with more CPUs may be
2240          * allocated more threads than domains with fewer CPUs.
2241          */
2242         return (howmany(total_pageout_threads * domain_cpus, eligible_cpus));
2243 }
2244
2245 /*
2246  * Initialize basic pageout daemon settings.  See the comment above the
2247  * definition of vm_domain for some explanation of how these thresholds are
2248  * used.
2249  */
2250 static void
2251 vm_pageout_init_domain(int domain)
2252 {
2253         struct vm_domain *vmd;
2254         struct sysctl_oid *oid;
2255
2256         vmd = VM_DOMAIN(domain);
2257         vmd->vmd_interrupt_free_min = 2;
2258
2259         /*
2260          * v_free_reserved needs to include enough for the largest
2261          * swap pager structures plus enough for any pv_entry structs
2262          * when paging. 
2263          */
2264         vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2265             vmd->vmd_interrupt_free_min;
2266         vmd->vmd_free_reserved = vm_pageout_page_count +
2267             vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2268         vmd->vmd_free_min = vmd->vmd_page_count / 200;
2269         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2270         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2271         vmd->vmd_free_min += vmd->vmd_free_reserved;
2272         vmd->vmd_free_severe += vmd->vmd_free_reserved;
2273         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2274         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2275                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2276
2277         /*
2278          * Set the default wakeup threshold to be 10% below the paging
2279          * target.  This keeps the steady state out of shortfall.
2280          */
2281         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2282
2283         /*
2284          * Target amount of memory to move out of the laundry queue during a
2285          * background laundering.  This is proportional to the amount of system
2286          * memory.
2287          */
2288         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2289             vmd->vmd_free_min) / 10;
2290
2291         /* Initialize the pageout daemon pid controller. */
2292         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2293             vmd->vmd_free_target, PIDCTRL_BOUND,
2294             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2295         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2296             "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2297         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2298
2299         vmd->vmd_inactive_threads = get_pageout_threads_per_domain(vmd);
2300 }
2301
2302 static void
2303 vm_pageout_init(void)
2304 {
2305         u_long freecount;
2306         int i;
2307
2308         /*
2309          * Initialize some paging parameters.
2310          */
2311         if (vm_cnt.v_page_count < 2000)
2312                 vm_pageout_page_count = 8;
2313
2314         freecount = 0;
2315         for (i = 0; i < vm_ndomains; i++) {
2316                 struct vm_domain *vmd;
2317
2318                 vm_pageout_init_domain(i);
2319                 vmd = VM_DOMAIN(i);
2320                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2321                 vm_cnt.v_free_target += vmd->vmd_free_target;
2322                 vm_cnt.v_free_min += vmd->vmd_free_min;
2323                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2324                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2325                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2326                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2327                 freecount += vmd->vmd_free_count;
2328         }
2329
2330         /*
2331          * Set interval in seconds for active scan.  We want to visit each
2332          * page at least once every ten minutes.  This is to prevent worst
2333          * case paging behaviors with stale active LRU.
2334          */
2335         if (vm_pageout_update_period == 0)
2336                 vm_pageout_update_period = 600;
2337
2338         /*
2339          * Set the maximum number of user-wired virtual pages.  Historically the
2340          * main source of such pages was mlock(2) and mlockall(2).  Hypervisors
2341          * may also request user-wired memory.
2342          */
2343         if (vm_page_max_user_wired == 0)
2344                 vm_page_max_user_wired = 4 * freecount / 5;
2345 }
2346
2347 /*
2348  *     vm_pageout is the high level pageout daemon.
2349  */
2350 static void
2351 vm_pageout(void)
2352 {
2353         struct proc *p;
2354         struct thread *td;
2355         int error, first, i, j, pageout_threads;
2356
2357         p = curproc;
2358         td = curthread;
2359
2360         mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2361         swap_pager_swap_init();
2362         for (first = -1, i = 0; i < vm_ndomains; i++) {
2363                 if (VM_DOMAIN_EMPTY(i)) {
2364                         if (bootverbose)
2365                                 printf("domain %d empty; skipping pageout\n",
2366                                     i);
2367                         continue;
2368                 }
2369                 if (first == -1)
2370                         first = i;
2371                 else {
2372                         error = kthread_add(vm_pageout_worker,
2373                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2374                         if (error != 0)
2375                                 panic("starting pageout for domain %d: %d\n",
2376                                     i, error);
2377                 }
2378                 pageout_threads = VM_DOMAIN(i)->vmd_inactive_threads;
2379                 for (j = 0; j < pageout_threads - 1; j++) {
2380                         error = kthread_add(vm_pageout_helper,
2381                             (void *)(uintptr_t)i, p, NULL, 0, 0,
2382                             "dom%d helper%d", i, j);
2383                         if (error != 0)
2384                                 panic("starting pageout helper %d for domain "
2385                                     "%d: %d\n", j, i, error);
2386                 }
2387                 error = kthread_add(vm_pageout_laundry_worker,
2388                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2389                 if (error != 0)
2390                         panic("starting laundry for domain %d: %d", i, error);
2391         }
2392         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2393         if (error != 0)
2394                 panic("starting uma_reclaim helper, error %d\n", error);
2395
2396         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2397         vm_pageout_worker((void *)(uintptr_t)first);
2398 }
2399
2400 /*
2401  * Perform an advisory wakeup of the page daemon.
2402  */
2403 void
2404 pagedaemon_wakeup(int domain)
2405 {
2406         struct vm_domain *vmd;
2407
2408         vmd = VM_DOMAIN(domain);
2409         vm_domain_pageout_assert_unlocked(vmd);
2410         if (curproc == pageproc)
2411                 return;
2412
2413         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2414                 vm_domain_pageout_lock(vmd);
2415                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2416                 wakeup(&vmd->vmd_pageout_wanted);
2417                 vm_domain_pageout_unlock(vmd);
2418         }
2419 }